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Abstract

Evolving from neuro-biological insights, neural network technology gives a computer
system an amazing capacity to actually generate decisions dynamically. However, as
the amount of data to be processed increases, there is a demand for developing new
types of networks such as Cellular Neural Networks (CNN), to ease the computational

burden without compromising the outcomes.

The objective of this thesis is to research the capability of Shunting Inhibitory Cellular
Neural Networks (SICNN) to solve the clarity problems in ultrasound imaging. In this
thesis, we begin by reviewing a number of traditional enhancement techniques and
measures. Since the entire work of this thesis is based upon a particular model of the

CNN, we present a brief review of CNN theory and its applications.

The SICNN biological inspiration, derivation and stability issues are reviewed with a
view to understand its working principle. We then probe a general study of the feed-
forward and recurrent SICNN systems. Here, the essential response properties of both
SICNN systems are investigated in depth. The enhancing properties of the recurrent
SICNN and its advantages compared to more traditional techniques are also studied.
After a thorough investigation into the SICNN response properties, we introduce its

application for enhancement in Ultrasound Imaging (UI) modality.

There are many techniques already available to us which perform high level
enhancement. Unlike the regular problems encountered in images, the ultrasound
images have some extra and unique obstacles to cross before they reach the same
level of clarity as other diagnostic imaging systems. If not all, some of the problems
associated with ultrasound imaging will be addressed in this thesis. Mainly, the

reasons for the ambiguities in ultrasound detection are analysed and reasoned.

The next phase of this project mainly involves determining optimum SICNN
parameters for the ultrasound image enhancement. Targeting the causes of the

ultrasound ambiguities, an adaptive decay factor (a SICNN parameter), based on cell
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intensity, is designed for selective enhancement. This decay factor controls the final
impact of enhancement by allowing maximum enhancement rate for cells causing

blurring and limiting the enhancement rate for high contrast cells.

An adaptively varying weight function to determine the appropriate neighbourhood
effects is then investigated. In a given neighbourhood, this function is designed to
generate the direction and magnitude of background effects based on the properties of
the neighbouring cell intensities in comparison with the intensity of the cell under

consideration.

Finally, the SICNN enhancement performance is evaluated on clinical ultrasound
images and compared with those of conventional image enhancement techniques. The
UI databases are collected from a wide variety of hospital equipments and contain
both high and low quality images. The results of these experiments are quantified
using a contrast measure, a contrast index, and dynamic range. Based on these results,
we suggest a simple and effective method to improve the SICNN performance by
exploiting the dynamic range of the ultrasound images. A net enhancement of

approximately 25% has been achieved using this SICNN system.
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Chapter 1

Introduction

In this introduction chapter, we start by presenting the motivation of this thesis and
familiarizing the application that is being dealt with. In the next section, we highlight
some of the targets set for this thesis. The research statement is stated in this section. As
the application of Shunting Inhibitory Cellular Neural Networks (SICNN) for enhancing
ultrasound images forms the main goal of this thesis, this application is given a brief
introduction for understanding in the future chapters. Finally, we present the complete

overview of this thesis.

1.1 Research Problem and Motivation

“Sound is for hearing and light for seeing things.” This is the general convention used in
life. The striking advance in science is the capability to adapt sound for visual reception.
This unusual method is achieved by diverting ultra frequency sound waves into the
required areas and recording the corresponding reflected wave patterns. This indirect
method of visualizing images does not produce the same clarity as reflected light waves.
This motivates the exploration of the enormous scope of development and enhancement

in ultrasound imaging.
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There are many techniques already available to us which perform high level
enhancement. Unlike the regular problems encountered in images, the ultrasound images
have some extra and unique obstacles to cross before they reach the same level of clarity
as light images. If not all, some of the problems associated with ultrasound imaging will
be addressed in this thesis. The required conditions to solve these problems and their

reasoning are researched.

1.2 Research Statement and Goals

Before addressing the above cases, many traditional techniques would be explored and
their strengths and weaknesses understood. Some of the measurement schemes are also
listed for comparing different systems. Complex techniques using neural networks such
as the Shunting Inhibitory Cellular Neural Networks (SICNN) are studied in depth.
“Adapting a SICNN to solve clarity problems in Ultrasound Imaging” is the main goal
of this thesis. The performance of such a SICNN and means to improvise its results will

be discussed.

1.3 SICNN for Ultrasound Imaging

Lateral inhibition describes the complex mechanism by which sensory cells interact with
each other, and was first proposed by Emnst Mach (1886) to describe the edge effects
observed at the discontinuity between two different intensity bands. This phenomenon is
now referred to as Mach bands. Since the pioneering work of Mach, inhibition has been

shown to play an important part in the early visual processing system.

Multiplicative or shunting inhibition describes the case where the interaction between
neighbouring cells is of a multiplicative nature; thus, it is inherently nonlinear. Pinter
(1983a, 1983b) used lateral inhibition to explain the selectivity of visual units in the
ventral nerve of insects for small objects, and also to explain the adaptation of the
receptive spatial organization and the spatial modulation transfer function (Pinter 1984,

1985). Shunting inhibition has also found applications in image enhancement (Jernigan and
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McLean, 1992; Bouzerdoum, 1994; Paradis and Jernigan, 1994), as well as in motion detection

(Bouzerdoum, 1991).

Cellular neural networks (CNNs) were presented by Chua and Yang (1988) as a
framework for analogue, nonlinear processing arrays. A CNN consists of a nonlinear
processing node in a grid layout, with each cell being locally connected to its
neighbouring cells. Many possible CNNs have been described, and they have found many
applications in image processing, as CNNs have an excellent ability to process

information locally, in both time and space.

The mammalian system consists of neurons in a grid-like structure, with many local
interconnections which are used to interact with each other. The architecture and
nonlinear processing ability of the CNN makes it ideal to duplicate the shunting
inhibition in a mammalian system. Bouzerdoum and Pinter (1993) and Bouzerdoum

(1994) were able to adapt and design a CNN to model such shunting inhibition.

Bouzerdoum (1994) successfully used these SICNNs to model aspects of primitive visual
system. lannella and Bouzerdoum (1996) synthesized the spatiotemporal receptive fields
of the early mammalian visual system using a hierarchical model of the SICNNS.
Pontecorvo and Bouzerdoum (1995, 1997) have also designed and applied SICNNs for
edge detection. Cheung, Bouzerdoum and Newland (1999) have used these networks to

investigate and enhance the dynamic range compression and contrast of colour images.

In this thesis, we take the SICNN developed by Bouzerdoum and Pinter (1993) and adapt
it for enhancing medical images, ultrasound images in particular. The working principle
and problems associated with ultrasound images will be discussed. The SICNN has
various parameters which are tuned to dynamically vary its responses and solve the
intricacies in ultrasound imaging. Furthermore, we experiment on some basic methods of
enhancement and compare their performances to that of the SICNN. The networks are
implemented on both high and low quality clinical ultrasound images. Using the test
analysis, we suggest measures to improvise the SICNN performance and obtain

consistent results for any given input image.
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1.4 Thesis Overview

In Chapter 2 we present an overview of contrast enhancement theory and their
applicability. We describe a number of intensity transformation and histogram processing
techniques as found in literature. Contrast transformation methods are explained. Though
filtering techniques are not the focus of this thesis, some of the major principles in this
field are presented to give a comparative overlook of the systems and methods used in
enhancement. Towards the end of this chapter, a few quantitative enhancement measures

are explained for future use.

Chapter 3 begins by introducing the cellular neural network (CNN) theory and
architecture. The dynamics of the CNN are summarised and analysed. The various types
of CNNs available in literature, including the Shunting Inhibitory Cellular Neural
Networks (SICNN) are introduced. Some of the popular applications of these CNNs are
listed and briefed.

Chapter 4 covers the SICNN and its response properties. In this chapter, we first explain
the basic concepts of linear and non-linear inhibition, followed by its biological design.
We then use this biological design to electrically interpret the principle of shunting
inhibition. Here we derive the general SICNN and discuss its stability issues. A general
investigation into the classifications of SICNN systems, both feed-forward and recurrent
type, is presented. We describe how the recurrent SICNN can be solved for the steady-
state. The response properties of this recurrent SICNN are described for both uniform and
step-edge inputs. We conclude this chapter by discussing the advantages of the SICNN

and its performance comparisons to another technique, logarithmic enhancer.

Chapter S focuses on Ultrasound Imaging (UI) and the applicability of the SICNN to
enhance Ul images. We start by studying the principle of ultrasound and its application in
the medical field. We also learn how the ultrasound scanners detect the tissues in a
human body and how ambiguities in detection arise. The digital SICNN is then presented
and its parameters described. We design these parameters to minimize the ambiguities in

Ul images while retaining the important contents of the images.
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Chapter 6 deals with the performance analysis of the different networks that are tested.
This chapter begins with an overview of the different types of Ul images that are used for
experimentation. We briefly present all the measures that will be used to quantify the
experimental results. Performance analyses of some traditional techniques are also
presented to compare the SICNN results. Based on these results, we then suggest a means

to further refine the SICNN performance.

In Chapter 7, we present the conclusions of this thesis and a summary of its major

contributions. Recommendations for future work are also provided.
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Chapter 2

Enhancement and Measurement:
A Review

2.1 Introduction

When capturing an image of any real-world scene, we can expect a number of
degradations in the resulting image. These degradations may be due to the environment,
such as poor lighting, or they may arise from inadequacies and limitations of the actual
imaging device or the imaging technique. These degradations result in a direct reduction

of the image quality.

Image enhancement is used to generate more visually pleasing and informative image.
The enhancement techniques are generally problem oriented, as different applications
have different needs. In this study, we are only interested in techniques for enhancing the

contrast of an image.

In this chapter, we begin by presenting an overview of contrast enhancement theory in
Section 2.2. Here intensity transformation techniques, histogram techniques,

enhancement through filtering and contrast transformation methods are described.

Section 2.3 details contrast measurement methods used to quantify the enhancement in

images. Of the many techniques, the contrast improvement index, gradient enhancement
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measure and relative edge enhancement are explained as they have a significant role in

Chapter 6 in reasoning a suitable measure for the outputs in this thesis.

2.2 Image Enhancement

Poor imaging environment and limited physical properties in analog scanners cause a
definite loss in image information. However, such information drawbacks can be
overcome by the use of digital enhancement techniques. We should understand that
enhancement does not restore a degraded image to its original state; that is image

restoration.

The principal objective of enhancement techniques is to process an image so that the
originally acquired image is made more suitable for a specific application. This means
that the adaptability of the techniques discussed is very much problem oriented. Thus, for
example, a method that is used for enhancing medical images may not necessarily be the

best approach for enhancing satellite images.

Enhancement techniques usually fall into two main categories: spatial domain methods
and frequency domain methods. Spatial domain refers to the image plane itself, and the
approaches in this category are based on direct manipulations of pixels in the image. In
principle, processing in the frequency domain is totally based on making suitable
modifications to the Fourier transform of the image under consideration. Under these two
domains, there are many techniques and filters that can be used for enhancement. Out of
all these, we are only interested in techniques that can be used to improve the contrast of

an image.

Section 2.2.1 presents a general review of intensity transformation methods like contrast
stretching, linear stretching and image negatives. Histogram processing techniques such
as histogram equalisation and adaptive histogram equalisation are explained in Section
2.2.2. Though filtering techniques are not the focus of this thesis, the major principles in
this field are presented in Section 2.2.3, to help us understand the various systems used in

image enhancement. Contrast transformation methods are briefed in Section 2.2.4.
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2.2.1 Intensity Transformations

The image processing functions in the spatial domain may be expressed as (Gonzalez and
Woods, 2001):

g, )=TLfG, /)] @2.1)
where f{i,) is the input image, g(i,/) is the output image, and T is an operator defined over
some neighbourhood of (i,j). Also, T can operate on a set of input images, such as
performing the pixel-by-pixel sum of M images for noise reduction. The main approach
of defining a neighbourhood about (i,j) is to use a square or rectangular sub-image area

centred at (i,j) as shown in Figure 2.1.

()

v
1
Figure 2.1 A 3 x 3 neighbourhood about a point (i,j) in an image.
The centre of the sub-image (mask) shifts from pixel to pixel starting, say, at the top left
corner and applying the operator at each location (i,j) to yield g at that location. Although
other neighbourhood shapes, such as approximations to a circle, are sometimes used,
square and rectangular shapes are by far the most predominant because of their ease of
implementation. The simplest form of T is when the neighbourhood is 1 x 1. In this case,
g depends only on the value of fat (i,/) and T becomes a gray level transformation (also
called mapping) of the form:
s=T(r) (2.2)
where r and s denote the gray level of f{7,/) and g(i,j) at any point (i,j).

For example, if T (r) has the form shown in Figure 2.2(a), the effect of this

transformation is to produce an image of higher contrast than the original by darkening
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the levels below m and brightening the levels above m in the original image. In this
technique, known as contrast stretching, the values of r below m are compressed by the
transformation function into a narrow range of s towards black; the opposite effect takes
place for values of  above m. In the limiting case shown in Figure 2.2(b), T (r) produces
a two level (binary) image. Simple, yet powerful, enhancement operations can be realized
with gray-level transformation. Because enhancement at any point in an image depends
only on the gray level at that point, techniques in this category are often referred to as

point-processing.

dark q——p HERt
o
=

- — >
dark «—p lght davk ¢q——p light
@ ®)
Figure 2.2  Gray-level transformation functions for contrast enhancement (Gonzalez
and Woods, 2001).

2.2.1. A Contrast Stretching

An application of intensity transformation methods is the contrast stretching. Low-
contrast images can result from poor illumination, lack of dynamic range in the imaging
sensor, or even setting of a lens aperture image acquisition. The idea of contrast
stretching is to increase the dynamic range of the gray levels in the image. Significant
contrast enhancement with considerable clarity in the image information can be achieved

by applying this simple yet efficient technique to two dimensional images.

