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INTRODUCTION

Plant communities are open systems in which bio-
geochemical functions consist of nutrient inputs from
various sources, outputs to sinks, and a variable extent
of recycling (Vitousek & Reiners 1975). Thus, plants
have developed strategies to cope with a spectrum of
environmental conditions and maintain an adequate
nutrient balance. In particular, seagrasses may obtain
up to 60 to 70% of their total N uptake through leaves

(Hemminga et al. 1991) and so are particularly sensi-
tive to changes in nutrient availability in the water col-
umn (Touchette & Burkholder 2000). However, as sea-
grasses often inhabit nutrient-limited waters, they
display mechanisms such as clonality to reduce depen-
dence on uptake from external media. Being clonal,
shoots are integrated through a below-ground rhizome
mat from which nutrients and photosynthetic products
can be remobilised (Fourqurean & Zieman 1991,
Alcoverro et al. 2001) and transported long distances
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ABSTRACT: Translocation of 13C and 15N was investigated at the spatial scales of within-shoot (i.e.
the seagrass clonal unit including leaves and associated vertical rhizome) and among-shoots in a
mixed meadow of Posidonia sinuosa and P. australis. Incubation with 13C and 15N was conducted in
either the oldest leaf of a shoot (i.e. within-shoot scale) or in the first shoot on the 4th or 5th branch of
the main axis (i.e. among-shoots scale) and collected several times within a 1 mo period. We tested
the following hypotheses: (1) developmental features in P. australis such as thicker and more open
vascular system, higher primary production but lower leaf lifespan cause higher translocation in this
species than in P. sinuosa, (2) translocation of 15N and 13C are largely influenced by source–sink
organ relationships resulting in higher partitioning of C to rhizomes, whereas N is preferentially
moved away to leaves, and (3) 15N and 13C transport towards the apical region is more dominant in P.
australis than in P. sinuosa. As predicted, higher isotope content was found at both spatial scales in P.
australis but differences were related to enhanced incorporation during incubation in this species.
When both spatial scales were compared, both species showed higher 15N translocation to young
leaves within the same shoot, whereas in the among-shoots experiment most of the material
remained within the leaves of the incubated shoot. In contrast, translocation of 13C occurred mainly
to rhizomes and tended to be higher at the among-shoots scale, particularly in P. sinuosa. No direc-
tionality was detected for either P. australis or P. sinuosa, possibly as a result of the low rates of N
translocation at the among-shoots scale and the morphology of the vascular system allowing the inte-
gration of neighbouring plant parts for C requirements. Unlike for Western Australian species, the
available literature on P. oceanica indicates patterns of among-shoots N distribution that are similar
to those of C, which suggests that species are adapted to distinctive ambients.
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(Harrison 1978, Libes & Boudouresque 1987, Marbà et
al. 2002). The internal distribution of nutrients is
affected by the developmental morphology of the
clonal growth including branching patterns, distance
between meristems, and the presence of dormant mod-
ules (Lovett-Doust 1981, de Kroon & Schieving 1990,
Duarte 1991). Hence, apical dominance may be essen-
tial for ecosystem development because it determines
the capacity of a species to quickly colonise new sub-
strate, while investment of nutrients into lateral or axil-
lary meristems may produce denser infilling of a
meadow and an enhanced capacity for out-competing
other species (Tomlinson 1974).

Plants can also meet physiological requirements by
redistributing nutrients preceding leaf abscission or by
increasing the residence time within living tissues.
Nutrient resorption is widespread among plants
(Jonasson & Chapin 1985, Saur et al. 2000), including
seagrasses (Alcoverro et al. 2001, Lepoint et al. 2002),
where it may provide up to 10–15% of the N and P for
new growth (Stapel & Hemminga 1997). Leaf longevity
influences the retention time of nutrients in plant tis-
sues (Escudero et al. 1992), and fast-growing species or
those with a higher number of sequential leaves may
have much higher external requirements than slow-
growing species (Jonasson & Chapin 1985). Therefore,
the amounts of internal nutrients and free metabolites
that are transported from one part of the plant to
another (i.e. N and C translocation; Harrison 1978,
Libes & Boudouresque 1987, Marbà et al. 2002) relies
on the ability to optimise, in both time and space, pos-
sible adaptive mechanisms operating at different spa-
tial scales and in different plant organs. This includes
the redistribution of already invested products in
leaves (i.e. leaf resorption) and/or in storage organs
and the transport of new uptake material to meet
growth demands.

Among seagrass species, the genus Posidonia has
adopted a strategy of resource exploitation based on
very long leaf lifespans (mean ~170 d) and thick carbo-
hydrate-storing rhizomes with low rates of horizontal
expansion (Hemminga et al. 1999, Alcoverro et al.
2000). Nonetheless, Posidonia spp. display differences
in terms of leaf productivity (i.e. leaf longevity, growth
and sequential development) which could influence N
and C requirements. For instance, P. sinuosa has a hor-
izontal rhizome with condensed semi-vertical axes
with up to 2000 shoots m–2 at the shallowest sites
(Cambridge & Hocking 1997). Meadow biomass is
maintained by slow leaf replacement (~4 to 5 leaves
shoot–1 yr–1; Cambridge 1999) and a reduced number
of long-lived leaves (usually no more than 2 per shoot
and surviving up to 245 d each; Marbà & Walker 1999).
In contrast, shallow shoot densities in P. australis vary
from 600 to 800 shoots m–2 (Cambridge & Hocking

1997). Rhizome morphology is more robust and open-
branched than in P. sinuosa, and shoots support 3 to 4
comparatively shorter living leaves (~70 d; Cambridge
1996), which are replaced at a higher rate (up to 7
leaves shoot–1 yr–1; Cambridge 1999). The slower but
more compact growth of P. sinuosa may allow it to
exclude other species, accounting for the formation of
single-species stands and a clear dominance when
coexisting with P. australis, which might be restricted
to areas with higher N availability (Cambridge 1996,
1999). In fact, the mean residence time of N within the
leaf canopy is higher in P. sinuosa than in P. australis
(Cambridge 1996), which further suggests that the
overall mechanisms involved in translocation may
differ between species.

