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ABSTRACT 

 

This thesis focuses on the design and development of silver nanoparticles that can be 

used as masks for the development of antireflection subwavelength grating (SWG) 

structures. We particularly investigate the impact of silver thin film thickness and the 

effect of annealing temperature on the fabrication of silver nanoparticles of 

controlled size and spacing distributions. We also use these measured distributions to 

predict the performance of subwavelength grating structures developed using dry and 

isotropic etching of semiconductor substrates.  

Silver (Ag) thin films of different thicknesses are deposited on Silicon (Si) and 

Gallium Arsenide (GaAs) semiconductor substrates and annealed at different 

temperatures. Uniform nanoparticles with diameters around 200nm and  spacing 

between nanoparticles as low as possible are our target as these parameters are 

suitable for the fabrication of antireflection SWG structures, having grating widths 

equal to the nanoparticle diameter and spacing equals to the spacing between 

nanoparticles. Experimental results demonstrate that by annealing the Ag thin films 

with different temperature profiles, it is feasible to develop Ag nanoparticles, of 

diameter around 200nm and spacing below 250nm, at most of the annealing 

temperatures investigated. 

In addition, different subwavelength structures, developed by etching the Ag 

nanoparticles deposited on Si and GaAs substrates, are simulated using a Finite-

Difference Time Domain (FDTD) software package. The simulation results show 

that substantial reduction in light reflection can be achieved by optimizing the height 

of the subwavelength structures through the control of the etching time. 
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Chapter 1 

Introduction 

 

The conversion efficiency of many types of solar cell structures critically depends on 

the reflectivity of their top surfaces. For Silicon (Si) and Gallium Arsenide (GaAs) 

semiconductor solar cells, the average reflectivity of the top surface is more than 

27%, depending on their refractive index over the solar spectrum. Traditionally, to 

lower the surface reflectivity (thus increase the conversion efficiency) of the solar 

cells, antireflection (AR) thin film coatings have been used. However, the use of 

thin-film coatings has various disadvantages, including, (i) complex deposition 

processes which require expensive vacuum deposition equipment, (ii) lower yield 

due to the addition of a thin film deposition process, and (iii) mechanically unstable 

performance under high-temperature operation. 

Subwavelength grating (SWG) structures are an alternative to optical coatings which 

has long been demonstrated and used for bulk optical surfaces [1, 2]. Typically, 

SWG structure has a small pitch that enables the suppression of all diffraction orders, 

except the 0
th

 order, thus allowing minimum light reflection, and hence, maximum 

light transmission.  

Subwavelength grating (SWG) structures have recently attracted enormous interest 

over the last decade particularly in the field of photovoltaics as they have several 

interesting advantages. For example, integrating an SWG onto a solar cell device 

provides almost a lossless reflecting surface that enhances the solar cell‟s efficiency 

[3].   
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The SWG often takes a one- and/or two-dimensional periodic configuration. If the 

pitch (or period) of a single grating structure is less than the wavelength of the 

incident light, it behaves like a homogeneous medium with an effective refractive 

index [4]. So, SWG structures enable gradual changes in the refractive index, thus 

assuring an excellent antireflective medium together with a light trapping 

phenomena in comparison to planar thin films [1,4]. A nanorod structure acts as a 

single layer antireflective (AR) coating, while the triangular (conical) and parabolic 

shaped grating structures are more advantageous since they behave like a multilayer 

broadband AR coating [4]. 

In this thesis, we report on the control of silver nanoparticle size and spacing for the 

development of low reflectivity structures.  Silver nanoparticles are fabricated by Ag 

thin film deposition in conjunction with thermal annealing, and subsequently, 

conical shaped SWG structures are realized through the etching of Silicon (Si) and 

Gallium Arsenide (GaAs) substrates onto which the developed silver nanoparticles 

are deposited.  

In order to understand the effects of Ag thin-film thickness and annealing 

temperature on the size and spacing of the Ag nanoparticles, several silver (Ag) thin 

films of thicknesses 10nm, 8nm and 5nm are deposited on GaAs and Si substrates 

and annealed at different temperatures leading to the development of randomly 

distributed Ag nanoparticles on the surface of each sample.  Different nanoparticle 

diameters and spacing between nanoparticles are achieved by controlling annealing 

temperature and film thickness, which give rise to SWG structures having different 

grating widths and spacings. Finite Difference Time Domain (FDTD) simulation of 

these SWG structures confirms the low reflection in comparison with flat substrates. 
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The thesis is organised as follows: Chapter 2 is a literature review describing solar 

cell operation, types of photovoltaic cells, photovoltaic energy conversion efficiency, 

antireflection coatings for solar cell and SWG structures, basic mechanism of 

antireflection coatings, moth-eye structures, subwavelength grating structures 

(SWG), nanoparticles and their applications, simulation of light propagation through 

SWG structure. Chapter 3 focuses on the design and fabrication of nanoparticle 

arrays. In Chapter 4 we discuss the techniques used to characterise the fabricated 

nanoparticle arrays. In Chapter 5 we report on the fabrication of silver nanoparticles 

using thin film deposition in conjunction with thermal annealing, and predict the 

performance of conical shaped SWG structures realised through the etching of Si and 

GaAs substrates whereon the developed silver nanoparticles are deposited. 
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Chapter 2 

Literature review 

2.1 Solar Cells:- 

2.1.1 Solar Cell Operation:- 

Solar cells convert light energy into electrical energy either by converting it into 

heat, or through a direct process known as photovoltaic effect. A potential difference 

or voltage is produced when light strikes a two-layer semiconductor material. The 

voltage produced can pass a current through an external electrical circuit that can be 

utilized to power electrical devices. This is the basic concept of solar cell operation. 

 

Fig.2.1: Basic diagram of a solar cell (source 5). 

Fig. 2.1 illustrates the operation of a basic solar cell. A specially treated 

semiconductor material is used to generate an electric field, with a positive charge on 

one electrode and a negative charge on the other. When energy is added to the 

semiconductor, electrons are freed from their bonds. By applying a metal contact 
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layer to both sides of the semiconductor, as shown in figure 2.1, and providing an 

electric circuit, free electrons can be captured and flow, generating electricity [6]. 

When sufficient energy (for example, heat) is added to pure silicon, some electrons 

are freed from their crystal bond structure and create a hole and can move randomly, 

as well as searching for other holes in order to combine with them by releasing 

excess energy. These free electrons are capable of producing current when in the 

presence of an external circuit. As there are very few free electrons in pure silicon, 

the level of current would be insignificant. The free electrons or holes can be 

increased by adding some impurities. Phosphorus (P) and boron (B) are commonly 

used as impurities. The process of adding impurities is called doping. In phosphorus, 

five electrons are in the outer shell, so when added as a dopant to silicon four 

electrons of phosphorus form bonds with the outer shell electrons of the silicon atom 

(Fig. 2.2). The fifth valence electron cannot form a bond; so a small amount of 

energy is able to move the electron away from the crystal structure. Because of the 

free electrons in phosphorus–doped silicon, it is called N-type silicon (N standing for 

negative). In Fig. 2.3 P-type silicon, there are three valance electrons in the outer 

shell of boron. These three electrons form a bond with three outer shell electrons of 

silicon but the fourth electron of silicon has no electron to bond with. The absence of 

an electron in the crystal lattice creates a hole and these holes act as positive charges 

by attracting electrons. The boron-doped silicon is called P-type silicon (P standing 

for positive).  
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                          Free electron                                                Hole 

Fig. 2.2 N-type silicon.   Fig. 2.3 P-type silicon. 

 

Fig. 2.4: Electron and current flow in solar cell [source 6]. 

In a typical photovoltaic cell, two layers of doped silicon semiconductor are tightly 

bonded together (as shown in Fig. 2.4). One layer is modified to have excess free 

electrons (N-type), while the other layer is treated to have an excess of electron holes 

(P-layer). When the two dissimilar semiconductor layers are joined at a same 

boundary, the free electrons in the n-layer cross into the p-layer to fill the electron 

holes. The electrons and holes at the p-n junction create a barrier that hardly allows 

additional electrons to cross. Across the boundary a fixed electric field results, as the 

electrical imbalance reaches an equilibrium condition which separate the two sides 

P-layer and n-layer[6]. 
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The electrons can move randomly in the presence of particular wavelengths of light. 

The electrons near the boundary (P-N junction) can be swept out and enter into the 

N- junction creating a charge imbalance between the two layers. The electrons 

cannot return to the p-region against the field gradient but have a tendency to return 

to neutralize the charge imbalance. In this situation, an external circuit that connects 

the two semiconductors creates an alternate path, allowing the electrons to return to 

P-region from N-region, which produces a current flow. Metal contact layers are 

applied to the outer faces of the two semiconductor layers in the construction of a 

photovoltaic cell and are connected by an external circuit. 

2.1.2 Types of Photovoltaic Cells:- 

There are three types of solar cell commonly used: 

i)  Mono-crystalline (single crystal) 

Mono-crystalline solar cells are produced from pure silicon. Pure silicon is produced 

by applying high temperature to silicon dioxide and carbon in a reduction reaction. 

The governing chemical reaction is: 

SiO2 + C →  Si +CO2 

A controlled amount of boron, an impurity, is added in the molten silicon. A “seed” 

crystal of silicon is then drawn out of melt. A regular crystal structure depends upon 

the temperature of the molten silicon and the speed at which the “seed” crystal is 

withdrawn. The crystal structure of silicon is tetrahedral in shape, with each silicon 

atom bonded to four other silicon atoms. The crystal is then sliced into wafers. 

