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Abstract
o This 't_liéSis' presezﬁs two new adaptive control laws that use the terminal sliding
~ mode teclinique for the tracking 'pro'blem‘ of ‘ri‘gid‘ robotic manipulators with non- i

-~ linearities, dynamic couplings and uncertain parameters,

“The first law provides a 1‘6bll$h scllelilc which uses sevéral_propertie.s.of rigid robotic |
o mauipu_lat.qrs and adaptively adjusts seven uncertain parameter bounds. The Jaw _
eusures finite time error convergence to the system origin and is simple to imple-
“ment. The second ‘aw treats the manipulator as a partially known system. The.
kuown dynamics are used to haild a nominal contrel law and the effects of unknown
system dynamics are compensated for by use of a sliding mode compensator. The
resulting control law is robust, asymptotically convergent, has finite time conver-
gence to the sliding mode and allows fbr bounded external disturbances. It is easy
to implement and requires no bounds on system parameters, adaptively adjusting

only three bounds on systein uncertainties.

Both laws are extended to include a reduction of chattering by use of the houndary

layer technique. They are tested via application to a two-link robot simulated using

MatLab.
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1 - Introduction

1 Introduction

L .Tlus mtrodnctlon Is dwncled up mto several sectlons. Set‘l.tons 1 1 an(l l.- g1V°

'(leﬁmttons of syml)o!s and concepts use(l but, not (leﬁncd elsewhele in. tlus t11031s.

Scct lOll L3 1utm(lucca rhe xol)ot connol |)r0blem.; )

1.1 Syinbols 5

- The following symbols will be used throughout this thesis.

- sgn(s)

R

: :Rm*ﬂ .

S

R

e

e

I s>0"
0 s=0
--l s<0

the matrix or vector where all elements are zero -

the identity mati‘ix
: Eucll(l(.'m n»spaw. :

'the sct of ‘n!l ordene(l n- tuples \\'hcxe nisa posmve numbu

';aud an n-tuplc equonce oI n rc:zl numbers (al a.., ....a,,) 3

j |3

-' u»,,.

-

£ the transposes of ¥, X

'.Euchdean m X n space.

Ca w.ctor

: _a 1_11_atrtx

.
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det(A) £ the determinant of matrix X
a @y; )2
31 dz2
= iy — {207
MX) £ an eigenvalue of matrix X
(see definition ou page 3)
el £ the Euclidean norm of r
" i
I — .2
et = {3
=
(notesflx))? = v Ta)
IRY £ the induced Euclidean norm of .X
(Spong and Vidyasagar 1987)
r Fyr L
"-\ " = (/\ﬂrm.r(‘X d RY ))‘
R 2 the first order derivatives of @, X
the derivative of each element of the vector or matrix
Z, v £ the second order derivatives of x, X
- -
gy 0 e e D
0 " :
X = (liag(::r,-) -% o :
.0
L 0 fee e 0 Ty J

(all elements outside the diagonal are zero)

yinb £ the nth order derivative of the variable y
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1.2 Déﬁnitions

The following terms are used in this thesis.

A symmetric matrix is one where the matrix is equal to its transpose: .

My Mty e Ny

. | M2 nBig mo;
M=M=

a .
- . .
. )

nyy; Ry e My

If A is a matrix then @ is an eigenvector of /A
if 2#£0 and 3N e R:Ael =0T (1.1)

{Damiano and Little 1938).
Note:
o The scalar A is called an eigenvalue of A.
o Il A is an 7 X n matrix, then there are exactly n cigenvectors of A (they majy
not all be distinct).
® Ania(A)is the minimum eigenvalue of the matrix A, and Ay, (A) the maximum
eigenvalue. |
o [teM(A) is defined as the real part of the eigenvalue A of matrix A.

s The eigenvalues of a matrix A are roots of the following cquation:

det(A—M)=0 -
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A positive definite matrix is one where all its eigenvalues are positive.

A reference model of a system provides a desired output response for the system
to follow. Figures 1.1 and 1.2 show block diagrams of a robot and its reference

model.

gl i)

uft)

Figure 1.1: An n-link rigid robotic manipulator, where a(t) is the control input
vector to the robot and ¢(!) is the vector of joint values (Man, Paplinski, and
Wu 1994).

g

b —

it
iU Reterence 9,41

Figure 1.2: A reference model of a robot wanipulator, where r{t} is the rel-
erence input vector and «,.(t) is the vector of reference signals for the joints’
angular signal vector ¢ to follow (Man, Paplinski, and Wu 1904},

Tracking is the task of making a rigid robotic manipulator follow a required tra-

jectory, given by a reference model.

Feedback is the current output of the systemn, fed back into the control of the

systen to allow that control to be adjusted for current errors.

The set point regulation problem can be described as follows. Given an initial

position and velocity of the manipulator, ps and vy, and a desired position and
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velocity, ps and vy, find a control law such that p(t) — pg and ©(¢) = 0 {Young

1978},

Perturbations or disturbances are 2 combination of input disturbances. friction,

actuator dynamics aud joint flexibility (Ortega and Spong 1988).

A Lyapunov function can he defined as follows:
“Let §2 be an open region in R” containing the origin. A function V' is a Lyapunov
function on § if and only if:

L. V{x) has a continuous derivative,

(S

. 1(0) = ().
V() >0 for x#0.

-
=

{Schilling 1990).

A state &, is an equilibrium state {(or equilibrium point) of the system if once the

system state x is equal to x,. it remains equal to x. for all finure time.

Stability in the sense of Lyapunov: The origin is stable for a systeny & whose
state is a(4), il Yo > 0, 36 > 0. such that ||a{fp)f] < & = [le(foll] < . VI 2 I
Further, it can he considered to be asymplotically stable if. in addition to the above,
(t) = 0 as t = oo (Stonier nd). Diagrams illustrating stability can be found in

ﬁgilre 1.3.

Lyapunov’s Second Method: Let &, = } be an equilibrium point of a system
S associated with a constant input r{¢). and let V' be a Lyapunov function on the
domain € where @ = o : V() < p for some p > 0. Then z, is asymptotically stable

with domain of attraction €2, if, along solutions of 5:
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Unstable

=

Asymptoticatly
Stable

Stable

B

M) g‘ o)

Figure 1.3: Stability in the sense of Lyapunov (Stonier nd).

L V(@) €0
2 V() =0 = 2(1=0

{Schilling 1990)

Robustness can be defined as the abilily of a controller to deal with changes in
parameters (Grimm, Becker, and Frank 1988) {such as inertia, load mass, ete.) and

small perturbations (Ortega and Spong 1988) without the system becoming unstable.

Robust controllers are those that provide a ‘good enough’ coutrol for the con-

trolled svstem with uncertainties in the system model (Abdali:ih;'__l)awson,' Dbi"a,to}, -
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and Jamishidi 1991).

Servo-mechanism theory is based on the internal model principle which states
that a controller must have information about the rest of its environment if it is

going to be robust.

Globally convergent controllers are those that achieve tracking for all required

trajectories and for all different initial conditions (Ortega and Spong 1988).

Adaptive controllers are those that attempt to adjust themselves dynamically so
as to continually improve the accuracy of thie control and eventually attain zero error

{ Abdallali, Dawson, Dorato, and Jamishidi [991).
A nominal system is one that only takes into account known parts of the system.

A nominal controller is one designed to control a nominal systeni.

1.3 The Robot Control Problem

The robot control problemn can be described as the task of designing a control law
-that will produce accurate tracking. A thorough description of conventional methods
‘of controller design for tracking can be found in Luh (1983), which details fully, with
PP P ) W E . ! . e ta} 1
examples, the major design elements of traditional robotics control. The ‘simplest
way of achieving this control for tracking is by using the inverse kinematic expres-

sions to calculate the joint-space trajectory {rom the tool-configuration trajectory.

The derivative of this can then be found which gives the velocity at whiclk each 'joi-nt E
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must l>e driven (Sc!ullmg 1990) One disadvantage of this method is that it must
be possible to control the speed of the joints, which is not always po»snl)le. Another
problem is that it is a computationally intensive method and too time consuming

for practical use.

A more useful approach to control is to regulate the torque being applied to cach
joint. This has its own difficulties due to the complex and non-linear nature of the
equation of motion of the arm. which are aflected by inertia, gravity. centrifugal and
Coriolis forces. This can be seen in the standard expression of motion of a rigid

robotic manipulator :
ult) = M{q)j + J{a-3)g + glq) ~ (1.2)

where ¢(t}) € R’ is the vector of joint angular positions. i is the number of joints in
the manipulator, u({) € R is the input vector of joiut torques, 4/(¢) € R " isa
syminetric |)ositivc:-(leﬁ1iitc iertia matrin. f(q,4) € R" is the vector of combined
centrifugal and Coriolis torques and g{q) € R" is the vector of torques due to
gravity. A detailed description of the development of this expressioh can be found

in Schilling (1990).

To éoniplicate matters furtﬁer, thesé elements (M, f and g) are influenced by ex-
ternal disl;uirbaﬁc’es, the current manipulator load, tl)qinteractiéus of joints iqiou :
“each other (which in_crease as the speed of the manipulator increases (Bailéy and
Ara,'postal'hi3 1‘)87)) au([ the magnitude of static an(l' dYnamic frictional forées'.:For '

this reason most uses of 1obol.lc bystmnts to date ha.ve been for well-defi nccl 1epet1l;1ve

tasks. (sm,h as welclmb] that (Io not wqulre hlgh spee(l A thmough chscussmn of

'Lhe ploblemq and lequlroment:s of 1olJot.1(' tlackmg cont.lol laws can be I'oun(l in Qu,_. _
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Dawson, and Dorsey (1992).

Early work to deal with these problems required detailed models of the system as

well as knowledge of the manipulator load and were costly to implement. Later wbrk
relied on the elimination of interactions and nonlinearities when the imanipulator was
designed, however this proved to be both costly and limiting (Morgan and Ozguner
1985). Freund (1982) solves the control problem by direct decoupling design methods
for particular classes of robots, however this also relies on having a detailed mocdel

ol the system.

More success{ul approaches (for example loannon and Tsakalis (1986). Singh (1986)
and Spoug and Ortega (1990)) use feedback loops and adaptive mechanisms that
adjust the control law as the robot moves. Changes in parameters and external
disturbances are passed back to the control law and allow it to change dynamically.

Figure 1.4 shows a block diagram of an adaptive control mechanism.

One disadvantage of this kind 6[‘ system is that the tracking error cannot be guat-
5.11tee(l to converge to zero ( Maﬁ and Palaniswami 1994}, although the boundedness
(Singh 1986) and the stability (Ioannou and ‘I'sakalis 1986) of the system can be
guaranteed. A second problem is the time it takes for the adaption to take effect:
there is a period at the start of the roliot’s motion where the tracking lacks precision
(Kosuge and Furuta 1988).  In later-work the term adaptive has come to mean

-controllers that specifically estimate and update the values of controller parameters

{Ortega and Spong 1988), such as the bounds on the inertia matrix, and the Coriolis,

- centrifugal and gravitational forces.

~ More recently much research hias gone into the field of variable structure systems
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L Control Tomgue Robatic ‘
Law Regultator Arm

L)

' =,

Y] Adagiati Lomor A,

+
Vel q r
Mixkel

Figure 1.4: Block diagram of an adaptive control mechanism. (From Shilling,
1990, p. 290}

(VSS). which do not require exact modeling, nor prior information about the load
(Morgan and Ozguner 1983). VSS are {those systems where tlere is a discontinuity
in the feedback control, which is altered in nature as the state moves across a hyper-
plane (or manifoid) of discontinuity. Thus it can be considered as being made up of
several subsystems, each of which operale in their own separate seclions of subspace
(Dorling and Zinober 1986). An example of a VSS can be seen in figure 1.5, which
shows the two substructures as well as the combined structure.  An advantage of this
kind of system is that, whilst each of the individual states may not be asymptotically
stable, the combination can be (Utkin 1977) and the combined or equivalen system
is different from either of its parts and is of a lower order of complexity (Dorling

and Zinober 1986).

‘When the subsystems are designed so that all movement is directed toward the
discontinuity manifold there develops a sfiding mode. where the system crosses and
re-crosses this boundary, as it slides towards the origin. Figure 1.6 shows a VSS

‘in two dimensions and its path as it traverses the sliding mode. Thus the motion
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el

Figure 1.5: A variable structure system. Figures {a) and (b) show the two
separate systems aud figure () shows the combined system (Utkin 1977).

of a V58 can be considered in two parts, a reaching phase which provides a rapid
convergence to the switching hyperplane or manifold and the sliding mode where
a force is applied to the svstem il it starts to deviate from the manifold, thereby
ensuring its return to it (Bailey and Arapostathis 1987). A terminal sliding mode
is one that forces convergence to equilibrium in finite time (Vnekataraman and

Gulati 1992).

Once in the sliding mode, the system can be considered to be robust as it is not
affected Ly external disturbances, alteralions in the system parameters or individual
characteristics of parts of the system {Morgan and Ozguner 1985) and to reach the

sliding mode no detailed model of the system is required by the designer (Hashimoto,
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-k
(]

Figure 1.6: Sliding mode solution to control, in two dimensions (Schilling 1990},

Maruvama. and Harashima 1987).

One view of the problem has thus become that of designing o variable structure
control law that pushes the system into the sliding mode as ¢nickly as possible
and then ensures that it stays there. Once in the sliding mode there is a need to
reduce the chattering across the switching liyperplane and to ensure that tracking
errors converge fo zero in a finite time. It is also a requirement that a sliding mode
will resuit no matter what the initial conditions and that the system be stable and

unaffected by disturbances during the movement o the sliding mode.

Finally it is most useful if required prior knowledge of the system, its parameter
hounds and expected external disturbances. be kept to a minimum. This has in-
volved designs that combine the two methods of variable structure and adaptive

systems.

A lurther extension of robot coutrol work looks at the system that includes external
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disturbances. Thus the expression above becomes

w= M(Q)i+ [la )i+ olq) +d(0), a3

where d(t) € R" is the vector of hounded disturbances.

“This thesis provides two new control laws that are based on expressions 1.2 and 1.3,
Neither law attempts to deal with frictional forces as it has been shown in Leung,
Zhou, and Su (1991} that this can be successfully compensated for. There is no
examination of the problems encountered when the robot is constrained in some
way. such as the requirement that the arm remain on a particular plane, recent
research that covers this arca can be found in Yao, Chan. and Wang (1992). Yao,

Chan, and Wang (19%a) and Yao, Chan, and Wang (1994b).
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" £  the number of joints/links in the rohot.

u(!) £ the control input for the rigid robotic manipulator.
r{l) £  the reference input.

qlt) £ the vector of joint angular positions.

¢.{!) £ the reference vector of joint augular positions.

M(q) £ the inertia matrix.

Jlg.q) £ the vector of Coriolis and centrifugal forces,

alq) £ the vector of gravitational forces.

() £ {he position or tracking error, generally defined as (1) = ¢ — ¢.
() £ the state vector of the rigid robotic maunipulator,
(1) & the state vector of the reference model.

e{l) £ the state error veetor, generally defined as ¢ = r — .
s(t) £ the vector tepresenting the sliding mode manifold.
d(1) £ the vector of hounded disturbances.

o 2 the regressor matris.

Table 1@ Standard usage for variables,

2 Literature Review

Throughout this survey { have tried to be consistent in my use of variables, trans-

lating the work of the various papers into the standard usage shown in Table 2,

The major work of this thesis uses a combination of two methods of rohot control,
namely variable structure control and adaptive control. For this reason this review
concentrates on these two areas. Section 2.1 covers adaptive control techuiques,
2.2 covers variable structure systems, and 2.3 looks at combinations of the two.

Section 2.1 then looks brielly at other available methods and 2.5 examines various

methods of reducing the chattering that is inherent within variable structure systems.
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2.1 Adaptive Control

Adaptive control applies to any system where the control signal is altered to take
into account changing conditions in the plant parameters and disturbances in the
environment. Commonly the last *value® of the plant is used in combination with
the last expected or reference value o provide an additional control term to that of

the control law originally designed to drive the plant.

One of the early adaptive techuiques for rigid robotic manipulators is that of Dubow-
sky and DesForges (1979), lowever their design is complex and unsystematic, re-

quiring a difficull stahility analysis.