Until now, no research has been conducted to exam-
ine C and N translocation within or among shoots in
Posidonia spp. from Western Australia, though pat-
terns of clonal integration (Marbà et al. 2002) and leaf
resorption (Alcoverro et al. 2000) for their Mediter-
ranean counterpart P. oceanica suggest that internal
distribution to demand tissues could be an important
mechanism to improve the efficiency of resource
exploitation. The objective of the present study was to
investigate the patterns of 15N and 13C translocation at
the within- and among-shoots spatial scales in P. sinu-
osa and P. australis. Specific hypotheses were (1) the
slower growing P. sinuosa has lower N and C require-
ments and translocates lower amounts to other leaves
and to neighbouring shoots than faster growing P. aus-
tralis, (2) since N content for both species is higher in
leaves and C is stored in below-ground organs, more N
acquired from external sources will be translocated to
leaves, whereas more C will be translocated to rhi-
zomes, and (3) both seagrass species will show prefer-
ential directionality towards the apical shoot, but this is
more apparent in P. australis due to its faster growth
exerting a higher apical demand.

MATERIALS AND METHODS

Translocation of C and N was examined near the
lower limit (7 to 8 m depth) of a mixed Posidonia
sinuosa and P. australis meadow where it was reason-
able to expect favouring of apical over lateral transport
in order to support growth at the light-limited deep
edge. The site, located in the northeast of Garden
Island, Cockburn Sound, Perth, Western Australia
(37.5° 47.2’ E, 64.4° 09.73’ N), was visited for sampling
from mid-December 2004 to mid-January 2005. Nutri-
ent conditions at the study site are slightly oligotrophic
with total annual concentrations ranging between 0.3
and 0.7 µM dissolved inorganic N, 0.4 and 1.3 µM in-
organic P in the water column (Simpson et al. 1996)
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and in the order of 57 µM total dissolved N in the sedi-
ment pore water (Collier 2006, P. S. Lavery unpubl.
data).

Within-shoot translocation. Experiment design, iso-
tope incubation and sample processing: The within-
shoot (i.e. the seagrass clonal unit including leaves and
associated vertical rhizome) experiment consisted of 6
replicate plots (4.5 × 3 m) containing Posidonia sinuosa
and P. australis. Within each plot, 4 shoots of each spe-
cies were selected and their oldest leaf incubated with
15N and 13C. Despite similar summer leaf area index
(LAI) values for both species (Cambridge 1996), shoots
were always selected with the same number of leaves
(2 and 3 leaves for P. sinuosa and P. australis respec-
tively) as their commonest natural rank (Marbà &
Walker 1999) to minimise possible differences in 15N
and 13C incorporation between replicates. Also in both
experiments, the labelled shoot and as many shoots
identifiably belonging to the same plant as possible
were marked with a needle for leaf production mea-
sures according to Short & Duarte (2001). Shoots with
older leaves that could potentially persist throughout
the experiment (i.e. absence of necrosis and high leaf
pigmentation) were selected.

The method used for incubation was similar to that
described in Marbà et al. (2002). The oldest leaf
(within-shoot experiment) or a shoot (among-shoot
experiment) was enclosed within a plastic bag fitted
with a filter cassette and a plastic tap that could be
closed after isotope injection. Leakage was tested prior
to the beginning of experiments by using a natural
dye. In both cases, the injected solution contained
NaH13CO3 and 15NH4Cl to achieve a final concentra-
tion of 300 µM NaH13CO3 and 40 µM 15NH4Cl (Marbà
et al. 2002). N was supplied as NH4 since uptake affini-
ties are higher than for NO3 (Touchette & Burkholder
2000).

The oldest leaf was enclosed within a 0.5 l plastic
bag filled and injected with a known volume of sea-
water and with the isotopic solution and left to incu-
bate for 2 h. One incubated shoot including leaves and
vertical rhizome was immediately collected from each
replicate plot and those remaining were subsequently
harvested at 1, 3 and 4 wk after incubation (i.e. 1 of the
4 shoots per plot each time).

In the laboratory, plant parts (i.e. leaves and vertical
rhizome) of collected shoots were separated into
labelled leaf and young leaf/leaves, and their length
and width measured. Epiphytes were scraped off
leaves using a razor blade and leaves were then dried
at 60°C for 48 h and weighed. Leaf production was
assessed according to Short & Duarte (2001). Growth
increments were measured, dried and weighed (g DW
d–1) and then combined with the remaining leaf for
grinding in a Retsch mixer mill (MM 200).

Carbohydrate contents (starch and total soluble sug-
ars) from ground samples were determined as in
Dubois et al. (1956). δ13C and δ15N isotope values of
samples were determined using an ANCA-NT (Europa
Scientific) interfaced with a 20-20 isotope ratio mass
spectrometer (Europa Scientific). δ15N and δ13C were
determined as:

δ sample–standard = [(Rsample – Rstandard)/(Rstandard)] × 1000 (1)

where Rsample is 13C:12C in the sample; Rstandard is 13C:12C
in the working reference gas (CaCO3 from a calcium
carbonate standard [PBD] and atmospheric N2 for δ13C
and δ15N measurements, respectively) which is cali-
brated against an internal standard (Atropina, Interna-
tional Atomic Energy Agency, IAEA, and/or US Geo-
logical Survey, USGS) and δsample–standard is the
difference in isotope composition of the sample rela-
tive to that of the reference, expressed in per mille (‰).

δ15N and δ13C in leaves and rhizome samples were
first converted to atom % 15N and atom % 13C follow-
ing the equations (Gonfiantini et al. 1995):

Atom % 15Ni = 100/{272/[1 + (δ15Ni/air/1000)] +1} (2)

Atom % 13Ci = 100/{89/[1 + (δ13Ci/standard/1000)] +1} (3)

in which 272 and 89 are the 15N:14N and 13C:12C ratios
in international standards, N2 and Vienna PDB, respec-
tively, for N and C. δ15Ni/air is the δ15N value of an
unknown, i, expressed relative to atmospheric N2.
δ13Ci/standard is the δ13C value of an unknown, i,
expressed relative to the PDB standard.