Silicon doped with phosphorous joins together with the boron doped silicon wafer. 
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Metal contacts are applied to both the front and back surface of the wafer enabling it 

to produce electricity, thereby creating a “solar cell” [7].  

ii) Poly-crystalline (Many crystals) 

Many tiny crystals forced together at random make a block of silicon and this is 

called poly-crystalline silicon. The block is sliced, doped and contacts applied in the 

same way as for mono-crystalline cells. It is generally cheaper and requires less 

energy to produce than mono-crystalline cells [7]. 

iii) Amorphous (no specific crystal structure) 

Condensation of gaseous silicon deposits a thin film of silicon directly onto a 

backing surface and the atoms in this thin film are arranged in a completely random 

fashion. The cell is called an amorphous thin-film cell [7]. 

2.1.3 Photovoltaic Energy Conversion Efficiency:- 

There are several factors which influence the efficiency of solar cells. The following 

main factors limit the efficiency for mono-crystalline cells [7]: 

• Crystal Structure of silicon:-  

 Mono crystalline solar cells have a well defined cell structure and there is 

very little chance of reverse current flow across the depletion layer. Their 

efficiency is up to 23% in laboratory conditions. 

 In polycrystalline solar cells the efficiency is about 6% less than the mono-

crystalline solar cells. 

 Amorphous cells, with no crystal structure, have a much lower efficiency, 

typically about 6% when new and this efficiency drops away as the cell ages. 
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• How tightly the cells are packed to form a module:- 

There are small gaps between neighbouring cells when cells are 

connected together to form modules. No electricity is produced by solar 

radiation falling on these gaps. 

• Metallic contact area : 

There is metallic contact in a solar cell which is connected by an external 

circuit. This metallic contact is essential to produce electricity but it 

prohibits some incoming solar radiation.  

• Quantum factors 

Some of the incoming photons of solar radiation do not strike electrons 

at all.  Some photons strike the electron but don‟t have sufficient energy 

to eject the electron. Some photons have excess energy, much of which 

may be wasted as heat, and some photons strike impurity atoms or the 

nuclei of silicon atoms. All these factors reduce solar cell efficiency.  

• Reflection loss 

Some of the incoming solar radiation is reflected from the surface of the 

cell and never gets the chance to eject an electron.   

Temperature and radiation intensity are two other factors that affect solar cell 

efficiency. 

2.2 Antireflection coatings for solar cell and SWG structures:- 

The optical reflectivity of a surface can be reduced by using an antireflection (AR) 

coating that covers a certain wavelength range. The AR coating is normally a 

dielectric thin film applied to the optical surface. 
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 The first antireflection coatings were made by Joseph Fraunhofer in 1817 [8]. After 

one year, Augustin Jean Fresnel developed a different theory based on Thomas Tong 

and Christiaan Huygens. James Clerk Maxwell published his treatise on 

electromagnetism 56 years before. In 1954, the first practical solar cell was 

announced and it did not employ any ARCs. It was later discovered that ARCs were 

necessary to increase the efficiency of solar cells by reducing reflection loss [8]. 

2.2.1 Basic mechanism of antireflection coatings:- 

Efficiency of a solar cell can be increased by using an anti-reflection coating that 

reduces reflection in certain wavelengths (IR, Visible UV gives good performance). 

The basic principle of operation is that reflected waves from different optical 

interfaces largely cancel out each other by destructive interference. Minimum 

reflectance can be achieved when the refractive index equates to the square root of 

the refractive index of two medium [1]. The strength of the reflection depends on the 

refractive index of the two medium and the angle of the surface to the beam of light.  

 

Fig. 2.5 shows the reflection and transmission of a glass substrate with a thin film 

coating. In this figure, light is travelling from air into a common glass substrate. The 

intensity of the incident light is I, reflected light is R.I and transmitted light is T.I. If 

a thin film coating is applied to the glass substrate, it reduces the reflection. Here, I is 

the incident light on the coating, R01 is the reflected light at the interface of air and 

thin film coating, and the transmitted light is T01I. The incident light at the coating 

and glass interface is T01I, the transmitted light is T1sT01I and the reflected light is 

R1sT01I. 
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Fig 2.5 Reflectance of a glass substrate is reduced using a thin film (source 9). 

 

 

The percentage of reflection can be calculated by the well-known Fresnel equations 

[9]: 
2

0

0

s

s

n n
R

n n

 
  

 

………………………………………………  (1) 

where, R = Reflection coefficient or reflectance. 

           n0 = refractive index of the first media 

           ns=  refractive index of the second media 

If visible light travelling from air (n0 = 1.0)into common glass (ns = 1.5), the value of 

R is therefore 4%.If a thin film is applied tothe glass surface, it reduces the reflection 

loss. The optimum refractive index n1 = √(n0ns) 

                                                      = 1.225 

For this refractive index, the reflection loss of each interface, R = 1%. i.e., the total 

reflection loss = 2%. 

Therefore, an intermediate coating between the air and glass can reduce the 

reflection loss to half (about 50%).  

It is important to note that the greater the number of coating layers in an ARC 

arrangement, the lower the average reflectance becomes, provided the materials are 

chosen such that they are close to the optimal refractive index. For multilayer 

coatings, the refractive index is;  
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[source 10]............................................................ (2) 

where 𝑛𝑚  is the refractive index of the 𝑚𝑡ℎ  layer out of M layers, 

𝑛𝑠𝑢𝑏  𝑖𝑠 the refractive index of the substrate and 𝑛𝑠𝑢𝑝  is the refractive index of the 

superstrate [10].  

 

Fig. 2.6: Reflection coefficient (i.e. % of light reflected), angle- and 

wavelength-averaged reflection, as a function of the number of layers for optimized 

ARCs for silicon solar cells(Source11). 

 

From Fig. 2.6, it is obvious that the percentage of light reflected decreases with 

increased numbers of layers. However, formation of multilayer coating film can be a 

complex process and there are some drawbacks, such as adhesion and thermal 

mismatch and instability under thermal cycling [1,3].  

2.2.2 Moth-eye structures:- 

Standard antireflection coating works within a limited range of wavelengths and 

incident angles of sunlight (angles between the light rays and the cell‟s surface). This 

angle of incidence continuously changes throughout the day making it difficult to 
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absorb optimum amounts of sunlight. Recently, the moth‟s eye concept is being used 

in solar cells to reduce reflection.  Moth‟s eye reflects very little amount of light at 

night due to its arrayed nanopillars that collectively behave as an intermediate 

refractive index at the air-medium interface. This structure works as an antireflective 

coating for a broad range of wavelengths and for any incident angle of light. The 

antireflective behaviour of moth‟s eye nanostructures is necessary for solar cells that 

aim to collect broad spectrum sunlight at continuously changing incident angles.  

The nano-structured film consists of a hexagonal pattern bump which is 200nm high. 

This acts as an antireflective coating because the bumps are smaller than the 

wavelength of visible light. The refractive index between the air and the surface 

changes gradually, thus decreases the reflection at the surface.  [12,13].  

 

Fig. 2.7 Moth-eye structure (Source 13). 

2.2.3 Subwavelength grating structures (SWG):- 

Subwavelength grating structures can be formed by lithography, colloidal formation, 

nano-imprint and nano-particles etc. [13]. These types of structures can minimise 

reflection but lithographic techniques such as electron beam lithography, nano-

imprint lithography and interference lithography require sophisticated equipment and 

are expensive to implement [14]. Any “roughening” of the surface reduces reflection 
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by increasing the chances of reflected light bouncing back onto the surface, rather 

than out into the surrounding air.  

Fig. 2.8 Light reflection phenomena for flat silicon substrate and textured silicon 

substrate. 

 

In Fig. 2.8, (a) Incoming light, strikes a surface with reflection R, (b) The reflected 

light from the surface is reflected at the same angle at which the incoming light 

strikes the surface, (c) In a textured surface, rather than being lost, the reflected light 

can strike the silicon surface again thus reducing the reflection. 

In silicon solar cells, surface texturing is being used as a reflection-reducing 

technique and combining it with ARCs has been a standard feature since the mid-

1970s [15]. In the most general sense, texturing involves roughening the silicon 

surface to scatter or redirect light.  

Sub-wavelength features cause a gradual change in refractive index which acts as a 

multilayer antireflection coating leading to low reflection over broadband ranges of 

wavelength and angle of incidence. Fig. 2.9 shows a gradual change of a grating 

structure as well as refractive index leading to low reflection. A nanorod structure 
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acts as a single layer antireflective coating whereas a triangular shaped grating 

structure acts as a multilayer antireflective coating [13]. 

If we consider Fig. 2.9 and try to evaluate the reflection according to Fresnell‟s 

equation, we can easily see that reflection is reduced in every situation other than the 

flat substrate.  

 

Fig. 2.9 Reflection of rectangular and triangular (conical) shaped SWG structures 

(source 13). 
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Fig. 2.10 Refractive index profile of (a) rectangular and (b) triangular (conical) 

shaped SWG structures on a Si-air interface. 