A better design in Balestrino. Maria, anu Sciavicco (1983) defines a state vector for

the systent as

q"‘ |
= (2.4)
r}’
and a state relerence mmodel as follows
Iy = Ay, + Bor (2.5)
where
T
qr : _
Ty = {2.6)
T
q;

is a state vector for the reference model, »(¢) is Lhe reference veclor of joint torques,
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g, is the vector of reference joint angular positions, -

0o I o
An An

-

and

0
B, = ) _ (2.8)

B,
where A, = diag{a,;), Ar, = diag(en:) and B, = diag(b,;) are constant n x n

matrices chosen such that the reference inodel of expression 2.5 is stable.

Defining the error as

€ =T, — I, {2.9)

where « is Lhe state of the actual rigid robotic manipulator, defined as in expres-

sion 2.1, the input 1o the manipulator is chosen in Balestrino ef «f. (1983) as
= Q(u,x, i) — bk + Yloor, u+ bpr (2.10)

where v is a linear compensator, ¢ and ¥ are matrices generated by the adaption
mechanism and &. k. are feedback and feedforward terms. This input is sliown to be
stable if the adaption mechanisms are designed appropriately, however the control

law. caitnot guaraniee the convergence of the tracking ervor to zero..

- A further advance in adaptive methods is made in Craig, Hsu, and Sastry (1986).
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The approach of Craig et al. (1986) does not require the detailed information of the
rigid robotic manipulator of previous methods, but instead requires knowledge only
of the bounds on the system parameters. However, it also requires the measirement
of the joint acceleration which is not always possible and the inversion ol the estimate
of the inertia matrix wihich is computationally expensive {Spong and Ortega 1990).
Another problem is that the system responds poorly when a load is picked up,

leading to a large immediate deviation in the estimated parameters.

[Isu, Bodsou, Sastry, and Paden (1987) remove these problems by filtering the
control input using a proper transfer function such as L{s) = TLT and nsing hounds
on the inertia matrix rather than the matrix itsell. However the response of the
system is too slow for high speed robotic movement. Middleton and Goodwin {1988)
also improve on the work ol Craig ¢f «l, using a least-squares estimation procedure
for the parameters. They prove global convergence of the error and houndedness
of the torque inputs and their derivatives (¢. ¢ and §). however they provide no
simulation or experimental work 1o back up the proposed control law and hence no

empirical evidence of the speed at which the convergence takes place,

In Singh (14986) a coutrol law is developed that gnarantees the ulthmate boundedness
of the error and ensures that the tracking error falls within an acbitrarily small
hound. As with Craig ¢f al. there is only the assumption of boundedness of systém
parateters, i.e. bounds on the possible values of 3. [ and ¢ of the equation of

motiou given in expression 1.2,

Amestegui. Ortega, and Ibarra (1987) divide adaptive methods into two distinct

types. The first of these, edaptive computed torgue, uses the standard equation of
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motion, but replaces the known parameters with estimates:

ult) = M(q)§ + fla. i +ale), o @ny
whére
q= ]{ﬁ.(} + Kpq— Kyq, (2.12)

and K, and K, are n x n matrices designed to ensure that the estimates of the

parameters are equal to the parameters themselves under ideal conditions.

The second method, called ait adaptive compensator, uses an available model. des-
ignated with the subseript 0, plus a compensating signal designed to deal with

inaccuracies in the model and external disturbances. This gives the expression
wl{t) = Molqhi + folq.@)q+ golq) + e, {(2.13)

where w is the compensator,

Amestegui ¢f ol (1987) go on to show, via simulations. that neither of these two
models give significant improvements over standard computed torque methods when

applied to tracking.

Another attempt is made to remove the needs of acceleration measurement and mat-
rix inversion in Sadegh and Horowitz (1987). however the controller design presented
in this paper is computationally expensive and therefore difficult to implement in

real situations. It also does not guarantee uniform asymptotic stability.
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A summary and comparison of the results of Craig el ol. (1986), Middleton and
Goodwin {1988), Amestegui et al. (1987) and Sadegh and Horowitz (1987) (amongst
others) can be found in Ortega and Spong (1988).

Miyasato and Oshima (1989) produce excellent results for tracking using a control

law defined as
=N+ KNor+ ks + 0+ O + 0Oy, (2.14)

where & is the state vector defined in expression 2.4, » is the reference vector of joint
- LB - x L . . . *
torques, iy € R"". A% € R und ks € R" are time-invariant functions of
pPxn nxn n - -
rand @ € R,0; € R and ®: € R are updated with adaptive laws
in seven variables. The paper proves that the control system is uniformly bounded
and that the error converges to a region around zero that can he made arbitrarily
small, The major disadvantage of the system is the computational expense if used

for real-time fast. moving rigid robotic manipulators.

2.2 Variable Structure Control

The first important survey in English on variable structure systems is that of Utkin
(1977), in which he describes the concept of variable control in a general form, not
applying it to rigid robotic manipulators. Prior to this most work was published by

Russians in their own language.

The application of VSS to robotics is examined in Young (1978). This paper applies
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© VSS control theory to the set point regulation problem. Whilst it does ijemb_ve the _
problems of interactions hetween joints, the method used involves a very complex' :
analysis of stability. However, a significant result of this paper is the prool that a

sliding mode exists if
sifi<0  1<ign, O (218)
where s; is the switching manifold vector for the ith joint.

In Slotine and Sastry (1983) (and extended in Slotine (1984)}) VSS theory is applied
to the problem of robot tracking along with the idea of a sliding surface that varies
witn time. A single input nth-order time-varying linear control system s considered,

and defined by
=y + an_l(f);r’,".' + (.'.,,_2('!.).1:",’'2 + o Fag(fay, -~ (2.16)
where « is delined as a state variable for the input:
T :
ety = | (1) wi(t) EB (L) - ;gl{ﬂl(”] . (2.17)
Using a similar definition for the state reference model (1), the error is.'d_eﬁn'e(l as

) =al)—at). o (218)
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.'Ein'a.lly_ Slotihe and Sastry (1983) c:l'eﬁrie. the SIidihg (Ssﬁfthing) smfa,ceas o
D@t =ee=0, - (219)
~where ¢ is a vector of the form [.Cl e c,;-l 1 ] .

. The cdxil;rol-la\v developed to ensure that the trajectory slides along the Sliding/

surface described above is

=1

w= BT + 30— Ul e — husgn(s), (220
where &; are suitably sclecte(i gain ~\'ect01;s. As can be seen, it is only a é‘enera]
expression for the control law and to formulate an actual control law 'il:.is'necéssary
to have detai]é([ information about the actual robot and the path it is td !‘0110\\;. A
major disadvantage to the control laws proposed in Slotine and Sastry (1983) and
Slotine (1984) is that they require the calenlation of the inverse of the inertia matrix,

~“making the law unrealistic for real-time robot control.

A full (liSéussim‘n of the choice ol vector ¢ (or matrix (') can be found in Dorliﬁg euid
Zinober (1986). Other research imiléling’ on the concepts described in Slotine qnd
'Sas.ltzry and Slotine can be found in 'Hashimoto, Maruyama, and Harashima (1987),' '
'Bailey and Ai‘apos.tathtis (1987) and Kosuge and Furuta (1988) aniongst otllets;.witﬁii
~incremertal in:cre;mses ih the eH‘iciéncy and a.ccura.cy.of the 1‘-1":1(;‘1(illg.. One differeﬁéé

g ~ between ['\'O:Sugela.'n.ttl Furuta (,1.98'8)'.aud the otlielfs is the use of task .'.:'si)acé"re'mvt.:her. '

than joint space.”

- 'iZSh_oufésini, ;'Mbliibt,.aklilfl'{,o;t:és_;lelt':_z(JQQ'O). .S])}it:the: syéﬁeili in:tbiauht.),lniﬁ.égl 'systelil th_iit -
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“canbe linearized and a non-linear system that contains the uncertainties and for

- which a sliding mode control law is devised. Thus the control law hecomes
u gitl + up, , e ' (2.21) -

ﬁhei-e ty 18 the nominal iuﬁut and ug i,s.the sliding mode conn)eﬁsatdr. Thjs'is a very
useful way to cons&ler the problem and allows the best use of tha.t prior kniowledge
is available for the system, whilst still taking into accomit the uncertainties of the
system as a .whole. .Unfbrtuna.tely the actua.l control law presented in this paper ic
' too specific to flle robot used in the experiments {the GEE-P50) to be of general use. |
A,[urth(.er problem is that the |)01i11(fs on the system parameters are required ét}d
are found via experimentation which means that they might not be a.l)so]tlfe upper
bounds. The préblems of estimating these bounds are discussed in detail in Grimm

(1990).

Wijesoma and Richards (1990), as well as providing a unilying approach for Sldtiue
and Li (1987), Bailey and Arapostathis {L987) and Y-ﬁlit.lQ and Chen (1988), also
splits the system into two éltbsystelns ina similar manner to Shoureshi ef . (1990).
'Fﬁrtlie;’more it extra.pola.tés the.déveloped nominal plus sliding mode systelnjiﬁto -
task space as did Kosugé aﬁd Furuta .(1988). Chern and Wu (1992) also base their
" coutrol law on (;lig ﬁlethot[ of splitting the system into one of nominal control .j),lus:.
comtpensa.l;or, but _I;liié ;'esults in a cbmﬁlicated'coutrol la.w that requires ca.lrpilaii011~

of three separate sliding modes for each joint of the robot.

--_'-50113 :mcl Gao [1.]‘)1) uses a 'wmab]e stl uctmc syatcm 1.0 deal wn,h the e‘(tra pr oblem '

of external (llstmbances, as descul)ed l)y explessmn 1.3 'lhe Lcsultmg contlol h.w

- as f01 .‘)houreshl ct af., 1eqlmcs knowledge of the l)ounds on I;he system, namely the e
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B ::'upper and ]ower l)ounds on the uncertam parts of M f, J 'md d in expressxon l 3 :
r:Wlulst the contlol hw 1tself ploduces excellent 1esults, the 1equnement of l\uowmg'
' these elght I)ounds is Iestrlctwe. The paper also develops a contloller base(l on the o

: 'fmct that thele exnsts a vectm @ and a functlon ¢ such that
M{q,p)ir + F(0,0,PVe + 90, P) = D@ 6 G Gie)alp),  © (2.22)

where ¢ is known as the regressor and is not dependent on unknown parameters of
the rigid robotic manipulator(Slotine and Li L987). This leads.to a simpler design
than the previous one, however it requires the bounds on «, which may he even

lla.l'(ler to ca]cu}ate or estimate tllatsi those OI.W[’. _l',. g and (I .
.'Stepa:neuk.o and Su {1992) rcdeﬁﬁe this property of :ﬁotioxl as
.1‘.'1'((1,?’.)(7+.f(%1.f§;1))f} jl;!l(fli?))=(b(7', 'f',f:)l;- . ‘2~23)
The gofntl-ql law tliéy uso 1;9 .soli'e 'tl.lis' FFescl-il;t ion of .!.:ltle..pl.*olt)l.cm is tliel.; glvenas
. u = (5(1;, ” ,),p- [\db—f(s,e), - R | (224)
.\\%l]ére s is the swit;éhing vect;bf,’ € t.‘,l:l.e.li.l'a(.;kil.lg eritd;', l,b i.s deﬁned as | '
e —ﬁ.sgn(()Zsm,o f) Lcicm

' ﬁ ale I;he sysl.em I)ounds, I\d is: a posmve symmetnc gann matrn an(l S (b, e) is. a 3

non—lmcar ['eedbacl\ term. Tho paper ptoves that the system is wbust w1th xespect.{' o

' fto unmodelled dynamxcs 'm(l measulement nmse aud bmce I.he reg1 essor is a funct:on -
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of the tla_jectm y @ alone, most of the computatlonally eXpenslve calcula.tton can be
done oft- lme Howeve1 thele 1s 1o proof that the reachmg time is ﬁmte 01 fast or
that the error convelges to zero, an(l thele is 110 expeumental or smlulatlon ev;dence :

" to show the actual effectiveness of thc control law ploposecl

A much simpler control law is developed in Man and Palaniswami (1992) in which
they prove asymptotic error convergence. Using the description of the system from

- expressions 2.4 to 2.8 and combining this with a state error defined by

m

¢= , | - (2.26)

M.

they develop an error differential expression

= A €+ Bch(q g u, 1), - (2.27)
wliere-
0
B, = : (2.23)
I
and
,h(q,'(), u.,i,.)':. 1]'f(q)*l(it,— f(q‘ ‘l)q—g(q)) _ Ag— :4r2'() _ B"""“ S (2.29)

" {Man and Palaniswami 1992) define the switching manifold vector similarly to Leung
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el al. (1991] in expression 273 as

s =Cle, T | (2.30)

¢= [ ¢ G ] ) o (2.31)
the difference being that Cy and C; are defined as diagonal matrices where

ReM(=C;'Cy) < 0. N (2.32)
The following assumptions are then used:
Assumption 2.1 r, ¢ and . arc mcasuwrabdle,
© Assumption 2.2 Ain(CoM (q)7'CT) = ay.
. Assumptiﬁn 2.3 [|M{q)Y| < a2,
Assutjlp§ioil 2.4 || flq, )i+ g(@)] < by + baflgll + bsligll*.

where ay, @y, by, by and b3 are positive numbers.
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T-he'.control law is then described .by-

] | .
_:||:| w Jlsfi #0 .
u= ’ N (2.33)
0 =0

where

W = "C"Q."'l,-jf[r" + "C' “l,-gf}',.” + "C‘gBﬂ?'”
+aal|Call(hy + ballqll + balldll) + ICylé-

(2.34)

T !';é simulation results provided in the paper show excellent tracking and error con-
vergence, however the law requires relatively high control inputs to maintain the
system in the sliding mode. The advantage of this law over other laws is that only
the five bounds of assumptions 2.Z to 2.4 necd to be found and not both bounds on

every system parameter.

Man and Palaniswami (1893) propose a diflerent variable structure schetne, based
on the variable structure adaptive scheme proposed in Leung el al. (1991) (sec

page 37. In this paper they sinplify the control law of Leung el al, to
= 0O + Oyr + Ogze, : (2.35)

where ©; are variable structure controller gain matrices which, unlike Leung, Zhou,

and Su, contain no adaptive terms.

Anoﬂner paper with work on similar lines to that of Man and Palaniswami (1992}

s Hanmandlu and Pandian (1993), however this paper does not prove convergence




2 - Literature Review

27

or-robustness and fails to reference most of the more recent work on the tracking

control problem. An improvement on the work of Man and PalaliiS\vami-(IQQZ) is

macle in Man, Paplinski, and Wu (1994) which reduces the required control inputs.

- Using the definition of error from Morgan and Ozguner (1985), i.e.

E=4— 4r,

this paper defines the switching manifold as

s =06,
where
1 1
C'=[C, C.,]: o> 1<ign
c’!ﬂl l
L o

and

) é

¢ = .

&

where

K
5

P
"

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)
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and

- m=0Cm+1), m=012,.. and (2.41)

m=0>2m+1), m=012,.. (2.41)

Note that this is somewhat dilferent from that described in Man e/ al. {1994), Dr
Zhihong Man requests this alteration as it is a better description of the criteria for

m and pa.

The ith element of s in expression 2.37 can be written in the form

£
n
'

LHES S

e

+

i

thus the terminal sliding mode can be described by

It is shown in this paper that the relaxation time for the system above is found with

e, =0
l,‘ = (':,-'l/
4 (0)

=
5

i

r

TEF

(2.42)
|-

[s0)] ™

il -‘,%)‘

which tmplies that the output tracking error will converge to the sliding mode in

finite time.