Atom % excess of δ13C and δ15N in the material was
calculated by subtracting atom % values from refer-
ence leaves and rhizomes from the study site from the
atom % of samples. They were then transformed into
isotopic mass and concentrations.

Data analysis: Differences in 15N and 13C mass (µg)
in young leaves and rhizomes were investigated with
2-way orthogonal ANOVA with Species and Time
(constrained by a time period not exceeding excision of
the older leaf) as fixed factors.

The content of mobile nutrients in senescent leaves
is partly given by uptake rates and partly by leaf
resorption. N and C were supplied as bioavailable iso-
topes that can be rapidly incorporated by the leaf and
moved across to sink tissues; therefore, isotope trans-
location partly depended on incorporation rates during
incubation. We investigated resorption from the
double perspective of the total N and C pool (i.e. 14+15N
and 12+13C) and the single isotope pool to evaluate pos-
sible deviations in patterns of translocation. The first
approach relied upon the supply of bioavailable iso-
topes. The following sets of calculations were used:
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%D i =  [15N, 13C L24wk/15N, 13C L14h] × 100 (4)

where %Di is the percentage decrease in isotope con-
tent in the old leaf, L14h is the mass of 15N or 13C (mg)
in the old leaf immediately after incubation (mean of
all shoots, n = 6) and L24wk that in the young leaf at the
end of the experiment. Then, the demand for new
growth was estimated as if the decrease in isotope con-
tent was representative of the whole N and C pool:

N, C in D  =  %Di [N, C L14h]/aL14h × 100 (5)

‘new’ N, C  =  [N4wk, C4wk L1n]/aL1n 4wk (6)

%NDi =  [‘new’ N, C L1n/N, C in D ] × 100 (7)

where N, C in D is the mass of 14+15N or 12+13C in the
decrease (mg cm–2), aL14h is the area of the old leaf
immediately after incubation, ‘new’ N, C is the mass of
14+15N or 12+13C produced throughout the experiment
(mg cm–2), aL1n is the area of all the leaves which
showed elongation after the 4 wk period and %ND i is
the percentage of N and C demand for the new growth
estimated from the decrease in isotope content.

Secondly, the decrease in the total N and C pool with
leaf senescence (i.e. the resorption efficiency) was
adjusted from Shaver & Melillo (1984) and calculated
as:

%D =  [(N, C L24wk – N, C L14wk)/N, C L24wk] × 100  (8)

in which %D is the percentage of the decrease in N
and C content, L1 is the mass of 14+15N or 12+13C (mg
cm–2) in the second oldest leaf (to minimise the dilution
effect caused by the addition of structural material;
Stapel & Hemminga 1997) in Posidonia australis or in
the oldest leaf in P. sinuosa at the last time of the exper-
iment (i.e. maximum senescence) and L2 is the mass of

14+15N or 12+13C (mg cm–2) in the younger leaf/leaves.
The N and C demand during the experiment was then
calculated as above (Eqs. 5 to 7) from the decrease in
the 14+15N or 12+13C content (%D). All calculations were
based on changes in N and C content per unit area, to
avoid potential problems arising when comparing
leaves that are not yet fully developed and to minimise
deviations in decrease estimates due to leaf breakage
during the experiment.

Among-shoots translocation. Experiment design,
isotope incubation and sample processing: For the
among-shoots experiment, the same 6 replicate plots
were used as in the within-shoot study. In each plot, 4
plants (i.e. shoots connected by below-ground rhi-
zomes) of Posidonia sinuosa and P. australis per repli-
cate plot were selected following gentle rhizome expo-
sure to confirm the position of the shoots. In each plant,
1 shoot (usually the first on the 4th or 5th branch along
the main axis) was selected for incubation with 15N and
13C and marked for later retrieval. The same incubation
method was used but for the whole shoot. Selected
shoots (i.e. the first within the 4th or 5th branch from the
rhizome apex) were incubated for 4 h within 1.5 l plas-
tic bags. Following incubation, the bag was slid from
the leaf—retaining the solution within it—and the wa-
ter around the leaf fanned away. Immediately after in-
cubation, the single labelled shoot was collected from
each replicate plot. The remaining plants were sam-
pled at 1, 2 and 4 wk after incubation and care was
taken to harvest at least 9 branch insertions along the
main axis (the labelled shoot plus the next 4 towards
and away from the apex; Fig. 1) but on occasion, the
size of the plant was reduced due to rhizome breakage.
Samples were carefully placed into plastic bags and
transported in an icebox for further processing in the
laboratory. Shoots adjacent to the one labelled (approx.
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Fig. 1. Isotope incubation method in the (A) within-shoot (i.e. the oldest leaf is labelled) and (B) the among-shoots experiment (i.e.
the first shoots located on the 5th branch position along the main axis are labelled; see ‘Materials and methods; Among-shoots
translocation’ for further details). OL: old leaf; YL: young leaf; R: rhizome; Sh: shoot; B: rhizome branch; M: main axis; *: selected

shoot at the branch position
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5 to 10 cm away) were also collected to confirm the
absence of leakage and some non-labelled shoots of P.
sinuosa and P. australis were collected to record ambi-
ent δ15N and δ13C at the site during the experiment.

For each plant, the most recently divided shoot at the
most terminal point of the main branch axis was con-
sidered the apex. The first shoot encountered within
each division of the main axis (up to 9 when possible,
see above) was retained for isotope analyses. These
shoots are referred to hereafter as ‘shoot position’ run-
ning towards the apex (i.e. positions 1 to 4) or towards
the back of the plant (i.e. positions –1 to –4) from the
labelled shoot (Fig. 1). The use of only the first shoot
was intended to minimise variation due to extremely
large differences in branch size and the number of
supporting shoots, particularly in Posidonia australis.
However, since an important part of each branch was
discarded (i.e. all material past the first shoot on each
branch), this sampling method cannot account for all
the 13C and 15N incorporated by the incubated shoot.

