
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses: Doctorates and Masters Theses

1-1-1996

A search tool to enhance the selection and utilisation of reusable A search tool to enhance the selection and utilisation of reusable

software modules within the object-oriented paradigm software modules within the object-oriented paradigm

Robert H. Cross
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Cross, R. H. (1996). A search tool to enhance the selection and utilisation of reusable software modules
within the object-oriented paradigm. Edith Cowan University. Retrieved from https://ro.ecu.edu.au/theses/
949

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses/949

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses?utm_source=ro.ecu.edu.au%2Ftheses%2F949&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=ro.ecu.edu.au%2Ftheses%2F949&utm_medium=PDF&utm_campaign=PDFCoverPages

Edith Cowan University
Research Online

Theses: Doctorates and Masters Theses

1996

A search tool to enhance the selection and
utilisation of reusable software modules within the
object-oriented paradigm
Robert H. Cross
Edith Cowan University

This Thesis is posted at Research Online.
http://ro.ecu.edu.au/theses/949

Recommended Citation
Cross, R. H. (1996). A search tool to enhance the selection and utilisation of reusable software modules within the object-oriented paradigm .
Retrieved from http://ro.ecu.edu.au/theses/949

http://ro.ecu.edu.au
http://ro.ecu.edu.au/theses
http://ro.ecu.edu.au/thesescoll

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons
who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement. Where the reproduction of such material is

done without attribution of authorship, with false attribution of

authorship or the authorship is treated in a derogatory manner,

this may be a breach of the author’s moral rights contained in Part

IX of the Copyright Act 1968 (Cth).

 Courts have the power to impose a wide range of civil and criminal

sanctions for infringement of copyright, infringement of moral

rights and other offences under the Copyright Act 1968 (Cth).

Higher penalties may apply, and higher damages may be awarded,

for offences and infringements involving the conversion of material

into digital or electronic form.

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

A Search Tool '

to Enhance the Selection and Utilisation

of Reusable Software Modules

within the Object-Oriented iraradigm

by

Robert H. Cross B. Bus.

A dissertation submitted in partial fulfilment of the
requirements fnr the Award of

Master of Science

at the

Faculty of Science, Technology and Engine~ring,

Edith Cowan University

Date of Submission: Sih February '1996

ii

Abstract

The affinity for reuse within the object-oriented paradigm may enable high levels ()f

productivity; however, gains will become realisable only if a systems developer has

access to tools which aid in the selection of classes.

A method for object-oriented analysis and design is detailed and its process is

assisted by an object-oriented search tool based on reference and corporate library

technology. The search tool contr nes to the detennination of sUitable existing

inheritable classes and an explanation of its construction and use is included. A

practical demonstration of the method, using the search tool, is elaborated.

The thesis demonstrates that text retrieval techniques used in modern libraries may

be successfully applied to determine suitable classes for the object-oriented

paradigm.

. _,_ -' '

iii

I certify lhat this thesis does not incorporate without acknowledgment any

material previously submitted for a degree or diploma in any institution of

higher education; and that to the best of my knowledge and belief it does

not contain any material previously published or written by another person

except where due reference is made in the text.

·i.

~.·.·' ·. I -,_ -_·,(· ..

iv

Acknowk>dgments

I wish to thank my supervisors, Dr Thomas O'Neill and Dr James Millar for their

valuable advice. Additional acknowledgment is extended to Dr KCn Mullin and

Mr William Laidrnan for their proofing and comments. My wife, Ellie, has

provided continual encouragement and support. I owe a debt of gratitude to Dr

O'Neill for his unstinting time and enduring patience- !l1ioughout the past year.

. -·:··,
' :.'-- - \·-.--. ,.-

,,
"

' ,,
)': ,,
'

·.

1· ... · ' :·.'

v

' ' '·'· Table of Contents

Abstract
Declaration
Acknowledgments
List of Figures

Chapter
I Introduction
1.1 The Aim
L2 The Problem Addressed
L3 The Significance
1.4 The Structure

2 The Object~oriented Paradigm
2.1 Defining the Paradigm
2.2 Defining the Approach to Analysis and Design Methods
2.3 The Analysis and Design Process
2.4 Modelling the Process
2.5 Summary

3 Applying the Object-oriented Paradigm
3. I The Example
3.2 The Analysis and Design
3.3 Summary

4 Achieving Reuse of Software Components
4.1 The Reuse of Software Components
4.2 Storing and Retrieving Reuse Components
43 Full and Free Text Retrieval
4.4 Summary

5 The Search Tool
5.1 Development of the Search Tool
5.2 Operating the Search Tool
5.3 Summary

6 The Demonstration System
6.1 Completion of the Analysis and Design
6.2 Description of the ATM System
6.3 summary

7 Conclusion

·- --:

Page.

•'

ii
iii'~

iv
vi

I
I
I
3
3

6
7

17
22
29
41

42
42
44
72

73
73
77
79
83

84
84

104
(ii5

.116
116
121
136

,137

' ' ' r,:·
·I),!

vi

Reference List

Appendices
A Code for the Class Find Search Tool
B Code for the Word Index Class from Digitalk
C Code for the A TM

List of Figures

Figure
I The symbol for a class.
2 The symbol for a subsystem.
3 Depiction of a state.
4 An event causing a change in state.
5 A state in which an activity is initiated.
6 An event with an action.
7 The symbols for a Functional Model.
8 State and transition symbols for state net diagram.
9 Sending a message to another object.

10 An association between object groups.
II Various representations of one to many relationships.
12 Many to many object group associations.
13 Aggregation of object groups.
14 One to many relationships with participation

constraints.
15 Many to many relationships with participation

constraints.
16 Aggregation symbolised by a triangle.
17 Synchronous object group interaction.
18 Asynchronous object group interaL.tion.
19 Conveying attribute information.
20 :.Modelling inheritance.
21 The high-level Object Model for the ATM.
22 The ATM subsystem as an aggregation of classes.
23 High dependency between objects.
24 The initial detailed Object Model for the ATM.
25 The Dynamic Model for Card Reader.
26 The Dynamic Model for User Interface.
27 The validate model for User Interface.
28 The cancel model for User Interface.
29 The deposit model for User Interface.
30 The withdraw model for User Interface.

"

I '-. - .-.-. .• __ ,''
,-·--

'-._ ... _,-.

" ·~:.

140

146
157
159

30
30.
31
31
32
32
33'
34
34
35
36
36
37

37

38
38
39
39
40
40
45
46
47
48
50
51
52
53
54
55

vii

Figure
31 The transfer model for User Interface. 56'
32 The query model for User Interface. 57
33 The Dynamic Model for Account. 58
34 The deposit model for Account. 59
35 The withdraw model for Account. 60
36 The transfer model for Account. 61
37 The Dynamic Model for Deposit Slot. 62
38 The Dynamic Model for Dispenser. 63
39 The Dynamic Model for Receipt Printer. 63
40 The Dynamic Model for Customer. 64
41 The transact model for Customer. 65
42 The deposit model for Customer. 66
43 The withdraw model for Customer. 67
44 The transfer model for Customer. 68
45 Dictionary of activities and actions for the ATM. 69
46 The ATM Object Model with associations. 70
47 The Object Model with Customer interaction. 71
48 Dictionary of attributes for the ATM. 72
49 Dewey classification. 77
50 Growth of new words with an increase in the text size. 80
51 An inverted list. 81
52 The initial Object Model for Class Find. 86
53 The Dynamic Model for Class Find. 87
54 The operate model for Class Find. 88
55 The initialise model for Class Find. 89
56 The locate-classes model for Class Find. 90
57 The lookup model for Class Find. 91
58 The transfer-output model for Class Find. 92
59 Dictionary of activities and actions for Class Find. 92
60 Associations for Class Find. 93
61 Dictionary of attributes for Class Find. 94
62 The final Object Model for Class Find. 95
63 A Venn diagram for the test environment. 97
64 Initiating the search tool. 105
65 The initialised search tool. 105
66 The search tool showing menu choices. 106
67 Entry of terms to the search tool. 107
68 The result of n search. 108
69 Selection of the result of a search. 108
70 Selecting initiators and implementors of a service

method. 109
71 The initiators and implementors of a service method. 110
72 Search tool dictionary contents for the test environment. Ill
73 Test results on modified code for the search tool. 112
74 Determining the number of classes. 113

I' '' : ,'

viii

Figure
75 Test results on unmodified code for the search tool.
76 Test results for enoneous input to the search tool.
77 The final Object Model for the ATM.
78 Initiating the demonstration ATM.
79 Entering an account identification number.
80 Entering account balances.
81 Account details.
82 Changing account details.
83 The ATM waiting for use.
84 Entering card details.
85 Card held by ATM.
86 An unreadable bank card inserted.
87 Selecting the transaction.
88 Selecting the account.
89 Entering the amount.
90 Request for insertion of deposit.
91 Completion of a deposit transaction.
92 Disgensing r.-mney for a withdrawal transaction.
93 Insufficient funds for the requested transaction.
94 Request for source of funds.
95 Request for destination of funds.
96 Completion of a transfer transaction.
97 Result of a query transaction.
98 Cancel1ation of a transaction.
99 Test results from operation of the ATM.

::

. ,_- ~-', _ . .- < -~.
--i)' -:----; -. ·:"

-:-,. ____ _
.',':_ :·.:_-·

)14
114
119
122
123
124
124
125
126
126
127
127
128
129
•129
130
130
131
132
132
133
133
134
135
135

',,_

I

1 Introdu~tion

1.1 TheAim

The object-oriented paradigm shows considerable promise in terms of faster

deyelopment of quality computing systems. The advantages claimed depend largely

on the affinity that the object-oriented panl'ctigm h3.s for reusing software

components; however, it is diffiCult to determine a structure suitable for storing and

retrieving components for reuse. Modem reference and corporate library

organisations have made advances in retrieving information that is unstructured,

The study aims to demonstrate that text retrieval techniques of a modem library

organisation may be applied to determine suitable classes for the object-oriented

paradigm.

1.2 The Problem Addressed

Common libraries of modules available for reuse today include:

• the library supplied with the Smal!talk environment and the extensions for

Dashboard and FreeDrawing that are provided by Digitalk;

• Object Works from ParcPiace and PARTS from Digitalk that include software

modules for sliders, radio buttons and other user interface tools;

• the C++ libraries from Microsoft and Borland;

• tbe library supplied with Eiffel;

• Common Views from Glockenspiel; and

• Gehani's ADA modules- supplied with Ada: An Advanced Introduction (1989).

It may be expeCted that the number of such modules will continue to increase

beyond the collection representing the most elementary operations to the situation

where a module may be developed for many required operations. Thus, to attain a

,'',,I,

2 ' '

j

working knowledge of the existing modules and to keep.abreast of new modules are :/.

demanding tasks for today's programmers.

It is recognised that tools must be provided to enable and encourage software

developers to find relevant modules for reuse. As Meyer (1988, p. 28) states, 11the

best reusable components in the world are useless if nobody knows they exist, if it

takes a long time to obtain them, or if they cost too much". This is supported by

Frakes & Nejmeh (1988, p. 142) who say "a fundamental problem in software reuse

is the lack of tools to locate potential code for reuse".

Without suitable tools, software developers may come to know only a limited

number of modules that might be employed in a practical application, with the

remaining development implemented as newly written code. This is evidenced by

the fact that, even though libraries of common code have existed for many years,

software development has not taken full advantage of them. This position is

supported in part firstly by Frakes & Nejrneh (1988, p. 142) who cite DeMarco as

estimating "that in the average software development environment only about five

percent of code is reused"; and secondly, by Hooper & Chester (1991, p. I) who

affirm that software libraries of reusable components have been used for many

years.

A more beneficial approach to the discovery and use of relevant software modules is

required. Frakes & Nejrneh (1988, pp. 144- 145) suggest an approach based on the

practice in modern library organisations for searching free-form text, which matches

search words with document contents. One advantage of this approach is that it

removes the necessity of guessing future requirements of information searchers,

because the task of association is perfonned at the time of search rather than at the

time of storage.

I
(;,'I
.:'
n'

This temporal matching technique forms a significant part of the study. More

specifically, it will be incorporated in a tool which indicates to the object-oriented

software developer those reusable library modules that match his/her search

specifications.

1.3 The Significance

Meyer (1938, p. 27) points out that "reusability as a dream is not new There

should be catalogues of software modules ... [so that] we would write less

software, and perhaps do a better job at that whiCh we do get to develop".

Complementary to this, Henderson-Sellers (1992, p. 51) states that "reusability is

one of the major advantages that an objed-oriented approach can provide". Thus,

taking both together, the significance of this study is to realise the dream of reuse by

applying the full-text search technique within the object-oriented paradigm.

1.4 The Structure

Chapter 2 encapsulat'cs a literature review of contributors ln the field of object­

orientation. Details of the assocl?ted ·principles are ascertained from many sources,

including devotees such as Rumbaugh, Blaha, Premerlani, Eddy & Lorensen (1991),

Rumbaugh (1995), Embley, Kurtz & Woodfield (1992), Wirfs-Brock, Wilkerson &

Weiner (1990), Wirfs-Brock & Johnson (1990), Booch (1994), Henderson-Sellers

(1992), Tanzer (1995) and from organisations such as the Object Management

Group (Soley, 1992) and Digitalk (1992). Fmthermore, an approach to object­

oriented systems design is drawn from the work of Rumbaugh et al. (1991), initi~Uy

and Embley et al. (1992), latterly. Then, continuing with an example of the

paradigm, Chapter 3 incorporates the object-oriented design of an application that is .

4

taken from the field of automatic teller processing, described in Witfs-Brock,

Wilkerson & Weiner (1990).

Chapter 4 includes a literature review of reusable software components and the way

in which the reuse may be achieved. In general, the discussion embraces the gains

offered by reuse, variGus traditional methods provided by reuse (for example,

Booch, 1987) and the advantages to reuse tendered by the object-oriented paradigm

(Hooper & Chester, 1991). Then, as a means of achieving reuse, the chapter

incorporates a description of text retrieval techniques for libraries, based upon the

work of Cortez & Kazlauskas (1986) and Salton (1989). Finally, this description

serves as the foundation for a detailed account of the innovative process (the search

tool) for matching search criteria with software module content within the object­

oriented paradigm.

Chapter 5, using the principles outlined in the earlier chapters, establishes ~e

design, specification and implementation of the object-oriented tool to achieve the

desired selection and utilisation of existing software modules. The methods

espoused for specifying the automated teller system in Chapter 3 are employed in

the design of the matching tool.

Chapter 6 illustrates the result of using the search tool within a test environment that

implements a subset of the aforementioned autOJT!atic teller processing application.

The subset is limited to a portion that may be conveniently demonstrated on a

personal computer; however, this does not indicate a Hmitation of the search tool

itself.

Chapter 7 presents conclusions about the design, specification, implementation and ·

proven capability of the search tool. Then, a judgement is given of its ability to

5

enhance the selection and utilisation ofreuo;able software modules within the object­

oriented paradigm. Subsequently, future research directions to augment the search

tool as a viable innovation are suggesh:d.

Finally, the study includes a number of appendices that describe the environment

and technicalities of the tool developed.

' '

i

6

2 The Object-oriented Paradigm

Object-orientation is a relatively new approach for the development of computer­

based applications. Kuhn (1962), in his treatise on scientific method, talks of a

paradigm shift as a stage in the development of major new ideas. Henderson-Sellers

(1992, pp. 15 • 16) contends that object-orientation is a major paradigm shift similar

in significance to "the Copernican revolution in astronomy, in Darwinian evolution,

and in the adoption of the underlying ideas of plate tectonics in geology". Booch

(1994, 40) maintains that the object-oriented paradigm "will form the foundation for

the next generation of software architectures in numerous domains".

The thought process for object-orientation is different to the established methods

that precede it. In support, Jacobson (1991, 35 • 36) affirms that "with an object­

oriented analysis technique, it is possible to avoid ... [thinking] like machines ...

which is a sheer waste of human activity", whereas in the object-oriented paradigm

"they can ... be made closer to life and thus become more comprehensible".

To provide a comprehensive discussion on the object-oriented paradigm, this

chapter addresses four areas: namely, defining the paradigm; defining the approach

to analysis and design methods; the design steps; and modelling the design steps. A

separate section treats each area, reflecting its individual significance.

In the first section, an understanding of the object-oriented paradigm is based on a

study undertaken by Henderson-Sellers (1992, pp. 18 • 28). Then, the fundamental

principles of the paradigm are defined in tenns of the literature available.

Specifically, the principles of object, class, encapsulation, inheritance and

polymorphism are stated.

I

7

With the foundation principles established, the second section considers the

processes of analysis and design. There are many methods available; however, the

discussion is limited to those methods further "evolved" by more recent writers. A

rationale for the determination of an evolved method is given.

The third section outlines the method described primarily by Wirfs-Brock,

Wilkerson and Weiner (1990). It provides a holistic description of the object-

oriented analysis and design process, with detailed advice on detennining class,

inheritance relationships and collaborations between classes.

The fourth section describes the analysis and design methods from an object­

oriented modelling perspective. The discussion is based on work by Rumbaugh et

a!. (1991) and Embley et al. (1992), because they satisfy the aforementioned

rationale.

2.1 Defining the Paradigm

The important issues for the object~oriented paradigm may be found in Exhibit 8 of

A Book of Object-Oriented Knowledge (Henderson-Sellers, 1992, p. 18). In this

exhibit, the writings of twelve works on object-orientation are examined for the

importance of information hiding, encapsulation, objects, classification, classes,

abstraction, inheritance, polymorphism, dynamic binding, persistence and

composition. Henderson-Sellers (1992, pp. 19- 28) draws the conclusion that, for a

design and/ur implementation to be considered object-oriented, the folk•wing

properties must be present:

• encapsulation;

• the idea of abstract classes; and

• polymorphism and inheritance.

-- ' . : '~

... -...

I
,,_
... ,

~:'-' '

~;, .,_

8

This is supported by Booch (1994, 37) who says that "object orientation involves

data abstraction, encapsulation, and inheritance with polymorphism. If any of these

elements [i.e. properties] are missing, you have something less than object

orientation". These properties are defined in the general discussion below.

The basis of the paradigm is the object which, according to the Object Management

Group (Soley, 1992, p. 42), has a "distinct identity, which is immutable, persists for

as long as the object exists, and is independent of the obje~t's properties or

behaviour". An object is defined by de Champeaux & Faure (1992, 22) as "a

conceptual entity" that:

+ refers to a thing identifiable by the users of the target system- either a

tangible system or a mental construct

+ has features that span a local state space

+ has operators that can change the statui of the system locally while these

operations may induce invocations of operations in peer objects.

The essence of the concept of an object is the definition provided by Henderson­

Sellers (1992, p. 19), who says that "an object is essentially an encapsulation of data

and functionality". Thus, objects consist of data and procedures that manipulate

some or all of the data in response to requests from within and without the object.