Using the same four assumptions as for Man and Palaniswami { 1992) :
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(assumptions 2.1 to ‘2.4), the control law they develop is

—otpie s #0 |
H = : \ (2.43)

0 Jsll=0

where
w = 1Al + | Arzgell + | Borrlf + a2(bi + ballall + balldl®) + |ChllE (2.44)

and & is defined as in expression 2,40, and hence

Copen

. Bl_y.. .
= diag(eva ™' )2. (2.45)

This paper proves error convergence as well as finite convergence to the sliding
mode, however it does not include external disturbances and requires the bounds
|

ey, 2. by, by and by to be known,

In Man and Palaniswami (1994) a control method is devised based on a similar
tactic to Shoureshi ef al. {1990) — dividing the systen into a nominal part and an
unknown part. The equation of motion used is derived from that of expression 1.2

and defined as
u(t) = M{g)g+ h(q. @), (2.46)

. xl o Ty .y . N .
where h(g,¢) € R" is the vector of combined Coriolis, centrifugal and gravita-

tional torques.
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They then consider the robotic ménipulator described in expression 2;46 to have
some known and some unknown parts defining M and A, in a similar manner to
Kim, Lee, Park, and Youn (1993), as

M(q) = AM(q) + Mylq) (2.47)
and

haq,q) = Ah(q,¢) + ho(g, @) (2.48)

where Ay(q) and ho(q, ¢) are the known parts and AM(q) and Ah{q,¢) are the
unknown parts of the inertia matrix and combined Coriolis, centrifugal and gravit-

ational [orces,

Using expressions 2,47 and 2.48 expression 2.46 is rewritten as
NMolqlg + holg, g) = u{t) + p(t), (2.49)
where
pll) = =AM(q)i ~ Dhlq, ¢+ d(1). . (2.50)
.!t is further stated that -

() < bo + billl + ball4ll* | (2.51)
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Using the control law as in expression 2.21, the nominal system is then defined by -

w1 = Mo(q)§ + holq, §). ~ C(252)

Defining the state error, €. as in expression 2.72, the paper defines a linearized error

system as

é = Ae + B, (2.53)
where
01
A= , (2.54)
00 .
0
B = (2.55)
1
and

v = Molg) ) = holq, §)) — - (2.56)

The error dynamics described in expression 2.53 for the nominal system 2.52 are

then considered to be stabilised using the following nominal feedback control law
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(Abdallah, Dawson, Dorato, and Jamishidi 1991)
wr=hola,@) + Mo(a)(Ke+4), (2.57)

where A = [ -R -k, ] (K, Ky € R™™), and matrix K is designed such that

Av= A+ BR, (2.58)

is an asymptotically stable matrix. It is further stated that the error dynamics can

be written i the form

€= .'~l;.e + Bl‘[(,\(([)_l“o + B.f”o(ﬂ)-l[)(f). (2.59)

The sliding hyperplane used in this paper is the same as for Man and Palaniswami
{1992) and is defined in expressions 2,30 to 232, The final control law for the

untknown portion of the system is given by the variable structure system

sTCy M)~ F \
{sTChhdla()™") ”,‘”#0

o = JaTCrd ()= 1) 7|2 t , (2.60)
0 sl = 0
where
w= —s"CAge — 8|l C2Mo(@) M| (b0 + bullgll + L2figil®)- (2.61)

This paper proves error convergence, but suffers from the problem of all non-
adaptive systems in that the three parameter bounds by, by and b, must be known.

A similar scheme is designed in Man and Palaniswami (1995).
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2.3 Combined Variable Structuret and Adaptiire Systenisz -

One of the first combined laws for tracking is based on the work of Young (1978)
and is given in Morgan and Ozguner (1985). Morgan and Ozguner do not claim
that they combine the two methodologies, however if one considers expression 2.65

that they derive, this clearly fits the definition of adaptive laws as given on page 15.

The equation of motion is simplified by Morgan and Ozguner to
wp = (gl = L)+ fi 1<ign, (2.62)

where m; is the lumped equivalent mass of the /th link. /; its length, J; its moment of
inertia about the centre of gravity and f; is an nucertainty parameter that includes
the gravitational torques and all non-linear interactions hetween the joints. Defining

the position error as
£=q— g ' (2.63)
where ¢, is the reference input. they give the switching manilold variable as
s=0:44q. (2.64)

They then assume that the disturbance f; is measurable and use the previously
sampled value to calculate the next control input. Thus the input torque required

to imaintain tracking at sampling time A, is given by

(k) = (mdd) = J)idk) + filk=1) 1<ign. (265)
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Thié method of calculation suffers several major (lisa(lvﬁntages. Firstly 1t is bé’.ﬁ;éd -
on the assumption that there are only small changes in the di#ﬁrbanéés from one
's'ampliug moment to the next. Secondly it reqtﬁreé the control bf the accelefation
of the joints, §. Finally detailed knowledge of the system (the lumped mass and the
joint lengths) is required. If these are unavailable or inaccurate then the uncert&iﬁt&
factor f may fail to cope with the changes in disturbance. Mitra, Gupta, a.;lcl
Moinuddin (1989) refine the work of Morgan and Ozguner (1985) by shortening the

time taken to reach the sliding mode and reducing the chattering once there, however

the original problems are not dealt with.

Al-Abbass and Ozguner {1985) devise a combined system of variable structure and
adaptive control. This is based on the model following adaptive system of Balestrino,
Maria, and Sciavicco (1983) combined with the variable structure system of Young
(1978). However. it works on the problen: in a decentralised manuer. considering
the control law as being made up of e subsystems, which do uot communicate with
each other. The model for the state variable is then given as

Fo=m At B+ ) Age;,  1<igon, (2.66)

y#
J=1

where the summation term represents the interactions between the subsystems. The

relerence model of expression 2.5 then becomes
Fomi = ApiTmi + Bri 1 “<"- <, . (2-67)

with 4,,;, € R"™ and B.. € R’ Finally the sliding manifold is deﬁiléd in a
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'.siijiil%t.r:ly;c'l.eéénh;a.]i.sedj nlallﬁél‘, as )
s =C,e, , lgzg ?.1’ o (268)

wﬁere
€ = &y — &y

and

n

é; = A,uei + ( mi - 4A; )1' + Buiri — Biu; — Z Aija’j I1gign.

HAt
i

In this paper a proofl of the stability and error convergence of the control Jaw
w; = ke + k,,,'.'l?,' + ki + i, (2.69)

is presented, where ke;, Api, byi and are appropriately designed feedback gaius.
One disadvantage of this system is the more complex calculations that are required,
as each subsystem (joint) requires a diflerent calculation of the feedback gains.
These gains (as given in Al-Abbass and Ozguner (1985)) are themselves complicated
o calculatc, hence the processing load on a real-time system would be unpproplmte

for fast. accurate robof tracking.

An interesting variation of the use of combined adaptive and variable structure
‘methods is given in Slotine and Li (1987) and further developed in Kelly and Ortega
(1988). In these papers. a sliding mode is used to ensure accurate position tracking

and an adaption method used to give accuracy of velocity of the joints compared to
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-'-the reference. © . - -

:':'..Further w01k on the coml)matlon of adaptnve and varlable structule techniques is
~~._'.|)1°eaente(l in Hsu and Cos't'l ( 1989). in wlnch they prove finite convergence to the
' all(hug mode. Narendra and Boskovic (1990) g,sve a useful summar y of the (llﬂ'erence
' I)'gtween direct, indirect ia.n(l variable structure '.a.daptive systems, anc! combinatious

of these,

An important improveniént; on the work in prévious papers is foun(l.in,'Leung, Zhou,
an(l $u (1991). Using the state variable x as defined in expression 2.4, they rewrite

expression 1.2 as

. q q 0 o
& o= o M(g)~"u(t)
q | | M@~ (=flg,9)i~ glq)) I -
) - - o (2.70)
0 1 0 ' .
= e+ i
Al flz B]
= v+ Bu.
Defining the state reference model as in expreséion"?..d and the ctror as
E=q—q (2T
.tllé_' paper then defines state error as.
e=||. (2.72)
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Note that l'.lns is the same. as the sta,te euol glven in explessmn 2. 18 explessed 1n a,_' |
,sllghtly dlffelent manner. The shdmg Sl.llfa.CP is then deﬁned by a s1m1[a1 explessxon _' '-

t0 2.19, I)ut. with C defined a,s a matrix. Thus the sh@mg_ mode \fal:a})lg now !E@“les _-
- o =0, . - | ) - (273) .
.lwhere. :
¢ = [ C"; ' ] . (2.7:4)
\-V}i@]‘ta Ch, Oy | € R"”.

u

‘Substituting expression 2.72 into c‘qnesswn 2,73 results in

§=~C5'0e. - {2.75)

This implies that the the transient response of the tracking error depends solely on

ihe eigenvector structure of CyC;.

Leun& et al. {1991) then define the control law in a similar nranner ! to (‘\I)IGSSIOH 2,14,

A l)_ut include an error term
w= Ky + Kor + kge + Oy + Ogr + Oge, (2.76)

~where the variable structure systems ©; involve five paramneters that are adap_t_;ively
uj;d;itécl “However a major drawback of the proposed law is that the system will fail
, upon some couchtlons with the adaptive values tending to mﬁmty as time tends to

.mﬁmt\/ ( Man and Pdlamswalm 19.]3)
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- In much the same manner as Leung et al., Fu (1992) expects the bounds of the -
system parameters to be known and uses the adaptive method only to estimate two - -
compensation terms of the control law itself, which is an improvement over the five

estimations required in Leung et al.

Stepanenko and Su (1992) also use an adaptive method to update parameters. Us-
ing the variable structure control law (described on page ‘23) in expression 2.24 the
method is extended to the adaptive form by the use of an adaptive formula for the
bounds &; Qf expression 2.25, However, the hasic method uséd for the control suf-
[ers from several problems, &.13 detailed in the discussion on its variable structure on
page 24. Another hybrid control law is given in Qu, DaWsou, and Dorsey {1992),
however the experimental results show that the tracking error is relatively slow to
converge o zero. Park, Jiang, Hesketh, and Clements (1994} also detail a combined
adaptive and sliding mode control law, but do not prove asymptotic error conver-
gence nor convergence o tltg sliding mode. .»\n extension of this work into task

space can be found in Jiang, Park, Clements, and Hesketl: (1994).

In Su and Leung (1993) they derive their combined adaptive and variable method
from the property of motion defined in expression 2.22 on page 23. This regressor

hased method sets the control law as
u=¢(q, (}-(}ra(jr)d’ — ks, (2-77) :

: ivl'iere Ky is a positive definite design matrix, the switching manifold s is that de-
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scribed in exp1°éSSidns_2.73 and 2.74, with Cg =1, and 1,b is defined as

i = —iisgn(() Y _ siiilr GG éie), 1 <P Sy (2.78)
J=1 . g
The #; are estimates that are then adaptively updated as the robot hloves. This law
gives asymptotic error convergence. The paper also proves the convergence when
uncertainties are included (as per expression 1.3). The main problem with the law
is that tile number of adaptions necessary is dependent on the number of links 'in'
the rigid robotic manipulator, hence the complexity increases with the complexity
of the robot. [lowever,, the method of adaption and the method of proving that the
adaption gives error convergence are usceful tools and are emulated in Chapters 3
and 4. An extension of this work can be found in Su and Stepanenko (1993). In this
paper the research is based entirely on the inclusion of disturbances and develops
the control law with adaptive estimates for ¢ as well as three control gain vectors,
however the problem common to all regressor based methods, that of computational

intensity, still remains.

2.4 Other Methods

There have been several other quite different _a.pproaches to designing control laws.
Desa and Roth (1985) use servo-mechanism theory combined with the standard
method of splitting np the system into nominal and unknown parts. The disadvant-
ages of the method they develop are several fold. Firstly it is a method, not an

actual control law. and hence needs to be carried further for every rigid robotic ma-
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nipulator for which it is to be implemented. Secondly it only provides fast, accurdte
tracking where the task is clearly defined and preferably repetitive, this is because

it is only fast if the kinematic and dynamic calculations can be done off-line.

Spong and Vidyasagar (1987) devise a method that uses stable factorization in the
design of a linear compensator that is to deal with the inaccuracies in the model

used to design the contro} law,

Abdallah, Dawson. Dorato, and Jamishidi (1991) provide an excellent summary of
the four most common methods in use for solving the robot tracking problem in a
robust manner. The lincar-multivariable approach, passivity based approaches, vari-
able structure approach and robust adaptive approach are described are described

with simplicity and clarity.

- 2.5 Chattering

One of the biggest problems witlh VSS methods is the discontinuity at the sliding
manifold formed by s, the sliding mode vector. Physical control devices have prop-
erties (such as switching delays) that interact with the change of control structure
at the sliding manifold and cause the system to chalter back and forth across this
discontinuity. The chattering is undesirable because it may cause umodelled high-

[requency dvnamics (Slotine and Sastry 1983).

One method devised to deal with chattering is that of a variable sliding mode devised

by Al-Abbass and Ozguner (1985). This requires that the elements of the matrix
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C; (in expression 2.68) be allowed to vary in time. Whilst this is a good method in
principle, the complexities of calculation requ':fe too great an overhead in terms of

processing for real-time application.

Furuta (1990) is one of very few authors who tackle the chattering problem by
approaching the system as discrete rather than continuous from the start. The
method they present can eliminate the chattering but does not give a very fast
response, which is essential when the rigid robotic manipulator is moving at high

speed.

Shoureshi, Momot, and Roesler (1990) deal with the problem by considering the
characteristics of the actual robot used for the experiments. It is shown that the
particular robot in use (a GE-P50) has enough [riction at the joints to act as a
low pass filter. thus reducing the chattering. Furthermore the DC notors in use
at each joint have cnough bandwidth to be wnalfected by the chattering problen.
These two chatter mitigating factors are claimed to apply to most industrial robots,
however this means that the design is based on a characteristic of rigid robotic

manipulators that may not always hold truc.

However, the most popular method for solving tLis problem is via a boundary layer
around the sliding surface, inside which the discontinuous function is approximated
with a continuous one. This removes the chattering, but can no longer ensure
convergence of the tracking error to zero, only to an arbitrarily smull boundary of

the region near the sliding mode manifold.

The ultimate boundedness of such a continuous system is proven guarantced in

C'orless and Leitmann (1981} for any control p that conforms to the specification
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provided by

playt) = —l=lloe sy if luta, ) > 6
plx,t) < p(a.t) if ||p(z,t)]| < 6,

(2.79)

where p(x,t) is a bound on the system uncertainties and g is a function dependent

on the particular system involved.

The concept of a houndary layer as applied to the control of rigid robotic manipu-
lators is developed in Slotine and Sastry (1983), in this paper it is stated (without
proof} that any interpolation between the two edges of the boundary layer that is a

continuous function will suffice to remove the chattering,

In Slotine {1984} the houndary layer methiod is refined to allow for the varying of
parameter uncertaiuties over time, This ts called suclion control and adds complex-
ity for the sake of a small gain in accuracy. Sun, Sun. and Gu (1991) use a boundary
laver to solve the chattering problem for a system that is considered discrete from

the start in much the same way as does Furuta (1990},

Glatzl. Murphy, Weun, and Nopacek (1993) produce experimental evidence that sug-
gests that the boundary layer is a poor way to reduce chatlering. however as the
control law used is that of Young (1978) which has been much improved upon. there

is doubt as to the validity of the results.

Most control laws are fractional and it seems that the easiest way to create the
boundary layer is Lo substitute for some part of the denominator the size of the

boundary layer itself. For example, in Man and Palaniswami {1992) the non-
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houndary layer control law is

CT s
iy "0‘

£0

w B

=

0 Jlsl=0
and thus the houndary layer law is defined as

or
_‘.'.".J||'“'_.:i| w |ls|| =4 |
= . {2.81)

X

C« LA N
~2w sl <§
Otlier papers that use a similar techuique to produce the boundary layer are Man
aud Palaniswami (1993), Man and Palaniswaini (1994} and Man and Palaniswami
(1995). The work in Chapters 3 and 4 uses the boundary layer to remove the

problems of chattering across the switching manifold, altering the confrol Jaw in a

similar manner to that above.




3 - An Adaptive Variable Strncture Control Law ‘44

3 An Adaptive Variable Structure Control Law

3.1 Introduction

This chapter introduces a new control law which does not require the prior know-
ledge of the bounds on system uncertainties. Instead it uses an adaptive method
to estimate tliese bounds at run time. The controller ensures both asymptotic error
convergence and robustness. The sliding mode manifold is that proposed by Man,
Paplinski, and Wu (1994) and described on page 27 with expressions 2.36 to 2,42,
the state description used is [romn Balestrino, Maria. and Sciaviceo (1983) aud given
in expressions 2.4 to 2.8 on page 15 aloug with its extension by Man and Palan-
iswami (1992) given on page 24 in expressions 2.27 to 2.32. The state error is that

defined by Leung. Zhou. and Su (1991). in expressions 271 to 2.72 on page 36.

