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Abstract 

Ross River virus is one of the most severe communicable diseases in 

Australia. During the 1995/96 outbreak of Ross River virus in south-western 

Australia, over 1,300 human cases were reported. Since the symptoms of the 

disease are sometimes too weak to be diagnosed, it is important to determine 

the number of humans who actually contracted the virus during outbreaks. 

To do this1 several mathematical models with different hypotheses are 

constructed and analysed mathematically. The threshold mathematical 

conditions of these models suggest that as well as the size of the vector 

mosquito population, the population size and length of viraemia periodfi of 

host populations and the infection rates between the hosts and vectors play i:he 

main roles in the transmission. 

Several parameters in the transmission are currently unknown, so only simple 

models of RRV transmission are computer-simulated. Some of the unknown 

parameters are extrapolated from published studies of other arboviruses. The 

sensitivities of the models to some of the unknown parameters are also 

examined. 

Simulation results indicate the sero-conversion rates and ratios of clinical to 

subclinical human infections during the outbreaks which occurred in the Peel 

and Leschenault districts in Southwestern Australia. 
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Chapter I. 

CHAPTER 1. 

INTRODUCTION 

Mathematical modelling is widely used in the study of complex systems in 

biology. The methods of population dynamics, and in particular the theory of 

systems of nonlinear differential equations, have been applied increasingly to 

problems in epidemiology. Numerous mathematical models have been 

constructed and simulated to determine the spread, cause and cost of 

outbreaks of communicable diseases such as AIDS, gonorrhea, malaria, 

rubella, etc. 

The aim of this thesis is to build deterministic models that reflect the 

ecological cycle and transmission of the Ross River virus and to mialyse them 

mathematically. Furthermore, this thesis presents the results of simulations 

based on outbreaks that occurred in several South Coastal districts in Western 

Australia. 

1.1. Background 

This section presents a brief introduction to the Ross River virus including 

its definition, history, medical symptoms, affected regions, the distribution of 

patients, ecological cycle, protection, and its economic aspects. 

1.1.1. Ross River virus 

Ross River virus (RRV) is an aetiological agent of a dh;ease in humans 

known as epidemic polyarthritis (EPA) (Doherty et al., 1963b). The disease is 
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the most common arboviral illness in humans in Australia with between 

several hundred and several thousand cases reported annually (CDI, 1991 ;. 

CDI, 1992). RRV is an alphavirus in the family Togaviridae (Doherty et al., 

1963b, Strauss, 1991 ) . 

The first description of RR V was an "unusual epidemic" that occurred in 

N arrandera, New South Wales duting 1928 (Nimmo, 1928 ). It is believed that 

this was not the first time RRV disease occurred in Australia. RRV was first 

isolated from mosquitoes trapped on the Ross River, near Townsville, North 

Queensland by Doherty and co-workers in 1963 (Doherty et al., 1963a). Since 

then, it has become clear that mosquitoes are the only vectors of the virus 

(Kay et al., 1987; Kay et al., 1989). Most outbreaks occurred after periods of 

heavy rains and there is a seasonaU trend in outbreaks. It was later found in the 

Northern Territory and Queensland that outbreaks among troops during World 

War II were reported by army medical personnel. The disease was given 

various names until in 1946 Dowling called it epidemic polyarthritis - a term 

that can be applied to diseases caused by a few of the alphaviruses. Later 

variations of the name arose from the site of the virus isolation of Ross River 

in northern Queensland. 

1.1.2. Affected regions 

Since Doherty isolated the virus, a number of outbreaks of RR V disease 

have occurred in the Murray Valley (Anderson & French 1957), Queensland 

(Doherty et al., 1971 ), the central and coastal regions of New South Wales 

(Ganl et al., 1973; Hawkes et al., 1985), South Australia (Mudge et al., 1980), 

2 
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Victoria (Campbell et al., I 989), the Northern Territory (Merianos et al., 

1992; Tai et al., 1993), south-western Australia (Lindsay, 1995), and the 

Pilbara and Kimberly regions in Western Australia (Lindsay, 1993b). 

Recently cases of Ross River virus disease have been reported throughout all 

mainland states of Australia and in several Pacific islands, such as the 

Solomon Islands and Papua New Guinea. During 1979 and 1980 massive 

outbreaks involving tens of thousands of people occurred in the Fiji Islands, 

American Samoa, the Cook Islands, and Furuna and Wallis Islands and New 

Caledonia (Lindsay et al., 1993a). 

1.1.3. Hosts and vectors of the Ross River virus 

The arthropod-borne animal viruses (arboviruses) b;J.ve the ability to multiply 

in arthropod, as well as vertebrate, tissues and possess characteristic 

biochemical properties. The virus cycle also involves native and introduced 

animals. Most studies show that a wide range of nonmigratory, terrestrial 

animals, particularly marsupials, are the most likely vertebrate reservoirs or 

amplifiers of RRV (Mackenzie, et al., 1994). Infected humam: may also be 

responsible for transporting the virus over long distances as birds are not 

thought to be susceptible to infection. This is thought to be the means of 

introduction and spread of RRV during the outbreak in the Pacific Islands in 

1979-80. 

Since Doherty's first isolation of the Ross River virus from Aedes vigilax, 

the virus has been isolated from field specimens of 2 I different mosquito 

species belonging to five genera. In Western Australia, the Ross River virus 

has been isolated from nine different mosquito species. Culex annulirostris is 

3 
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thought to be the most important vector species in most inland areas in eastern 

Australia. Aedes vigilax is a major vector in coastal areas of New South 

Wales, Queensland, and the Northern Territory. Aedes camptorhynchus is the 

dominant salt-marsh breeding species and has yielded several isolates of the 

virus in coastal regions of Victoria and Tasmania and parts of South Australia. 

Aedes vigilax is a dominant species in coastal areas of the West Kimberley. 

north-west of Western Australia. The main vector of the Ross River virus in 

the south-west of Western Australia is Aedes camptorhynchus, which is 

thought to be restricted to cooler coastal regions of Australia and Wes tern 

Australia (Lindsay, 1996). 

1.1.4. · Seasonal trend 

RRV disease occurs in most years in many coastal areas of Australia. Most 

outbreaks occur after periods of heavy rain and there is a seasonal tren~)n 

outbreaks (Fig: I . I). When mosquitoes reach plague proportions significant 

outbreaks may occur. 

,\ ;· 

\':. ,. 
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1 2 3 4 5 6 7 8 9 10 11 12 

Fig. 1.1 Average number of cases in WA each month, 1984-1993 

(inclusive). (Lindsay, 1995) 

1.1.5. Medical symptoms 

The disease is self-limited and characterized by arthritic pain - primarily in 

the wrist. knee, ankle, small joints of the extremities - rash, fever, and 

myalgia, which may la t from days to months. Affected adults are unable to 

work in this period. Onset of arthritis may be followed by a maculopapular 

ra h mainly affecting the trunk and limbs. Fever is sometimes absent. 

Cervical lymphadenopathy occurs frequently (Australia, Weekly 

Epidemiological Record, 1994). The incubation period is thought to range 

between 7 and 9 days. During the biggest outbreak of RRV infection in 

Western Australia between November 1988 and June 1989 only 27% of 

patients had recovered completely within 6 months of the onset of symptoms 

and up to 57% still experienced at least intermittent joint symptoms (Condon 

et al., 1994). 

5 
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1.1.6. Distribution of patients 

The distribution of patients shows a bell-shaped age distribution. The age 

group that was most frequently infected was the 30-50 year olds. More than 

half of the cases were aged between 25 and 50 years (Fig. 1.2). The younger 

and older age groups possibly experienced lower attack rates because of les 

exposure to mosquitoes. However, a more plausible explanation is that 

children often do not manifest the typical symptoms of EPA and the elderly 

may be immune through previous infection. In addition, there are 

proportionally more females than males in Australia (female/male ratio 

J.12/1) (Tai et al. , 1993). However, in Western Australia there are 

proportionally more males than females and this is reflected in Figure 1.2. 

300 DMales 
250 a Females 

200 DTotal 

150 

100 

so 

0 
-4 -9 -14 -19 -24 -29 -:S4 -39 -44 49 -64 -69 -64 -69 -74 -79 -84 85-

Figure 1.2. otifications ofRRV by age and sex, WA, 1985-1994 

(Does not include 13 notifications). (Lindsay, 1995) 

1.1.7. Prevention 

No vaccine is available for Ross River virus infection, and prevention of the 
- -

disease is based upon reducing the risk of exposure to infective mosquito bites 

(Australia, Weekly Epidemiological Record 1994). The prevention of 
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mosquito-borne polyarthritis relies on reduced exposure to mosquitoes 

through personal protection and environmental control. Personal protection, 

through the use of mosquito screens, long loose clothing and the use of 

repellents containing no more than 20% diethyltoluamide (DEET), is advised 

(Wolstenholme, 1992). 

1.1.8. Economic aspects 

The cost of the 1979-1980 Pacific epidemic of Ross River virus has not been 

estimated; however, the co::l of the 1983· I 984 outbreak in New South Wales 

was estimated at about $3 million. The cost .:,f RRV to the community in 

Western Australia (WA) alone between 1984 and 1996 was conservatively 

estimated at $9.7 million. In Queensland, diagnostic serology costs $500,000 

annually (Kay, et al., 1989). 

1.2.Data collection 

Samples of the mosquito population during the outbreaks in Western 

Australia have been co!lected and analysed by Lindsay ( 1995). Lindsay has 

worked on the mosquito population and the isolation of the RRV in 

mosquitoes in Western Australia since January J 987 as part of his doctoral 

studies on 'Ecology and epidemiology of Ross River virus in Western 

Australia'. 

A database has been constructed to record the incidence, timing and place of 

exposure of cases of RRV disease in Western Australia. Data has been 

provided by all medical practitioners throughout the south-west of Western 

Australia who were registered with the Medical Board of Western Australia 

7 
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on the 29th July 1986 (Lindsay, 1995). Comparing the real notifications from 

the database with the results of simulations, the Jikely ratio of clinical to 

subclinical human infections and the sero-conversion rate after the outbreaks 

can be estimated. 

1.3. Overview of Thesis 

Si nee Bemoull i • s first epidemic model ( 1790), a variety of mathematical 

models have been developed to determine the spread, cause and cost of 

epidemic outbreaks. Chapter 2 gives a brief history of the application of 

population dynamics to epidemics. This chapter also introduces some basic 

deterministic models relevant to the RRV model. Furthermore. the 

mathematical properties of the models, which have been analysed by Bailey 

( 1975), are discussed. In this chapter, three epidemic models for malarial 

transmission due to Kingsolver (1987), Moreira (l 992), and Dye and 

Hasibeder ( 1988) are also introduced and discussed. 

Chapter 3 discusses the mathematical models of RRV transmission with a 

single natural infection in the mosquito population while Chapter 4 considers 

those models with continuous natural infections in the mosquito population. 

In Chapters 3 and 4, three mathematical models of RRV transmission with 

single and continuous natural infection in the me .. quito population are built 

with varying degrees of complexity. Later. the mathematical analysis of the 

models mentioned is undertaken, especially the threshold conditions and the 

stability conditions for the equilibrium points. 

Chapter 5 introduces two types of simulation models for RRV transmission 

with a single or continuous natural infection in the mosquito population. This 

8 
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chapter also presents the methods used to estimate the parameters describing 

the host and mosquito populations an<l their inter~.ctions with each other. 

Several numerical methods used to estimate the parameter values and to run 

the simulations are also presented in this chapter. 

Chapter 6 presents the results of simulations of actual RRV outbreaks in 

some South Coastal districts in Western Australia. 

Finally, Chapter 7 provides a general conclusion of this thesis and outlines 

areas for future research. The C program that implements the simulation for 

RRV transmission in this thesis is presented in the Appendix. 

1.4. Limitations of the Research 

Many of the parameters of RRV transmission are unknown and only limited 

field data are available. Therefore, the value of many of the parameters must 

rely on estimates provided by personal communication with microbiologists or 

entomologists. Some numerical methods are also used to estimate parameter 

values. For example, it is known that the mortality and recruitment rates of 

the mosquito population depend on different environmental conditions such as 

temperature, humidity, the tides, etc. However, research on the effects of 

these environmental factors on the transmission has not been completed .. 

Also, the study of the extrinsic incubation period of mosquitoes with RRV ~" 

not completed. The range of possible values of the mortality rate and extrinsic 

incubation period for the mosquito population has been included on the basis 

of personal communication with Lindsay. The recruitment rate is extended 

from the field measurements of the total mosquito population by assuming a 

9 
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sinusoidal mortality rate. The RRV has been identified in twenty-one 

different mosquito species belonging to five genera. Each mosquito species 

has a different life cycle and so different patameter values for the RRV 

transmission. However, the difficulty of getting the parameter values for all 

the mosquito species compels us to use a simple model incorporating only the 

main mosquito species involved in the transmission. 

1.5. Significance of the Research 

The RRV disease is conservatively estimated to have cost the Western 

Australian community A$9.7 million between 1984 and 1996 (based on cost 

per case calculated by Geelhoed ( 1995) and incidences of the disease 

(Lindsay, 1995, Lindsay, unpublished data)). Given the cost of the epidemic 

and the numbers infected we believe that there is an urgent need for more 

research into the spread of this virus and in particular into mathematical and 

simulation studies of its spread through the Australian population. 

In the light of the simulation results this thesis discusses the likely ratio of 

clinical to subclinical human infections of RRV and the sere-conversion rate 

after RRV outbreaks in Western Australia. To determine the likely ratio of 

clinical to subclinical human infections is especially significant for public 

health policy. Since the symptoms of the RRV disease are different for each 

patient, only some patients with severe symptoms have been notified with 

medical authentics while others have not been. 

Currently, there is no vaccine available for the RRV. Therefore, the only 

means of preventing human infection is to use surveillance methods to warn 

of outbreaks, with appropriate mosquito control and media warnings when 

tO 
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necessary. One means of predicting such outbreaks is to mathematically 

model transmission cycles of the disease and to carry out computer 

simulation's of epidemic transmission. 

- C/. 
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CHAPTER 2. 

A BRIEF INTRODUCTION TO POPULATION DYNAMICS IN EPIDEMICS 

This chapter gives a brief history of the application of population dynamics 

to epidemics together with some examples. In particular, some basic epidemic 

models relevant to the RRV model are introduced and, following the work of 

Bailey (1975), are analysed. Additionally, some specific host-vector models 

for malaria are introduced and discussed. 

2.1. A BRIEF HISTORY OF POPULATION DYNAMICS IN EPIDEMICS 

The mathematical analysis of epidemics has been studied for a long time 

with a variety of models developed to determine the spread and cause of 

epidemic outbreaks. An epidemic is defined as a disease affecting or tending 

to attack many individuals in a population, community, or region at the same 

time. It is also any outbreak of a disease, which is regarded as an isolated 

phenomenon. On the other hand, a disease that is endemic is defined as 

belonging to or restricted to a particular locality or region. Recurrent 

epidemics tend to have some specific oscillations, which can be due to limit 

cycle behaviour or seasonal variation. It is generally believed that the first 

epidemic model was constructed by Bernoulli (1760). The model, involving a 

nonlinear ordinary differential equation, considered the effect of cow-pox 

inoculation on the spread of smallpox. The model was used to assess the 

practical advantages of a vaccination control programme. 

12 
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In the early twentieth century. Hamer ( 1906), Ross (1911) and Moshkovaski 

( 1950) formulated specific theories about the transmission of infectious 

diseases. Hamer { 1906) postulated the contact rate between susceptibles and 

infectives. In a detenninistic model of an infectious disease, the population 

consists of two disjoint groups : the susceptible group and the infective group. 

The susceptible group are individuals who have not been infected by the 

disease. The infective group are individuals who are infected and able to 

transmit the disease. By using this idea, Hammer could prove the existence of 

periodic recurrences. This result has become the most important concept in 

this area. Kermack and McKendrick ( 1927) established the famous threshold 

theorem which is a cornerstone of modem theoretical epidemiology. The 

threshold theorem of epidemiology states that if the number of susceptibles 

exceeds a certain threshold value, then an epidemic outbreak will occur. The 

threshold theorem of the simple deterministic model is discussed in the 

following section, 2.2. 

Soper ( J 929) first studied deterministic models of the periodicity of recurrent 

outbreaks of measles. The fact that simple models gave only damped waves 

discouraged him. Wilson and Worcester (1941 and 1945) made further 

investigations along similar lines. Consequently. Bartlett ( 1953-1960\ 

reconsidered the problem and began with a discrete model to serve to carry the 

neutrally stable model into damped oscillations. Bartlett made several 

advances by formulating a more realistic stochastic model. May (1976) gave 

an overview for the development of the aspect of dynamical systems theory. 

13 
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Capasso ( 1993) has examined the stability of a very genera] class of 

mathematical models of epidemic systems. 

Over the past three decades biomathematicians have been concerned with 

probabilistic models. In recent work. they are emphasising the application of 

control theory to epidemic models, the study of the spatial spread of diseases, 

the investigation of the mechanisms underlying recurrent epidemic behaviour. 

and the extension of the threshold theory to encompass more complex 

deterministic and stochastic models. 

The matter of homogeneity and heterogeneity of populations in epidemic 

system is an important part of mathematical models. Since the parameter 

values involved in the epidemic system are difficult to get, most mathematical 

models of epidemics assume that the populations are '·omogeneously mixing 

(Muench, I 959). However, the populations in real epidemics mix 

heterogeneously and the results are generally different. Recently, the study of 

spatial heterogeneity and dispersal in epidemic systems has been done by 

many researchers such as Hethecote and van Ark (1987). Furthermore, the 

study of age structured epidemic models have been the subject of much 

research. 

In the following sections, we introduce a basic detenninistic model and a 

basic host-vector model. These are important as they form the basis for all 

subsequent models of the RRV. These sections are based on Bailey ()975); 

however, we include full detail of the mathematical analysis of his models 

including a discussion of the equilibrium values. 

14 
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2.2. THE BASIC DETERMINIS'TIC MODEL 

In the basic deterministic model of an infectious disease, the. total 

population, n, is divided into three disjoint groups. The susceptible group, 

x(t), consists of those who have not contracted the disease. The infective 

group, y(t). consists of those who are able to transmit the disease. Finally, 

the removal group, z(t), consists of those who are removed by recovery or 

death. 

There are three basic assumptions in the model. 

1. The total population has a constant size n in the time interval considered. 

Changes in the population due to birth, death and migration are assumed to be 

negligible. 

2. The population is homogeneously mbdng. The host and vector 

populations are not divided by social behaviour and mix together 

homogeneously. The rate of occurrence of new infectives is proportional to 

both the r.umber of susceptibles and the number of infcctives. Thus the 

number of infections in time /).t is f3xy!1t, where (J is the infection rate. 

3. Due to death or recovery from the disease, individuals are removed from 

the infective group, y(t), at a rate proportional to the number of infectives. 

Hence, the number of removals due to death or recovery in time At is yyl'l.t, 

where y is the removal rate. 

15 
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The basic differential equations following from these assumptions are 

dx ---fl-, 
- /JAY• dt 

dy 
dt = J3xy- "/J, 

dz -=w. 
dt 

(2.2.1.) 

where p = 1. is the relative removal rate and the initial condition for 
/3 

(x,y,z) when t=O is (x0 ,y0 ,0). 

· If y0 is small, x 0 will be approximately equal ton. Unless p < x0 no 

epidemic can start to build up as this requires [ dy I dt 1,,,0 > 0 . That is, 

dy = f3y(x-L) = f3y(x- p) > 0 att = 0. 
dt ,' /3 

Eliminating y from the first and third equations of (2.3. I) by division gives 

(2.2.2.) 

Substituting (2.2.2) into the third equation of (2.2.1 ), we obtain 

~; ~ y(n-x-z)=r( n-z-x) ;JJ (2.2.3.) 

h 

( t) '' ', ; . 2 -- . z z 
Here e P can be expanded by Taylor's series to J-......;+-2 -~, where ~ 

' p ~ ' 

is the remainder term. Therefore, 

l6 



Chapter 2, 

dz { (Xo ) Xo z} -:::oy n-Xo + --1 z---z • 
dt p 2p 2 

(2.2.4.) 

as described in Bailey ( 1975). 

