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ABSTRACT  
Proper modelling of the temporal correlations of the 
zenith wet delay (ZWD) is important in some of the 
Global Navigation Satellite Systems (GNSS) applications 
such as estimation of the Perceptible Water Vapour 
(PWV), and methods such as Precise Point Positioning 
(PPP). The random walk (RW) and the first-order Gauss-
Markov (GM) autocorrelation model are commonly used 
for the dynamic modelling of ZWD in Kalman filtering of 
GNSS measurements. However, it was found that the GM 
model consistently underestimates the temporal 
correlations that exist among the ZWD estimates. 
Therefore, a new autocorrelation dynamic model is 
proposed in a form similar to that of a hyperbolic 
function. The impact of the proposed dynamic model on 
the near-real time estimation of the ZWD was tested and 
its results were compared to that of the GM model as well 
as the RW model. In this test, GPS dual-frequency data 
collected on the 25th Jan 2010 at two Western Australian 
IGS stations, namely, Yarragadee and Karratha, were 
used. Results showed that the proposed model 
outperformed the GM model, and when added to 
hydrostatic models were able to provide near real-time 
(with 30 seconds intervals) ZTD estimates to within a few 
cm accuracy. 
 
 
INTRODUCTION  
In GNSS, the zenith tropospheric delay (ZTD) can be 
divided into two components, the hydrostatic delay and 
the wet delay. The zenith hydrostatic delay (ZHD) can be  
 

estimated with external models (e.g., Saastamoinen, 1973) 
to a few millimetres in accuracy. However, determination 
of the zenith wet delay (ZWD) represents a difficult task 
due to the dynamic nature of atmospheric water vapour. 
Due to changes of the temporal and spatial variability of 
the water vapour, the wet delay cannot be consistently 
modelled with millimetre precision by any existing 
tropospheric models. However, precise estimation of the 
ZWD is essential for high-precision positioning 
applications, the PPP technique, and Numerical Weather 
Prediction (NWP) modelling.  
 
The ZWD values determined from GNSS measurements 
can be used to estimate the PWV. The impact of GNSS 
PWV estimates on weather forecasting is well 
documented (e.g., Kuo et al., 1996; Vedel and Huang, 
2003; Gutman et al., 2004; Vedel and Huang, 2004; Vedel 
et al., 2004; Smith et al., 2006; Macpherson et al., 2007). 
These studies reported improvements in the humidity and 
precipitation forecasts when GNSS PWV estimates are 
assimilated into NWP models. The impact of GNSS PWV 
estimates was emphasised by a multi-year experiment 
over the period 1999-2004 by Smith et al. (2006), 
whereby improvements were evident in the 6-h and 12-h 
relative humidity forecasts. An experiment for a three 
month period in the corresponding campaign also 
witnessed the strongest improvements in the 3- and 6-hr 
forecasts in March-May, 2004.  
 
A well-defined statistical description for the GNSS-
derived tropospheric estimates is important for NWP 
modelling. The statistical correlation includes the 
autocorrelation, which describe the temporal correlations 
between pairs of GNSS tropospheric estimates in a time 
series as a function of time differences (Borre and 
Tiberius, 2000). These autocorrelation values also play a 
role in determining the autocorrelation time length, which 
can then be used in recursive data processing procedures 
such as GM Kalman filtering with state vector 
augmentation (e.g., Borre and Tiberius, 2000). 
 
In this paper, a brief overview of the classic KF process is 
provided. Then, two of the more commonly-used dynamic 
models in the KF process, namely the RW and GM 
models, are outlined. A new dynamic model is then 
proposed to model the transition of the ZWD in the state 
vector of a moving entity. The proposed model is later 
analysed for ZWD with real GNSS data, and its results 
are compared to those of the RW and GM models. 
 
 



KALMAN FILTERING 
Kalman filtering (KF) is a technique that allows the state 
vector of a moving object, which is characterized by its 
non-stationary position and velocity, to be computed as a 
function of time. Kalman filter works as an adjustment 
process with time updates of the state vector and its 
covariance matrix (Hofmann-Wellenhof et al., 2001), and 
it is often applied in real-time GNSS applications such as 
positioning and navigation. 
 