To design this control law, it is necessary to make some assumptions aboul robotic
manipulators and the hounds to the parametric uncertainties. These are based on
the characteristics of industrial robots.

Assumption 3.1 ||M{¢)|| <k o by > 0.

Assumption 3.2 j|M{(q)|| < k2 + Ksllgll + Aaligll « B2 haiks >0

Assumption 3.3 || (¢, 4)q + glo)l < ks + ksllq|| + k= [[Gl)? . ks, ke bz > 0

The assumptions above are widely used in the literature on the control of rigid ro--
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botic manipulators. Assumption 3.1 can be found in Grimm (1990) and 3.3 in Man,
Paplinski, and Wu (1994). Dr Zhihong Man has stated in a personal communica-
tion, that Assumption 3.2 can be proved for any rigid robotic manipulator but that
there is no generic proof for all systems due to the differences in the characteristics
between rigid robotic manipulators. A proof for the two-link robot simulated in

sections 3.4 and 1.4 is given in Appendix A.

ln the rest of this chapter, section 3.2 describes the new controller and section 3.3
describes the boundary layer control law. Section 3.4 gives the data and results for
a simulation that applies the two controllers to a two link rigid robotic manipulator,

using the mathematics program MatLab. Finally section 3.9 gives some conclusions.

3.2 Controller Design

The assumptions 3.1 to 3.3 cause problems in the design of robot control. As pointed
out by Grimm (1990). they must be evaluated for every different robot and too
conservative an estimate of the bounds leads to robustness that is too restrictive.
This scetion develops a method by which these upper bounds can be estimated

adaptively as the rigid robotic manipulator is in motion.

Let ;. } €1 €7 be the estimates of A, 1 €7 <7 in Assumiptions 3.1 to 3.3 and let

these estitnates be adaptively updated using the lollowing laws:

-
-

by = ’]l"b"” - Aty = g — B.r+ Clélla (3.2)
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o] -

ks = sl T (33)

malls|*llall, - (3.4)

e

[~

Il
D] —

b = 3PNl (35)

ks = sl (3.6)
ko = nallslllall (3.7)
er = sl (3.8)

~

where £ and  are given in expressions 2.0 and 2.45 respectively,and i for 1 €7 €

T
are arbitrary positive numbers and %; for | < 7 € 7 have arbitrary initial values.

Parameters n; for 1 € i < 7 n expressions 3.2 to 3.8 are called adaptive con-
stants. They are properly chosen to adjust the convergence rate of adaptive laws
in expressions 3.2 to 3.8. Generally. the larger the paramters 5; are, the faster the
convergence of the adaptive gainss. However in practical situations, the values of
paranieters ij; can not be very large because this may cause high control gains which

are undesirable.

Using these adaptive laws it is possible to pose the following theorem:
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Theorem 3.1 Consider the error dynamics of expression 2,27, If the control iﬁput

~veclor is designed such that

~gre sl # 0,6 #0
U= . (3.9)

0 olherwise
where

w = " —_ .4,-,([, — fln(;r - Brl7' + C"lé",:‘! . (3.10)

418l + Esllall + Ealfall) + (s + kallgll + Asll4]1%)

then the ounlpul {racking crror veclor converyes to zero in a finite time,

Proof: Consider the Lyapunov function (Su and Leung 1993)

o1 1 1 -
Vo= 5..«";11(,,)5 + TZ ) (3.11)

‘2[
whete by = ki =k, 1<i<T.

Diflerentiating ¥ with respect to time we get

V=

.éTM(q)s + ;l;s'r:\.[(q)s + ;,l;sTM(q).é - Z r);*'l},ll‘;.

tof—
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Since $TM({q)s is scalar it follows that it must be equal to its own transf)ose, thus

TMq)s = [TM(g)s]”
= sTM(q)Ts

= sTM(q)s (Since M(q) is symmetric).

Thus the derivative of V' can be written as

. 1 SRy -
V=T M(g)s + Es’ M(q)s =Y o ki, (3.12)

In Man, Paplinski, and Wu (1994) it was noted that expression 2.37 could be written

as

s=Cet (& =2). (3.13)

Differentiating this with respect to time we get

s= e+~ 0%,

and substituting this into expression 3.12 for 17 we have

. R G SN
Vo= sTM(q) [Ce+Cié — Cé] + 557 M(g)s - Z i k.

i=1
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Substituting for é from expression 2.27

Vo= sTM{q) [CAe+CBablg dru,r) + Cré = Cré]

+%37M(q)s - z i heik.

.
i=1

Looking at the definitions for €' and B, (expressions 2.38 and 2.28), it can be seen
that '8, = I. Thus we now have

i

Vo= T A (q) [C-'.‘l,-f" +hlq g r) + (- C-‘ls'] + %s"'.ffl((l)s - Z 1;:”};;‘:;.

=1
Substituting for £ from expression 2,29
Vo= sTM(g)[Cdoe + M(q)™ (= [lq. )i~ g(q))
. e : . 2 (3.14)
— A= A= Bor + Cié = Cé [+ 5" Mq)s - z i kil

=1

Using the definitions of C, A, and e {(expressions 2.38, 2.7 and 2.72), we can simplify

the terim (' A,.¢ as follows:

0 1 g
CAe = [('1 1]
lI"I ‘l? E’
(3.15)
= [~4rl C"I+Ar2] ‘-_

) J'lrl“: + (Cl + -‘lrz)év
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‘and substituting this into expression 3.14 we have

v

STM(g) [ Ane+ (Cr+ An)é + M ()~ (w ~ [, 4)d - 9(q))

7 .
—Ang— A - Br+ Clé - (€ ] + %STJ"’I(Q)S - z n,-'lf:',-fc,-

i=]

sTM(q) [ Arie + Cié + Ané + M(q)™ (v ~ flq.9)¢ — 9(g))

7 .
~Ang = A= Bur + Cié = Cié ] + %STA.'I(([)S - Z 1);"!1’;12’;
i=1

374’”((!) [ Ape+ A8+ i"(q)_l(“ = fla.4)g - 9lq))

—-Ang— Ang— Byr + Cyé ]+ %sﬂ'f!(q)a' - Z r;,—“lﬁ';!:c,-
=1
STMO | Ane = Apg+ Apé = Ang+ M(g) e = flg, ¢} — glq))

’

~Bar+ Cél+ %sT;\‘l(q)s - Z r};'l’:'.-ﬂzri

=1

STMg) [ Aule = q) + Aulé = ¢)+ Mg = [lg. 0 — 9(9))

4

—Bar+ 43+ %.r-'?"\‘l'(q}.ﬂ - Z o ke,

=31

Substituting for ¢ from expression 2,36 gives

STAM ] = g — A + M) u = flg. @) = glq)

—Bar+ 0 1+ .-;-.;Td'[(q)a - Z: 1;‘-'11?.',-&,-

=t
= STM(Q)| = At — Andy = Boyr + Cié + M{g)"u
7 .
— M) (Flan g+ ola)) 1+ 5578 (g)s = 3~ 7 ki
=1

= s"".f‘.l(q) (—Amgr = Aray — Beyr + C'p;")

+8Tu = sT(f(q. i+ glad) + 3T M(q)s = Y " 0 ki,

=1
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Substituting for « from expression 3.9 (assuming |}s|| # 0)

14

il

sTM(q) (= Ang — Ande — Bur + Cié)
+sT(~ ) = T (S (v Vg + 9la)
+:;-sTﬂTI(q)s - Z 1),?"13,-1:.‘;

i=1

= STM(q) (=g = Arale — Bor + C,)
—|lsliw = sT(f(q. )i + glq))

+35T A (s = D o ks,

i=1
Substituting for w from expression 3.10

Vo= STMg) (= Ange = Asy — Boyr + ('\é)
(18l = Arite = Az = B + el — 2l (ke + ksllaf) + Ralldl)

~llsllts + dallgll + E= gy — <" f19. ) + g(a))

+%ST.~1.'I((/).~¢ - Z iy k.

i=1

-
[

Rearranging this expression and splitting Z n” ik into its component parts we

can write the expression for V7 as three terms

‘;' = [NTA[(([) (—'z“i”([r - -‘lrz()r - 1},-17’ + (‘lé)

(15Kl = Arste = Avatle — By + Créle — ,,;n;:.,:;.]

4 .
+ [T M (q)s — YsiPths + Rallall + Al ~ > w7 kak;
2

=2
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+ [—sT(f(q. Q)+ 9(a)) = Nsl(ks + Kallall + elidll®) — 3 n*Fik

.
A
.
1

LV o= TI+T2+7T3.

These three terms will now he considered separately.

Substituting for Ay from expression 3.2 into the first term, we have

Tl = .sTM(q) (=Angr — Ao — B + Clé)
sl = Asty — Apar = Brr + Caé|ley = 7 kr by

T = [$TAG) (= Ange = Ante = Bar + C48)
_"‘li" - o’lrlfIr - A--Q(;r - B.r+ ('Ié”itl
=k l|sllll = Avrae = Apady = Boyr 4+ C4E|,

then substituting k; = &y — Ay and stmiplifying we get

Tl = sTM(q) (—Ange — Al — B + C1F)
“[i”l”l - ‘"lrlqr - -4"2()r - Brlr + C"l';:"kl‘

Since sTM(q) (=Ang, = A — Bur + € é) is scalar, it must be less than or equal

to its own norm,

Tl Q "e.'r;”(q) (—A”q,. — ,-1,..2&’, — B,-,I' + C']é) "
—[slll] = Arsgr — Arae — Brvr + Cy iy
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o TL € [IsPIM@I (= Ang — Arae — Brr + Ci) ||

—s|l -~ A — A ('—B..?‘-}-Cék- -
Il = it = A = B+ Cols 1)

< (M) = k) (sl (~Ange = Arade = Brar + C:ié) |)
£ 0 {From Assumption 31)

Considering the second term, and substituting for kg, A3 and &y (from expres-

sions 3.3, 3.4 and 3.5) we get

4 ,
T2 = LTAI(q)s — SllslCke + Fsligll + eallth = Y o ki

=2

L T2 = LT (q)s = Stk + dallall + Kalldl)
—ip by l-z — 15 ks ey :);‘f.-_.l:.-,,
= LsTAI(q)s = Yl + Raliall + Eafldl)
=3 lea (Bl IP) = 03 Rl Sl s U2 )
=3 Tamll=H gl (Subs. for k;)
= LTAlghs = Ssl2C: + Rallall + Rallal)) (Subs. for k)
< H{lha + kgl + kalidll) = 31(q)) 51
< 0 {I'rom Asswmption 3.2).

(3.17)
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Finally, considering term 3. and performing similar substitutions we get

7

T3 = —s"(f(q,d)i + g(e) = lsllChs + Rellgll + xllglf?) ~ 25'0-"1551';5 :
i=
= ~s"(flq.4)q + g(q)) = lIsli(ks + ksllall + k= N4I*)
< N = sT(f(q. 4} + gDl = ls(ks + ksllgll + krlldll*) (3.18)
< M= STl (@) + glall = Nisli(hs + kaltall + A= fldll*)
< (g, @i + gl = (ks + kollgll + k7lidlI*))
< 0 {From Assumption 3.3).

Using expressions 3.16-3.18 we have

V<0 [ls]] # 0 (3.19)

Using Lyapunov's second method (sce page 5), expression 3.19 means that the
switching plane variable vector s converges 1o zevo in a linite time and on the terminal
sliding mode (Vnekataraman and Gulati 1992}, represented by expression 2,37, if
the error dynamics satisfy expression 2.2 then the output tracking error converges

to zero in finite time.

It is easy to see that, using the control law in expression 3.9, the coutrol signal is
bounded in error space. At the point £; = 0 and [|s}} # 0. the control input v = 0
can cause the error £; to move away from 0. liowever another part of the variable
structure control law will then drive the sliding variable vector s to the terminal
sliding mode where s = 0. The desired error dynamics can then he obatined on the

terminal sliding mode.
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This result differs from those of previous research ( Slotine and Sastry 1983, Young
1978, Yeung and Chen 1988, Leung, Zhou, and Su 1991, Man and Palaniswami
1993, Man and Palaniswami 1994 amongst others) in that the output tracking error
is guaranteed to be driven to terminal sliding mode in a finite time and once in that
mode, driven to the system origin in a finite time (Man, Paplinski, and Wu 1994).
This is achieved without prior knowledge of the bounds on the system uncertainties

as defined in Assumptions 3.1 to 3.3, as required by Man, Paplinski, and Wu (1994).

3.3 Reduction of Chattering

The control law described in expression 3.9 lhas a discontinuity when ||s|| = 0 which
leads to chattering. This problem can be solved by using a boundary layer around

the discontinuity, giving the following control law

—H—:-ﬁu' fIs) =2 o
= . {3.20)

e s < 6

where & > 0 and w is as defined by expression 3.10. However when using the control
law of expression 3.20. the output tracking error can not converge to zero, only to

an arbitrarily small boundary region around zero.
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Figure 3.7: A two-link rigid robotic manipulator, where ¢; is the position of
each joint, in radians, m; is the mass of the joint, in kg. and »; is the radius
of the joint in metres.

3.4 Simulation

The simulation is for a two link rigid robotic manipulator, as shown in figure 3.7 and
was performed using the mathematies software package MaiLab running on an IBM
RS6000. It involved calculating the actual position of the sinmilated robot using

inverse kinematics and comparing that to the required reference position.

Using r; for mass, r; lor the joint length, J; for the joint's moment of inertia, ¢; for
the joint's angular position (i = 1,2) and G for the acceleration due to gravity, the
dynamic expressions for such a robot (as described in expression 1.2) are as follows
(Young 1978) The inertia matrix is

t !
M{q) = iy 2 ?

ftar fi22
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where -

i = (g +ma)rd -+ myri + 2maryrs cos(qe) + i,

e = 1712)'% -+ Mgy COS(([Q),

21 2.

Ho2 = 'I'Ilg?'g-[-.c]z.

The vector of Coriolis and centrifugal lorces is

o N
fadd=1" 1)
J2
where -
Ji = mariresin(g)di -+ 24,
fr = —marrysin{ga)g3.
The vector of gravitational forces is
hn
glg) = :
g2
- where
g1 = —{(m +ma)r cos(q)) + meora cos(qr + 42)))G
g2 = —marzcos(q + f@) % (f '

and (¢ is acceleration due to gravity.

The actual parameter values are set as
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”7] = 0 5 ]\g, ) ln,2 = ] l\g -

n= 111‘1, 12 =0 bm -
o h=sm hesiem
:Tlle l)alametew f01 the 1efe1 ence mo(lel g“'e" by expleSSlOIl 2 5 axe t'ml\en from Man,f

a])lmsl\l 'ul(l Wu ( 1994)

B, = . and

, ;The desm*cl 1efex cncc SIgnals are 'llso tal\cn ﬁom '\lan, aplmsl\l, and Wu (199 I) .

: “and ate. gl\'en by T
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and

=195 4 Opmt _ =it 2 -t ~4t~
G2 =120+ 3¢ — 3¢ 36 +1

 which gives initial values of the reference model as g, = 0.2 and g,z = 2.0.

" The valises for p1 and py in expression 2.40 have been chosen as p; = 3 z.md' Pz = 5, .' '

which is consistent with the requirements of expression 2.41.

The Runge-Kutta method with sampling interval of 0.01s is used to solve the non-
linear differential expressions numerically. The MatLab code for the simulation can

he found in appendix B.

In figures 3.8, 3.11, 3.14, 3.17, 3.20 and 3.‘23, that show beth the reference model and
~ the robot, the reference model is shown with a solid line and the robot movement

| “with a dotted line.

* Initially the starting values for k; were chosen as 0.5 and the values for #; set to
- 10.. The 1ol)ot was ‘.ssurncd to start from the same position as the reference model.
The output tracking of joints 1 and 2 is shown in figure 3.8. From these graphs it is
clear that the estimates for k; quickly adjust so that the position of the robot closely
tracks that of the reterence model. The tracking error for this choice of initial values

“can be seen in figure 3.9 and the control input in figure 3.10.