Assume that Yr is small and that xrr- 1 is also small. This will occur 

near the threshold p = x0 • 

The removal group z(t) in (2.2.4) can be solved as 

P2 {xo h( l c')} z = Xo p- I+ a tan 2a,r - , 

(2.2.5.) 

as summarised by Bailey ( 1975). 

The epidemic curve, which is defined by the rate of change with respect to 

time of the total number of removals, is therefore given by 

dz ya2p2 h2(1 c") - = sec -a,t - . 
dt 2x0 2 

So, if t --t oo in (2. 2.5), then the total numbers of removals becomes 

p2 {X } Z"" =- - 0 -l+a. 
Xo p 
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If 2+oY7P2 i_s sm~ll compared with { x;fp-1} 2, then 

He·nce we obtain 
'. · . 

. ··· p2 {X0 (Xo . )} ( P J ~~ =~ ,,--I+ p-1 ;::;2p 1- Xo • (2.2.6.) 

r .· dz 
We can also get (2.2.6) by setting -= 0 and letting x0 ,,. n in (2.2.4). 

dt 

There is no true epidemic if x0 < p. Let us suppose that 

x0 = p + v , where v > 0 . (2.2.7.) 

Substituting (2.2.7) in (2.2.6) shows that the total size of epidemic 1s 

approximately 2v since 

Z0 = 2p(1-.E..J = 2p(1--P-) = 2v-P-. 
x0 p+v p+v 

We therefore obtain the following Threshold Theorem of epidemiology 

(Kennack and McKendrick (1927)). 

Let x0 = p + v and assume that fJ/v is very small compared to I. Then, the 

number of individuals who ultimately contract the disease is 2v. In other 

. words, the level of susceptibles is reduced to a point as far below the 

threshold as it originally was above it. 

18 
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. Kendall (1956) undertook a more mathematically precise treatment of the 

model (2.2.1 ). Let the infection rate be a function, /J(z ). Then (2. 2. 2) is 

replaced by 

which together with (2.2.1 ), gives 

dz = r(n -z - x0 exp(-_!_ f/3( w )dw 1). 
dt r o ; 

(2.2.8.) 

Equation (2.2.8) is the same as the approximation appearing in (2.2.4) if 

/3(z) = 213 I ' 

(1- r,;)+(1-x;r 
Here, /3(0) = /3 and /J(z) < /3 when O < z < p. Furthermore, if z > p, the 

model wil1 be quite unrealistic, since we should then have a negative infection 

rate. 

Returning now to (2.2.3), we consider the equation 

(2.2.9.) 

Let the unique negative and positive roots of (2.2.8) be -711 and 1}2 , 

respectively. Then we can integrate (2.2.9) to give 

t lz dw 
t = - ( )' 0 5 z < 11z , r o t w 

n - w- Xo exp - y £f3(u)du 

(2.2.10.) 

This gives a formal solution for the epidemic curve. The whole of the 

epidemic curve for O ~ t < oo is involved since the integral in (2.2.10) diverges 
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when z ~ TJ 2 , and therefore z .. =: 1}2 • Unfortunately the integral also 

diverges at the lower limit as x0 ---+ n, so that in this case an infinite time 

elapses before the epidemic starts. The latter difficulty is overcome by 

changing the origin to the point where x =: p , which may be called the centre 

of the epidemic. Since !!_(dz)=r2y(.::-1J. the peak of epidemic curve 
di dt p 

occurs at the centre. 

From the second equation in (2.2.1 ), we see that the maximum numl:ier of 

infectives also occurs at the same time. We now write x0 == p and still choose 

to take z0 =: 0 without loss of generality. 

The numerical value of z(t) is the number of removals in 

(0,t) fort> 0 and in (t,0) if t < 0. The corresponding parametric solution 

is thus 

I ii dw 1--r O Yo -w + p(1-e-"'1P)' 

Since n =: Yo + X0 + Z0 =: Yo + P + 0, 

where -oo < t < oo and - ~ 1 < z < ~ 2 • Here the quantities -; 1 and ~ 2 are the 

unique negative and positive roots, respectively, of 

Let N =: p + y0 + ~ 1 be the initial number of susceptibles in the population. 

20 
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Thus, when t = -oo, the groups of the population are (x, y,z) = (N,0,-;\), 

while when t = OQ, they are (x, y, z) = (N - Ni,O, Ni - g1), where the 

intensity of the epidemic, i, is defined by, 

The intensity of the epidemic is the proportion of the total number of 

susceptibles that finally contracts the disease. 

From the modified form of the second equation in (2.2.2), we have 

- N -(l+~[ )Ip X- e . (2.2.11.) 

Then when t = OQ , Equation (2.2.1 I) becomes 

N- Ni= Ne-Nilp. 

Hence, we get 

N log(l - i) 
-=-
p i 

Ordhe other hand, when t = 0, x0 = p = Ne-~dP, and so 

This is the proportion of the total epidemic occurring before t = 0. 

We also get the value of g I from 

p = Ne-ei!P, which gives 

logP.... =-g1/p, and so 
N 
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(2.2.12.) 

Thus, the number of infectives at t = o. y0 , is 

N 
Yo = N - p-/; 1 = N -p-p log-, 

p 

whik the removal rate dz at the peak of the epidemic curve is -v.,0 • dt lf 

Let a be a non-zero number of infectives which are introduced into a 

population of susceptibles at some finite time and we have an epidemic 

starting with x == N ,y = a. Then. from (2.'2.11) and (2.2.12) we can take the 

value of z at the starting time to be 

z' = -i; 1 - p log!!__ :;; p log .P_. 
N N 

It is clear that with a> 0 we always have some kind of epidemic spread. If 

p > N, then z' > 0 and we are already past the centre; the epidemic curve is 

J-shaped and falls away to zero. If p < N, then z' < 0 and the curve is in a 

pre-central phase, so there wit: be a true epidemic with a peaked epidemic 

curve. 

2.3. EQUILIBRIUM VALUES FOR THE BASIC DETERMINISTIC MODEL 

Equilibrium values are obtained by assuming that the deaths of removed 

individuals are just balanced by the births of new susceptibles. In this case the 

simple differential equations for the detenninistic model from the system 

(2.2.l)are 
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dx ::; -fjxy + µ,} 
dt 
dy 
-::; /Jxy-yy. 
dt 

where µ is a parameter describing the birth rate of susceptibles. 

Chapter 2. 

(2.3.1.) 

By letting the derivatives be equal to zero, the nontrivial equilibrium point ., 

(x0 ,y0 ) in (2.3.1) is given by. 

(2.3.2.) 

The equations for small perturbations (u, v) from this equilibrium point are 

obtained by writing 

x=x0 (l+u), y=y0 (1+v). 

Substituting (2.3.3) into (2.3. I) yields 

du 
cr-=-(u + v + 11v), 

. dt 

dv 
1:-=uO + v), 

dt 

l 
where CJ' =_r__ 

[3µ' 
r=-

y 

(2.3.3.) 

(2.3.4.) 

We can neglect the product 11v since uv is very small compared with 

u and v. So, we have 

du 
a-=-u-v 

dt ' 

dv 
t-=u. 

dt 

(2.3.S.) 
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In vector fonn, Ibis reads ! (:)~A(:), where A is the matrix, 

This matrix is called the community matrix or stability matrix. The 

characteristic polynomial is 

1 
---A -- I t 

jA-A!):;:; <11 er = ).2 +-A+-::: O. 
-A a err 

(2.3.6.) 

t 

The epidemic models have either (i) stable steady states where small 

pcrturbatious die out, or (ii) unstable steady states where perturbations from 

them grow unboundedly or result in limit cycle periodic solutions. The 

models which are said to exhibit a threshold effect have a non-zero stable state 

such that if the perturbation from it is sufficiently large or of the right kind, the 

population densities undergo large variations before returning to their steady 

states. The stability of an equilibrium in the epidemic model is determined by 

examining the eig.:.!nvalues of the community matrix. If the maximum value 

of the real parts of the eigenvalues is negative, it is stable. If the maximum 

value is positive, it is unstable. 

From the characteristic polynomial (2.3.6), the eigenvalues are, 

1 A=--± 
2cr 

24 



Chapter 2. 

Since the real parts of the eigenvalues are negative, the nontrivial 

equilibrium point (2.3.2) is stable. Furthermore, the general solution of the 

equations (2.3.5) with the initial condition, (u(O), v(O)) = (u0 , v0 ), is 

I l --, --, 
U =uoe 2(1 coset+cle 211 sinl;t, 

l 1 
--1 --1 

v = v0e 211 cos~t + c2e 2cr sin l;t, 

-u-2v l(u v) (I I )i where c1 = 0 ~ 0 ,c1 =;: __Q_+-0- ,and l; = - ---2 • 
2~ ~ 1:, r 2cr en 4a 

For a suitably chosen origin of time, we can chouse 

v(t) = ce-112u cos~t, where c = ~v/ + c/ . 

We then obtain the solution for u from the second equation of (2.3.5), 

(r)t -~, 
u(t) = a' ce 211 sin(~t + 1/f), 

l 

. l ( r )2 3 where sin lp' = - - - , -'Ir 5: 'I'$ 2rr. 
2 er 2 

The solutions u(t) and v(t) involve damped harmonic trains of waves with 

period 2rr./~. It will be noticed that if % is small then the damping 

coefficient has relatively little influence on the period 21t/~, which is roughly 

I I 
27t( crt)"i = 21t(Bµf2 for small -r/cr, and so largely depends on the birth rate 

for new susceptibles and the infection rate. 

As outlined hy Bailey ( 1975), the oscillatory behaviour of the process can 

also be represented by plotting the path traced by the point (x.y). Doing thii::, · 
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the deterministic solution can be compared with paths followed by actual 

realisations of the stochastic analogue. The deterministic curve found in this 

way can have the form of a spiral converging on the equilibrium point 

(x0 ,y0 ). An argument due to Reuter (Bartlett, 1956) is as follows. Consider 

the function 

f(u, v) ={(I+ u}-log(l +u)}+(t/a){(1 + v)-log(l + v)}. 

Differentiating with respect lo t and using (2.3.4) gives 

df --
dt 

2 

u ~o. 
o(l +u) 

Thus f continually decreases when t increases. Since f 2: I+ t/cr, the 

function f tends to a finite limit / 0 2: 1 + r/a, as t tends to infinity. Hence, 

the curves J = c are closed, surround the point (x0 ,y0 ), and converge as c 

tends to I + t/cr. Considering the second differential coefficient d 2 f / dt 2 , 

we can show that / 0 = 1 + r/a. Consequently, the point (x,y) must tend to 

The above discussion implies that when a constant influx of new 

susceptibles is sufficient to account for epidemic waves with a period of the 

right order of magnitude, the damping down to a steady endemic state entailed 

by the calculations is at variance with observed epidemiological facts. 

2.4. HOST-VECTOR MODEL 

This section introduces the basic deterministic epidemic model, which has a 

host-vector relationship. Diseases such as malaria and the RRV have hosts, 
26 
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which can be humans or animals, and vectors, which are mosquitoes. These 

host-vector models can be considered as a special case of the two interacting 

groups models (Murray. 1993 ). 

We suppose that there are two populations. one for the host and one for the 

vector. Let (x,y,z) be the population of human susceptibJes, infectives and 

removals, (x' , y' , z') be the popuJation of vector susceptibles, infectives and 

removals, n = x + y + z , the total human population, and n' = x' +y' +z' , the 

total vector population. 

Then the basic system is given by: 

dx =-/3~' 
dt . ' 

dx' a, , 
dt = -p X y, 

d, = /3xy' -;y, d; = f3' x' y-y' y\ (2.4. l.) 

dz 
dt = }Y, 

dz' , , 
dt=yy, 

where /J, fJ are the infection rat~s for host and vector, 

y, y' are the removal rates for host and vector, and 

p ( = r / /J) and p' ( = y' /fl') are the relative removal rates. 

The initial conditions for (x, y, z) and (x' • y', z') when t == 0 are ( x0 , y0 ,0} 

and (x' 0 ,y' 0 ,0). 

A diagram representing the model in (2.4.1) is given in Fig. 2.1 
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'' 

Fig. 2.1 A diagram for the host-vector model 

From the differential equations given in (2.4.1), we obtain 

-log(x/x0 );::::Pz'/'y' and -log(x'/x'o)=~z/y'. (2.4.2.) 

Following the notation of Section 2.2 and writing the specifications of the 

two popu I ations at t = oo as ( n - ni,O, ni) and ( n' -n' t ,0, n' t ) , we have from 

the two equations (2.4.2) 

{3n' t /r' ;::; - log(l - i), } 

fJ ni/r ;:::: - log(l - t ), 
(2.4.3.) 
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where we take Yo and y O to be negligibly small, so that x0 and x' 0 are 

approximately equal to n and n' . By expanding the logarithmic tenns in 

(2.4.3), we have 

BW nn' it (· 1 ·2)(" l ,,2) ---= t+-l l+-l . 
rt' 2 2 

After cancellation of the factor ff and rearrangement we obtain 

,m' l I(· ") -- ==- i+t' 
pp' 2 

(2.4.4.) 

where we have ignored the second-order term in ii' , and have written 

p and p' for the two relative removal-rates. From (2.4.4) it is obvious that 

nd > pp' for a true epidemic to occur. There are not in fact separate threshold 

conditions for man and vector, but there is a joint threshold condition related 

to the product of the relative removal.rates, pp' . 

Let ,r be the product of the numbers of susceptibles in the two populations, 

so that 1t == xx' . Then we have 1t0 "" nn' , and therefore 

n:,,. = x ... x',,. 

== 1t'0 {I - i - i'). 

After cancellation of the factor it , substitution i + i from (2.4.4) and 

writing 

7?:o = pp'+e, 

we obtain 

(2.4.5.) 
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As discussed in Bailey (1975), the result in {2.4.5) is a modified form of the 

Threshold Theorem and shows that if there is an epidemic, the product of the 

numbers of susceptibles is reduced to a point as far below the threshold as it 

originally was above it. 

The exact values of the individual intensities, i and t, can be obtained by the 

solutions of (2.4.3). We can get approximate values from the equations 

., 2e 

I~++;.)' 
where we have made use of the fact that pp'::::: nn'-e. 

If the parameters p, W, 'Y and y' are independent of n and n' , then public 

policy should act to ensure that rm'< pp' or nd << pp' . Thus, reducing the 

size of the vector population d is a step in the direction of preventing the 

disease. 

If they are dependent, as in the case of malaria, we may suppose that the 

mosquito vector exhibits a certain man-biting rate b' . Then in a unit time x' 

susceptible mosquitoes will bite b' x' people, of whom ( b' x' {;) are affected 

by malaria. Let f be the proportion of the latter who are actually infectious. 

Then the rate at which newly infected mosquitoes appear is b' fx' y In. In 

other words, ~·;:: b' f In. Similarly, in a unit time y' infected mosquitoes, of 

whom a proportion f are infectious, will bite b' y' people, of whom 

(b' y')(x/n) are susceptibles. The rate at which newly infected people occur is 

thus b' f xy/n , so that f3 = b' f /n. Thus for mi'> pp' the condition for a true 
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'd · t · th t ' yy' n2 
/ n'I '/b' 2 ff Th. ep1 emtc o occur ts a mi> /b'2 ff or /n > yy . ts 

a' threshold result, applicable to malaria, goes back to the original work of 

Ross( 1911) and the studies of Kermack and McKendrick( 1927). 

2.5. THE EQUILIBRIUM VALUES FOR THE HOST-VECTOR MODEL 

The host-vector model described by (2.4.1) can be modified by assuming 

that the deaths of removed individuals are just balanced by the birth:;: of new 

susceptibles of host and vector. Then 

dx A. I dx' R• ' ' } dt = -pxy +µ, dt == -,-, X y+ µ • 

dy A.,. t dy' f.l! ' ' t 

dt = ,..,..._-y-Y.Y, dt == t-' X y-y y. 
(2.5.1.) 

The equilibrium values for this system (x0,y0 ,x'o ,y' 0 ) are given by setting 

the expressions in (2.5.1) to zero. Thus the equilibrium point is 

·. X: = µ~'//3µ', Yo,=µ/~, ' } 

x o = µ r I /1 µ, Y o ;; µ Ir . 
(2.5.2.) 

The equations for small departures from these equilibrium v&lues are 

obtained by writing 

x;:: xo(I + u),y:;;; y0(1 + v), .. } 

x' = x' 0 (I+ u' ), y :;;; y' 0 ( 1 + v' ). 

Substituting (2.5,.3) and (2.5.2) in (2.5.1 ), we have 

·.· 31 
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du {3µ' ( r ') -=-- u+v+uv • 
dt r' 

dv ( , ') -= y u-v+v +uv , 
dt 

du' P µ ( , , ) 
--;--:-:=-- u+v+u v, 
{jf y 

dv' 
- = y' (u'+v-v'+u' v). 
dt 

Chapter 2. 

(2.5.4.) 

We can eliminate the products uv,u' v,uv', and u' v' because they are small 

compared with u, v,u', and v' . 

Hence, we have the linearised community matrix 

_ {3µ' 
0 0 

/3µ' --
y' r' 

A= r -r 0 r 
0 

{3'µ /3'µ 
0 

r r 
0 r' y' -r' 

and the characteristic polynomial is 

{3µ' ---.t 0 0 
_{Jµ' 

y' y' 

!A-AI!~ r -r-.t 0 r == 0. _/1 µ f! µ 
0 ---J. 0 

r r 
0 r' y' -y'-.l 

The eigenvalues of the community matrix can be obtained from the 

following polynomial 
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A.4 +a..l3 +b.:t2 +c..l+d =0, 

' /3µ' /3' µ 
where a =r+r+-+--, r· r 
b = R/l'+/3' µ + /3/3' µµ 1 + /3µ' y + /3' µy' 

p, rr· r' r · 

C ~ P/J' µµ{; + :. )+ flµ'r + /J'11r'. and 

d == /3/3' µµ'. 

Chapter 2. 

The condition for all of these eigenvalues of the community matrix to have 

negative real parts is too complex to consider here. However, if all of them 

are negative, then this equilibrium point is stable and small perturbations 

around the equilibrium point (2.5.2) will not have any marked effect. In other 

words, the disease will eventually die down to a steady epidemic level. On 

the other hand, if any of the eigenvalues is positive, then the equilibrium point 

is unstable. 

2.6. SOME SPECIFIC MODELS FOR MALARIA 

Human malaria is transmitted by mosquitoes such as Plasmodium 

falciparum, Plasmodium vivax, Plasmodium ovale, and Plasmodium malariae. 

Plasmodium falciparum causes the most fatal fonn of malaria due to its 

tendency to progress to a cerebral pathology. The parasite is transmitted by 

the female mosquito, in which the sexual cycle takes place. It is the asexual 

parasite stages in the blood and liver of humans that cause the disease in 

humans. Despite the differences between malaria and RRV, they are both 

mosquito-borne diseases. That means that both diseases have the same hosts 

and vector, which are humans and animals, and mosquitoes respectively. 
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As the RRV models introduced later are based on early malaria models we 

introduce in this chapter epidemic models for malarial transmission due to 

Kingsolver (1987), Moreira (1992), and Dye and Hasibeder (1988). 

Furthennore, some discussion of these models is given. 

2.6.1. Kingsolver's model 

Kingsolver constructed his model as a straightforward extension of the Ross­

MacDonald model for the dynamics of malarial infection (Ross, 1911; 

MacDonald, 1952, 1957, 1973). He found that mosquitoes may preferentially 

choose hosts on the basis of host infection. From that he developed and 

analysed a simple model for the dynamics of malarial transmission that 

incorporates nonrandom feeding behaviour by the mosquito vector. 

The simple general model given by Ross and MacDonald is 

dx - :::: ky/3 11 (x)M IN - rx, 
cit 

(2.6.1) 

dr:::: f3Jx)(l- y)- µy, 

where 

x is the proportion of infectives in the human host population, 

y is the proportion of infectives in the mosquito vector population, 

k is the proportion of infected bites on the human hosts that produce an 

infection, 

N is the size of the human population, 
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M is the size of the female mosquito population, 

m = MI N is the number of female mosquitoes per human host, 

r is the per capita rate of recovery for the human host, and 

µ is the per capita mortality rate for the mosquitoes. 