In addition to the software services needed to manipulate an object, the paradigm

provides a mechanism for ''grouping software ideas into classes of things"

(Henderson-Sellers, 1992, p. 19). As Rumbaugh et al. (1991, p. 24) states:

Identifying and documenting individual objects and relationships

among objects is useful, but very tedious and not powerful enough

for documenting most systems To manage this complexity we

need some method of abstracting and grouping a large body of facts

into smaller, more comprehensive units.

' j_

9

To address the complexity, the object-oriented paradigm abstract~ hehavionr to a

class, defined by Soley (J 992, p. 67) as "an implementation that can be instantiated

to create multiple objects with the same behaviour". Thus, every object is a

member of a class which contains the description of the behaviour possessed by

each of its objects. Advancing these notions, given a class, any two of its objects

with the same state will behave in an independent, but exactly similar, manner when

responding to a request of the same form and content.

The behaviour of an object is provided by its service methods, each of which is

described by Soley (1992, p. 70) as the "code that may be executed to perform a

requested service". While general tenninology refers to these procedures as

"methods", this study uses "service methods" in order to identify more explicitly

their essential function. Wirfs-Brock & Johnson (1990, 106) points out that, for an

object to satisfy its responsibility, "performing a request involves executing some

code, a [service] method, on the associated data". This is supported by Smalltalk/V

for Windows Tutorial and Programming HandbJok (Digitalk, 1992, p. 68), which

describes service methods as "the algorithms that determine an object's behaviour

and perfonnance" and are "like function definitions in ... [structured] languages".

Apart from the classification of behaviour, the paradigm employs the software

engineering technique of encapsulation to preserve the integrity of each object. A

service method of an object operates only on that object's data and, as Wirfs-Brock

& Johnson (1990, 106) say, other objects "are prevented from making direct access

to the data". Rumbaugh et al. (1991, p. 7) describe this use of encapsulation as

"separating the external aspects of an object, which are external to other objects,

from the implementation details of the object, which are hidden from other objects",

The Henderson-Sellers (1992, p. 19) perspective is that "it's gluing together data and

functionality", while Jacobson (1991, 35) indicates that only the object knows its

10

internal Structure. In the paradigm, the encapsulation process may realise the

modularity principles espoused by software engineering authors such as Page-Jones

(1988, pp. 57- 102) for:

• low coupling - "the degree of interdependence between two modules"; and

• high cohesion- the manner in which "the activities within a single module are

related to one another".

Due to the need for encapsulation, objects inherently lead a discrete existence.

Thus, in a world made of many objects, another criterion to be addressed is a

mechanism for communication. In the object-oriented paradigm, such

communication is enacted by a message handling system supervised entirely by the

environment, which are "similar to function calls in ... languages" (Digitalk, 1992,

p. 46). When a message is sent to an object, a service method is performed. In an

example provided by Soley (1992, p. 42), if the date-of· '>irth is required of a Person

object, a date~of-birth request is sent as a message to that Person object causing its

date-of-birth service method to respond. Furthermore, it may be necessary to allow

one object to cause complex resultant actions via a multiple message handling

mechanism. Thus, an object-oriented programming environment may allow a

structure of concatenated messages, when successive messages are sent to temporary

objects resulting from prer:eding messages.

The data structure and behaviour of an object are not only available from the class to

which an object belongs, but may also be "inherited" from other defined classes.

Korson & McGregor (1990, 42- 43) describe inheritance as "a relationship between

classes that allows for the definition and implementation of one class to be based on

that of other existing classes". That is, the class provides its objects not only with

the behaviour described within it, but also with the behaviour of classes to which it

is linked in a hierarchy. To provide inheritance within object-oriented

11

environments, the mechanisms of rnultiway tree data structures are provided which,

as Booch (1987, p. 296) says, "derive much of their utility from the fact that they can

represent a hierarchy among items". Specifically, the tree mechanism is described

by Booch (1987, p. 297) in the following terms:

A tree is a collection of nodes that can have an arbitrary number of

references to other nodes. There can be no cycles or short-circuit

references; for every two nodes there exists a unique simple path

connecting them One [base] node is designated as the root of a

tree If a given node references any other nodes, we say that it is

the parent of these subordinate nodes; each of the subordinate nodes

is a child of the parent we say that a parent node is the ancestor

of its children and the children are descendants of their parent.

Within the inheritance hierarchy offered by the tree mechanism, a single parent class

makes its data structure and service methods available to all its descendant classes.

In the literature, a parent class is also known as a superclass and the descendant

classes as subclasses. From the nature of the inheritance mechanism, a detailed

account of the message handling process is as follows:

• A message is sent to an object under the environment's control.

• The system will parse the message in order to identify the service method to be

performed on the object.

• If the object's class contains the service method, then the service method is

performed.

• If the object's class does not contain the service method, then [in the purest

object-oriented se11se] a search of the tree mechanism is initiated. The search

follows a single thread from the object's superclass towards the root, terminating

at the first class containing the relevant service method. Then, the ancestral

service method is performed on the object's data structure.

12

• If the search reaches the root class and if there exists no match of message to

service method, then the message is erroneous.

Because the concept described above allows any class only a single superclass node,

it is known as single inheritance. A discussion on multiple inheritance is deferred

until later.

The environment allows a developer to add classes to any existing class library by

employing the inheritance tree mechanism. This stresses the importance of

inheritance to aid reusability of behaviour between objects of different classes.

Furthermore, it provides a ready means of packaging classes in such a way that they

may be conveniently used, with little or no modification, to solve new problems. An

example of this use of inheritance is given by de Champeaux & Faure (1992, 24) as

follows:

Inheritance supports reuse of code in the following way: if a class A

in a library is sufficiently close to fulfill a particular task, we

incorporate A in the implementation, introduce B as a subclass of A,

~md make additions to B to reach the desired functionality It is

permitted that these additions to B overwrite functionality available

in A.

Modem programming languages may use the software engineering concept of

overloading, an ability of service methods in different classes to respond correctly to

identical messages. Overloading is defined by HendersonMSellers (1992, p. 252) as

"using the same operator symbol to mean two different things". For example, the'+'

operator may be used to add:

• integers M for example (3 + 4);

• floats- for example (3.3 + 4.4); and

• points -for example (30, 60 + 40, 80).

13

Khoshafian & Abnous (1990, pp. 68 -73) state that "overloading allows operations

wit~ the same o,ame but different semantics and implementations to be invoked for

o'bjects'.pf different types" which is "one of the most powerful and useful concepts of

object \)rientation''. These same authors continue with "object-oriented systems take

overloading one step further and make it available for any operation of any object

type" of which "the most important advantage is code saving". This ability, called

polymorphism, is defined by Booch (1994, 37) as:

a concept in type theory, according to which a name ... may denote

objects of many different classes that are related by some common

superclass; thus, any object denoted by this name is able to respond

to some common set of operations in different ways.

The polymorphic capability relies not only on the inheritance tree mechanism, but

also on an ability to bind the service method to the object exactly at the time of

message reception. That is, a class service method may be used by its subclasses

without redefinition. Instead of describing common service methods for every class,

they may be provided in classes towards the top of the hierarchical inheritance tree.

Consequently, the object-oriented paradigm encourages a reduction in the amount of

code that might be developed.

Khoshafian & Abnous (1990, pp. 133- 136) point out that "in many situations ... it

is very convenient to allow a subclass to inherit from more than one immediate

superclass" but that "combining instance variables or [service] methods of

immediate predecessors is not ... simple. The problem is that predecessors could

have instance variables or [service] methods with the same name, but with totally

unrelated semantics". Recognising these difficulties, Booch (1991, p. 110) states

that "the need for multiple inheritance in object-oriented programming languages is

still a topic of great debate". This may be, according to de Champeaux & Faure

(1992, 25), because "multiple inheritance induces an ambiguity when a class inherits

14

conflicting features from parent classes. Each programming language has its own

recipe for resolving such an ambiguity of which disallowing multiple inheritance is

the most rigorous one". Until an environment is able to resolve automatically any

conflict that may be caused by multiple inheritance, single inheritance is the safer

option.

Inheritance fulfils the open-closed principle espoused by Meyer (1988, pp. 23 - 24),

who says that each software module should be: open, as it is "still available for

exte~sion" because the developer will "seldom grasp all the implications of a

subp;fograrn"; and simultaneously closed, as it "may be compiled and stored in a

library, for others to use". While the principle may appear contradictory,

Henderson-Sellers (1992, p. 63) points out that, for the object-oriented paradigm,

"once a class is tested and accepted into a library, it should not need to be 'opened-

up' ... while remaining 'open' to further extendibility by inheritance".

Many languages support, in varying degrees, the object~oriented paradigm. Indeed,

Booch (1991, p. 494) provides a list of 112 such languages, three of which are

deemed by Booch to be the "most influential and widely used", namely, Smalltalk,

C++ and CLOS. To this collection, Rumbaugh eta!. (1991, p. 318) add the Eiffel

language. Each of these four languages supports the principles of objec~s and

classes, encapsulation, single inheritance and polymorphism. Furthermore,

Rumbaugh eta!. (1991, p. 318) point out that "some languages, such as C++

(Version 2), CLOS [and] Eiffel ... support multiple inheritance. Many others do

not". Although Smalltalk employs single inheritance, Boming & Ingalls (cited in

Booch, 1991, pp. 475 - 476) point out that multiple inheritance is also possible by

redefining service methods within the language. Additionally, Ada 95 has recently

become available; however, at the time of writing there is insufficient evidence for a

comparison with the aforementioned languages.

I

IS

As mentioned above, the first language identified by Booch is Smal!talk. According

to Rumbaugh eta!. (1991, p. 325), "Smalltalk is not only a language but also a

development environment incorporating some functions of an operating system" of

which a "strength is the class library, which was designed to be extended and

adapted to meet the needs of the application". These authors add that "for a single­

user development, it offers arguably the best features of both language and

environment. ... [to achieve] the goals of extensibility and reusability". In his

discussion of Smalltalk, Booch (1991, pp. 474- 475) says that "it is a 'pure' object-

oriented programming language, in that everything is viewed as an object - even

integers and classes"; further, that it is a "most important object-oriented

programming language, because its concepts have influenced ... almost every

subsequent object-oriented programming language"; and finally, that the language

laid "much of the conceptual foundation of ... the ideas of message passing and

polymorphism".

The second major object-oriented language is C++, of which Rumbaugh et at. (1991,

pp. 326- 327) say that "the implementation of run-time [service] method resolution

is efficient" and further that:

because of its origin as an extension of C, its backing by major

computer vendors, the perception of it as a nonproprietary language,

and the availability of free compilers, C++ seems likely to become

the dominant language for general use.

However. reflecting that this language is a superset of the C language, Rumbaugh

eta!. (1991, p. 326) point out that "C++ is a hybrid language, in which some entities

are objects and some are not", that "a C++ data structure is not automatically object­

oriented", thereby placing "a serious restriction on the ability to reuse library classes

by creating subcla~ses" and also that "C++ does not contain a standard class library

16

as part of its environment" with the consequence that "different libraries may be

incmi1patible". The view of Booch (1991, p. 483 - 5) is that, instead of undergoing a

formal design process, "design, documentation, and implementation went on

simultaneously" until the language was considered complete and that "the definition

of C++ does not include a class library".

Ofthe above two languages, Booch (1994, 38) says that:

C++ and Small talk are the most pervasive object-oriented

programming languages. It is likely that this situation will not

change, but only become more entrenched over time. C++ has

developed a following with organizations that are already

experienced with C A striking difference between C++ and

Small talk, however, is that the C++ environment is relatively tool­

poor, whereas Small talk is relatively tool-rich.

The third language is CLOS -the Common Lisp Object System- which is the result,

according to Booch (1991, p. 486), of a project undertaken in 1986 to standardise

object-oriented dialects of LlSP, "many of which were invented to support ongoing

research in knowledge representation". Furthermore, Booch (1991, p. 488) points

out that "the definition of CLOS does not include a class library". Independently,

Rumoaugh et al. (1991, p. 328) say that "CLOS ... has most of the advantages of a

'pure' object-oriented language" but that "CLOS currently does not have a class

library", instead of which, class libraries are developed by individual users, with

"some sharing of classes between organizations".

The last object-oriented language considered is Eiffel, about which Rumbaugh et al.

(1991, p. 327) say "Eiffel has good software engineering facilities for encapsulation,

access control, renaming, and scope [and that it] is arguably the best
\\
'

1
.. i

.
-,

17

commercial 00 language in terms of its technical capabilities11 but that only "a

modest class library is provided". Henderson-Sellers (1992, pp. 263- 236) points

out that the Eiffellanguage has an intelligent compiler which undertakes class

linkage and computation "without programmer prescription or intervention" and

with a syntax that is relatively easy to learn. Because the output is C code, Eiffel is

portable across hardware and operating system platforms.

One of the outcomes of this study is a software development tool which will assist

in the selection and utilisation from a class library linked with an object-odented

language. To realise this outcome, a desirable characteristic of the software

environment is a comprehensive class library from which a profile of each class may

be developed. Given the above findings and the desire for an extensive class
'

library, the Small talk language proved to be the only timely suitable choice.

2.2 Defining the Approach to Analysis and Design Methods

The purpose of this section is twofold: firstly, a clarification of the position of the

study on analysis and design; and secondly, a determination of the latter-day

literature to be reviewed, deemed necessary because there are numerous tomes that

address these processes.

The first issue is the ambiguous delineation of the analysis and design processes that

take place before programming begins. Ol!e eta!. (! 991, pp. I - 2) explain that

"most infonnation systems methodologies use the tenn 'analysis' to refer to an

activity which precedes that of 'design' [and] before the design commences, it is

logical enough to 'analyse' the environment in some way" in order to derive the

resultant design specification, which "is what a designer can hand to a system

constructor after he or she has completed the design". Extending this, Olle et al.

(1991. p. 47- 49) say that "any breakdown of the systems lifecycle into stages is

"' '"
.. _,'

' ·:,- ~ ,-

18

arbitrary" and that "it is often difficult to determine exactly where business analysis

ends and system design begins". Independently, Kendall & Kendall (1992, p. 3) link

the two activities together with a task description as follows:

Systems analysis and design, as performed by system3 analysts, seeks

to analyze systematically the data input ... and information output

within the context of a particular business. Further, systems analysis

and design is used to analyze, design, and implement improvement in

the functioning of businesses.

Some authors differentiate analysis and design, as de Champeaux & Faure (1992,

21) explain:

Twenty years ago, a distinction was made between analysis and

design. Analysis is aimed at describing what a target system is

supposed to do to obtain agreement with a customer ... while design

is aimed at describing how the desired system will work without

going into implementation details in design, a solution is

outlined, the required number of processes is determined, processes

are allocated to processors, and algorithms and data structures are

selecttd while satisfying additional resource, performance and

contextual constraints.

In this vein, but with a contrasting differentiation, Pressman (1992, p. 146) describes

the objectives of the analyst as:

+ identify the customer's need;

+ evaluate the system concept for feasibility;

• perform economic and technical analysis;

+ allocate functions to hardware, software, people, database, and other

system elements;

• establish cost and schedule constraints;

"' •.·'

19

• create a system definition that forms the foundation for all

subsequent engineering work.

The subsequent steps, according to Pressman (1992, p. 317), are:

+ preliminary design which is "the transformation of requirements into

data and software architecture"; and

+ detail design which "focuses on refinements to the architectural

representation that lead to detailed data structure and algorithmic

representations for software".

As exemplified by the various positions of the above authors on this matter, the

delineation is clearly a subjective selection. Consequently, the approach taken in

this study is to treat the object-oriented analysis and design exercise as a continuum

of detail description. At the beginning, the analyst/designer is concerned with the

problem domain and a direction towards the solution. By the end, the detail of the

solution within the specific environment of available class libraries should be

understandable by the implementors of the solution.

The second issue (the aforementioned detennination of literature to be reviewed) is

based upon an investigr.tion of object-oriented analysis and design conducted by de

Champeaux & Faure (1992, 21), who point out that "in this early stage [of emerging

new analysis and design methods] the methods diverge, as is to be expected".

Recapping the discussion in Section 2.1, it may be accepted that the method of

analysis and design should incorporate the essential characteristics of encapsulation,

inheritance and polymorphism. A number of the available methods do not appear to

20

support these essential characteristics and, of these methods, de Champeaux & Faure

(1992, 27- 29) observe the following:

+ Edwards' method~ "it appears that behaviour encapsulation is not

supported".

+ Coad & Yourdon's method R "seems' iWt to offer parallelism for the

objects"; that is, every object must cease operation and wait for a

response to each request, rather than allowing independent operation

for each object.

+ Schlaer & Mellor's method- appears to be directly built from d3.ta

analysis without the encapsulation of process.

+ Bailin's method- "inheritance ... is not mentioned".

+ Colbert's method- "doesn't mention inheritance".

+ Gibson's method- "inheritance ... is not discussed".

The findings of de Champeaux & Faure (1992) are supported by Embley et al.

(1992, p. 16), who describe the evolution that has occurred in some of these

methods, stating that:

+ The Object-Oriented Systems Analysis COOSA) method of Schlaer &

Mellor in 1988 is based on Entity Relationship models.

+ The declarative, behavioural and interactive information presented

within the Object-Oriented Analysis (OOA) method of Coact &

Yourdon in 1990 is extended by the Object-oriented Modeling

Technique (OMT) method of Rumbaugh et al. in 1991.

While the method described by Booch (1991) has not been included within the

de Champeaux & Faure study, it is worthy of consideration for its development of

multiple models that equate with the methods of Rumbaugh et al. (1991) and

Embley et al. (1992), both of which are described below. Inherently, the Booch

-·------

21

model development requires the use of a computer drawing package in order to

render a model. This need for graphic rendering sets Booch's modelling method

apart from the others in the are.1 and it is not obvious that the graphic intricacies

benefit the analysis and design processes. Perhaps, practitioners may be more

comfortable with model diagrams that may be easily sketched and immediately

understandable by the implementors.

Further, Rumbaugh (1995, 21) advises that he has "accepted a position with Rational

Software Corporation",leading to a partnership with Booch and "working to bring

... methods together by a process of mutual evolution, so that eventually the

differences will be minor and can be ignored [and] learning and using OMT will

be protected under future method evolution".

According to de Champeaux & Faure (1992), the methods that satisfy the above

essential characteristics are those ofWirfs-Brock, Wilkerson and Weiner (1990),

Rumbaugh et al. (1991) and one under development by Kurtz, Woodfield, &

Embley (n.d.). It is assumed that this last method has subsequently been described

by Embley, Kurtz & Woodfield (1992). In support of the method described by

Rumta•.1gh et al. in 1991, Embley et al. (1992, p. 16) observe that it "extends the

declarative behaviour, , , .. has wide recognition and is the latest in the evolutionary

sequence described". Further, D'Souza & Graff (1995, 23) say that "the OMT

methodology is arguable one of the most popular for object-oriented developmentn.