Figure 2.3(a) shows a typical transformation used for contrast stretching. The locations
of points (r, s;) and (72, s2) control the shape of the transformation function. For instance,
if r,=s; and 7, = s,, the transformation is a linear function that produces no changes in
gray levels. If r; = r;, 5, = 0 and s; =L-1, the transformatioh becomes a thresholding

function that creates a binary image. Intermediate values of (r;, s;) and (r;, s2) produce
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middle of the gray scale, the image would appear a murky gray. Finally, Figure 2.5(d)
shows a histogram with a significant spread, corresponding to an image with high

contrast.

Although histograms are global descriptions that say nothing specific about image
content, the shape of the histogram of an image does give useful information about the
possibility for contrast enhancement. By modifying the histogram of the image, the
properties of the image can be varied. There could be various techniques to vary the

contrast, but histogram equalisation is by far the most common one.

2.2.2. A Histogram Equalisation

Histogram equalization transforms the input image in such a way that the output image
histogram is roughly uniform. Histogram equalisation tends to increase small contrasts,
and reduce large contrasts. Let I’ be the output after histogram processing, and the output
histogram to be uniform over the range of desired intensities [/yin, I'max], then the desired
transformation for an input pixel of intensity / is (Sonka et al,, 1993):

I' =-I'' & n
[/ = max —min . 2.4
v ZN (2.4)

i=In
where n. is the number of cells with intensity gray level ¢, N is the total number of
pixels, and 7, is the minimum gray level in the input image. An adaptive version of this
technique would apply equalization over small local regions rather than over the entire

image.

2.2.2.B Adaptive Histogram Equalisation

Intensity windowing was a common practice to enhance images till the introduction of
the adaptive histogram equalisation (AHE) technique in the 1980°s (Pizer et al.,, 1984; Pizer
et al,, 1986; Pizer et al,, 1987; Zimmerman et. al, 1988). AHE was proposed to address the
problems of display devices in depicting the full dynamic range in some medical images.
Unlike intensity windowing, the AHE is automatic, reproducible, and sensitive to the

local spatial information in an image. In this version of histogram equalisation, the
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contrast enhancement mapping for a pixel is a function of an intensity region immediately
surrounding the pixel. The intensity values in the region are used to calculate a histogram
equalisation mapping, which is then applied to the pixel. More complex AHE schemes

can be found in Paranjape et al. (1992).

2.23 Filtering

Though filtering techniques are not the focus of this thesis, it is important to understand
filters as they would help us gain a comparative overlook of the systems and methods

used in enhancement.

Filtering can be performed in both spatial domain and frequency domain. The spatial
filtering schemes involve direct alteration of the gray levels of the pixels. For
enhancement in the frequency domain, the Fourier transform of the original image is
computed, and is multiplied by the filter’s Fourier transform. The inverse Fourier

transform of this product is calculated to obtain the enhanced image in the spatial domain.

In this section, common frequency domain filters such as high-pass filters and
homomorphic filters are described. In the spatial domain, non-linear unsharp masking

used for edge-enhancement is explained. The classical unsharp masking is also described.

2.2.3. A High-pass Filtering

In high pass filtering; only the high frequency components of the input signal, such as
edges and noise are enhanced. To sharpen an image, the image’s Fourier transform can be
multiplied by the transform of a high-pass frequency filter such as the Butterworth high-
pass filter (Gonzalez and Woods, 2001).

H@u,v)= (2.5)

2n
w
[
Vu? +v?
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where u, v are the frequency variables, w is the cutoff frequency, and 7 is the filter order.
Again this approach emphasises the high frequency components (edges) of the image,

which includes noise too.

2.2.3.B Homomorphic Filtering

Homographic filtering is a special case of a class of systems known as homomorphic
systems. The motivation to this field of filters is to apply concepts and structures of
abstract linear algebra to image processing. Among many others, homomorphic filtering
has found applications in image restoration, speech processing and seismic signal
processing. A typical homomorphic approach to image enhancement is illustrated in

Figure 2.6 (Oppenheim et al.,, 1968; Jernigan and McLean, 1992; Gonzalez and Woods, 2001).

In homomorphic filtering, the input image f{x,y) is considered to consist of two

components - illumination i(x,y), and reflectance r(x,y); where
f(x,p)=i(x,y)r(x,) (2.6)

It is also assumed that the reflectance component changes drastically at intensity
discontinuities, whereas the illumination component does not. Hence, the illumination
component is associated with the slow changing background and the reflectance
component is associated with high frequency edges. These components of the input
image can be separated using the homomorphic filtering technique. The filter A(u,v) is
designed to affect the low and high frequency components differently. Typically the high-
pass filter is used in order to strengthen edges. The natural logarithm allows us to apply

classical linear image processing techniques to each component of the input.

fene= i

<y

Huv) w (FFTY! M exp

Figure 2.6 = Homomorphic filtering for image enhancement (Gonzalez and Woods,
2001).
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2.2.3.C Unsharp Masking

There exist many spatial filtering enhancement schemes such as mean and median
filtering, but we shall not consider them here as they primarily remove noise and do not
enhance edges. A simple but effective algorithm to enhance edges is known as high-
frequency boosting or unsharp masking (UM) (Gonzalez and Woods, 2001), where the high-
frequency contents of the input are partially added to the input. The enhanced output is:

Iboosl = aI - ILP

=(a-D)I+I-1, 2.7
=(a-1).I+1,
where I, I voost, I Lp @and Iyp are the original input, the boosted output, the low-pass and the
high-pass versions of the input image, respectively. The parameter 0 controls the amount
of the original image added to its high-passed version. A typical mask used to obtain the

high pass image is:

where, w = 90 - 1, o > 1. This technique relies on the fact that edges are usually of high
frequency, hence this approach increases their strength compared to the background. Of

course noise is also emphasised since it is of a high-frequency nature.

2.2.3.D Non-linear Unsharp Masking

As discussed above, the classical contrast enhancement filter, so-called Unsharp Mask
(UM), increases the contrast by adding a high-pass version of the input signal to itself.

Naturally, the edges are enhanced, but so is any noise present in the signal.

Guillon et al. (1996) developed a new class of adaptive non-linear contrast enhancing
filters. These filters are called non-stationary filters because the filter mask depends on
the local pixel values. The filter mask processes the pixel by a combination of high-pass

and low-pass filter versions of the input.
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Consider a filter mask M of size J x L centered on the pixel (i,k). Each coefficient m,-kﬂ of
this mask is viewed as a level of confidence of the current pixel belonging to the mask.
Thus, m,-kﬂ —1 for pixels to the center pixel and m,—kﬂ —0 for others, and M = {m,-kﬂ €[0,1]

and (j,)) e Jx L}.

Let I;; be the intensity of the centre pixel of mask M, and J; be the intensity of pixel (7,/)
in the mask. The algorithm needs a discriminating function that tends to one when the

pixel values are similar, and tends to zero otherwise. A suitable function is

| -, -1,)
m, =exp[—————( £ z‘k) } (2.8)

20

where o controls the width of the Gaussian curve. The mask M is computed for every

pixel in the image. The proposed filter structure is shown in Figure 2.7.

The multiplier O is a weighted factor driving the contrast enhancement effect. The low

and high pass versions of the input are computed as, respectively,

Jl
Z m 1,

P _ (JDeM
RS -
ik
(J.l)eM
Iifp = Z (mxjkl —my )l (2.10)
(J.h)eM

1
with m, =— m’!
ik JL (jéM ik

This particular technique is called the Gradient-Like Enhancement (GLE) technique.

A 1 '
Low-Pass + Iix

v

2 HP

) 4

High-Pass

a
Figure 2.7  Block diagram for Gradient-Like Enhancement (Guillon et al., 1996).
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The low-pass component [;*” is a weighted mean over the mask M. The high-pass
component I"* can be interpreted as local estimate of the gradient at that pixel.
The overall output of the system is:

L =L (+al") (2.11)
This technique attempts to improve the performance over the usual Unsharp Masking
algorithm by multiplying the low-pass version and the high-pass version of the input,
rather than multiplying the input and its high-pass version. Thus, edge enhancement can

be achieved with this method, but with a reduced noise effect.

2.2.4 Contrast Transformation Methods

A number of schemes (Gordon and Rangayyan, 1984; Dhawan et al, 1986: Beghdadi and
LeNegrate, 1989: Dash and Chatterji, 1991) aim to explicitly vary the local contrast of an
edge in an image. All of the proposed methods begin by computing the local contrast in a
small window, and then changing that contrast according to some function or
transformation. The intensity of the central element of the local window is then
recomputed according to the new contrast value for that pixel. Thus, the function or

transformation determines the relationship between the output and input contrasts.

Based on Michelson’s formula, the contrast of pixel (7,k) in a given local neighbourhood
is defined as (Pefi, 1990):
'Iik -1 ol

T (2.12)

c

where I is the intensity of the pixel and [ is the local mean intensity.

Numerous transformations for this contrast have been proposed. Dhawan et al. (1986)
investigated a number of transformation functions, including the tangent tan(ncy),
hyperbolic tangent tanh(ncy), exponential 1—exp(-ncy), natural logarithm In(1+ncy), and
the square root \/c,-k (n is a real scalar). These transformations map the contrast to the
range of [0 1]. They not only increase the contrast but also increase the noise intensity, so

the choice of the transformation function is usually a trade-off between the amount of
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contrast enhancement and the allowable increase in noise intensity. For a contrast
transformation F (cy), where F (ci) 2 ci and F (ci) € [0, 1] for ci € [0, 1], the pixel’s

intensity is modified as

[ 1+
Io(__%—) if I, < I
(I_Ci’k)
I =1 (2.13)
1-¢/
o ( c‘,") otherwise
| (I+¢)
where ¢, =F(c,)
2.3 Enhancement Measures

There exist a large number of image enhancement techniques, but only few methods that
can quantify the amount of enhancement. To enumerate the effects in an enhanced image,

defined measurements must be used.

Many researchers use visual inspection to compare different enhancement schemes.
Visual inspection is a simple means of rating the change in the image quality, but is not
entirely adequate for determining the enhancement performance. For example, humans

are subjective-people, and may estimate the quality of an image in different ways.

We desire a means of rapidly and automatically measuring the improvement in an image
with good consistency. For this reason, we shall consider quantitative measures of
enhancement. Furthermore, the quantitative measures solely rely on the statistics of the
image. The enhancement schemes considered here primarily enhance the contrast or

edges, of the input image.

2.3.1 Contrast Improvement Index

Assuming that there is a step edge in a local neighbourhood, the contrast in a small

window centered on pixel (i) is defined as (Pefi, 1990):
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I -
c=-— 0 2.14

I max + I min ( )
where 1,4, is the maximum background intensity, and I, is the minimum background

intensity of the edge. This is also called Michelson’s contrast.

It should be noted that EQ (2.14) measures the contrast in a small window centered on

pixel (i), whereas EQ (2.12) gives the contrast of the actual pixel (iy).

A method of evaluating contrast enhancement is to compare the contrast of the input
image and the enhanced image (Dash and Chatterji, 1991; Dhawan et al., 1986: Gordon and
Rangayyan, 1984; Beghdadi and Le Negrate, 1989). In 1994, Laine et al. defined the Contrast

Improvement Index (CII) in a region of interest as:

C
CIl ===~ 2.15
C. (2.15)

where C,,, and C;, are the contrast at an edge in the output (enhanced) image and the

original input image, respectively.

2.3.2 Gradient Enhancement Measure

Another possible image enhancement measure is the Gradient Enhancement Measure
(GEM) as proposed by Harris (1997). This is simply a measure of the increase in the

gradient of the edge after image enhancement.

2.3.3 Relative Edge Enhancement

Paradis and Jernigan (1994) used a measure called the Relative Edge Enhancement
(REE) for 1-D step edges. This measure is primarily used when the intensity of the edge
points increases relative to the background intensity. For enhancement of a step edge, as
shown in Figure 2.8, the contrast of a pixel is defined as:

c -

2.16
= 2.16)
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where Ay, is the distance between the edge peaks, Ay is the difference between the

background intensities, and c is the contrast of the edge.

______ o

Figure 2.8 A step edge whose edge pixels are enhanced relative to the background.

The enhancement in an image compared to the original image (REE) can be written as:

N,/

REE =
Ax, [ Ax

2.17)

where Ay, is the peak-to-peak edge variation, Ay is the background difference in the
vicinity of the enhanced edge in the enhanced image, Ax, and Ax are the corresponding

measures for the original image.

2.4 Conclusion

In this chapter, we summarized and reviewed many important concepts that are to be used
throughout this thesis. We examined in detail the contrast enhancing techniques using
intensity transformations, histogram processing and contrast transformations. Filtering

techniques in spatial and frequency domains were also explained.

Since the experimental comparisons in this thesis are mainly dependent on quantitative
contrast measures, traditionally used schemes such as gradient enhancement measure,
contrast improvement index and relative edge enhancement measure have been
explained. The usefulness of these methods to quantify the enhancement in ultrasound

images is later demonstrated in Chapter 6.
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Chapter 3

Introducing Cellular Neural Networks

3.1 Introduction

Since its introduction by Chua and Yang in 1988, the Cellular Neural Network (CNN)
architecture has proved to be one of the most widely applied neural network models. The
CNN paradigm is a powerful framework for analogue nonlinear parallel processing arrays
defined on a grid, featuring the local processing of cellular automata and the continuous

dynamics of neural networks.

CNNs are suited to problems which are defined in space-time e.g., image processing
tasks, and partial differential equations (PDEs).These problems are all characterized by
fact that the information and interactions are generally constrained to small local areas,
rather than large global ones. Thus, the main difference between CNNs and other Neural
Network (NN) architecture is that in a CNN, all information is processed locally.

However, global processing is still possible through dynamic diffusion of information.