The functions /J11 (x) and fJ;(x) are the rates of biting per female mosquito 

on uninfected and infected hosts, respectively. The total rate of biting per unit 

time is 

Ross and MacDonald used a simple linear model for /3 11 (x) and P;(x), 

namely, 

for which the net reproductive rate of the parasite is R = kmB2 I µr. If 

R > l, an infection wiU continue and lead to a stable equilibrium at which an 

infection is maintained in both the host and vector populations. On the other 

hand, if R < l the disease will die out. 

Kingsolver constructed and analysed three different models for the functions, 

/3 11 (x) and /J;(x), using nonrandom feeding behaviour by the mosquito 

vector. The three different models are as follows: 
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i) Consistent Host-Preference Model 

!
{31(x)= 8(1-e-cx), 

f3u(x) = Be-cX, 

where c is a constant that reflects the intensity of the preference. In this 

model, Kingsolver assumed that the intensity of the preference is a constant. 

ii) Increasing preference model 

f3u(x) = Br! - ( Px )]' 
L I+ P- l)x 

where P denotes the preference of the mosquitoes for infected hosts. When 

P::::: 1, the model is the same as the Ross-MacDonald model . The model 

assumes an increasing preference for infected hosts as the host population 

increases. 

iii) Switching-Behaviour Model 
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where a and c are constants. Here he considered host-choice behaviour in 

which preference depends on the relative abundance of infected and 

uninfected hosts. 

2.6.2. Moreira 's model 

Moreira ( 1992) applied the theory of Lienard equations and Liapu nov' s 

direct method (Van der Pol, 1928) in the dynamics of malarial transmission to 

guarantee a globally asymptotically stable positive equilibrium or a stable 

persistence of infection in tenns of the rate of biting per female mosquito on 

uninfected hosts. His epidemic model for malaria is 

dx 
-= h(x)(kmy)-rx- µ 1, 

dt 
(2.6.2) 

dy dt = g(x)(l-y)- µ2y+ µJ, 

where members of the human population, x, are harvested at a constant rate 

µ 1 > 0 while the vector population, y, is stocked at a constant rate µ3 > 0; 

k > 0 is the proportion of infected bites on the human hosts that produce an 

infection; 

m > 0 is the number of female mosquitoes per human host; 

r > 0 is the per capita rate of recovery for the human host; and 

µ 2 > 0 is the per capita mortality rate for the mosquitoes. 

The functions h(x) and g(x) are the respective rates of biting per female 

mosquito on uninfected and infected hosts, and the total rate of biting. B, per 

unit time given by B = h(x) + g(x) is assumed to be constant. For 
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convenience the host harvest rate µ, is replaced by JanBµ/µ
2

• Moreira gave 

two applications involving different assumptions for h(x) and g(x). 

The first applkation 

B 
h(x)=--, 

l+cx 

Bex 
g(x)=--. 

l+cx 

(2.6.3) 

where c is some positive constant. There will be a unique and globally 

asymptotically stable equilibrium of (2.6.2) if the net reproductive rate of the 

parasite R is greater than 1, where 

The second application 

{
h(x) = Bexp(-cx), 

g(x) = B[l -exp(-cx)}, 

(2.6.4) 

(2.6.5) 

wherec is a positive constant. As in the first application. (2.6.3) will have a 

unique stable equilibrium if the net reproduction rate (2.6.4) is greater than 1. 

2.6.3. Dye and Hasibeder's model 

Dye and Hasibeder (1988) investigated the persistence of a mosquito-borne 

disease (malaria) in a system where mosquitoes and hosts are grouped in 

patches containing any number of individuals. 
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In this model for the generation of malaria, S and I are the absolute 

numbers of infected (and infective) hosts and mosquitoes, and t denotes 

chronological time. 

The equations are : 

d!I ::::a(irjJ)J(1-si I Hj)-ps/ for iE P, 
J£Q 

:: = JJ(vj - Ii (f.: ri;S; I H, )-Iii; for j E Q, 

(2.6.6) 

where P and Q are finite sets containing all m hosts and all n mosquito 

patches (!Pl= m, \Q! = n, P n Q == 0). Patch i, for i e P, has altogether H; 

hosts (humans), S1 of whom are infected (but only a proportion of these 

people are sick, i.e. show disease symptoms). Patch j, for j E Q , has a total 

of V1 vectors (mosquitoes) with 11 being infected (and infective). 

a is the number of bites per mosquito per unit time multiplied by the 

proportion of bites by infected mosquitoes on uninfected hosts which result in 

human infection. fJ is the number of bites per mosquito per t(nit time 

multiplied by the proportion of bites by uninfected mosquitoes on infected 

hosts which result in mosquito infection. 

So, a and /3 are the transmission rates of infection from vectors to hosts and 

vice versa. 

p is the recovery rate of infected hostJ, 

8 is the death rate (equal to the birth rate) of the mosquitoes. 
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Finally, r ii, for i e P and j e Q, is the per-bite probability that a mosquito 

from patch j bites a host in patch i (so that for each bite each mosquito 

chooses a host patch according to this set of probabilities). 

This model assumes that immunity, latent periods, and seasonal variations in 

the parameters are negligible. The birth and death rates of the mosquitoes are 

assumed equal, while the births and deaths of the hosts are negligible since 

they are very small. 

2.6.4. Discussion of Malaria Models 

This section discusses in detail the models for malaria introduced in the 

previous sections 2.6. J, 2.6.2 and 2.6.3. Although malaria and the RRV 

diseases are different, studying models for malarial transmission is helpful in 

building an ecological model for the spread of RRV. Models for malarial 

transmission do however have some limitations. For example, the models 

introduced in this chapter do not divide the population into susceptibles and 

infectives, nor do they consider the age and sex distribution of the population. 

By considering these malaria models as simple RRV models, a more accurate 

RRV model may be developed by incorporating some or all of the RRV 

parameters such as age, sex, viraemia period, extrinsic incubation period, and 

seasonal variations. Th~ nonrandom feeding behaviour by the mosquito 

vector in malaria models is, however, ignored since this behaviour is caused 

by the fever due to the malaria, whereas the RRV disease does not present the 

same symptoms. 
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Kingsolver's model (1987) considers host-vector interaction with 

nonrandom feeding behaviour, and applies it to the Ross-MacDonald model 

(Ross. 1911; MacDonald, 1952, 1957, 1973). However. because the Ross­

MacDonald model is simple there are many limitations. For example, (a) 

human and mosquito population sizes and the mosquitoes' mortality rate are 

regarded as constants; (b) the model does not distinguish between different 

developmental stages of the mosquito, and (c) the immunity and mortality 

rates of the hosts are not considered. 

However, Kingsolver did use the Ross-MacDonald model with three 

different types of nonrandom host choice to show that nonrandom host choice 

can have important quantitative and qualitative effects on the epidemiology of 

malarial transmission. 

Moreira ( 1992) extended the Ross-MacDonald model with migration effects 

and applied Lienard's equation and Liapunov's direct method in his model for 

malarial transmission. His model has the same limitations as Kingsolver's, 

but the migration effects in his model can incorporate the immunity and 

mortality rates of the host. 

Dye and Hasibeder' s model ( 198 8) considers the persistence of malaria in a 

system where mosquitoes and hosts are grouped in patches containing any 

number of individuals. This model confirms that nonhomogeneous host 

selection by mosquitoes leads to basic reproductive rates greater than or equal 

to those obtained under uniform host selection. Dye and Hasibeder found that 
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. strong associations between particular groups of mosquitoes and hosts lead to 

higher basic reproductive rates. 

A major flaw of this model is that it requires the precise values of the 

parameters in different patches to be estimated, a difficult process at best. 

However, by incorporating regional differences the model becomes more 

reliable and realistic. Overall, this model is quite generalised and gives us 

many applications where, for example, the patch parameters can be regarded 

as age parameters. 

Having discussed the early models of Bailey ( 1975) and specific models of 

malaria in detail, we now move to develop and discuss several host-vector 

.models for RRV transmission with varying complexity in Chapters 3 and 4. 
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CHAPTER 3. 

THE HOST·.VECTOR MODEL FOR THE RRV 

The Ross River virus disease is transmitted between the hosts, humans and 

animals, and the vector, mosquitoes. The mechanism which maintains the 

infection in the mosquitoes is unknown. This thesis examines two possible 

hypotheses for the natural infection rate within the mosquito population. The 

first hypothesis is that there is only a single natural infection on mosquitoes prior 

to the outbreak. The second hypothesis is that the mosquitoes are exposed to 

continuous natural infection during the outbreak. In this chapter, the models are 

built on the first hypothesis, while Chapter 4 considers those models with the 

second hypothesis. Therefore, the natural infection within the mosquito 

population is included as an initial condition and neglected for the rest of the 

outbreak. 

Since each mosquito and animal species has a different life cycle, the mosquito 

and animal popu1ations will be divided into subpopulations by species for more 

accurate mode11ing. Similarly, the humans will be divided according to region, 

age, and sex, etc. However, the difficulty of obtaining parameter values for the 

simulation aJlows only a simple model to be constructed. 

Sections 3.1. and 3.2. introduce the basic Ross River virus models including the 

mathematical analysis of the models, the threshold condition and a stability 

analysis of the equilibrium points. Section 3.3. introduces the general RRV 
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model which is a k-human and I-animal host and m-mosquito vector model, and 

examines the ihreshold condition. 

3.1. THE BASIC MODEL WITH ONE HOST AND ONE VECTOR 

In this section. the basic model for the Ross River virus has one host and one · 

vector. Animal populations are neglected and their effects on the transmission 

will be included in the infection rates between the human host and the mosquito 

vector. An incubation period is the time elapsing between the receipt of RRV 

and the appearance of symptoms (Bailey, 1975). A viraernia p~riod is the time 

elapsing between the receipt of RRV and grant of antibody, so that hosts can pass 

th.e virus to vectors during the period. Since the incubation and viraemia periods 

overlap, the incubation period for humans is neglected, while the viraemia period 

is used to calculate the recovery rate since after the viraemia period infected 

humans become immune. In the same fashion, the viraemia period for the animal 

population is used to calculate the animal recovery rate. 

The host population is divided into three disjoint groups: The susceptible 

group, x1(t), consists of individuals who have not yet contracted the virus. The 

infective group, y1 (t), consists of individuals who have contracted the virus and 

are infectious. Finally, the removed group, z1 (t), consists of individuals who are 

removed from the infective group after the viraemia period. The vector 

population is divided into four disjoint groups. The susceptible group, x2(t), 

which have not yet contracted the disease. The latent group, e(t), which are in 

the extrinsic incubation period (or latent period) and are not yet infectious. The 
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infectious group, y2(t), and the removed group, z2(t), who have been removed 

from the susceptible, latent and infective groups by natural mortality. 

The following assumptions are made in this basic model: 

I. Both populations are homogeneously mixing. 

2. The total human population, nt (t), changes with a constant birth rate, a 1 , 

and a constant mortality rate, 81• The new births into the host population during 

a time /).t, a I Lit, are not infected. Therefore, the new births are put directly into 

the susceptible group. 

3. The total mosquito population, n2 (t), changes with a variable recruitment 

rate, a 2 (t), and a variable mortality rate, o2(t). The new inputs into the vector 

population during a time flt, a 2(t)~t, are· not infected. Therefore, they go 

directly to the susceptible group. 

4. The rate of occurrence of new infectious hosts is proportional to both the 

number of host-susceptibles and the number of infectious vectors. Thus, the 

number of infections in the host population in a time 6.t is /3 1x1(t)y2(t)M, 

where /3 1 is the constant infection rate from the vector to the host. Individuals 

are removed from the host-susceptible group, x1 (t), with a constant death rate 

o1• Hence, the number of removals from the host-susceptible group due to 

deaths in a time flt is o1xt (t)~t. 

5. The rate of occurrence of new latent vectors, which are infected but not 

infectious, is proportional to both the number of the vector-susceptibles and the 

number of the infectious hosts . Thus, the number of new infectious vectors in a 
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time At is /j 2xi{t)y1(t}At, where /32 is the constant infection rate from the host 

to the vector. 

6. The number of removals from the infectious host group. y1 (t}, due to deaths 

and immunity during a time At is (r + '51 )y1 (t)At, where r is a constant 

recovery rate. This rate is equal to fa
1 

, where a1 is a constant viraemia period. 

7.· Individuals in the latent vector population become infectious and are 

removed from the latent group, e(t), at a rate proportional to the number of 

vector-latents. Hence, the number of new infectives in a time At is e(t)e(t)At, 

where e(t) is a variable transfer rate between the latent group and the infective 

group. This rate is equal to Ja2(t), where a2(t) is a variable extrinsic 

incubation period. 

Individuals in the vector population die and are removed from the susceptible, 

latent and infective groups, x2(t), e2(t) and yi(t), respectively, at a rale 

proportional to the number of each group. Hence, the number of removals due to 

deaths in a time 8.t is S 2 (t)(xi(t)+e2 (t} + y 2(t})8.t. where 82(t) is a variable 

mortality rate. 

A diagram representing the simple model is given in Figure 3.1. 
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Figure 3.1 The flow diagram for the simple model for RRV transmission 

With the given assumptions, the basic deterministic model for the Ross River 

virus which has one host and one vector is given by, 

cb.t{t) 
~ =-/31x1 (t)y2(1)-0ix1(t)+a1, 

dy (t) ( ) --t-=Ax,(t)y2(t)- r+~ y,(t), 

dz, (t) dt = iY1 (t)-z1(t), 

d't2 (t) 
dt = -/Jix2 (t)y, (t)-62(t)x2(t )+a2 (t), 

d:;t) = Ax2(1)y1(t)-(62(t)+ e(r))e(t), 

dy;;') = e(t }e(t )-Ba (t )y2 (t ). 

(3.1.1.) 

where the init.ial conditions when t =O are (x1(t).y1(t).z1(t)} = (x10 ,y10 ,0) and 

AH of the constant parameters in (3.1.1) are nonnegative, that is 
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and all of the variable parameters are positive, that is 
··.~... : . 

From the dynamics given in (3.1.1), for a true epidemic to occur dy,(t). de(t} 
dt dt . 

and dy2(t) must be positive: 
dt 

(3.1.2.) 

(3.l.3.) 

(3. 1.4.) 

From those inequalities (3.1.2), (3.1.3) and (3.1.4), we obtain the three· 

conditions 

and e(t)e(t) > 1. 
82{t)yit) 

(3.1.5.) 

(3.1.6.) 

(3.1.7.) 

By multiplying the three inequalities {3.1.5), (3.1.6) and (3.1.7), we get the 

threshold condition as the following inequality : 
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!',·'\ where p1 and p2(t) are the relative removal rates for host and vector at time t, 
!) _;: 

,.,,that p, = (y ;,Ii,) and p,{t) = lift . 

When they are in the initial states, (3.1.8) can be replaced with the initial 

transfer rate, e0 , and the initial mortality rate, 020 , so that 

(3. t .9.) 

where p20 is the initial relative removal rate of the vector. 

Since 020 +eo > 1, the above threshold condition (3.1.9) can be changed to, 
. fo 

We now take y10 and y20 to be negligibly small, so that x10 and x20 are 

approximately equal to n10 and n20 • Thus, if an outbreak occurs, then the product 

of the two relative removal-rates is smaller than the products of two initial total 

populations, p1p20 < n10n20 • This result is the same as the threshold condition for 

the model (2.3.1) discussed in Section 2.3. 

To examine the stability of the system of equations given in (3.1.1 ), the 

equations can be replaced with a new set of equations given in (3.1.10), in which 

the latent group in the vector population is neglected. The stability result for the 

new system given in (3.1.10) is exactly the same as for the system given in 

(3 .1. 1 ) since the latent group is dependent on the infective group in the vector 

population. 
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(3.1.10.) 

The equilibrium points of the system given in (3.l.10) are found by setting the 

derivatives in equations (3.1.10) equal to zero. The recruitment and mortality 

rates are changing with time t and they may be periodic but the exact functions 

are unknown currently. Hence, for examining the stability we shall assume that 

a 20 and B 20 are the constant averagt-: values of the functions, a 2 (t} and o 2 (t). 

However, this is only to analyse the stability conditions of the dynamics and 

correct only heuristically. 

Since the mortality rates are not equal to zero, we have two equilibrium points: 

(3.1. I l.) 

02o(aJ32 + ow(r + 81 )) (r + <>1)(a20P1 + 81820) 
Xio= {Ji(a20/J1+D1020) ,Xw= /J1(aifJ2+820(r+o1))' 

(3.1.12.) 
a1a2of31/32 -8182/(r + 81) a1a20/Jif32 -8182/(r +oi) 

Yio = /J2(Y + 81)(0:20/31 + 81820) ,Yw = f31820(aifJ2 + 02o(Y +81)) . 

Here we let the population growth rates of the host and vector be 
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Therefore, if the product of the relative removal rates is larger than the product 

of the relative birth rates, the equilibrium point (3.1.12) exists for the system 

(3.1.10). 

We consider the two equilibrium points in turn. 

1) The first equilibrium point is given by 

The new differential equations for small perturbations from the equilibrium 

point can be obtained by Jetting 

Xi= X1o(l +u1),Y1 = Vi, 

X2 =x20(l+112),Y2 = V2, 

where jui\, \v 1 \, \u2 j. \v2 \<<l 
(3. l.13.) 

and substituting (3.1.11) and (3.1.13) into (3.1.10). The products of the 

perturbations can be neglected since the products are very small compared to the 

perturbations. This gives the following linearised equations : 

(3.1.14.) 

From the linearised system (3.1.14), we have the characteristic polynomial of 

the community matrix, 
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-81 -.:l 0 0 -/3, 
0 -(r+o1)-,t 0 a1f11 

IA-All= 81 =0. 0 -/32 -020 -,l 0 

0 U2of32 

020 
0 -820 -A. 

Two eigenvalues of the community matrix of the linearised equations are 

-81 and -8 20 , and the rest will be determined by the quadratic equation : 

(3.1.15.) 

The sum of roots, ;l.. 1 +.:l2 (= -(01 +820 +r)). of (3.1.15) is negative. So the 

product of roots, A. 1A2 , will determine the stability of the equilibrium point. 

We have, 

We consider the two cases when the equation in (3.1.15) has complex roots or 

real roots. 

1) Equation (3.1. 15) has complex roots. 

The eigenvalues will have negative real parts since the sum of the roots is 

negative. Therefore, the equilibrium point is asymptotically stable. 

2) Equation (3.1.15) has real roots. 

a) If the product of the relative removal rates is bigger than the product of 

population growth rates, Le. p1p 20 > n1,r 20 , then all of the eigenvalues are 

negative. Therefore, the equilibrium point is asymptotically stable (Hirsh and 

Smale, 1974). 
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b) If the product of the relative removal rates is smaller than the product of 

population growth rates, i.e. p1p20 < tr1tr20 • then there is a positive eigenvalue. 

Therefore, the equilibrium point is unstable. (Hirsh and Smale, 1974) 

2) The second equilibrium point is, 

820(aJJ2 + 02o(r + o, )) (r + o, )(a2of11 + 01820) 
Xio = /3 2 (a20/J1 +51820) ,Xw = /J1(aif32 +020(r+81))' 

We can examine the system for small perturbations from the equilibrium point 

(3.1.16) by letting 

x 1 =x10 (1+u1),y1 =yio(l+v1), 

X2 = X20(1+u2),Yi = Y20(t+v2), (3.1.17.) 

where lu I I, Iv ii, \u2 I, Iv 2 I << I , 

and substituting (3.1.17) and (3.1.16) into (3. L 10). After neglecting the 

product of perturbations, we have the following linearised equations : 

du1 = -(a1a20f31/J2 - D10202(Y + 01) + 01)U1 - a1a20/J1/J2 - 0182/(y + ol) V2, 
dt 020 (a1/32 + <> 20 (r + l,1)) 820(aJJ2 + 820 (y + 01)) 

dvi = (r +81)(u1 -vl + v2), 
dt 

du2 _ (a1a20/J1/32 -8182/(r+o1) 0 J a1a20f3J32 -818202(y +81) 
dt - - (r+81)(a20f31 +81020) + 20 u2 - (y+81)(a20P1 +81020) vi, 

dv2 = D20{U2 + V1 - V2)• 
dt 

(3.1.18.) 