The observation equation of the GNSS observations at 
time i (yi) can be modelled as a function of the state 
vector of the unknowns (Xi) as: 
 

yi = Ai Xi + ei  (1) 
 
where iA is the design matrix and ei denotes the 
measurement residuals. At the initial epoch, the state 
vector X0, which includes the ZWD, and its covariance 
matrix 

0XQ are assumed to be known. The state transition 
matrix that relates two consecutive state vectors Xi and  
Xi-1 at times i and i-1 reads (Xu, 2003): 
 
 i1i1i/ii uXX +Φ= −− ,   for ,1i = ,2 m  (2) 
 
where 1i/i −Φ  is the transition matrix. The system noise 

iu  is assumed to follow a normal distribution with zero 
mean and a known covariance matrix, uQ . Using the 
covariance propagation law, the covariance matrix for the 
state vector in Eq. (2) is given by (Xu, 2003): 
 
 u

T
1i/iX1i/i1i/Xi QQQ

1i/1i
+ΦΦ= −−− −−

  (3) 
 
Eqs. (2) and (3) are known as the time update (predicted) 
values for the state vector at epoch i. By applying the 
least-squares principle to correct for the predicted values, 
the estimated values of the ZWD, along with the other 
parameters of the state vector can be calculated by: 
 

1i/1i1i/i1i/i X̂X̂ −−−− Φ=   (4) 

( )1i/iii1i/ii/i X̂ALKX̂X̂ −− −+=   (5)
   

( ) 1i/iii/i QKAIQ −−=   (6)
   
with 

 ( ) 1
yy

T
ii/ii

T
ii/i QAQAAQK

−
+=  (7)

  
where I is the identity matrix, iL  is the misclosure vector, 
and yyQ  is the corresponding covariance matrix of 
measurements. The KF outlined above is of the classical 
case. There are several other more refined versions of the 
KF, such as the extended KF, the robust KF and the 
adaptively robust KF. Interested readers are referred to 

Hofmann-Wellenhof et al., (2001), Xu (2003), Leick 
(2004) and other relevant texts for more details. 
 
In static positioning, the positional state vector, iX  does 
not change with time, i.e. 1ii XX −= , which implies that 

I1i,i =Φ −  in Eq. (2), and also, uQ  is assumed to be zero. 
However, the ZWD parameter will vary with time due to 
the fluctuations of the water vapour in the atmosphere. In 
this instance, an appropriate representation of the 
transition between adjacent ZWD measurements of 
sampling interval t∆  is needed. 
  
The next sections of this paper will focus only on the 
dynamic modelling of the ZWD through addressing the 
transition matrix and its corresponding stochastic 
parameter in the Qu matrix. For the purpose of simplicity, 
the subscript i will be used instead of i/i. 
 
 
Random Walk Model 
A random walk (RW) model defines a random process 
whereby the value of the current variable, say iX , is 
composed of the past variable 1iX −  plus an error term 
defined as a white noise iε  with zero mean and unit 
variance. Algebraically, a RW model is given by: 
 
 i1ii XX ε+= −    (8) 
 
The associated variance of the RW process noise iε  is: 
 
 ( ) 222

i tE ∆σ=ε   (9) 
 
where 2σ  is the variance of the RW process noise. 
 
 
First-Order Gauss Markov Model 
Assuming that the correlations among the ZWD decays 
smoothly with time, the first-order Gauss Markov (GM) 
model can be called upon to describe the temporal 
dependence of the adjacent ZWD, such that the dynamic 
model of the state vector is: 

 i1i

t1

i uXeX GM += −

∆
τ
−

  (10) 
 
where GMτ is the correlation time of the GM model, and 

iu  is a white noise with zero mean and covariance uQ . 
Figure 1 illustrates the behaviour of the GM 
autocorrelation function given by Eq. (10), for =τGM 1 h 

(solid curve) and =τGM 2 h (broken curve) for ∆t = 30 
sec. 
 
Without loss of generality, suppose that in static 
processing of GNSS measurements at sites of known 
positions, the positional information are assumed fixed or 
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Figure 1     Autocorrelation function of  GM process 
 
 
tightly constrained, and that the remaining parameters, i.e. 
phase ambiguities, clock errors etc., are also estimated or 
modelled out of the observation equation beforehand. In 
addition, the ZHD is determined via the Saastamoinen 
hydrostatic model (and subtracted from the ZTD 
parameter prior to the estimation process). Thus, the 
ZWD component can be estimated from the adjustment 
process, e.g. KF. The GM model in Eq. (10) can be 
expressed for ZWD as: 
 

 i1i

t1

i uZWDeZWD GM += −

∆
τ
−

  (11) 
 
The associated variance of the GM process noise, iu , can 
be derived by firstly rearranging Eq. (11) to give: 
 

1i

t1

ii ZWDeZWDu GM
−

∆
τ
−

−=   (12) 
 
Then, by squaring and taking the expectation of both sides 
of Eq. (12) we have: 
 

 ( )

































−= −

∆
τ
− 2

1i

t1

i
2
i ZWDeZWDEuE GM  

 















−σ=

∆
τ
− t2

2
GM GMe1   (13) 

where 2
GMσ is the steady-state variance of the GM 

process.  
 