An examination of the object-oriented analysis and design literature is therefore

based mainly on the well-founded methods described by Wirfs-Brock, Wilkerson &

Weiner (1990), Rumbaugh et al. (1991) and Embley et al. (1992) and these are

developed in the next two sections. The first of these sections investigates the

" ..

22

process of object-oriented analysis and design; then, the second concentrates on

modelling the analysis and design aspects of object-oriented systems.

2.3 The Analysis and Design Process

Following the discussion above, this section establishes a holistic process for object­

oriented analysis and design. The process is hased particularly on the work of

Wirfs-Brock, Wilkerson & Weiner (1990), Wirfs-Brock & Johnson (1990) and

Rumbaugh eta!. (1991).

From the writing of Wirfs-Brock, Wilkerson and Weiner (1990) and continued by

Rumbaugh eta!. (1991), object-oriented analysis and design for any problem

demands the sequence of steps set out below:

• Understand the problem - its raison d'8tre, domain and specific parameters.

• Identify the objeCts- their abstract classes and subsystems (groups of classes).

• Determine the responsibilities of objects- their service methods.

• Determine the associations between objects - the messages they send and

receive.

• Detail the attributes contained by objects -the data structures to represent their

states.

• Build the inheritance links- their optimal positioning in the hierarchy.

These steps are achieved by the methods described in the remainder of this section

and are undertaken in an iterative and incremental fashion. Booch (1991, p. 190)

explains that object-oriented analysis and design is "an iterative process:

implementing classes and objects often leads us to the discovery or invention of new

classes and objects whose presence simplifies and generalises our design" and,

further, that it "is an incremental process: the identification of new classes and

objects usually causes us to refine and improve upon the semantics of and

relationships among existing classes and objects". In support, Rumbaugh et al.

23

(1991, p. 166) say that "the entire software development process is one of continual

iteration; different parts of a model are often at different stages of completion".

Understand the Problem

To obtain an understanding of the problem, Booch (I 991, p. 191) explains that "by

studying the problem's requirements and/or by engaging in discussions with domain

experts, the developer must learn the vocabulary of the problem domain".

Rumbaugh eta!. (1991, p. !50) recommend the production of a "problem statement

[which] should state what is to be done and not how it is to be done. It should be a

statement of needs, not a proposal for a solution".

Identify the Objects

The objects and their abstract classes are detennined once the problem is

understood, for which Wirfs-Brock, Wilkerson and Weiner (1990, p. 38) explain

that, from a wiitten specification, the developer is "looking for noun phrases", in

which the plural is changed to the singular, adding that "if you can formulate a

statement of purpose for that candidate class, the chances are even higher it will be

included in your design". The authors (1990, pp. 38 - 39) offer the following

guidelines for choosing candidate classes:

• Model physical objects such as disks or printers on the network.

• Model conceptual entities that form a cohesive abstraction, such as a window

or display, or a file.

• If more than one word is used for the same concept, choose [the] one that is

most meaningful in terms of the rest of the system

• Be wary of the use of adjectives If the adjective signals that the

behaviour of the object is different, then make a new class.

• Be wary of sentences in the passive voice, or those whose subjects are not

part of the system Is it masking a subject that might be a dass required

24

by your application? ... Subjects [may be] things which are outside the

system Does the sentence suggest an object that may need to be

modeled? ...

• Model categories of classes as individual, specific classes You will

probably alter the taxonomy of classes later.

+ Model known interfaces to the outside world, such as the user intetface, or

interfaces to other programs or the operating system, as fully as your initial

understanding allows.

Wirfs-Brock, Wilkerson and Weiner (1990, p. 39) then say that "the result of this

procedure is the first, tentative list of the classes in your program". In a similar vein,

Rumbaugh et al. (1991, p.153) explain that "objects include physical entities, such

as houses, employees, and machines, as well as concepts, such as trajectories,

seating arrangements, and payment schedules" and advise "don't be too selective;

write down every class that comes to mind. Classes often correspond to nouns".

Wirfs-Brock, Wilkerson and Weiner (1990, p. 47) advise that the list of classes may

be refined, adding that the developer should reMexamine the candidate classes "in

order to ideiltify as many abstract classes as possible in order to help identify

the structure of the software ... and to help identify classes ... overlooked".

Rumbaugh et a!. (1991, pp. 153 - 155) explain that "if two classes express the same

infonnation, the most descriptive name should be kept"; that "if a cJass has little or

nothing to do with the problem, it should be eliminated"; and that "a class should be

specific. Some tentative classes may have ill~defined boundaries or be too broad in

scope". Scharenberg & Dunsmore (1991, 32) discovered that an important step

"was to realize that in the domain of objects [an] object became

anthropomorphic (i.e., we began to think of it almost as a living entity able to tell us

things about related objects) [although] not all objects bec?.me

anthropomorphic". The step of identifying classes adds to the understanding of the

25

requirements and, according to Coad (1991, 44), "expands and refines the strategy of

•where to look, what to look for, and what to consider or challenge.' The strategy

places extra emphasis on examining the problem domain and establishing the

system's responsibilities in that context".

Taking abstraction further, Wirfs-Brock & Johnson (1990, Ill) state that:

a complex system requires many levels of abstraction, one nested

within the other. Classes are a way of partitioning and strccturing an

application for reuse. But a design often has groups of classes that

collaborate to fulfill a larger purpose. A subsystem is a set of such

classes (and possibly other subsystems) collaborating to fulfill a

common set of responsibilities.

They further explain that "subsystems simplify a design. A large application is

made less complex by identifying subsystems within it and treating those

subsystems as classes". They add that "a subsystem is not just a bunch of classes"

and that "one way to test if a group of classes fonn a subsystem is to try and name

the group. If the group can be named, the larger role they cooperate to fulfill has

been named".

Determine the Responsibilities

The desired behaviour of the objects grouped within a class may be defined as the

responsibility of the class. Each object accomplishes this responsibility with its own

methods or the methods of objects which may be in other classes. Wirfs-Brock,

Wilkerson and Weiner (1990, pp. 62 - 63) define responsibilities as "a sense of the

purpose of an object and its place in the system" and "all the services it provides"

and advise that responsibility should be shared among the classes of objects sharing

a task so that they "evenly distribute system intelligence". According to Gibson

(1990, 246), the objective is to "elicit a list of desired and necessary behaviors for

F
•·

26

the system" and the way to achieve this is to "interview the users of the prospective

application and observe them in action to see what they do, who and what they

interact with, in what order, and what the outcomes of different actions are".

Determine the Associations

When an object requires the method of an object in another class to accomplish its

responsibility, the object is said to form an association with that other object. An

association is defined by Rumbaugh et al. (1991, p. 156) as "any dependence

between two or more classes" an~ ''a reference from one class to another".

Furthermore, Tanzer (1995, 43) defines an association as "the set of the set of links

between two (or more) objects of a single class or of different classes" where "a link

is a physical or conceptual connection between objects". To understand the

associations, Wirfs-Brock, Wilkerson and Weiner (1990, p. 91) advise the developer

to:

ask the following questions for each responsibility of each class ... Is

the class capable of fulfilling this responsibility itself? .. If not, what

does it need? .. From what other class can it acquire what it needs? .

. . [and] for each class, ask: What does this class do or know? ..

What other classes need the result or information?

They further advocate that "if a class turns out to have no interactions with other

classes, it should be discarded ... [after] rigorous ... check and cross-check".

Another form of association is aggregation, described by Wirfs-Brock, Wilkerson

and Weiner (1990, p. 92) as when "X's are composed of Y's" which "can sometimes

imply a responsibility for maintaining information" and "often fulfill a responsibility

by delegating the responsibility to one or more of their parts". Rumbaugh et al.

(1991, pp. 156- 160) advise that "associations often correspond to stative verbs or

verb phrases. These include physical location ... , directed actions ... ,

27

communication ... , ownership ... , or satisfaction of some condition". The authors

warn that the developer should:

• eliminate any associations that are outside the problem domain or deal with

implementation constructs;

• omit associations that can be defined in tenns of other associations because

they are redundant; and

+ if one of the classes in the association has been eliminated, then the

association must be eliminated or restated in terms of the other classes.

These same authors contend that at this stage the developer should "specify

multiplicity, but don't put too much effort into getting it right".

Detail the Attributes

Rumbaugh et a!. (1991, pp. !61 - 162) say that the next step is to identify the

attributes of the object, which are the "properties of individual objects" and which

"usually correspond to nouns followed by possessive phrases", however "if the

independent existence of an entity is important, rather than just its value, then it is

an object". Coad (1991, 44) says that "defining attributes adds strategy steps ... and

an overall emphasis on what an object is responsible to know over time (its state)".

Build the Inheritance Links

In order to identify the source of the behaviour of classes, the class hierarchy is

detennined. Wirfs-Brock, Wilkerson and Weiner (1990, pp. 119- 121) say that:

a good design balances the goal of small, easily understood and

reused classes with the conflicting goal of a small number of classes

whose relationships with each other can be easily grasped.

To achieve this, the authors advise the developer to seek "similar responsibilities

that can be generalized, thus allowing them ... to be moved higher in the

hierarchy", then "remove unnecessary classes, and reassign their responsibilities

28

where needed". Rumbaugh eta!. (1991, p. 163) add that "inheritance can be added

in two directions: by generalizing common aspects of existing classes into a

superclass (bottom up) or by refining existing classes into specialized subclasses

(top down)". According to Rumbaugh et a1. (1991, pp. 163 -165), the former is

achieved "by searching for classes with similar attributes, associations, or

operations" while the latter "are often apparent from the application domain". They

further advise that "attributes and associations must be assigned to specific classes in

the class hierarchy. Each one should be assigned to the most general class for which

it is appropriate" and that "multiple inheritance may be used to increase sharing, but

only if necessary, because it increases both conceptual and implementation

complexity".

In conclusion, the overall process for the developer is to:

I. gain sufficient understanding to be able to begin to solve the problem;

2. group real-life objects that exhibit identical behaviour into classes and,

subsequently, classes into subsystems;

3. identify the responsibility of each object and, when appropriate, the associations

they need to form in order to meet their commitments;

4. understand which information must be held by an object in order to perfonn its

desired behaviour; and

5. for each class of objects, detennine the class that may provide suitable inherited

behaviour.

The means of achieving this process is described in the next section using the

modelling techniques described by Rumbaugh et al. (1991) and Emb1ey et al.

(1992).

29

2.4 Modelling the Process

The need for modelling is best stated by Olle et al. (1991, p.45), who explain that

"the concept of modelling is inherent in any information system methodology" and

that a "methodology should start with analytical model1ing of a business area and

continue with a prescriptive model for each infonnation system".

Independently, Em!> ley eta!. (1992, p. 5) say that, to gather information and

document systems, the analyst "concentrates on building a model [which]

captures specific characteristics exhibited by system objects, and model construction

drives the process of acquiring knowledge and asking questions about the system".

Models are used extensively within the object-oriented paradigm and this is

supported by de Champeaux & Faure (1992, 23) with their observation that, from

structured analysis, "object-oriented analysis ... methods have inherited ... the

usage of graphics instead of text to represent the models".

The information contained within the models may be supplemented by a dictionary

description because, as Rumbaugh et al. (1991, p. 156) say, "isolated words have too

many interpretations. so prepare a ... dictionary [which] describes

associations, attributes and operations".

The two methods described- the Object Modeling Technique (OMT) by Rumbaugh

eta!. (1991) and the Object-oriented Systems Analysis (OSA) method by Embley et

al. (1~92)- suggest similar modelling approaches for the object-oriented paradigm.

Rumbaugh (1995, 21) points out that, guided by "user experience an j good ideas

from other authors, and new insights", OMT is evolving and a further book is in

progress, which "will he the legitimate descendant of both [OMT and Bouch]

methods". Given the intrinsic need to understand the problem and using the process

30

steps discussed in the previous section as a foundation, the modelling techniques are

described below.

Identify the Objects

The first step is to identify the object groups, which may be either classes or, as

discussed previously, subsystems: the latter, for analysis and design purposes, may

be modelled in the same manner as a class. A class is represented in the OMT

Object Model by a rectangle as shown in Figure 1.

Class

Figure 1. The symbol for a class.

If the model is complex, understanding is aided by dividing portions of the system

into subsystems each of which, according to Rumbaugh et al. (1991, p. 199),

"encompas e aspects of the system that share some common properties''.

Within the OSA Object-Relationship Model, object groups are represented by the

same rectangle symbol. The OSA method specifically identifies abstract entities,

which Embley et al. (1992, pp. 127 - 128) describe as "independent high-level object

classes [that] have an identity of their own, ... related to, but separate from the

information they request" and which use the modelling symbol of a shaded rectangle

shown in Figure 2.

Figure 2. The symbol for a subsystem.

31

Determine the Responsibilities

The Rumbaugh eta!. (1991, pp. 84- 85) OMT Dynamic Model describes the

behaviour of an object, employ~ng state diagrams, which are "a graphical

representation of finite state machines", to represent events and states depicting the

internal changes that result from messages received. The authors explain that a state

represents "attribute values and links" and an event "is something that happens at a

point in time [because] an event has no duralion ... compared to the granularity

of the time scale of a given abstraction". A state is depicted in the OMT Dynamic

Model by a rounded rectangle, as shown in Figure 3.

Idle

Figure 3. Depiction of a state.

In Figure 4, the event time-out causes the Connect state to be changed to the

Disconnect state, with the dot describing the event number~dialled as an initial event

for the model.

number-dialled

Connect

//me-out

Disconnect

Figure 4. An event causing a change in state .

. ·Entering a state may cause an activity to be initiated. An activity is an operation that

takes time to complete and will be terminated when the state changes. In OMT,

-,., _,

32

Rumbaugh eta!. (1991, p. 93) show an activity within a state symbol preceded by a

"do:" notation, as shown in Figure 5.

Busy

do: sound-signal

Figure 5. A state in which an activity is initiated.

,,
-- ·''

An event may cause an action to take place, which Rumbaugh et al. (1991, pp. 92-

93) describe as "an instantaneous operation associated with an event. ... [that]

represents an operation whose duration is insignificant compared to the resolution of

the state diagram", such as the action disconnect-line, as shown in Figure 6.

Connect time-ouU disconnect line • Disconnect

do: sound-signal

Figure 6. An event with an action.

The event may also carry infonnation about a condition that must exist before the

event may occur and which is included together with the event name in the form

"event [condition]".

Additionally, OMT makes provision for modelling noninteractive programs with the

Functional Model, of which Rumbaugh eta!. (1991, pp. 123- 124) say:

• it uses a data flow diagram technique, which is "a graph showing the flow of

data values from their sources in objects through processes that transfonn them

to their destinations in other objects";

• it consists of "processes that transform data, data flows that move data, actor

objects that produce and consume data, and data store objects that store data

passively"; and

33

• it specifies "the results of a computation without specifying how or when they

are computed".

The symbols used in a Functional Model are shown in Figure 7. Here, a rectangle

symbolises an external actor, processes are shown by an ellipse, data stores are

represented by parallel lines and arrows depict data flows.

Actor

data flow

data store

Actor

Figure 7. The symbols for a Functional Model.

According to Embley et al. (1992, pp. 60- 79), "the objective of behaviour

modelling is to understand and document the way each object in a system interacts,

functions, responds or performs". They primarily employ state net diagrams to

model the behaviour of each object, whilst providing a "shorthand version ...

similar to traditional finite state machine notation" such as that des~ribed above for

the OMT approach.

From the description by Ernbley et al., 1992, p. 60), a state net diagram consists of:

+ states, which represent "an object status, phase, situation, or activity";

• the change to another state by the connected transitions which consist of

triggers, "the events and conditions that activate state transitions"; and

34

+ actions, which "may cause events, create or destroy objects and relationships,

observe objects and relationships, and send or receive messages".

In Figure 8, the states Connect and Disconnect are represented by the rounded

rectangles and the transition between the states is represented by the tectangle, in

which the top section contains the trigger description and the bottom section

contains the action description. From the OSA description by Embley et al. (1991,

p. 64), "the@ symbol ... designates that the trigger is based upon an event. ... [and

is] read ... as 'at', 'when', or 'upon"'.

@time-out
connect disconnect

disconnect line

Figure 8. State and transition symbols for state net diagram.

A change of state in one object may cause a message to be sent to another object and

OSA uses the 'lightning-strike' symbol shown in Figure 9 to represent, within one

object, the message that becomes an event in another object. The message symbol

may be shown emanating from either the transition or the state.

t

N message

State
trigger

State

action

t

N message

trigger State
trlggsr

action action

Figure 9. Sending a message to another object.

35

Determine the Associations

Within the OMT Object Model, Rumbaugh et al. (1991, pp. 27- 28) symbolise an

association as a straight line connecting the object groupings, as shown in Figure 10,

explaining that "the name of a binary association usually reads in a particular

direction, but the binary association can be traversed in either direction". The object

groups may be classes or subsystems, depending on the level of abstracticn to be

represented, where each may appear within the same diagram.

Object Group

dascrip/ion
of

association

Object Group

Figure 10. An association between object groups.

Rumbaugh et al. (19.91, p. 30) state that "many instances of one class may relate to a

sJ,ngle instance of an associated class". The symbols used to show the multiplicity of

association are shown in Figure 11, where 11 (a) shows one class associated with a

known range of many object groups, as indicated by the numbers at the multiple

relationship end; 11 (b) shows one class associated with an unbounded upper range

of many object groups, represented in a similar manner; and 11 (c) shows one class

assoc~ated with an unknown number of many object groups symbolised by a solid

circle on the tail.

'

:::

36

Object Group Object Group Object Group

description d8SCiiption description ,,
"'

,,
association sssoc/stion association

2·4 ,.

Object Group Object Group Object Group

(a) (b) (c)

Figure I 1. Various representations of one to many relationships.

A many to many relationship is symbolised by a solid circle on both the head and

the tail, as shown in Figure 12.

Object Group

dascripllon ,,
association

Object Group

·- .. Figure 12. Many to many object group associations.

Rumbaugh et al. (1991, p. 58) say that "aggregation is a special form of association11

where multiple objects "are tightly bound by a part-whole relationship" including

"part explosions and expansions of an object into constituent parts", for example, "a

company is an aggregation of its divisions". This type of association is symbolised

by a diamond, as shown in Figure 13.

37

Object Group

I I
'

Object Group Object Group

Figure 13. Aggregation of object groups.

As in the OMT method, associations are represented in the OSA Object~

Relationship Model by straight lines joining the object groups. The multiplicity is

described as participation constraints, shown in Figure 14, where 14 (a) indicates

one object group associated with a known range of many object groups, 14 (b)

shows one object group associated with an unbounded upper range of many object

groups and 14 (c) shows one object group associated with an unknown number of

many object groups.