We can simplify (3. l.18) by letting 
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simplified equations are : 

(3.1.19.) 

From (3 .1.19), we obtain the characteristic polynomial of the community matrix 

to be 

-(c1 + 01)-). 0 0 -c1 

IA-All= 
(r +01) -(y+B1)-.t 0 (y+B1) (3.1.20.) =O. 

0 -Cl -(c2 + 1\n)-). 0 

0 820 5211 -ow - ). 

There is one negative root, -820 , of the characteristic polynomial of the 

linearised system. Therefore, stability will be detem1i ned by the roots of the 

cubic equation, 
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13 ( aif3i(a 20 /3 1 +010~0 ) a20f31(aJ32 +81(r+o1)) ~ )~ 2 
IL + - + +r+u\ II. 

0 20 (aJJ 2 +0 20 (r+o1)) (r+o1)(a20/3, +01020) 

+(a1f32 (r + 0 l )( a2of11 + 01020) + a1a2of3JJ2 - 0 L 02/(r + 01) + a1f12 a20/J 1 ),1. 
820(aif32 +020 (r+81)) (a20/J1 +01820) 820 (y+81) 

+ a1a20f31/J2 - 0102/ (r +al) ~· 0 

020 

By the Routh-Hurwitz conditions (Murray, 1993), the necessary awl. sufficient 

condition for all roots of the cubic equation to have negative real parts is 

a I a 20 /31 /3 2 - ()I() 2/ ( r + 0 l ) > O ' and 

<\o 

( a I /3 2 ( a 'D /31 + 8 IO 2D ) a 20 /3 I ( a I /3 2 + 0 I ( y + 01 ) ) ~ ) " + +y+u 1 X 
8w(aJ32 +020(r+o1)) (y+81)(a20f31 +8,020) 

(3. l .22.) 

( a1/J2(r+81)(a20/31 +51820) + a1a20f31/J2 -8182/(y+81) + aJJ2 aw/3 1 ) 

020 (aJJ2 +8 20 (y+81)) (a20/J1 +81820) ow (r+oi) 

> a!a20f3dli - 81c\/(r + 01) 
020 

(3. l .23.) 

(3.1.21) and (3.1.22) are satisfied. Consequently, if (3.1.23) is satisfied then it is 

asymptotically stable. Otherwise it is not stable. 

3.2. THE BASIC MODEL WITH TWO HOSTS AND ONE VECTOR. 

In this section, the basic model for the Ross River virus which has two hosts 

and one vector is introduced and analysed. 
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The human host population is divided into three disjoint groups: The 

susceptible group, x1 (t), consists of individuals who have not yet contracted the 

virus. The infective group, y1 (t), consists of individuals who have contracted the 

virus and are infectious. Finally, the removal group, z1 (t), consists of individuals 

who are removed from the susceptible and infective group due to death and the 

infective group due to immunity after the viraemia period. 

The animal host population is also divided i:ito three disjoint groups : The 

susceptible group, x 2(t), consists of individuals who have not yet contracted the 

virus. The infective group, y1 (t), consists of individuals who have contracted the 

virus and are infectious. Finally, the removal group, zi(t), consists of 

individuals who have been removed from the susceptible and infective group due 

to death at a variable mortality rate and the infective group after the viraemia 

period at the recovery rate. 

The vector population is divided into four disjoint groups. The susceptible 

group, x 3 ( t) , consists of mosquitoes which have not yet contracted the disease. 

The latent group, e(t), consists of mosquitoes which are in the extrinsic 

incubation period and not infectious yet. The infective group, y1 ( t) , consists of 

mo;;quitoes which are infectious after the extrinsic incubation period, and the 

removal group, zit), consists of mosquitoes which have been removed from the 

susceptible, latent and infective groups by death. 

The assumptions in this model are similar to the model (3.1.1 ). The following 

assumptions are made in this model : 
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l. All three populations are homogeneously mixing. 

2. The tota1 human, animal and mosquito populations, n1 (t), n2 (t) and n3 (t), 

changes with constant and variable birth (or recruitment) rates, ai, a 2(t) and 

a3 (r) and constant and variable mortality rates, o., ,\(t) and c\(t). The new 

births in all three populations are not infected and are put directly into the 

susceptible groups 

These ass1Jmptions lead to the following simple model : 

dn 1 (t) --=a1 -8111 1(t), 
dt 

dnJ t 

dt 

dn (t) -1t = ait)-83(t)nit). 

3. The number of infections in the host populations in a time !it are 

rates from the veetor to the human and animal, respectively. The number of 

removals in the host-susceptible groups due to deaths in a time !it are 8 1x1 (t).6.t 

4. The number of infections in the vector population in a time !1t is 

,B 3x3(t)(y1 (r) + y2 (t))L\t, where /3 3 is the constant infection rate from the host to 

the vector. The infection rates from mosquitoes to humans and animals are 

assumed to be the same. 

5. The number of removals due to death or immunity in a time lit are 
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recovery rates ar.J are equal to Ya, and }';;2 , where a1 and a2 are the viraemia 

periods for the human and animal hosts. 

6. The number of new infectives during a time lit is e(t)e(t)l\t, where e(t) is 

a variable transfer rate between the latent group and the infective group and is 

equal to x3(t), where a3(t) is a variable extrinsic incubation period. 

7. The number of removals due to deaths in a time lit is 

8 3 (t)(x3 (t) + e(t) + y3 (t))!it, where c\(t) is a variable mortality rate. 

A diagram representing this model is given in Figure 3.2. 
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Mosquito population 

Human population Animal population 

Figure 3.2 F'low diagram for RRV transmission between two hosts and one 

vector. 

With the above assumptions, the basic deterministic model for the Ross River 

virus which has human and animal hosts and one vector is given by: 
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dx\ (t) 
~= -.Bix1(t)y3(t)-o.x1(t)+a1• 

tty.(t) ( ) 
~= /Jix,(t)yit)- Y1 +o. Y1(t). 

dz1 (t) 
~ = Y1Y 1 (t)-<51z1(r), 

dx2 (t) 
~ = -/3ix2 (t)y3(t)-8i (t)x2(t )+ a2 (t ), 

dy, (t) ( ) d( = f3ix2(t)y1(t)- r2 +<>i(t) Y2(t), 

dz2 (t) -;fr= Y2Y 2 (t )- 82 (t )z2 (t ), 

dx3(t) ( ) ~ = -Axit) y1(t)+ y2 (t) -B3(t)x3(t)+a3't), 

d~;t) = Ax3(t)(y 1(t)+ yi(t))-(~(t)+e(t))e(t). 

dv (t) . Tt = e(t )e(t )- 83 (t )y3 (t ), 
I.. 

(3.2.1.) 

where the initial conditions when t=O are: (x1(t),y1(t),z1(t)) = (xio,Y10 ,0), 

All of the constant parameters in (3.2. l) are nonnegative: 

and all of the variable parameters are nonnegative, 

From equations (3.2.1), for a true epidemic to occur dy,(t), dy2(t), de(t) and 
dt dt dt 

dy3(t) must be positive as in Section 3.1 so that 
dt 
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(3.2.3.) 

(3.2.4.) 

(3.2.5.) 

From the inequalities (3.2.2), (3.2.3), (3.2.4) and (3.2.5), we obtain the 

following inequalities: 

(3.2.6.) 

(.) f3ix2 (t)y3(t) 
Y2t<( ())' Y2 + Di t 

(3.2.7.) 

(3.2:8.) 

From (3.2.6) and (3.2.7), we obtain the following condition: 

,,(3.2.9.) 

,. __ Substituting (3.2.9) into (3.2.8), we obtain 

(3.2. l 0.) ' : 

Since ( ~( 1) ) < l , the threshold condition (3 .2.10) can be changed to 
83 (t + e(t) '·' . 

(3.2.11.) 
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and PP p2(t), andp3(t) are relative removal rates for the hosts and the vector 

at time t. 

From the threshold condition (3.2.11 ), the following conditions can prevent a 

true outbreak from occurring. 

I. Reducing the number of susceptibles in all the populations. Increased 

immunity or vaccination in the human and animal populations can reduce 

the number of possible susceptibles. A program of mosquito control can 

reduce the number of susceptibles in the vector population. 

2. Reducing the infection rates between the hosts and vectors. 

3. Shorter viraemia periods of host populations 

To examine the stability of the system of equations given in (3.2. 1 ), the 

equations can be replaced by a new set of equations given in (3.2.12) in which the 

latent group in the vector population is neglected. The stability result for the new 

system given in (3.2. 12) is exactly the same as for the equations given in (3.2.1) 

since the latent group is dependent on the infective group in the vector population 

as in Section 3.1. 

We have, 
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dx1(t) 
--;;- :: -/31X1 (t)y3(t)-01X1 (t) +al, 

dy;;1) == /3,x1(t)y3(1)-(r1 + o,)y,(t). 

dx2(t) . 
~ == -P2x2(t)y3(t)-o 2 (t)x2(t)+a 2(t), 

dy2(t) --;;;-= f32x2(t)y3(t)-(r2 +.q2(t))y2(t), 

dx3(t) 
----;;;- = -/33X3 (t)(Yi (t) + Y2 (t))- 03(t)x3 (t) + a 3(t), 

dy;Y) = /3 3xJt)(y1 (t) + y2 (t))- Dit)y1(t). 

Chapter 3. 

(3.2.12.) 

The equilibrium points of the equations (3.2.12) can be found by setting the 

derivatives in (3.2.12) to zero. Since the birth and mortality rates in the animal 

population and the recruitment and mortality rates in the mosquito population are 

changing with time t, for examining the stability we shall assume that a 20 , o 20 , 

a:m. and o 30 are the constant average values of the functions, that a 2(t), o2(t), 

a 3 (t), and o3(t), are as in Section 3. 1. Hence, the equilibrium points lie in the 

domain contained by the following equations : 

l81x1(r)+(r1 +81}Y1(t)-a1 ;::Q, 

D20Xi(t) +(r2 + 820)Y2{t)-.a20;:: 0, 

030x3(t)+o30yJ(t)-a30 =0. 

At time t = 0 the equilibrium point is: 

(3.2.13.) 

(3.2.14.) 

After linearising in the departures u1, v1 ,u.2 • and v2 , from the equilibrium point, 

we obtain the eigenvalues from the community matrix and its characteristic 

polynomial. Three eigenvalues of the community matrix are 
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(3.2.15.) 

Since the three eigenvalues in (3.2.15) are negative, stability will be determined 

by the rest of the eigenvalues, which are given by the following cubic equation: 

{ (6, + r, X6,. + r, )+(o,J ty, }6~ + 6,.(0, + r, )-a;:' (/J, :: + fl, :: ) } 

=0 

(3.2.16.) 

The Routh-Hurwitz conditions (Murray, I 993) for all the roots of the cubic 

equation to have negative real parts are 

(r I + r 2 + 0 I + 8 20 + 8 JO) X 

Since the first condition above is automatically satisfied, stability will be 

detennined by the second and third conditions. The complexity of the two 
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condition make it difficult to interpret. Additionally, the second condition is 

satisfied if the basic reproduction rate R0 < 1 as 

3.3. THE GENERAL MODEL, FOR RAV TRANSMISSION 

Most of the parameters used in the deterministic models will have different 

parameter values for different patches describing different regions, species, sex, 

age, etc. However, it is difficult to estimate the values of thes~ parameters. 

Therefore, most of the detenninistic models are assumed to involve homogeneous 

mixing populations. In this section, the general model for Ross River virus 

transmission with heterogeneous mixing populations is considered. The general 

model assumes different parameters for different patches, which are described 

below. Humans and animals are the hosts of the Ross River virus in the general 

model and mosquitoes are the vectors. 

The following assumptions are made in this general model : 

I . Al I of the populations considered in the model arr heterogeneous I y mixing. 

2. There are L -human and m -animal population patches which can be defined 

·. according to region, sex, age, species, etc. 

3. There are n - mosquito vector population patches which can be defined 

according to region, species, etc. 

4. The incubation periods for humans are neglected, while the viraemia periods 

are used to calculate the recovery rates since the infected humans become 
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immune after the viraemia period. In the same fashion. the viraemia periods for 

the animal populations are used to calculate the recovery rates as in the human 

populations. 

5. The human host populations are divided into three disjoint types of groups. 

The susceptible groups. x;'(t), where i == l,2, ... ,l, are groups of individuals who 

have not yet contracted the virus. The infective groups, y:'(t), where 

i = 1,2, ... , l , are groups of individuals who have contracted the virus and are 

infectious. Finally, the removal groups, z/1(1). where i = l,2, ... ,l, are groups of 

individuals who have died or gained immunity and have been removed from the 

susceptible and infective groups. 

6. The animal host populations are also divided into three disjoint lypes of 

groups similar to the human groups. The susceptible groups, x;(t). where 

j = 1,2, ... ,m, are groups of individuals who have not yet contracted the virus. 

The infective groups, y11 (t), where j = 1,2, ... , m, are groups of individuals who 

have contracted the virus and ~·re infectious. Finally, the removal groups, z;(t), 

where j = l,2, ... ,m, are individuals who have died or gained immunity and have 

been removed from the susceptible and infective groups. 

7. The vector populations are divided into four disjoint groups. The susceptible 

groups, x;'(t), where k = 1,2, ... ,n, consist of mosquitoes which have not 

contracted the disease. The latent groups, e ;' ( t) , where k = 1, 2, ... , n , consist of 

mosquitoes which are in the extrinsic incubation period and are not infectious yet. 

The infective groups, y;1 ( t) , where k = 1,2, ... , n , consist of mosquitoes which 
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are infectious; and the removal groups, z;(t), where k = 1.2, ... ,n, are 

mosquitoes which have died and have been removed from the susceptible, latent 

and infective groups. 

8. The total human populations, n: (t), where i = 1,2, .. . ,l, have constant birth 

rates, a~, where i = 1,2, .... l, and constant mortality rates, Oj, where 

i = 1,2, ... ,l. New births occurring within a time At. a:·at. in the human 

population are not infected. Therefore, the new births enter directly into the 

susceptible groups. 

9.Thc total animal populations, n;(t), have variable birth rates, a;(r). where 

j=l,2, ... ,m, and variable mortality rates. '5~(t), where j=l,2,. .. ,m. New 

births occurring within a time llr, a;(t).8t, in the animal populations are not 

infected. Therefore, the new births enter directly into the susceptible groups. 

10. The total mosquito populations, n;n(t), where k = 1,2, ... ,n. have variable 

recruitment rates, at(t). and variable mortality rates, 5Z'(t). The new inputs 

during a time tit, a;'(t)!:t.t. in the vector population are not infected. 

Therefore, they go directly into the susceptible groups. 

11.lndividual humans may migrate from one patch to another patch and so 

provide an extra route for transmission. Since humans are the major long­

distance carriers of the RRV, the emigration and immigration rates in animal and 

mosquito populations are neglected. In the human populations, the emigration 

rates from the i th group to the j th group are <p;(t), where i,j = 1,2, ... ,l, and 

the immigration rates from the j th group to the i th group are 9; (t), where 
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i, j == 1,2, ... , l . If the emigration or immigration occurs in the same group or 

region, the rates will be equal to zero. Therefore, the rate of growth of the 

population of the i th susceptible group due to emigration and immigration will 

I 

be L ( BJ; (t )- <p,; (t) )x; (t). Similarly, the rate of growth of the population of the 
J=l 

i th infective group due to lhe emigration and immigration will be 

I 

I (e;; (1)-<pi <1) )Y;<1). 
j"'I 

12. The rate of occurrence of new infective hosts is proportional to both the 

number of the host-susceptibles and the number of the vector-infectives. Thus, 

the numbers of infections in the host populations during a time b.t are 

t37;1i and {31;1 , i == 1,2, ... , I , j :::: 1,2, ... , m and k = 1,2, ... , n, are the infection rates 

from the vector populations to the human and animal populations, respectively. 

Individuals in the host-susceptible groups die and are removed from the host­

susceptible groups, xt(r) and x;(t), at the mortality rates, o:· and o~(t), where 

i == 1,2, ... , I and j::: 1,2, ... , m, and rates proportional to the number of host­

infectives. Hence, the number of removals in the host-susceptible groups due to 

death during a time !it are 8f x;1(t)M and o;(t)x;(t)At. 

13. The rate of occurrence of new latent vectors, which are infected but not 

infectious, is proportional to both the populations of the susceptible groups of 

vectors and the populations of the infective groups of human and animal hosts. 

Thus, the number of new infections in the vector population in a time flt is 
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i = 1,2, ... ,l, 

j = 1,2, ... , m and k = 1,2, ... , n, are the infection rates from the humans and 

animals to the vectors, respectively. 

14. Individuals in the host-infective populations which die or become immune 

after viraemia periods are removed from the host-infective groups, l(t) and 

y11 (t), ~t the mortality rates, 0/1 and 8~ (t), where i = 1,2, ... , l and j = 1,2, ... , m, 

and at the recovery rates, r'.' and r~ and at rates proportional to the number of · 

host-infectives. Hence, the numbers of removals due to death and immunity 

during a time Lit are (rf + onyJ'(t)fit and (r~ + 8~ (t) ).v;: (t)L\.t, where 

i = 1,2, ... , I and j = 1,2, ... , m, where y;1 and r; are the recovery rates and are 

equal to V II and I/ u , where a:1 and a1 ( i = l,2, ... , l and j = 1,2, ... , m) are 
/ai /a; 

the viraemia periods for human and animal hosts. 

I 5. Individuals in the vector-latent population become infectious after the 

extrinsic incubation period, and are removed from the latent group, e;' (t), at a 

rate proportional to the number of vector-latents. Hence, the number of new 

infectives in a time Mis eZ'(t)e;1(t)6t, k=l,2, ... ,n, where i::;1(t) is the 

transfer rate between the latent group and the infective group and is equal to 

(a;(t)' k;:.1,2, ... ,n, where a;'(t) is the variable ex.trinsic incubation period 

for the k th group. 
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16. Individuals in the vector population are removed due to death from the 

susceptible, latent and infective groups. x;1 (t) , e;' ( t) , yf ( t) , at the mortality 

rates, ot(t), where k = l,2, ... ,n, and at rates proportional to the number of each 

group. Hence, the number of removals due to death in a time flt is 

0;1(t)(x;'(t)+e;'(t)+ yZ'(t))M, k;:: 1,2, ... ,n, where ot(t) is the variable 

mortality rate for the k th group. 

With the above assumptions, the general deterministic model for the RRV 

which has human and animal hosts and mosquito vectors is given in (3.3.1 ). 

dx;1(t) ~ -(t.P:' y;(1) )x:c, )-O,' x7(t)+a; + #.( e; (t )- rp; (t) )xJ (1 ), 

dy;,'t) ~ (t,P;''' y;• (1) };, (1 )-(r:' + 4' )y: (1) + #.( e;; (1 )- ,pi (1 ))yJ (1 ), 

dz''(t) 
_; -=y.hy!'(t)-8.hzh(t) 

dt ' ' ' ' ' 

dx; (t) = -(i {Ji;a Yt (t ))x1 (t )- o; (t)x1 (t) + a1' (t ),· 
dt k=I 

dy~i1 l ~ (t,P; y;(1) )x; (1 )-(r; +o; (t) }yr (1), 

dz'l (t) = y11 v" (t)- o" (t)z" (t) 
dt J. i 1 1 ' 

dx''1(f) ( I m ) ;t = - ~ {JJ;m yJ' (t) + ~p~m yj (t) x;(t )-o;'1(t)x;'(t) + a;1(t), 

dem(t) ( ' m ) 
~! ;:: ~ p~m Y( (t) + ~ P:t yj (t) ~Z1(t)-(ot (t) + t:;1(t))e;(t ), 

dy~?) = t:;1 (t )e;' (t )-o;' (t )yZ' (t ). 

where, i = 1,2, ... ,l, j = 1,2, ... ,m and k = 1,2, ... ,n. 