The continuous dynamics and intense calculation capability of the CNNs with its local
processing property makes them amenable to either electronic or optical implementations,

which are usually difficult to achieve with the other forms of neural networks. If the
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signals are continuous and or real-time operations are necessary, then the CNN is a good
solution in terms of speed and time. The CNN model has also proven to be suited for
VLSI implementations. CNNs have been implemented in VLSI chips capable of tera-
flops operating frequencies (Ecimovic and W, 2002).

In this chapter, we first present an overview of the architecture and system dynamics of
the general CNN in Section 3.2. We then look at a number of particular variants of this
general model in Section 3.3. Here we also introduce the Shunting Inhibitory Cellular
Neural Networks (SICNN), which will be used in this thesis. Finally, some of CNN’s

major applications are described in Section 3.4.

3.2 Cellular Neural Networks

The CNN architecture was proposed by Chua and Yang in 1988. CNNs are analog
dynamic processors suitable for solving computational problems that can be formulated
in terms of local interactions among signals placed on a regular structure (Chua and Yang,
1988; Chua and Roska, 1993). CNNs have already been applied to image processing
problems such as filtering, edge detection, character recognition and object recognition.
Due to the parallelism of the architecture, it can be applied to problems (such as video
signal processing) where traditional methods cannot deliver fast throughput. There is
much active research in the theory and implementation of CNNs and many applications

of CNN:ss to real world problems have been reported.

CNN is a massive parallel computing paradigm defined in discrete N-dimensional spaces.
Following the Chua-Yang definition, a CNN has the following properties
(ﬁttp://www.ce.unipr.it/parzfis/'Cﬂ\[N/cnn.ﬁtm{# InterPoint):

e A CNN consists of an N-dimensional regular array of elements (cells);

o The cell grid can be a planar array with rectangular, triangular or hexagonal
geometry, a 2-D or 3-D torus, a 3-D finite array, or a 3-D sequence of 2-D arrays
(layers);

o  Cells are multiple-input single-output processors;
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A cell is characterized by an internal state variable, which may not be observable

from outside the cell;

e More than one connection network can be present, with different neighbourhood
sizes;

e A CNN dynamical system can operate in continuous (CT-CNN) or discrete time
(DT-CNN);

e (NN data and parameters are typically continuous values;

e CNNs are recurrent networks; the final outputs typically require more than one

iteration.

One of the main characteristics of the CNN is the localised connections between the cells.
In fact, CNN differs from other NN mainly because, in a CNN, information is directly
exchanged only between neighbouring cells. Of course this characteristic also allows
global processing. Communications between non-directly connected units are possible
through intermediate units. The CNN is considered as an evolution of Cellular Automata
paradigm. Moreover, it was demonstrated that CNN paradigm is universal, being

equivalent to the Turing Machine (Attp://www.ce.unipr.it/pardis/CNN/cnn.html# InterPoint).

In this section, we present an overview of the CNN architecture and operation, including
some fundamental definitions and the most general equations defining its operation. This
section also includes a discussion on the numerous types of cell grids possible, and how
local interactions can cause a global flow of information throughout the network. We also

briefly mention the stability issue of CNNs.

3.2.1 CNN Architecture

The basic unit of the CNN is referred to as a cell. In its electrical implementation, the cell
generally contains linear and non-linear circuit elements, e.g. resistors and capacitors.
Each cell is only connected to the cells in its local neighbourhood; hence only local

interaction occurs.
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CNNs can be defined over any dimension, though it is much easier to visualise them in
1-D or 2-D. In Figure 3.1 we show a 2-D CNN defined on a square grid, with each cell

connected with only its immediate neighbours.

In a 2-D CNN with a total of M x N cells in M rows and N columns, let C (i) denote the
cell in the i" row and " column. The r-neighbourhood of a cell C (i) is the set of all cells

within a distance of r from the cell (i/) and is given by:
N,(, j) = {Clk,D|max {[k i} - jl} < r, 1<k < M,1<1< N} (3.1)

It is easy to show that this neighbourhood definition exhibits a symmetry property; that is,
if C (4, /) is a member of N, (k, I), then C (k, /) is also a member of N, (i, j).

(L) ¢(12) ¢(L35)

e(2,1) ¢(2.2) e(2,3)

e(31) e(3.2) ¢(3.3)

Figure 3.1  2-D CNN defined over a 3 x 3 square lattice.

The cell grid can be a 2-D array with rectangular, triangular or hexagonal geometry, a
torus, or a 3-D array. Cells may be of the same type or belong to a different type. More
than one connection network may also be present, each with different neighbourhood
sizes — such as short range interaction and subsystem connections. The neighbourhood
size may be as large as the network, in which case we have a fully connected network.

Cellular networks, however, are usually implemented with only small neighbourhoods.

3.2.2 System Operation

The CNN is a dynamical system operating either in continuous or discrete time. A

general form of the cell dynamical equations is defined as:
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dx..
C—L=-ax,+ Y AGjkDy,+ Y BGjikDu,+I  (32)

dt Ck DN, (i) ATA)

Yy =g(‘xij)

where x and y denote the cell state and its output, respectively. 4 is the output feedback
functional, B is the input functional controlling the effect of the neighbouring cells, u is
the controlling input of the neighbourhood, g is the output functional of the cell and [ is

an independent bias.

Equation (3.2) represents the general form of state equations of CNNs. A number of
implementations of these equations are discussed in the next section. In most of the cases,
the system is non-markovian, i.e. the future network state depends also on its past states.

Figure 3.2 depicts a block-scheme of a generic CNN iteration.

Control
Template
Local Internal
JE— 1 oo ond . 0 "-t
Input | f() [—o— Oup
Feedbuck
Template
Input from
Neighbourhood
Feedbuck from
Neighbourhood

Figure 3.2  Block-scheme of a generic CNN iteration, adapted from
http://www.ce.unipr.it/pardis/CNN/cnn.html# InterPoint
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323  Stability

As with all dynamical systems, stability is an important issue with CNNs. For stability,
the network must converge to a finite number of states. This can also be termed as
complete stability. The stability of the Chua-Yang CNN (CYCNN) was widely
investigated and a summary of the main results can be found in Civalleri and Gilli (1999).
The general form of the CNN is not always stable, but stability can be proven for some
subsets of the general model. The complete stability of the general CNN was studied in
several papers (Chua and Wu, 1992; Gilli, 1994; Arik and Tavsanoglu, 1996; Takahashi and Chua,
1998), including the paper where the CNN paradigm was originally introduced (Chua and
Yang, 1988).

3.3 Types of CNN

From such a broad and general definition of the CNN many variants are possible. As-far
as the dynamics is concerned, the CNN can be classified into two categories: stable
CNNs and unstable CNNs. Generally, each variant is developed to suit a particular
application. We shall review the variations of the general model such as the specific
forms of the activation function, cell grid structure, template model, and discrete-time
implementation. The variants discussed include polynomial or linear activation
functions, uniform and non-uniform grid structures, and space-invariant and time-variant

templates.

3.3.1 Polynomial CNN (P-CNN)

A variant of the general CNN is the Polynomial CNN (P-CNN) described by Barone et
al. (1993), whose local feedback function is an odd-order polynomial. A third order
polynomial function is shown in Figure 3.3. In the case of pattern recognition such

functions act as shape attractors.
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Figure 3.3 A third order polynomial local feedback function.

Recently new CNN models with polynomial interactions among the cells were introduced
(Tetzlaff et al, 1999; Laifo et al, 2000). The use of higher order interactions has the
advantage of solving computationally more complex problems, through an effective

analog implementation ( Laifo et al., 2000).

The polynomial interactions among cells alter the dynamics of the network, as they
increase the number of distinct equilibria of the cell. Though the dynamics of such P-
CNN’s have not been deeply investigated, Corinto et al. (2002) present a comparative
analysis of the P-CNN’s stability with two other classifications of the CNN; the Chua-
Yang CNN and the Full Range CNN. Corinto et al. (2002) showed that unlike the Chua-
Yang and full range CNNs, the P-CNNs are stable under rather different conditions; in
particular the symmetry of the template does not assure the stability of the network.

3.3.2 Non-linear, Delay Type and Non-Uniform Grid CNN

Rather than having two linear controlled sources A(ij ; k) yw and B (ij ; kI) uy
associated with cell C(ij) and neighbours C(k,/), non-linear and delayed controlled
sources can be employed (Roska and Chua, 1992), such as:

Ly

Al_'/',ld Yu + yij) + Arij,ldykl (t-7) and éij,kl (4 +uy)+ Brij,kluk] (t-7)

We can possibly have 7 = 7 The structure of the non-linearity is that it is at most a

function of two variables: the output voltages of cell C(i,j) and its neighbour C(k,)).
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3.3.3 Discrete-Time CNN (DT-CNN)

As opposed to continuous-time CNNs, discrete time CNNs (DT-CNNs) (Harrer and

Nossek, 1992) have clocked variables and a comparator for their non-linear function.

They are defined by the following 1-D algorithm:

x,(n+)=a’y,(n)+b'u, +1, (3.3)
1 ifx,(n—1)20

y(n)= f(x(n-1))= (3.4)
-1 if x;(n-1)<0

where i denotes the cell of interest, ; is the cell in the neighbourhood of cell , and # is the
discrete time variable. The distinction from cellular automata is the continuously valued

template coefficients and inputs.

This discrete-time recursive equation is called a discrete-time CNN (DTCNN). If £ (.) is
not the standard nonlinear function, but is so-called the hard-limiter f;(.) with the limits as

shown above (also see Figure 3.6 ) (Chua and Roska ,2002).

Figure 3.6  Graphical representation of the hard limiter f,(.)

In continuous time CNNSs, the propagation speed depends upon the derivative of x;, which
in turn depends upon the template and input/output signals. There are several different

physical implementations for DTCNN including software, digital hardware, and special
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purpose VLSI. Advantages of DT-CNNs include constant propagation time, simpler
simulation (no numerical integration required), and insensitivity to template coefficients if

they are chosen appropriately.

3.34 Time-Variant Template DT-CNN

A more generalized architecture for DT-CNN is the extension to time-variant templates
(Harrer, 1993). A template is normally a matrix with numerical values describing the
amount of interaction between neighbouring cells. Time variant DT-CNNS have cyclic
templates; that is, templates whose coefficients are changed at every iteration step, and
with the entire set of templates applied periodically in a cyclic manner. With such a
paradigm, the hardware can be reduced; hence, the realization can be simplified.
Applications of time variant template DT-CNNs include skeletonisation and half-toning

(Crounse et al., 1993).

3.3.5 Shunting Inhibitory CNN (SICNN)

The architecture and nonlinear processing ability of the CNN makes it ideal for modelling
nonlinear inhibition in the mammalian system which typically consists of neurons in a
grid-like structure, with many local interconnections. Bouzerdoum and Pinter (1993) and
Bouzerdoum (1994) were able to design a CNN to model early processing in the
mammalian visual system. Using a hierarchical model of such CNNs, Bouzerdoum
(1994) was able to synthesize both the centre-surround receptive field of retinal ganglion
cells, and the orientation selective receptive of cortical cells, in the ON- and OFF-
channels of the parvocellular system. lannella and Bouzerdoum (1996) used a
hierarchical network of SICNN to synthesize the spatiotemporal receptive fields of the
early mammalian visual system. This CNN architecture will be discussed in detail in the

next chapter since our edge enhancement operator will be based on the SICNN.
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34 Applications of CNN

The mathematical model of a CNN consists of a large set of coupled nonlinear

differential equations. This knowledge of the dynamic behaviour is essential for

developing rigorous design methods for establishing new applications. Many CNNs have

been proposed, each designed with a particular task in mind.

Since their invention, CNN’s — homogeneous arrays of identical and identically coupled

cells- have been intensely investigated for their applications in fast image processing,
particularly where local processing of information is either necessary or advantageous.
Significant and successful applications of CNNs include, but not limited to, the

following:

e  Feature extraction: Slot (1992) demonstrated the application of CNNs to binary

image processing. The user specifies the feedback and feedforward operators

depending upon the desired features to be extracted, and the CNN is then able to

reconstruct an output which is a modified version of the input, with the desired

outputs emphasized in greater detail.

e  Character recognition: Sziranya and Csicsvari (1993), and Suzuki et al. (1992)

employ CNNs to extract the necessary features of the input, which can then be used

by a classification network to identify handwritten characters. The recognition rates

for both networks were around 90%, with extremely fast recognition speeds due to

the inherent parallelism. Sziranya and Csicsvari’s system was able to identify

100,000 characters/second with a recognition rate of 95% when implemented in

hardware.

e  Motion detection: Cimagalli et al. (1993) detect the trajectory of moving objects in a

real-time noisy environment. Roska et al. (1992) define various templates to detect

different types of motion, where the discrete-time inputs are fed into the network,

and the resulting steady-state outputs give the necessary information for estimating

the direction and magnitude of the velocity vector. For more applications of CNNs

in this area, readers are referred to Shi et al. (1993).
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Spatial recognition: Perez-Munuzuri et al. (1993) use a CYCNN to implement
spatial recognition, i.e., recognizing open curves from closed ones, and locating the

shortest path between the two locations.

Logical Boolean functions: Galias (1993) employs a time varying template CNN to

define an arbitrary boolean function on the r-neighbourhood.

Half-toning: Crounse et al. (1993) were able to reproduce more faithful binary
reproductions of the original image with a CNN than those produced by error

diffusion, a standard algorithm for half-toning.

Mathematical simulations: Mathematical calculations can generate solutions to
many problems. But considering the various conditions and experimenting on the
huge number of possibilities was always considered to be a difficult task.
Comparatively speaking, this problem has been eased by Roska et al. (1995), whose
CNN could solve such rigorous partial differential equations and simulate nonlinear

waves.

Chip designs: CNNs have found wide applicability in many hardware applications,
many of which have been realized. Now CNNs have applications in the designing of
general function chips. One of the successful designs would be by Linan et al.
(2000), who designed an analog input/output 64x64 CNN Universal Machine Chip
Prototype with 7-bit Analog Accuracy.