Object Group Object Group Object Group

1;1 1;1 1:1

description ,, doscription ,, description ,,
association assoclaticn association

2:4 2:' 0:'

Object Group Object Group Object Group

(o) (b) (c)

Figure 14. One to many relationships with J~articipation constraints.
'

38

The multiplicity representation for many to many associations between object

groups is shown in Figure 15, employing participation constraints.

Object Group

0;"

cfflscription ,,
association

o:·

Object Group

Figure 15. Many to many relationships with participation constraints.

The OSA method includes the ability to model aggregation in a similar manner to

the OMT method, employing a solid filled triangle as shown in Figure 16.

Object Group

1 1 ,,._, I,,.
ObJect Group Object Group

Figure 16. Aggregation symbolised by a triangle.

Embley et al. (1992, p. 167) point out that objects may interact with other objects in

many ways, as "an object may send infonnation to another object, ... request

information from another object, ... alter another object, and ... cause another

39

object to do some action" and, as shown in Figure 17, for synchronous interaction

the object classes are joined with an extension of the message symbol.

Object Group

message

Object Group

Figure 17. Synchronous object group interaction.

Asynchronous interaction is also covered by Embley et al. (1992, pp. 17'2 -173), as

they explain that objects "frequently interact indirectly with each other" because they

may leave messages at an intermediate place and, in this case, the symbol is a solid

circle as shown in Figure 18.

Object Group

~ message

.,. place

message

Object Group

Figure 18. Asynchronous object group interaction.

40

Detail the Attributes

Within the OMT Dynamic Model, events convey information that may be data

values -the object's attributes- and these are included with the event name, as

shown in Figure 19 and which are listed in a dictionary.

[~_&_a•_·~]r~"~·n~tl~·~~""='~--~i~_•_•m_•~)
Figure 19. Conveying attribute information.

Build the Inheritance Links

Inheritance is symbolised by Rumbaugh et aL (1991, pp, 39- 40) as a hollow

triangle pointing from the subclass (or subclasses) to the superclass, as shown in

Figure 20.

Superclass

}_
I I

Subclass Subclass

Figure 20. Modelling inheritance.

Embley et aL (1992, pp. 38- 39) use the same symbol for inheritance (the is-a

relationship), explaining that "we do not label an is-a relationship set because the

transparent triangle tells us to read the relationship set as is-a".

,
' '

I

41

2.5 Summary

This chapter has outlined the available literature on the object oriented paradigm and

also some approaches to design employing the paradigm. The essential principles of

the object-oriented paradigm include encapsulation, inheritance and polymorphism.

A selection from the approadtes of Wirfs-Brock, Wilkerson & Weiner (1990),

Rumbaugh et a!. (1991) and Embley et a!. (1992) support the essential principles and

describe the elements of a method that may be used. In the next chapter, an example

analysis and design is undertaken.

42

3 Applying the Object-oriented Paradigm

The previous chapter provides a literature review of the object-oriented paradigm

and of the applicable analysis and design process. Dependant upon the identified

steps of this process, this chapter employs a modelling approach to analyse and

design a partial solution for a selected example. The solution is partial because the

choice of appropriate classes is deferred until later, when a search tool will be used

to assist in the discovery of suitable reuse classes.

3.1 The Example

To ensure adherence to given specifications, the example is not fabricated

specifically for this study, rather it is selected from the available literature in the

field of object-oriented analysis and design. The example is taken from Designing

Object-Oriented Software by Wirfs-Brock, Wilkerson & Wiener (1990, pp. 51· 52)

and is an Automatic Teller Machine (ATM) application. However, the hardware

component for an ATM is unavailable and the example must simulate an ATM on a

personal computer. The full description of the example is as follows:

An automated teller machine (ATM) is a machine through which bank

customers can perform a number of the most common financial

transactions. The machine consist<; of a display screen, a bank card

reader. numeric and special input keys, a money dispenser slot, a deposit

slot and a receipt printer.

When the machine is idle, a greeting message is displayed. The keys

and deposit slot will remain inactive until a bank card has been entered.

43

When a bank card is inserted, the card reader attempts to read it. If the

card cannot be read, the user is informed that the card is unreadable, and

the card is ejected.

If the card is readable, the user is asked to enter a personal identification

number (PIN). The user is given feedback as to the number of digits

entered at the numeric keypad, but not the specific digits entered. If the

PIN is entered correctly, the user is shown the main menu (described

below). Othetwise, the user is given up to two additional chances to

enter the PIN correctly. Failure to do so on the third try causes the

machine to keep the bank card. The user can retrieve the card only by

dealing directly with an authorised bank employee.

The main menu contains a list of the transactions that can be performed.

These transactions are:

deposit funds to an account,

withdraw funds from an account,

transfer funds from one account to another, and

query the balance of any account.

The user can select a transaction and specify all relevant infonnation.

When a transaction has been completed, the system returns to the main

menu.

At any time after reaching the main menu and before finishing a

transaction (including before selecting a transaction}, the user may press

the cancel key. The transaction being specified (if there is one) is

44

cancelled, the user's card is returned, the receipt of all transactions is

printed and the machine once again becomes idle.

If a deposit transaction is selected, the user is asked to specify the

account to which the funds are to be deposited and the amount of the

deposit and is asked to insert a deposit envelope.

If a withdrawal transaction is selected, the user is asked to specify the

account from which funds are to be withdrawn and the amount of the

withdrawal. If the account contains sufficient funds, the funds are given

to the user through the cash dispenser.

If a transfer of funds is selected, the user is asked to specify the account

from which the funds are to be withdrawn, the account to which the

funds are to be deposited and the amount of the transfer. If sufficient

funds exist, the t~ansfer is made.

If a balance enquiry is selected, the user is asked to specify the account

whose balance is requested. The balance is not displayed, but is printed

on the receipt.

3.2 The Analysis an~ Design

In this section, the specification from the previous section, which supplies an

understanding of the problem, is modelled for each of the process steps. There is no

definitive modelling methodology; indeed, the one employed here is drawn from

both Rumbaugh et al. (1991) and Emb1ey et al. (1992). However, while generally

adhering to the former, this section avails of features from both of them wherever, in

45

the author's opinion, the e features better suit the object-oriented analy is and design

continuum.

Identify the Objects

The first step is to identify and represent the object abstractions in an Object Model

and, to assist the reader, a convention of bold print will be adopted withjn the the is

text to identify object groupings (classes and subsystems). From nouns within the

example, the candidate object groups immediately identified are:

ATM Card Reader

Customer

Screen

Keys

Deposit Slot

Dispenser

Receipt Printer

Account

Of these candidate classes, the A TM may be considered a subsystem that associates

with the Customer and Account classes, leading to a high level view of the Object

Model shown in Figure 21.

transacts
Account

operated by

Customer

Figure 21. The high-level Object Model for the ATM.

' ,-_ '

46

The nouns Screen, Keys, Deposit Slot, Card Reader, Dispenser and Receipt

Printer signify aggregate components of an ATM, represented in Figure 22.

Receipt Printer Card Reader
I

Dlspen~er
Screen

Deposit Slot Keys

Figure 22. rhe ATM subsystem as an aggregation of c1asseS.

"''
1--· .. ,

"

ATM

"

I
'

47

The classes Deposit Slot, Card Reader, Dispenser and Receipt Printer may be

considered to be self~sufficient; however, the same cannot be said of the classes

Screen and Keys which, as is shown in Figure 23, exhibit a strong dependency on

each other.

Screen

welcome asterisk

enterPIN
held

cancel
account

unreadable
no-funds

thanks
source

dstn
number (dig!!)

menu
amount

insert
invalid· PIN output

reject

Keys

Figure 23. High dependency between o~jects.

The single self-reliant class User Interface may be substituted for the classes

Screen and Keys and the Object Model may be redrawn devoid of associations

except for the aggregation association, as shown in Figure 24.

48

ATM

Card Reader

user Interface

.

Deposit Slot

Dispenser Receipt Printer f---'-1

I
.

Figure 24. The initial detailed Object Model for the ATM.

,,-'.·

49

Determine the Responsibilities

The next step is to model the responsibilities of the objects identified above by

constmcting Dynamic Models, each of which will detennine a service method. To

assist the reader in distinguishing text relating to these models. the adopted

convention is to represent Dynamic Model infonnation in Helvetica font, with the

following additional identification: States in bold; events in italic; (attributes}

bracketed; and 'activities' and 'actions' enclosed by single quotation matks.

For the Card Reader, Figure 25 shows that from an Idle state the event readable­

card-inserted causes the action 'read-pin-id' to be initiated. The object then enters a

Hold Card state that initiates an association with User Interface by sending the

message validate and passing the attributes (PIN and id), which is an event causing a

change of state in User Interface. The Hold Card state remains until, under normal

circumstances, the event eject -a message from another object~ initiates the action.

'eject-card' and returns the object to the Idle state. Alternatively, the not-P/Nevent

initiates the 'keep-card' activity, then the card-kept event charlges the state to Idle.

Inserting an unreadable card causes the event unreadable-card-inserted, changing

the state to Unreadable and causing a message to be sent to the User Interface.

Then, the message-sent event results in an 'eject-card' action and a return to the

Idle state.

Card Reader

User Interface unreadable

unreadable
-csfd-lnserted

Unreadable

50

message-sent
/eject-card

User Interface va!ldate{PIN,Id)

readable-card-Inserted
Idle /read-pln-ld

•I"' /eject-card

Hold Card

carcf.l<.ept

Keep Card

do: keep-card

not-PIN

Figure 25. The Dynamic Model for Card Reader.

The Dynamic Model for the User Interface is modelled in Figure 26, showing that

the event l'alidate changes the state to Validate, which initiates the 'validate'

activity. If the PIN is incorrect, the event close-sent causes a return to the Idle state,

otherwise the validated event initiates the 'menu' activity to display the transaction

selection menu within the User Interface. The selection of a transaction key causes

either a deposit-pressed, withdraw-pressed, transfer-pressed or query-pressed

event, which changes the state to Deposit, Withdraw, Transfer or Query and

initiates the relevant activity, following which the complete event changes the state

to Idle.

User Interface

unreadable

do: welcome

Unreadable

do: unreadable)

messag~rsent

51

Validate

do: validate

validated

'Japosit

t'o: deposit
de sit- ressed

~eel
com r.ete

cancelledlcancal

Withdraw

do: withdrew

Transfer

do: transfer

transfer- ressed

cancelledfcancel

complete Query

do: query
ue · rossed

Figure 26. The Dynamic Model for User Interface.

Menu

The detail of the 'validate' activity may be found in another model, which is

displayed in Figure 27. The events validate, validated and close-sent are repeated in

this model as a point of reference in order to locate the model for the 'validate'

activity in the environment of the User Interface. Within the Store state, the {PIN)

and (id) attributes are held for later comparison, then the attributes-stored event

changes the state to Enter PIN. As each digit of the PIN is pressed, the number-key­

pressed initiates the 'asterisk' activity. When the PIN has been entered, the OK-key­

pressed event changes the state to Compare PIN. At most, three invalid entries are

allowed, therefore the not-PIN event initiates the 'invalid-PIN' activity, then either the

retry-allowed event iterates the process through the Enter PIN state or the PIN­

rejected event changes the state to Held, in which the user is infonned that the card

• ' c

I
52

will not be returned and a message sent to Card Reader. then the c/ose¥sent event

follows. The is-PIN event changes the state to Validate, in which a message is sent

to Account to check the (id) attribute. An invalid-account event changes the state to

Held or a valid-account event changes the state to Validated, resulting in a validated

event.

User Interface validate

val/dai~PIN, ld)

Store

(PIN,Id)

PIN-stored

Enter
PIN

do: enter-PIN

number-ke ressed Asterisk

do: asterisk

val/da/1/d Validated
valid-account

Account check(id)

Validate

(ld)

Figure 27. The validate model for User Interface.

53

On pressing the cancel key, the action 'cancel' sends a message to the Card Reader

and the 'cancel' action informs the user that the transaction has been cancelled, as

shown in Figure 28.

User Interface cancel

·~ ,---~'---,
Cancel

Card Reader eject

cance//edfcar.cel

Figure 28. The cancel model for User Interface.

In Figure 29, the event deposit-pressed initiates the 'account' activity to ascertain

the banking account number. The account-selected event changes the state to Store

the attribute (account), then the account-stored event initiates the 'amount' activity

to obtain the deposit amount. Each numeric-pressed event iterates through the

Getting Amount state until the ok-pressed event occurs, initiating the 'insert'

activity and sending a message to Account. The action-complete event initiates the

'thanks' activity, sending a message to the Card Reader to cause the card to be

ejected, which is followed by the complete event.

54

User Interface deposit

deposit-prossed
Aro:mnt

do: account

account-se/ecled r--,
Store

(account)

account-s/orad

Amount

do: amount

numeric-pressed (digit)

numerlc-prassBG1'dlglt)

comp/e/8 Amount

Thanks -,-.,---<" ok-pressed

)__''"''.'_'· '":'':"~"'J'--''"'~tio~o·:=ro~m:"p:t':" _ _j/ Insert
_,. (am01.1nt)

do: insert

/
Card Reader eject

Account deposll(ld, account, amount)

Figure 29. The deposit model for User Interface.

In a similar manner, the event withdraw-pressed initiates the 'account' activity, as

shown in Figure 30. The account-selected event changes the state to Store the

attribute (account), then the event account-stored initiales the 'amount' activity to

obtain the withdrawal amount. Each numeric-pressed event iterates through the

Getting Amount state until the ok-pressed event occurs, initiating the 'output'

activity and sending a message to Account. Then, either the insufficient-funds event

initiates the 'no-funds' action and the 'thanks' activity or the action-complete event

initiates the 'thanks' activity, sending a message to the Card Reader to cause the

card to be ejected and resulting in the complete event.

55

User Interface withdraw

withdraw- ressed Account

do: account
account-selected

complete

Card Reader eject

Thanks

do: thanks

Store

(account)

account-stored

numeric-pressed (digit)

action-complete

Account

numeric-pressed(digit)

OK-pressed

withdraw(id, account, amount)

Figure 30. The withdraw model for User Interface.

The event transfer-pressed results in behaviour similar to those in the two previous

models, as shown in Figure 31. The 'source' activity obtains the account number

from which funds are transferred, then the src-account-selected event changes the

state to Store the attribute (src-account), following which the event src-account­

stored initiates the 'dstn' activity to obtain the account to which funds are

transferred. The dstn-account-se/ected event changes the state to Store the (dstn­

account) attribute, then the dstn-account-stored event initiates the 'amount' activity

to determine the amount to be transferred. Each numeric-pressed event iterates

through the Getting Amount state until the ok-pressed event occurs, changing the

state to Store the (amount) attribute and sending a message to Account. Either the

56

insufficient-funds event initiates the 'no-funds' action and the 'thanks' activity or the

action-complete event initiates the 'thanks' activity, sending a message to the Card

Reader to cause the card to be ejected and resulting in the complete event.

User Interface transfer

transfer-presse

complete

src-account-selected

Source

do: source

Card Reader eject

Store

(src-account)

action-complete

src-account-stored

Dstn
do: dstn

dstn-account-se/ected

Store
(amount)

Account

dstn-account-stored

Amount

do: amount

transfer(id, src-account, amount, dstn-account)

Figure 31. The transfer model for User Interlace.

57

The event query-pressed results in the initiation of the 'account' activity, as shown

in Figure 32. The account-selected event changes the state to Store the (account)

attribute, then the account-stored event changes the state to Query Account in

which a message is sent to Account - initiating the account balance printout - then

the action-complete event changes the state to Thanks where a message is sent to

the Card Reader, then the complete event follows.

User Interface query

query-pressed

complete

Card Reader eject

Account

do: account

Thanks

do: thanks

account-selected

action-corn lete

Store
(account)

account-stored

Query

Account

Account query(id, account)

Figure 32. The query model for User Interface.

58

To perform its transaction responsibilities the User Interface associates with

Account, which is modelled in Figure 33. A check event changes the state from

Idle to Check Account, in which messages are sent to the User Interface, then the

id-checked event changes the state to Idle. A query event changes the state to

Query Amount in which messages are sent to the User Interface and the Receipt

Printer, then returning to the Idle state as a result of the transaction-complete event.

The deposit, withdraw and transfer events change the state to Deposit, Withdraw or

Transfer respectively, then either a timeout or transaction-complete event returns

the state to Idle.

Account

User Interface
invalid-account

User Interface
action-complete

Receipt Printer query
(account, amount)

query (id, account)

transaction
-complete

Check

Account

Transfer

do: transfer

User Interface
, _ ___, --- valid-account

Deposit

-�==------4 do: deposit

withdraw(id, account, amount)

Withdraw

do: withdraw

Figure 33. The Dynamic Model for Account.

59

The behaviour of the 'deposit' activity is displayed in Figure 34, showing that the

event deposit changes the state to Wait for Deposit, in which a message is sent to

the Deposit Slot. Then, either the timeout event occurs or the action-complete event

changes the state to Add, when the (amount) attribute is added to the balance for the

(account) attribute and messages are sent to the User Interface and the Receipt

Printer, then the transaction-complete event follows.

Account deposit

Deposit Slot deposit

Wait for

Deposit

User Interface
action-complete

Add
�--- (account,

transaction
,,,-- _

am
�
o
_
u

_
nt

_
)

- -complete

Receipt Printer printout
(transaction, account, amount)

Figure 34. The deposit model for Account.

60

The 'withdraw' activity is displayed in Figure 35, showing that the withdraw event

changes the state to Subtract where the (amount) attribute is subtracted from the

(account) attribute. The insufficient-funds event changes the state to No Funds

where a message to that effect is sent to the User Interface, followed by the

transaction-complete event. The sufficient-funds event changes the state to Wait for

Withdraw, in which a message is sent to the Dispenser, then the action-complete

message changes the state to Withdrawal Complete, in which messages are sent to

the User Interface and the Receipt Printer, followed by the transaction-complete

event.

Account withdraw

Withdrawal

Complete

action-complete

Subtract

(account,

amount)

sufficient
-funds

insufficient
-funds

User Interface
insufficient-funds

Dispenser
withdraw(amount)

transaction
-complete

User Interface
action-complete

Receipt Printer printout
(transaction, account, amount)

Figure 35. The withdraw model for Account.

61

As shown in Figure 36, the transfer event changes the state to Subtract where the

(amount) attribute is subtracted from the (account) attribute. The insufficient-funds

event changes the state to No Funds at which time a message to that effect is sent to

the User Interface, then the transaction-complete event follows. The sufficient­

funds event changes the state to Add, where the (amount) attribute is added to the

balance for the (account) attribute and messages are sent to the User Interface and

the Receipt Printer, followed by the transaction-complete event.

Account transfer

transfer
(id, src-account
amount, dstn-account)

User Interface
action-complete

insufficient-funds

Add
(account,
amount)

sufficient-funds

User Interface
insufficient-funds

transaction-complete

Receipt Printer transfer
(src-account, amount, dstn-account)

transaction-complete

Figure 36. The transfer model for Account.