(3.3.1.) 
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The emigration and immigration parameters for the human populations can be 

implemented in various ways. For example, the transfer between different age 

groups can be included in the migration parameters. The models (3.1.1) in 

Section 3.1 and (3.2.1) in Section 3.2 are simple cases of the general model 

, (3 .3.1) · with l, m and k being 1. In both those models (3.1.1) and (3.2.1 ), the 

- migration parameters are neglected since the populations are assumed to mix 

homogeneously. 

In the general model (3 .3. I), if we assume that 

I . There is no migration. 

2. The infection rates from specific hosts to vectors are same as follows; 

amll = nm/J a d /3<!/I - /3"11 where k = l 2 /J/J; M n jk - j , , , ... ,n. 

Then, if an outbreak occurs;, the following joint threshold condition calculated 

below in a manner similar to Sections 3.1 and 3.2 will be satisfied. 

k _!.__ _,_ + 1 t _;_ >1 ( n £m(t) x"'(t) ]( 1 x!'(t)] ( '1 £m(t) xm(t) 1"' x"(t)) 
~ (8;"(t) + eZ,(t)) p;h (t) fi' p/' (t) tf (8t(t) + e;' (t )) Pt' (t) ~ P; (t) • 

(3.3.2.) 

where 

II ( J.h +-v/) ,. a·:,_; (a,.a +'V,.") c5"'(t) c5m(t) 
( ) Llj I, ( ) f, •nh ( ) k d nw (t) k 

P1 t = /3/"' ,P1 t = /3;m , A t = Pth(t) an Pk = -PA-~,a-(t-)' 

i = 1,2, ... ,1, j ~ 1,2, ... ,m and k = 1,2, ... ,n. 

From the threshold condition (3.3.2), the following conditions similar to the 

conditions as in Section 3.2 can prevent a true outbreak from occurring. 
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I .. Reducing the number of susceptibles in all host and vector populations 

involved in the transmission cycle. 

2. Reducing the infection rates between the hosts and vectors. 

3. Shorter viraemia periods of host populations 

Further details of a mathematical analysis of this model is difficult due to the 

complexity of the interactions. We move now instead to Chapter 4 where we 

examine an RRV model with continuous natural infection. 
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CHAPTER 4. 

THE HOST-VECTOR MODEL FOR THE RRV WITH CONTINUOUS 

NATURAL INFECTION ON MOSQUITO POPULATION 

In this chapter, the mathematical analysis of the host-vector model for the 

RRV transmission with continuous natural infection is presented. The natural 

infection rate can be defined as the rate which the virus is introduced into the 

vector population. An RRV isolation rate is defined as the proportion of the 

vector population which contains RRV. Laboratory results on the RRV 

isolation rates and Aedes camptorhynchus population during the 1995-96 

outbreak in the Peel District as shown in Figure 4.1 indicate the time of onset 

of RRV in the vector population. 

The vector population during the peak summer is very low but the isolation 

rate at the same time is very high. One of the reasons for this is the short 

period of the extrinsic incubation period in summer. On the other hand, 

during winter the isolation rate is zero because the mosquitoes are not 

infectious in winter and the virus persists at a very tow level in the vector 

population. So, the mechanism of the virus introduction into the vector 

population could be a random function depending on the environmental 

conditions and is currently unknown. 

In this thesis, two possible scenarios with a single and continuous natural 

infections are suggested and two types of models with these scenarios are 

analysed and computer:-simulated. 
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Figure 4.1 Ross River virus isolation rate per 1,000 Aedes 

camptorl,ynchus and the trapped Aedes camptorhyncl,us population 

during the 1995-96 outbreak in the Peel District 

The previous Chapter 3 shows the analysis of the model with a single natural 

infection on the mosquito population. These models in Chapter 3 assume that 

there is only one single natural infection on the mosquito population prior to 

the outbreak. ln this chapter, the host-vector models with continuous natural 

infections are introduced and analysed mathematically. Each model in this 

chapter has the same assumptions as in Chapter 3 and an additional 

assumption that the mosquitoes are exposed continuously to the 

environmental infection. 

Section 4.1 and 4.2 introduces the basic RRV transmission models with a 

continuous natural infection and examines its threshold condition and 

stability. Section 4.3 introduces the general RRV model with continuous 

natural infection and examines its threshold condition. 
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4.1. THE BASIC MODEL WITH ONE HOST AND ONE VECTOR WITH 

CONTINUOUS NATURAL INFECTION 

In this section. the basic host~vector model for RRV transmission, which has 

one human host and one mosquito vector and continuous natural infection, is 

introduced and discussed. Animal populations are neglected in the same 

fashion as the model (3.1. I). 

The basic model for the RRV transmission with continuous natural infection 

which has one human host and one mosquito vector is as in (3.1.1 ), with 

dx1 (t) dyi (t) dz1 (t) and dy1(t') as before and 
dt ' dt ' dt • dt 

d~?) = -,82x2 (t)y1 (t) - ( c)2 (t) + 1Jl)X2 (t) +a2 (t ), 

de;;t) = Jj2x2 (t)y1 (t) + 1J1x2(t)-( 02 (t) + e(t})e1 (t). 
(4.1.1.) 

AIJ of the assumptions of the model (3. l .1) in section 3. l hold for the basic 

model (4.1. I). The following assumption is added in the model (4.1. 1 ). 

The rate of occurrence of new latent vectors due to the continuous natural 

infection, which are infected but not infectious, is proportional to the number 

of the vector-susceptibles. Thus, the number of infections in the vector 

population in a time /).t is 1f!X2 (t).6.t. where 1/f is a nonnegative con3tant 

natural infection rate on the mosquito population. 

From the dynamics given in ( 4. L 1 ), for a true epidemic to occur dy1 (t) , 
dt 

dei(t) and dy2(t) must be greater than zero. Hence. we obtain the three 
dt dt 

conditions 
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(4.1.2.) 

(AY, (t )+ tp')x2 (t) 
> 1, and 

(Bz(t) + e(t ))ei{t) 
(4.1.3.) 

(4.1.4.) 

By multiplying the three inequalities ( 4.1.2), ( 4.1.3) and ( 4.1.4), we get the 

joint threshold condition as the following inequality : 

() () (r+81)o(t) 0i(r)+s(t) 
x1 t x2 t > (Ay/t)+v,) · e(t) 

{3, - Y, (t) 

(4.1.S.) 

Since the natural infection rate l/f is very small compare to f3 2y1(t), the 

inequality can be expressed as, 

() () (r+o,)o(t) 82(t)+e(r} () 82(t)+e(t) 
x, t X2 t > {J /3 . ( ) = P1P2 t . ·. . ( ) , ( 4.1.6.) et ·; et 

l 2 . 

where p1 and p 2(t) are relative removal rates for host and vector at time t. 

Thus, the basic model with continuous natural infection rate hJs the same 
.; 

threshold condition as the basic model with a single n atud1l infection (3. 1.1 ) . 

To examine the stability of the system of equations given in (4.1. l ), the 

equations can be replaced with a new set of equations given in ( 4.1. 7) as was 

done with the model (3.1.10) in Chapter 3. 
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The equilibrium points of the system given in (4.1.7) are found by setting 

the derivatives in equations (4.1.7) to zero. Since the recruitment and 

mortality rates in the vector population are changing with time t. for 

examining the stability we suppose that a 20 and 8 20 are the constant average 

values of the functions, a 2 (t) and c>z(t). 

Setting the derivatives of the system (4.1.7) to zero and eliminating x1 , x2 

and y1, in favour of y2 , we have the following quadratic equation, 

(4.1.8.) 

From the quadratic equation, the necessary and sufficient condition for roots 

to be real is 

(4.1.9.) 

Since all parameters in the model (4.1.7) are nonnegative, the condition 

(4.1.9) is satisfied. Furthennore, the product of the roots of the quadratic 

equation ( 4.1. 8), 

positive equilibrium point in the system (4.1.7). 

77 



Chapter 4. 

Even though the only difference between the two basic models (3.1.1) and 

( 4.1.1) is the assumption of continuous natural infection, the present model is 

much more complex. 

After linearising of the system (4.1.7) by considering small perturbations 

from the equilibrium point, the eigenvalues of the community matrix can be 

obtained as in Chapter 3. If all of the eigenvalues are negative, then the 

equilibrium point is asymptotically stable. Otherwise, the equilibrium point is 

unstable. 

4.2. THE BASIC MODEL WITH TWO HOSTS AND ONE VECTOR. 

In this section, the basic host-vector model for the RRV which has two hosts 

and one vector and includes continuour, natural infection is introduced and 

analysed. All assumptions used in the model (3.2. l) are applied in the model 

(4.2.1 ). Furthermore, the additional assumption of continuous natural 

infection is included : 

• The number of infections in the vector population in a time At is 

1ftx3 (t)8t, where lJI is a constant natural infection rate on the mosquito 

population. 

With the above assumptions, the basic deterministic model for the RRV 

which has human and animal hosts and one vector and continuous natural 

dx (t) dy1(t) dz1(t) dx2 (t) dy2 (t) 
infection is as in (3.2. l ), with T,, dt , dt, ~, -;I;-, 

dzz ( t) , and dy3 ( t) as before and 
dt dt 
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- 3 - = -jJ 3x3 (t)(y1 (t) + y2(t) )-( 03(!) + 'J')x3(t) + a3(t), 

dt 

d~~t) = /J3X3 (t)(Y1 (t) + Y2 (t)) + lf'X3(t)-( 83(t) + e(t ))e(t). 
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(4.2.1.) 

From the equations ( 4.1. 1 ), if a true epidemic occurs, then we must have, 

(4.2.2.) 

dy;Y) ~.,, /32X2(t)y3(t)-(Y2 +82(t))Y2{t) > 0 '. (4.2.3.) 

d:~t) = ,B3x3 (t )(y1 (t) + y2 (t))+ 1JFX3(t)- ( c5 3(t) + e(t) )e(t) > 0, and (4.2.4.) 

(4.2.5.) 

From the inequalities (4,2.2), (4.2.3), (4.2.4) and (4.2.5), we obtain the 

following inequalities, 

I, 
';I 

From (4.2.6) and (4.2.7), we obtain the following condition, 

Substituting (4.2.9) into (4.2.8), we obtain 
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Since the natural infection rate 'I' is small compared to f3 2y1(t), the 

inequality (4.2.10) can be expressed as, 

(4.2.11.) 

Thus, the basic host-vector model (4.2.1) has the same threshold condition 

( 4.2. I I) as the threshold condition of the basic model with a single natural 

infection (3 .2. 1 ). 

The equilibrium points of the equations (4.2.1) can be found. by setting the 

derivatives in (4.2. l) to zero. The stability condition can be obtained by 

examining the eigenvalues of the linearised system near the equilibrium points 

as in Section 4.1. 

4.3. THE GENERAL MODEL FOR THE RAV TRANSMISSION 

In this section, the general host-vector model for RRV transmission with 

heterogeneous mixing populations is considered in the same way as the 

general model (3.3. l ). The only additional. assumption is that all mosquito 

species are exposed to continuous natural infection. 

The rate of occurrence of new latent vectors due to the continuous natural 

infection, which are infected but not infectious, is proportional to the number 

of vector-susceptiblcs. Thus, the numbel· of new infections in the vector 

population in a time At is Jff"'xZ'(r)ti.t, where Vf"', j=-;;l,2, ... ,/, is the 

;· 

constant natural infection rate on the m th mosquito species population. 

Wtth the given assumptions the genera.I deterministic model for the RRV 

transmission, which has human and anim~l hos_ts and mosquito vectors, is as 
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dxJ'(t) d/(t) dz:'(t) dxj(t) in. c· 3.3. l), with , , 
dt dt dt ' dt • 

dy;(t) as before and 
dt 

where, k = 1,2 •...• 11. 

dyj(t) 
dt • 
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dzj(t) 
and 

dt ' 

The general model (4.3.1) can incorporate the emigration and immigration 

parameters for the human populations in various ways. For exan.'1ple, the 

transfer between different age groups can be included in the migration 

parameters. The groups in the model (4.3. I) can be regarded as heterogeneous 

mixing populations. The models ( 4.1.1) in Section 4. 1 and ( 4.2.1) in Section 

4.2 are special cases of the general model (4.3.1 ). In both those models (4.1.1) 

and ( 4.2.1 ), the migration parameters are neglected. 

The threshold condition for the general model (4.3.1) without migration for 

a true outbreak to occur is calculated in a manner similar to Sections 3.3 and 

4.1, and can be shown to be : 

( " t:;"(t) x;(t)][ 1 x;(t))+(f., ef'(t) xt(t) ]("' xr(t)J> I 
~(ot(r)+et(r)) p;h(t) ~ pt(t) t(ot(t)+e;'(t)) p;'"(t) ~ py(r) ' 

where 
,c 
I' 

(4.3.2.) 

(ah+ h) (sa+ra) .' am() flm() 
/J ( ) i Y1 a ( ) i f .. mh ( ) k f d mu ( ) k f 

P; t :::: /3/m •P1 t ::::; /Jt . ,,, Pk t :::: f3th(t) an A t = f3j"u (t)' 

for i= 1,2, ... ,l, j= J,2, ... ,mandk::::1,2, ... ,n .. 
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Having completed a detailed analysis of all of our models we now move on 

to Chapter 5. In Chapter 5, the simulation models arid the estimation methods 

for the parameters used in the simulation models are discussed . 

. :1 
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CHAPTER 5. 

PARAMETER ESTIMATION FOR THE SIMULATION 

As was mentioned in Chapters 3 and 4, many parameter values used in the 

general models of RRV transmission (3.3.1) and (4.3.1) are unknown. Our 

present knowledge of the parameters only allows us to use the simple models 

(3.1.1) and (4. 1.1) with one human-host and one mosquito-vector. Even 

though the animal population is neglected in these models, the influence of the 

animal interaction on the transmission cycle is incorporated by assuming that 

the mosquito feeding rate on animals is a fraction of the feeding rate on 

humans. The regions considered in the simulation are the South Coastal 

districts of Western Australia since most serologically confirmed cases of the 

RRV disease have been reported in the south-west of Western Australia. In 

this thesis, the models are used to simulate two big outbreaks of 1991/92 and 

1995/96 in the Peel district and one outbreak of 1995/96 in the Leschenault 

district in the south-west of Western Australia. The geographical location of 

the regions is given in Figure 5. I. 

In the following sections, the methods used to estimate the parameters 

appearing in simulation models (3. l.1) and ( 4.1.1) for RRV transmission are 

discussed. Section 5.1 introduces the two simulation models, one with a 

single natural infection in the mosquito population, the other with continuous 

natural infection. Section 5.2 estimates the parameter values for the human 

population 
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Figure 5.1 Map showing the study areas, south-west of WA, used in 

this simulation models. Figure provided by Dr Michael Lindsay, 

Department of Microbiology, The University of WA. 

84 



Chapter 5. 

prior to the outbreaks. Section 5.3 introduces the methods used to estimate 

the parameters relating to the mosquito population during the outbreak. 

Finally, Section 5.4 discusses the estimation of the infection rates between the 

human and mosquito populations. The parameter estimation in this chapter is 

: based on data from Lindsay ( 1995) and on methods discussed in Comiskey 

(1988) and Comiskey (1991). 

5.1. Simulation models 

The simulation models with single and continuous natural infection in the 

mosquito populations, (3.1.1) and ( 4.1.1 ), will be integrated at daily intervals 

for a simulated period of one year. Therefore, the model assumes that the total 

human population does not change during the simulation. Consequently, the 

birth and death rates in the human population are neglected in the simulation 

models. 

5.2. HUMAN POPULATION 

The initial value of the removed human population indicates the size of the 

human population that was immunised prior to the outbreak. Later. the 

method for estimating the viraemia period in the human population is 

introduced. The incubation period and viraemia period of RRV in the human 

population overlap during transmission. Since the simulation focuses on the 

ratio of clinical to subclinical human infections, the incubation period is 

neglected in the simulation model. The simulation models given in (5. J. I) 

and (5.1.2) assume that the total human population does not change during the 

outbreak, hence the size of the totaJ human population is a constant give_n by. 
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The regions considered in the simulation are the Peel and the Leschenault 

districts in Western Australia. The Peel district is located between 70 and 130 

km south of Perth and extends from the coast to the base of the Darling Scarp 

approximately 25 km inland. The Peel district has an approximate area of 

770krn2
• The Leschenault district is between 165 and 190 km south of Perth, 

also on the Swan Coastal Plain and extends inland approximately 30 km. The 

total area of the Leschenault district is 230 km2 (Lindsay, 1995). The 

approximate total human populations in these districts during big outbreaks 

are listed in Table 5.2. 

Table 5.2 The approximate human populations during the outbreaks 
of 1991/92 and 1995/96 (Lindsay, 1995). 

The Leschenault district 

There is currently no information about the prevalence of antibodies to RRV 

in south-western Australia. Hence, the proportion of immunised humans was 

extrapolated from work done in reg~ons of eastern Australia with a similar 

geography to the Peel study district. Furthermore, the chosen area has a 

similar environmental conditions as the study areas have. Serosurveys prior to 

a big outbreak of RRV disease in 1988-89 suggested that 25% of the 

population were sero-positive in the Gippsland region, Victoria 

(Wolstenholme, 1991). This region has a similar latitude to the south-west 

region of Western Australia and the major vector mosquito species was 

thought to be Aedes (Ochelerotatus) camptorhynchus. A sero-positive value 
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(proportion of immunised humans) of 25% prior to the 1995/96 outbreak in 

the Peel district was therefore assumed for the simulation. Therefore, as an 

initial condition we set the number of removed hosts equal to this value. The 

population of humans that are actually viraemic (infectious) was assumed to . 

be initially zero. 

Hence, the initial number of susceptibles, infectives and removals in the 

human population prior to the outbreaks are assumed to be : 

Human susceptible population x10 =(1-0.25)xn1 , 

Human infective population Y10 =0, 

Human removal population z10 = 0.25 Xn 1• 

The viraemia period is the length of time the virus persists in the host, that 

is, the amount of time required for the formation of antibodies. In reality this 

period is between I and 6 days. For simulation purposes we assume that the 

viraemia period, a1 , is exactly 4 days. The recovery rate for the human 

population is taken to be the inverse of the mean viraemia period: 

r= v =It 4. /ai 

5.3.Mosquito population 

In this section, the major dominant mosquito species in the study areas are 

introduced. Then, the methods by which samples of the female mosquito 

population in the study areas were trapped and the resulting data used to 

calculate an interpolated daily population are described. Following this, the 

methods used to estimate the variable mortality rate and the variable 
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recruitment rate fof the mosquito population are discussed. Finally, the 

method used to estimate the variable extrinsic incubation period is introduced. 

As mentioned in Chapter 3, the main vector of the RRV in the south-west of 

Western Australia 1s Aedes camptor/Jynr.hus. In the two areas being 

simulated, the Peel district and the Leschenault district in Western Australia. 

Aedes camptorhynchlls is the major dominant species during big outbreaks. 

Furthennore, Aedes vigila.x is the second dominant species and Culex 

globocoxitus is the third dominant species in the Peel and Leschenm1~t areas. 

The percentage contributions of the major dominant mosquito species in those 

regions are listed in Table 5.3. 

Table 5.3 The percentage contributions of the major dominant 

mosquitoes in the Peel district and Leschenault district (Lindsay, 1995). 

Region\ Aedes Aedes Cu/ex 
mosquito species ca,nptorhvnchus ViRilax 1dohocoxitus 

The Peel district 73.4 % 11.2 % 3.1 % 
The Leschenault district 60% 17 % S.4 % 

Since Aedes camptorhynchus is the major dominant mosquito species in the 

two districts, the Aedes camptorhynchus species will be used for the 

simulation. 

The total vector population n2(t) can be determined by trapping samples of 

the female Aedes camptorhynchus population. Several non-overlapping·_ 

circular sites (each of 50 m radius) were chosen within the case study area. 