- 'I‘hé_élf(__:ct of choosing a different initial value ftél' J: can be seen in figures 3.1-1_' '
: ':'td-'}--'l‘} “ For i;his-' choice fhé tl‘a.Cl\lllgls 50 accu-rate- that the dotted line shov;.ring )

" the path of thr* robot snmulatm cannot be dlstmgmshed from the sohd lme of the '

"-z".-_-:_'_lcfelence 1)ath -
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- Lool\mg at the graphs of the traclung error (f gure 3. 19), 1t can be seen that nt" B
' :rwxams very stnall mdeed in fact i m the regwn of 0 :1: 0 001 radlans. Thls is an |

, .e\cellent response from the control law,

Tigure 3.13 shows the control input for both joints. The effect of the chattering is
clearly visible in the fast switching required from positive to negativé input values.
Despite this however, the results are good in terms of the relatively low absolute

“values of the coutrol input required to achieve the tracking.

Figures 3.14 to 3,16 show the effect of having the robot’s initial position differ from
the reference model. The graphs indicate that the control law still gives a very good
fesult, because the tracking converges in approximately 1 second, and the control

input still has a reasonable houud.

: Graphs shown in figures 3.17 to 3.19 give a *worst case’ situation where the rohot
does not have the same initial value as the reference model, and the initial values of
ki llavc been cho:-;en poorly. It can be seen that the robot still only takes 2 seconds to
'(.’omlncncc tracking along the reference path. In real terms it should he possible to

estimate reasonable st:artiﬁg values for &; in muclt the same way as bounds estimates

have always been estimated. ensuring that the initial values are not out by a factor

of 10 as are those used in the simulation that gives these graphs.

~ Changing the value of ; for 1 € i < 7 can be seen in figures 3.20 to }.22.' Whilst
-' thc higher values of 1i may produce faster convergence of the adapt.wc laws, it can

- hv seen by compalmg figures 3.16 and 3. 22 that the control mput has mcrease(l-

: stgmﬁcantly, whi-h is undesirable.
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- 'Tlié .f..ini'ﬁl'}grép'hs for the t.uibbim.cled' §6xittbl law are éhp&?n in f'i'guxf.es' 323t0325 N

" These graphs sho\y the results of si;éfting values where &; = 0 gmdé-; # Oand Ilence

' [ls[[ # 0. The control law can be seen to deal with,thi's situation.

For the boundary layer sitimlations, the value of § in expression 3.20 has Deen .se,t'~

* to 0.06. The first graphs, shown in figures 3,26 to 3.28 show the situation where the

robot and reference start at the same place and the ‘good’ initial value of &; = 5, for

I €7 <7 was used. It is clear from the graphs, that the tracking is not as accurate

as when no houndary layer is used. The graphs for output error tracking show that
it no longer oscillates around zero, instead tending towards values that are small,
in the order of < £0.005, but not zero. This value can be made arbitrarily small
by reducing the chosen value of . The advantage of using a boundary layer can
be seen in figure 3.28 where the coutrol inputs now follow a smooth path instead of

chatteriug.

The final figures (3.29 to 3.31) show the houndary layer control law for the *worst

ccase’, In can be seen that the tracking still hecomes close to accurate after 2 seconds,

~and the control input no longer chatters.
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Figure 3.8: Simulation I: Output tracking where reference and joint values
coincide at the start, i = 10 and initially &; = 0.5, 1 <i €T
0z 02 - —
0.15 015 4
E o1 § (313
- ~N
5 o5 E‘ 005
£ % :
g-ﬂﬁﬁ- “ é-oob‘
g 01 z =01 .
“0.15} 1 0.0
B T e S e e B e e S A A T N S T S
Time ( (9} . Tune | (s

Figure 3.9: Simulation 1: Position errors where reference and joint v’nluos
coincide at the start, i = 10 and initially I. =051€i<T.
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Figure 3.10: Simulation 1: Control input where reference and joint values
coincide at the start, i; = 10 and initially &; =05, 1 < i < 7.
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Figure 3.11: Simulation L: Output tracking where reference and joint values

coincide at the start, ; = 10 and initially £, =5, 1 < i < T.
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Figure 3.12: Simulation 1: Position errors where reference and joint values
coincide at the start. n; = 10 and initially k; =5, 1 < i < 7.
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Figure 3.13: Simulation 1: Control input where reference and joint values
coincide at the start, 7; = 10 and initially k; =5, 1 <i < 7.
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Figure 3.14: Simulation I: Output tracking where reference and joint values
do not coincide at the start, 5; = 10 and initially k; =5, 1 <1 €T,
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Figure 3.15: Simulation 1: Position errors where reference and joint values do
not coincide at the start, n; = 10 and initially k=5, 1< i< 7.
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Figure 3.16: Simulation 1: Clontrol input where reference and joint values do
not coincide at the start, i; = 10 and initially &; =5, 1 <i < T.
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Figure 3.17: Simulation 1: Output tracking where

reference and joint values

do not coincide at the start, 55, = 10 and initially ki=.5,1<i<T.
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Figure 3.18: Simulation 1: Position errors where reference and joint values do
not coincide at the start, 7; = 10 and initially &; = .5, 1 <1 < 7.
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Figure 3.19: Simulation 1: Control input where reference and joint values do

not coincide at the start, ; = 10 and initially k; = .5, 1 <1 < 7.




3 - An Adaptive Variable Structure Control Law

68

14 - 2
1.9+ 4
12F
= vaf —o 1
£ :
i il,r o G2
E" E-]
08F 16 <
s i
%os §|5»
£ Bl
DAF
1.3]
0.2 it - ~y - 12 - - -
0 1 2 3 4 5 8 7 a 0 a 4 5 6 7 B8
Time | (s) Time 1 (s}
Figure 3.20: Simulation 1: Output tracking where reference and joint values
do not coincide at the start, i; = 30 and initially k; =5, 1 < i< 7.
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Figure 3.21: Simulation 1: Position errors where reference and joint values do
not coincide at the start, »; = 30 and initially k; =5, 1 <1 < 7.
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Figure 3.22: Simulation 1: Control input where reference and joint values do
not coincide at the start, 1; = 30 and initially &; =5, 1 <1 < 7. .
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Figure 3.23: Simulation 1: Output tracking where ey = 0 and £ # 0, 1; = 10

and initially k,‘ =il ish
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Figure 3.24: Simulation 1: Position errors where =y = 0 and =5 # 0, n; = 10
and initially £; =5. 1 <i < T.
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Figure 3.25: Simulation 1: Control input where £ = 0 and =9 # 0, 3, = 10
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Figure 3.26: Simulation 1: Output tracking using a boundary layer, reference
and joint values coincide at the start, 17; = 10 and initially k; =5, 1 < i< 7.
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Figure 3.27: Simulation 1: Position errors using a boundary layer, reference
and joint values coincide at the start, 7; = 10 and initially k; = 5,1 <i < 7.
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Figure 4.35: Simulation 2: Output tracking where reference and joint values
coincide at the start and b; = 0.05, 0 < 1 € 2.
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Figure 4.34: Simulation 2: Control input where reference and joint values
coincide at the start and b; = 0.5, 0 < ¢ < 2.
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Figure 4.35: Simulation 2: Qutput tracking where reference and joint values
coincide at the start and b; = 0.05, 0 < i < 2.
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35 Conclusion

In this chdptér thére haé béen developed a robust control law that'gua.rantées finite
time error céilvergetlce as well as finite convergence to the sliding ?ariables. .T he
control law does 1iot require prior knowledge of the system hounds, instead using
adaptive laws to estimate these bounds as the robot is in motion. Use of the bound-
ary layer technique removes the problem of chattering, but can no longer guarantee

absolute tracking, however the errors can he reduced to an arbitrarily small value

by clioice of the value of & in expression 3.20.




4 - A Control Schema Utilizing Known Dynamics 75

4 A Contrql Scheme Utilizing Known Dynamics

4.1 Introduction

[n this chapter there will be developed a robust tracking scheme that, unlike the
one in the previous chapter, will deal with bounded disturbances as well as with
uncertainties in parameters. As with the other scheme, it is robust and provides

asymptotic error convergence in finite time.

The system is treated as a partially known system. The known dynamics are linear-
ized and a nomiual feedback controller is designed to stabilise the nominal system.
The eflects of the unknown dynamics are compensated lor by use of a sliding mode
adaptive compensator that estimates parameter bounds on-line. Thus we will be
cousidering the control input in fwo parts (Shoureshi. Momot, and Roesler 199}))

with -
=1+ g, (4.2)

where w; is the nominal-input and g is tlw conipensator that will be designed to

deal with uncertainties.

~ The control law in this chapter is based on the expression of motion as defined in
Kim, Lee, Park, and Youn {1993), the control law of Man, Paplinski, and Wu (1994),
and the adaptive methods and method of proof used in Su and Leung (1993).

Equation 1.2 for the motion of a rigid robotic manipulator-can be written in the
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, foilowing form (Man, Paplinski, and Wu 1994)
M@+ ha ) = ult), 3)

. nxl . 'R . ! »
where h(q,4) € R"™ is the vector of combined Coriolis, centrifugal and gravita-

tional torques.

If we then include disturbances in the expression we can deline the robot motion as
M{q)iq+ hig,q) = u(t) +d(1), (4.4)

. . ., a - .
where d(t) '€ R™ is the vector of bounded disturbances (Spong and Vidyasagar

1987).

The assumptions required fér the controller presented in this chapter are as follows:
Ass.umption 4.1 ||1\[ (G <oo, auw>0.

Aséumptiog 4.2 ||lz(q, Pl < Bo +Bullgl) + Belldll* . fouBr, B2 > 0.
'.Assumption 4.3 d() < dl' , dy >0,

Assumption 4.4 The form of the control input veclor w(t) is chosen such thal its
norm salisfies the following inequalily:

-||_"”-(_f)|| < Ao+ Aillll + Aallgl* AosAn A >0

" The first three of these assumptions are reasonable in terms of the characteristics -

- of rigid robotic manipulators, The first of them has been used.in Grimm (1990), -
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- and Shoureshi, Momot, and Roesler (1990), the second was used by Man and Pa-
laniswami (1994) and the tlﬁrd in Kim, Lee, Park, and Youn (1993) and Park and
Lee (1993). It will be seen that the controller designed in the next section satisfies

assumption <54,

In the rest of the chapfer, section 4.2 describes the new controller, section 4.3 de-
scribes the control law when a houndary layer is formed and section 4.4 describes the

simulation used to lest this controller. Section 4.5 then presents some conclusions.

4.2 Controller Design

The robotic manipulator described in expression 4.3 can be considered to have some

known and s.ome'unlmowil. parts, therefore we may define M and £ wil;h
M{g) = AM(q) + Molq) | (4.5)
a.nd.
g, q) = Aﬁ(d«)) +/zo(q.é), - ~' - . (4.6)

wlhere My(q) and hy(q,q) are the lknown 1')a.rlfs and AM (¢) and Ah{q, (}) are the

~ unknown parts (Kim, Lee. Park, and Youn 1993).
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Using expressioﬁs 4.5 and 4.6 we cz;n rewrite expressi(.).lil 4.4 as
Molq)g + holg, ) = u(t) + p(1), : (4.7)
where
plt) = —AM(q)i — Ah{q,§) + d(1). (4.8)

Thus p(t) contains all the system uncertainties.

As stated before, the system is to be considered as two separate systems, the nominal
or known system with a control law designed using linearization and the unknown
system designed as a sliding mode compensator. The nominal system is delined in

Man and Palaniswami {1994) {sec pages 31 to 32) and stabilised using
wy = holg, §) + Molq)(W e+ G.), cnom (1.9)
where K = [ K~k } (K, K2 € R"™), and matrix & is~(l§sig1'1(:cl such that
Ay =~.4.J} BE, (.10

is an asympfotically stable matrix.

To design the variable structure compensator, the following assumptions will be

<o used:

-'Ass-__-un_i-pti'on 4.5 Mplq) is invertible for all 4.
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. Aéé#ﬁl'pti°" 4.6 Tﬁe nominal sysfem .of expression 2..52. i3 stabd:zable |
:As;sﬁmption 4.7 |[(I+ AM(q)M#@%)-I,, < oy, o >0,
A;;;iiljpti011 4.8 ||A1\J((1)Jl{o(q)|| < ag, az > 0.
A§s11111pti011 4.9 ||ho(q.9)|| < a3 + a;."ql[ ¥c1'5||(}||2, .0'3,0'.1.,0'5 > 0.
ASS;@]PtiOD 4.10 {{Ah{q, )] < O’G. + az||gll + as||q]|*. ag, a7, c;s >. 0.
T hei'ﬁrél;”two of these assumptions ha'.,vcfil)een used by maity researchers, for 'insta.ncc.

Grix;xm (1990), Man and Palaniswami (1994) and Shoureshi, Momot; and Roesler

(1990). Assumptions 4.7 to 4.10 can be derived from assumptions 4.1 and 4.2.

- The [ollowing lemma can now be proved:

Lemma 4.1 The norm of the syslem uncertainlies p(1) in capression 4.7 satisfies

' U;é ;follo-wing inequalily:

el <bo+bllgl + o2l @1

 Proof: Txpression 4.7 can be rearranged to give

= Mo(a) (ul) + 50— holgs)
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: Sub’sﬁ.i.tuti:ligfthist infp"é}{prés(silc;in"4.'8,'wé' hd\}e o

o = —Amq)q Ah(q. frd) -
- -AM(q)[Mo(qr'(uu)+pu>~ho(q,q))1—-Ah(q,q)+d(z) o
o AM()My)! (0~ AM() Mol p(t)+AM(q)Mo(q) *ho(q,q) o
| ~".'—Ah(q,q)+d(t) |

© rearranging this gives S

olt)+ AM()Molg) (1) = =AM (@) Moo} ult) )
o AM@M) helad) ~ Akld) + D)

LA AM M) = =AM
R +Azw(qwo(q) ) - Ah(a, i) +d(r)

o I‘hus p( ) mn I)c wutien as -

:.f).(.‘.?)' s "—(I+Mr(q)mo(q) ')"Afu(q);uo(quu(f) |
R ':.+(I+AM q)Mo )" ’) A;\[(q),\/[, (,) 'ho(q q) .,: :
o I+AM((,)AJO((,) 1) ' Al @i :
I AN Ml !(t)
.°..:~,||/J,('.t.).||.:::,="'_:||-(I+AM(q)Mo(q) ) AM(q)Mo(q)l ) o
+ (I+AM( )Mo(q) ‘)"AM q)Mg(q) 1/7(,((, q) L
- (I+AM )Mo(q) ')'1 Al (n, ) .' e

(1 + A {(q)llfo(q) 1)-1 (“" S
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HMMI uu+AMmmme”AMwwmw-wml -
}wa+AMwmmw)”AMmmmw*mmwu
"wl+mmmmww"mwmu |

'+MI+AMwmmm))*«)u -

,uu+AMthw))”MAM@thrwwum

'4mu+unuthm) ”HWMWqM%MYWWwwﬂm

o +IINI+,A1\1(q)Mo(q Illl-lh(q, q)ll

A HHd(tHI

. f~//§ :

| Subshtutmg, flom d‘aSllll‘lpthllS d. 3 4 q and -l Lo 4, 10 we lnve

iww .mm%+AwHMMm~
o +C1102(£l'3 +01“fl|| +as||(1||
'~t+mum+amw+amm
B
SO S bot bl + balldl,

'.x\*ller’e :
":"'b(] = 0109/\0 *{- 010203 -|- 0106 + 0.1([[
' '..bl = 0102/\1 +010201+010n DR

bz,—f,c}la‘z/\,z-lf o Qs+ aras.