62

As shown in Figure 37, an association between the Account and the Deposit Slot

objects leads to the event deposit changing the state from Idle to Money. Then,

either the timeout event changes the state to Timed Out, at which time a message is

sent to Account then the message-sent event follows, or the money-input event

changes the state to Input Received, in which a message is sent to Account

followed by the message-sent event to change the state to Idle.

Deposit Slot

Idle

message-sent

Input

Received

message-sent

Account action-complete

Timed Out

timeout

Money

do: money

Account
timeout

Figure 37. The Dynamic Model for Deposit Slot.

An association also exists between the Account and Dispenser objects, as shown in

Figure 38. The withdraw event changes the state from Idle to Dispense Money,

then the money-dispensed event changes the state to Advise, when a message is

sent to Account, followed by the message-sent event to change the state to Idle.

Dispenser

message-sent

63

Idle

mone -dis ensed

Account
action-complete

withdraw(amount)

Figure 38. The Dynamic Model for Dispenser.

The Receipt Printer issues receipts as a result of printout or transfer or query

events, as shown in Figure 39. Then, the receipt-printed event changes the state to

Eject Receipt, followed by the receipt-ejected event to change the state to Idle.

Receipt Printer

Idle

printout
(transaction, account, amount)

receipt-printed

Eject Receipt

que,y(account, amount)

Printout

do: printout

transfer (src-account
amount, dstn-account)

Transfer

do: transfer

receipt-printed
Query

do: query

Figure 39. The Dynamic Model for Receipt Printer.

64

The Customer sends messages to the classes that make up the ATM in response to

events initiated by them and, although not resulting in the construction of software,

the Customer is modelled as an integral part of the system and serves as mechanism

for checking the completeness of the other models. As shown in Figure 40, the

Customer inserts a card and then, in response to the enter-PIN event, enters the PIN

- which may require re-entry - changing the model to the Transact state and

initiating the 'transact' activity, after which the card is ejected. Entry of an

unreadable card results in an unreadable event, a message is displayed in state Bad

Card, then the eject-card event returns the state to Not Involved.

Customer

Bad

card

eject-card

,.___u_ n_re_ad_ab_le __ -< Insert

card

welcome

welcome

enter-PIN

Card Reader
unreadable-card-inserted

Card Reader
readable-card-inserted

PIN is enter-PIN
invalid

invalidPIN

PIN

entered

User Interface
ck-pressed

User Interface
number-key-pressed

Figure 40. The Dynamic Model for Customer.

65

The 'transact' activity is modelled in Figure 41, which shows that a key is pressed in

response to the menu event, resulting in either the Deposit state initiating a 'deposit'

activity, the Withdraw state initiating a 'withdraw' activity, the Transfer state

initiating a 'transfer' activity or, for a query, the selection of an account resulting in

the printout of a receipt.

Customer transact

Select
Action

uery-key-pressed

Wait for

response

User Interface
query-pressed

account

deposit-key-pressed

withdraw-key-pressed

transfer-key-pressed

Transfer
do: transfer

User Interface
account-selected

no-funds

print-receipt

query-advice

print-receipt

eject-card

Wait for

card

Figure 41. The transact model for Customer.

66

The 'deposit' activity from Figure 41 is modelled in Figure 42, showing that an

account is selected in response to the account event, an amount is entered following

the amount event and money is deposited following the insert event.

Customer deposit

deposit-key-pressed

Deposit Slot
money-input

Wait for
response

Deposit money

User Interface

deposit-pressed

insert

User Interface

Ok-pressed

Amount
Entered

Select

Account

Figure 42. The deposit model for Customer.

amount

Enter Amount

User Interface
numeric-pressed(dlglt)

67

As shown in Figure 43, the 'withdraw' activity results in the account event changing

the state to Select Account, the amount event changing the state to Enter Amount

and a change of model state to Retrieve Money following the output event.

Customer withdraw

withdraw-key-pressed

print-receipt

Wait for
response

Retrieve money

User Interface

withdraw-pressed

output

no-funds

User Interface
ok-pressed

Amount
Entered

Select

Account

Figure 43. The withdraw model for Customer.

amount

Enter Amount

User Interface
numeric-pressed(digit)

l

68

The 'transfer' activity for Customer is modelled in Figure 44, showing that a source

and then a destination account is selected, then an amount is entered to complete the

transaction.

Customer transfer

transfer-key-pressed Wait for
response

User Interface

transfer-pressed

no-funds

User Interface

ck-pressed

Amount
Entered

Select

Source
Account

amount

Figure 44. The transfer model for Customer.

dstn

Select

Destination

Account

Enter Amount

User Interface
numeric-pressed(digit)

69

A dictionary contains the information for activities and actions that are not described

by a Dynamic Model, as shown in Figure 45.

Class Activity I Action Description
Card Reader eject~card eject card from ATM.
Card Reader keep-card place card into an internal store for retrieval by

banking staff.
Card Reader read-pin-id read PIN and customer id from magnetic stripe on

card.
Deposit Slot money start rollers; stop rollers when paper received.
Receipt Printer printout print "The amount of$" (amount) "has been "

(transaction)" on your" (account) "account".
Receipt Printer transfer print "The amount of$" (amount) "has been

transferred from your" (src-account) "account to
your" (dstn-account) "account".

Receipt Printer query print "Your" (account) "account balance is$"
(amount).

User Interlace account show "Please select the account".
User Interlace amount show "Enter amount to be deposited in whole

dollars".
User Interlace asterisk show
User Interface cancel show "The transaction has been cancelled".
User Interface compare-PIN entered-PIN:= PIN ifTrue: [is-PIN], ifFalse: [not-pin].
User Interface dstn show "Select the account for destination of funds".
User Interface enter-PIN show "Please enter your PIN and press OK".
User Interface held show "You must contact your branch to regain your

card".
User Interface insert show "Place deposit in slot".
User Interface invalid-PIN if (times-validated) > 3, retry-allowed, otherwise

show "The PIN entered is invalid- try again",
increment (times-validated), PIN-rejected.

User Interface menu show "select action key to deposit, with"!raw,
transfer or query".

User Interface no-funds show "There are insufficient funds to complete the
transaction".

User Interface output show "Take money from dispenser''.
User Interface source show "Select the acco~..:nt for source of funds'.
User Interface thanks show "Thank you for banking with us".
User Interface unreadable show "The card cannot be read by this ATM".
User lntertace welcome show "Welcome to the ATM, please insert your

card".

Figure 45. Dictionary of activities and actions for the ATM.

Determine the Associations

In determining the behaviour of objects, the associations between classes have been

defined by the lightning strike symbol and these may be described within the Object

Model, as shown in Figure 46.

70

hniiOUI

Deposit Slot

Dispenser
action-<:Ompleto

ATM

Card Reader

''"

User Interface

"-"
G""!Y(~.ou;<:oun~

dop>•ltl<l. accoun~ omounl)
"'lhdraw(d, ac<oun' omounl)
~onolo~i!, o,.,.o«oun~

omoun~ doTIHlOCOUDI)

aciDn-<:<>"{{lole
inoulfo:lonHurldo
irwolld·oe<:Ounl
vor.:>OC<Xlunl

Account

prinl0u1(lranaaollon,
oe<:eUM.oiiiOilrll)

lrlnolo~...,...,.,.,.,n~
OlnOilnLdoln....,...,l)

qUOIYl'<:<:OIIrll,a"""'nQ

Receipt Printer

Figure 46. The ATM Object Model with associations.

' ' 1

71

For completeness, the behaviour initiated by the Customer which interacts with

other classes is obtained from the Customer Dynamic Model and displayed within

the Object Model, as shown in Figure 47,

Card Reader

User Interface
Customer

money·lnput

Deposit Slot

Figure 47. The Object Model with Customer interaction.

I
'

72

Detail the Attributes

Attributes have been detennined within the Dynamic Models, represented within

brackets, which are described in the dictionary as shown in Figure 48.

Class Attribute Description
Account account A choice of "cheque" or "savings".
Accouni amount The value of the transaction in whole dollars.
Account dstn-account The choice of "cheque" or "savings" that describes

the account to which funds are transferred.
Account id The unique identification for a customer.
Account src-account The choice of "cheque" or "savings" that describes

the account from which funds are transferred.
Dispenser amount The value of the transaction in whole dollars.
Receipt Printer account A choice of "cheque" or "savings".
Receipt Printer amount The value of the transaction in dollars and cents.
Receipt Printer dstn-account The choice of "cheque" or "savings" that describes

the account to which funds are trar.sferred.
Receipt Printer src-account The choice of "cheque" or "savings" that describes

the account from which funds are transferred.
Receipt Printer transaction One of "deposit", "withdraw" or "query".
User Interface account A choice of "cheque" or "savings".
User Interface amount The value of the transaction in whole dollars.
User Interface dstn·account The choice of "cheque" or "savings" that describes

the account to which funds are transferred.
User Interface id The unique identification for a customer.
User Interface PIN The four digit Personal Identification Number

contained on the transaction card.
User Interface src-account The choice of "cheque" or "savings" that describes

the account from which funds are transferred.
User Interface times-validated The number of times a PIN entry has been validated

for a card insertion.

Figure 48. Dictionary of attributes for the ATM.

3.3 Summary

Apart from the inheritance Jinks, the development of an ATM has been specified by

employing the process steps and modelling approaches outlined in the previous

chapter. This specification will be extended following the investigation of reuse

issues and the construction of a search tool described in the next two chapters.

73

4 Achieving Reuse Of Software Components

Reuse is an important goal for the software industry because, as Booch (1987, p. 6)

points out, "it simply makes sound engineering sense to apply the principles of reuse

to the discipline of software development". As cited in Chapter 1, Meyer (1988,

p. 27) says, "there should be catalogues of software modules ... [so that] we would

write less software, and perhaps do a better job at that which we do get to develop",

explaining that "as early as 1968, ... D. Mcilroy was advocating 'mass produced

software componentsw.

This chapter specifically addresses reuse, the barriers to achieving it and the means

by which it may be applied in the object-oriented paradigm. In the first section,

reuse is defined, its rationale is examined, its relationship with the object~oriented

paradigm is described and barriers to its employment are outlined. Then, having

identified the retrieval of information about components as the principal barrier to

reuse, the second section examines approaches to alleviate this barrier. In some

cases, the method of retrieval directly affects the way in which the information is

stored. Furthermore, some methods have the requirement that searchers must follow

those thought processes employed in the storage classification phase. This

requirement raises a difficulty which is overcome in the approach of full and free

text retrieval. The third section defines this approach and, based mainly on Salton

(1989), examines the issues in efficiently implementing it.

4.1 The Reuse of Software Components

To understand reuse, Horowitz & Munson (cited in Booch, 1987. p. 7) explain that

it "can come in many forms ... [such as] prototyping, reusable code, reusable

designs, application generators, formal specifications and transformation systems,

74

and off the shelf commercial packages". Meyer (1988, p. 31) points out that "once
"·

everything has been said, software is defined by code. A satisfactory policy for

reusability must ultimately produce reusable programs". Dusink & Hall (1991,

pp. I - 3) define reuse as:

a means to support the construction of new programs using in a

systematical way existing designs, design fragments, program texts,

documentation or other forms of program representation.

These authors classify reuse either as transfonnational, in which "abstract

specifications are transformed automatically into efficient target programs

using transformation rules\ or as compositional, in which "software components ...

are used as basic building blocks in the software construction process".

There are compelling reasons for achieving the goal of efficient reuse, as Matsumoto

(cited in Prieto-Diaz & Jones, 1988, p. 152) points out that 11 in process control

applications, Toshiba has reported productivity increases of 14 percent every year by

applying a 'software factory' approach that emphasizes reusability". The opportunity

exists to increase productivity because, according to Jones (cited in Prieto-Diaz &

Jones, 1988, p. !52), "only [about] IS percent of all software is unique and specific

to a single application. The remaining 85 percent is common, generic and

potentially reusable across applications''. Booch (1987, p. xvii) asserts that "a

carefully engineered collection of reusable software components can reduce the cost

of software development, improve the quality of software products, and accelerate

software production". Booch (1987, p. 6) adds that "just as with hardware

components, we may develop classes of reusable software components that are

functionally similar but that exhibit different time and space behaviour, and then we

can use them to create more complex software systems".

I

75

In an earlier chapter, the inheritance mechanism of the object-oriented paradigm was

explained showing that, instead of changing and adding to the existing source code,

a new class inherits some of its behaviour from the existing classes. This is

supported by Hooper & Chester (1991, p. 74) who say that "object-oriented design

... promises increased software reuse" with the ability "to 'grow' software ...

through inheritance". However, Jette & Smith (cited in Hooper & Chester, 1991.

p. 77) explain that "extensive use of inheritance and message passing will increase

the need for good browsing tools to isolate which class/method is responsible for a

problem".

Following an experiment in which object-oriented programmers were compared

with a control group of structured programmers, Lewis, Henry, Kattura & Schulman

(1992, 38 - 40) conclude that:

+ The object-oriented paradigm does promote higher productivity than the

procedural paradigm.

+ When reuse is not a factor, the object-oriented paradigm does not promote

higher productivity.

+ The object-oriented paradigm does promote higher productivity than the

procedural paradigm when reuse is employed.

+ Given moderate encouragement to reuse, the object-oriented paradigm does

promote higher productivity than the procedural paradigm.

+ Given strong encouragement to reuse, tht! object-oriented paradigm does

promote higher productivity than the procedural paradigm.

+ The object-oriented paradigm demonstrates a particular aftinity to the reuse

process.

There 'are inherent overheads in achieving .feuse of software components. One is the

cost (If reuse and Booch (1987, p. 6), poin'.iing out that "if it costs more to find a

76

component and understand its behavior than it does to build it from scratch, then

there will be little chance for reuse", outlines the following cost issues:

• It simply takes more effort to build a component that is generalized anrl

hence appropriate for reuse than one that is not designed with reuse in mind.

+ A component that is reused must be robust enough to suffer the abuse of a

wide range of applications. Obscure, stressful applications will often

uncover failure cases that would not be detected in general use, and so the

component must be repaired if it is to continue to be reusable.

• Once a component is designated as reusable, there must be configuration

management in place to track the component over its life.

Another barrier is the need to persuade programmers to use modules developed by

another person because, as Meyer (1988, p. 28) points out, "the 'Not Invented Here'

complex is well known" and therefore "the psychological difficulties should not be

underestimated", even though "the main roadblocks are technical".

The ability to locate the desired software module is perhaps the most important

barrier and Booch (1987, p. 6) states the need for "a mechanism with which to

efficiently retrieve an individual component". More emphatically, Frakes & Nejmeh

(1988, pp. 142- 143) stress that "a fundarnenfal problem in software reuse is the

lack of tools to locate potential code for reuse" and that "if potentially reusable

software components cannot be located, retrieved and reviewed effectiyely, reuse is

neither feosible norvaluoble". Meyer (1988, p. 28) is cited in Chapter J, claiming

that "the best reusable components in the world are useless if nobody knows they

exist, [or] if it takes a long time to obtain them". Explaining the steps to reuse,

· Dusink and Hall (1991, p. 4) soy that "some form of software component library

\nust be available, for the storage of compo~ents (and their descriptions) and to

allow· forms of browsing and querying".

77

The next section addresses the last of these barriers- the approaches for storing and

retrieving software components.

4.2 Storing and Retrieving Reuse Components

The traditional approach has been to store information using a classification scheme,

which is 'a means of obtaining order based on a controlled and structured index

vocabulary. Prieto-Diaz & Jones (1988, p. 155) explain that classification consists

of "mimes or symbols representing concepts or classes, listed in systematic order, tO

display relationships between classes".

According to Prieto-Diaz & Jones (1988, p. 155), "two types of classification

schemes are used in library science- enumerative and faceted", of which "the

traditional, enumerative method postulates a universe of knowledge divided into

successively narrower classes". An example is the Dewey Decimal system, used to

locate the shelf position of books within a library, where all possible classes are

predefined and listed in the classification schedule. A problem arises when a chosen

classification may not be obvious to all searchers, because a librarian could place the

title Structured Systems Programming in any of the categories shown in Figure 49

(drawn from Prieto-Diaz & Jones, 1988, p. 156).

001.61
001.6425
003
620.72
620.73

system analysis
software
systems
systems analysis
systems construction

Figure 49- Dew~y classification.

Of faceted classification, Prieto-Diaz & Jones (1988, p. 155- 157), say that it "is

·more ~traightforward [because] to classify a title, a term is selected from each

78

facet to best describe the concepts in the title11 so that it "relies not on the breakdown

of the universe, but on the building up or synthesizing from the subject of particular

documents". Each component is matched into elemental classes, which are grouped

into facets, considered by Prieto-Diaz & Jones (1988, p. !55) to be "the

perspectives, viewpoints or dimensions of a particular domain".

The above methods, however, rely on a common understanding between the person

selecting the storage criteria and the people retrieving the infonnation. Additionally,

for these methods, Huang (cited in Frakes & Nejmeh, 1988, p. 143) concludes that

"no methodology for large scale software ~evelopment provides a reliable storage

and retrieval mechanism for a code-levellibrary11
• Frakes & Nejmeh (1988, p. 144)

also point out that these methods "are usually limited in their ability to handle data

that is not highly structured, such as text or source code."

Mortimer Taube (cited in Cortez & Kazlauskas, 1986, pp. 56- 58) developed a

concept of using some of the actual words contained in a dOcument as the search

keys in order to cope with "the massive growth of scientific and technical

infonnation, and the need to store and retrieve this information rapidly". This full

and free text retrieval concept is supported by Frakes & Nejmeh (1988, p. 144), who

explain that because systems employing this approach "are capable of handling

unstructured data, they can be used to store and retrieve products ... such as ...

design documents [and] code". Support is also provided by Gibbs, Tsichritzis,

Casais, Nierstrasz and Pintado (1990, 93) who say that one way "of representing an

object class so that the information needed to use the class can be easily located and

incorporated within an application would be to represent classes by source

text". According to Horton (1990, p. 59):

the main advantage'Of full text ... is the ability to identify precise

words and phrases and subtleties of meaning in the original context,

79

without the filter of an abstract, which can omit important

information or tenns.

The concept is also supported by Freeman & Henderson-Sellers (1991, p. 175), who

say that ua method of cataloguing and classifying Object Classes utiliSing Full text

storage may obviate the high intellectual requirement required to establish

controlled vocabulary entries".

To apply the full and free text process, Salton (1989, p. 232) explains that, for each

word, "a separate index is constructed that stores the record identifiers, or record

addresses, for all records identified by that tenn". Using words related to the search,

the documents which contain them may lead to the desired information, or, as

Kimmel (1990, p. 106) explains, "often the documents themselves ... act only,as

pointers to the information source". The approach is detailed in the next section.