Once or twice per month Aedes camptorlrynchus were trapped at each site 

over the course of a single day. This irregular data is then used to estimate the 
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daily number of Aedes camptorhynchus trapped per site. From these values, 

we then determined· the daily average number of Aedes camptorhynclms, 

nd (t) , trapped per site. Given that we know the size of the case study area we 

can determine the number of traps, wt, required to cover this area. Thus we 

can now estimate the number of Aedes camptorhynchus that would be caught 

if we were to trap over the entire case study area, viz. nit) x wt. 

By using the Natural Cubic Spline method, we can interpolute the monthly 

data to give a daily estimate of the Aedes camptor/rynclms population. There 

is a problem that the interpolated data can predict a negative population. To 

avoid this, we let the negative population to be zero. 

To determine the mosquito mortality rate, 8 2 (t), the Aedes camptorhyrzchus 

life expectancy will be used. The Aedes camptorhynchus mortality rate, 

o2 (t), varies between 1/56 and 1/5, based on the fact that the minimum 

mosquito life expectancy is 5 days in summer and the maximum is 56 days in 

winter. Mortality rates for Aedes camptorhynclms were extrapolated from 

studies of Aedes aegypti and Aedes taeniorhynchus (Turell, 1990). Using a 

cosine function we can construct a smoothed estimate for the mortality rate 

function 

- l ( 1 l ) I ( I I ) (21r t) o (t) =- -+- -- --- cos -2 2 5 56 2 5 56 T ' 

where Tis a total simulation period. 

The basic mortality rate curve obtained here will be used for the whole 

simulation. After calculating the recruitment rate, the mortality rate for each 

5;imulation will be modified to account for environmental effects. 
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The mode1s (3.1.1) and (4.1. l) include only the adult femaJe Aedes 

camptorhynchus population since only female mosquitoes consume blood 

meals from hosts. Therefore, the variable recruitment rate for the new adult 

female Aedes camptorhynchus is not proportional to the Aedes 

camptorhynchus population during the simulation. The recruitment rate 

during the outbreak is caJculated by using the simple differential equation : 

(5.3.1.) 

where ,z2(t) is the daily interpolated average number of Aedes 

camptorhynchus trapped per site (i.e. na<t)) and a2 (r) is the r~cruitment rate. 

Since the recruitment rate must be positive, if the recruitment rate implied by 

equation (5.3. l) is negative then we assume that there was some 

environmental changes which resulted in additional deaths in the vector 

population. Hence, we subtract the negative recruitment rate from the basic 

mortality rate. So, whenever the recruitment rate. a2 (t), is negative we 

modify the mortality rate, 0 2 (t) by choosing: 

Therefore. we have both a positive mortality rate and a reasonable 

recruitment rate. Since we use the real Aedes camptorhynchus population, the 

mortality rate and recruitment rate will contain environmental factors which 

are not at the moment understood. 

The extrinsic incubation period of Aedes camptorhynchus, a 2 , varies 

according to the temperature and humidity. The period is less than 3 days in 

summer and 3 weeks in winter. The parameter values for the extrinsic 
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incubation periods of the Aedes camptorhynchus population were extravolated 

from studies of another alphavirus (Rift Valley fever virus) and Aedes 

taeniorhynchus (Turell, 1985). 

Hence, the extrinsic incubation period will be modelled as a cosine curve : 

a2 (t) == ~ (21 + 3)- ~ (21 - 3)co{
2
;), where Tis the period of oscillation. 

The simulation assumes that the smoothed extrinsic incubation period is 

periodic with period of one year. In the simulation, the date of the maximum 

life expectancy and extrinsic incubation period of Aedes camptorhynchus is 

assumed to be the first of July. As an initial condition for the Aedes 

camplorhynchus population, the susceptible population can be fou,d by 

subtracting the initial infective population from the initial value of the total 

population. The removal population is equal to zero since the Aedes 

camptorhynchus life cycle is short and there is no immunity in the Aedes 

camptorhynchus population. There has been no reported literature on studies 

of natural infection in Aedes camptorhynclzus. This simulation assumes that 

prior to the outbreak the minimum proportion of infected Aedes 

camptorhynchus is 1/15,617 which is the minimum proportion of the RRV 

isolation among Aedes camptorhynchus (Lindsay, 1995). The simulation 

model (5.1.2) assumes that the natural infection rate in the Aedes 

camptorhynchus population is ){ 5,617 x 30 . Here it is assumed that it takes 

30 days to reach the minimum infection rate during an outbreak. 

Hence, the initial numbers of the susceptible, infective and removal groups 

in the mosquito population are : 
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Vector susceptible population 

Vector latent population 

Vector infective population 

and Vector removal population 

5.4. Infection rates /J,,/J, 

Chapter 5. 

e0 =0,, 

Z20=0. 

Most mathematical simulations choose the infection rate as the probability of 

transmission of the disease. In the RRV simulation, the infection rate is 

determined by the Aedes camptorhynchus feeding preference, transmission 

rate, and the VIR rate. The transmission rate is the chance that one Aedes 

camptorhynchus bite causes the transmission of the RRV. Among all hosts 

the Aedes camptorhynchus has a biting preference for humans. The 

preference is, also, used to include the other hosts in the transmissi.~:1 cycle. 

As the populations of other hosts are unknown, by using the inverse of the 

human feeding rate and multiplying by the infected human population other 

hosts will be included. Here, the simulation assumes that there are (1 I human 

feeding rate) times more infectives including animal infectives than human 

infectives. 

The simulation model inciudes two further assumptions : 

I. It is likely that only a proportion of infected humans can pass the virus on 

to mosquito vectors. This proportion is not known. Therefore, the simulation 

assumes that only 50 per cent of the infective humans can pass the virus on to 

mosquito vectors. This is referred to as the VIR rate in the simulation. 
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2. The human population is distributed in Oi1iy 60 percent of the study region 

wher~ Aedes camptorhynchus can bite the human population. This is referred 

to as the distribution rate in the simulation. 

The infection rate from the vector to host can be calculated as : 

Human feeding rate x Distribution rate x Transmission rate 
/3 i =: Total human population · 

Entomological studies from various parts of Austra1ia indicate that human 

feeding by Aedes camptorlrynchus is usually no greater than 5 per cent (0.05) 

(Kay et al., 1987). The simulation will examine the sensitivity of the model 

to the vector-host transmission rate which will be varied from 0.25 to 0.75. 

These values have been used for Murray Valley encephalitis (Kay et al., 

1987). 

The infection rate from the host to the vector can be obtained by multiplying 

the human feeding rate, VIR rate, and transmission rate, and dividing by the 

total human population as : 

VIR rate x Distribution rate x Transmission rate 
/3 2 = Human feeding rate x Total Ae. camptorhynchus population at the time t · 

The simulation will also examine the sensitivity of the model to the host­

vector transmission rate which will be varied from 0.25 to 0.75 in steps of 

0.05. 

Having discussed the parameter estimation we now move on to Chapter 6 

where the simulation results are described for two outbreaks in the Peel 

district and one outbreak in the Leschenault district in Southwestern Australia. 
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As mentioned in the previous chapters, the RRV transmission moclel'i are 

divided into two types according to whether the natural infection in the.:Aedes 

camptorhynchus population is single or continuous. The simulations of RRV 

transmission presented in this chapter consider two big outbreaks in the Peel 

district and one outbreak in the Leschenault district in Southwestern AustrafoL 

Section 6.1 presents simulation results using a variety of methods suitable for 

determining the spread of the disease. Section 6.1 is based on the outbreak of 

1991/92 in the Peel district. Sections 6.2 and 6.3 describe the simulation res.nits 

for the outbreak of 1995/96 in the Peel and Leschenault districts. Finally, 

Section 6.4 presents a discussion of the ecological implications of the 

simulation results. The algorithms for the simulation were written by the author 

using computer programs written in the C language. 

6.i. SIMULATION RESULTS FOR THE 1991/92 OUTBREAK IN THE 

PEEL DISTRICT 

The Peel district is located between 70 and 130 km south of Perth and exte;1ds 

from the coast to the base of Darling Scarp approximately 25 km inland. The 

study area is defined according to mosquito breeding sites by Lindsay ( 1995). 

The total area of the Peel district is approximately 770 km2
• 
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Figure 6.1.1 Map showing the Peel district, south-west of WA. Figure 

provided by Dr Michael Lindsay, Department of Microbiology, The 

University of Western Australia. 

The simulation results in this section include the following : 

1. Interpolated daily Aedes camptorhynchus population. 
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2. Recruitment and mortality rates and extrinsic incubation period of the Aedes 

camptorhynchus population. 

3. Simulation results for single and continuous natural infections with various 

transmission rates. The simulation results provide annual sero-conversion rates 

and the likely ratios of clinical to subclinical human infections during the 

outbreaks. This can be determined by comparing the results of simulations with 

actual notifications during the outbreaks. 

4. Simulation result using different starting dates for the outbreaks. 

5. A ten year simulation with the same parameter variables as for the outbreak 

of 1991 /92 in the Peel district. 

6. A two year outbreak based on the aci.ual Aedes camptorhynchus population 

in 1991/93. 

7. Simulation results with a seasonal human exposure rate on mosquitoes. 

6.1.1. Estimating the parameters for the Aedes camptorhynchus 

population 

Table 6.1.2 obtained by Lindsay ( 1995) shows the date of the traps, successful 

trap numbers, the total trapped Aedes camptorhynchus numbers, and the 

average number of trapped Aedes camptorhynclms per trap in the Peel district 

during 199 l /92. Si nee the trapped Aedes camptorhynchus population is 

fortnightly data, the daily Aedes camptorhynchus population can be estimated 

by a suitable numerical method. The interpolated daily Aedes camptorhynchus 

population in the Peel district during 1991/92, which was obtained by applying 

the Natural Cubic Spline interpolation method to the data for the trapped Aedes 

camptorhynchus population, is shown in Figure 6.1.3. 
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Table 6.1.2 The date of the traps, successful trap numbers, the total 

trapped Aedes camptorhynchus numbers from successful traps, and the 

mean number of trapped Aedes camptorhynchus per trap in the Peel 

district during 1991/92 (Lindsay, 1995). 

Sum (from traps) Mean 
Date traps Aedes camptorhynchus Aedes camptorhynchus 
4-Jul-91 9 7404 822.67 

6-Aug-91 9 4245 471.67 
28-Aug-91 to 21352 2135.20 

17-Sep-91 9 7141 793.44 

3-0ct-91 9 2924 324.89 

16-0ct-91 7 7592 1084.57 

4-Nov-91 2 1823 911.50 

7-Nov-91 11 2240 203.64 

19-Nov-91 6 2298 383.00 

9-Dec-91 9 690 76.67 

17-Dec-91 7 107 15.29 

3-Jan-92 8 481 60.13 

20-Jan-92 8 5 0.63 

29-Jan-92 2 I 0.50 

30-Jan-92 6 0 0.00 

20-Feb-92 9 1319 146.56 

26-Feb-92 to 1898 189.80 

4-Mar-92 9 327 36.33 
25-Mar-92 8 21 2.63 

1-Apr-92 8 44 5.50 

23-Apr-92 9 446 49.56 

27-May-92 7 939 134.14 

24-Jun-92 7 339 48.43 

29-Jul-92 5 1965 393.00 

10-Sep-92 9 3940 437.78 
" 

12-0ct-92 11 5317 483.36 
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Figure 6.1.3 Interpolated daily Aedes camptorhynchus population during 

the outbreak of 1991/92 in the Peel District 

The basic daily mortality rate is assumed to be a normalised cosine curve 

which has a minimum of 1/56 and a maximum of 1/5 based on the Aedes 

camptorhynchus life expectancy of 5 days in summer and 8 week in winter. 

The daily recruitment rate is obtained by inserting the daily interpolated Aedes 

camptorhynchus population and the basic mortality rate into a simple 

population dynamics mode]. The recruitment rate can not have negative values, 

hence, if the recruitment rate obtained from the population dynamics is negative 

then the negative part is subtracted from the basic mortality rate as ex.plained in 

Chapter 5. 

The modified daily mortality and recruitment rates are displayed in Figures 

6.1.4 and 6.1.5. 
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Figure 6.1.4 Modified daily mortality rate during the outbreak of 1991/92 

in the Peel District. 
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Figure 6.1.5 Modified daily recruitment rate during the outbreak of 

1991/92 in the Peel District. 
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In Figure 6.1.6, the extrinsic incubation period is assumed to be a cosine curve 

which has a minimum of 3 days in summer and a maximum of 21 days in 

winter. 
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Figure 6.1.6 Daily extrinsic incubation period of the Aedes camptorhynclius 

population during the outbreak of 1991/92 in the Peel District. 

6.1.2. Simulation result for the models (3.1.1) and (4.1.1) 

In this section, the simulation results for the model (3.1. 1) and ( 4.1. l) with a 

single natural infection in the Aedes camptorhynchus population are pre ented. 

The starting date for the outbreak. in this section is assumed to be the 4th of July 

1991. The simulation results in Figures 6.1. 7, 6.1.8 and 6.1.9 for the model 

(3.1.1) show the daily changes of the susceptible and the infectious human 

populations and infectious Aedes camptorhynchus population in the Peel 

district in 1991/92. The results are based on transmission rates varying from 25 

% to 75 % with 5 % increments. 
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Figure 6.1. 7 Daily susceptible human population with a single natural 

infection in the Aedes camptorhynchus population during the outbreak of 

1991/92 in the Peel District when the transmission rates are varied 

(Legend on RHS). 
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Figure 6.1.8 Daily infectious human population with a single natural 

infection in the Aedes camptorhynchus population during the outbreak of 

1991/92 in the Peel District when the transmission rates are varied 

(Legend on RHS). 
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From the simulation results, when the transmission rate is 25%, the total 

infected human population during the outbreak of 1991/92 is 2.46 % of the total 

human population. On the other hand, when the transmission rate is 75%, then 

the total infected human population is 70.9 % of the total human population. 

7.00E+04 

6.00E+04 

5.00E+04 

4.00E+04 

3.00E+04 

2.00E+04 

1.00E+04 

O.OOE+OO 
N 
O> 

I 

:i ...., 
t 

N N 
~ ~ 
:i g) ...., ::, 

0 <( 
I 

(") I() 
N 

N N N ~ O> Ol O> 
0. tj ~ 0 
Q) 

~ '1 0 
I I . 

0 (0 .,... ,.... 
N .- ..... 0 

--25% 

--30% 

--35% 

--40% 

--45% 

--50% 

--55% 

--60% 

--65% 

--70% 

--75% 

(") (") (") (") (") (") (") (") 
O> 

~ ~ O> O> O> O> ~ e ,!. 

~ 
::.. e =i (II cu ; (II 

~ 
::, 

~ 7 7 ~ 7 
N co (") .... (0 N 

,.... 
0 0 N N N ... .,... 0 

Date 

Figure 6.1.9 Daily infectious Aedes camptorhynchus population with a 

single natural infection in the Aedes camptorhynchus population during the 

outbreak of 1991/92 in the Peel District when the transmission rates are 

varied (Legend on RBS). 

The reason of the disappearance of the infections after the high peaks of 

outbreak can be explained by no ongoing source of infection. The other reason 

of this is that the vector population after the peak of the outbreak is very small 

compared with the earlier population as shown in Figure 6.1.3 . The simulation 

results below in Figures 6.1.10, 6.1.11 and 6.1.12 for the model with continuous 

natural infection in the mosquito population (4.1.1) show the daily changes in 

the susceptible and infectious human populations and infectious Aedes 
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camptorhynchus population in the Peel district in 1991/92. The results are 

based on transmission rates varying from 25 % to 75 % with a 5 % increment. 
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Figure 6.1.10 Daily susceptible human population with continuous natural 

infection in the Aedes camptorhynchus population during the outbreak of 

1991/92 in the Peel District. 
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Figure 6.1.11 Daily infectious human population with continuous natural 

infection in the Aedes camptorhynchus population during the outbreak of 

1991/92 in The Peel District. 
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From the simulation results, when the transmission rate is 25 %, the total 

infected human population during the outbreak of 1991/92 is 5.03 % of the total 

human population. On the other hand, when the transmission rate is 75 %, then 

the total infected human population is 71. 5 % of the total human population. 

As 25 % of the total human population is assumed to be immunised, then in this 

case most of the susceptible humans are infected during the outbreak. 
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Figure 6.1.12 Daily infectious Aedes camptorhynchus population with 

continuous natural infection in the Aedes camptorhynchus population 

during the outbreak of 1991/92 in the Peel district. 

Figure 6.1.13 shows a comparison of the simulation results for single and 

continuous natural infection in the Aedes camptorhynchus population. 
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Figure 6.1.13 Daily infectious human populations with a single and 

continuous natural infection in the Aedes camptorhynchus population 

during the outbreak of 1991/92 in the Peel District. 

As Figure 6 .1.13 indicates the single natural infection gives a high peak at the 

beginning of the outbreak, but the disease eventually dies out since there is no 

source of ongoing infection in the Aedes camptorhynchus or human 

populations. On the other hand, Figure 6.1.13 indicates that continuous natural 

infection allows the disease to persist in the host and vector populations. 

The following Figure 6.1.14 shows the actual number of notifications during 

the outbreak. The reported incidence of Ross River virus in the Peel district 

during the outbreak of 1991/92 was 77. A database has been constructed to 

record the incidence, timing and place of exposure of cases of Ross River virus 

disease in Western Australia. Data has been provided by all medical 

practitioners throughout the south-west of Western Australia who were 

registered with the Medical Board of Western Australia on the 29th July 1986. 
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Figure 6.1.14 Actual notifications during the outbreak of 1991/92 in the 

Peel District 

The simulation results with transmission rates varied and a single natural 

infection predict a minimum of 475 people (about 1.17 % of the total human 

population) with 25% transmission rate and a maximum of 26,021 people 

(about 64.2 % of the total human population) with 75% transmission rate were 

infected. The result suggests that the ratio of clinical to subc1inica1 human cases 

during the outbreak was 1 clinical case to between 6 and 337 subclinical human 

infections since there were only 77 clinical notifications. On the other band, the 

simulation results with continuous natural infection predict that between 1,375 

(with 25% transmission rate) and 26,669 (with 75% transmission rate) people 

were infected (about 3 - 66 % of the total human population). In this case, the 

likely ratios of clinical to subclinical human cases during the outbreak were 1 : 

17 - 346. During the major outbreak of 1983/1984 in the Griffith region of 

New South Wales, most RRV infections were thought to have resulted in illness 

(Hawkes et al., 1985). In Queensland, the annual ratio of clinical to subclinical 

cases has been estimated as 1 to 80 and the annual seroconversion rate is 
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approximately 4 per cent ( Asakov et al., 1981 ). During the outbreak of 

1988/1989 in Victoria (mostly the Gippsland region), the ratio of clinical to 

subclinical human notifications was estimated at 1 to 3.3 and the sero­

conversion rate was estimated at 0.4 per cent (Wolstenholme, 1991 ). Based on 

these previously determined ratios and the endemicity of RRV in Southwestern 

Australia, it is plausible to expect the minimum ratio of clinical to subclinical 

human infections of I : I 7 and a seroconversion rate of 3 per cent as suggested 

by this simulation. Since the transmission rate plays an important role of 

predicting the ratios of clinical to subclinical human infections and the sero­

conversion rates, the transmission rate should be obtained to get more realistic 

results. 

Since the RRV disease is endemic in Western Australia, continuous natural 

infection in the Aedes camptorhynchus population is a more reasonable 

explanation of the transmission cycle. There could be a question on the 

persistence of the virus during winter since this simulation treats Aedes 

camptorhynchus as the only mosquito species. However, there is no evidence to 

prove that Ross River virus persists in another mosquito species during winter. 