Rhizome branches (i.e. the section of the original
branch from its insertion point in the main axis up to
the rhizome of the first shoot; Fig. 1) and main axes
sections (i.e. distance between adjacent shoot posi-
tions) were stripped of remnant sheath, and their
length and diameter were measured. Leaves were
scraped free of epiphytes, the length and width of the
new growth measured and then dried together with
the remainder of the leaves and the rhizome at 60°C for
48 h. Plant parts including leaves, main axes and rhi-
zome branches were weighed and ground separately
for isotope and carbohydrate analyses, as described in
the previous section.

Data analysis: The 28 d plant sample for the among-
shoots experiment was removed from the analyses due
to difficulties collecting plants with up to 9
shoot positions. Morphological and 15N and
13C measures were averaged over the 8 and
15 d sampling times and differences between
species assessed using t-tests.

Differences in the mass (µg) of 15N and 13C
in labelled shoots were tested with 3-way
orthogonal ANOVA with Time, plant Part
(leaves and vertical rhizome) and Species as
fixed factors. Equally, patterns of 15N and 13C
contents (µg) within collected plants (i.e. the
9 branch insertions along the main axis;
labelled shoot excluded) were assessed with
3-way orthogonal ANOVA with Species,
sampling Time (8 and 15 d), and plant Part
(leaves and vertical rhizome) as fixed factors.

Apical dominance and the influence of
plant biomass on the directionality of N and
C translocation were investigated by compar-
ing patterns of isotope distribution in terms of

both mass and concentration. For each shoot position
(4 forward and 4 backward from the labelled shoot)
isotope mass was the sum of contents within leaves,
rhizome branches and main axes. Isotope concentra-
tion was determined by dividing the previously calcu-
lated isotope mass by the total DW of leaves, rhizome
branches and main axes at each shoot position.

At each sampling time (8 and 15 d), patterns of 13C
and 15N distribution (mass and concentration) were
investigated with 2-way orthogonal ANOVA with Spe-
cies and Direction (forward vs. backward) as fixed fac-
tors. For all ANOVAs, data were first tested for homo-
geneity of variances (Cochran’s test) and normality
(Kolmogorov-Smirnov distribution-fitting test of the
residuals). Student-Newman-Keuls post hoc compar-
isons were used when necessary to investigate the
existence of significant groups.

RESULTS

The 2 Posidonia species exhibited significant differ-
ences in morphological and growth characteristics as
well as in N and C decrease within leaves and in pat-
terns of isotope translocation at both spatial scales
investigated. Nearly all morphological and growth fea-
tures (leaf production, number of leaves per shoot,
shoot weight, leaf width, branching distance and
branch length) were higher in P. australis than in P.
sinuosa, whereas shoot height and rhizome diameter
did not differ between species (Table 1). Physiological
features, including % N in leaves and total soluble sug-
ars, were higher in P. australis, while C:N ratios and
starch did not differ between species. Ambient δ15N
and δ13C values in leaves were similar in both species,
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Morphological feature P. sinuosa P. australis

Leaf productivity (mg DW shoot–1 d–1) 1.03 ± 0.2 4.30 ± 0.54**
Shoot weight (g shoot–1) 0.16 ± 0.02 0.36 ± 0.04***
Number of leaves shoot–1 1.88 ± 0.05 2.71 ± 0.20**
Leaf height (cm) 29.53 ± 2.4 31.17 ± 2.14
Leaf width (cm) 0.73 ± 0.03 1.14 ± 0.04***
Branching distance (cm) 5.53 ± 1.12 10.22 ± 1.3*
Branch length (cm) 4.02 ± 0.7 9.92 ± 1.3**
Distance to last shoot (cm) 42.05 ± 8.8 68.37 ± 5.16
Rhizome branch area (cm2) 0.09 ± 0.01 0.14 ± 0.01
Rhizome axis area (cm2) 0.11 ± 0.01 0.18 ± 0.01
Rhizome distance to furthest shoot (cm)
Forward (shoot positions 1 to 4) 13.8 29.3
Backward (shoot positions –1 to –4) 32.6 52.3

Table 1. Posidonia sinuosa and P. australis. Morphological features. Val-
ues are mean ± SE per shoot (n = 9 shoot positions), pooled over the 6
replicate plots and sampling times. Significant differences between 

species: *p < 0.05, **p < 0.01, ***p < 0.001
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with values ranging from 2.03 to 3.08‰ and –9.46 to
–10.82‰ for 15N and 13C, respectively (Table 2).

Within-shoot translocation

Labelled leaves

Initial isotope content in the labelled leaf was ~1.5
times higher in Posidonia australis than in P. sinuosa
but showed similar masses for 15N and 13C. No tempo-
ral changes were detected in 15N content for either
species, whereas a decrease in 13C was observed
between the second and third sampling times (i.e. 8 to
21 d; Table 3, Fig. 2). However, differences in 15N con-
tent between the labelled leaf and the rest of the shoot
(i.e. younger leaves and rhizome) decreased from
about 8 and 26 times higher (4 h after incubation) in P.
australis and P. sinuosa, respectively, to about 3.5 times
higher by the end of the experiment in both species,
due to increased isotope content in young leaves and
rhizomes. Also for 13C content, initial differences
between the labelled leaf and the rest of the shoot
decreased from ~3 and 43 times higher in P. australis
and P. sinuosa, respectively, to only ~0.4 at the last
sampling.
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Physiological Plant Posidonia Posidonia
variable part sinuosa australis