4.3 Full and Free Text Retrieval

Although the concept of indexing every word for storage appears onerous, the text

retrieval process may be very fast because many words are used frequently. Salton

(1989, pp. 105 -108) points out that "six words (the, of, and, to, a and in) account

for over 20 percent of all word occurrences in English" while "the 50 most freq,uent

words cover more than half of all word occurrences in ordinary text". As a result,

beyond a moderate size, the number of words to be indexed grows at a lower rate

than the size of the text, as.shown in Figure 50 (drawn from Salton, 1989, p. 108).

I
;

80

Number Average Average
of word number of increase in

occurrences separate number of
words words

500 223.6
1000 316.2 92.6
2000 447.2 .• 131.0
4000 632.5 185.3
6000 774.6 142.1
8000 894.4 119.8

10000 1000 105.6
12000 1095.4 95.4

Figure 50. Growth of new words with an increase .in the text size.

The method, explained by Salton (1989, pp. 232- 233) is to store words- or terms-

in a file "known as an inverted index or inverted file" as follows:

-o The complete file is first represented as an array of indexed records,

where each row represents a record, or document, and each column

specifies the assignment of a particular tenn.

+ The record-term array is inverted (actually transposed) in such a way

that each row of the inverted array then specifies the records

corresponding to some particular term.

+ The rows of the inverted tenn-record array are manipulated in

accordance with a particular query specification to detennine the set

of records that respond to the query.

For example, the document positions stored in the inverted file construction for the

IDM STAIRS (Storage and Information Retrieval System) software link each term

to a set of addresses, each one of which denotes the paragraph - sentence - word

position of an occurrence of the term. As an illustration, if the second sentence in

the third paragraph is 'The quick brown fox jumps over the lazy dog', then the

address for each word is specified by the number of paragraphs from the start of the

document, the number of sentences from the beginning of the paragraph and the

81

number of words from the beginning of the sentence, as shown in Figure 51. Note

that word storage is not case sensitive.

Term Para Sentence Word Para Sentence Word
brown 3 2 3
dog 3 2 9
fox 3 2 4
jumps 3 2 5
lazy 3 2 8
over 3 2 6
quick 3 2 2
the 3 2 1 3 2 7

Figure 51. An inverted list

Following the storage of the document in the manner described above, queries may

be formulated by retrieving the address of search words. Salton (1989, p. 232)

explains that the query may be enhanced by joining search words with boolean

operators, of which the following are used:

+ The or operator treats two terms as effectively synonymous. In

particular; given the quety (term I or term 2), the presence of either

term in a record suffices to retrieve that record.

+ The and operator combines terms into term phrases; thus the query

(term 1 and term 2) indicates that both terms ... must be present for

retrieval.

+ The not operator is a restriction, or term-narrowing, operator that is

· normally used in conjunction with the and operator to restrict the

applicability of particular terms; thus the query (tenn 1 and not term

2) leads to the retrieval of all records containing tenn 1, provided that

term 2 is not also present in the words.

I
82

According tc Salton (1989, pp. 232- 236), the inverted index free and full text

method is faster than "sequential searches of the record file, as well as access

methods based on pointer-chain tracing as in the multilist method" and that it

"exhibits substantial advantages in terms of processing efficiency". The method

does have disadvantages and Salton (1989, p. 236) explains that:

+ the records are normally retrieved in the order in which they appear in. ihe

inverted lists;

• a large output may overwhelm the user; and on the other hand,

+ narrowly fonnulated queries using and operators may generate very little

output.

Additionally Salton (1989, p. i;46) describes "various methods designed to reduce

the size of the index term set, and hence the inverted index itself', such as:

+ the use of truncated terms instead of full word forms:

+ the implementation of hash-table transfonnations to reduce variable-length

word forms to short fixed-length codes; and

+ replacement :Of full tenn entries with word fragments.

However, Salton (1989, p. 246) warns that these methods have "the disadvantage ...

of a loss of subject discrimination, possibly leading ·to reduced retrieval

effectiveness, because the short fonns of the terms do not always specify topics

precisely". Another method described by Salton (1989, p. 279) is to "eliminate

common function words from the document texts by consulting a special dictionary,

or stop list, containing a list of high frequency function words", taking advantage of

the knowledge that "most f~nction words are characterized by high occurrence

frequencies in ordinary texts". A further capability, according to Salton (1989,

pp. 299 - 301), is the use of a thesaurus which "takes low-frequency, overly specific

terms and ~eplaces them with less-specific, medium-frequency thesaurus 'heads"'

which "broadens index tenns whose scope is too narrow to be useful in retrieval".

83

The author explains, however, that "thesauru'ses valid for subject areas of reasonable

scope are constructed manually, or intellectually by committees of experts".

4.4 Summary

The chapter has examined the issues of.reuse, including those that apply to the

object~oriented paradigm, concluding that an important barrier to reuse is the lack of

a capability to retrieve relevant information about software modules. The full and

free text retrieval method overcomes the difficulty that the searcher has in

understanding the thought processes used in the storage of informajon and, in the ·

·next chapter, a search tool is constructed t~ employ pertinent parts of this method.

84

5 The Search Tool

The previous chapter establishes the requirement for an objected-oriented search

tool to indicate potential classes based upon search criteria, theil it espouses the

technique of full and free text retrieval as a beneficial search mechanism.

This chapter details both the construction of the tool and its usage. More

specifically, the first section develops the requirement, describes the analysis and

design and outlines the test procedures. Then, the second section provides details on

the environment required to implement the tool, on operation of the tool, on eritering

the search criteria and on evaluating the result.

5.1 Development of the Search Tool

Complying with the process described in Chapter 2, the analysis and design of the

search tool is undertaken within this section by an understanding of the needs of a

software constructor together with the manner in which these needs may be fulfilled,

an identification of the objects involved, their responsibilities, their associations,

their attributes and a determination of the inheritance links that enhance the

implementation.

Understand the Problem

An application developer within the object-oriented paradigm, wishing to implement

a desired functionality, can articulate a natural language specification of a desired

software class but may not understand the capability of al1 classes in the library. To

relieve this lack of understanding, it has been shown in previous discussion that a

search tool is needed to find suitable candidate classes by initiating a search based

on the natural language specification. Thus, words that express the main theme of a

i

85

natural language specification may be input to the tool, whOse resultant output lists

potentially suitable classes. The identification of classes by the tool should take

place quickly, even if preparation for the search requires a significant amount of

time.

The search may pro~~ce a list of many or few classes, in which cases the application

developer may need to refine the search. Additionally, the application developer

will examine in detail the service methods of identified classes. As a result of the

detailed examination, the search may be extended to further classes that associate

with the class under inspection. If an appropriate class is available, then ultimately

it will be found.

Identify the Objects

From the above problem identification, a Class Find search tool is developed. The

tool requires access to service method text code for all classes within the library.

This access is provided indirectly to Class Find by Small talk's Behavior object,

which is able to read every service method within all classes.

The Class Find tool will establish a Dictionary object to store the information in a

manner designed for full and 1}ee text retrieval. Each word of the service method

text code, except stop words as identified by Salton (1989), will form Dictionary

keys, where for each key the Dictionary value will be a set oi all classes that contain

that key word. A Window object will be established by the Class Find object for

the output list developed. For further investigation, a Smalltalk Class Browser

object may be established for a detailed examination of a class.

I
86

All of the objects thus identified- Class Find, Dictionary, Window, Class

Browser and Behavior, together with Behavior's relationships with all classes- are

shown in Figure 52.

Window Dictionary

,

Behavior Class Find

read every service method

all classes

Class Browser

Figure 52. The initial Object Model for Class Find.

I
1

t ,

87

Determine the Responsibilities

The behaviour of the Class Find object is described in Figure 53 which shows that,

from the Closed state, construction of the search tool is commenced by invoking the

'initialise' activity to build the dictionary. Here, the keys are the service method text

words - except stop words - and the values are sets of classes that contain the words.

Then, the 'open' action invokes the formation of a window for the search tool.

When the window-Is-open event occurs, the Class Find tool is in the Idle state. The

event class-menu, resulting from making a menu choice, changes the state to

Operate, which is described in detail below. The edit-message-sent event returns

the state to Idle. From either the Operate or Idle states, a close event returns the

Class Find tool to the Closed state.

Class Find

Closed
lnilialise

• ----'

~
Initialise

d~· do: lnttiallse

'"'"
Operate

;;; do ''"'''

ssage
class-menu sent

•
Idle window-Is-open Open

do: open

Figure 53. The Dynamic Model for Class Find.

88

Detail of the 'operate' activity is shown in Figure 54. The event class-menu results

in the following choices:

• "clear and enter", initiating the 'clear' activity which clears previous output from

the window and prompts for the search tenns, followed by initiation of the 'get~

criteria' activity;

• "enter more criteria", initiatiilg the 'get-criteria' activity which prompts for the

search terms; or,

• "return to last entry", initiating the 'default-criteria' activity which presents the

previous search terms for possible modification.

Then, the locate-classes event results in a display of each class and the search

criteria met. A select event, resulting from the use of a mouse to select a class,

changes the state to Browse, while a c/oseevent may occur as described previously.

\Vithin the Browse state, a message is sent to the identified class to open a Class

Browser object, resulting in the edit-message-sent event.

Class Find operate

_______ _£d~,%~·~m~M~uc_ ____ 1(,;,~::~
·- StartMenu c_ ____ ~oo~~~w~,,~,~·~~c__,

do: class·menur

dit-message-senl

class edll

cleFJr

close

Clear

do: clear

et-criterfa

et·criteria

"" Criteria
do: gel-criteria

/oca/G-classes

L. __ ~ Wc"""' ____ ___, a~:~:s
do: locate

-classes

Figure 54. The operate model for Class Find.

Default
Criteria

' do: default
-criteria

89

The search tool is built as a result of the initialise event, as shown in Figure 55.

From the Get Code state, a message sent to the Behavior object results in the

each-method event and Class Find changes to the Stream state, at which time non­

alphabetic characters are removed from the (code-stream) attribute. As it is normal

Small talk practice to define identifiers as compound words, each of which may

commence with a capital letter, these are separated into individual words, then all

characters are changed to lower case. Class Find returns to the Get Code state as a

result of the more-code event or changes to the Add state as a result of the all-code

event, at which point the (code-stream) attribute is added to the Dictionary object

and the open event occurs.

Class Find Initialise

Initialise Get
Code

Add
(code-stream)

more-coda

Behavior

all-classes melhod-dlctlonary

91lc/1-tn!<'/hod
1cOO&-stream)

Stream
(code-stream)

all-code

Olctlonary
oddlcode-stream)

Figure 55. The initialise model for Class Find.

I

,'

90

The 'locate-classes' activity, resulting in a display of each class that meets the

search criteria, is shown in Figure 56. Within the Looi<Up state, for every search

word other than or, and or not, each ciass containing that word is found and added

to the (class-output) attribute. The lookup-completed event changes the state to

Transfer Output, where the (class-output) attribute is prepared for listing, then the

output-transferred event changes the state to Output, sending the (class-output)

attribute to the Window. If the more-criteria event occurs, the actions are iterated,

otherwise either the select event occurs because a class is selected or a close event

occurs.

Class Find locatu-classes

Lookup
Jocafe·Cfasses

•-"==="--~(word, class-output)

select

close

Output
(class-output)

do: lookup

moJ<I·C_rileria

out ut-transferred

lookup
·completed

Transfer
Output

(ci~SS•OUtpu\)

do: transfer-output

Window
contents(class-output)

Figure 56. The locate-classes model for Class Find.

91

The 'lookup' activity, illustrated in Figure 57. is initiated by the locatewc/asses or

more-criteria events. From the Find state, a message is sent to the Dictionary

object to locate the (word) attribute, resulting in the find-completed event and a

change of state to Not If the (word) attribute has been negated in the search term,

then the (class-list) attribute is complemented and the complement-completed event

changes the state to And. If the (word) attribute is part of a boolean expression

linked by an and operation, a union is undertaken between the current and previous

(class-list) attributes and the union-completed event changes the state to Add. The

(class-list) attribute is added to the output and the lookup-completed event occurs.

Class Find lookup

Dictionary
/ locale(word)

/

- Find find-completed
/()W,/I.!·Ciasses (word)

(class·llsl)

~·
Not
(word)

complement
-romp/sled
(class-list)

Aod
(word)

lookup-campleled

Add

(word)
unjon-complolsd

(class-list)

Figure 57. The lookup model for Class Find.

The 'transfer-output' activity, initiated by the lookup-completed event, is shown in

Figure 58. From the Notify state, a user display is prepared indicating the number of

responses to the search. When the size-transferred event occurs, the state is

92

changed to Output Candidate, in which the (ctas'3) attribute is prepared for output.

\Vhen the class-transferred event occur. , . .; (search-term) attribute is output and

the output-transferred event occurs.

Class Find transfer-output

/ao/wp-comnle/ed
Notify s!zr;;-tmnsferred

(response-size)

Output
Candidate
(class)

.. ~ Output
Criteria

dass-/ransferred

(search-term)

Figure 58. The transfer-output model for Class Find.

Figure 59 shows a dictionary for activities and actions that are not described by a

Dynamic Model.

Class ActivitVtAction Descriotion
Class Find browse Open Class Browser on selection.
Class Find class-list Show the accumulated output from the search.
Class Find class-menu Show "clear and enter" -select for clear,

show "enter more criteria", select for get-crt1ena;
show "return to last entry", select for default-criteria.

Class Find clear Initialise (class-output), then induce get-criteria.
Class Find default-criteria Show previous entry in prompting for search input,

then induce /ocate-classes.
Class Find get-criteria Prompt for search input, then induce locate-classes.
Class Find open Open list window. For menu- induce locate-classes;

for change - induce class-list, for selection - induce
browse.

Figure 59. Dictionary of activities and actions for Class Find.

93

Detennine the Associations

From the behaviour explained above, the associations between classes are defined

by the Object Model, as shown in Figure 60.

Window Dictionary

~

~

'"
locate

contents (coda-stream) (wurd)

(class-output)

find-cO'npleted
(class-list)

""' all-classes method-<llcllonary
Behavior ClassFind

each-melhod{coda-stream) •

edit
all classes

ope noOn

Class Browser

Figure 60. Associations for Class Find.

',',

94

Detail the Allrihu!es

From the Dynamic Models, attributes are identified and described in a dictionary, as

shown in Figure 61.

Class Attribute Description
Class Find class The name of the class that contains the search

term.
Class Find class-list A list of classes that contain the search term.
Class Find code-stream All text for each service method.
Class Find class-output The search output, consisting of the number of

responses, each class matching the search term
and the relevant search term.

Class Find response-size The number of classes matching the search term.
Class Find search-term Ti·,,: words and boolean expressions on which the

search is based.
Class Find word Each word irput to the search.
Dictionary code-stream A stream of words, each of which is to be stored.
Dictionary word The ke:y word to be located.

Figure 61. Dictionary of attributes for Class Find.

Build the Inheritance Links

The desired behaviour to open and manage a Window is provided by inheritance

from the View Manager class. Available from the Smalltalk/V vendor, additional

to the standard class library, is the Word Index class, which incorporates the

necessary behaviour to store and retrieve text words in a Dictionary using full and

free text principles. Inheriting from View Manager and Word Index, as shown in

Figure 62, relieves the development requirement for detailed interaction with the

Window and Dictionary classes.

I
'

95

'

Window
operates in

View Manager

stores in Word Index Dictionary

Behavior
all-classes method-dictionary ClassFind

each-method(code-s\ream)

edit

all classes

open-on

I

'

Class Browser

Figure 62. The final Object Model for Class Find.

96

Testing the Search Tool

Test procedures are developed to ensure that the search tool accurately fulfils the

requirement described above. As Page-Jones (1988, p. 268) points out, these

procedures "should contain test cases comprising test data deliberately and

fiendishly crafted to expose as many defects as possible, together with the predicted

output for each test input". The test procedures cover:

• accuracy, ensuring that each and every class that contains the search word is

exhibited; and

• functionality, affirming predicted behaviour for normal input and expected

behaviour for erroneous input.

For a credible test plan, modification for the test process is minimised and the final

code is completely tested.

Accuracy and normal functionality are tested by searching for occurrences of words

within an environment for a known result: namely, none, one and multiple; negation

of none, one and multiple; intersection; union; and combinations of negation,

intersection and union. The known environment consists of four new classes, as

follows:

• A class named ClassO, with no methods;

• A class named Classl, inherited from class ClassO, with a method named

'methoda' containing the words wordinone and wordinonetwo and another

method named 'methodb' containing the words wordinonetwothree and

wordinonethree;

• A class named Class2, inherited from class C!assl, with a method named

'methode' containing the words wordinonetwo, wordinonetwothree,

wordintwo and wordintwothree; and

• A class named Class3~ inherited from class Class2, with a method named

'methodd' containing the words wordinonetwothree, wordinonethree and

97

wordintwothree, a method named 'methode' containing the word wordinthree

and a method named 'methodf' containing no additional words.

Therefore, a test environment is created covering all possibilities where classes have

none, one and multiple methods, where methods conta~n none, one and multiple

words and where the occurrence of words is as follows:

• wordinzero is not present in any class;

• wordinone occurs once, in Classl;

• wordintwo occurs once, in Class2;

• wordinthree occurs once, in Class3;

• wordinonetwo occurs twice, in Class I and Class2;

• wordinonetwothree occurs three times, in Classl, Class2 and Class3;

• wordinonethree occurs twice, in Classl and Class3; and

• wordintwothree occurs twice, in Class2 and Class3.

With minimal modification, the test environment is limited to ClassO, Classt,

Class2 and Class3, for which the Venn diagram is shown in Figure 63.

Universe

Classl Class2

wordlnonetwo

8 wordlnone wordintwo

wordinonetwothree

wordlnlhrea

Class3

Figure 63. A Venn diagram for the test environment.

98

To demonstrate satisfactory performance of the search tool, the following plan tests

each region of the above Venn diagram and each logical combination.

Test Input
1. wordinzero ,

2. wordinone

3. wordintwo

4. wordinthree

5. wordinonetwo

6. wordinonetwothree

7. wordinonethree

8. wordintwothree

9. not wordinzero

10. not wordinone

Expected Output

Number of responses is zero.

Number of responses is one, showing

class Classl.

Number of responses is one, showing

class Class2.

Number of responses is one, showing

class Class3.

Number of responses is two, showing

classes Classl and Class2.

Number of responses is three, showing

classes Classl, Class2 and Class3.

Number of responses is two, showing

classes Classl and Class3.

Number of responses is two, showing

classes Class2 and Class3.

Number of responses is four, showing

classes ClassO, Classl, Class2 and

Class3.

Number of responses is three, showing

classes ClassO, Class2 and Class3.

\'.·
u

il I.

99

Test Input Expected Output

11. not wordintwo Number of responses is three, showing

classes ClassO, Classl and Class3.

12. not wordinthree Number of responses is three, showing

classes ClassO, Classl and Class2.

13. not wordinonetwo Number of responses is two, showing

classes ClassO and Class3.

14. not wordinonetwothree Number of responses is one, showing

class ClassO.