Pattern formation: An interesting phenomenon which has been shown to appear in
CNNes is that of Pattern formation (Goras et al., 1995a, 19956, 1995¢; Crounse et al,, 1995).
Using a decoupling technique, Goras et al. (2002) showed that patterns can be
produced by the input when the CNN is stable and by both the input and the state

when at least one spatial mode is unstable.

Ratio memory and Pattern Recognition: CNNs application as neural associate
memories for pattern learning, recognition and association has been demonstrated in

great detail (Liu and Michel, 1993; Lukianiuk, 1996; Kawabata et al. 1997). The ratio
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memory (RM) of Grossberg outstar structure, has been incorporated in neural
networks for memory associated image processing (Lan and Wu, 1995; Lan and Wh,
1995; Wu and Cheng, 1997). The RM has also been incorporated in the CNN (RMCCN)
and has been used for pattern learning and recognition (Wu and Cheng, 2000). Cheng et
al. (2002) developed a new type of RMCNN with spatial-dependent self-feedback
weights for an enhanced storage capacity and better pattern recognition from noisy

images.

e Other applications include Hole-filler (Matsumoto et af, 1990a); Shadow-detector
(Matsumoto et al, 1990d); Image thinning (Matsumoto et al, 19906); Connected
component detector (Matsumoto et al, 1990c; Cruz and Chua, 1991), Sensors/processors

for multimedia applications (Sheu et al,, 1998), etc.

3.5 Conclusion

In this chapter, we have presented a review of CNN theory. We began this chapter with
an overview of the general CNN architecture and system operation. The stability issues
were also described in this section. We then described five variants of the general CNN.
Here the Shunting Inhibitory CNN was also introduced and the prominent works using
this model were listed. In the final section of this thesis, the important applications of

these CNN models were concisely summarised.
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Chapter 4

Shunting Inhibitory Cellular Neural Networks:

Network Architecture and Properties

4.1 Introduction

This chapter presents a detailed analysis of the SICNN systems, which includes the
response properties of both feed-forward and recurrent SICNNs. We begin by detailing
the concepts of linear and non-linear lateral inhibition in Section 4.2. As the SICNN
system is derived from biological insights, we present a brief discussion of the biological
shunting inhibition in Section 4.3. The working principle of a biological neuron is used to

achieve this.

Based on working principle of the biological neuron, an equivalent electrical circuit
showing inhibition is explained in Section 4.4. In this section, the derivation and stability
issues of the SICNN drawn from such a circuit are reviewed in detail. Section 4.5
presents two classifications of the SICNN - feedforward and recurrent. The state analysis
and response properties of both these systems are discussed. The feedforward system’s
dynamics, responses to step-edge inputs, and responses to asymmetrical and symmetrical

weights are detailed.

The recurrent SICNN is used as the main network in this thesis. Hence, the steady state

response, convergence properties and step edge response properties are studied in detail.
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The response properties of the recurrent SICNN are compared with those of the

feedforward SICNN, and the reason for our selection of the recurrent system is given.

Finally in Section 4.6, the advantages of the SICNN for image enhancement are
mentioned. The dynamic range compression property of the SICNN is compared with

other commonly used systems, like the logarithmic system.

4.2 Linear and Non-Linear Lateral Inhibition

In this section we begin by understanding two commonly used terms, luminance and
brightness. This is followed by the concept of lateral inhibition and the roles of linear and

non-linear inhibition.

Luminance is a measure of the intensity of light energy emitted by a luminous surface.
But, the brightness of an object is defined as a measure of the light perceived by an
observer. For example, to an observer, the brightness of an infra-red source could be
almost zero even though the source is emitting energy. The brightness of an object also
depends on the background of that object. Consequently, two objects can have the same
luminance but different brightness depending upon their surroundings. This effect gives

rise to concepts such as simultaneous contrast and Mach bands (Mach, 1886).

Lateral inhibition is often found in the preliminary stages of sensory processes such as
touch and vision (Deutsch and Deutsch, 1992). It is a concept that explains information
sharing between neighbouring sensory nerve cells. Linear lateral inhibition was first
proposed by Emst Mach to explain the border contrast effects commonly referred to as
Mach bands (Mach, 1886a; Mach, 1886b). Fig. 4.1 shows an example of Mach bands at the
transitions between regions of different intensities. Mach bands are the illusory dark and
light bands on either side of each transition. This phenomenon is essentially due to
inhibition causing the perceived brightness to differ from the actual luminance. Fig.
4.1(c) shows a receptive field similar to the one proposed by Mach, where the under and

overshooting of brightness at transition borders is visibly shown.
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referred to as shunting inhibition. Since the nonlinear lateral inhibition forms the base of

this thesis, the mathematical details are discussed in depth in the following sections.

Nonlinear, or multiplicative lateral inhibition has been used to explain important theories
such as; selectivity of visual units in the ventral nerve of insects (Pinter, 1983a; 19836), and
adaptation of the receptive field spatial organization and the spatial modulation transfer
function (Pinter, 1984; 1985). Recently, nonlinear lateral inhibitory neural networks have
also found application in image processing, mainly for image enhancement (Jernigan and
McLean, 1992; Bouzerdoum, 1994; Paradis and Jernigan, 1994; Cheung 1999; Chua and Roska,

2002).

4.3 Biological Neuron

Insect and mammalian visual systems have long been a constant source of inspiration for
computer vision researches. The ability of these visual systems to successfully operate
under a wide range of conditions has drawn admiration from neurobiologists, computer

scientists, and engineers alike.

Taking image resolution and edge-detection as examples, both mammalian and insect
visual systems are able to process the vast amounts of incoming data in terms of edges, as
well as other primitives (Marr and Hildreth, 1980). To detect the distribution and intensities
of the incoming light, the surface of the retina in the eye is covered with discrete light
receptors called cones and rods. Each cone is connected to only one nerve ending, hence
resulting in high resolution and is responsible for colour vision. Majority of the receptors
in the eye are the rods and many rods together are connected to a single nerve ending.
This reduces their resolution but increases their sensitivity to low-levels of illumination.

Electrical impulses from all the nerve endings exit the eyeball through the Optic nerve.

The neuron is the fundamental processing unit in the human nervous system. Over twelve
billion nerve cells or neurons in the brain communicate with millions more in the body. A
nerve signal is received by the neuron’s dendrites which are connected to the cell body or
soma and travels along the axon, a thin tube up to three feet long. Figure 4.2 shows the

structure of a basic neuron with its most important connections.
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membrane, where each cell may correspond to a sub-unit which on the whole has a
uniform potential within. When this is the case, the resistance between synapses is
negligibly small, and the entire excitatory and inhibitory synapses can be lumped together
into a common circuit element. We denote by V), and C, the membrane voltage and
capacitance, respectively. ’

R

- — +

-|-.V, TRt —I_-Vr

Figure 4.3  An equivalent electrical representation of a biological cell, or neuron.

When the neuron is not excited, or at rest, the corresponding resting conductance and
batteries of all possible channels can be lumped together into the resting conductance g,
and resting potential ¥,. Thus, the conductances of all excitatory and inhibitory channels
are zero. By activating the excitatory synapses, the conductance of the corresponding
ionic channels increases. This conductance of the ionic channels, also known as
membrane conductance, causes the sodium N," ions to enter the soma. This flow of ions
is represented by a modulation of the conductance g,, with the polarity of the potential 7,
which reflects the direction of ionic flow. In the actual fact ¥V, is a measure of the flow of

ionic charge across the channel.

The inhibitory synapses are assumed to be of the shunting type since this branch of the
circuit, consisting of g; and ¥, shunts the rest of the circuit. Upon excitation of these
inhibitory synapses, more chloride CI ions enter the soma through their respective ionic
channels. This also increases the outer membrane potential with respect to that of the
inner membrane. The voltage V; represents the flow of Chloride ions across the channel.
The changing CI ionic channels can be represented electrically as a modulation of the

conductance g;. Though the CI ions are dominant in causing shunting inhibition, the
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ionic channel for potassium K™ ions also plays a considerable role in exerting inhibition

by leaving the soma and increasing the outer membrane potential.

Due to the inherent potential difference across the membrane, there is always a constant
diffusion of charge across it. At the steady-state, equal amounts of charge flow in and out
to the soma (represented by the inhibitory and excitatory potentials in the circuit). Thus
when the cell is excited, the excitatory conductance g, becomes larger, indicating an
excitatory effect, and g, increases to divert current from i, to i;. This diversion causes the
circuit to clamp the cell to its resting potential, in other words, it attempts to maintain a

constant equilibrium voltage, i.e Vs = V,. Electrically this is referred to as inhibition.

' 44.1  Derivation of SICNN

The equivalent electrical circuit of a simplified biological cell, or neuron, is shown in
Figure 4.3. KCL for this circuit can be written as

i, +i, =i, +i, 4.1)
As we know that i=Vg, where i is the current, V is the voltage and g is the conductance

the current equations can be written as

d
=0V =g 0V h=al-T) i, =G

By substituting the current equations in Equation (4.1) we get the nodal equation for the

circuit (Bouzerdoum, 1991):

c, d(Zm+ge(V,+Vm)—g,(V,—V,,,>—gs(rc—Vm)=0 42)

where i, is the excitatory current; 7, and g, are the lumped resting potential and resting
conductance, respectively; V; and g, are the lumped synaptic battery and synaptic
conductance of the inhibitory channels; C, and V,, are the membrane capacitance and

membrane voltage, respectively.

Let AV be the deviation of the membrane voltage from the resting potential, i.e. AV = (V,
~ V), and with V; = V,, the change with time of V,, relative to V, is described by the

differential equation:
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C L7, - A7) =, (A7) +£,(AV) -8, (7, +7,) (43)

av, d g g g
LAV =22 (AVY+=22(AV)-=22(V +V 4.4
dt dt C (A7) C @) C Vet7) (44)

But dV, /dt can be equated to zero because ¥, is a constant resting potential.

d g g g
AV = 2L (AV)+ 25 (AV) =22 (V. +V 4.5
” c (A7) c (A7) c V. +V,) (4.5)

m m m

Since the resting potential is always constant, dV, /dt is equal zero. Therefore, we have

the following equation describing the activity of a cell.

d g g g
AV ==V, +V )-==(AV)-=(AV 4.6

Each cell may then be represented by an electrically independent circuit, as in Figure 4.3,
with x; representing the deviation of the membrane voltage from the resting potential of
the cell C(i,k) at the (i,k)™ position of the lattice, and f{x;) denoting its firing rate. We
assume that the inhibitory synapses of a cell are controlled by the activity of the
neighbouring cells. We also assume that the shunting conductance of a cell is the sum of
the conductance of all the individual inhibitory cells. If each one of these is proportional
to the firing rate of the cell controlling it, then we can write the shunting conductance g,
of C(i,k) as:

Lo S wiixy) 4.7

C,.  c@Den, * g @7
where the coefficients wi¢' and C, are positive constants, / (xj;) is the output of cell j/, and
wid' is the weighting given to its inhibitory effects on cell ik. In other words, the
inhibition exerted on a cell is a weighted sum of the outputs of surrounding cells within
the appropriate neighbourhood. The conductance g, is controlled by the excitatory inputs
that work to increase the membrane conductance to sodium Na' ions. We assume that the

cell input, I, controls the excitatory current i, in which case we have

i, _&
e —Se (Y +V V=1 (¢ 4.8
Cm Cm( e m) 1k() ( )
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The remaining term is the decay factor of excitation:

g,
2r —g. 4.9
Cm ik ( )
Then Equation (4.6) becomes
Xy _ - - A 4.10
=1, () - a,x, Z Wi f(le )Xy (4.10)
dt C(j.Jd)eN,

where x; represents the input intensity of cell ik, I is its input, ay determines the
excitation decay rate, wid" is the connection weight from cell jI to cell ik, and f (1) is the

output of cell jI.

It is clear from Equation (4.10) that the interaction comes from all cells in the local r-
neighbourhood of cell (i,k), hence the local nature of information exchange. Also note

that this is particular implementation of the general CNN, given by Equation (3.2).

4.4.1. A Stability of SICNN

A dynamical system is one where the state of that system changes with time and depends
upon both the state itself and the system input (Sandefur, 1990). A dynamical system is
bounded-input bounded-output (BIBO) stable if the system output, regardless of the
initial state of the system, is bounded when even the input is bounded (Ogata, 1987).
Bouzerdoum and Pinter (1993) proved that if there is symmetry in the SICNN interaction
weights; i.e. wikjl = Wj]ik; and the activation function f is continuous, non-negative and
decrescent on the entire real axis, i.e {f () > 0 for all £ € (-0, ©) ; then the SICNN is a
BIBO stable dynamical system.

Given a dynamical system x = f (x,t) where x is the state vector, then the equilibrium state
is the state x, where f{x., f) = 0. Such a dynamical system is said to be convergent if
every trajectory converges in the steady-state to an equilibrium point (Sandefur, 1990).
Furthermore, if the input pattern has the same polarity (positive or negative), then each of
trajectory of a SICNN converges to an isolated equilibrium point (Bouzerdoum and Pinter,

1993).
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4.5 Classifications of SICNN

In this section we present the feed-forward and recurrent SICNNSs (Pontecorvo, 1998, pp. 60-
68), of which the latter will form the basis of our contrast enhancer. The properties of
such networks are analysed. We begin by defining the feed-forward SICNN and show
how it performs shunting inhibition on step edges. The effects of asymmetrical and
symmetrical weights on the SICNN output are also investigated. We then proceed by
showing that the steady-state of the recurrent SICNN can be found using an iterative
algorithm. Finally, the recurrent SICNN’s response to constant and step edge inputs are

investigated.

4.5.1 The Feed Forward SICNN

The feed-forward network architecture can be represented pictorially as in Figure 4.4,
. where for simplicity only three nodes are shown. The inputs to each node include the
inputs to its two nearest neighbours. In a feed-forward SICNN, the state of each cell
depends only on the input signal. As we shall see, the computational steps in calculating

the feed-forward SICNN output consist of a small number of matrix operations.