The time difference between the simulation results and the actual notifications 

could be explained by the reason that it takes some time for the Aedes 

camptorhynchus to reach the human residential area. Also, the starting date of 

the outbreak could be later than assumed. The following section presents 

results of simulations using different starting dates for the outbreak. 
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6.1.3. Simulation results using different starting dates for the 

outbreak 

There has been no research undertaken on the environmental infection causes 

of RRV in the Aedes camptorhynchus population. Even when environmental 

infection takes place is not known. Here, the simulation examines different 

starting dates for the outbreak and compares the results with those obtained 

when starting in mid-winter. Since the RRV disease is endemic in the study 

area and the host-vector model with continuous natural infection provides a 

more plausible mechanism for the outbreak, the simulation model (4. I. I) is 

used in this section. To inspect the trend of the epidemic curves, the 

transmission rate is assumed to be 25 % through the simulations in this section. 

Since the onset of the outbreak is currently not known, this section presents 

results of simulations of the 1991/92 outbreak in the Peel district with four other 

starting dates : 6th and 28th August, 17th September, and 3rd of October, 1991. 

The following Figures 6. I .15 and 6.1.16 present the infectious human 

population and infectious Aedes camptorhynchus populations during the 

outbreak of 1991/92 in the Peel region with the five starting dates of 4th July, 

6th and 28th August, 17th September, and 3rd October, 1991. 

108 



Chapter 6. 

Daily Infectious tunan populations 

2818/91 

10000 

5000 

0 

13/10/91 23/1 /92 2/5/92 2917 /92 

Day 

Figure 6.1.15 Daily infectious human populations during the outbreak of 

1991/92 in the Peel district using different starting dates for the outbreak. 
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Figure 6.1.16 Daily infectious Aedes camptorhynchus population during 

the outbreak of 1991/92 in the Peel district using different starting dates for 

the outbreak. 

Figures 6.1.15 and 6.1.16 show surprising peaks when the starting date is 

28/8/91. Since the initial condition for the infective Aedes camptorhynchus 

population is proportional to the total Aedes camptorhynchus population at the 

time, the large size of the trapped Aedes camptorhynchus population on August 

28th in Table 6.1.2, 2135, caused the peaks. Hence, the results of Figures 
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6.1.15 and 6.1.16 re-emphasise that the size of the Aedes camptorhynchus 

population is critical to the transmission cycle. 

Table 6. 1. 17 presents the likely ratios of clinical to subclinical human cases 

and the sero-conversion rates during the outbreak of 1991/92 in the Peel district 

for the different starting dates. 

Table 6.1.17 The number of total infected humans, sero-conversion rates, 

and the likely ratios of clinical to subclinical human infections during the · 

outbreak of 1991/92 in the Peel district according to the starting date of 

the outbreak. 

Starting daie · Total infected humans Sero- The likely .ratio of· 

·•·· of the during. the oqtbreak conversion· Clinical to subclinical. 

outbreak between Ju]y/91 and rate human ·infections 

July/92 • 

4/7/91 1375 3.39 I : 17 

6/8/91 1280 3.16 l : 16 

28/8/91 1711 4.22 1: 22 

17/9/91 641 1.6 1: 8 

3/10/91 390 0.96 1: 5 

Results with later starting dates of the outbreak were expected to yield fewer 

human infections after the outbreak since the reduction is caused by the shorter 

outbreak period and the mosquito population on the starting date. However, the 

more vector population at the beginning of the outbreak caused more human 

infections. For example, the total infected humans of 1,280 from the result with 
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the starting date, 6/8/91, is less than 1,711 infected huma.ns from the result with 

the starting date, 28/8/ 199 l. The mos qui to population at the starting dates of 

the outbreak on 6th and 28th of August, 1991, are 37,129,066 and 167,946,096 

and the infectious mosquitoes assumed in the simulation are 2,377 and 10,754, 

respectively. Consequently, the larger initial infectious mosquito population 

yielded more infected humans during the outbreak. 

6.1.4. Ten year simulation 

In this section, simulation results are presented for a ten year outbreak based 

on the outbreak of 1991/92 in the Peel district are given. 

The simulation is based on the following assumptions : 

I. The human population does not change during the entire outbreak. 

2. All of the parameters for the Aedes camptorhynchus population are obtained 

from the one year outbreak of 199 l /92 in the Peel district. The changes in the 

Aedes camptorhynchus population each year are assumed to be the same as in 

the previous year. 

Figures 6.1. I 8 and 6.1.19 show the changes in the infectious human and Aedes 

camptorhynchus populations during the ten year outbreak. 
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Figure 6.1.18 Daily infectious human population during the ten year 

outbreak based on the outbreak of 1991/92 in the Peel district. 
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Figure 6.1.19 Daily infectious Aedes camptorhynchus population during 

the ten year outbreak based on the outbreak of 1991/92 in the Peel district. 

As observed in Figures 6.1.18 and 6.1.19, more infections occurred in the 

second outbreak because the first outbreak started later in the yearly cycle. The 

decline in the vector infections is not as rapid as the decline in the human 

infections because the birth rate in the human population is assumed to be zero 

while the susceptible vector population is continually being renewed by 
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recruitment. Consequently, the number of the vector susceptibles remains the 

same for each outbreak, but the interaction between the infectious humans and 

susceptible vectors becomes less frequent in the later outbreaks. Figures 6.1.18 

and 6.1.19 are obtained on the assumption that the recruitment and mortality 

rates for the Aedes camptorhynchus population remain the same as in 1991/92 

for the following ten years. However, in reality, after the big outbreak of 

1991/92 the number of human notifications decreased in the following year. 

The results of the ten year simulation indicate that if the Aedes camptorhynchus 

population is seasonal, then the outbreak will also be seasonal. 

6.1.5. Simulation results for the 1991/93 outbreak in the Peel 

district 

This section gives the simulation results for a two year outbreak based on the 

real Aedes camptorhynchus population data. All of the parameter estimations 

for the simulation are obtained by the same methods as in Section 6.1. The 

simulation assumes the outbreak starts at the 4th of July, 1991. The 

interpolated mosquito population and the daily infectious human and Aedes 

camptorhynchus populations for the outbreak of 1991/93 in the Peel district are 

presented in Figures 6.1.20, 6.1.21 and 6.1.22, respectively. 
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Figure 6.1.20 Interpolated daily Aedes camptorhynchus population during 

the outbreak of 1991/93 in the Peel district. 
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Figt1re 6.1.21 Daily infectious human population during the outbreak of 

1991/93 in the Peel district. 
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Figure 6.1.22 Daily infectious Aedes camptorhynthus population during 

the outbreak of 1991/93 in the Peel district. 

As can be seen on Figure 6.1.20, the Aedes camptorliyncl1us population was 

substantially smaller in the secund year (1992/93). The decline of the Aedes 

camptorhynchus population results in a reduction in the number of human and 

Aedes camptorhynchus infections as shown in Figures 6.1.2 l and 6.1.22. 

6.1.6. Simulation results with a variable human exposure rate 

' In this section, the simulation examines the host-vector model with a variable 

human exposure rate. Since people spend more time outside, and are more 

exposed to mosquitoes in summer than in winter, seasonal changes in human 

behaviour can influence the infection rate between humans and Aedes 

camptorhynchus. Hence, the simulation model assumes that the human 

exposure rate changes annually with 0.5 as the minimum rate on I st July (mid­

winter) and I as the maximum rate on 1st January (mid-summer). 

Therefore, the infection rates between humans and Aedes camptorhynchus are 
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a = Human feeding rate x Distribution rate x Transmission rate x Human Exposure rate 
/JI ' Total human population 

and 

/3 = VIR rate x Distribution rate x Transmission rate x Human Exposure rate 
2 Human feeding rate x TotalAedes camptorhynchus population at the time t' 

where /J1 is the infection rate from Aedes camptorhynchus to humans and /J2 

is the infection rate from humans to Aedes camptorhynchus. 

The following Figures 6.1.23 and 6.1.24 give a comparison of the simulation 

results with and without a variable human exposure rate during the outbreak of 

1991/92 in the Peel district. 
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Figure 6.1.23 Daily infectious human population with and without 

a variable human exposure rate during the outbreak of 1991/92 

in the Peel district. 
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Figure 6.1.24 Daily infectious Aedes camptorhynchus population with and 

without a variable human exposure rate during the outbreak of 1991/92 

in the Peel district. 

During the outbreak of 1991/92 in the Peel district the total number of infected 

humans predicted by the simulation with a variable human exposure rate is 740 

when the transmission rate is 25%. This represents 1.8 % of the total human 

population. 

6.2. SIMULATION RESULTS FOR THE 1995/96 OUTBREAK IN THE PEEL 

DISTRICT 

In this section, simulation results for the RRV outbreak of 1995/96 in the Peel 

district are presented. Since the RRV outbreak is endemic in Southwestern 

Australia and the model with a single natural infection can not bring ongoing 

infection after the peak of outbreak, the continuous natural infection is more 
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plausible in the study area. The simulations with a single natural infection will 

be disregarded here. Parameter estimations for the Aedes camptorhynchus 

population are given in this section. Simulation results Jor the infectious human 

and Aedes camptorhynchus populations are presented later. Finally, the annual 

sero-conversion rate and the likely ratio of clinical to subclinical human 

infections are discussed assuming different starting dates for the outbreak as in 

Section 6.2. 

In Section 6. J, a transmission rate of 25 % produced plausible results for the 

outbreak in the Peel district. Therefore, the transmission rate in this section is 

assumed to be 25 %. The variable human exposure rate examined in Subsection 

6.1.6 is not included in this simulation model as the range of the human 

exposure rate is still unknown. 

Table 6.2.1 obtained by Lindsay, University of Western Australia 

(unpublished), shows the date of the traps, successful trap numbers, the total 

number of trapped Aedes camptorhynchus, and the average number of trapped 

Aedes camptorhynchus per trap in the Peel district during 1995/96. 

,, 
" 
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Table 6.2. t The date of the traps, successful trap numbers, the total 

trapped mosquito numbers from successful traps, and the average 

number of the trapped mosquitoes per trap in the Peel district during 

1995/96. 

Sum (from traps) Mean 
Date traps Aedes camptorhynchus Aedes camptorhynchus 

17-Jul-95 20 2704 135.200 
14-Aug-95 19 2438 128.316 
29-Aug-95 20 4686 234.300 
14-Sep-95 21 5891 280.524 
26-Sep-95 20 5809 290.450 
11-0ct-95 20 3904 195.200 
24-0ct-95 20 4000 200.000 
6-Nov-95 19 5676 298.737 

22-Nov-95 20 4550 227.500 
7-Dec-95 19 7452 392.211 

27-Dec-95 18 7486 415.889 
15-Jan-96 19 407 21.421 
5-Feb-96 18 661 36.722 

15-Feb-96 18 1018 56.556 
28-Feb-96 18 2256 125.333 
11-Mar-96 19 473 24.895 
28-Mar-96 19 50 2.632 
10-Apr-96 19 207 10.895 
23-Apr-96 19 247 13.000 
14-May-96 19 1389 73.105 

3-Jun-96 19 1037 54.579 
18-Jul-96 19 5158 271.474 

As in Section 6.2, the interpolated daily Aedes camptorhynchus population, the 

parameter estimations of the mortality and recruitment rates, and the extrinsic 

incubation period are shown in the following Figures 6.2.2, 6.2.3, 6.2.4, and 

6.2.5, respectively. 
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Figure 6.2.2 Interpolated daily Aedes camptorhynchus population during 

the outbreak of 1995/96 in the Peel district. 
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Figure 6.2.3 Modified daily mortality rate during the outbreak of 1995/96 

in the Peel district. 

Two peaks in Figure 6.2.3 are found after generating the daily recrujtment rate on 

Aedes camptorhynchus population given in Figure 6.2.4. This implies that during 

the period of two peaks some environmental changes occurred and caused more 

death on Aedes camptorhynchus population. 
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Figure (,.2.4 Modified daily recruitment rate during the outbreak of 

1995/96 in the Peel district. 
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Figure 6.2.5 Daily extrinsic incubation period during the outbreak of 

1995/96 in the Peel district. 

The following Figures 6.2.6 and 6.2.7 present the infectious human population 

and infectious mosquito population during the outbreak of 1995/96 in the Peel 

region with five different starting dates: 4th July, 14th and 29th August, 14th 

and 26th September, 1995. Starting dates of the outbreak are selected according 

to the mosquito trap dates given in Table 6.2.1. 
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Figure 6.2.6 Daily infectious humans during the outbreak of 199S/96 in 

the Peel district using different starting dates for the outbreak 
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. Figure 6.2.7 Daily infectious mosquitoes during the outbreak of 1995/96 in 

the Peel district using different starting dates for the outbreak 

Figure 6.2. 7 shows the starting sizes of the infectious Aedes camptorhynchus 

population for the different starting dates. Figure 6.2.8 shows the actual number 

of notifications during the outbreak. The table 6.2.9 presents the likely ratios of 

clinical to subclinical human cases and the annual sero-conversion rates during 

the outbreak of 1995/96 in the Peel district for the different starting dates. The 

number of total human notifications during the outbreak of 1995/96 was t O l. 
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Figure 6.2.8 Human notifications during the outbreak of 1995/96 

in the Peel district 

Table 6.2.9 The number of the total infected humans, sero-conversion 

rates, and the likely ratios of clinical to subclinical human infections 

during the outbreak of 1995/96 in the Peel district according to the starting 

date of the outbreak when the transmission rate is 25%. 

Starting date Total infected humans Sero- The likely ratio of 

of the during the outbreak conversion clihical to subclinical 

outbreak between July/95 and rate human infections 

July/96 

17/7/95 585 1.04 1 : 5.8 

14/8/95 423 0.75 1 : 4.19 

29/8/95 430 0.77 l: 4.26 

14/9/95 389 0.7 l: 4.85 

26/9/95 353 0.63 I : 3.5 

Compared to the results for the outbreak of 1991 /92 given in Section 6.1, the 

number of human infections for 1995/96 is small. The reason for the reductfon 

is the small size of the mosquito population. However, the fewer human 

infections staring from 14/8/95 than from 29/8/95 can be explained by that the 
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initial vector population at the starting time was more on 29/8/95 than 14/8/95. 

In the following section 6.3, the simulation results for the outbreak of 1995/96 

in the Leschaunalt district are described. 

6.3. SIMULATION RESULTS FOR THE 1995/96 OUTBREAK IN THE 

LESCHENAUL T DISTRICT 

The Leschenault district is between 165 and 190 km south of Perth, al so on the 

Swan Coastal Plain and extending inland approximately 30 km. The total area 

of the Leschenault district is 214 km2 (Lindsay, 1995). The location of the 

Leschenault district is given in Figure 63. J • 

Simulation results in this section are presented in the following order : 

I. Parameter estimations for the daily Aedes camptorhynchus population, 

recruitment and mortality rates and extrinsic incubation period of the Aedes 

camp to rhynchus population. 

2. Simulation results with different transmission rates. 

3. Sero-conversion rates and the likely ratios of clinical to subclini:al human 

infections. 

6.3.1. Estimating the parameters for the Aedes camptorhynchus 

population 

Table 6.3.2 obtained by Lindsay (1995) shows the date of the traps, successful 

trap numbers, the total trapped Aedes camptorhynchus numbers, and the average 

number of trapped Aedes camptorhynchus per trap in the Leschenau]t district 

during 1995/96. Using the same method as in Section 6.1, the interpolated daily 
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Aedes camptorhynchus population in the Leschenault district during 1995/96 is 

calculated and shown in Figure 6.3.3. 

,,,,. 
Ou• 

Table 6.3.1 Map showing the Leschenault district, south-west of WA. 

Figure provided by Dr Michael Lindsay, Department of Microbiology, 

The University of WA. 
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Table 6.3.2 The frap date, successful trap numbers, th: total trapped 

Aedes camptorhynchus numbers from successful traps, and the mean 

number of the trapped Aedes camptorhynchus per trap in the Leschenault 

district during 1995/96 (Lindsay, 199S). 

Trap date traps Total Mean 
20-Jul-95 11 1523 138.455 
14-Aug-95 11 1880 170.909 
29-Aug-95 JO 1481 148.100 
13-Sep-95 11 4104 373.091 
27-Sep-95 9 4137 459.667 
1 l-Oct-95 I l 1198 108.909 
24-0ct-95 11 1839 167.182 
6-Nov-95 11 853 77.545 
22-Nov-95 IO 3855 385.500 -
7-Dec-95 10 1292 129.200 
27-Dec-95 9 4901 544.556 
15-Jan-96 JO 864 86.400 
31-Jan-96 JO 140 14.000 
15-Feb-96 9 1643 182.556 
28-Feb-96 IO 1943 194.300 
l 1-Mar-96 10 289 28.900 
28-Mar-96 7 28 4.000 
IO-Apr-96 7 21 3.000 
23-Apr-96 7 157 22.429 
14-May-96 6 528 88.000 
3-Jun-96 7 2232 318.857 
18-Jul-96 9 1589 176.556 
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Figure 6.3.3 Interpolated daily Aedes camptorhynchus population during 

the outbreak of 1995/96 in the Leschenault District 

The modified mortality and recruitment rates and extrinsic incubation period 

of the Aedes camptorhynchus population are obtained by the same methods as 

in Section 6.1 and displayed in Figures 6.3.4, 6.3.5, and 6.3.6. 
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Figure 6.3.4 Modified daily mortality rate during the outbreak of 1995/96 

in the Leschenault District. 
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Figure 6.3.5 Modified daily recruitment rate during the outbreak 

of 1995/96 in the Leschenault District. 
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Figure 6.3.6 Daily extrinsic incubation period of the Aedes 

camptorhynchus population during the outbreak of 1995/96 in the 

Leschenault District. 
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6.3.2. Simulation results of the different transmission rates 

The total number of human notifications during the outbreak of 1995/96 in the 

Leschenault district was 304. Figure 6.3.7 hows the monthly human 

notifications during the outbreak. 
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Figure 6.3. 7 Actual human notifications during the 1995/96 outbreak in 

the Leschenault district (Lindsay, unpublished). 

The following imulation results for the daily infectious human and mosquito 

populations are based on transmission rates varying from 0.25 to 0.75 with a 

0.05 increment as in Section 6.1.2. The simulation model for the outbreak of 

1995/96 in the Leschenault district is the host-vector model ( 4.1.1 ). 

The following Figures 6.3.8 and 6.3.9 present the infectious human population 

and infectious Aedes camptorhynchus population during the outbreak of 

1995/96 in the Leschenault district. 
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Figure 6.3.8 Daily infectious human population during the outbreak of 

1995/96 in the Leschenault district. 
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Figure 6.3.9 Daily infectious Aedes camptorhynchus population during the 

outbreak of 1995/96 in the Lescbenault district. 
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Table 6.3.10 presents the likely ratios of clinical to subclinical human cases 

and the sere-conversion rates during the outbreak of 1995/96 in the Leschenault 

district for the different transmission rates. 

The fact that fewer cases than actual notifications are predicted when the 

transmission rate is less than 35 % indicates that the transmission rate was 

higher than 35 % during the outbreak of 1995/96 in the Leschenault district. 

Table 6.3.10 The number of the total infected humans, sero~conversion 

rates, and the likely ratios of clinical to subclinical human infections 

during the outbreak of 199S/96 in the Leschenault district according to the 

starting date of the outbreak. 

Transmission rate Total infected Subclinkal -Sero co_n_version . 

(%)_ . human human infectior.s rate 
.. 

population per cli.nical case 

25 137.0909 0.450957 0.4 

30 192.3492 0.632728 0.5 

35 275.1384 0.905061 0.8 

40 409.0996 1.345722 1.18 

45 645.581 2.123622 i.87 

50 1106.776 3.640711 3.2 

55 2096.367 6.895943 6.07 

60 4251.681 13.98579 12.3 

65 8102.263 26.65218 23.48 

70 12658.13 41.63859 36.69 

75 16419.4 54.0l! 18 47.6 
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6.4. DISCUSSION OF SIMULATION RESULTS 

The previous Sections 6.1, 6.2, and 6.3 have presented simulation results based 

on the outbreaks of 1991/92 and 1995/96 which occurred in the Peel and the 

Leschenault districts. 

Parameters relating to the Aedes camptorhynchus population during the 

outbreak were estimated for the outbreaks; these parameters include the daily 

interpolated mosquito population, the recruitment and mortality rates and 

extrinsic incubation period. 