15. not wordinonethree Number of responses is two, showing

classes ClassO and Class2.

16. not wordintwothree Number of responses is two, showing

classes Class{) and Classl.

17. wordinone or wordinonetwo Number of responses is two, showing

classes Classl and Class2.

18. wordinone or wordinonetwo or Number of responses is three, showing

wordinonetwothree classes Classl, Class2 and Class3.

19. wordinzero or wordinone or Number of responses is three, showing

wordinonctwo or classes Classl, Class2 and Class3.

wordinonetwothree

20. wordinone and wordinonetwo Number of responses is one, showing

class Classl.

21. wordinone and wordinonetwo Number of responses is one, showing

and wordinonetwothree class Classl.

I

I ·------~----------

100

Test Input Expected Output

22. wordinzero and wordinone Number of responses is zero,

and wordinonetwo and

wordinonetwothree

23. not wordinone or not Number of responses is th~ee, showing

wordinonetwo classes ClassO, Class2 and Class3.

24. not wordinone and Number of responses is one, showing

wordinonetwo class Class2.

25. not wordinone and not Number of responses is two, showing

wordinonetwo classes ClassO anJ Class3.

26. not wordinone and not Number of responses is one, showing

wordinonetwa and not class ClassO.

wordinonetwothrec

27. wordinone and wordinonetwo Number of responses is three, showing

or wordinonetwothree classes Classl, Class2 and Class3.

28. not wordinone and Number of responses is three, showing

wordinonetwo or classes Classl, Class2 and Class3.

wordinonetwothree

29. not wordinone and not Number of responses is four, showing

wordinonetwo or classes ClasssO, Classl, Class2 and

wordinonetwothree Class3.

30. not wordinone and not Number of responses is two, showing

wordinonetwo or not classes ClassO and Class3.

wordinonetwothree

Then, after reverting to the original code- unmodified for testing- the tests are

!epeated.using the full environment. Using an approach independent to that used by

the search· !.ool, the total number of classes- denoted by N- is derived.

I

The test processes are:

Test Input

31. wordinzero

32. wordinone

33. wordintwo

34. wordinthree

35. wordinonetwo

36. wordinonetwothree

37. wordinonethree

38. wordintwothree

39. not wordinzero

40. not wordinone

41. not wordintwo

42. not wordinthree

43. not wordinonetwo

101

Expected Output

Number of responses is zero.

Number of responses is one, showing

class Classl.

Number of responses is one, showing

class Class2.

Number of responses is one, showing

class Class3.

Number of responses is two, showing

classes Classl and Class2.

Number of responses is three, showing

classes Classl, Class2 and Class3.

Number of responses is two, showing

classes Classl and Class3.

Number of responses is two, showing

classes Class2 and Class3.

Number of responses is N.

Number ofrcsponses is (N- 1).

Number of responses is (N- 1).

Number of responses is (N- 1).

Number of responses is (N- 2).

Test Input

44. not wordinonetwothree

45. not wordinonethree

46. not wordintwothree

47. wordinone or wordinonetwo

102

Expected Output

Number of responses is (N- 3).

Number of responses is (N- 2).

Number of responses is (N- 2).

Number of responses is two, showing

classes Classl and Class2.

48. wordinone or wordinonetwo or Number of responses is three, showing

wordinonetwothree classes Classl, Class2 and Class3.

49. wordinzero or wordinone or

wordinonetwo or

wordinonetwothree

Number of responses is three, showing

classes Classl, Class2 and Class3.

SO. wordinone and wordinonetwo Number of responses is one, showing

class Classl.

51. wordinone and wordinonetwo Number of responses is one, showing

52.

53.

54.

55.

and wordinonetwothree class Classl.

wordinzero and wordinone

and wordinonetwo and

wordinonetwothree

not wordinone or not

wordinonetwo

not wordinone and

wordinonetwo

not wordinone and not

wor.dinonetwo

Number of responses is zero.

Number of responses is (N- 1).

Number of responses is one, showing

class Class2.

Number of responses is (N- 2).

Test Input

56. not wordinone and not

wordinonetwo and not

wordinonetwothree

!03

Expected Output

Number of responses is (N- 3).

57. wordinone and wordinonetwo Number of responses is three, showing

or wordinonetwothree classes Classl, Class2 and Class3.

58.

59.

60.

not wordinone and

wordinonetwo or

wordinonetwothree

not wordinone and not

wordinonetwo or

wordinonetwothree

not wordinone and not

wordinonetwo or not

WOl'd;nonetwothree

Number of responses is three, showing

classes Class!, Class2 and Class3.

Number of responses is N.

Number of responses is (N- 2).

Acceptable behaviour resulting from erroneous input may be tested as follows:

Test Input I Description

61. or wordinone

An or expression truncated at the

beginning.

62. wordinone or

An or expression truncated at the

end.

63. and wordinone

An and expression truncated at

the beginning.

Expected Output

Number of responses is one, showing

class Classl.

Number of responses is one, showing

classes Classl.

A message advising a zero response.

Test Input I Description

64. wordinone and

An and expression truncated at

the end.

65. and not wordinone or

wordinonetwo

A compound expression

truncated at the beginning.

5.2 Operating the search tool

104

Expected Output

A message advising a zero response.

Number of responses is two, showing

classes Classl and Class2.

The above description comprises the analysis and design for a search tool to aid the

object-oriented developer, where the models incorporated within the description

provide information required for future maintenance of the search tool. The

environment for which the search tool is built is as follows:

• Dual 486 series personal computer;

• DOS version 6.2 operating system;

• Microsoft Windows version 3.11; and

• Digitalk Smalltalk/V for Windows version 2.0.

Appendix A contains the Smr~IItalk/V for Windows code for the search tool, which

is a Small talk class named ClassFind. Appendix B contains the code for the

Wordlndex class which, although supplied by Digitalk, is additional to the standard

Smalltalk/V for Windows environment.

Within this section, actions undertaken within the Smalltalk environment by the

application developer are shown in bold Helvetica, such as press the Enter .J key.

105

Within Smalltalk, the action required by the developer to build the search tool is the

selection of the expression ClassFind new initialise followed by the selection of

Smalltalk and Do It, as shown in Figure 64.

Figure 64. Initiating the search tool.

The search tool, for which the visible portion is a control bar and a display window,

is shown in Figure 65.

flllil

Figure 65. The initiaUsed search tool.

106

It should be noted that the initialisation involves a time consuming build of a

dictionary, requiring some minutes, in order to achieve fast search output. The use

of the tool is not unduly compromised, however, as developers will close and

rebuild the search tool only following the completion of each new application.

Using a mouse, the Criteria entry on the control bar is selected to open a menu, as

shown in Figure 66.

Figure 66. The search tool showing menu choices.

Selection of a menu entry enables the folJowing actions:

• clear and enter clears the previous results from the output windows before

prompting for search terms;

• enter more criteria prompts for search terms, the result of which follows the

previous output; or

• return to last entry prompts for search terms, with the last entered search

criteria visible and available for modification. The result of the search follows

the previous output.

All of the above choices enable entry of the search terms, as shown in Figure 67.

107

] --SmalltalkJVPrompter �

Enter Criteria

I corner and botto�

Figure 67. Entry of terms to the search tool.

The entry of search terms may be any of the following:

• A single word, such as corner.

• More than one word, such as corner bottom.

• Words joined by boolean operators, such as

corner or bottom

corner and bottom

corner and not bottom.

The boolean and and or operators are evaluated from left to right.

• Any combination of the above, including separate terms not explicate joined by

an or operator, where each term is separately searched, such as

corner and bottom point or bottom.

When the search terms have been entered, selection of the OK button with the

mouse or pressing the Enter .J key, results in a display of the classes meeting the

search criteria. Figure 68 i11ustrates a result in which nine classes match the

selection criteria.

fJ"J �
The nuoober of responses
Rectangle
lfinRectangle
Point
TutTool
TutSelection
CraphPane
TotPane
Anl11atedObject
WinOrawlte..Struct

108

SmulllnlkN f.lHssFind Arnw .. ,e,

is 9
botto11 and corner
botto11 and corner
botto11 and corner
botto11 and corner
botto11 and corner
botto11 and corner
botto• and corner
botto11 and corner
botto11 and corner

Figure 68. The result of a search.

Selection of any one class - any line - with the mouse opens a Class Browser object

on that class. Figure 69 shows the result of selecting Rectangle.

WinRectangle
Point
TutTool
TutSelection
CraphPane
TextPane
Ani•atedObject
lfinOrawlte11Struct

'

class

.

asParatllM!ter

center
containsPoint:
corner
cot"net":

expandBy:
extent

.,

botto11 and corner
botto11 and corner
botto11 and corner
botto11 and corner
botto11 and corner
botto• and corner
botto11 and corner
Dotto• and corner

,.;r,a

·,, ,. . """ . , ·,,<;oc , 7" .,,.">£·., . .··•,:>;,.,,,.),
bot to• a

"Answer the y-coordlnate of

•
the botto• of the receiuer."

'
ArightBotto• y

�.
� .

. ,»:)C!.I•"'

Figure 69. Selection of the result of a search.

109

The Class Browser provides ready access to the text code of each service method,

a shown in Figure 69 where the service method bottom is selected. Additionally,

by using the mouse to select Method on the control bar of the Class Browser, every

class initiating or implementing the selected method may be ascertained by selecting

Senders or lmplementors, as shown in Figure 70.

center
contatnsPoint:
corner

corner:

expandBy:
extent
extent:
height
height:
insetey:
intersect:
intersects:
isRectangle
left
leftBotto11
leftBotto11:extent:
leftBotto11:rigntTop:
leftTop
leftTop:
leftTop :extent:
leftTop:rignteotto•:
11apClientloScreen:
.apScreenToClient:

Figure 70. Selecting initiators and implementors of a service method.

110

The result of selecting Senders and lmplementors, with the service method text

displayed, is shown in Figure 71.

CraphPane>>setScrollRanges
TeMtPane>>selectToCursor:
VinRectangle class»fro.nectangle:

left Botto•
0'Ans11er the Point of the left botto .. corner."

·self leftliself botto•

Otto•
"Answer the 11-coordinate of
the botto• of the receiver."

•rtghtBotto• ll

Figure 71. The initiators and implementors of a service method.

With the implementation of the search tool, the test processes developed in the

previous section may be applied. Classes ClassO, Classl, Class2 and Class3 are

developed for test purposes such that wordinzero is not present in any class,

wordinone is present in Classl, wordinonetwo is present in Classl and Class2 and

wordinonetwothree is present in Classl, Class2 and Class3. Additionally, a new

method 'onlyTestClasses' is defined within the class Behavior which answers a set

consisting of the classes ClassO, Class 1, Class2 and Class3. The Class Find text

code is modified by changing two references from 'allClasses' to 'onlyTestClasses'.

The search tool may be employed to ensure that words are held in the Class Find

dictionary in the manner described above, that is:

• wordinone occur once - in Classl;

• wordintwo occurs once - in Class2;

• wordintbree occurs once - in Class3;

111

• wordinonetwo occurs twice - in Classl and Class2;

• wordinonetwothree occurs three times - in Classl, Class2 and Class3;

• wordinonethree occurs twice - in Classl and Class3; and

• wordintwothree occurs twice - in Class2 and Class3.

Entry of these words leads to the correct re ult shown in Figure 72 .

The nulOber of responses is 1
Class, wordinone

The nulOber of responses is 1
Class2 wordintwo

The nuJllber of responses ls 1
Class3 wordinthree

The nulOber of responses is 2
Class1 wordinonetwo
Class2 wordinonetwo

The nullber of responses is 3
Class, wordinonetwothree
Class2 wordinonetwothree
Class3 wordinonetwothree

The nulOber of responses is 2
Class1 wordinonethree
Class3 wordinonethree

The nulOber of responses is 2
Class2 wordintwothree
Class3 wordintwothree

,,'

. ,. ..

Figure 72. Search tool dictionary contents for the test environment.

112

On the basis of the modification described above, the test procedures are completed

as shown in Figure 73.

Test Resulting Output Verified

1. Number of responses is zero. ./

2. Number of responses is one, showing class Class!. ./

3. Number ofresoonses is one, showing cla5s Class2. ./

4. Number of responses is one:, showin • class Class3. ./

5. Number of responses is two, showing classes Classl and Class2. ./

6. Number of responses is three, showing classes Class], Class2 and Cla9s3. ./

7. Number of rCSJ20nscs is two, showin • classes Classl and Class3. ./

8, Number of responses is two, showing cla~ses Class2 and Class3. ./

9. Number of responses is four. showing classes ClassO, Class], Class2 and ./

Class3.
10. Number of resQonses is three, showins: classes ClassO, Class2 and Clas.,'l. ./

11. Number of res~onses is three, showing classes ClassO, Clas.'.ll and Class3. ./

12. Number of responses is three, showing cla~ses ClassO, Classl and Class2. ./

13. Number of responses is two, showin'.' classes ClassO and Class3. ./

14. Number of responses is one, showin_g class ClassO. ./

15. Number of responses is two, showing classes ClassO and Class2. ./

16. Number of responses is two, showing classes ClassO und Classl. ./

17. Number of responses is two, $hawing classes Classl and Class2. ./

18. Number ofrcsoonses is three, showin_g classes Class], Class2 and Class3. ./

19. Number of resnon~es is three, showin • classes Classl, Clas!l2 and Class3. ./

20. Number of responses is one, showing class Classl. ./

21. Number of resoonscs is one, showing class Class!. ./

22. Number of responses is zero. ./

23. Number of responses is three, showing classes ClassO, Class2 and Class3. ./

24. Number of responses is one, showing class Class2. ./

25. Number of respon5es is two, showing classes ClassO and Class3. ./

26. Number of responses is one, showin • class ClassO. ./

27. Number of responses is three, showing classes Classl, Class2 and Class3. ./

28. Number of responses is three, showing classes Classl, Class2 and Class3. ./

29. Number of responses is four, showing classes ClasssO, Classl, Class2 and ./

Class3.

30. Number of responses is two, showing classes ClassO and Class3. ./

Figure 73. Test results on modified code for the search tool.

Then, after reverting to the original code- unmodified for testing- the tests are

repeated using the full environment. An approach, independent of that used by the

search tool, is used to determine the total number of c1asses, as shown in Figure 74.

113

Figure 74. Determining the number of classes.

The test procedures are repeated on the unmodified code, as shown in Figure 75,

where N is the total number of classes.

114

T"'t Resulting Outjlnt Verified

31. Number of responses is zero. ,/

32. Number of responses is one, showin!!: class Class!. ,/

33. Number of responses is one, showing class Class2. ,/

34. Number of rcsoonses is one, showin~~: class Class3. ,/

35. Number of responses is two, showin_g class~s Classl and Class2. ,/

36. Number of responses is three, showing classes Classl, Class2 and Class3. ,/

37. Number ofrcsoonscs is two, showine: classes Class! and Class3, ,/

38. Number of responses is two, showin!! classes Class2 and Class3. ,/

39. Number of responses is N. ,/

40. Number ofrcsp_onses is (N • 1). ,/

41. Number of responses is (N- 1). ,/

42. Number of responses is (N- 1). ,/

43. Number ofrcsoonses is N- 2). ,/

44. Number of responses is N- 3), ,/

45. Number of responses is (N- 2). ,/

46. Number of rcs_gpnscs is N- 2). ,/

47. Number of responses is two, showing classes Classl and Class2. ,/

48. Number of responses is three, showing classes Clns<il, Class2 and Class3. ,/

49. Number of responses is three, showinrr classes Classl, Class2 and Class3. ,/

50. Number of responses is one, showinE: class Classl. ,/

51. Number of responsr.::s is one, showinJ?; class Classl. ,/

52. Number of responses is zero. ,/

53. Number of responses is (N- I). ,/

54. Number of responses is one, showing class Class2. ,/

55. Number of responses is (N- 2). ,/

56. Number of responses is (N- 3). ,/

57. Number of responses is three, showinl!: classes Class!, Class2 and Class3. ,/

58, Number of responses is three, showing classes Class!, Class2 and Class3. ,/

59. Number of responses is N. ,/

60. Number of responses is (N- 2). ,/

Figure 75. Test results on unmodified code for the search tool.

The test procedures for erroneous input are shown in Figure 76.

Test Resulting Output Verified

61. Number of responses is one, showing class Class!. ,/

62. Number of responses is one, showinl! class Class!. ,/

63. A message advising a zero response. ,/

64. A message advising a zero response. ,/

65. Number of resoonses is two, showinn classes Classl and Class2. ,/

Figure 76. Test results for erroneous input to the search tooL

115

5.3 Summary

Following the principles and process outlined in earlier chapters, the construction,

usage and testing of the search tool is described. In the next chapter, the tool is used

to complete the ATM design.

I

116

6 The Demonstration System

For the development of an ATM, previous chapters have demonstrated an analysis

and design method to identify the objects, detennine the responsibilities and the

associations and detail the attributes. In this chapter, the method is completed by

ascertaining the inheritance links- using the search tool to discover suitable classes -

and by developing test procedures. Then, an ATM system that corresponds with

both the requirement and the analysis and design method is described.

6.1 Completion of the Analysis and Design

To complete the analysis and design of an ATM, the method requires that the

developer build the inheritance links and establish test procedures, described in this

section.

Build the inheritance links

A number of classes have been established in previous chapters. From the

requirements for each class, the search tool is used to locate suitable classes based

on the text content of each class. In practice, this is an iterative process, refining the

search terms until suitable classes are discovered. Described below are both the

requirement for each class and the end result for each search operation, indicating

that the search tool is successful at discovering suitable classes.

I I 7

• Card Reader

Requirement for class: Represent the basic operation of a mechanical device by

responding with a boolean value (true or false) and manage uumbers. To

simulate insertion of a card, prompt for an entry of the card details.

Search tool operation: An input of basic and boolean and number into the

search tool directs the developer to the Object class. while an input of prompt

and entry indicates a relationship with the Prompter class.

• User Interface
Requirement for class: Enable text to be displayed (Tan entry cancelled.

Initiate events with a pushbutton. Append, search for and accept text.

Search tool operation: From an entry of display and text and enter and

cancel the developer is directed by the search tool to the Window class and its

inherited Sub Pane class. An input of event and pushbutton to the search tool

directs the developer to the Button class. An input of append and search and

accept and text directs the developer to the Text Pane or the Text Window

classes, however, further investigation with the Class Browser shows that the

Text Window class is only used for initiating a single window.

• Account

Requirement for class: Look up the customer identification number- a unique

key - and operate on the value contained by the key. To establish the account,

prompt for entry of the account details. Build and restore a list of the indexed

values for each account.

Search tool operatiort: The search tool entry of look and up and key and

value and contains directs the developer to the Dictionary class. A search tool

entry of prompt and entry indicates the use of the Prompter class. A search

tool entry of build and restore and list and index and value directs the

developer to the List Box and Debugger classes, while further investigation of

each class leads to the ~election of the List Box class.