Yia % e

Figure 4.4  The feed-forward SICNN architecture with node ‘P’ as the processing
unit implementing Equation (4.12) (Pontecorvo, 1998, pp. 66).

We previously discussed the derivation and stability of the Shunting Inhibitory Cellular
Neural Network in Section 4.4. By analogy to the SICNN system given in Equation

(4.10), feed-forward system can be written as:
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Sicl—ax- 3wl i=1,2,.,.M (4.11)

where x; is the state of cell i, [; is its input, g; its decay factor f'is the activation function,
wy is the interaction weight between cells j and i, N, is the neighbourhood function, and

M is the total number of nodes which equals to the number of inputs.

By converting the neighbourhood function into the distance of separation between cells,

or input units, the steady-state solution of Equation (4.11) can be given as:

I

1

X = (4.12)

a+ Y w .

j=-r

where r is the neighbourhood size, which represents the range of cells that can have a
direct inhibitory effect on cell i. Thus, the inhibitory effects of neighbouring cells on cell i
is a weighted linear combination of their respective inputs. We should recall that, in

general, there is no feedback from any cell to itself, hence w, = 0 in all cases.

Assuming that the weight distribution is space-invariant, i.e., the strengths of connections
of a cell to its neighbours is dependent only upon the neighbours’ relative position and
not their absolute position with respect to the node of interest, then the weights can be
represented by a vector w, often referred to as a template or mask. The interaction
between all cells can then be achieved by convolving the weight template with a function

A1) of the input states .

If Y is the output vector, X a vector of state values, f is the activation function, / a vector
of inputs, w the weight template, and A the vector of decay factors, then X, the i

element of X, is given by:

I
X, = . 4.13
N B) *19)
Y= £(X,) @14)

where * denotes 1-D convolution, and f{J) is a vector with [f{])] ; = f{I ;). Thus, the output

of the feed-forward SICNN is obtained by using a few simple vector operations. These
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operations are not computationally intensive, and can be implemented rapidly in either

hardware or software.

4.5.1. A Step-Edge Response

Consider a step-edge input as shown in Figure 4.5. The shunting inhibition on this edge
can be easily explained by feeding it to a SICNN system with a neighbourhood size of
r=1. The state of each cell or node is inhibited by the inputs of both its nearest
neighbours. The feed-forward SICNN output is then given by:
- L
N A At w L))

where the term [w_; f{Ii.;) + w,; f{li+;)] represents the inhibitory effect from neighbouring

(4.15)

inputs. As shown, the output of each node also depends on its input and the decay factor.

0 10 2 k] 40 0

Figure 4.5  Step edge input.

The outputs of this feed-forward SICNN to the edge input in Figure 4.5 are shown in
Figure 4.6 (a) and () for asymmetrical and symmetrical weights respectively.
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Figure 4.6  Feed-forward SICNN output (a) Asymmetrical weights (b) Symmetrical

weights.
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4.5.1. B  Response to Asymmetrical and Symmetrical Weights

The response properties of the SICNN to asymmetrical and symmetrical weights have
been studied by Pontecorvo (1998, pp. 68). We briefly describe these properties in this

section.

Asymmetrical Weight Distribution

Consider first a feed-forward SICNN with an asymmetrical weight vector [0 0 1], where
the inhibition comes from only the immediate left node of any given node. Figure 4.7
demonstrates the inhibitory effects of some nodes in different regions of a step edge.
Figure 4.7(a) shows the inhibitory effects away from the discontinuity. For the nodes to
the left of the discontinuity, both the input intensity and the inhibition signal are weak;
hence the total output tends to be small. For nodes to the right of the discontinuity, both
the input intensity and the inhibition signal are large, the total output again tends to be
small. Figure 4.7(b) shows what happens at the edge point. Although the inhibition is
weak, the intensity of the input is large, hence the output is large. This results in a peak in

the overall output of the SICNN, as seen in Figure 4.7(c).

Vsrn

v”"“" (@) ®) ©

Figure 4.7  The inhibitory effects on a step edge input for a SICNN with asymmetric

Weak

weights as [0 0 1] and (c) gives the overall SICNN output.

Symmetrical Weight Distribution

Now consider the SICNN output with a symmetrical weight vector of [1 0 1] shown in
Figure 4.8. The effect on an input step edge away from the actual edge is shown in
Figure 4.8(a). Consider first the input to the left of the discontinuity. On this part of the
edge the inhibition and the intensity on each node is small, hence x; will be small. Now

consider the effects on the input to the right of the edge and away from the discontinuity.
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Both the inhibitory effects and intensity are now larger, so the response here also tends to

be small but may be somewhat larger than the response to the left of the discontinuity.

Now consider the case shown in Figure 4.8(b), where the node has a small amount of
inhibition from the node to its left (to the left of the edge), but a large inhibitory effect
from the adjacent node to the right on the edge. As the intensity of the pixel itself is still
small, the net effect of the increased inhibition is to reduce the output compared to those

nodes further to the left of the edge.

In Figure 4.8(c) the node again has both a large and a small inhibitory influence from its
neighbouring cells, but the value of input intensity is now large, hence the output
suddenly increases greatly compared to that of Figure 4.8(b). The overall output is shown
in Figure 4.8(d).

Y

Strong Strong

b U (a) \f (b)
Weak
Weak
y s

(c) (d)
Weak

Figure 4.8  SICNN with symmetrical weights: (a), (b), (c) show the inhibitory
effects and (d) is the overall output.

From the above discussion, the SICNN’s performance is very suitable for edge detection.
To detect the position of the edges, simple thresholding or zero-crossing detection can be
used on the network output. Note that the number of output pixels affected by the step
edge is r pixels to the left of the discontinuity, and r pixels to the right of it (or r-1 if we

exclude the edge pixel itself).
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4.5.2 The Recurrent SICNN

The SICNN derivation and stability issues were seen in Section 4.4.1. From the 1-D

differential equation for the state of the cell:

—(—i—t'¥=1i—a,.x,.—ﬁ;(i)w,.jf(xj)x,. | i=1,2,....,.M (4.16)
where x; is the state of cell i, J; is its input, a; its passive decay factor of excitation, fis the
activation function, w; is the interaction weight between cells j and i, N, is the
neighbourhood function, and M is the total number of nodes which corresponds to the
total length of the input. Such a network is recurrent, as each x; depends upon the value
of the neighbouring x;, which in turn depends upon that cell’s state itself. The network
can be represented pictorially as in Figure 4.9, where for simplicity only three nodes are
shown with each node interacting directly with its two nearest neighbours.
ki I L1
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Figure 4.9  The recurrent SICNN architecture with node ‘P’ as the processing unit
implementing Equation (4.16). (Pontecorvo, 1998, pp. 61)

The steady-state solution of Equation (4.16) to a time invariant input /; satisfies
Ii
X, =
a+ Y, wf(x))

JeN, (i)

(4.17)

Converting the neighbourhood function into the distance of separation between cells, or
input units, we can write the previous equation as:

I
X, = ' i=1,2,.,.M (4.18)

‘ a, + Zr: wjf(x,.“.)

j=r
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where 7 is the neighbourhood size. Thus, the inhibitory effects of neighbouring cells on
cell i is a weighted linear combination of their respective outputs. We should recall that,

in general, there is no feedback from any cell to itself, hence w, = 0.

4.5.2. A Steady-State Response

Unlike the feed-forward SICNN, the cell state in a recurrent SICCN is nonlinearly
dependant upon the states of neighbouring cells. The steady-state value of each cell of the
recurrent SICNN can be obtained by numerically solving the system of differential
equations given in Equation (4.16). Alternatively, we can define an equivalent discrete-
time dynamical system that has a steady-state solution equal to the steady-state solution
of Equation (4.18). The discrete-time solution of the recurrent SICNN after the first
iteration of its steady-state solution is also equivalent to the steady state output of the
feed-forward SICNN. For the recurrent SICNN such a discrete-time dynamical system is
~described by

x,(k+1)= L k=12,..,0© (4.19)

a+ 3w f ()

j==r

where k is the discrete-time step, or iteration number. The sequence is solved iteratively,
i.e., given an initial estimate of the steady-state solution x{0), we use Equation (4.19) to
derive x{(1), which in turn is used to obtain x;(2), and so-on. A simple initial value to
choose is x,(0) = I;, for all i. That is, the input to each node also serves as the initial value
of the steady-state value for that node, provided the SICNN converges. The convergence

properties of such a network will be discussed next.

4.5.2.B Convergence

It was showed by Bouzerdoum and Pinter (1993), and noted in Section 4.4.1.A, that
under certain conditions the continuous SICNN converges to an equilibrium point (from a
possible set of many). If the discrete SICNN given by Equation (4.19) converges, then it
will converge to an equilibrium point of the continuous SICNN. Due to the nonlinear

nature of Equation (4.19), the general conditions required for convergence are unknown.
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However, the convergence properties can be demonstrated for specific cases; as we now

ScC.

We begin by explaining the process of calculation and then look at some practical outputs
demonstrating convergence. Consider an asymmetrical weight distribution case such as
w= [1 0 0]. Using these weights, the recurrent SICNN output for a particular iteration is

given by:

I

= : for i=1,2,....M
a; + w—lf(xm (k - 1)) + w,f(xm (k - 1))

x, (k)

Now by considering the left-most node of the network, we note that because there is no
node to its left, the first iteration output x,(1) only depends upon the input intensity and

the decay factor of that node. As both q, and /, are constant, x,(k+1) is given as:

xl(k+l)=£

q

where x, is constant fork > 1.

Looking at the next node, we see that x,(1) depends upon x,(0). In a general notation,
I
x,(k+1) = —3—0
a, +x, (k)

Since a,, 1, and x,(k) are all constant, x,(k) also remains constant for k > 2.

Similarly, by induction,
I
x,(k+1)=—=

a,

where x, is constant fork > 1.

Thus, the network converges. This same result holds for asymmetrical weights of any
size, and even in the reverse order such as w = [0 0 1]. Thus, a SICNN with any
asymmetrical weight distribution is convergent. Similar observation can be made even in
the symmetric weight distribution case. We now look at some practical outputs

suggesting the convergence property of the SICNN.
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Below demonstrated are two experiments conducted to show convergence property of
discrete-time SICNNs. The horizontal axis of the figures represents the number of
iterations and the vertical axis gives the value of x; at different instances. Figure 4.10(a)
shows the time evolution of the response of a SICNN with symmetric weight distribution
for a constant input equal to 10. It is clear from this figure that the system converges at
about 21 iterations. Figure 4.10(b) shows the time evolution of the response of a discrete-
time SICNN with asymmetric weights for a constant input equal to 10. Convergence to

the steady-state response is at about the 16™ iteration.
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Figure 4.10 Values of x; (k) of Equation (4.3) until convergence,
(a)  for an input of intensity 10 withw =(11011).
(b)  for an input of intensity 10 withw = (00 1).

The neighbourhood sizes used are 2 and 1 for Figure 4.10(a) and (b) with weight
distributions tobe w= (1101 1) and w= (0 0 1) respectively. This shows clearly that the

neighbourhood size and type of weights used play a big role in stabilizing the system.

4.5.2. C Step Edge Response

In the earlier sections, we have seen the response of a feed-forward network to step
edges. Pontecorvo (1998, pp. 64) demonstrated the step edge response properties of a

recurrent SICNN and analysed its similarities with the feed-forward system. We begin the
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review of this analysis by using a numerical example quoted to generate the appropriate

responses.

Consider the case of an input sequence of length 2A/, with the step discontinuity
occurring exactly half-way along its length. Then, the first M nodes of the SICNN have a
lower step intensity /; as their input, and the remaining M nodes have the upper step

intensity Iy as their input. Thus,
I, if 1<i<M
I, if M+1<i<2M

However, treating the step-edge as a sectioned constant would enable us to temporarily
ignore the step discontinuity. By neglecting the boundary effects of the sequence also, the
output of the system can be computed in an analogous manner. That is, the output of the
nodes in each of the constant sections of the step input can be found using the iterative
method outlined previously, with each node’s state approaching its steady-state value as
the number of iterations increases. Obviously, the interesting effects occur at the edge

discontinuity.

Recalling from Equation (4.19), the SICNN output of node i for the K™ iteration and a

neighbourhood r = 1 is given by:

1,
a, +w_ f(x_ (k=) +w f(x, (k-1)

x, (k)= for i=12,....M
As a numerical example, if we choose [; =5, Iy =10, w=[00 1], a;= 0.1 forall , fa
linear function, and M = 25, then the edge point response of a step input shown in

Figure4.11(a) is given by:

I 10
= =1.96
ay +[(Ix 1))+ (0x1,;)]  0.1+5

X6 (1) =

Similarly, the outputs of neighbouring nodes are x,s (1) = 0.980 and x,, (1) = 0.990.
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Figure 4.11 shows the initial step input and the first iteration output for the SICNN with

an asymmetrical weight distribution.

(a) (b)
Figure 4.11 (a) Step edge input; (b) The first iteration recurrent SICNN output with

asymmetrical weights.

Figure 4.12 shows the first and second iteration outputs for the SICNN with symmetrical
weight distribution e.g., w = [1 0 1]. By comparing with Figure 4.6, it can be said that the
first iteration outputs of the recurrent SICNN to edge inputs are identical to the

corresponding feed-forward SICNN outputs for asymmetrical and symmetrical weights,

respectively.
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Figure 4.12 The recurrent SICNN output after (a) one iteration and (b) two

iterations of Equation (4.19).

Clearly the output after the first iteration of the SICNN with asymmetrical weights, as
shown in Figure 4.11(b), can be used for edge detection if the maximum output is

located. For the output of the SICNN with symmetrical weights as shown in
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4.6 Advantages of SICNN

The SICNN has many tuneable parameters, such as the weight distribution, decay factor
of excitation, activation function, and neighbourhood size. This gives us greater
flexibility in adapting the network to a particular type of input edge and/or noise, hence
achieving better results than most systems that cannot adapt or have very few tuneable
parameters. The SICNN’s parameters can be tuned to such an extent that the network

could be used for many applications such as enhancement and edge detection.