 

In a rectangular-shaped SWG structure, the refractive index changes very sharply 

from air (n = 1) to the grating zone or structure (approximately 2.5) [1]. The 

reflection loss of an SWG structure can be calculated easily using Fresnell‟s 

equation: 
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where, n1 is the refractive index of first medium and n2 is the refractive index of 

second medium. 

From Fig. 2.10, we can calculate the total reflection of the grating structure using the 

following equation: 

Rtot = R1+R2 ..…………………………………………………………….(4) 

where, R1 is the reflection at the interface of air and grating structure and R2 is the 

reflection at the interface of the grating structure and substrate.  

If the grating structure has a shorter pitch (or period) than the wavelength of the 

incident light, it acts as a homogeneous medium with an effective refractive index. 

Fig. 2.10 (a) shows a rectangular shaped grating structure where the refractive index 

decreases sharply from air to the grating zone and again decreases from the grating 

zone to the silicon substrate leading to less reflection. In the triangular (conical) 

shaped SWG structure, the refractive index changes gradually i.e it acts as a 

multilayer grating structure that lowers reflection than the rectangular grating 

structure. In this paper, the reflection loss was calculated using Opti-FDTD software 

package developed by Optiwave Inc.  

The first–order expressions for the refractive index are also calculated by the 

following equation [1]: 

𝑛𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 =  𝑓𝑛1
2 +   1 − 𝑓 𝑛2

2 1/2.........................................................................(5a) 

𝑛𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 =  
𝑓

𝑛1
2 +

 1−𝑓 

𝑛2
2  

−1/2

.......................................................................... (5b) 
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Equation (5a) and (5b) refer to the case of the electric field of the incident light being 

parallel or perpendicular to the grooves respectively (TM and TE respectively). 

Where, n1 = refractive index of the first medium 

            n2 = refractive index of the second medium 

 f = filling factor 

For triangular gratings, the fill factor profile is a linearly decreasing function along 

the depth of the grating (i.e., f=1/h where h is the depth of the grating). For 

rectangular gratings, the resulting effective profile is equivalent to that of single 

layer coating. The effective refractive index can be controlled by changing the duty 

cycle of SWG. Therefore, according to the thin film theory, 

Film refractive index nf
AR

=  𝑛1𝑛2  

The advantage of SWGs solar cell is that the cell efficiency is sustained over 60°C 

incident angle and it is degraded only 8 % at 70°C.  So, most of the day, light can be 

absorbed and provide a solar cell with better efficiency [13].  

2.3 Nanoparticles and their applications:- 

Nanoparticles are a promising area of scientific interest due to a wide variety of 

potential applications in optical, electronic and biomedical fields. The small portion 

of a particle in nanoscale size is called nanoparticles. The synthesis, characterization 

and exploration are described in nanoscience and nanotechnology. The physical and 

chemical properties of nanoparticles can differ significantly from the bulk materials 

of the same composition. The principal parameters of nanoparticles are their shape, 

size and morphological sub structure of the substance. Suitable control of these 

properties and response of nanostructures can lead to new devices and technologies 

[16].  
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Most nanoparticles are made of noble metals or non-reactive metals such as gold, 

silver and sometimes aluminium, copper or zinc. The nanoparticles can be formed 

and often stabilized by having charged particles attracted to the surface of the 

nanoparticles. 

Fig. 2.11 shows the dynamic behaviour of Ag nanoparticles on surfaces. Most 

notably, under ambient conditions at relative humidity greater than 50%, new Ag 

nanoparticles are formed in the vicinity of the parent particles [17].   

 

 

Fig. 2.11 Silver nanoparticles formation on a silica(𝑆𝑖𝑂2) substrate (source 17). 

 

Nanoparticles formation occurs through a three stage process: (1) oxidation and 

dissolution of silver from the surface of the particle, (2) diffusion of silver ion across 

the surface in an absorbed water layer, and (3) formation of new, smaller particles by 

chemical and/or photoreduction. 

Silver nanoparticles are great significant as different properties such as magnetic, 

optical and electrical are dependent on the size. Silver nanoparticles have contributed 

to many scientific areas of research, such as electronics, optics, catalysts, water 

treatment, textile engineering, bioengineering, biotechnology, medical devices etc. 

[18, 19]. 
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2.4 Simulation of light propagation through SWG structure:- 

Opti-FDTD software is user-friendly, powerful and highly integrated allowing 

computer aided design and simulation of advanced passive photonic components. 

The software package is based on the finite difference time domain method. The 

FDTD method is an established powerful engineering tool for integrated and 

diffractive optics device simulations due to its unique combination of features, such 

as the ability to simulate light propagation, scattering and diffraction, reflection and 

polarization effects. This method is applicable for the effective and powerful 

simulation and analysis of sub-micron devices with very fine structural details.  

 

The first step in the simulation process is the Opti-FDTD layout design. Opti-FDTD 

comes as 4 main applications: i) Layout designer: Here we need to define the 

structure and simulation conditions, ii) Profile designer: The materials and profiles 

used in the simulation is defined here, iii) Simulator: The designer file is loaded in 

this program and performs the simulation, and iv) Analyzer:  this program performs 

some post processing and is used to view the results. After completion of the 

simulation, the simulator will ask if we would like to open the analyzer.  
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Fig. 2.12 is a flow chart that illustrates the main steps for building a layout. 

Fig. 2.12 Flowchart for building a layout in Opti-FDTD software (source 20). 

 

The simulation domain can be 2D, that is a finite XZ-area, or 3D, that is XYZ 

volume. For 3D simulation the domain is divided into 2 parts called substrates and 

cladding. The design concept is illustrated in Fig. 2.13. There is a channel waveguide 

consisting of two rectangular layers, it is suspended in the cladding volume and 

extends along the Z directions. A fibre waveguide consisting of two circular fibre 

layers is imbedded in the substrate and also extends along Z-direction. The cross 

section of the rectangular waveguide and the fibre is called a profile.  
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Fig. 2.13 Project layout illustrating the design concept of Opti-FDTD software 

(Source 20). 

 

For simulation of light reflection, the source of light is designed above the substrate. 

When the design is completed, simulation can start. In all simulation activities 

undertaken, 2D simulation was adequate for accurately predicting the reflectance of 

investigated SWG structures. When the Simulator starts, the emitting field can be 

observed as shown Fig. 2.14. 

 

Fig. 2.14 Schematic diagram of a simulation process (Source 20). 
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When the simulation ends, a message appears and asks to open Opti-FDTD 

Analyzer. Through the analyzer, we can observe the result. Here we observe a line 

graph of reflection against wavelengths of light.  
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Chapter 3 

Design and fabrication of metal nanoparticle arrays 

Metal nanoparticles have been of interest for more than a century because of their 

chemical and physical property. These properties are being utilized in various 

research fields. In our experiment, Ag nanoparticles are fabricated for use as a mask 

in the SWG fabrication process. By controlling the size, shape and spacing of the 

nanoparticles, we are able to synthesis SWG structures with suitable parameters of 

low reflection. Wet colloid chemistry, metal thermal deposition or lithographic 

techniques are some of the popular methods for the fabrication of nanoparticles. 

Optical nanolithographic techniques are widely used and known by different names 

depending on the exposure source. The key elements of a standard photolithographic 

system are a set of masks, an energy source and a medium. Optical lithographic 

systems require the same key elements [4]. 

Electron beam lithography is adequate for very small diameter nanoparticles [3] but 

it is relatively expensive. Our target was to fabricate nanoparticles with around 

200nm diameter giving low reflection. X-ray lithography is another good method but 

it is also expensive [21]. Nanosphere lithography is good as it can fabricate 

nanoparticles having controlled size, shape and spacing and allow for large area 

fabrication, and is relatively simple and inexpensive but suitable for making particle 

sizes upto 100nm[22]. Metal deposition by thermal evaporation is one of the oldest, 

cheapest and simplest methods and can be used in large area production.  

In this Chapter we describe the RF magnetron sputtering processing, which is based 

on physical vapour deposition, and especially used for the deposition of Ag thin film, 
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and the subsequent high-temperature annealing process necessary to develop Ag 

nanoparticles with a desired average diameter.  

3.1 Sputtering Deposition Processes:- 

RF magnetron sputtering is a widely used method, based on physical vapour 

deposition for the fabrication of high quality films at low operating pressure. The 

substrate and target material are placed inside the system as shown in Figure 3.1, as 

attached to the anode and cathode of the sputtering system, respectively. A weakly 

charged gas of particles (called a plasma) is created by ionizing a sputtering gas 

(generally a chemically inert, heavy gas like Argon).Since ions are charged particles, 

electric and magnetic fields can control the velocity and energy of the ions. When 

ions collide with surface atoms on the target, the energy transfer knocks some of 

these atoms off the target‟s surface.  

The target atoms/molecules traverse the vacuum chamber and condense on the 

substrates resulting in the desired thin film being deposited onto the substrate.  

 

(a) 
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(b) 

Fig. 3.1 (a) Photograph of the RF magnetron sputtering system used for the 

deposition of metal thin films. (b) Schematic diagram of the sputtering process. 

 

The RF magnetron system shown in the Fig. 3.1 was used to prepare Ag thin films 

on Si and GaAs substrates. 10nm, 8nm and 5nm Ag thin films on Si and GaAs were 

deposited. The thickness of each film was monitored during the sputtering process 

with in-situ reflectometry system. During the thin film deposition an s-polarized 

light was impinged on the middle of the substrate and the thickness of the growing 

film was measured by capturing the reflected power with the detector using “Real-

Time Thickness Control for Multilayers” software made at ECU [23]. 