In practice, a single value for the ZWD parameter is 
generally estimated for a 1 h or 2 h interval (Kouba, 
2009). This is due to the fact that the ZWDs generally do 
not vary significantly from their mean value during these 
short time intervals. In other words, the ZWD data 
behaves like a stationary process (Wei, 2006).  

A PROPOSED AUTOCORRELATION MODEL 
By assuming a constant mean, ZWD , over a short time-
period, the ZWD component can be given as: 
 

ii ZWDZWDZWD ∆+=   (14) 
 
Where ∆ZWDi is the difference between the ZWD value 
at time i and the mean value ZWD . The mean parameter 
ZWD in Eq. (14) can be roughly estimated via empirical 
wet delay models. However, a more rigorous approach 
would be to estimate ZWD  along with ZWD∆  in the 
Kalman filtering process. In this manner, the GM model 
given by Eq. (11) can then be expressed as: 
 

 i1i

t1

i u~ZWDeZWDZWD GM +∆+= −

∆
τ
−

 
i1i1i,i u~ZWDZWD +∆Φ+= −−   (15) 

  
where iu~  is a white noise with zero mean and variance 

2
u~σ . The associated variance 2

u~σ  for ZWD∆  is identical 
to that given by Eq. (13). 
 
The GM autocorrelation function given by Eq. (10) is 
dependent on the empirical value given to the correlation 
time GMτ . The value for GMτ can be directly estimated 
from the GM autocorrelation function: 
 

( )
t1

GMet
∆

τ
−

=∆ρ   (16) 
 
given at  the e

1=ρ  point when tGM ∆=τ .  

Alternatively, it can be determined at a specific time lag 
where significant ZWD autocorrelation is no longer 
observed. For instance, Figure 2 shows the 
autocorrelation of PWV with lags of 1 h intervals, which 
can be transformed to ZWD (and vice versa), at ALIC 
station in Australia at three different dates (31 March, 3rd 
April, and 6th April 2010). From the figure, τ can be 
determined by finding the intersection between the 
autocorrelation trend line and the confidence interval 
(broken red line), which vary, within a small range, 
between different tests. From the figures, the value of τ 
can be taken between 1 and 2 hours.   
 
An alternative autocorrelation function is proposed in this 
study that can be used in the transition matrix. By 
studying the autocorrelation of ZWD of several data sets, 
it was found that the trend exhibited by a hyperbolic 
function gives a reasonable representation of this 
autocorrelation changes. Thus, the proposed 
autocorrelation function between the ZWDs at epochs i 
and i-k, i.e. for a lag kt =∆ , can be given by: 
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Figure 2  Autocorrelation plot of the PWV estimates over 

ALIC on 31st Mar, 3rd Apr, and 6th Apr.  
 
 

( )

( )








β

τ
∆

−









+

τ
∆

=∆ρ=

PM

t

PM

kii

1t

1t

ZWD,ZWDnCorrelatio

  (17) 

 
where PMτ  is the correlation time of the proposed model, 
and the parameter β  is chosen from experience based on 
the analysis of several data sets or to be determined from 
the data at hand as given below. To estimate β, a set of n 
autocorrelation estimates for an initial period of ZWD 
data set can be determined using a standard 
autocorrelation approach. That is, 
 

 ( ) ( )
( )0Ẑ

tẐt ∆
=∆ρ   (18) 

with 
 

( ) ( )( ) ( )( )∑ −∆+−=∆
∆−

=

tn

1i
ZWDttZWDZWDtZWD

n
1tẐ  

   (19) 

where ZWD  is the empirical mean. Taking the natural 
logarithm of both sides of Eq. (17) results in the linearised 
form: 
 

 ( ) β



















+

τ
∆

×







τ
∆

−=ρ 1tlntln
PMPM

  (20) 

 
An estimate for ,β i.e. ,β̂  can then be calculated by 

performing least-squares analysis on the first 12
n  

number of autocorrelation values, generated by Eqs. (17) 
and (18), using the linear relationship defined by Eq. (20). 
In real-time applications, a default value of β can be used 
during this period until β̂  is computed.  Once β̂  has been 
determined, the proposed model (PM) given by Eq. (17) 
is then fully defined. 
 