A drawback of the SICNN is that its output intensity varies nonlinearly for different step
edge inputs and SICNN parameters. Thus, its edge enhancement performance will also
vary for different SICNN parameters and different inputs. We cannot test the effect of
every possible combination of these parameters and inputs on the performance since there
are infinitely many. We can, however, thoroughly test and observe the effects of each
individual parameter in isolation, though there will always remain the small possibility of
overlooking a potentially good combination of parameters. Fortunately, this will become
less of an issue as we understand the role of each parameter on the contrast enhancement

performance.

4.6.1 Dynamic Range Compression

In the previous sections we have studied the convergence and step edge responses of the
SICNN, which gave us an understanding of the effects of weight distribution and number
of iterations on the SICNN output. We now investigate the dynamic range compression
property of the SICNN (Cheuny et al,, 1999) which would give us an overall idea of the
superiority of the SICNN as compared to more traditional enhancers like the log

transformation system.

To understand this, a ramp, with a slope of one, is used as input to the SICNN. All cells
used here are assumed to have a constant decay factor and the sum of the weights is made
equal to one. In Figure 4.14, Graph (d) shows the identity transformation of the ramp
input; Graph (a) gives the first iteration SICNN output; Graph (c) gives the steady-state
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output of the SICNN with a neighbourhood of five cells; and Graph (b) is the output of a

log transformation system.

8

Output Intensity

0 50 0 10 20 20 30
Input Intensity
Figure 4.14 Dynamic compression of SICNN.

From this figure, it can be suggested that the first iteration output of the SICNN is most
suited to edge detection, while the results of the other iterations can be used for edge and
contrast enhancement. Although not shown here, the SICNN can achieve a range of
transformations between graphs (@) and (c), depending on the network parameters such as
the number of iterations and its neighbourhood size. Furthermore, the decay factor and
interaction weights play an important role in reshaping these curves, which influences the

intensity of enhancement.

4.7 Conclusion

The cellular structure of CNNs and their local interactions make them particularly
suitable for modelling visual phenomenon such as Mach bands, as each cell of these

CNNs consist of the equivalent electrical circuit of a biological neuron.

We began this chapter by understanding the concepts of linear and non-linear lateral
inhibition. From the insights of a biological neuron, we saw the derivation of an electrical

circuit having equal interaction capabilities. The cell state equation derived using this
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circuit was reviewed. This state equation clearly showed inhibition of the shunting or

multiplicative type. The stability of such a model was also discussed.

Both the feed-forward and recurrent SICNNs were studied in this chapter. We defined the
feed-forward SICNN, and illustrated the shunting inhibitory nature of the SICNN on step
edge signals. We also explained its properties using symmetrical and asymmetrical

weights.

We then studied the recurrent SICNN, and showed that its steady-state solution is
nonlinear, i.e. the output of any cell is dependant on the output of its neighbouring cells.
Instead of using computationally intensive calculations to solve such a system, the use of
an iterative method to reach the steady state was demonstrated. The convergence
properties of such a system using symmetric and asymmetric weights were graphically

explained.

The recurrent SICNN’s response to step-edges after one iteration was found to be very
similar to that of the feed-forward SICNN. It was even iteration outputs of the recurrent
SICNN that interested us the most. Upon analysis in both 1-D and 2-D, it was concluded
that the odd iteration outputs of the recurrent SICNN were suitable for edge detection
while the even iteration properties showed enhancing properties. For this reason, the
recurrent SICNN was chosen as the foundation for the enhancement application to be
performed in this thesis. Finally, we demonstrated the advantages and superiority of such
a system over other traditional techniques by comparing their dynamic range compression

capabilities.
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Chapter 5

SICNN Design for Ultrasound Imaging

5.1 Introduction

When a real image is acquired by a camera of some sort, there is invariably some
degradation in the image quality. This may be due to bad lighting, poor camera
calibration, or low dynamic range in the camera. Sometimes even the techniques used to
acquire these images also could contribute to the degradation of information in the image.
Targeting the exact source of degradation would drastically reduce the burden of

improving the quality of the image.

In this chapter, we begin by examining the ultrasound technology in Section 5.2. Its
operating principles and applications in medical therapy and diagnoses are reviewed. We
focus on the use of ultrasound scanners in detecting the various tissues and organs in a
human body. The detected ultrasound patterns are categorised and the ambiguities in the

detection process are highlighted.

In Section 5.3, we proceed to the goal of this study, i.e. designing the SICNN to
overcome the ambiguities in the speckle patterns of the scanned ultrasound images. We
begin by simplifying the steady-state solution of the digital SICNN where the various
parameters affecting the SICNN’s performance are highlighted. Targeting the problems
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in ultrasound images, we design a dynamically varying parameter system to minimize the

speckle ambiguities without significantly disturbing the true content of the images.

5.2 Ultrasound Imaging

In medicine, ultrasound is used for diagnosis and therapy, in which very high frequency
sound is directed into the body. Though the therapeutic ultrasound technique has limited
applications, the diagnostic applications are popularly used in science. In this section, we
first describe the operation principles of Ultrasound Imaging (UI) and its applications.

Then, the problems in UI are highlighted by explaining its detection theory.

5.2.1 Operation Principles

Ultrasound is produced by a rapidly oscillating crystal and, with a frequency greater than
20 kHz, is inaudible to humans. The crystal vibrates about 500 times per second with
each vibration lasting for about one millionth of a second (Lewis, 1999). A transducer is
used to transmit the sound and receive the echoes. The transducer is held in close contact
with the skin, on which a jelly-like substance is smeared in order to improve the
acoustics. The soft-tissue surfaces reflect the sound and the resulting patterns of sound
reflection are processed by a computer to produce an image on a screen or on

photographic film.

5.2.2 Diagnostic Applications

The Ul technique is of no use in determining conditions of the bones or lungs as air,
bone, and other calcified tissues absorb nearly all the ultrasound beam. However, Ul is a
useful technique for diagnosing cysts, bladder structures, biliary systems, and other fluid
filled structures, as the ultrasound beams are well conducted in fluids. The best-known
application of ultrasound is the examination of the foetus in the amniotic sac during
pregnancy. Unlike X-rays, ultrasound is safe during pregnancy; it poses no risk to either

mother or baby.
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Ultrasound can be used to examine various body organs, including the arterial system, the
heart, the pancreas, the peritoneal cavity, the urinary tract, the ovaries, the venous system,
the brain, and the spinal cord. When ultrasound is used to examine the heart, the
technique is known as echocardiography. Echocardiography is used to study congenital
heart disease, coronary artery disease, tumours of the heart, and other cardiac disorders.
Ultrasound can also be used to guide surgical procedures, for example during
amniocentesis or the insertion of a biopsy needle into a particular area. Doppler

ultrasound is used to measure the flow of body liquids, for example the blood flow.

5.2.3 Ultrasound Therapy Applications

Ultrasound is also used in the treatment of various disorders of deep tissue. It can break
up gallstones or stones in, for example, the kidney. Ultrasound is also useful when used

in conjunction with physiotherapy to treat soft-tissue damage and other injuries.

5.2.4 Speckle Patterns

In non-invasive Ul technique, the advantage of using ultrasound pulses is also a
disadvantage. The interaction of the ultrasound pulses with different tissue types, gives

rise to various interference phenomena.

Speckle patterns that simulate the structure of tissue originate from constructive
interferences. The destructive interferences that bear little resemblance to the actual
acoustical tissue microstructure are known as speckle noise. The speckle causes the

degradation of the contrast resolution (Mc Dicken, 1991).

In ultrasound imaging, contrast resolution can be explained as the minimum change in
reflectivity of the tissue, which can be depicted in an image (Macovski, 1983). Tissue
deformation such as lesion may provide only a low contrast with the adjacent host organs.
Increasing the contrast resolution in such a case would mean to lower the speckle noise

from the relevant speckle patterns.
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5.2.5 Problems in Ultrasound Imaging

We have seen from the working principle of the ultra sound, that air, bone and other
calcified tissues absorb nearly all the ultrasound beam. It is only the fluidic structures of
the body that are highly conductive. Damage to these conductive tissues would result in a

heavy loss in their reflective property.

Consider a scanned ultrasound image as shown in Figure 5.1. This figure shows two
quadrants of a heart separated by a fine gap in between. This gap has been highlighted for
clearer understanding. The delivered speckle patterns can be classified into three

categories:

o The first category patterns deal with even reflections. Here we only consider the
quadrants of the heart whose structural properties are similar. As the ultrasound
reflected by each of these quadrants is almost constant, the speckle patterns shown

are dark in nature, showing that there is no unevenness in the organ encountered.

e In the second category we deal with uneven reflections. Each quadrant of the heart is
separated by a minute gap filled with conducting fluids. When an ultrasound pulse
encounters such discontinuities in the heart, it gets reflected back with some

unevenness. These uneven pulses are displayed as white patches in the plotted image.

Tissue deformation also causes a loss in the reflectivity property. Pattern changes
similar to the second category will also be observed during such abnormalities.
Differentiating such disorders from the regular discontinuities of organs is usually left

to the radiologists.

Thus, the results from both the above categories form relevant information to the

radiologist.
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5.3 SICNN Design for UI Enhancement

Degradation of the quality of an image is almost inevitable in every scanner or
transmitter. This brings out the need to use digital enhancers of various levels to regain
the desired quality of the image. Enhancement does not always have to make the image
visually more appealing. In our case, enhancing ultrasound images is more towards
tuning the image to highlight clearly all the discrepancies recorded by the ultrasound

scanner.

We have just seen the complexities in forming the ultrasound images. Solving such
complex problems would require many parameters to combine appropriately to generate
the right proportions of the outputs. As seen in the earlier chapters, the SICNN has many
adjustable parameters. This is one of the main strengths of the network. The number of
combinations that can be produced by these parameters makes the SICNN flexible

enough to adapt itself to many applications, contrast enhancement being one of them.

The SICNN has to be designed to perform intense simulations and output a visually and
quantitatively suitable enhanced contrast pattern. From the response properties of the
SICNN we have seen that by varying the various parameters, we can obtain different

outputs.

In this section, we first re-state the steady-state solution of the recurrent SICNN and
summarize the iterative method to compute the network output. The steady-state solution
of the digital SICNN is then simplified, where the different parameters affecting the
SICNN’s performance are highlighted. Finally the values of these parameters are selected

to achieve the desired output for contrast enhancement.

5.3.1 Digital SICNN

The SICNN for enhancement used in this thesis is recurrent in nature. The recurrent

SICNN is non-linearly dependant upon the outputs of the neighbouring cells:
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X, d i=12,..M BNV

o a +zr:wjf(x,.+j)

j==r

To solve this equation, an iterative method is usually used. The immediate output at each
iteration is computed as follows:

x (k+1)= 4 k=12,..00 (5.2)

g+ Y wf(x,, &)

j==r

From EQ (5.2), we can see that there are several factors that can influence the
performance as well as the implementation of the digital SICNN. These factors are the
value of the decay factor a;; the connection weights w, the activation function and the
iteration number k. The neighbourhood function is indirectly defined by the weight

matrix.

It has been proven that under appropriate conditions, this iterative computation converges
to an equilibrium point (Bouzerdoum and Pinter, 1993). Note that the SICNN can have many

equilibrium points.

Assuming that the activation function is f{x) = x, EQ (5.2) can be simplified as (Cheuny, et.
al, 1999):

I
Xk+l)=——m—— k=12,..00 5.3
R s (53)

where I is a matrix representing the input image; X is a matrix containing the states of the
cells; 4 is a matrix containing the decay values of the cells; W is the weight matrix
representing the connection strengths and neighbourhood size; the * denotes the

convolution operator; k denotes the iteration number.

To obtain an enhanced 2-D image R, the SICNN output is first multiplied by an input
feedback factor o/ and then added to the input image /, as shown in Figure 5.2. Here o, is

a scaling factor.
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Figure 5.2  Block Diagram to obtain two dimensional outputs.

Thus, the 2-D SICNN enhanced response is given as

R =I(l+aX(k+1) 5.4
The SICNN has three main factors: the decay factor, the background effects (weights and
the neighbourhood size), and the iteration number. In the following sub-sections we

examine the effects of each parameter on the contrast enhancement capability of the

SICNN.

5.3.2 Decay Factor

Images in every application have some specific features that contribute to their resolution.
Understanding the need and working of these features would help not only get a better
grasp of their applicability, but also would help reduce any possible problems in their
applications. In our case, we have already studied how the ultrasound imaging system
works and detects abnormalities in the body. We also learnt the formation of speckle
noise due to the degraded reflections of sound waves by the various tissue layers in the
body.

Apart from solving the general enhancement problems in imaging, the SICNN enhancer
is mainly focussed on reducing the ambiguities in the speckle patterns in the ultrasound
imaging. As the possible combinations of the SICNN parameters could be enormously
large, we deal with each parameter individually. Of the three listed parameters, the decay

factor is used to control the global enhancement of the cells at various intensity levels.
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However, assuming a condition where the decay factor is almost zero and having an
average background effect as the input itself, an enhancement of 100% can be obtained.

But, this is only possible for the specified ideal conditions.

Having the same rate of enhancement throughout the image would probably increase the
contrast but will not be efficient enough to lower the speckle ambiguities. Moreover,
during digital simulations, excessive enhancement to the sharper gray levels (nearing O or
256) would create an overflow of intensities, beyond the maximum range of 0-255. For

these reasons, we use a dynamically varying decay factor for the different gray levels.

From the theory of the addressed problem, the gray shades of the range nearing 128 are
undesirable. Relevant experimentation revealed that the approximate range of shades
between 100 and 170 cause the maximum blurring. These shades need the maximum
enhancement while the sharper shades need least enhancement. As the decay factor is
inversely proportional to the rate of enhancement, we choose a decay function that is

lowest in the middle and increases exponentially towards the two ends.

a, =cp? forall 0<p<l1 (5.5)
I, Jor I <t
q =
2561, otherwise

where a; is the decay factor, ¢ is a scaling constant and p represents the range of cells
needing maximum effect, ¢ is the threshold point marking the point of maximum

enhancement.