N (%) L 1.44 ± 0.05 1.63 ± 0.05*
R 0.76 ± 0.1 0.60 ± 0.06

C:N L 27.06 ± 0.9 25.49 ± 0.9
R 67.95 ± 9.8 73.67 ± 6.5

Ambient δ15N L 2.03 3.08
R 2.75 2.38

Ambient δ13C L –10.14 –9.46
R –9.95 –10.82

Labelled δ15N L 1024 1100
Sh 1831 2580

Labelled δ13C L 9.5 18.1
Sh 0.95 11.28

Shoot beside labelled δ15N 15.3 11.4
Shoot beside labelled δ13C –8.7 –7.4

Soluble sugars L 56.5 ± 4.7 59.6 ± 1.4
(mg gDW–1) R 89.2 ± 2.7 225.4 ± 35.9*

Starch (mg gDW–1) L 65.2 ± 16.3 52.7 ± 18.6
R 85.1 ± 2.6 84.4 ± 4.8

Total carbohydrates L 121.7 ± 20.1 101.9 ± 18.8
(mg gDW–1) R 174.4 ± 5.3 309.7 ± 40.5*

Table 2. Posidonia sinuosa and P. australis. Physiological vari-
ables. Values are mean ± SE per shoot (n = 9 shoot positions),
pooled over the 6 replicate plots and sampling times. Carbo-
hydrate values are mean ± SE of labelled shoots. L = leaf, R =
rhizome, Sh = shoot. Significant differences between species: 

*p < 0.05
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15N and 13C in young leaves and rhizomes

Young leaves and rhizomes (all shoots from all times
pooled) of Posidonia australis had more than 3 and 5
times higher 15N content, respectively than P. sinuosa.
However, both species displayed consistently higher
15N content in young leaves than in rhizomes (~3
times) (Fig. 2, Table 3). Most of the 15N translocation to
young leaves occurred between 1 and 3 wk after the
beginning of the experiment whereas that to rhizomes
occurred earlier (Fig. 2A, Table 3).

Posidonia australis had more than 3 times the 13C
content of P. sinuosa, but within each species, there
was similar mass in young leaves and rhizomes
(Fig. 2B, Table 3). 13C content in young leaves showed
no significant increase until the last week of the exper-
iment (i.e. 28 d; p < 0.001) whereas that in rhizomes
increased 1 and 3 wk after the start of the experiment
(Fig. 2B, Table 3).

N and C decrease and demand

The decrease of isotope in labelled leaves amounted
to ~23.7 and 27.8% of 14N and ~32.7 and 56.9% of 13C,
respectively, in Posidonia sinuosa and P. australis. Esti-
mates of concentration decrease for the whole N and C
pool (14+15N and 12+13C) were higher for N (~23.2% in P.
sinuosa and 14.5% in P. australis) than for C (~2.6% in
P. sinuosa and 3.7% in P. australis). Assuming that the
reduction in the oldest leaf reflects demand by the
youngest leaves, the 2 approaches to N and C decrease
resulted in very different demands for the new growth.
Isotope-based estimates yielded demands of ~30 and
43% of the N and 45.8 and 107% of the C in P. sinuosa
and in P. australis, respectively. In contrast, N and C
decrease in ageing leaves (based on changes of total
contents within leaves) was ~29.3 and 14% of the N and
3.7 and 5% of the C in P. sinuosa and in P. australis,
respectively.

Among-shoots scale

Labelled shoots

Isotope incubation of whole shoots resulted in 15N
and 13C contents that were within the same order of
magnitude in both species. 15N content in Posidonia
australis was ~3.5 times higher than in P. sinuosa and
~30 times higher in leaves than in rhizomes. Higher
15N content in leaves of P. sinuosa 4 h after incubation
(~2.7 times; p < 0.001) caused significant Time effects
but differences were not significant thereafter (Fig. 3A,
Table 4). 13C was also consistently higher in P. australis

shoots than in P. sinuosa (~4.5 times) and higher in
leaves than in the vertical rhizomes of the incubated
shoot (~3.5 times) but there was also a significant
Species × plant Part interaction. Initial 13C content in
leaves tended to decrease with time whereas that in
rhizomes increased slightly, causing significant Time ×
plant Part interaction (Fig. 3B, Table 4).

Differences among plant parts

Translocation of isotopes to other plant parts was 1
order of magnitude lower for 15N than for 13C. Posido-
nia australis showed ~2.5 times higher 15N content
than P. sinuosa but differences were not significant
when expressed as concentrations. There was a signif-
icant increase in the 15N in plants (labelled shoot
excluded) from 8 to 15 d after enrichment in terms of
both mass and concentration (Table 5, Fig. 3C,D).

13C content in Posidonia australis was ~4.2 times
higher than in P. sinuosa and significantly higher in
rhizome branches and main axis than in leaves
(~5 times). Similar patterns were observed when data
were expressed as concentrations but there was also a
significant decrease over time (Table 5, Fig. 3E,F).
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Forward versus backward transport

Neither Posidonia australis nor P. sinuosa displayed
directionality in patterns of isotope translocation along
the main axis (Fig. 4). As indicated for previous analy-
ses, there were significant differences between spe-
cies. Eight days after incubation, the content of 15N in
P. australis (labelled shoot excluded) was ~4 times
higher than in P. sinuosa, whereas differences were
not significant when expressed as concentrations,
revealing the influence of the larger plant biomass of P.
australis. In contrast, 13C was consistently higher in P.
australis than in P. sinuosa in terms of both mass (~7
times) and concentration (~4 times) (Table 6, Fig. 4).
Fifteen days after incubation, there were still differ-
ences in 13C between species (~5 and 2 times higher in