As stated earlier, an important application of determining 
ZWD from GNSS measurements is to estimate PWV. 
Figures 3 to 6 demonstrate the capability of the proposed 
model in following the trend of autocorrelations, which 
were calculated via Eq. (18) from the actual PWV values 
determined from radiosonde data. The plots are given at 
four different locations (Alice Springs, Broome, Burnie 
and Ceduna) across Australia. The GM model is also 
included in these figures for comparison purposes. For the 
GM model, the value of GMτ  is determined at a time lag t 
where (statistically) significant autocorrelation is 
observed using the Ljung-Box Q statistic (Ljung and Box, 
1978). For the proposed model, τPM is taken equals τGM. 
 
From Figures 3 to 6, it can be seen that the GM function 
did not adequately represent the actual PWV 
autocorrelations. The GM function consistently over-
estimates the rate at which the PWV autocorrelation 
values decreases. Conversely, the proposed model, given 
by Eq. (17) is able to provide autocorrelation values that 
closely follow the actual autocorrelation values for a 
significant length of time. 
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Figure 3 Comparison between the proposed model (solid 

circles) and the GM model (squares) in 
estimating the actual PWV autocorrelations 
(triangles) at Alice Springs (NT) 
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Figure 4 Comparison between the proposed model and 

the GM model in estimating the actual PWV 
autocorrelations at Broome (Western Australia) 
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Figure 5 Comparison between the proposed model and 

the GM model in estimating the actual PWV 
autocorrelations at Burnie (Tasmania). 
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Figure 6 Comparison between the proposed model and 

the GM model in estimating the actual PWV 
autocorrelations at Ceduna (South Australia) 

 
For the proposed autocorrelation model, the state element 
of the ZWD at time i can be represented by: 
 

 i1it

PM

i uZWD

1t

1ZWD

PM

+×









+

τ
∆

= −









β

τ
∆

  (21) 

To determine the variance of the process noise uQ , the 
quantity iu  in Eq. (21) is once again isolated, then taking 
the expectation of its square gives: 
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where 2σ  is the variance of the process. The ZWD state 
element, given in Eq. (21), can also be represented in the 
form described in Eq. (15). 
 
 
NEAR REAL-TIME ESTIMATION OF THE ZENITH WET 
DELAY AT A SINGLE STATION 
The Gauss-Markov model given in Eq. (10) uses the 
temporal correlations that exist among the ZWD estimates 
to provide near real-time (NRT) wet delay estimates in 
the Kalman filter process. However, it was shown in the 
previous section that, for the presented data, the 
corresponding GM autocorrelation function did not 
adequately represent the autocorrelation trend as it 
consistently underestimated the actual ZWD 
autocorrelation values. An alternative autocorrelation 
function was therefore proposed. The proposed 
autocorrelation function was shown to follow the ZWD 
autocorrelation trend more closely than that of the GM 
function in the post-mission mode. However, its effect on 
the NRT estimation of the ZWD is still not presented. 
Hence, in this section, the impact of the proposed model 
(PM) on the NRT estimation of the ZWD is tested. The 
corresponding results are next compared to that of the 
GM model as well as the random-walk (RW) model given 
by Eq. (8) as these models are the current widely used 
models for ZWD estimation. 
 
In this investigation, 24 h of GNSS dual-frequency data 
with 30 seconds sample intervals on the 25th Jan 2010 
from two Western Australian IGS stations, namely 
Yarragadee (YAR2) and Karratha (KARR), were used to 
test the models. The stations were processed 
independently in the PPP mode. IGS products, including 
the IGS final orbital file, satellite clock information, Earth 
Orientation Parameters (EOPs), the coordinates of the 