By varying the function parameters, the above decay factor expression can be tuned to
obtain a wide variety of impact patterns. Now let us experiment with three cases which
satisfy the approximate range of maximum enhancement. Assuming that the function
parameters are constant at # = 128 and ¢ = 1 for all three cases, the decay factors of the

input [; for different values of p are given in Table 5.1:

Contrast Enhancement of Ultrasound Images using SICNN 67



Table 5.1 Decay factors for the different cases of x (other parameters given in text).

@ ®) © Continued...
I; a; for a; for a; for (a) () (©)
x=0.999 | x=0.962 [ x=0.918 I a; for a; for a; for

1 0.999 0.962 0.918 x=0.999 | x=0.962 | x=0.918
10 0.9891 0.653] 0.3902 140 0.8913] 0.0116] 0.00005
20 0.9792] 0.4433| 0.1658 150 0.9003{ 0.0171 0.00012
30 0.9695| 0.3009] 0.0705 160 0.9093] 0.0252| 0.00029
40 0.9598| 0.2043 0.03 170 0.9185| 0.0371] 0.00069
50 0.9503| 0.1387} 0.0127 180 0.9277| 0.0547| 0.0016
60 0.9408| 0.0941| 0.0054 190 0.937[ 0.0806] 0.0038
70 0.9314] 0.0639| 0.0023 200 0.9465f 0.1187 0.009
80 0.9222| 0.0434| 0.00097 210 0.956[ 0.1749| 0.0213
90 0.913] 0.0294| 0.00041 220 0.9656] 0.2577[ 0.0501
100 0.9039 0.02| 0.00017 230 0.9753] 0.3796] 0.1178
110 0.8949| 0.0136| 0.00007 240 0.9851] 0.5593| 0.2771
120 0.886{ 0.0092| 0.00003 250 0.995|] 0.8239| 0.6519
130 0.8824/ 0.0079| 0.00002 255 0.999 0.962 0.918
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Figure 5.3  Plots of the decay factors for the corresponding cases in Table 5.1 with I;
on x-axis and a; on y-axis.
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Figure 5.3 (a), (b) and (c) show the decay factor plots for x = 0.999, 0.962 and 0.918

respectively. From observation, the decay factor patterns for all cases are lowest at the

given threshold (approximately 128) and highest at the two ends. However, the choice of

the most appropriate pattern can only be concluded by simulating the SICNN outputs R;

for the three cases of x.

As there would be an infinitely large combination of neighbourhoods, the background

effects are assumed to be the same as the input ; for the rest of the decay factor design.

The direction of enhancement is assumed to be positive. By substituting the designed

decay factor values and a scaling constant of & = 0.333 in EQ (5.4), the R; values for the

different cases of x are listed in Table 5.2.

Table 5.2 SICNN outputs for the different cases of x (other parameters given in text).
Continued...
I Ri( ‘;‘)’or R,-( I?or R,-(?or @) ) ©
x=0.999 | x=0.962 | x=0.918 L _"afggg ng)fggz x:(;j;rg
: 1.0001) 1.0001) 1.0001 140 x—143.31 220,09 281495
10 | 11.0129] 11.0195| 11.0325
20 | 21.0473| 21.1042 21.2762 150 153.62) 223.709) 300818
2 TT0a 313556 32371e 160 | 163.946] 225.717| 319.244
20 T 411835 a1s4sal 461624 170 | 174.287| 226.818] 335.648
50 T 512865 52901 661242 180 | 184.642 227.747| 347.705
50 T 614035 ¢4 8958 92,0993 190 | 195.012| 229.129 351.344
70 T 715653 784356 125289 200 | 205.395] 231.397| 341.812
80 | 81.7421] 943081 153.667 210 | 215.791| 234.771| 318.764
50 | 919449 113.34] 178216 220 | 226.199] 239.298| 291.116
100 | 102.174] 136.073] 200.349 230 | 236.619] 244.905| 270.53
110 | 112.431] 162.365! 221.291 240 247.05| 251.457| 261.213
120 | 122.715| 191.228] 241.698 250 | 257.493| 258.799| 260.776
130 | 133.016] 214.338] 261.785 255 [261.6723] 261.922{262.2443
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Figure 5.4  SICNN enhanced response R, (solid line) vs input intensity I; for the
corresponding cases in Table 5.2. Dotted line shows f{I;)= I.

Figure 5.4 shows the plots of R; (solid line) for the three cases of x. A plot of J; vs. I;
(dotted line) is also shown on each of the graphs to observe the variation of the output

from the input.

Now let us apply a simple analogy to the obtained R; values, based on factors such as
extent of enhancement and intensity cross-overs in the outputs. The extent of
enhancement can be explained as the difference between the output R; and the input J; and
the intensity cross-over is a situation where the R, < R;,. Cross-overs are not desired as

they would change the flow of the intensity pattern.
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e Considering case (a) (x=0.999), it can be observed that though there is no cross-over

in the outputted intensities, the extent of enhancement is extremely low.

e In case (c¢) (x=0.918), though the extent of enhancement is very high, the R; values of
the input intensities 130-255 exceed the maximum intensity range of 0-255. In such a
case, all these shades would be displayed as 255, leading to a huge loss in the
contrast. Even if this can be corrected by scaling the SICNN output, there is intensity

cross-overs for all inputs beyond 190, as can be observed in Figure 5.4(c).

e Case (b) (x=0.962) delivers more appropriate outputs by assuring no cross-overs and
maintaining a reasonably high extent of enhancement. Thus, we choose the decay

factor pattern in case () in future implementation.

Figure 5.5 shows a plot of [; vs. X(k+1) for the decay pattern in case(d). This global
enhancement pattern controls the overall required enhancement rate X(k+1) and even

overrides the background effects as will be demonstrated in the next section.

0.35

03}

025+

X(k+1)
0.15p

01}

0051

0 . R R
0 50 100 150 200 250 300

Figure 5.5  Enhancement rate pattern for p=0.962, c¢=10000, t=128 and

background effects to be the same as input 1.
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533 Weights

The eccentricity of the SICNN compared to other traditional techniques is its use of
background effects. We have seen that the role of the decay factor was to globally control
the enhancement pattern and adapt the network to a given application. Unlike the decay
factor’s global design, calculating the local effects is more complex. The background
effects are controlled by the weights between the cell under consideration and its
neighbours. The net weight of the neighbourhood is a factor of other parameters such as

the neighbourhood size and the neighbouring cell intensities.

Every neighbour has a different impact on the cell. Defining the impact weights for the
thousands of individual cells is an impractical task. Thus, it is important to establish a
dynamically varying weight structure. Two criteria are identified to confine such a weight
structure: one of them being the perceived intensity of the neighbourhood and the other

being the direction of enhancement.

We begin by computing a neighbourhood matrix of radius ». Let the pixel under
consideration 7 be the centre of the matrix and letj be the neighbour surrounding it. Every
selected neighbourhood could contain dark and bright shades. Since the system has to
vary dynamically, the intensity of the cell under consideration 7;, is chosen to be the
threshold for differentiating between the shades. If a particular neighbour is darker than
the threshold, it is considered as a dark cell and if the neighbour is brighter, it is

considered as a bright cell.

In the given neighbourhood, we compute z.; the absolute values of the intensity
difference between cell i and each of its neighbours. By using the difference in intensities
and not the actual cell intensities, a higher enhancement rate can be ensured for the low
contrast cells. This is because the background effects are inversely proportional to the

enhancement rate.

As shown in Algorithm 5.1 the overall sum of z;; for the darker cells nz and for the
brighter cells pz are calculated separately. If the sum of z;; for darker neighbours is higher
than that of the brighter neighbours, the neighbourhood is perceived as a darker region. A

bright neighbourhood is recorded in the opposite case. Based on this result, the weights
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are assigned a positive or negative enhancement direction respectively. This direction is

given by the variable dir in the algorithm below.

Algorithm 5.1  Algorithm that calculates the background effects

L Set threshold as the input (pixel under consideration, ).

o Define neighbourhood matrix (7, ).

. If neighbour z,, is less than the threshold, then assign the difference (i-z,) as
the effective negative neighbour (nz,).

e If neighbour z,, is greater than the threshold, then assign the difference (z,-i)
as the effective positive neighbour (pz,).

e  Calculate the sum of the effective positive and negative neighbours
separately (pz and nz respectively).

e  Calculate the mean positive and negative neighbourhoods (mpz and mnz).

. Determine the direction of enhancement (dir). If the total negative
neighbourhood (nz) is greater than the total positive neighbourhood (pz),
then the direction of enhancement is positive. The direction is negative in the
opposite case.

o  If the direction is positive, then the mean negative neighbourhood (mnz) is
assigned as the net background effects (bf) and if the direction is negative
then the mean positive neighbourhood (mpz) is taken as the net background
effects (bf).

e  Finally, the direction (-1 or +1) is multiplied to the X(k+1) value computed
using the decay factor (df) and background effects (bf).

The remaining part of the background influences is to calculate the effective intensity of
the neighbourhood. This is given by computing the mean n;; of the dominant
neighbourhood (mnz for darker cells and mpz for brighter cells). Finally, the direction of
enhancement is multiplied to the X(k+1) value computed using the decay factor (df) and
background effects (bf).
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Example:

Figure 5.6 (a) shows a portion of a gray scale image with an intensity of 90 on the outer
block and an intensity of 130 on the inner block. Consider a neighbourhood of size 3 x 3
as shown in Figure 5.6 (b). The cell intensities are given in the boxes and the numbers on

the lines joining the centre cell give the (i — z) values.

90 90 90

130 -4 130 -2 130

90 90 90

(a) (b)

Figure 5.6  (a) Portion of a gray scale image with an intensity of 90 on the outer
block and an intensity of 130 on the inner block. (b) Neighbourhood
matrix with r =3.

By implementing Algorithm 5.1 on these values, the total negative and positive
neighbouring intensity variations (nz and pz respectively)are:
nz=40+40+40+40+40+40=240

nze = 1+1+1+1+1+1 =6

Similarly, pz=0 and pzc =2

where nzc and pzc are the number of cells lesser or greater that the centre cell.

The mean intensity variations mnz and mpz are then given by:
mnz = 240/6 = 40
mpz =0

Since nz > pz
dir=1 and bf=40
From the decay factor values of case (), the final decay factor for 7,3, is:

df=19

By substituting bf, df and 7, values into the SICNN equation, we get
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130
X(k+1) =

With an o =0.333,

Rio=130(1 + 0.333 x 1.092) = 177.27

79 + 40

by

1.092

substituting

Hence, the new iteration output would be:

90 | 90 | 90
130 {177 | 130
90 | 90 [ 90

Now by applying this algorithm to a complete two dimensional image and using the

designed decay factor, the X(k+1) plot for each intensity is as shown in graph (b) of

Figure 5.7.
B
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Figure 5.7  Graph (a) shows the X(k+1) values with constant background effects as

I, and graph (b) shows the X(k+1) of each intensity with background
effects and designed decay values for a 2-D image.

Graph (a) shows the X(k+1) values for the designed decay factors with constant
background effects as [ Through these graphs, it can be clearly seen that the background

effects have a successful impact on the cells’ enhancement intensity. It can also be
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observed that though the background effects vary the intensity of enhancement for every
gray level in the image, the final enhancement rate outputted is bound by the global
impact pattern defined by the decay factor. Thus, this design of the weights can be

concluded as near optimal for our application.

5.3.4 Iteration Number

The final parameter is the number of iterations. Even though the weights and decay
factors help the SICNN to automatically orient itself to the varying intensities of an
image, the overall desired enhancement would vary from radiologist to radiologist. Every
user has his or her own perceptive levels. For this reason, the number of iterations

required for the enhancement process is dependent on the user.

The number of iterations defines the amount of enhancement. The number of iterations
defines the number of times the network process is to be repeated. This is not the same as
scaling or intensity windowing. In scaling, the realized output pattern is only multiplied

by a given number to obtain higher clarity.

On the other hand, increasing the number of iterations generates more accurate results, as
each iteration repeats the whole network process to enhance more gray levels and
generate a completely new output pattern. The system can be seen as a two stage
network, where the first stage outputs are used as inputs to calculate the next stage’s
output. In this process, the original input pattern is used as the initial conditions to

generate the first iteration outputs.

5.4 Conclusion

In this chapter, we began by reviewing the working principle of ultrasound technology
and its applications in medical therapy and diagnoses. Here, we saw that the speckle
patterns produced by the use of coherent transducers in forming the ultrasound images

were also a source of contrast resolution degradation.
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Speckle patterns that simulate the structure of tissue originated from the constructive
interference. Conversely, the destructive ones that bear little resemblance of the actual
acoustical tissue microstructure - known as the speckle noise, caused the degradation on

the contrast resolution.

The digital SICNN for enhancing the Ul images was then explained and its parameters
were summarized. Targeting the speckle noise as the core problem in ultrasound imaging,
these parameters were designed to solve the ambiguities in the speckle patterns. The

decay factor was the main element which controlled the point of maximum enhancement.

An -automatically varying weight system, based on the neighbouring effects, was
implemented to determine the direction of enhancement and the intensity of the
background effects. Though the weights controlled the rate and direction of enhancement,
the decay factor had a dominating effect on the global enhancement pattern. Finally, the

number of iterations was varied to suit the user’s enhancement needs.
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Chapter 6

Ultrasound Image Enhancement:
Implementation and Analysis

6.1 Introduction

In the earlier chapters, we studied the various image enhancement techniques and the
different measures used to quantify the enhancement. The SICNN was studied in greater
detail as it is the main system used for our application. The applications of ultrasound
imaging and its operating principles were explained. Based on this information, the
SICNN system was designed to reduce the ambiguities in the ultrasound speckle patterns.
However, the performance of the designed system to highlight the variations in the

speckle patterns can only be obtained by testing it on clinical UI images.