The modified mortality rate for the Aedes camptorhynchus population in 

1991 /92, ( 6.1.4 ), has a different shape to these for the two outbreaks of 1995/96, 

(6.2.3) and (6.3.4 ). The different mortality rates are likely to indicate that the 

environmental effects modulating the Aedes camptorhynchus population were 

changing more rapidly during the outbreak of 1991/92 in the Peel district than 

the other two outbreaks. The similarity of the modified mortality rates in (6.2.3) 

and ( 6. 3.4) during the outbreaks of 1995/96 in the Peel and Leschenault districts 

indicate that the weather patterns in the two districts during the outbreaks were 

similar. The reason for this may be that these regions are very close, lying only 

100 km apart. 

In section 6.1, various types of methods were used to determine the spread of 

the disease during ~he outbreak of 1991 /92 in the Peel district. 

Subsection 6.1.2 presented the results of using two different hypotheses : a 

single and continuous natural infection in the Aedes camptorhynchus population 
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with different transmission rates. According to the simulation results given in 

Figure 6.1.13, in the case of a single natural infection the disease eventually dies 

out as there is no source of ongoing infection in the Aedes camptorhynchus or 

human populations. In the case of continuous natural infection, the disease 

persists in the host and vector populations during the rest of the outbreak. Since 

the RRV disease is endemic in Southwestern Australia, continuous natural 

infection in the Aedes camptorhynchus population is a more plausible 

mechanism of RRV transmission than single natural infection. 

The results of using different transmission rates showed that higher 

transmission rates result in more human infections, which is to be expected. 

Since the date of the introduction of the RRV into the Aedes camptorhynchus 

population is currently not known, different staiting dates for the outbreak are 

simulated in Subsection 6.1.3. Later starting dates and the total number of the 

mosquito population on the starting dates for the outbreak produce different 

results of human infections as seen in Table 6.1.17. 

In Subsection 6.1.4, Figures 6.1.18 and 6.1.19 presented the results of a ten 

year simulation based on the assumption that the Aedes camptorhynchus 

population changes for ten years with the same parameter variables as during 

the outbreak of 1991/92 in the Peel district. The results indicate that if the 

Aedes camptorhynchus population fluctuated in the same way as in 1991/92 for 

ten years then there would be an outbreak of similar magnitude each year. 

Since this did not happen, the next Subsection 6.1.5 examines a simulation of 

consecutive outbreaks in the Peel district based on the actual trapped Aedes 

camptorhynchus population. Figures 6.1.20 and 6.1.21 are consistent with the 
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trend in actual notifications, which indicated an outbreak of RRV in 1991/92 

followed by a recess of two or three years. 

In Subsection 6.1.5. the simulation examined the human exposure rate during 

the outbreak of 1991 /92 in the Peel district. Since humans are more exposed to 

mosquitoes in summer than in winter. a variable human exposure could 

influence the infection rate. Since there was very little discussion in the 

literature on human exposure. the model assumed the human exposure rate is 

0.5 in winter and l in summer, and modelled it as a cosine curve in the same 

way as the extrinsic incubation period of the mosquito population. With the 

assumption of a variable human exposure rate, the results as given in Figures 

6.1.23 and 6.1.24 showed a significant reduction in human infections as 

compared with the results obtained without a variable human exposure rate. 

Since the range of variation in the human exposure rate is not yet known, a 

variable exposure rate was not included in the simulations of the other two 

outbreaks. As a future research of this study, the sensitivity analysis of this rate 

shall be followd later. 

Section 6.2 presented results from models of the 1995/96 outbreak in the Peel 

district wHh continuous natural infection. Compared to the results for the same 

transmission rate (25 %) in Section 6.l, the number of human infections 

occurring the 1995/96 outbreak given in Table 6.2.9 is approximately 2.8 times 

less than that of the 1991/92 outbreak in the same area. The smaller size of the 

mosquito population during the 1995/96 outbreak resulted in the reduction of 

the human infections. However, the actual number of notifications during the 

outbreak of 1995/96 was 101, which is more than in 1991/92. One of the 

possible explanations for this is that the public is now more aware of the disease 
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than it was in 1991/92. Also, it is possible that the transmission rate during the 

outbreak of 1995/96 was higher than that of 1991/92. 

Section 6.3 presented results from models with continuous natural infection for 

the outbreak of 1995/96 in the u,schenault district. The results given in Table 

6.3.9 indicate that during the outbreak the transmission rate was at least higher 

than 35 % since if the transmission rate was less than 35 % the number of 

human infections predicted by the simulation are less than the actual number of 

notifications. 

The seroconversion rates and ratios of clinical to subclinical human infections 

during the outbreaks were obtained for each outbreak. From the simulation 

results, the transmission rate varied show the range of the results according to 

its different value and implied that the transmission rate must be detennined to 

gain the realistic result. 
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CHAPTER 7. 

CONCLUSION 

This chapter presents a brief summary and conclusion of the previous 

chapters, and suggests fumre directions for the research. 

7.1. Summary 

The host-vector models for the RRV were presented and their mathematical 

analyses were discussed in Chapters 3 and 4. The threshold conditions for a 

true outbreak to occur were obtained for each model and its ecological 

implications were discussed. 

Some of the parameters included in the models are time-dependent and their 

exact functional forms are unknown, so the stability analysis of the host vector 

models has been undertaken by replacing these parameters with their constant 

average values. Even though the general models (3.3. l) and ( 4.3.1) are more 

realistic, it is difficult to t;;\timate many of the parameter values involved in 

the simulation. For this reason, only the simple models (3.1.l) and (4.1.1), 

with one human host and one mosquito species vector, Aedes 

camptorhynchus, were simulated in this thesis. 

The methods used to estimate parameters relating to the host and vector 

populations were introduced and discussed in Chapter 5. The limited 

literature on the parameters of the mosquito population compelled us to 

extrapolate some parameter values from published studies of other arboviruses 
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and to use numerical methods to estimate other parameter values. For 

example, it is believed that the recruitment and mortality rates of the mosquito 

population are dependent on environmental factors such as temperature, 

humidity, tidal phase, etc. Research on the impact of thes~ factors has not yet 

been completed. Hence, in this thesis a cosine curve was chosen to fit the 

daily mortality rate and used to extract the daily recruitment rate from the 

daily interpolated mosquito population. 

The 1ack of knowledge about the mechanism of the mosquito population led 

us to consider a host-vector model with both single and continuous natural 

infection in the mosquito population. Even though natural infection could 

occur randomly and would probably be influenced by environmental factors, 

this thesis examined only the two simple hypotheses of single and continuous 

natural infection in the mosquito population. 

In Chapter 6, various methods of RRV transmission were examined to model 

outbreaks that have occurred in Southwestern Australia. Single and 

continuous natural infection in the mosquito population were simulated and 

compared in Section 6.1.2. Since RRV is endemic in Southwestern Australia, 

continuous natural infection was more plausible for the study areas. 

Since the point of time at which the virus was introduced into the region is 

unknown, different starting dates for the outbreaks were examined and 

compared in 6.1.3 and 6.2. The results given in Figures 6.1.16 and 6.2.7 

indicated that the time of the introduction of the virus plays an important role 

in the transmission since the size of the susceptible vector population (initial 

infective vectors) differs each time. 
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Results of the ten year simulation based on the 1991/92 outbreak in the Peel 

district (given in Figure 6.1.18) showed that if the mosquito population is 

periodic and the size of the human population does not change, then the 

outbreak is also periodic. However, in reality, the mosquito population during 

the two year consecutive outbreak of 1991/93 in the Peel district (shown in 

Figure 6.1.20) was not periodic and the results given in 6.1.22 demonstrated 

that the reduction in the size of the mosquito population resulted in fewer 

human infections. 

Results with a seasonal human exposure rate to mosquitoes were presented 

in Section 6.1.6. Even though a variable human exposure rate has not been 

confirmed by any research, the concept of the rate is obvious (Personal 

communication, Lindsay). The results given in Figure 6.1.23 implied that a 

variable human exposure rate would reduce the number of human infections 

during an outbreak. 

In conclusion, the models presented in this thesis suggest that infection rates 

between hosts and vectors and levels of immunity in host populations in 

particular play an important role in determining whether an outbreak of human 

disease can occur. Consequently, such parameters should be more clearly 

defined in order to provide a better understanding of RRV transmission. 

7 .2 Future directions 

Much of the current research on RRV transmission is not yet complete. 

However, there are many microbiologists and entomologists working on the 

mechanics of RRV transmission. It is expected that a more thorough 
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knowledge of the transmission mechanism will lead to n;iore reliable 

simulations of the spread of the disease. For example. research on the natural 

infection rate and human exposure rate should provide better parameter 

estimates. 

Future research areas following from this thesis are : 

1. Detailed parameters relating to the populations involved in RRV 

transmission. 

For example, marsupials are presumed to be the major amplifiers of RRV 

and Aedes camptorhynchus is thought to prefer marsupials over humans as a 

source of blood (Kay et al., 1987; 1989). Aedes vigilax was also present 

during the 1995/96 epidemic (Lindsay et al., 1996). Therefore future 

modelling should include the marsupial population and both Aedes 

camptorhynchus and Aedes vigilax as vectors. The author has already started 

preliminary research in this area. 

2. Spatial modelling of the effect of tourism on RRV in Western Australia. 

One of the important features of RRV transmission in Western Australia is · 

the geographical spread of the disease. Since the study areas considered in 

this thesis are popular places during holidays, especialiy during summer time, 

there are many tourists during the period from the Perth metropolitan areas. 

Modelling this factor should explain the interaction between outbreaks in 

these regions. 

3. Stability analysis of the dynamics with variable parameters. 

Smith ( 1986) has studied the stability analysis of nonlinear systems with 

periodic parameter functions. Even though malaria models belong to the 

category of his models, the RRV models do not belong to them because the 

139 



Chapter 7, 

removals do not return to the susceptible c]ass. The study of the stability of 

the dynamics of RRV models when parameters are time~dependent will 

improve our overall understanding of the simulations. 

Finally, to conclude this thesis I personally believe that in spite of the stated 

future research needs and discussion of the limitations of the existing models, 

this particular study represents a s.ignificant step towards a greater 

understanding of the dynamics of RRV in Western Australia. We have 

demonstrated how the meticulous application of disease transmission models 

coupled with the collaboration of biologists and entomologists working in the 

field, can provide insights and knowledge both for the applied mathematician 

and the greater community at large. In the words of N. T .J. Bailey ( 1957), 

'Epidemic theory is a luxury that mankind can ill afford, the world must not 

only be interpreted, it must be changed.' 
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Appendix 

APPENDIX 

A.1. The computer program 

The computer programs for the simulations in this thesis are all written in C 

language. In this Appendix, the computer program for the simulation of the 

host-vector model (7.1.2) with continuous natural infection on mosquito 

population is presented. The algorithms of the Natural Cubic Spline 

interpolation and Runge-Kutta method for systems of differential equations are 

obtained from Burden ( 1989). 

A.2. The computer program listings 

/* The simulation of the Ross River virus transmission */ 

/* This model is written for a host vector model (7.1.2) */ 

#inc1ude <stdio.h> 

#include <math.h> 

/* To define subroutines to calculate differential equations */ 

/* Human Susceptibles */ 

double fl(double aa, double bb, double cc, double dd) 

{ 

retum((-1.0) * aa * bb * cc I dd); 
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} 

/* Human Infectives */ 

double f2(double aa, double bb, double cc, double dd, double ee, double ff) 

return( aa * bb *cc/ ff - dd / ee); 

/* Mosquito Susceptibles when the total mosquito population is non-zero*/ 

double f31 (double aa, double bb, double cc. double dd, double ee, double ft) 

{ 

return((-1.0) * aa * bb *cc/ ff - ( dd) * bb + ee - bb/(15617.0 * 30.0) ); 

/* Mosquito in latent period when the total mosquito population is non-zero*/ 

double f32(double aa, double bb, double cc) 

return( (-1.0) * aa * bb + cc - bb / (15617.0* 30.0)}; 

} 

/* Mosquito Susceptibles when the total mosquito population is zero*/ 

double f41 (double aa, double bb, double cc, double dd, double ee, double ff 

, double gg) 

return(aa * bb * cc/ gg - (ee + 1.0 / ff) * dd + bb/( 15617 .0 * 30.0)); 
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/* Mosquito in latent period when the total mosquito population is zero*/ 

double f42(double aa, double bb, double cc, double dd) 

{ 

return((-1.0) * ( aa + 1.0/ bb) * cc+ dd/(15617.0 * 30.0)); 

} 

/* Mosquito infectives */ 

double f5(double aa, double bb, double cc, double dd, double ee) 

return(( 1.0 / dd) * bb - aa *cc); 

/* Main Program */ 

int main( void) 

double human_n, human_x[3000], human_y[3000]; 

double mozy _x [3000], mozy _e[3000], mozy _y [3000], step [3000]; 

double mozy_i[3000], mozy_n[3000], mozy_Il3000], mozy_N[3000], 

hinff[3000], mozy_death[3000], mozy_bi11h[3000], mstep[3000], 

ext_incub[3000]; 

double hinf_rate, minf_rate, viraemia, ext_incuba, mhtrans, hmtrans; 

doubles, time, g[5][5], hx, hy, mx, me, my, md, mb. total, ha[3000], 
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irl, ir2, x[3000], a[3000], alp[3000], b[3000], c[3000], d[3000], 

ta, area, sstep, xx, p, hd, 1[3000], mu[3000], z[3000], inf_human; 

int sd, istep[lOOO], stepsize, pp, id, i,j, k; 

/* To get the total human population, number of traps, the number of days 

*I 

I* from the first July, the total area of the study region 

scanf("%lf, %d, %11\n", &human_n, &stepsize, &hd, &area); 

id= stepsize; 

/* Calculate the possible number of traps (ta) in the study area 

*I 

ta = area / (3.141593 * 0.0025); 

*I 

/* Natural Cubic Spline Interpolation for the daily mosquito population from 

monthly data*/ 

for (i = O; i < id; i++)[ 

scanf("%lf,%1!\n", &mozy _ _i[i], &step[i]); 

istep[i] = (int)step[i]; 
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mozy_n[i] = sqrt( mozy_i[i]); 

} ; 

mhtrans = 0.25 ; 

hmtrans = 0.25 ; 

xx= 0.0; 

x[O] =0.0; 

for (i = O; i < id; i++){ 

a[i] = mozy_n[i]; 

xx = xx + step[i]; 

x[i+l] = xx; 

} ; 

for (i = 1 ; i < id - 2; i++){ 

Appendix 

alp[i] = 3.0 * ( a[i + 1] * step[i-1] - a[i] * ( x[i + I] - x[i - 11) 

+ :1.[i - 1] * step[i] ) / ( step[i-1] * step[i] ); 

} ; 

l[O] = 1.; 

mu[O] =0.; 

z[O] = O.; 

for (i=l; i < id- 1; i++){ 
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l; 

l[i] == 2.0 * ( x[i + 1] - x[i - 1])- step[i-11 * mu[i - l]; 

mu[i] = step[i] / l[i]; 

z[i] = (alp[i] - step[i-1] * z[i - 1 ]) / I [i]; 

l[id - 1] = 1.0 ; 

z[id - 11 = 0.0 ; 

c[id-1]=0.0; 

for (j = id - 2; j > -1; j--){ 

}; 

k=O; 

c[j] = z[j] - mu[j] * c[j + 1]; 

bfj] = ( a[j + I] - a[j]) / step[j] 

- stepLi] * ( c[j + 1] + 2.0 * cUD / 3.0; 

d[j] = ( c[j + I] - c[j]) I (3.0 * step[jl); 

for (i = O; i < id - 1; i++){ 

sd = istep[i]; 

for (j = O; j < sd; j++){ 

Appendix 

mozy_I[k] = a[i] + b[i] * ( k- x[i]) + c[i] * (k - x[i]) * (k - x[i]) 

+ d[i] * (k - x[i]) * (k - x[i]) * (k - x[i]); 

k = k+ 1; 
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I; 

) ; 

rnozy_l[k] = rnozy_n[id - 1]; 

p=O.O; 

/* To calculate the mortality rate (mozy_death) and the extrinsic incubation 

*I 

/* period (ext_incub) curves 

for(i=O; i<k+ I; i++){ 

rnozy_death[i] = 0.5 * (1.0/5.0 + 1.0/56.0) - 0.5 * (0.2 -1.0/56.0)* 

cos(2.0 * 3.141592 * (p+ hd)/365.0); 

ext_incub[i] = 0.5 * (21.0 + 3.0) - 0.5 * (3.0 - 21.0) * 

cos(2.0 * 3.141592 * ( p + hd) /365.0); 

p=p+ 1.0; 

} ; 

*I 

/* To get the daily mosquito population (mozy_N), daily recruitment rate 

(rnozy _birth) */ 

/* and modified daily mortality rate (mozy_death) 

*I 

rnozy_N[O] = ta* mozy_I[O] * mozy_l[O]; 

rnozy_birth[O] = 0.0; 
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i = O; 

printf(''o/od, %If, %If, %If, %lt\n", i, mozy_N[O], mozy_birth[O], 

mozy_death[O], ext_incub[O]); 

for (i = 1; i < k + 1 ; i++ ){ 
... i= 

mozy_N[i] = ta * mozy_l[i] * mozy_I[i]; 

mozy_birth[i] = ( mozy_death[i] + 1.0 ) * mozy_N[i] -

mozy_N[i-1]; 

} ; 

if (mozy_birth[i] < 0.0) { 

mozy_death[i] = mozy_death[i] - rr~ozy_birth[i]/mozy_N[i]; 

if (mozy_death[i] > 1.0) { 

mozy_death[i) = t.O; 

mozy_birth[i] = 0.0; 

/* To input the initial condition for infection rates between humans and 

mosquitoes*/ 

minf_rate = 0.6 * 0.05 * mhtrans ; 

hinf_rate = 0.5 * 0.6 * ( 1.0 /0.05) * hmtrans ; 

/* To input the initial condition for humans and mosquitoes*/ 
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" 

human_x[OJ = (1.0 - 0.25) * human_n; 

human_y[OJ = 0.0; 

mozy_y[OJ = (1.0/15617.0) * mozy_N[OJ; 

mozy_x[OJ = mozy_N[OJ - mozy_y[OJ; 

mozy _e[OJ = 0.0; 

/* To input the constant value for the viraernia period *I 

viraemia = 4.0; 

sstep = 1.0; 

/* Runge-Kutta 4th method for dynamics to solve the model (6.3.1) */ 

for (i=l; i < k + l;i-:-+)( 

hx = human_x[{- 1]; 

hy = humon_y[i - I]; 

mx = mozy_x[i - I]; 

my= mozy_y[i - I]; 

me= mozy_e[i - I]; 

total= mozy_N[i-1]; 

ext_incuba = ext_incub[i]; 

md = mozy_death[i]; 

mb = mozy_birth[i]; 
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irl = minf_rate • ha[i]; 

ir2 = hinfJate * ha[i]; 

human_x[i] = hx + sstep * fl(irl, hx, my, human_n); 

Appendix 

human_y[i] = hy + sstep * f2(irl, bx, my, hy, viraemia, 

human_n); 

total); 

if (total > 0.0)( 

mozy_x[i] = mx + sstep * f31(ir2, mx, hy, md, mb, total); 

mozy_e[i] =me+ sstep * f4l(ir2, mx, by, me, md, ext_incuba, 

else { 

mozy_x[i] = mx + sstep * f32(md, mx, total); 

mozy_e[i] =me+ sstep * f42(md, ext_incuba, me, mx); 

mozy_y[i] =my+ sstep * f5(md, me, my, ext_incuba, mx); 

printf("o/od, %If, %If, %If, %If, %If, %If, o/olf\n" ,i, human_x[i], 

human_y[i], 

mozy_x[i], mozy_e[i], mozy_y[i], mozy_N[i]); 

} ; 

/* To calculate the total infected humans and to print it and the sero 

conversion rate*/ 
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inf_human = (1.0 -0.25)* human_n- human_x[k]; 

printf("lnfected human during the period= %11\n", inf_human); 

printf("Infected percentage of human= %11\n", 100.0 * inf_human / 

human_n); 

return I; 

) 

:',' ,, 
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