B "'-';:__Rem‘ 1k 4 1 In Man ( .-'993) @ meihorﬁ mus deuelapcn' Io: eat?ma_hn J !he pmmnei’cr -.:_.-'_ o

g__-_.so'me ayqfem'-’f F

rr,fe-, consm mhue’ L
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".The compensmtm uo can now be des:gned usmg the shdmg mode techmque w1th ad- -
o aptnvo estunataon of the uucertalnty I)ounds of e\plesswn 4. 8 so that the requnement

ol the pr101 I\nowledge of system uncertamt:es is noi. nccesszu'y

'Lot bu. b, dll(l bg l)c the cstlm'\tes of by, b, and bg of explesmon Al 11 Tlie ﬁgw

' aclapt,lvc laws for these estlmdtcs w:ll then be doﬁne(l as

bo=sollOBM M s

b= wllCBM(a) llsllal (14
and

b=l CBM) WS, ()

where x; for ) < i< 3 are. arbll,tary pomtwe numbeu, bi h'\\fc drbltrazy lllllel B

1]11(,5. C IS as dcrnc(l in t',\pwsmon -.3b. and B P\pwssmn 2.55.

' .:j,l’émrztrnéizérs ri lox 0 <A < ‘2 in e.\presbtons 4. IJ lo-4. J 5 are called 'I(Irlpiwc consl.ants.l B
' 'I‘lw\ act Go '1(13 ust I,he couvel gence rate of lee a(lapl, ve. lawq in expre SSlOllb 4 l‘3~ ,
0 I 15. I‘wslm conver 5,cnco of Lhc 1(1'1|)L1ve &,ams is achlevcd by mmeasma the valuc .
' oI Lhcso pcuamcl.exs howcver in practlce ‘the spee(l of convcrg,encc 15 Iumtcd by thc :

Ia.rgc_mze o_I' _the control_ gmns _t;ha.t_;a.rc gem_:ra.tcd _by ln_gh values ofnﬁ:,-_._’ T

e lo clombn I,hv compcnsalor uo, to gual'mtce euor convel&encc m f'ml.e Lmle we use

_Lhe tel mmal smtchmg plcmc \r'mdble vcc.l,m (Iebcubocl in- e\pl'(,:,smns":!.sf‘ l.o 42

- 'on 1)359 ‘): to "8
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Theorem 4 1 C nsrder ﬂ:e er :or d Jnanncs of e1p1ess:on 9 59

'"ﬁ*¢=A¢+8Mwﬁﬂw+ﬂMd®”dﬂf} f”YQMJ® '

' :_Im :‘he zobohc mmupulalor *qetem of erpwwon 44 wdh aeaumphons ,{ 1 lo / a'

. Ij fbr compensatm uo :s deazgned such lha!

| 37‘0’3’1"[0[(])._‘.7. T S IR o
= Ep TBHMo(q)~ ?|2 w o CBMo(g)Th#£ 0,5 # 0

'@HX

0 - oltherwise
S where

o= ="C e~ ||sI1CBAMy(q) | (o + b uqn'fﬁeuqi!?). —sTCiE =y clc |
- T PP U (zllb) .

and b 101 0<ig 2 are updaletl b:/ Ihe arfaphv( /aws i expressions ,, 13 !0 4. Ia,

Hwn the out]m( hn(/.mq ervor, £(t), will converge to zero in a finite .I.un.e.

Proof: Using‘ l:;hc'L_'ya.pimov l‘unctidn (su zm'd Le.lmg' 1993)

r-(l

b= b; = by,

where

)
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gal

- and differentiating V' with respect to time, we have. ~

‘Since éTs'is scalar, it _m’dst he equal to its own transpose, therefore

Substituting for & from expression 3.2

V= T(C +C’|€—(|c) Z.""i_?i’fb"’.

f=0}

' "m(I lhon substltutmg ¢ from 0\1)1esqlon .)Q we h'wo o

=. .5fc'f\,,f=+“~ ano(q) tm,+ "'CBMg(q | :)+ "c{é

Zn---_

:'-'l]

v =":.>"'(C i;e+(}131\10(q uo-f-(BMo q p(()-i-("l —'C'ié')'

(4.21)
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. Now COllSl(lel tht, conuol hw (leﬁued 101 the compensatm m e\plesswn 4, ll.

| summg C’Bﬂ[g(q ;é 0 we ha\'e

o ~(37'C»;Bfiflg(q)*‘)7‘ |
O STOBM()TE

* Rearvanging this expression we get

< BM(a)" I l'
B (.SIC.BMD(q) ) o

Since s7C:BMo(q)"" is a1 x n vector

'|_37'C]3,\.10(q)f’||2— [ ('BMO (¢} ] [ (e B;\/o(q) '}T

~ therefore

w = .sT(...'I;?ﬁ-[p(q)”'u(} ST £,

Substituting this into 4.2 we get

;’,’. = 's.'r(f"xl.ke 4w+ sTCBM(q) pl1) + sTC;;f

e i s
. .—S C"‘S_Z"‘i b,’b,‘,
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and substituting w from expression 4.18 we have

Vo= sTCHe + {—.eT_C-'.*lke - ||sHIIC BMo{q)™"|| (i)u + L.]|q|| + b;]|q||2)
—sTCé + sSTCEY 4+ sTCBMy(g) pll) + 5 ST = $TCE

- i h'rli),’f:l,-

=u

=l B (B + Bl + ) + 57C B M) o(0

-—Zh"bb

i=0

Substituting for &; from expression 41.20

Vo= —|lsllfieBMo(q)” ' (bu+b |Iq||+b Ilqll) + sTC B Mo(q)~ plt)
—Ky [bu—bu)bg—hl (bo — b, )b, — 15" (by — bo)ba,

oo
"

and then substitnting the adaptive laws defined in expressions 4.13 to 4.15, we get

Vo= =l Bty (bo + billall + ballgh?) +57C Balglq)~' pl1)
—tig (b = bo)rol{C' B Mu( )~ |[]| ]
— &7 (bo = b)w | C B o) sl
~ti3 " (bo = b eal| B Mol ) | <1112

= —{lsHIC B (b -+ Ballall + lldll*) +57C BAMu(g)~' p2)

—bllC B ([lis]] + BallC 13 Motq) 1)
~balC BMo(q) sl fall + by )| BMolg)= [l
—bajC BMulg) s + BallC BMalg)= Wllsil11?




4 - A Contro{ Scheme Utilizing Known Dynamics . o 87

Vo= =llsiCBMua) I (bo + Billall + Balldfi?) + s7C BMo(q)o(t)
—[Is1C BMo(g)~" || (bo + bullgl] + b2i*)

+sIC BMy(g)Y) (Lo + billqlf + letdllz) .

=lIsMNC BALo(q)~"[| (o + ballali + Eallgl1*) + 57 C BMo(q)~"p(t)
~[IsINC BMu(q)~"[| (b + ballalt + ba2llgl*) + IsIHIC B Malg)~ [[[lp( O
—[IsHIC BALLq) =" {(b + billall + balldl®) = (DI} -

AN

Using Lemma 4.1 we can now state that

<0 7ol £0. (4.22)

Using Lydptmov s second m(.thod e\plesmon 4.22 means that the switclliug plane
var m!)l(, vecto: B couvelg,(‘s to zero in_a ﬁmto time and. on the sliding modc, the

ouiput t:acl\mg error couvcuhes to zero in a ﬁmtt‘ l,lme

The.cbutrd law given il{: expres~;10n 4, l'f is bounded in error space. When ~i!; is in

'1hr- condition given by ' BAly(¢)~ ;é 0 when g; = 0. it is possible that a c. 2trol

input of i = 0 will drive &; away from 0. ln this case a different part of Irhe va.ria.blé.

strneture controll law will drive the vector s to the terminal sliding mode. where the
"

destred error dynamics will then be reached.

This resolt is an improvement over those in Young (1978}, Freund (1982), Spong a.l‘](l
Vidvasagar {1987}, Al-Abbass and Ozgnuer (1933), Morgan and Ozguner (19385},
Shoureshi. Momot. and Roesler (1990), FFu (1992). Dorling and Zincber {1986). Man
and Palaniswanmi {1994), Man and Palaniswami (1993) and Man and Palaniswami

1995) because it ensures that the output iracking error can be driven into the
g
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terminal sliding mode in a finite time and also that the error dynamics can reach the
system origin in a finite time once on the terminal sliding mode. It is also a more
practical scheme because onty three parameters of the upper bounds of the system
uncertainties need to he estimated and this holds true for any n-link rigid robotic

manipulator,

In practical terms the success of the proposed law can be explained thus: when the
output tracking ervors are large, the estimates b; where i = 0,1,2, cah I)e auf&iﬁétiél
ally increased using tllc laws in e\]JlC::SlOllS 4,13 to 4.15. Thls mcreabca the coutlol
gain 'w]nch pushes thc error towards ZCIO. Since these e\plessnons a:e estnnates in -
.Ly'lpuuov. sense of the. ll[)l)(‘l l)oun([s of the s\'at.em uncettamty tepleaente(l by p(t]
it is not necessary for them to con\'crgo to Lhml Ll‘uo valuea. _ 'l’hey :slmply need to
Im aclmstcd ll:ﬂtl t];c qwltchmg pl’mc vec!or 8 convm ges to zero, at, wlnch ])0111& t.llcy

' l)ecomo constants ‘that ensure. Llnl, the error clyuamlcs 1e1mm on the lelmmal elldmg

mode,

N

’l‘hr‘ final control law fon (hc system is lho:efom tho sum of the nommal couhol law.

])[lla the adaptive slulln;:, mode com pcusaton‘

wl) = wi+uo

. 37 CBM{y) \ . . _ .

oo Lo CBiue) #0
0 CBMo(q)™ =0,

(4.23)

= holq,¢) + Molg)(Ne + ) +




4 -'A Control Scheme Utilizing Known Dynamics . - ' 89

where K" = [ -K, -k, ] (A7, K2 € R™™), with matrix & designed such that

Ap= A+ BR, ~ (4.24)
s an én.sylrlfitotiéa.llj' sta.ble.matri}: and

w==sTCAwe = 1510 BMo(q)™} (B0 + Bllal + aznélv) SRS

(1".
C\ )
—

.

4.3 Reducing Chattering

The compensatm control law (lcscul)ed in 4.17 is (ltscontmuous across t]lc line
CB’M(,(q)"K = 0 and tins* causes chai,i.euno to OCClll. r Illl.s conllol law is 1'cplace(l
by tlw (.ontlol l'uv desmbcd in 4 26 I)('low (,hat.teung, is clnmnatcd I)ul. t.lle error -
.can 1’10 lonf:,er rem'un e\actly zero. -t cai, howcvel. b(, rcclucc(l o 'm drl)lt. "d,l‘lly.

smdil amount

(sTCBMo(g)~')"

BT ¥ . C‘Bl‘l/]ﬁ(q)f.‘ )

o = | o 4a0)
sTCBMo(y) ) ' S : :
S—("),Z}'sh:m_) - CBMg{q)™

B 'Whéré §is a posil;ive 111.1111|)elf and w is as defined in expression 4.18. The nominal ~

. Hystcm contml law does not change.

‘H 11
rﬂl
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| 4.4 Simulation

)

The simulation was performed using the same manipulator as that described in

Section 3.4 and shown in figure 3.7. The MatLab code can be found in Appendix C.

To simulate system uncertainties, the nominal values of the masses of the two links

are assumed to be
my = 0.4dkg  and 1y = 1.2kg

- instead of the ‘correct’ values ol 0.5kg and 1.5kg respectively.
Leal : -C | g LIVELY.

If we let the desired error dynamics of the closed loop nominal system have the
o following form

. .
Lo

§g+5é;+4€{ =0 1=12

then, using the pole placement method for expression 2.58, the feedback matrix A

can be designed as

- The values of the consta.nts{ ii (i = 0,1,2) were arbitrarily set to 10.

‘The initial value chosen for the starting point of b;, 0 < 7 € 2 was 0.5. From the
graphs in figures 4.32 to 4.34 it can be seen that this was a good choice. It can

. be seen clearly that the adaptive estimates of the bounds of system uncertainties
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cdleal with the incorrect nominal values of the masses of the two joints, since the
actual position and reference position are indistinguishable from each other. The.
errors in the two joints clearly converge to zero and the control inputs are very low;"
although the chattering effect can be seen in the fast switching from positive to

negative values,

The control law was also tested with a poor starting value for b;, 0.05. It can be -
seen from the graphs (in figares 4.35 to 4.37) that the adaptive scheme now takes
longer to 1)1oduce accuralo tr'wl\m{.,, however error convergence is still aclueve(l in

appm\nnately 2 seconds.

'I"lgures <l 3b to I 40 show lhc control I'uw s 1csponse to an uutlal robot. posmon of .
= 0 tl ancl ([2 l.b. mstmd o[' l)ung cqual to the mltlai wlerence moclcl va!ues
[1

As can l)o seen '\ccurmte lmcl\mg is aclucve(l thlun ‘) suconds of thc %fut

o 7 : DR ~',\

’l he. rcsults of the ﬁml unboun(le(l bmmlatlon 'uc slnown in [' gmcs 441 to -l 1‘3

Lo

"lheso show the wonst-caac accnarlo of uqmg '111 mcouccl. Sl;dl tlllb \'aluc for b, as

: V(.ll '15 11011-111”1 Jung shllmg pomts Ior Lhc lobot. ancl Lllc Lcleleme model Debpztc' :

e 1llcsc ploblems, lhc tncluug errot, convemcs to zero in uudm coudx

For lhe boundaly l'lvel bllllllltll.!Oll & flom Ck])l’ehblOil 4.26 is set to O Olo Usmg
bi= 0 5 for 0 < 'T”< € 2, and the same initial pos:tlon for the 1obot. 'md the 1cfelencc
' modol the sumulatlon shows that the chatltering caused by the (llacoutuuul,v n the
- _c.:o__nl_'.rol __I_il:_\\’ has now been removed (see figure 4.46). The non-zero error can be seen
m[lgmcs 4.44 and 4.45, where the path of the robot and the reference model no
-lon-gér exactly coincide and the output tracking errors no longer converge to zero,

- instead being kept within a houndary layer near zero.
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Finally the simulation has been performed for the ‘worst case’ (as defined above)
while using a boundary layer (see figures 4.47 to 4.49). Again it can he seen that
the error converges to a region around zero in around 2 seconds and the chattering

has been removed.

14 Y T z
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R _19)
i H]
- Ir g ~18 —wZ
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04t . .
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e S S e S e e S i
Tima 1 (s} . R S o mnum
Flgule 4. 32 Slmul'\txon 2 Oul,pul Lr«lcl\mg whele rcfeu.nce .m(l ]omt values
, comc;(le at thc qt.ul, an(l b, = (.5 5, 0<. z < ‘2
Q.2 ¥ . 0.2 — T
DAETS 0.5 R
=5 ° .
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Timot(s) - Tima L {8}

Figure 4.33: Simulation 2: Position errors where reference and joint values
- coincide al the start and b; =0.5,0 < i € 2
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50 50,
40 40r
30 30p
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E 10 i 10t
i i
0 r
§-|o E—n)
g-zo- guzo 1
-30 ~30|
40 —a0f
% T 2 3 4 5 3 7 8 i 3 2 3 4 5 6 7 a
Time 1 (s) Time | (s)
Figure 4.34: Simulation 2: Control input where reference and joint values
coincide at the start and b; = 0.5, 0 < ¢ < 2.
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Figure 4.35: Simulation 2: Qutput tracking where reference and joint values
coincide at the start and b; = 0.05, 0 < i < 2.
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Figure 4.36: Simulation 2: Position errors where reference and joint values
coincide at the start and b; = 0.05, 0 < 1 < 2.
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Figure 4.37: Simulation 2: Coutrol input where reference and joint values
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2

- - -
g

The control Inpul of joint 2 (Nm)
1
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=3

-10
-20 -20/ 4
40 -30p
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Figure 4.40: Simulation 2: Control input where reference and joint values do
not coincide at the start and b; = .5, 0 < 1 < 2.
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Figure 4.41: Simulation 2: Output tracking where reference and joint values
do not coincide at the start and b; = .05, 0 € i < 2.
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a7
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Figure 4.42: Simulation 2: Position errors where reference and joint values do

not coincide at the start and b; = .05, 0 < i < 2.
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Figure 4.43: Simulation 2: Control input where reference and joint values do

not coincide at the start and b; = .05
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4.5 Conclusion

In this chapter there has been developed a robust control law that guarantees finite
' tﬁne error convergence. it assumes both system uncertainties and disturbances and
is based on a control law made up of a nominal input for the known part of the
system and a slldtng mode compensator for the unknown part of the system. The

'~'1e.«,ults mdlcate that the control law gwes e\cellent tracking. The boundary layer

o :teclm!que is use(l t;o 1emove tho probleln of chattermg in the control input, however

no .longcl ensure conve1gencc of llle tlacl\mg error to zero, only to an

1 lly

amall I)oun(hry around Zero. -
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-~ 5 Conclusion

This thesis 1)1°esent§ two new. control laws for rigid robotic manipulators with un-
certain dynamics. The first law, described in Chapter 3 is based on that of (Man,
“Paplinsl{i. and Wu 1894) which gives a robust variable structure control law with
proven asymptotic error convergence and finite convergence to the sliding mode.
- The improvement that chapter 3 details is the use of adaptive techniques that adjust

the seven system p'udmcters lequue(l fm I,he control law so that no prior knowledge

'of uncertam para.motels § required 'Slmulat‘.lons show the accumcy of the tlacl\mg

-'msulls are {,l\'ﬂl ‘;]10\\'1110 the eﬂech\rﬂneqs of I)oth I.hc ougunl and boundary layer .