3.2 Annealing and nanoparticle formation from thin metallic layers:- 

A heat treatment process wherein a material is modified, causing changes in its 

properties such as strength and hardness is called annealing. In this process 

conditions are produced by heating the substrate to above the re-crystallization 

temperature and then cooling it. Annealing is used to soften material, actuate 
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ductility, relieve internal stresses, modify the structure by making it homogeneous 

and improve cold working properties. In the case of Ag thin film annealing, this 

process is performed by substantially heating the thin film, generally until glowing, 

and then allowing it to cool slowly in air or quickly by quenching in water. Through 

heating, the metal is softened and prepared for further processing such as shaping or 

stamping [24,25]. 

Heat supplies energy to a solid material, thus increasing its diffusion rate and 

progressing it towards its equilibrium state. The movement of atoms has the effect of 

redistributing and destroying the dislocations in metals. This alternation in 

dislocations increases their ductility. The amount of Gibbs free energy that is needed 

for the initial process is also reduced by the annealing process. This reduction is 

termed as “stress relief” and it is a spontaneous process but at room temperature it is 

a very slow process [24,25]. 

A conventional temperature ramp-controlled box furnace oven was used in our 

experiment to fabricate nanoparticles. Fig. 3.2 shows that annealing that was carried 

out through three steps: 

i) Heating the sample to the recommended temperature where temperature 

ramp-up process is used; 

ii) Keeping the temperature constant for a definite time period which is 

called isothermal crystallization; and 

iii) Cooling the substrate at the same temperature ramp rate. 
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Fig. 3.2 Schematic diagram of the annealing process used to fabricate Ag 

nanoparticles on Si and GaAs substrates with the conventional box-furnace-type 

oven annealing system. 

 

In our experiment different thicknesses Ag on Si and GaAs samples were annealed at 

temperature range 523K to 723K, at temperature ramp 5°C/min and isothermal phase 

fixed at 30 minutes. We observed that the annealing temperature and metal film 

thickness can be used to control the average particle size and distance between the 

nearest metal nanoparticles. 

3.3 Formation of subwavelength grating structures:- 

There are several conventional methods for the fabrication of conical SWG 

structures, such as photolithography, colloidal formation, nanoimprint and 

nanoparticles. Unfortunately, perfect conical shapes cannot be obtained by any of 

these methods. The formation of uniformly distributed nanoparticles and the use of 

dry etching in conjunction with additional isotropic etching processes can produce 

SWG with almost conical shapes. Fig. 3.3 illustrates the fabrication steps for creating 

the SWG structure, which were reported by Song et al. [4]. 
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Fig 3.3 Steps for fabricating triangular grating structure [source 13]. 

At first the nano-particles can be formed using the annealing process, then CF4 or O2 gas is 

flown through them using dry plasma etching process. To shape the formed nanorods in a 

perfect conical shape an additional isotropic etching process can be used as reported in [4, 

13]. Note that throughout the thesis all Ag nano-particles needed to realize SWG 

structures were designed, fabricated and characterised at the Electron Science 

research Institute, ECU.  
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Chapter 4 

Nanoparticle array characterization techniques 

Several techniques have been used for detecting, measuring and characterising 

nanopartricles[26-30].These characterisation techniques include:  

 Transmission Electron Microscopy (TEM): This method is particularly 

useful for measuring the nanoparticle size distribution. In this method an 

electron beam is used to interact with a sample to form an image on a 

photographic plate or special camera. The sample needs to be stable under 

the electron beam and also be able to withstand the high vacuum chamber in 

which the sample is put. The limitations of this method are the long time 

consumption and high cost.  

 Atomic Force microscopy (AFM): This method is particularly useful for 

measuring the nanoparticle size and spacing distribution. It is a form of 

Scanning Probe Microscopy, where a mechanical probe is used to “feel” the 

surface of a sample. A cantilever with a nanoscale probe is moved over the 

surface of the sample and from the deflection of the cantilever, the forces 

between the probe tip and the sample are measured. The deflection moves a 

laser spot that reflects into an arrangement of photodiodes. This method is 

suitable for air or liquid samples and is able to measure particle sizes ranging 

from 1nm to 1µm. It requires less computation time and is less expensive in 

comparison with TEM.  

 Photon Correlation Spectroscopy (PCS): This method is based on dynamic 

Light Scattering. Average particle size of 1nm to 10µm and size distribution 

can be measured by this method. However, for this method, the sample must 
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be a liquid, solution or suspension and must be very dilute otherwise the 

scattering light can be unclear. 

 Nanoparticle Surface Area Monitoring (NSAM): This method is mainly used 

to measure the surface area of nanoparticles that are deposited on a substrate 

or in a small volume. It can measure the total surface area for particle 

diameters from 10 nm to 1000 nm. However, this method is typically used in 

medical applications, where some effects are a function of particle surface 

area. 

 Condensation Particle Counter (CPC): The number and concentration of 

particles are measured by this method.  An optical detector is used to enlarge 

the small particles to a size that can be easily detected. This technique is 

suitable for aerosol samples and can be used at temperatures as high as 

200°C. 

 Differential Mobility Analyzer (DMA): The particle size distribution can be 

calculated by this method, which is based on classifying charged particles 

according to their mobility in an electric field. A sample is charged and sent 

into an air flow chamber where an electric field can be applied.  Electric 

mobility can control the rate at which the particles migrate to the end of the 

chamber. Particles with the same electrical mobility will be the same size; 

particles can therefore be sorted by size thus the distribution by size is 

measured. 

 X-ray Diffraction (XRD): This method is suitable for larger crystalline 

samples and enables the calculation of the average particle size for bulk 

samples. Beams of X-rays fall into a sample and the way the beams scatter is 



32 
 

analysed. This method is time consuming and requires a large sample volume 

for accurate characterisation. 

 Aerosol Time of Flight Mass Spectroscopy: Particle size and composition of 

aerosol samples are measured by this method. It is less effective for smaller 

particle sizes. An aerosol sample is illuminated by a collimated beam of light. 

The velocities of the particles in the light beam indicates the particle size. 

 Aerosol Particle Mass Analyzer (APM): This is the only method that gives 

mass information. It is not dependent on particle size, shape, or orientation of 

the properties of the gas. 

 Scanning Mobility particle Sizer (SMPS): It can measure particlesizes 

ranging from 2.5 nm to 1000 nm. It is based on the use of a continuous, fast-

scanning technique to measure high-resolution particle size distribution. 

 Nanoparticle Tracking Analysis (NTA): This technique can be used to find 

out the particle size and particle size distribution. A suspension sample is 

placed on an optically opaque background illuminated by a laser beam. Then 

the nanoparticles are directly visualised through an optical microscope. A 

digital camera is typically used to record the observation. A frequency size 

distribution graph can be obtained by using software.  This technique is 

efficient for 10nm to 1000nm particle sizes. 

 Scanning Electron Microscopy (SEM): this technique is used for particle size 

and characterization. Typically, a conductive or sputter coated sample is used 

and the preparation of the sample is relatively easy, although SEM is a time 

consuming and expensive method. SEM is capable of measuring particles of 

diameter down to 1nm. A SEM scans a sample with a focused beam of 

electrons, which interplay with the atoms of the sample, producing secondary 
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electrons whose number is a function of the angle between the incident 

electron beam and the surface. Therefore, scanning of the sample in 

conjunction with the detection of the secondary electrons produces an image 

of the sample‟s surface. 

In the characterisation of the developed Ag nanoparticles, we used an in-house SEM 

which enabled measuring the particle diameter and spacing. Fig.4.1 shows an 

example of a SEM image of Ag nanoparticles obtained by depositing an 8nm Ag 

thin film on a GaAs sample and annealing it at 350°C: 

 

Fig. 4.1 SEM image of Ag nanoparticles obtained by depositing an 8nm Ag thin film 

on a GaAs sample and annealing it at 623K. 

 

The Ag particle size distribution can be calculated directly from the obtained SEM 

image, however, this method is time consuming. Instead, ImageJ software, which is 

a public domain Java processing and analysis program, was used to characterise the 

developed Ag nanoparticles. This software is typically used to calculate area, pixel 

value statistics, distance and angles. It can create density histograms and profile plots 
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and supports standard image processing functions such as contrast manipulation, 

smoothing, edge detection and median filtering [31]. With the ImageJ software, 

horizontal straight lines are drawn over the SEM image and the nanoparticle 

diameter as well as the spacing distributions are automatically generated. 10 lines for 

each image were adequate for the calculation of the average Ag nanoparticle size and 

spacing. Fig. 4.2 shows a typical ImageJ plot profile of an annealed Ag sample. 

 

 

Fig. 4.2 Plot profile of a SEM image. 

Fig. 4.2 A two-dimensional graph of the Ag nanoparticle distribution along a line 

using ImageJ software. In the inset, the x-axis represents the distance along the line 

and the y-axis is the pixel intensity (Source 31). 
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Chapter 5 

Experimental setups and Results 

5.1 Introduction:- 

In this chapter, we report on the design and fabrication of silver nanoparticles using 

thin film deposition in conjunction with thermal annealing, and predict the 

performance of conical shaped SWG structures realized through the etching of Si 

and GaAs substrates whereon the developed silver nanoparticles are deposited. 