P. australis, for mass and concentration, respectively)
but no effects were detected for 15N (Table 6).

DISCUSSION

The translocation of incorporated 13C and 15N dis-
played similar patterns for Posidonia australis and P.
sinuosa. However, there were differences in the
amount of isotope assimilated during incubation and
subsequent redistribution, indicating that both species
have different mechanisms of resource exploitation.
Consistently higher 15N and 13C content and leaf pro-
ductivity in P. australis suggests that this species has
achieved a faster uptake capacity than P. sinuosa (LAI
values are similar in summer; Cambridge 1996) to sat-
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isfy greater nutrient demands for growing tissues.
Therefore, our first hypothesis predicting higher
growth rates and isotope translocation in this species
was upheld, except for 15N at the among-shoots scale
(Table 7). When expressed as a fraction of initially
incorporated material, translocation was only higher in
P. australis at the within-shoot scale. At this spatial

scale, demands for N and C transloca-
tion in P. australis may be increased by
the lower leaf lifespan and higher leaf
production reported for this species
(Cambridge 1996, Cambridge & Hock-
ing 1997). Compared to terrestrial
plants, the constraints imposed by the
marine environment (e.g. leaf loss due
to wave action) may act by favouring
nutrient uptake over the development
of efficient nutrient conservation
strategies (Hemminga et al. 1999). Yet
our findings suggest that the more
efficient conservation strategy of P.
sinuosa may be connected to its ability
to colonise sites with low nutrient con-
ditions, whereas P. australis is found in
environments subjected to higher
nutrient availability (Cambridge 1996,
1999) where physiological demands
are met through concomitant rates of
nutrient uptake and translocation.

Estimates of isotope and N and C
decrease within leaves were affected
by differences in the mobility of mate-

rial recently taken up compared with the invested N
and C components, thus causing disparities between
the 2 approaches used to estimate nutrient demands.
The N and C content in ageing leaves decreased by
~23.2 and 14.5% for N and ~2.6 and 3.7% for C per
unit area in Posidonia sinuosa and P. australis, respec-
tively. These values are comparable to those found in
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ANOVA 15N 13C
Mass Concentration Mass Concentration

df MS F p MS F p MS F p MS F p

Source of variation
Sp 2 1.4536 10.904 0.0022 0.0152 0.0345 0.8536 127.76 86.12 0.0000 140.87 43.490 0.0000
Ti 1 0.6245 4.684 0.0371 2.8580 6.4849 0.0153 6.48 4.366 0.0538 41.47 12.803 0.0010
P 1 0.1074 0.806 0.4545 0.7961 1.8064 0.1788 14.72 9.922 0.0004 43.50 13.431 0.0000
Sp × Ti 2 0.2227 1.671 0.2040 1.5391 3.4924 0.0698 2.10 1.414 0.2421 9.98 3.081 0.0877
Sp × P 2 0.0537 0.403 0.6716 0.1353 0.3069 0.7376 3.05 2.059 0.1424 7.91 2.442 0.1013
Ti × P 1 0.1140 0.855 0.4337 0.6713 1.5232 0.2317 0.51 0.344 0.7115 5.95 1.837 0.1740
Sp × Ti × P 2 0.2072 10.554 0.2252 0.7890 1.7904 0.1814 0.69 0.467 0.6309 1.64 0.505 0.6078

Transf: √x; C = 0.252 Transf: √x; C = 0.164 Transf: √x; C = 0.182 Transf: √x; C = 0.182
SNK (Sp) SNK (Sp) SNK (Sp)
P. s < P. a P. s < P. a P. s < P. a
SNK (Ti) SNK (Ti) SNK (Ti)
8 d < 15 d 8 d < 15 d 8 d < 15 d

SNK (P) SNK (P)
L < RB = M L < M = RB

Table 5. Posidonia sinuosa (P. s) and P. australis (P. a). 3-way ANOVA and Student-Newman-Keuls (SNK) tests on patterns of 15N
and 13C (mass, µg and concentration, µg g–1 DW) 8 and 15 d after the beginning of the among-shoots experiment (labelled shoot 
excluded. Sp = species, Ti = time, P = plant part, L = leaves, RB = rhizome branches, M = main axis. C = Cochran’s test. 

Significant differences are in bold

ANOVA Isotope mass in labelled shoots
15N 13C

df MS F p MS F p

Source of variation
Sp 1 5.759 43.01 0.0000 120.64 54.217 0.0000
Ti 2 0.599 4.47 0.0185 5.36 2.407 0.1045
P 1 23.289 173.91 0.0000 57.60 25.887 0.0000
Sp × Ti 2 0.337 2.51 0.0951 0.35 0.158 0.8546
Sp × P 1 0.526 3.92 0.0553 17.87 8.032 0.0075
Ti × P 2 0.046 0.34 0.7136 15.18 7.046 0.0026
Ti × Sp × P 2 0.248 1.85 0.1714 2.69 1.209 0.2873

Transf: √√x; C = 0.212 Transf: √x; C = 0.346
SNK (Sp) SNK (Ti × P)
P. s < P. a R (4 h) ≤ R (15 d) = R (8 d) = 

L (15 d) = L (8 d) < L (4 h)
SNK (Ti) SNK (Sp × Ti)
15 d = 8 d < 4 h P. s (15 d) = P. s (8 d) <

P. s (4 h) <
SNK (P) P. a (15 d) = P. a (8 d) <
R < L P. a (4 h)

Table 4. Posidonia sinuosa (P. s) and P. australis (P. a). 3-way ANOVA and Stu-
dent-Newman-Keuls (SNK) tests on patterns of 15N and 13C (µg) in leaves (L)
and rhizomes (R) of labelled shoots at 4 h, 8 d and 15 d after the beginning of the
among-shoots experiment. Sp = species; Ti = time, P = plant part, C = Cochran’s 

test. Significant differences are in bold
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other seagrass species and support the
finding that C is not effectively resorbed
(Stapel & Hemminga 1997). 13C decrease
(~32.7% in P. sinuosa and 56.9% in P.
australis) notably exceeded that of leaf C
pools, which are mostly comprised of
refractory material (insoluble carbohy-
drates, lignin, cellulose; Romero et al.
1992, Cebrian 1999). This indicates that
translocation of C from leaves mainly
consists of material recently taken up
from the environment, rather than
refractory material. Larger but very vari-
able rates have been reported for
decreases in leaf N across seagrass spe-
cies (e.g. Pedersen & Borum 1993: 20 to
80%; Stapel & Hemminga 1997: 19 to
58%; Alcoverro et al. 2000: 25 to 40%).
Conversely, the similarity of 15N (~23.7%
in P. sinuosa and 27.8% in P. australis)
and leaf N decrease in both species sug-
gests that 15N is largely incorporated by
incubated tissues and resorbed subse-
quently with previously invested pools
(e.g. structural proteins; Kraemer et al.
1998, Alcoverro et al. 1999). Differences
between isotope and N and C decrease
within leaves were, however, higher in
P. australis, apparently due to enhanced
translocation during the incubation pro-
cess as evidenced by records of 13C and
15N in young leaves and rhizome imme-
diately after labelling. Although mature
tissues are considered susceptible to
leaching (Tukey 1970), the low isotope
decrease following incubation suggests
that this was not the case in our study.