B coutl ol laws.
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R

The two controllers are improvements over prior methods as they do not require
bounds on system uncertainties, ensure that the reaching phase of the system is

completed in finite time, and are simple to implement.

4
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A Proof of Assumption 3.2

In chapter 4 - A Control Scheme Utilizing Known Dynamics, it was required that

the norm of the derivative of the inertia matrix be hounded in the following manner:
INE@I < o+ hallall + Kalldll s ko, bz, by > 0. (A2)

As stated page 44, there is no generic proof for all systems, however it can be proved

for any particular rigid robotic manipulator devised: =

Below is the proof for the two link rigid robotic manipulator used in the simulations

“described in section 3.4.- A’ diagram of the manipulator appears on page 56.

* The inertia. matrix for such a robot is described by (Young 1978)

R R

iz e

" where
o ;ili.(?jz). = (my + ma)r} +mars +2maryry cos(qz) +Ji

H
S

- ina(gp) = mar] + maryry cos(gs)

S =mgry oy
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A - Proof of Assnmption 3.2

Thus M(q) can be calculated as

. ftn fue , o
Mq) = o
fiz  flaz, , '  "/

where

: ftulge) = —2marry sin(qz)gs
fia(q) = —mary 7 siu{'qz Yo

flaz =0.

Tle norm ol the matrix A{ is defined as (Spong and Vidyasagar 1987)

A = mas (17 a1

{:‘
Using &, = —mari725in(qz)g2; the eigenvalues of MT A can now be calculated as
shown on'page 3:<A"full description of liow to calculale eigenvalues can be found in
: gt ' ' .

LIRS
s A

Fralcigh-and Beaur

egard [1991).

b

el
i
i
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Firstly calculate M7 M:

oo, 200 @ 20 o
“MTM =
a 0 o 0
E
fa? 2a?
| 20% o
Finding the eigenvalues:
det(MT AT — AL = 0

-"J(.iE —A  2a?
208 o* =)
(502 = AJ{a? = ) - (2a?)(20%) = O

v 5ot = GaA + A2 — da* = 9

A2 —6a*A + o j = 0
Solving this quadratic expression we get

A= (32v2)al
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Therefore

|47 (q)|

NN

/AN

/AN

(’\nuuf( lflT I‘OI))é
(34 2V2)a%)t
(3 + 2v2)¥|a}

(34 2v2)bgrirasin(qa)ge (subs. a)

ke sin{qa ),
ksin(g)[0 1]g
k0 1)q,

4o il
RO Ll
Rl

bey + ksllgl] + ksl

(since sinf < 1. Vo)

(where fe = {3+ 2\/5}&,7;21'1 ry 2 0)
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B Simulation 1

o]

, Copyright Nicola Ritter (1995)

% This MATLAB program performs the simulations for Chapter 3 of
% my Masters Thesis.

%""‘"""'“'"""""‘““““""""“"‘““""“"“*'4“5;'f;' L

S S
% It is worth noting (for those that are pos31bly confused) that in “,.f'

% Matlab:

% POINT (1) L ST
" | e N
% [1 brackets are used to define matrlces e R R

% e.g. identity = [1 0; 0 1] .

% defines a two dimensional identity matrlx

% and () brackets are used to access part1cu1ar elements of the

% matrix

% e.g. identity(1)(1)

% refers to the value of row 1, column 1 in the matrix identity.

% POINT (2)

% .
% *...” means that an expression is continued on,theffollbwing, 
% line. SRS L
‘/.....T...._.........'..,..‘........-__.:._._....._..:...-..;...--.:......".:_.'.'.;...';l'.:_:_.._._j...'....,_.’;.~--..;’..;;;.--'_;.,"..L'.;.. : R
fmmmmmm o mto oo il
Y% Define some constants
Y m s s
~ TRUE = 1;

FALSE = 0;

ts_ref_jointi = [J;

0
(i

ts_jointl = [];
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ts_joint2 = [1;
ts.count = [];
ts_errorl = (J; L
tserror2 = [1; SR
ts_control.inputl = [J;° .
ts_control_input2 ' [];.'. L

hmmmmmmmmmmmmmmm e mmmmm L DLl . |
% Perform the joint initialisations: mass, radius and moment of - '
% inertia . B o e Lo

% Define the links:
‘massl = 0.5; '
mass2 = 1.5; »

' radiust = 1
radius2 = 0.

. “inertial = 5;
inertia2 =5;.

e e S f---___;-___-f-__; _________ S

% Perform all other initialisations

fhmmmm e e S memmmmmmmees

% Set the value for gravity
- gravity = 9.81;

- % Define the error constant:
Pl =3;

p2 = 5;

pconstant = pl1/p2;

% Set the initial position for the reference model ‘:
qrl = 0.2; S
. qr2 = 2.0;

.. % Get the initial position for the robot
stempl = “Enter initial pesition for”; . R e
stemp2 = sprintf({ %s joint 1 (reference = ¥%0.1f): ‘,étempi,qri);f -
gl = input (stemp2); : ' . -




- q2 = input (stemp2);

D
o
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‘stemp2 = sprintf(‘%s joint 2 (reference = %0.1f): ",stemp;,qu);;~%f}‘{ffin'

% Define the starting values of the state vector
% i.e. the joint values and their derivatives.
state = [ql; q2; 0; 0];

% Define the starting values of the reference state
% i.e. the reference joint values and their der1vat1ves
ref_state = [qrl; qr2; 0; 0]; | '

LAt
.

% Set the sliding mode matrix C as, C = [C1 C2] , T
=f{1010; 010 1]; . LY e
1 = [1 0’ 0 1J, T P
c2 = [10; 0 1];

.
i
s

~.'/ The reference 1nput is to be 5 for each Jo1nt
.. ref_input = [5;5];

% Describe the parts of Ar - ﬁ.;f'ﬂifﬁf;fetf.fe?.f*’f: i.{if
Ar1 = [-4 0; 0 -4]; o Co R
Ar2 = [~5 0; 0 -5];

% Define parts of Br
= [1 05 01];

% Define the constants used in the adaptive equatlons for '
% the estimates of the parameter bounds ki to k7

kkvalue = input(“Enter initial value for kki to kk7: ~“);

- kk1 = kkvalue;
. kk2 = kkvalue;
kk3 = kkvalue;
kk4 = kkvalue;
kk6 = kkvalue;
- kk6 = kkvalue;
. kk7 = kkvalue;

.'i% Define the startlng values for the estlmates of the parameter tﬁ;f
'% bounds k1 to k7 S . S
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kvalue = input(‘Enter initial value for ki to k7: <);

k1l = kvalue;
k2 = kvalue;
k3 = kvalue;
k4 = kvalue;
k5 = kvalue;
k6 = kvalue;
k7 = kvalue;

% Ask the user for bounded or unbounded calculations
bounded = 3;
while ((bounded “= TRUE) & (bounded ~= FALSE))
stempl = sprintf(“(%d) Unbounded or (%d) Bounded simulation?: ~...
,FALSE, TRUE);
bounded = input(stempl);
end ¥ while

% Set heading for graphs and boundary layer size
if (bounded == FALSE),

delta = 0;
else ,

delta = input(’Enter boundary layer size: ~°);

' gnd;

% Set the time intervals

. intervdl = 0.01;

e e e e —mmmmme=iian ,-;-;;,;;Q;-%-;,ég__,;;;;__,;~
"% Initialise variables before the loop starts ‘i it i il

R Telee Tt
3 D e
/'__.__.....-___._...._---.......---..._..._--......----.......---......---.._..---_..--

% Initialise switching plane variable to Zero .“
spvar = [0; 0]; S
norm_spvar = 0;

% Initialise the control input.
- controlinput = [0; 01;

= % Initialise the error .
| ervor ='state - refstate;




B -~ Simulation 1 : 118

% Initialise errtilde to be a 1 * 4 vector
errtilde = [0; 0; 0; 0];

R
% Initialise epstildederiv to be a 1 * 2 vect'o:!ij o
epstildederiv = [0; 0]; '

T '

% Loop to produce the values over 800 time intervals

,.':'. » -.‘----_-_-__-”.'----___-----_-----_-“..“------'_-'-,-;-“-_ -- Y
e for count = 1:800,
B b e e e e e S

% Define time series variables for graphing purposes

%""‘"“""”""""'“""“""“"““""'"""'"".'.""’f".“ '

% The time intervals measured in seconds
ts_count(count) = count * interval;

% For each joint, define a time series function of the
% control input
ts_control. inputi(count) = control_ input{i);
ts.control-input2(count) = control_input(2);

% Define time series functions of the joint positions -
ts_jointi(count) = state(l);
ts_joint2(count) = state(2);

% Define time series functions of the reference joint pos:.tn.ons
~ tsref_jointl{count) = ref_state(l);
" tsref_joint2(count) = ref_state(2);

% Set up a time series of the error for each joint
ts_errori(count) = error(i);
ts_error2{count) = error(2);

e
% Calculate the next positions of the joints'-' 

Y= e e e e --“'

% Calculate the inertia matrix M(q)
mil = {massl + mass2) * radiusl * radiusl ...
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+ mass2 ¥ radius2 * radius2 . :
-~ 4 2 * pass2 * radiusl * rad1us2 * cos(state(2))
+ inertial;

.xL..  1o

= mass2 * radius2 * radius2 ...
+ mass2 % radiusl * radius2 * cos(state(2)),
m21 = mi12;
m22 = mass2 * radius2 * radius2 + inertia2;

Mmatrix = [mil m12; m21 m22];

% Calculate Coriolis and centrifugal forces vector f S
temp = mass2 * radiusl * radius2 * sin (state(Q)), ) ~,:”'

. f1 = temp * (state(3) * state(3) . LIS T T
' + 2 % state(3) * state(4)); - . o
f2 = temp * state(4) * state(4);

fvector = [f1;f2];

% Calculate grav1ty vector, g.
gl = - ( (massl + mass2) * radiusl # cos (state(Z))
: + mass2 * radius? * cos (state(l) .
+ state{2))) ...
* gravity;

g2 = - mass2 * radius2 * cos (state(l) + state(2)) . BRI ERr
* gravity; '.321;{E55f RS

gvector = [gi; g2];

% Split the state up into the joint values . =~ : .
% and the derivatives _ S E R ST
joint = [state(1); state(2)]; S :_1.f;;3fy_fi¥jﬁ.;~' ;; ;ﬁtL.'""
joint.deriv = [state(3); state(4)]; e

_;}--7 Calculate the new derlvatlves
. jointideriv = joint.deriv + interval * ((Mmatrlx\fvector)
T + (Mmatrlx\gvector) + (Mmatrlx\control_lnput))
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% 'norm_joint_deriv = norm (joint. deriv, “fro-);

% Calculate the new joint pesitions
joint = joint + interval * joint. deriv;
norm_joint = norm {joint, “fro’);

Y Set the new state
state(1) = joint(1);

state(2) = joint(2);
state(3) = JOlnt_derlv(l)
state(4) = joint deriv(2);

./. --------------------- .'",'-.--._----".-.."..-.-___"'""---, ------ .
% Calculate the next position of the reference state
% using the predetermined reference formulae.
et
ref_state(l) = 1.256 - (5/3) * exp(-interval * count) ...
.+ (5/12) * exp(-4 * interval * count)
+ (8/30) * exp(-interval * count) ...
-~ (2/30) * exp(~4 ¥ interval * count) ;

ref_state(2) 1_25 + (8/3) * exp(-interval # count) .
: - (2/3) * exp(-4 * interval * count)
- (5/3) * exp(-interval * count)

t'+ (5/12) * exp(-4 * interval *-ebuntj;? :

(5/3) * exp(-interval * count)

= (5/3) * exp(-4 * interval * count} ...
- (8/30) * exp(-interval * count) ..

-+ (8/30) * exp(~4 * interval ¥ count);

'”'_' ;efLéfdté(S)

- (8/3) * exp(-interval * count) .
+ (8/3) * exp(-4 * interval * count)
+ (5/3) * exp(-interval * count) ...
- (58/3) * exp(-4 * interval * count);

ref_state(4)

3”:;~.% Set up a varlable for reference joint positions and derlvat1VGs
.”FJ;:,rEf”JOIHt [ref_state(1l); ref_state(2)]; :
- ref_joint.deriv = [ref state(3); ref.state(4)];

-
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'fZHCalculate the error and the switching manifold
% vector.

| fmmmmmm oo

% Calculate the error
error = state - ref_state;

% Calculate errtilde

errtilde(l) = sign(error(1)) * abs(error(l))“pconstant
errtilde(2) = sign(error(2)) * abs(error(2)) pconstant;
errtilde(3) = error(3);

errtilde(4) = error(4);

% Calculate the switching manifold vector
spvar = C * errtilde;

% Calculate the norm of the swltchlng man1fold vector
. norm.spvar = norm (spvar ’fro ), PR N

% Calculate the control input for the next iteration.

-0) & (bounded o FALSE)) ]
+ '! error(2);

'5 1f ((HOIﬂLSpvar :
€ (norm_spvar ‘== 0) & (error(i?
control_lnput = [0 0] ol

7'else S ;_w._~-'
_%____; ________ ;;_;_;;;;;g
4 Calculate the new estlmates of the
4 parameter bounds ki to k?
'/. ___________________________________________
 % Calculate the dermvatlve of epstilde
epstlldederlv(i) ' .
= pconstant * 31gn(error(1)) * abs(error(1))? (pconstant 1)...
- * error(3);
o epstzldeﬁer1v(2) :
" = pconstant * 51gn(error(2)) * abs (error(2))"(pconstant- 1),3}--'
* error(4); ot

% Calculate a temporary value used for ki and for the:
"% w factor in the control input formula. '
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B ‘tempmatrix = ~Arl * ref_joint ...
- Ar2 * ref_joint.deriv .
: + Cl * epstildederiv - Bl * ref_input;
- norm_tempmatrix = norm (temp.matrix, “fro”);

% Calculate the new values of the estimates ki1 to k7
k1 = k1 + interval * kki * norm.spvar * norm_temp.matrix;
k2 = k2 + 0.5 * interval * kk2 * norm_spvar"2;
k3 = k3 + 0.5 * interval * kk3 * norm.spvar’2 * norm_joint;
k4 = k4 + 0.5 * interval * kk4 * norm_spvar”2 ...
* norm.joint deriv;
kb = kb + interval * kk5 * norm.spvar;
k6 = k6 + interval * kk6 * norm_spvar'i?* norm-joint; L
k7 = k7 + interval * kk7 * norm_spvar *‘ norm_joint_deriv/2;

% Calculate the w factor used in the
"% calculation of the control input: requlred
% for the next iteration of the loop

wfactor = k1 * norm_tempmatrix ...
+ 0.5 * norm_spvar ...
* (k2 + k3 # norm_joint .
+ k4 * norm_joint.deriv) .
+ kb + k6 * norm_;;omt . ,
+ k7 * norm..Jomt_derlv * norm_Jo:Lnt_derlv, -

: Y.Calculatethe new control input

" if ((bounded == FALSE) | ...
({bounded == TRUE) & (norm_spvar >= delta)))

~ control_input = - (spvar / norm.spvar) * wfactor;
= else
control.input = - {(spvar / delta) * wfactor;.
-~ end %if

. ‘end Yif
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‘count
~end % for loop

% Plot the results stored in the time : serles varlables, ;1 1  ' L T
% and save to file : : . .

 figure(1); B S
plot (ts.count, ts_ref_jointi, ‘e ts_count ts‘301nt1"
ylabel(“The output tracking of JOlnt 1 (rad) ), i
xlabel( Time t (8)°); :
text(3,0.8, .. qr1”);
text(3,0.7,7..... ql”);
print figurel;

flgure(z) R . e
plot (ts.count, ts_ref_301nt2 ‘e’ ts count;pts_301nt2 y )

ylabel( The output tracklng of JOlnt 2: (rad) ) *ﬁfﬁ;,,. .fﬁ'}i;f”":.
xlabel(“Time t (s5)7); T T B L R
text(3,1.8, _ qr2” )i
text(3,1.7,"..... S q27)
print figure2; -~ . -

figure(3);

- plot (ts_count, ts_errorl)

- axis([0 8 ~0.2 0. 2]) o o R
ylabel(“The output tracklng error of 301nt 1 (rad) )

xlabel(“Time t (8)°); . AL

print figure3;

figure(4);

plot (ts_count, ts_error2);
axis([0 8 -0.2 0.2]); R '
ylabel(‘The output tracking error of JOlnt 2 (rad) )
xlabel("Time t (s5)°); o _

. print figure4;

figure(5);

"~ plot (ts_count, ts.control_inputl);

axis([0 8 -50 501);

ylabel(“The control 1nput of joint 1 (Nm) )
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y
I
"

. xlabel(‘Time t (s)’);
. print figure5;

 figure(6);
plot (ts_count, ts-control.1nput2) W
axis{([{0 8 -50 50]);
ylabel(“The control input of joint 2 (Nm) )
xlabel(“Time t (s)”);
print figureé;

e e m e mm e mm e mm e i E
% End of program ;
i e
.