Several silver (Ag) thin films of thicknesses 10nm, 8nm and 5nm are deposited on 

GaAs and Si substrates and annealed at different temperatures ranging from 523K to 

723K leading to the development of randomly distributed silver nanoparticles on the 

surface of each sample. Experimental results show that we can achieve both 

nanoparticle diameter and spacing close to the desired parameters needed for the 

fabrication of SWG structures capable of minimizing the reflection loss over the 

solar spectrum. In addition, the Finite-Difference Time Domain (FDTD) method is 

used to simulate and optimize the grating height and period size for minimizing the 

reflection loss of the SWG structure.  

5.2 Fabrication of Silver (Ag) Nanoparticle arrays on Gallium Arsenide (GaAs) 

Substrates:- 

To fabricate silver naoparticles, Ag thin films of different thicknesses 10nm, 8nm 

and 5nm are deposited on GaAs substrates using RF magentron sputtering system 

and then the deposited samples are annealed in an oven at 523K, 573K, 623K, 673K 

and 723K for 30 minutes. SEM images of the annealed samples are obtained and 

characterized by ImageJ software. The annealed samples with their calculated 
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parameters are then used to design SWG structureswhich can be developed through 

etching processes. The reflection loss of the SWG structures are simulated by FDTD 

simulation method and compared with flat substrates. 

5.2.1 Ag nanoparticle development:- 

Two steps were used for the formation of particle arrays, namely, (i) thin film 

deposition on GaAs using RF magnetron sputtering system; followed by (ii) 

annealing of the thin film on GaAs. 

(i) Thin film deposition on GaAs by sputtering method: Deposition of Ag 

metal films on GaAs substrates were performed using ESRI‟s RF 

magnetron sputtering system described in Chapter 3. The RF magnetron 

sputtering system is a widely used method, based on physical vapour 

deposition process that can fabricate high-quality films at low operating 

pressure. The GaAs substrate, where the target material deposited, was 

placed inside the vacuum chamber wherein inert Argon (Ar) gas was used 

as the sputtering gas as shown in Figure 3.1. The argon gas was chosen as 

the sputtering gas because it does not react with the target material and 

produces higher sputtering and deposition rates due to its high molecular 

mass. The target material and the substrate were operating as anode and 

cathode respectively. An electron beam generated by the electric field 

accelerated the electrons between the substrate and the target, thus ionise 

the Ar atoms to 𝐴𝑟+ ions that sputter target atoms. A permanent magnet 

located behind the target surface is typically used in the sputtering system 

in order to maintain plasma confinement and trap electrons thus greatly 

increases the probability of ionization of the Ar gas within the 

confinement plasma. Target atoms traverse the vacuum chamber and 
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condense on the substrates resulting in the desired thin film on the 

substrate.  

Several Ag thin films of thicknesses 10nm, 8nm and 5nm were deposited 

on GaAs substrates using the RF sputtering system. The film thickness 

was monitored in real time during the sputtering process using “Real-

Time Thickness Control for Multilayers” software made at ECU [23]. 

The thickness of the growing film was measured by capturing the 

reflected power using a photodetector in conjunction with an algorithm 

that can calculate the thin film thickness by comparing the measured the 

fringe pattern with the modelled one. The operating conditions of the RF 

magnetron sputtering system at which Ag films on GaAs substrates were 

deposited are listed in Table 5.1.  

Table 5.1  

Operating conditions of RF Magnetron Sputtering System for Silver (Ag) 

thin film deposition on GaAs substrates. 

Target Ag 

Substrate GaAs 

Sputtering Gas & Pressure Argon (Ar), 1-2mTorr 

RF Power Density 0.98-1.41 

Base Pressure 2-3𝐸−06Torr (High Vacuum) 

Substrate surface temperature 

during deposition process 

Room temperature (below 30°C) 

Substrate Stage Rotation 32-36rpm 

Substrate Target distance 18-20cm 

 

ii) Annealing of thin films on GaAs: The Ag films were then annealed by heating 

it first then cooling it. As described in Chapter 3, heat provides energy for the 

materials to break the bonds of atoms and increases the rate of diffusion of 

the material‟s atoms during annealing. The diffusion of the material 

progresses towards its equilibrium state thus redistributing and destroying the 
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dislocations of the Ag atom sand increasing their ductility. Also, the 

annealing process reduces the Gibbs-free energy needed for initiating the Ag 

nanoparticle formation. This reduction is called “stress relief”, which is a 

spontaneous process at high temperature, but very slow at room temperature 

[24, 25]. 

                 A conventional temperature /ramp-controlled box furnace oven was used in 

our experiment to fabricate Ag nanoparticles through three steps annealing 

process which was described in section 3.2. 

 

The annealing process was performed at different temperatures 523K, 573K, 623K, 

673K and 723K for a constant time of 30 minutes and the size and distance between 

the nearest nanoparticles were observed. The aim of this project was to discover (i) 

the metal film thickness and annealing temperature at which nanoparticles with 

diameter range around 200nm and spacing between the nearest metal nanoprticles as 

low as possible can be formed, and (ii) realisation of SWG structures with a grating 

width and grating distance in the same range of nanoparticle diameter and spacing 

between nanoparticles that satisfies the condition of less reflection loss. 

5.2.2 Characterization of particles and their arrays:- 

The images of the annealed samples were taken using Scanning Electron Microscopy 

(SEM). Particle size and characterization can be observed by this technique. This is a 

time consuming and expensive method, however sample preparation is easy and the 

SEM is capable of measuring up to 1nm size particle. The sample is placed under the 

vacuum and SEM, and should be electrically conductive. In this technique a high 

energy electron beam is used and the beam is scattered over the surface and 

subsequently the back scattering of the electrons is observed.  
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Several samples were placed in the vacuum chamber at the same time and sample 

images were observed. Fig. 5.1, 5.2 and 5.3 show the SEM images recorded in this 

experiment:  

 

 

Fig. 5.1 SEM image of Ag nanoparticles obtained by depositing an 5nm Ag thin film 

on a GaAs sample and annealing at (a) 523K, (b) 573K, (c) 623K, (d) 673K and 

(e)723K. 
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Fig. 5.2 SEM image of Ag nanoparticles obtained by depositing an 8nm Ag thin film 

on a GaAs sample and annealing at (a) 523K, (b) 573K, (c) 623K, (d) 673K and (e) 

723K. 
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Fig. 5.3 SEM image of Ag nanoparticles obtained by depositing an 10nm Ag thin 

film on a GaAs sample and annealing at (a) 523K, (b) 573K, (c) 623K and(d) 673K. 

 

We used ImageJ software for calculating the nanoparticle diameter and spacing 

between nanoparticles. It is a public domain Java processing and analysis program. 

This software is usually used to calculate area, pixel value statistics, distance and 

angles. It can create density histograms and profile plots and supports standard 

image processing functions such as contrast manipulation, smoothing, edge detection 

and median filtering [31]. In this method we draw a horizontal straight line through 

the SEM image and measure the nanoparticle diameter and spacing between 

nanoparticle from the plot profile. 10 lines for each image are drawn and then the 

average is calculated. Fig. 5.4 shows a plot profile of an annealed sample. 
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Fig.5.4 Plot profile of a SEM image. 

Fig. 5.4 display shows a two-dimensional graph of the intensities of pixels along a 

line within the image. The X-axis shows distance along the line and the Y-axis is the 

pixel intensity. For rectangular selections (or line selections wider than one pixel), 

display a „column average plot‟, where the X-axis shows the horizontal distance 

through the selection and the Y-axis the vertically averaged pixel intensity [31].  

5.2.3 Experimental results:- 

Nanoparticle diameter and spacing between nanoparticles are calculated by using the 

above described SEM images and ImageJ software and are listed in Table: 5.2. 
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Table: 5.2 

Different parameters of Ag nanoparticles on Gallium Arsenide (GaAs) substrates 

Thickness of 

Ag film on 

GaAs 

substrate(nm) 

Annealing 

Temp.(K) 

 

Diameter of 

Nanoparticles 

in nm 

(Weighted 

average) 

No. of 

Nanonoparticles 

Space between  

Nanoparticles 

(nm) 

10 523 133 115 302.5  

573 177 78 492.4 

623 180.9 42 953.60  

673 182 44 900  

8 523 153  39 867 

623 132.9  56 564  

673 135.7 82 462.9  

5 623 158 47 736.4  

673 152.3  120 740.8  

723 126.2  77 567.6  

 

From Table 5.2 it is found that the weighted average diameters obtained through 

annealing of a 10nm Ag film on GaAs substrate are 133nm, 177nm, 180.9nm, 

182nm and average spacing between nanoparticles are 302.5nm, 492.4nm, 953.6nm,  

900nm at annealing temperature 523K, 573K, 623K and 673K respectively, for 5nm 

Ag on GaAs substrate the average diameters are 158nm, 152.3nm, 126.2nm and 

average spacing between nanoparticles 736.4nm, 740.8nm, 567.6nm at annealing 

temperature 623K, 673K and 723K respectively and for 8nm Ag on GaAs substrate 

the average diameters are 153nm, 132.9nm, 135.7nm and average spacing 867nm, 

564nm, 462.9nm at annealing temperature 523K, 623K and 673K respectively. 