15N translocation in both Posidonia
australis and P. sinuosa was higher to
young leaves (i.e. within-shoot experi-
ment) but displayed very low rates from
the labelled shoot to leaves in adjacent
shoots (i.e. among-shoots experiment).
Therefore, the first component of our
second hypothesis, predicting greater
15N translocation to leaves due to higher
N requirements, was rejected. The sec-
ond component, predicting higher 13C
translocation to storage in rhizomes, was
retained, as there was more 13C recov-
ered in rhizomes than in leaves. Differ-
ences in 15N and 13C contents within a
shoot as opposed to among shoots sup-
ports the notion that source–sink rela-
tionships and the possible constraints
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given by vascular connections and sink size are impor-
tant factors shaping patterns of translocation (Bledsoe
& Orians 2006). Hence, leaves acting both as sink and
source may explain opposite patterns of 15N transloca-

tion between plant scales and the retention of N by
growing tissues where it is needed, particularly in P.
australis (Table 7). Yet, given that only the first shoot
emerging at each division of the main axis (shoot posi-

79

P. australis P. sinuosa P. oceanica Source

Leaf N (%)a 1.63 1.44 1.47 Present study, Alcoverro et al. (2001)
Leaf C (%)a 38.3 38.31 35.8 Present study, Alcoverro et al. (1995)
TNC in rhizomes (mg g–1 DW)a 309.4 174.3 160.2 Present study, Pirc (1985)
TNC in leaves (mg g–1 DW)a 112.6 121.2 49.9 Present study, Pirc (1985)
Leaves’ production (no. shoot–1 yr–1) 7 5 5.7-8.9 Cambridge (1999), Marbà et al. (1996)

APP (mg DW shoot–1 d–1) 4.3 1.03 6.5 Present study, Alcoverro et al. (2000, 
2001)

Shoot density (no. m–2) 600–800 900–1900 500–900 Cambridge & Hocking (1997), 
Alcoverro et al. (2001)

No. leaves shoot–1 3–4 1–2 5–7 Cambridge (1996), Marbà & Walker 
(1999), Bay (1984)

Leaf longevity (d) 140 245 150–300 Marbà & Walker (1999), Romero
(1989)

Mean N residence time (MRT) (yr) 0.25 0.40 0.20 Cambridge (1996), Lepoint et al. 
(2002)

Canopy losses (mg N shoot–1 d–1)c 0.043 0.016 0.083 Cambridge & Hocking (1997), 
Alcoverro et al. (2000)

Within-shoot N (% translocated 15N shoot–1 d–1)b 1.32 0.97 – Present study, –
Among-shoots N (% translocated 15N shoot–1 d–1)b 0.23 0.38 2.94 Present study, Marbà et al. (2002)
Within-shoot C (% translocated 13C shoot–1 d–1)b 3.41 1.92 – Present study, –
Among-shoots C (% translocated 13C shoot–1 d–1)b 3.55 4.31 3.89 Present study, Marbà et al. (2002)

aValues are indicated for early summer
bValues estimated as the % of the total incorporated 15N and 13C translocated to young leaves and rhizomes (within-shoot) and
other shoots (among-shoots experiment) per day

cAnnual estimates from monthly averages

Table 7. Posidonia australis, P. sinuosa and P. oceanica. Structural, physiological and functional aspects related to the use of N 
and C. TNC = Total Non-structural Carbohydrates, APP = Aboveground Primary Production. (–) = no further data available

ANOVA 15N (8 d) 13C (8 d)
Mass Concentration Mass Concentration

df MS F p MS F p MS F p MS F p

Source of variation
Sp 1 0.3186 14.104 0.0027 0.0315 0.6019 0.4529 269.08 18.325 0.011 167.12 30.682 0.001
D 1 0.0062 0.273 0.6107 0.1798 3.4354 0.0885 44.59 3.037 0.1070 15.32 2.813 0.1193
Sp × D 1 0.398 1.764 0.2088 0.0086 0.1642 0.6924 10.90 0.742 0.4059 0.03 0.005 0.9450

Transf: – ; C = 0.507 Transf: √x; C = 0.716 Transf: – ; C = 0.731 Transf: – ; C = 0.474
SNK (Sp) SNK (Sp) SNK (Sp)
P. s < P. a P. s < P. a P. s < P. a

15N (15 d) 13C (15 d)

Sp 1 0.1989 1.7884 0.2059 0.0097 0.0532 0.8214 407.54 14.024 0.0028 89.356 12.198 0.0044
D 1 0.0558 0.5108 0.4922 0.0288 0.1584 0.6977 40.86 1.406 0.2587 5.615 0.766 0.3985
Sp × D 1 0.5132 4.0131 0.0528 0.6416 3.5229 0.0850 101.15 3.481 0.0867 28.095 0.3835 0.0738

Transf: – ; C = 0.517 Transf: – ; C = 0.501 Transf: √x; C = 0.512 Transf: – ; C = 0.351
SNK (Sp) SNK (Sp)
P. s < P. a P. s < P. a

Table 6. Posidonia sinuosa (P. s) and P. australis (P. a). 2-way ANOVA and Student-Newman-Keuls (SNK) tests on patterns of iso-
tope directionality in the among-shoots experiment (mass, µg and concentration, µg g DW–1) showing 15N and 13C (8 d and 15 d,
in 4 forward and 4 backward shoot positions. Sp = species, D = direction C = Cochran’s test. Significant differences are in bold