,-‘f","‘ﬁ‘), ; ) S .
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o C Simulation 2

% Copyright Nicola Ritter (1995)

% This program forms the simulation of chapter 4 of my Masters
% thesis.

% It is worth noting (for those that are possibly confused) that in / -
% Matlab: . o

% POINT (1)

% [] brackets are used to define matrices

% e.g. identity = [1 0; 0 1]

% defines a two dimensional identity matrix

% and () brackets are used to access particular elements of the
% matrix

% e.g. identity(1)(1)

% refers to the value of row 1, column 1 ir the matrix identity.

% POINT (2)

% >...” means that an expression is continued on the following

'/.-; ________ S I
% Define some constants

, ;.‘;zfr--f"'“--fjff'f,

_FALSE = 0;

OO I S e Tl
Y Perform initialisation of time:SérIesidgpg

Y e e
(] - - " X - .

[1;




~ ts_jointl
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{J;

ts_joint2 = [J;
ts_count = [J;
ts_errorl = [];
ts_error2 = [J; .
ts_control.inputl = [1;
~ts.control input2 = [J;

% Perform the joint ihitiéliééfiéhs:w mass, radius and mqméﬁf,bf B
% inertia RN T SR

% Define the links:
mass] = 0.5;
mass2 = 1.5;

radiusl =

.0;
radius2 8

1
0.

.
bl

inertial = 5;
inertia2 = 5;

% Define the nominal (estimated) value for the masses
n_massl = 0.4; ' .
nmass2 = 1.2;

e e e ;“4.“'"""":“-'--*-':-:::i.-:-:# S

% Perform all other iﬁitiéliéaﬁibngﬁff .

% Set the value for gravity
gravity = 9.81;

% Define the “p° error constant:
pl = 3;

- p2 =5;
pconstant = pl/p2;

% Set the initial pOSition for the r-eferen'c_‘__e"-_n-lodei R
qrl = 0.2; ' e
qr2 = 2.0;
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% Get the initial position for the robot
stempl = “Enter initial position for~”;
stemp2 = sprintf(“%s joint 1 (reference
ql = input (stemp2);

stemp?2 = sprintf(-%s joint 2 (reference
q2 = input (stemp2);

%0.1£): °,stempl,qri);

%0.1f): ',stempi,qr2)§

% Define the starting values of the state vector
% i.e. the joint values and their derivatives.
state = [ql; q2; 0; 0];

% Define the starting values of the reference state
% i.e. the reference joint values and their derivatives.
ref .state = [qri; qr2; 0; 0];

% The sliding mode uses C as defined below
% and C = [C1 C23

c=[1010;010 1];

c1 = [10; 01];

c2=[10; 0 1];

% The reference input is to be 5 for each joint
ref_input = [5;51;

Y Describe the feedback matrix
K=1[-40-50;,0~40 -5];

% Describe the constants for the linearized nominal system
% Ae = A + B * K;

A=[0010;0001;0000; 0000];
B=1[00;00;10;01];

% Define the constants used in the adaptive equations for
% the estimates of the parameter bounds b0 to b2

bk0 = 10;
bkt = 10;
bk2 = 10;

% Define the starting values for the estimates of the parameter
% bounds b0 to b2 -
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bvalue = input (“Enter initial value for b0 to b2: °);

bC = bvalue;
bl = bvalue;
b2 = bvalue;

% Ask the user for bounded or unbounded calculations
bounded = 3;
while ((bounded "= TRUE) & (bounded ~= FALSE))

stempl = sprintf(’(¥d) Unbounded or ()d) Bounded simulation?:’

,FALSE, TRUE);
bounded = input(stempl);
end % while

% Set boundary layer size
if (bounded == FALSE),
delta = 0;
else
delta = input(’Enter boundary layer size: ~};
end; '

% Set the time intervals
interval = 0.01;

R et e L e

% Initialise variables before the loop starts

‘/. ................................................................

% Initialise the switching manifold vector and its norm to zero
spvar = [0; 0];
norm_spvar = 0;

% Initialise control inputs to zero
nominal_input = [0; 0];

compensator = [0; 03;

control_input = [0; 0];

% Initialise error
error = state - ref_state;

% Initialise ref_joint 2deriv to be a 1 * 2 vector
ref_joint 2deriv = [0; 0];
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% Initialise epstildederiv to be a 1 * 2 vector
epstilde.deriv = [0; 0];

% Define time series variables for graphing purposes

A b et D e tatatar

% Set up a time series variable for graphing purposes,
% measured in seconds
ts_count(count) = count * interval;

% For each joint, define a time series function of
% the control input '
ts_control.inputl(count) = control.input(1);
ts_control.input2{count) = control. input(2);

1]

% Define time series functions of the joint positions
ts_jointi(count) = state(l1); ' '
ts_joint2(count) = state(2);

% Define time series functions for the reference joint
% positions '
ts_ref_jointi{count)
ts_ref_joint2(count)

ref state(l);
ref_state(2);

% Set up a time series of the error for each joint
ts_errori{count) = error(l);
ts_error2(count) = error(2); - ' .'ﬁ

% Calculate the current actual position of the robot
% joints. ' '

A 1 e state up into e joint values and the derivatives
% Split the state up into the joi 1 d the derivati
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% Calculate the inertia matrix M(q)
mil = (massl + mass2) * radiusl * radiust ...
+ mass2 * radius2 * radius2 ...
+ 2 * mass2 #* radiusl * radius2 * cos(state(z)).;.;
+ inertial; :

ml2 = mass2 ¥ radius2 * radiusZ2 ...

+ mass2 * radiusl * radius2 * cos(state(2));
m2l = m12;
m22 = mass2 * radius2 * radius2 + inertia2;

Mmatrix = [mii m12; m21 m22];

% Calculate Coriolis and centrifugal forces vector, f.
temp = mass2 * radiusl * radius2 * sin (state(2));

fi = temp * (state(3) * state(3) ...
+ 2 * state(3) * state(4));

f2 = temp * state(4) * state(4);

fvector = [f1;£2];

% Calculate gravity vector, g.
gl = - ( (massl + mass2) * radiusl * cos (state(2))
+ mass? * radius2 * cos (state(l) ...
+ state(2))) ...
* gravity; . ﬁ

g2 = - mass2 * radius2 * cos (state(1) + state(2)) .
* gravity,; '

gvector = [gl; g2];

% Split the state up into the joint values
% and the derivatives

joint = [state(l); state(2)];

joint_deriv = [state(3); state(4)];

% Calculate the new derivatives
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joint_deriv = joint deriv + interval * ((Mmatrix\fvector) + .
(Mmatrix\gvector) + (Mmatr1x\control_1nput)),
norm_joint deriv = norm (joint.deriv, “fro”);

% Calculate the new joint positions
joint = joint + interval * joint_deriv;

norm.joint = norm (joint, “fro°);

% Set the new state

state(1) = joint(1);

state(2) = joint(2);

state(3) = joint_deriv(1};

state(4) = joint. deriv(2);

b e e m e e e ::f _______ ¥

% Calculate the new reference positions for the joints
% and the reference position derivatives.

et et et e e e

!}

1.25 ~ (5/3) * exp(-interval * count) ..
+ (5/12) * exp(-4 ¥ interval * count)
+ (0.8/3) * exp(-interval * count)
- (0.2/3) * exp(-4 * interval * count);

ref_state(1)

1.25 + (8/3) * exp(-interval * count)
- (2/3) * exp(-4 * interval * count) ..
- (5/3) * exp(-interval * count) '
+ (5/12) * exp(-4 * interval * count);

ref.state(2)

i

(5/3) * exp(-interval # count)
- (5/3) * exp(-4 * interval * count) ...
- (0.8/3) * exp(-interval * count)
+ (0.8/3) * exp(-4 * interval * count);

ref_state(3)

- (8/3) * exp(-interval * count)
+ (8/3) * exp(-4 * interval * count) ..
+ (5/3) * exp(-interval * count)
- (5/3) ¥ exp(-4 * interval * count);

ref_state(4)

ref_ joint_2deriv(l) .
= - (5/3) * exp(-interval * count)
+ (20/3) * exp(-4 # interval * count) ...
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+ (0.8/3) * exp(-interval * count) ...
- (3.2/3) * exp(-4 * interval * count);

ref_joint-2deriv(2) ...
= + (8/3) * exp(~interval * count) ...
~ (32/3) * exp(-4 # interval # count) ...
- (5/3) * exp(-interval * count) ...
+ (20/3) * exp(~4 * interval * count);

% Set up a variable for reference joint positions and derivatives
ref_joint = [ref_state(1); ref_state(2)];
ref_joint.deriv = [ref.state(3); ref_state(4)];

% Calculate exact error
error = state - ref_state;

% Split the exact error into joint_error
% and derivatives of joint_error
joint_error = [error(1l); error(2)];
joint_error.deriv = [error(3); error(4)];

% Calculate the norm of joint.error
norm_joint.error = norm (joint.error, “fro’};

% Calculate errtilde

errtilde = [sign(error(1)) * abs(error(1))”pconstant; ...
sign{error(2)) * abs{error(2))"pconstant;
error(3); ...
error(4)];

% Calculate the derivative of epstilde
epstildederiv(i) ...
= pconstant # sign{error(1)) * abs(error(1})”(pconstant-1)...
* error(3); ...
epstildederiv(2) ...
= pconstant * sign{error(2)) * abs(errer(2))*(pconstant-1)...
* error(4);
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% Calculate the switching manifold vector
spvar = C ¥ errtilde;

% Calculate the norm of the switching manifold vector
norm.spvar = norm (spvar, “fro’);

Y e e e e e ———

% Calculate the nominal part of the control input

Y e e e e ————

% Calculate the nominal inertia matrix

nmil = (n.massl + n.mass2) * radiusi * radiusl .
+ n.mass? * radius2 * radius2 ...
+ 2 % n.mass2 * radiusl * radius? * cos{state(2)) ...
+ inertial;

nmi2 = n.mass2 * radius2 ¥ radius2 ...

+ nmass2 * radiusl * radius2 * cos(state(2)); -
n.m21 = n.mi2;
n.m22 = n_mass2 ¥ radius2 * radius2 + inertia?2;

nMmatrix = (nmii n.mi2; n.m21 nm22];

% Calculate Coriolis and centrifugal forces nominal matrix
temp = nmass2 * radiusl * radius2 * sin (state(2));

temp * (state(3) * state(3) + 2 * state(3) % state(4));

nfil
n_f2 = - temp * state(4) * state(4);

n_fvector = [nf1; n_f2];

% Calculate nomiral gravity matrix

n.gl = - ((n.massl + n.mass2) * radiusl * cos (state(2)) +....

n_mass2 * radius2 * cos (state(t) + state(2))) ...
* gravity; '
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li;g2 = - n.mass2 * radius2 * cos (state(1) + state(2)) * gravity;.

n.gvector = [ngl; n_g2];

% Calculate combined Coriolis, centrifugal and gravity matrix
n_hvector = n_fvector + n_gvector;

% Calculate the nominal contrel input
nominal_input = n Mmatrix * K * error .

- n_hvector + n.Mmatrix * ref_joint 2deriv;

% Calculate an interim value and its norn

interim

= gpvar’ * C * B / n_Mmatrix;

norm_interim = norm(interim, “fre~);

if ({norm.inter’a == 0) & (bounded == FALSE)) ...
| ("(norminterim == 0) & (error(1) == 0 | error(2) == 0)),
compengator = [0; 0]; . R

else

% Calculate a temporary value
b-temp = C * B / nMmatrix;
norm_b_temp = norm (b_temp, “fro”);
b_value = norm.spvar * norm_b_temp;

% Calculate the new estimates for the parameter bounds

b0
bl
b2

b0 + interval * bk0 * b_value;
bl + interval * bkl * b_value * norm_joint;
b2 + interval * bk2 * b_value * norm.joint.deriv"2;

% Calculate terms of the w factor used to calculate the
% compensator

fterml = -spvar” * C * (A+B*K) * error;

fterm?2

-b_value ... ,
* (b0 + bl * norm_joint + b2 * norm_joint.deriv"2);




i %*'.‘.‘f'i‘"t‘f'ff**‘.‘f

. text(3,0.8,°_ qr1”);
text(3,0.7,7..... q1’);
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-spvar’ * Cl1 * epstildederiv;

'fterms

- fternd

spvar” * Cl * joint_error_deriv;
-wfactor = fterml + fterm2 + fterm3 + fterm4,

"if ((bounded == FALSE) |
((bounded == TRUE) & (norm_interim >= delta))),

compensator = interim’ / norm.interim"2 * wfactor; -

else :
compensator = interim” / delta“2 * wfactor,

end; %if

end Y%if

end % for loop

% Plot the results stored 1n the tzme serles Varlables,
- % and save. to. flle L e o

':flgure(l) _ : :
~.plot (ts_count, ts_refﬂjolnti - ts_count ts_301nt1
" ‘ylabel(“The output tracking of 301nt 1 (rad) ON
. xlabel(“Time t (s)°);

print figureil;
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I}€Vflgure(2) | . e
. plot (ts.count, ts_refﬁ]oznt2 “c-’, ts_count, ts_joint2, “y:7); . . -

" ylabel(“The output tracking of joint 2 (rad)’);

~xlabel('Time t (s)°);
text(3,1.8,°_ qr27);
text(3,1.7,7..... q2°);
print figure2;

figure(3);

plot (ts_count, ts,errorl)

axis([0 8 -0.2 0.2]); - L
ylabel( The output tracking error of Joznt 1 (rad) ),
xlabel{ Time t (s8)~ ), S :
print figure3;

figure(4);

plot (ts.count, ts_error2);
axis([0 8 -0.2 0.2]); R S
ylabel(“The output tracklng error of JOlnt 2. (rad) )
xlabel(“Time t (s8)7); . .
print figure4;

figure(5);

~ plot (ts.count, ts_control_lnputl),
axis({0 8 ~50 50]); ' SR
ylabel(’The control input of joint 1 (Nm) ),. o
xlabel( Time t (8)°);
print figure5;

figure(6); .
plot (ts.count, ts_COntrol_lnputZ) '
axis({0 8 -50 50]); ' R
ylabel( The control 1nput of 301nt 2Y(Nm)f)gi' B '
xlabel(‘Time t (s)°); R T

print figures;

L
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