5.2.4. SWG simulation:- 

In most practical optical structures, numerical approaches are the only option to 

evaluating their responses. Fortunately, current computing platforms are fast enough 
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for modelling complex optical structures within reasonable time frames. Finite-

difference time-domain (FDTD) numerical modelling techniques have recently 

become commercially available, demonstrating excellent accuracy in predicting the 

response of complex nano-structures.  

Opti-FDTD software, which was described in Chapter 2, was adopted to solve 

numerically Maxwell's equations and predict the performance of the investigated 

SWG structures.  

Generally, finite-difference time-domain (FDTD) is a common approach to 

numerically solving partial differential equations [20]. Opti-FDTD is based on the 

use of central difference approximation in conjunction with the discretization of 

Maxwell‟s equations in both the time and space domains. It solves these equations 

numerically and calculates the electric and magnetic field distributions at each time 

step using an explicit leapfrog scheme. The FDTD solution is second-order accurate 

and stable for small time step.  

To investigate the effect of the SWG period on light reflection, an SWG structure of 

constant height equals to 300nm was simulated with the SWG period varied from 

50nm to 400nm. The reflection spectrum of the SWG structure was simulated using 

the FDTD method. Fig. 5.5 shows the simulation steps. 
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Fig. 5.5 Typical schematic diagram of a conical shaped subwavelength grating 

(SWG) structure and the simulation outputs obtined through the simulation software 

for the prediction of the electromagnetic wave propagation across the simulated 

SWG structure. 

Fig. 5.6 shows the effect of grating periods on reflection. For periods of 50nm and 

100nm, the corresponding SWG structures result in a reflectance of more than 5%. 

For a period of 150nm the reflectance is less than 2% up to the 1200nm wavelength 

and then it increases to 6% for wavelengths up to 1500nm. For a 200nm period, the 

reflectance is less than 2% for wavelengths below 1300nm wavelength and between 

1300nm and 1500nm the reflectance is up to 4%, for a 250nm period it is below 3% 

over a wide wavelength range. For a 300nm period the reflectance increases to 5% 

and after 300nm period the reflection for SWG structures with higher periods result 

in higher reflection. Therefore, the optimum period of the SWG structure is 200 nm. 
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The reflected light from the SWG structure surface having around 200nm width is 

reflected at the same angle at which the incoming light strikes the surface. So, most 

of the light can strike the surface again, rather than being lost and thus reducing the 

reflection. 

 

 

Fig. 5.6 Simulated reflection spectra for SWG structures having a grating height of 

300nm and different grating periods. 

 

We then fixed the width and varied the thickness of the gratings and calculated 

reflection by FDTD method. Fig. 5.7 shows the effect of grating height on reflection. 

It was found that the taller structure height gives less reflection but is difficult to 

fabricate and also expensive. At simulations above 300nm grating height we 

obtained less than 2% light reflection over a wide range of wavelengths. 
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Fig. 5.7 Simulated reflection spectra for SWG structures having a grating period 

of200nm and different grating heights ofSWG1=400nm; SWG2=300nm; 

SWG3=200nm; SWG4=150nm and SWG5=100nm. 

  

Longer structure heights can be obtained by controlling etching time. We carried out 

all our simulations at 300nm grating height and at various grating periods on uniform 

Ag nanoparticles. Nanoparticles with diameter around 200nm and spacing between 

nanoparticles as low as possible were our target, as these parameters are suitable for 

fabrication of SWG structures having same spacing and period of around 200nm, 

enabling minimum reflection to be attained. 

With the obtained experimental data, i.e diameter and spacing between 

nanoparticles, we simulated(using the Opti-FDTD softeware package developed by 

Optiwave Inc. [20]) the reflection loss of a predicted SWG structure having a grating 
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groove width equals to the average nanoparticle diameter and spacing equals to the 

average spacing between nanoparticles. 

Fig. 5.8 shows measured reflectance spectra of fabricated GaN SWGs on 

GaN/Sapphire corresponding to the etching times of 1, 3, 5, and 9 min. The insets 

show the SEM images of the fabricated GaN SWSs with different etching times [32]. 

It is obvious that for a 9-minute etching time the reflectance of the surface is below 

5%, in comparison with more than 20% (at around 360nm) for an unpatterned 

surface. 

 

 
Fig. 5.8 Measured reflectance of the fabricated GaN SWGs on GaN/Sapphire 

corresponding to the etching times of 1, 3, 5 and 9 min. The insets show the SEM 

images of the fabricated GaN SWGs with different etching times (Source 32). 

 

The simulated SWG structures that correspond to etching masks experimentally 

obtained through the annealing of Ag thin films of different thicknesses at different 

temperatures are plotted in Figs 5.9-11. 
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Fig. 5.9 Simulated reflection spectra for GaAs SWG structures obtained with an 

etching mask realised through the annealing of a 5nm Ag film at different 

temperatures of SWG1= 623K ; SWG2= 673K and SWG3= 723K. Also shown is the 

reflection spectrum for a polished unpatterned GaAs substrate. 

Fig. 5.10 Simulated reflection spectra for GaAs SWG structures obtained with an 

etching mask realised through the annealing of a 8nm Ag film at different 

temperatures of SWG1= 523K ; SWG2= 623K andSWG3= 673K. Also shown is the 

reflection spectrum for a polished unpatterned GaAs substrate. 
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Fig.5.11 Simulated reflection spectra for GaAs SWG structures obtained with an 

etching mask realised through the annealing of a 10nm Ag film at different 

temperatures of SWG1= 523K ; SWG2= 573K; SWG3= 623K andSWG4= 673K. 

Also shown is the reflection spectrum for a polished unpatterned GaAs substrate. 

The optimum Ag nanoparticle diameter that minimises the optical reflectance was 

attained in almost every case through the appropriate annealing temperature. 

However, the spacing between nanoparticles was higher than the desired value in 

every situation. Generally, the surface reflectance increases with increasing the 

average spacing between the nanoparticles, however, a higher spacing affects the 

grating height(since the etching gas must be applied for a long time to achieve a 

conical shape). As shown in Fig. 5.9, the average reflectance of a SWG structure 

developed through an etching mask, obtained by the annealing of a 5nm Ag on a 

GaAs substrate at 723K, is below 15% over a broadband wavelength span of 400-

1300nm, whereas for a polished surface the average reflectance exceeds 27%.  Also, 

the average reflectance of a SWG structure developed through an etching mask, 

obtained by the annealing of a 8nm Ag on a GaAs substrate at 673K, is below 15% 

over the 400-1300nm span (Fig. 5.10). On the other hand, the average reflectance of 
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a SWG structure developed through an etching mask, obtained by annealing of a 

10nm Ag on a GaAs substrate at 523K, is below 10% over a wide range of 

wavelength as shown in Fig. 5.10. The main conclusion obtained from Figs 5.9-11 is 

that the reflectance of an SWG structure strongly depends on the grating width, 

grating spacing and grating height. The grating height is typically controlled by 

adjusting the etching time, while the grating width and spacing can be controlled by 

optimising the annealing temperature and Ag film thickness. Therefore, by 

optimising these SWG parameters the reflectance can further be reduced. The other 

important factor affecting the SWG reflectance is the uniformity of nanoparticle 

diameter; typically, a nonuniform nanoparticle diameter distribution increases the 

SWG reflectance.  

Fig. 5.12 shows nanoparticle diameter and spacing between nanoparticles for GaAs 

SWG structures obtained with an etching mask realised through the annealing of a 

10nm Ag film at different annealing temperatures. It is found that nanoparticle 

diameters are almost same after annealing temperature 573K but spacing between 

nanoparticles increased upto annealing temperature 623K then decreased. Desired 

diameter is achieved in almost all cases whereas spacings are obtained larger. 

Minimum reflectance has been found at annealing temperature 523K as the spacing 

is less and diameter is close to the desired diameter here. The other situation shows 

higher reflectance in spite of desired diameter as the spacings are larger. 
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Fig. 5.12 Nanoparticle diameter and spacing for GaAs SWG structures obtained with 

an etching mask realised through the annealing of a 10nm Ag film at different 

annealing temperatures.  

Fig. 5.13 shows nanoparticle diameter and spacing between nanoparticles for GaAs 

SWG structures obtained with an etching mask realised through the annealing of a 

8nm Ag film at different temperatures. It is found that nanoparticle diameters are 

close to desired diameter and the variation with annealing temperature is very less 

whereas the spacings are changes widely and decreased with annealing temperature . 

Expected reflectance was not obtained here as the spacings are larger in all cases. 
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Fig. 5.13 Nanoparticle diameter and spacing for GaAs SWG structures obtained with 

an etching mask realised through the annealing of a 8nm Ag film at different 

annealing temperatures.  

 

Fig. 5.14 shows nanoparticle diameter and spacing between nanoparticles for GaAs 

SWG structures obtained with an etching mask realised through the annealing of a 

5nm Ag film at different temperatures. Nanoparticle diameters are found close to 

desired range and the variation of diameter with annealing temperature is ignorable 

but the spacings are also larger here and decreased with annealing temperature. 

Because of larger spacing, expected reflectance was not obtained here. 
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Fig. 5.14 Nanoparticle diameter and spacing for GaAs SWG structures obtained with 

an etching mask realised through the annealing of a 5nm Ag film at different 

annealing temperatures.  