Mar Ecol Prog Ser 361: 69–82, 2008

tion) was analysed, sharing patterns within branch
hierarchies could not be assessed in the present study.
Semiautonomous functioning is, however, a common
feature in plants with morphological subunits (Watson
& Casper 1984) and could partly explain low N translo-
cation among shoots. Patterns of N distribution in
clonal plants may also be influenced by root uptake
from available sediment pools. However, NH4 concen-
trations in the pore water at the Garden Island site
(9 µM) were lower than those reported in other studies
of translocation among shoots (Marbà et al. 2002) and
much lower than those at the P. oceanica site (see also
Alcoverro et al. 1995 for details). In addition, higher
concentrations of dissolved inorganic N in pore water
appear to be necessary to achieve significant effects in
plant processes under equal availability in the water
column (Lee & Dunton 1999).

Conversely, translocation of C was more similar at
both plant scales but tended to be higher among
shoots, particularly in Posidonia sinuosa (Table 7). In
fact, in clonal plants featuring specialised organs for C
storage, the main axis may behave as a single individ-
ual allowing growth and respiration of the whole plant
and supported by leaf tissues (Chapman & Robson
1991).

Neither species displayed any pattern of directional-
ity, possibly due to retention of 15N within shoots and
diversion of 13C towards the rhizome structure. There-
fore, our third hypothesis stating that higher growth in
Posidonia australis causes greater apical demand in
this species was rejected. In fact, the presence of direc-
tionality seems to be connected to the developmental
morphology of the vascular system rather than to
differences in nutrient requirements for new growth
(reviewed by Vuorisalo & Hutchings 1996). For
instance, directionality is found in species such as
Cymodocea that produce erect axes by continuous
branching (Terrados et al. 1997a,b, Marbà et al. 2002).
Conversely, both P. australis and P. sinuosa have dif-
fuse branching patterns and numerous apical meri-
stems which may explain the absence of directionality
and a more even distribution of resources such as
already evidenced in P. oceanica (Marbà et al. 2002).
Collectively, our data suggest that despite a high
degree of physiological integration, shoots may com-
pete with their neighbours for N sources in the water
column (i.e. ‘selfish’ behaviour sensu Vuorisalo &
Hutchings 1996). In contrast, since more C was trans-
located to connected neighbours through the below-
ground rhizome mat, patterns of distribution were
‘cooperative’ (sensu Vuorisalo & Hutchings 1996), and
may contribute to enhancing the overall fitness of the
plant (Hamilton 1964).

In order to improve our understanding of the strate-
gies of N and C exploitation from the water column in

Posidonia spp., we compared patterns of N and C
translocation (among-shoots) as well as morphological,
physiological and leaf production features recorded for
Western Australian species to similar information
available for P. oceanica (Table 7). Contents of 13C and
15N in plant parts of P. oceanica from Marbà et al.
(2002) were expressed as percentage of translocated
mass shoot–1 d–1. In contrast, with the higher among-
shoots translocation of C observed in the present study
(~11 times higher in P. sinuosa and 15 times higher in
P. australis), P. oceanica displayed similar patterns of
translocation for both N and C. Estimates on a per-
shoot basis indicate that P. oceanica may translocate ~8
to 13 times more N than the Western Australian spe-
cies, allowing a more equitative sharing of resources.
Alternatively, given that P. oceanica was investigated
at a larger plant scale, observed patterns for this spe-
cies may be evidence of the existence of higher N
translocation at higher branching hierarchies.

At the within-shoot scale, no similar data is available
for Posidonia oceanica and so we cannot evaluate dif-
ferences among the species. Instead, the mean resi-
dence time (MRT) of N within the leaf canopy has been
assessed for all  3 species and may also clarify differ-
ences in nutrient use (Table 7). Higher MRT can be
achieved through leaf persistence (Escudero et al.
1992), which is negatively associated with leaf forma-
tion (Hemminga et al. 1999) and/or leaf resorption.
Among the 3 species, P. oceanica has the longest leaf
lifespan and the highest among-shoots translocation
and leaf N and C decrease but similar leaf production
rates compared to P. australis (Alcoverro et al. 2000).
However, it has the shortest MRT of N in the leaf
canopy (Cambridge 1996, Lepoint et al. 2002), which
suggests that the system may be subject to larger N
losses. Plants can modify patterns of translocation in
response to environmental conditions (Evans 1991,
Birch & Hutchings 1994) including herbivory (Thomas
& Watson 1988, Shea & Watson 1989). Indeed, leaf
losses to herbivores in P. oceanica can reach about
57% of the annual leaf production (Prado et al. 2007),
whereas herbivory is uncommon and largely restricted
to mesograzers in Western Australian species (Jer-
nakoff & Nielsen 1997, Keuskamp 2004). Hence,
higher N translocation and longer leaf lifespan of P.
oceanica could be mechanisms that allow this species
to offset herbivory losses.

To conclude, the present study shows that the faster
growing Posidonia australis has higher 15N incorpora-
tion and translocation than P. sinuosa; 15N is distrib-
uted more to leaves within the same shoot, while for
13C there is high translocation to rhizomes, where it is
likely stored; and neither species has distinct direction-
ality in translocation, presumably due to the presence
of diffuse branching patterns. Other than these physio-
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logical and structural adaptations to the physical envi-
ronment, our results also offer a comparative ground
with P. oceanica, suggesting that herbivory may influ-
ence the adaptative capacity of N and C nutrient
translocation in seagrasses. It is essential that future
investigations dealing with patterns of distribution in
seagrass ecosystems be performed with increasing
detail. Similar species may optimise nutrient conserva-
tion, direct uptake from the water column, or other
strategies (e.g. uptake by roots; Lee & Dunton 1999) to
overcome the constraints imposed by biotic and abiotic
conditions and meet their nutrient requirements.
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