ground stations and the antenna phase centre offsets and 
variations were used (El-Mowafy, 2009). An elevation 
angle cut-off of 5o and the Niell mapping functions (Niell, 
1996) were used in processing of the GNSS data. The 
ionosphere-free linear combination of GNSS observations 
was implemented to mitigate the first-order ionospheric 
residual errors. In conjunction with the standard surface 
meteorological data, i.e. 20o C in temperature, 50% 
humidity and 1010 millibars in pressure, the 
Saastamoinen hydrostatic model (Saastamoinen, 1973) 
was used to provide a-priori ZHD estimates, which 
usually have accuracy of better than 95%. These ZHD 
estimates, with the aid of the mapping functions, were 
then subtracted from the observations, leaving mainly 
behind the ZWD parameters, which are to be estimated. 
The KF process, was used to estimate the ZWD at every 
30-second interval, along with the station coordinate 
partials, ambiguities and receiver clock error in a PPP 
mode. The RW, GM and proposed models were used for 
dynamic modelling of ZWD in three separate runs of KF. 
The station coordinates were not assumed fixed, as this 
investigation is carried out to simulate kinematic 
positioning.  For the GM model and the PM, two KF 
approaches were used: 
 

(1) Estimate the ZWD term as a random process in the 
form:  

 

i1it

PM

i uZWD

1t

1ZWD

PM

+









+

τ
∆

= −









β

τ
∆

  (23) 

 
(2) Estimate the ZWD parameter in terms of the mean 

ZWD and the residual simultaneously, i.e. in the 
form:  

 

i1it

PM

i u~ZWD

1t

1ZWDZWD

PM

+∆









+

τ
∆

+= −









β

τ
∆

 

   (24) 
 
Prior to this investigation, an autocorrelation analysis of 
the PWV estimates across 10 Australian stations was 
carried out. Based on the analysis of the ZWD 
autocorrelation results, the correlation time τ  for both the 
GM model and the proposed model was empirically taken 
as 4800 seconds. The empirical β  value for the PM is 

taken as 4
3 . Once the ZWD is estimated, it is then added 

to the estimated ZHD, and hence, the ZTD can be 
computed. The estimated ZTD from each of the models 
are averaged at every 5 min and at every 2-h periods, 
respectively, during the course of the 24-h test period and 
are then compared to the IGS tropospheric solutions. 
Tables 1 and 2 present the Root Mean Square Error 
(RMSE) of the differences between the estimated ZTD 

and the 5-min IGS ZTD solution, whilst Table 2 provides 
the RMSE of the estimated ZTD when compared with the 
2-h IGS solution. The table gives results when assuming 2 
mm, 5 mm, and 10 mm standard deviation of the process 
noise for ZWD. GM1 and PM1 are; respectively, the GM 
model and PM processed with the first approach given in 
Eq. (11) and (23). Similarly, GM2 and PM2 are; 
respectively, the GM model and PM processed with the 
second approach given in Eq. (15) and (24). 
 
Tables 1 and 2 indicate that there are marginal RMSE 
differences when the estimated ZTD were compared to 
the 5-min and the 2-h IGS solutions across both stations. 
The maximum difference between the RMSE values is 
2.4 mm, with an average difference of 0.7 mm. Figure 7 
provides a plot of the spread of the RMSE difference. 
 
 

Table 1 RMSE (mm) of the differences between the 
estimated ZTD and the IGS solutions (5-min)  

 
  1 mm SD 

Station RW GM1 GM2 PM1 PM2 
YAR2 17.2 72.4 16.1 16.2 14.3 
KARR 17.1 126.8 28.6 21.8 20.5 

  5 mm SD 
Station RW GM1 GM2 PM1 PM2 
YAR2 15.3 55.2 13.6 14.7 14.4 
KARR 11.4 99.2 11.1 10.1 14.7 

  10 mm SD 
Station RW GM1 GM2 PM1 PM2 
YAR2 15.6 43.1 14.4 15.1 15.8 
KARR 14.9 79.4 13.9 13.5 18.8 

 
 

Table 2  RMSE (mm) of the differences between the 
estimated ZTD and the IGS solutions (2-h)) 

 
 1 mm SD 

Station RW GM1 GM2 PM1 PM2 
YAR2 15.8 71.4 15.2 14.6 12.2 
KARR 15.7 126.4 26.5 20.7 18.9 

 5 mm SD 
Station RW GM1 GM2 PM1 PM2 
YAR2 14.0 53.9 13.3 13.4 13.6 
KARR 12.2 97.6 10.9 10.3 15.5 

 10 mm SD 
Station RW GM1 GM2 PM1 PM2 
YAR2 15.2 40.9 14.3 14.7 15.6 
KARR 15.9 76.9 14.9 14.2 19.3 

 