 

We have also observed the dependency of nanoparticle diameter and spacing on Ag 

film thickness. Fig. 5.15 shows nanoparticle diameter for GaAs SWG structures 

obtained with an etching mask realised through the annealing of different thicknesses 

samples. It is observed that diameter varies from 130nm to 185nm which is good for 

minimal reflectance. 
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Fig.5.15 Nanoparticle diameter for GaAs SWG structures obtained with an etching 

mask realised through the annealing of different thicknesses Ag film at different 

annealing temperatures.  

 

Figure 5.16 shows nanoparticle spacing for GaAs SWG structures obtained with an 

etching mask realised through the annealing of different thicknesses samples. Less 

spacing obtained through the annealing of a 8nm Ag on GaAs substrate at annealing 

temperature 623K and 673K. 
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Fig 5.16 Nanoparticle spacing for GaAs SWG structures obtained with an etching 

mask realised through the annealing of different thicknesses Ag film at different 

annealing temperatures.  

 

Our results show that nanoparticle diameter varies from 100-200nm, however the 

spacing between nanoparticles varies upto 950nm. Obtained diameter range is very 

good for less reflectance but spacings between nanoparticles are large that give 

higher reflectance. Reflectance can be reduced further by reducing spacing between 

nanoparticles.  

 

5.2.5 Conclusion:- 

Ag thin films with different thicknesses have been deposited on semiconductor 

substrates and annealed at different temperatures to fabricate Ag nanoparticles that 

can be used to develop cost-effective AR coatings for semiconductor devices. We 

have found that the desired diameter and spacing between nanoparticles can be 
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achieved by controlling the annealing temperature and Ag film thickness and that the 

coated substrates can ultimately be used to fabricate SWG structures with the desired 

grating width and spacing between gratings thereby ensuring minimum reflection. 

The desired nanoparticle diameter is obtained in almost all cases but the spacing 

varies widely. Therefore, by reducing the space between nanoparticles we can reduce 

the reflection even more.    
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5.3 Silver (Ag) nanoparticle arrays on Silicon (Si) substrates:- 

To fabricate silver naoparticles, Ag thin films of different thicknesses 10nm, 8nm 

and 5nm are deposited on Si substrates using RF magentron sputtering system and 

then the deposited samples are annealed in an oven at 523K, 573K, 623K, 673K and 

723K for 30 minutes. SEM images of the annealed samples areobtained and 

characterized by ImageJ software. The annealed samples with their calculated 

parametersarethen used to design SWG structureswhich can be developed through 

etching process. The reflection loss of the SWG structures are simulated by FDTD 

simulation method and compared with flat substrates. 

5.3.1 Formation of particle arrays:- 

There are two steps of the formation of particle arrays (i) Thin film deposition on 

Silicon(Si) substrates using the  sputtering method and (ii) Annealing of the thin film 

on Silicon(Si) substrates. 

(i) Thin film deposition on Silicon(Si) substrates by sputtering method: 

Deposition of Ag metal film upon silicon(Si) substrates were performed 

using the RF magnetron sputtering system described in chapter 3. The RF 

magnetron sputtering system is a widely used method, and is based on a 

physical vapour deposition process that can fabricate high quality films at 

low operating pressure. Substrates and target material are placed inside the 

system as shown in figure 3.1, both work as anode and cathode 

respectively. An electric field accelerated the electrons between the 

substrate and the target where Argon (Ar) atoms are ionised to 𝐴𝑟+ which 

sputter target atoms. Target atoms transversed the vacuum chamber and 

condensed on the substrates producing the desired thin film result. 10nm, 

8nm and 5nm Ag thin films on Si were fabricated by using the RF 
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sputtering system. Film thicknesses were monitored during the sputtering 

process with the in-situ laser reflectometry system. During the thin film 

deposition s-polarized light is used to impinge on the middle of substrate 

and the thickness of the growing film is measured by capturing the 

reflected power by the detector using “Real-Time Thickness Control for 

Multilayers” software made at ECU [23]. The conditions of the RF 

magnetron sputtering system at which Ag film is deposited on silicon(Si) 

substrates are listed in Table 5.3.  

 

  Table 5.3 

Operational conditions of RF Magnetron Sputtering system for Silver 

(Ag) deposition on Si substrate 

Target Ag 

Substrate Silicon(Si) 

Sputtering Gas & Pressure Argon (Ar), 1-2mTorr 

R.F Power Density 0.98-1.41 

Base Pressure 2-3𝐸−06Torr (High Vacuum) 

Substrate surface temperature 

during deposition process 

Room temperature (below 30°C) 

Substrate Stage Rotation 32-36rpm 

Substrate Target distance 18-20cm 

 

ii) Annealing of thin film on Silicon (Si) substrate: The Ag films were then 

annealed by heating it first then cooling it. As described in Chapter 3, heat 

provides energy for the materials to break the bonds of atoms and increases 

the rate of diffusion of the material‟s atoms during annealing. The diffusion 

of the material progresses towards its equilibrium state thus redistributing and 

destroying the dislocations of the Ag atom sand increasing their ductility. 

Also, the annealing process reduces the Gibbs-free energy needed for 

initiating the Ag nanoparticle formation. This reduction is called “stress 
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relief”, which is a spontaneous process at high temperature, but very slow at 

room temperature [24, 25]. 

A conventional temperature ramp-controlled box furnace oven was used in our 

experiment to fabricate Ag nanoparticles through three steps annealing process 

which was described in section 3.2 

 

The annealing process was performed at different temperatures 523K, 573K, 623K, 

673K and 723K for a constant time of 30 minutes and the size and distance between 

the nearest nanoparticles were observed. The aim of this project was to discover (i) 

the metal film thickness and annealing temperature at which nanoparticles with 

diameter range around200nm and spacing between the nearest metal nanoprticles as 

low as possible can be formed, and (ii) realisation of SWG structures with a grating 

width and grating distance in the same range of nanoparticle diameter and spacing 

between nanoparticles that satisfies the condition of less reflection loss. 

5.3.2 Characterization of particles and their arrays:- 

The images of the annealed samples were taken using Scanning Electron Microscopy 

(SEM) to observe particle size and characterisation. This is a time consuming and 

expensive method, but sample preparation is relatively easy and it is possible to 

measure up to 1nm particle. The sample must be placed under the vacuum and 

should be electrically conductive. For this technique, a high energy electron beam is 

used and the beam is scattered over the surface. Then the back scattering of the 

electrons is observed.  

Several samples were placed in the vacuum chamber at the same time and the sample 

images were observed. Fig. 5.17, 5.18 and 5.19 shows the SEM images recorded in 

this experiment:  
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Fig. 5.17 SEM image of Ag nanoparticles obtained by depositing an 5nm Ag thin 

film on a Si substrate and annealing at (a) 523K, (b) 573K, (c) 623K and (d) 673K. 
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Fig. 5.18 SEM image of Ag nanoparticles obtained by depositing an 8nm Ag thin 

film on a Si substrate and annealing at (a) 523K, (b) 573K, (c) 623K, (d) 673K and 

(e) 723K. 
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Fig. 5.19 SEM image of Ag nanoparticles obtained by depositing an 10nm Ag thin 

film on a Si substrate and annealing at (a) 523K, (b) 573K, (c) 623K and  (d) 673K. 

 

5.3.3 Experimental characterization results:- 

Nanoparticle diameter and spacing between nanoparticles are calculated by using 

ImageJ software described in section 5.2.2 and are listed in Table 5.4. 
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Table : 5.4 

 

Different parameters of Ag nanoparticles on Silicon (Si) substrates 

 

Thickness of 

Ag film on Si 

substrate (nm) 

Annealing 

Temp.(K) 

 

Weighted 

Average Diameter 

of nanoparticles 

(nm) 

No. of 

nanonoparticles 

Space 

between  

Nanoparticles 

(nm) 

10 523 118 166 217  

573 136  147 246  

623 160  91 492  

673 114 160 216 

8 523 85.4  206 406 

573 100.6  155 240  

623 146.9  112 328.8 

673 93.4 196 187  

723 145  69 488  

5 573 37.7 390 75  

623 37.2 394 77  

673 54.4  248 114  

723 54.14  290 101  

 

From Table  5.4 it is seen that for 10nm Ag on Si substrate, the weighted average 

diameters are 118nm, 136nm, 160nm, 114nm and average spacing between 

nanoparticles are 217nm, 246nm, 492nm, 216nm at annealing temperatures 523K, 

573K, 623K and 673K respectively, for 8nm Ag on Si substrate, the weighted 

average diameters are 85.4nm, 100.6nm, 146.9nm, 93.4nm, 145nm and the average 

spacing between nanoparticles are 406nm, 240nm, 328.8nm, 187nm, 488nm at 

annealing temperatures 523K, 573K, 623K, 673K and 723K, respectively, and for 

5nm Ag on Si substrate the weighted average diameters are 37.7nm, 37.2nm, 

54.4nm, 54.14nm and the average spacing between nanoparticles are 75nm, 77nm, 

114nm, 101nm at annealing temperatures 573K, 623K,673K and 723K, respectively. 
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5.3.4 SWG Simulation:- 

Ag nanoparticles on Si substrates were formed for the fabrication of SWG structures. 