This chapter presents the enhancement results of the different techniques on clinical Ul
images. Section 6.2 gives an overview of the Ul databases collected from various
hospitals and organisations. This is followed by Section 6.3, where the measures used to
quantify the enhancement are explained. Section 6.4 presents the implementation results
of some traditional enhancement systems and the SICNN system. Both high and low
quality UI images acquired from different equipments are used to examine the networks.
These results are comparatively analysed and a combination of systems is suggested to

achieve the desired enhancement in both the high and low quality UI cases.
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6.2 Data Preparation

All the data used in this study are taken from clinical ultrasound scanners of various
hospitals and radiological centres. The outputs of the Ul scanners are possibly recorded in
three ways: (i) they are burnt onto monochrome positive films (e.g., X-ray films), (ii)
they are printed on photographic sheets, (iii) they are shared on digital media, like CD’s
and local networks. Digital Ul patterns are stored in a DICOM format. DICOM formats
are used for digital communication in medicine and are a standard regulation set by the

American College of Radiologists.

The UI database used in this thesis consists of 3 sets of images with a total of 275 images
collected from over 12 hospitals and radiological centres. Though all the institution
names cannot be listed here, the main contributions were made by the Royal Perth Hospital,
WA and MA Scan and Research Centre, India.

e Set 1 consists of 228 images of DICOM3 format extracted from GE’s advanced
models; the GE 700 series machines. The size of each image in this set is 630 x 461.

The SICNN performance will be mainly accounted for the images in this set.

e Set 2 consists of 7 images of size 378 x 283 each, extracted from GE 2244 series
ultrasound scanners. The images in this set are selectively picked to demonstrate

their lesser quality in comparison to those from more advanced Ul scanners.

o Set 3 consists of 22 Doppler Ul images from the GE 700 series scanners and 18 Ul
images re-scanned from monochrome films using HP1200dpi scanners. Because of
the loss of information in the re-scanned images and the use of colour patterns in

Doppler images, we do not emphasise their enhancement results in later sections.

Since DICOM format images are not commonly supported by all softwares, they have
been converted to JPEG format. As it is a privacy regulation of most institutions, the
patient credentials from the acquired images have been manually edited and deleted using

Microsoft Paint software. However, this does not affect the size or even the actual

Contrast Enhancement of Ultrasound Images using SICNN 79



ultrasound patterns of the image.

The final part of the data preparation is to create a database for the Region of Interest
(ROI) of the images. Every Ul image contains the actual ultrasound patterns in the centre
with the image details to its boundaries. The actual ultrasound patterns are regarded as the
ROL Though the total size of most of the images could be the same, the ROI of every
image is generally different. Using MATLAB 5.1 we created the ROI database for all 275

images by manually selecting the ROI of each image.

6.3 Performance Measures

During implementation, the whole image is used as the input to the network. However,
the performance measures are applied only to the ROI. The quantifiable performance of

the network is based on the contrast variations and the dynamic range measures.

The dynamic range is given by the difference between the maximum and minimum
intensities of the ROL.

DR=1I_ -1, (6.1)
where DR is the dynamic range, [ is the maximum intensity in the ROI and Z,,;, is the

minimum intensity in the ROI of a given image.

We have seen some of the common contrast measures in Chapter 2. The contrast
improvement index, CII, only measures the enhancement of the background intensities in
a small window centred on the pixel — it does not take into account the enhancement of
the edge pixels relative to the background. Conversely, the gradient enhancement
measure, GEM, only measures the enhancement of the edge pixel’s gradient, with no
account of the change in the background intensity. The relative edge enhancement, REE,
measure takes into account both the edge response and the background intensities;

however, it can increase without bounds.

Because of the divergences in the pixel enhancement and its background, a measure that

is more appropriate is desired. This can be achieved by modifying the Michelson contrast
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formula, to calculate the contrast between the enhanced pixels and their corresponding

backgrounds.

For a given neighbourhood, let /; be the intensity of the pixel under consideration and by
be the average background pixel intensity computed over the neighbourhood. The
contrast score ¢y for pixel (i, k) is defined as:

When comparing the contrasts of the enhanced and the original images, an extension to

the above formula can be used:

rer =) (6.3)
¢ (%)

where RCI is the relative contrast index, ci(y) is the contrast of the output pixel and cu(x)

is the contrast of the corresponding input pixel.

Through this method, the contrast increment or decrement can be determined. If
the RCI >1 then the contrast has increased and if the RCI <1 then the contrast has

decreased.

6.4 Performance Analysis

The performance analysis is the final stage of the thesis. Here the performances of
various enhancement schemes are tested and analysed. We analyse the results based on
both their quantifiable statistics and their visual suitability. Visual inspection is a very
subjective procedure and could vary from person to person. However, we only discuss the
highly evident characteﬁstics of the outputs, like the visual clarity of pattern

discontinuities in Ul images.

We begin the analysis by testing performance of some commonly used techniques like
Histogram Equalisation, Logarithmic Transformation, and Linear Stretching. This is
given in Sections 6.4.1 to 6.4.3, respectively. Section 6.4.4 deals entirely with the

performance of the designed SICNN enhancer. Based on the analysis of these techniques,
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The DR of the stretched image is 255. By expanding the DR, the contrast of the image
also increases. The contrast score for this stretched image is 13.9228. This is

approximately 8% increment in the contrast of the image due to Linear Stretching.

Note that the contrast enhancement using this technique is achieved only by increasing
the DR of the image. But since the DR of Set 1 images are already 255, there would be no

change in the output statistics of the images.

6.4.4 SICNN System

In this section, we implement the designed SICNN system on Set 1 and Set 2 ultrasound
images. The inputs to the system are the original images. In all cases of experimentation,
the results of the first five iterations are used to examine the network. However, only the

third iteration output images are displayed for comparison.

Set 1 Images:

Here, we use Figure 6.1 (a) as the input to the network. Observing the output statistics in
Table 6.1 the contrast score of the image has gradually increased with the increase in the

iterations, showing an improvement in the contrast of the image.

Table 6.1 Output statistics of the SICNN system with an input image from Set 1.

Image from | Dynamic| Contrast | RCI
Setl Range Score ip-op
Input Image 255 28.1066] -
o| Tteration1| 255 28.7905| 1.0567
Tteration2 | 255 29.6508] 1.1565
Iteration 3| 255 30.5634}f 1.2650
Iteration4 | 255 31.5043] 1.3736
Iteration 5| 255 32.4393] 1.4816

SICAN
Output I

(ip — input; and op — output)

From the characteristics of the input image, it is evident that the dynamic range is already
at the highest value and hence cannot increase further. The average RCI computed over

the region of interest, between the input and each iteration output, show that an
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Set 2 Images:

From Table 6.2, it is clear that the contrast scores of the SICNN output after every
iteration have increased considerably. The RCI results of Set 2 images vary from 5% for
the first iteration to 70% for the fifth iteration. Upon comparison the rate of enhancement
for Set 2 images is higher than that of Set 1 images. However, the increment in the

dynamic range of the ROI is only marginal and not as high as Setl images.

Table 6.2 Output statistics of the SICNN system with an input image from Set 2.

Image from | Dynamic| Contrast RCI
Set2 Range Score ip-op
Input Image 202 13.3485 -
Iteration 1| 202 13.9055]  1.0549
Iteration 2{ 203 15.0705]  1.1970]
Iteration 3] 204 16.3959] 1.3556
Iteration 4] 205 17.8786] 1.5221
Iteration 5| 206 19.4494] 1.6978

SICAN
Output Image

(ip — input; and op — output)

From the histogram of the input image, it is evident that the image is overly bright and
has a DR of only 202. But the decay factor of the SICNN was designed for a full DR of
255. It was assumed that the partially detected ultrasound reflections were displayed as
the middle order gray levels. Because of this, the system was designed to have maximum

enhancement at around 128 and least at the two ends (0 and 255).

In the present situation, the darkest patterns of the Ul image are positioned around 100
and the middle order gray levels at approximately 190. As a result, the darker UI patterns
are enhanced the most and the middle order gray levels of the image are only marginally

enhanced. By logic this is undesirable.

Figure 5.11 shows the third iteration SICNN output whose contrast score has increased to
16.3959, displaying an average RCI of 1.3556. The DR has increased by only two shades
to 204.
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database were also manually brightened or darkened. Because of this, the decay pattern
does not have the same impact as it was designed for. However, this problem can be
overcome by simply expanding the dynamic ranges of all the images to 255 before

processing the image through the SICNN system.

In this section, we pre-process the input image to expand the dynamic range of any given

image. The resulting image is then used as an input to the SICNN system and the new

performance scores are analysed.

As seen earlier, all the Set 1 images satisfy the SICNN design conditions. However, the
Set 2 images do not satisfy the conditions as they have a low dynamic range. Hence, we
choose a system that ensures maximum dynamic range. From analysis of the previous
sections, this pre-processing requirement of the SICNN can be satisfied by a simple

technique like Linear Stretching.

We saw that the DR of the stretched image is 255. The contrast of this image increased
t013.9228. This is approximately 8% increment in the contrast due to Linear Stretching
alone. This linearly stretched image is used as an input to the SICNN network. Table 6.3

shows the performance statistics of the SICNN system after linear stretching.

Table 6.3 Output statistics of the SICNN system after linear stretching. The input

image is from Set 2.

Image from |Dynamic| Contrast RCI
Set2 Range | Score ip-sp sp-op ip-op

Input Image 202 13.3485 - - -
M%’ff’w | 255 | 13.9228] 10818 - ;
s | ferauom1| 255 | 14.4851] - 1.0393] 1.1353
§“., reaionz | 255 | 154907 - 1.1256] 1.2256
S Y semtions| 255 | 16,6683 - 12297 13344
5’ " reerations | 255 | 17.8805] - 1.3348| 1.4436
D | nemsions| 255 | 19.0889 - 1.4389] 1.5510f

(ip— input image; sp— linearly stretched image; op— output image)
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output to the linearly stretched image. This is given by the RCI (sp-op). By comparing the
SICNN performances of Table 6.1 and Table 6.3, it can be concluded that for both Set 1
and Set 2 images, we achieve approximately 25% variation in the contrast pattern for the

third iteration outputs.

It should be noted that all images in Set 1 have a dynamic range of 255. Hence,
processing these images through the SICNN system with Linear Stretching will have the
same output as the SICNN system without Linear Stretching.

6.5 Conclusion

This chapter dealt with the performance analysis of various enhancement techniques
implemented on two dimensional clinical Ul images. The diagnostic images collected
from various hospitals were categorized into different sets. Set 1 contained all the high
quality images and Set 2 contained the lower quality images. The network performances

were tested on both sets of images.

The network performances were examined based on the average contrast scores, dynamic
ranges and relative contrast indexes. Visual inspection was also used to determine the
compatibility of the enhancement systems. All network performances were analysed on

both the high and low quality images.

A total of five systems were implemented and analysed. We started with the traditional
techniques like Histogram Equalization, Logarithm Transformation and Linear
Stretching. This was followed by the designed SICNN’s performance on Ul images and
the combined efficiency of the SICNN with dynamic range expansion.

Though the quantifiable results of the histogram equalization were high, the technique did
not show usefulness in highlighting the speckle variations of the Ul images. The dynamic
range expansion of linear stretching showed about 8% contrast enhancement for Set 2
images. However, the technique was not useful for Set 1 images as all Set 1 images

already had a dynamic range of 255. The log transformation showed about 6%
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enhancement for Set 1 images and 10% enhancement for Set 2 images. But the dynamic
ranges of the log transformed outputs were not as consistent as that of the linearly

stretched outputs.

The SICNN design showed promising results for Set 1 images, but had problems with
Set2 images. The drawbacks of the designed SICNN in enhancing low quality images
were highlighted. It was observed that these drawbacks could be overcome by
maximising the dynamic range of the image before processing it through the SICNN.
Linear stretching technique was used to achieve this. This new network demonstrated
reasonable enhancement for both Set 1 and Set 2 images. An average SICNN

enhancement of about 25% in the third iteration was achieved, for any given image.
gl g
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Appendix A

% I NDEX

$ip = matrix containing the input
%$(j,1) = size of the neighbourhood
$r = radius of the neighbourhood
%z = neighbour under consideration
$nz = sum of negative neighbours
$pz = sum of positive neighbours
$nzc negative neighbour count
$pzc positive neighbour count
$mnz mean of negative neighbours
mpz mean of positive neighbours
$dir direction of enhancement
$bf net background effects

$df net decay factor (aj)

% ALGORITHM for Background Effects
i=ip(rows,columns) ;
for j=-r:r % Calculating the positive and negative
for 1l=-r:r $neighbourhood effects
z=ip(rows+k,columns+1)
if z<i
nz=nz+(i-z);
nzc=nzc+l;
elseif z>=1i
pz=pz+{z-1i);
pzc=pzc+l;
end
end
end
pz=pz-i; % Nullifying self weight
pzc=pzc-1;
mnz=nz/nzc; % Calculating the mean
mpz=pz/pzc;
if nz>pz % Determining the direction and final background effects
dir=1;
bf=mnz*dir;
elseif nz<=pz
dir=-1;
bf=mpz*dir;
end

df=df (i) *dir:
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Appendix B

In this Appendix, we show the experimental results of the two dimensional clinical
ultrasound images. The images used here are taken from GE 700 series machines.
These images were converted from the DICOM format to JPEG format before
processing. As all the images in Set 1 have a dynamic range of 255, the results
produced by the SICNN system would be the same as the results of the SICNN
system with dynamic range expansion. In the following experimental outputs, we
present the input image and the third iteration SICNN response. The corresponding
histograms are also shown to observe the change in the intensity patterns. The contrast
scores of the images are also shown. The percentage enhancement is quantified using

the relative contrast index.
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