When estimating the ZWD parameter as a random process 
in the first approach, the GM model (GM1) was the worst 
performer. The corresponding RMSE for GM model 



ranged from about 4 cm to 12 cm. The PM1, generally 
produced the best results at both stations, with the 
corresponding ZTD RMSE values ranging from about 1 
cm to 2 cm. Overall, the results of the RW were 
marginally bettered by the PM. The best results for the 
RW model and the PM1 were achieved at standard 
deviation of 5 mm.  
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Figure 7 Differences between the (estimated ZTD – 5-

min IGS ZTD) RMSE and the (estimated ZTD 
– 2-h IGS ZTD) RMSE 

 

In the second KF approach whereby the mean ZWD, i.e. 
ZWD , is estimated along with the residual ZWD, i.e. 

ZWD∆ , the performance of the GM model has 
dramatically improved from 4 cm to 12 cm in the initial 
approach to around 1.3 cm to 2.9 cm across both stations. 
The final results of the GM2 model are comparable to that 
of the PM1 and the RW model. A difference of up to 5 
mm can be observed between the PM1 and the PM2 
model, with the latter being less accurate. However, this 
can be explained by examing the parameterisation of the 
ZWD  and ZWD∆ in the corresponding design matrix, 
given by Eq. (15). In modelling the ZWD , the 
coefficients of the corresponding column in the design 
matrix are defined as a vector of ones. The coefficients 
for the ,ZWDs∆  which are modelled by the PM, are close 
to one due to the high correlation that exists between 
successive ZWD estimates since the sampling interval 
was only 30 s. The design matrix will therefore includes 
two columns that are almost similar. Thus, to avoid 
singularity in this case, the use of the PM with the ZWD 
that is decomposed into two componets, ZWD  and 

ZWD∆ , is recommended only for longer time intervals. 
Figure 8 shows that overall across both stations, the RW 
and PM1 models have yielded the best results. 
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SUMMARY 
In the kinematic modelling of the GNSS measurements, 
the remaining part of ZTD after modelling out the ZHD 
involves mainly the ZWD, which does not vary 
significantly from its mean value during short time 
intervals. Thus, the ZWD can be considered as 
comprising two components, a mean value that is taken 
constant over short time-periods, and a variable 
component that is modelled as a random process with 
zero mean. Both components need to be determined in the 
processing algorithm (e.g. Kalman filtering), and thus, 
their dynamic and stochastic models should be identified. 
The dynamic function of the constant part is simply taken 
one, with zero variance. The first-order Gauss-Markov 
(GM) autoregressive function can be used for modelling 
the dynamic behaviour of the random process component. 
To investigate this assumption, the actual PWV from 
radiosonde data were collected at four different locations 
across Australia (Alice Springs, Broome, Burnie and 
Ceduna) and the trend of their computed autocorrelations 
were compared with autocorrelations determined from the 
GM model. It was found that the GM model consistently 
underestimates the temporal correlations of the PWV 
measurements. Therefore, a new autocorrelation dynamic 
model is proposed. The proposed autocorrelation function 
gave results in good agreement with the autocorrelation 
changes of the actual PWV for the test data considered. 
 
The impact of the proposed dynamic model on the near-
real time estimation of the ZWD was also tested and its 
results were compared to that of the GM model as well as 
the random walk model. In this test, 24 hours of GPS 
dual-frequency data collected on the 25th Jan 2010 at two 
Western Australian IGS stations, namely Yarragadee and 
Karratha were used. The stations data were processed 
independently in a PPP mode using each of the three 
models. The published IGS final ZTD at the two stations 
were used as a reference for comparison of the results 
from the three models. 
 
 



In estimation of the ZWD, two approaches were 
considered. The first is a classical approach where ZWD 
is modelled as one variable. In the second, the proposed 
estimation approach was implemented, where the mean 
ZWD is estimated along with the residual random process 
component. Results at the two stations showed that for the 
first approach, the corresponding RMSE for GM model 
ranged from about 4 cm to 12 cm. The proposed 
autocorrelation model generally produced the best results 
at both stations, with the corresponding ZTD RMSE 
values ranging from about 1 cm to 2 cm. In the second 
approach, where the ZWD is estimated as a mean value 
and a random process, the performance of the GM model 
has significantly improved to around 1.3 cm to 2.9 cm for 
both stations whereas the performance of the proposed 
autocorrelation model had no improvement. Future work 
includes testing the proposed model on longer datasets, at 
different locations with globe distribution, and under 
various operational and site conditions. 
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