A period around 200nm for Ag on GaAs substrate gives minimum reflectance that 

stated in section 5.2.4. We obtained the same result through the simulation of Si 

SWG structure using Opti-FDTD method which was carried at a constant grating 

height 300nm. Fig. 5.20 shows the simulated reflection spectrum of the SWG 

structure, confirming that for a period of around 200nm the reflectance is less than 

2% over a wide range of wavelengths. Note that Ag nanoparticles on Silicon(Si) 

substrates with a spacing as low as possible and an average nanoparticple diameter 

around 200nm were our target, as these parameters are suitable for fabrication of a 

SWG structures having same spacing and a grating width the same as the 

nanoparticle diameter, enabling minimum reflection loss to be attained.  

 

Fig. 5.20 Simulated reflection spectrum for a Si SWG structure having a period of 

200nm and grating height of 300 nm. 
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We then varied the thickness of the gratings but maintained a constant period, and 

the reflection spectrum was calculated using the same FDTD method. Fig. 5.21 

shows the effect of grating heights on reflection. We also found that the taller grating 

height results in less reflection. For grating heights above 300nm less than 5% 

reflection is attained over a wide range of wavelengths, and hence, we fixed the 

grating height at300nm for all subsequent simulations. 

 

 

Fig. 5.21 Simulated reflection spectra for SWG structures having a grating period of 

200nm and different grating heights of SWG1=100nm; SWG2=200nm; 

SWG3=300nm; SWG4=400nm and SWG5=500nm. 

 

With the obtained experimental data, i.e average diameter and spacing between 

nanoparticles, we simulated(using the Opti-FDTD softeware package developed by 

Optiwave Inc. [20]) the reflection of a predicted SWG structure having a grating 

groove width equals to the average nanoparticle diameter and spacing equals to the 
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average spacing between nanoparticles. The steps for simulatingthe propagation of 

the electromagnetic waves across the sample areshown in Fig.5.5.We carried out all 

our simulations based on uniform Ag nanoparticles, at 300 nm grating height and at 

various grtaing periods. 

The simulated SWG structures that correspond to etching masks experimentally 

obtained through the annealing of Ag thin films of different thicknesses at different 

temperatures are plotted in Figs 5.22-5.24. 

 

 

Fig. 5.22  Simulated reflection spectra for Si SWG structures obtained with an 

etching mask realised through the annealing of a 5nm Ag film at different 

temperatures of SWG1= 573K ; SWG2= 623K ; SWG3= 673K  and SWG4= 723K.  
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Fig. 5.23  Simulated reflection spectra for Si SWG structures obtained with an 

etching mask realised through the annealing of a 8nm Ag film at different 

temperatures of SWG1= 723K ; SWG2= 673K ; SWG3= 623K; SWG4= 573K and 

SWG5=523K, as well as reflection spectrum for a polished unpatterned Si substrate .  

 

Fig. 5.24 Simulated reflection spectra for Si SWG structures obtained with an 

etching mask realised through the annealing of a 10nm Ag film at different 

temperatures of SWG1= 523K ; SWG2= 573K ; SWG3= 623K and SWG4= 673K. 

Also shown is the reflection spectrum for a polished unpatterned Si substrate. 
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Fig. 5.24 indicates that the average reflectance of a SWG structure developed 

through an etching mask, obtained by annealing a 10nm Ag film on a Si substrate at 

523K is2-12%,at 573K the reflectance is 1-10% over a wide range of wavelength 

and at 673K the reflectance is 3-12%. Also, the reflectance of a SWG developed 

through an etching mask, obtained by annealing 8nm Ag film on a Si substrate at 

623K is 3-10% over a wide range of wavelength, at 573K the average reflectance is 

below12% and at 673K it is below12% as well (Fig. 5.23).On the other hand the 

reflectances of a SWG structure developed through an etching mask, obtained by 

annealing a 5nm Ag film on a Si substrate annealed at 573K, 623K, 673K and 723K 

are 4-7% (Fig. 5.22),whereas the reflectance of a polished surface exceeds 28%. 

The dependency of both the nanoparticle diameter and spacing on the annealing 

temperature and Ag film thickness was also investigated here. 

Fig. 5.25 shows the nanoparticle diameter and spacing between nanoparticles for a Si 

SWG structures obtained with an etching mask realised through the annealing of a 

10nm Ag film at different temperatures. It is obvious that the nanoparticle diameter 

that can be attained varies from 114nm to 160nm, and the spacing between 

nanoparticles increases, reaching a maximum level at the annealing temperature 

623K before decreasing. It is important to note that while the obtained average 

diameters are close to the desired average diameter the average spacing between the 

nanoparticles are larger than the desired one. The average reflectances obtained at 

the annealing temperatures 523K, 573K and 673K are lower than the average 

reflectance obtained at the annealing temperature 623K. This is because the spacing 
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is higher at the annealing temperature 623K [Fig.5.24].

 

Fig 5.25 Nanoparticle diameter and spacing for Si SWG structures obtained with an 

etching mask realised through the annealing of a 10nm Ag film at different annealing 

temperatures.  

 

Fig. 5.26 shows the nanoparticle diameter and spacing between nanoparticles for Si 

SWG structures obtained with an etching mask realised through the annealing of a 

8nm Ag film at different temperatures. It is found that nanoparticle diameters varied 

from 85nm to 147nm only, but the spacing between the nanoparticles increased upto 

around 488nm. Also noted in Fig. 5.25 that the spacings between nanoparticles are 

comparatively lower at the annealing temperatures 573K and 673K.The average 

reflectance obtained at the annealing temperatures 573K and 673K are also less 

compared to other annealing temperatures [Fig.5.23]. 
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Fig 5.26 Nanoparticle diameter and spacing for Si SWG structures obtained with an 

etching mask realised through the annealing of a 8nm Ag film at different annealing 

temperatures. 

 

Fig. 5.27 shows the nanoparticle diameter and spacing between nanoparticles for Si 

SWG structures obtained with an etching mask realised through the annealing of a 

5nm Ag film at different temperatures. It is found that average nanoparticle diameter 

is around 50nm and a spacing range below 120nmis obtained for all annealing 

temperatures.4-7% reflectance is achieved for all annealing temperatures (Fig. 5.22). 

This is mainly becausethe spacings between nanoparticles are very low. 



72 
 

 

Fig. 5.27  Nanoparticle diameter and spacing for Si SWG structures obtained with an 

etching mask realised through the annealing of a 5nm Ag film at different annealing 

temperatures. 

We also investigated the dependency of the nanoparticle diameter and spacing on the 

Ag film thickness. Fig. 5.28 shows the nanoparticle diameter for Si SWG structures 

obtained with an etching mask realised through the annealing of Ag films of 

different thicknesses. It is observed that typically the average diameter increases with 

increasing the film thickness.  
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Fig. 5.28 Diameter of Ag nanoparticles on Si SWG structures obtained with an 

etching mask realised through the annealing of different thicknesses Ag film on Si 

substrates at different annealing temperatures. 

Based on the experimental results shown in Fig. 5.28,we recommend the use of a 

higher Ag film thickness to attain the target diameter of around 200nm. Fig. 5.29 

shows the spacing between the nanoparticle versus the Ag thin film thickness for 

different annealing temperatures. It is obvious that the spacing also increases with 

increasing the Ag film thickness. Therefore, to reduce the spacing, it is 

recommended that the Ag film thickness should be reduced. It is obvious from Figs 

5.28 and 5.29 that in order to fabricate low reflection SWG structures it is important 

to control the spacing between the nanoparticles to the lowest possible and use an Ag 

film of thickness exceeding 13nm annealed at around 573K.  
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Fig. 5.29 Spacing between Ag nanoparticles on Si SWG structures obtained with an 

etching mask realised through the annealing of different thicknesses Ag film on Si 

substrates at different annealing temperatures  

5.3.5 Conclusion:-  

Ag thin films of various thicknesses have been deposited on semiconductor 

substrates and annealed at different temperatures to fabricate Ag nanoparticles that 

can be used to develop cost-effective AR coatings for semiconductor devices. We 

found that the desired diameter and spacing between nanoparticles can be achieved 

by controlling annealing temperature and Ag film thickness and that the coated 

substrates can ultimately be used to fabricate low-reflectance SWG structures having 

the desired grating width and spacing. To achieve SWG with reflectance as low as 

1%, it is recommended to use an Ag film thickness, of around 13nm annealed at a 

temperature of around 573K. SWG structures have application in high-efficiency 

solar cells. 
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Chapter 6 

Conclusion 

 

We have investigated the design and development of Ag nanoparticles that can be 

used as etch masks for the development of antireflection subwavelength grating 

(SWG) structures. The silver thin film thickness and the annealing temperature have 

been optimised in order to attain the appropriate Ag nanoparticle diameter and 

spacing distributions that minimise the reflectance of the SWG structures. Based on 

the use of different Ag film thicknesses deposited on Silicon (Si) and Gallium 

Arsenide (GaAs) semiconductor substrates and annealed at different temperatures, 

we have predicted, using a Finite-Difference Time Domain (FDTD) software 

package, the performance of different subwavelength grating structures that can be 

developed using dry and isotropic etching of semiconductor substrates.  

Both the optimum Ag nanoparticle diameter and spacing have been found to around 

200nm while the optimum height of the nanoparticles has been found to be around 

300nm. Such optimum parameters enable SWG structures of reflectance as low as 

5% over a broad solar spectrum range to be achieved. 

The simulation and experimental results presented in this thesis will benefit 

applications requiring cost-effective development of antireflective SWG structures. 
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