I

I

118

• Deposit Slot and Dispenser

Requirement for class: Represent the basic operation of a mechanical device by

responding with a boolean value (true or false) and manage numbers.

Search tool operation: An input of basic and boolean and number into the

search tool directs the developer to the Object class.

• Receipt Printer

Requirement for class: Represent the basic operation of a mechanical device by

responding with a boolean value (true or false) and manage numbers. Append

text within a form that may be closed.

Search tool operation: An entry to the search tool of basic and boolean and

number directs the developer to the Object class, while entry of append and

text and form and close leads to the selection of the Text Pane class.

The aforementioned search operations successfully discover suitable classes,

although in practice, the search demands many iterations. Salton (1989, p.236),

cited in Chapter 4, explains that the resultant output from the search may be too little

or too large, depending on the input for the search. With experience, the developer

learns to use boolean operators to broaden or narrow the search. Additionally,

provision of a thesaurus may reduce the experience required; however, Salton (1989,

p. 301), cited in Chapter 4, describes the difficulty in constructing a thesaurus.

Within Smalltalk!V, the View Manager class contains the behaviour to open and

manage the Text Pane and List Box classes and their parent Sub Pane and

Window classes. The final Object Model for the demonstration ATM is shown in

Figure 77.

Sub Pane

Text Pane

Prompter

Dictionary

Deposit Slot

Dispenser

Window

Us! Box

-

-

119

Card Reader

User Interface

quory(lci,SoC<J>..<ll)
<k4JooH(I;I.~!IIlKUll)
~ll!dttw(id.-.-1
lrllll$lol(ld,...,""""""'·
-.~1)

Account

Receipt Printer

View Manager

Figure 77. The final Object Model for the ATM.

Object

120

Testing the A TM

The fo1lowing procedures are developed to test the functionality and accuracy of the

demonstration ATM, based on setting up and operating an account with a11 of the

required functions.

Test Input

1. Set up an account with an

identification number 10 and

with a cheque balance of$123.15

and a savings balance of

$462.55.

2. Insert card with PIN 1234 and

identification number 10. Enter

a PIN of 1111.

3. Enter a PIN of 1111 a further

two times.

4. Insert card with PIN 1234 and

identification number I 1. Enter

a PIN of 1234.

5. Insert card with PIN 12~ 4 and

identification number 10. Enter

a PIN of 1234. Deposit $50 in

the cheque account.

6. Insert card with PIN 1234 and

identification number 10. Enter

a PIN of 1234. Withdraw $50

from the savings account.

Expected Output

The Account window shows id: 10;

cheque balance: $123.15; and savings

balance: $462.55.

Request for PIN re-entry.

Because only three attempts are

allowed, the card is held and the user

informed.

Because there is no identification

number 11, the card is held and the

user informed.

A transaction receipt is produced for a

$50 deposit. The Account window

shows id: 10; cheque balance: $173.15;

and savings balance: $462.55.

A transaction receipt is produced for a

$50 withdrawal. The Account window

shows id: 10; cheque balance: $173.15;

and savings balance: $412.55.

;-.
~~

I

121

Test Input Expected Output

7. Insert card with PIN 1234 and Because there are insuffiC:(Jnt funds,

identification number 10. Enter the user is informed and the card

a PIN of 1234. Withdraw $500 ejected.

from the savings account.

8. Insert card with PIN 1234 and A transaction receipt is produced for a

identification number I 0. Enter $50 transfer. The Account window

a PIN of 1234. Transfer $50 shows id: 10; cheque balance: $123.15;

from the cheque account to the and savings balance: $462.55.

savings account.

9. Insert card with PIN 1234 and A transaction receipt is produced for a

identification number 10. Enter $50 transfer. The Account window

a PIN of 1234. Transfer $50 shows id: 10; cheque balance: $173.15;

from the savings account to the and savings balance: $412.55.

cheque account.

10. Insert card with PIN 1234 and A transaction receipt shows a cheque

identification number I 0. Enter account balance of$ I 73.15. The

a PIN of 1234. Query the Account window shows id: 10; cheque

balance of the cheque account. balance: $173.15; and savings balance:

$412.55.

6.2 Description of the A TM System

The ATM system developed for this study simulates the operation of the system

analysed and designed in previous chapters. Operation of a button is achieved by

placing the mouse over the graphic button and depressing the left mouse button.

Appendix C contains the Smalltalk/V for Windows code for the demonstration

A TM, consisting of the Smalltalk classes ATM. Card Reader, User Interface,

Account, Deposit Slot, Dispenser and Receipt Printer.

122

Within the Srnalltalk environment, the action required to initiate the demon tration

is the selection of the expression ATM new initialise, followed by the selection of

Smalltalk and Do It, as shown in Figure 78.

hlllMHA!MINIMNO

Figure 78. lnjtiating the demonstration ATM.

The operations involved in using the ATM are:

• e tablish or modify account details;

• insert a bank card and enter the PIN;

• deposit funds;

• withdraw funds;

• transfer funds;

• query funds; and

• cancel a transaction .

The operations are described below in more detail.

123

Establish or Modify Account Details

The first task following the initia)jsation of the system is to establish the accounts

available to the ATM. A prompt is made for the account identification number, as

shown in Figure 79.

Enter account number

Figure 79. Entering an account identification number.

Then, two balances are entered, where the first balance is for the cheque account and

the second balance is for the savings account. Figure 80 shows entries of $123.15

for the cheque account balance and $462.55 for the savings account balance.

124

Enter cheque and savings account balances

j123.15 �62.55

Figure 80. Entering account balances.

In the same manner, further account identification numbers and balances may be

entered. When all account details have been entered, a subsequent null response for

the account identification number completes the entry sequence and the account

details are available for inspection in a window. This is shown in Figure 81, in

which a window reflects the status of each account, allowing inspection during the

ATM transaction.

file

Id
18
15
28

Cheque
123.15
7l!0.16

12.li1

Sauings
lj62.SS

62.38
896.85

Figure 81. Account details.

125

Further account detaiJs may be added and exjsting account balances modified by

selecting Account Entry and enter or change account balances, as shown in

Figure 82, enabling entry of the account identification number and account balances

as previously described.

7-0.16 62.38

12 • .\1 896.85

Figure 82. Changing account details.

Insert a Bank Card and Enter the PIN

The appearance of the ATM as it first appears with a welcome message is shown in

Figure 83.

126

C:: Oemonslrnllon ATM aa

llelco111e to the ATH, please

insert your card

Card Reader

Deposit Slot

IC

Printer

Dispenser

Figure 83. The ATM waiting for use.

Account

Entry of a card is simulated by operating the card reader readable button, then

transmitting information contained on the card - the PIN and the account number.

Figure 84 show the entry of 1234 for the PIN and 10 for the account number .

. ..

Account

Printer

Card Reader

Deposit Slot Dispenser

CIIICIPl

Figure 84. Entering the card de ails.

The PIN is then input to the A TM and the OK button operated. If either the account

identification number contained on the card does not exist or the PIN tendered to the

127

ATM is incorrect for three attempts, then the card is not ejected and a message on

the ATM screen, shown in Figure 85, informs the user.

C n,•monslrnlonn ATM 11::Jfg

You IOUSt contact your branch

to regain your card

Card Reader

Deposit Slot

Printer

Dispenser

Figure 85. Card held by ATM.

Account

Entry of a bank card which cannot be read is simulated by operating the card reader

unreadable button. The card is ejected, shown in Figure 86 by the appearance of

'eject' within the card reader and an ATM message to the user.

C 01·monslrnl111n AIM [lf!i

The card cannot be read Account

by this ATM

Printer

Card Reader

Deposit Slot Dispenser

CMCl!l

Figure 86. An unreadable bank card inserted.

128

If the card is valid, a selection of the transaction type is requested, as shown in

Figure 87.

= llemonstrnltnn AIM IQIQ

Select action key to

deposit, withdraw,

transfer or query

Card Reader

Deposit Slot

Printer

Dispenser

Figure 87. Selecting the transaction.

Account

A transaction selection is made by operating the Deposit, Withdraw, Transfer or

Query button.

Deposit transaction

Operation of the Deposit button results in a request for the appropriate account to

be selected, as shown in Figure 88.

129

= fJ1·mnnsUnhnn ATM FJ.::S

Please select the account Account

Printer

Card Reader

Deposit Slot Dispenser

II

Figure 88. Selecting the account.

In response to the ATM request, the amount of the transaction is entered and the OK

button operated, as shown in Figure 89.

C Dr.monslrnhon ATM �la'

Enter a1111unt of transaction

in Whole dollars

Card Reader

Deposit Slot

Printer

Dispenser

Figure 89. Entering the amount.

Account

Insertion of money into the deposit slot is then requested as shown in Figure 90.

This insertion is simulated by operating the Deposit Slot button.

130

= Ormonslrntrnn ATM JaO

Place deposit ln slot Account

Printer

Card Reader

Deposit Slot Dispenser

Figure 90. Request for insertion of deposit.

Figure 91 shows the completion of the transaction, consisting of:

• a pdnted receipt - simulated on the ATM receipt printer;

• the card ejected - simulated by 'eject' appearing within the card reader; and

• a thank you message displayed on the A TM.

� Oemnnstrnftnn ATM �lg

Thank you for banking

with us

Card Reader

Deposit Slot

Printer

The a1110unt of $SO
has been deposited

Acco uni

on your cheque account

Dispenser

Figure 91. Completion of a deposit transaction.

131

Withdrawal Transaction

Operation of the Withdraw button results in a request for selection of the relevant

account, followed by entry of the transaction amount, as described above and shown

in Figure 88 and Figure 89. Figure 92 illustrates that if there are sufficient funds, the

ATM:

• issues a printed receipt - simulated on the ATM printer;

• dispenses the money - simulated by 'money' appearing within the dispenser; and

• displays a message on the ATM screen for the user to take the money.

c= Ormnnstrnhon ATM CD

Take aoney Fro11 dispenser

Cord Reeder

•

Deposit Slot

le

Printer

The aPKJunt of $50
has been withdrawn

Account

on your cheque account

Dispenser

•oney

Figure 92. Dispensing money for a withdrawal transaction.

Then, the transaction is completed in the manner described above for the deposit

transaction by ejecting the card and displaying a thank you message.

If there are insufficient funds in the account, the transaction is aborted and the ATM

informs the u er, as shown in Figure 93. Then, the bank card is ejected and the

transaction terminated.

132

� Ormnnslrnlmn ATM IQ!g

There are insufficient Funds Account

to collf)lete the transaction

Printer

Card Reader

Deposit Slot Dispenser

Figure 93. Insufficient funds for the requested transaction.

Transfer Transaction

Operation of the Transfer button results in a request for selection of the account that

is the source of funds, as shown in Figure 94.

l:j Ormonslrnhon ATM il::ilii:i

Select the account For
source of funds

Card Reader

Deposit Slot

Printer

Dispenser

Figure 94. Request for source of funds.

Account

The destination account is then requested, as shown in Figure 95.

133

Q Ocmnnslrnhnn AIM aa

suect the account for
destination of funds

Card Reader

Deposit Slot

Account

Printer

Dispenser

Figure 95. Request for destination of funds.

Following the selection of an account for the destination of funds, the amount to be

tran ferred is requested in the manner described above and shown in Figure 89.

Then, the transaction is completed as shown in Figure 96, consisting of:

• a printed receipt - simulated on the ATM receipt printer;

• the card ejected - simulated by 'eject' appearing within the card reader; and

• a thank you message displayed on the ATM.

c !lrmnnslrnhnn IITM Ca

Thank you For banking

with us

Printer

The a11111unt of $51

Accoun1

Card Reader has been transferred
fro• your cheque account
to your sauings account

Deposit Slot Dispenser

Figure 96. Completion of a transfer transaction.

134

If there are insufficient funds for the transfer. the transaction is aborted and, as

previously shown in Figure 93. a message on the ATM screen informs the user.

Query Transaction

Operation of the Query button results in a request for selection of the account. in the

manner described above and shown in Figure 88. Figure 97 illustrates the following

result:

• the balance of the account is shown on the transaction receipt, simulated on the

receipt printer;

• the card is ejected; and

• a thank you mes age is displayed on the A TM.

Cl Ormnnnlrnl,nn A TM fi.1a

Thank you For banking

with us

Cord Reader

811

Deposit Slot

Account

Printer

Your cheque account balance
is $173.15

Dispenser

Figure 97. Result of a query transaction.

Cancellation of the Transaction

At any time, depression of the Cancel button terminates the transaction and eject

the card, as shown in Figure 98.

135

Q Oemonslrnlonn ATM fi!ll:I

The t�ansaction has Account

been cancelled

Prlnter

Card Reader

Deposit Slot Dispenser

Figure 98. Cancellation of a transaction.

The system description in this chapter demonstrates that all aspects of the test

procedures function correctly and accurately, which is confirmed in Figure 99.

Test

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Resulting Output

The Account window hows id: 10; cheque balance: $123.15; and savings
balance: $462.55.

Request for P[N re-entry.

Because only three attempts are allowed, the card is held and the user
informed.

Because there is no identification number 11, the card is held and the u er
informed.

A transaction receipt is produced for a $50 deposit. The Account window
shows id: 10; cheque balance: $173.15; and savings balance: $462.55.

A transaction receipt is produced for a $50 withdrawal. The Account
window shows id: 10; cheque balance: $173.15; and savings balance:
$412.55.

Because there are insufficient funds, the user is informed and the card
ejected.

A transaction receipt is produced for a $50 transfer. The Account window
shows id: 10; cheque balance: $123.15; and savings balance: $462.55.

A transaction receipt is produced for a $50 transfer. The Account window
shows id: 10; cheque balance: $173.15; and savings balance: $412.55.

A transaction receipt shows a cheque account balance of $173 .15. The
Account window shows id: 10; cheque balance: $173.15; and savings
balance: $412.55.

Figure 99. Test results from operation of the ATM.

Verified

../

../

../

../

../

,/

../

,/

../

../

136

6.3 Summary

The chapter has used the method described in this study to complete the analysis and

design, then the construction, of a demonstration ATM. The method includes the

successful operation of the search tool to discover suitable reusable classes.

137

7 Conclusion

In order to utilise the object-oriented paradigm effectively, a developer requires

tools that aid the selection of classes, a statement that is supported in the study by

such authors as Booch (1987), Meyer (1988), Frakes & Nejmeh (1988), Hooper &

Chester (1991) and Dusink & Hall (1991). The study demonstrates an effective

method of achieving reuse by employing modern text retrieval techniques.

The structure of the study follows a logical pattern, commencing with an

examination of the principles of the object-oriented paradigm ascertained from

sources such as Wirfs-Brock, Wilkerson & Weiner (1990), Wirfs-Brock & Johnson

(1990), Booch (1991), Rumbaugh et al. (1991), Embley et al. (1992),

Henderson-Sellers (1992), Hooch (1994), Tanzer (1995), Rumbaugh (1995) and

from organisations such as the Object Management Group (Soley, 1992) and

Digitalk (1992). Then, the aspects of analysis and design for the object-oriented

paradigm are examined, particularly as described by Rumbaugh et al. (1991) and

Embley et al. (1992). Methodical steps for object-oriented analysis and design are

outlined as:

(i) identify the objects;

(ii) determine the responsibilities;

(iii) determine the associations;

(iv) detail the attributes; and

(v) build the inheritance links.

Steps (i) to (iv) above are demonstrated in the initial analysis and design of an ATM

application, specified in Wirfs-Brock, Wilkerson & Weiner (1990). While step (v)

is as germane ns the other steps, its treatment is deferred until a reuse background is

established and a suitable direction identified.

138

Issues in reusing software components are examined, particularly as they relate to

object·orientation. Lewis et al. (1992) are cited to demonstrate that it is this reuse

capability which may lift the object-oriented paradigm to higher levels of

pmductivity than procedural methods. Frakes & Nejmeh (1988) describe the

difficulties in employing standard information technology approaches to store and

retrieve unstructured infonnation and they support the concept of using full and free

text retrieval concepts to store and, subsequently, locate reusable software code. An

explanation of full and free text retrieval is provideci, citing Salton (1989), then the

principles are employed to develop a search tool. Following analysis and design, the

tool is constructed using Smalltalk; then, a description of the search tool and

instruction in its use are included. Verification of the tool is provided by working to

a comprehensive test plan.

Operation of the tool is convenient for a system developer, because:

• it may be prepared for use within a few minutes;

• it rapidly responds to search queries which may then be expanded or narrowed;

and

• the tool window may be iconised out of the developer's work area while

remaining available for use as required.

The tool is easy to use because natural language is input. Horton (1990) is cited as

claiming that, employing natural language, subtleties of meaning may be found

without filtering out important information. The search tool incorporates a ready

ability to extend the search, in line with Kimmel's (1990) advice that a search may

act as a pointer to further information.

The search tool is successfully employed by the developer to build the inheritance

links- step (v) of the methodical steps outlined earlier in this chapter- and thereby

I
139

complete the analysis and design of the ATM. The system is then demonstrated and

its operation verified.

Whilst the process of employing full and free text retrieval is effective, the

experience obtained in developing a demonstration ATM suggests a further

direction in its development, namely the incorporation of a thesaurus. This may

reduce both the experience required of the developer and the search time using the

tool. The advantages of thesaurus usage are addressed within the study by citing

Salton (1989), together with the difficulty of thesaurus construction requiring a

committee of experts.

Additionally, Booch (1994) is cited promoting both Smalltalk and C++ as the most

pervasive languages. Reporting the issues in following the analysis and design in

this study to develop a search tool for a class library in a C++ environment would

add to a general understanding of object-oriented analysis and design.

Enhancing reuse within the object-oriented paradigm. the study demonstrates that

the text retrieval techniques of a modern library may be employed in finding suitable

classes within the object~oriented paradigm.

140

Refei"ence List

Booch, G. (1987). ~oftware components with Ada. Reading, MA:

Benjamin/Cummings Publishing Company.

Booch, G. (1991). Object-oriented design, with applications.

Menlo Park, Calif: Benjamin/Cummings Publishing Co.

Booch, G. (1994, November). Coming of age in an object-oriented world. IEEE

Software, 33 - 41.

Coad, P. (1991, January). New advances in object-oriented analysis. Journal of

Object Oriented Programming, 44-49.

Cortez, E. M. & Kazlauskas, E. J. (1986). Managing information systems and

technologies. New York: Neal-Schuman Publishers, Inc.

de Champeaux, D. & Faure, P. (1992, March/April). A comparative study of

object-oriented analysis methods. Journal of Object Oriented Programming,

21 - 33.

Digitalk, Inc. (1992). Smalltalk/V for Windows tutorial and programming

handbook. Los Angeles, CA: Author.

D'Souza, D. & Graff, P. (1995, February). Working with OMT: Model integration.

Journal of Object Oriented Programming, 23 - 29.

Dusink, L. & Hall, P. (Eds.) (1991). Software re-use Utrecht 1989. London:

Springer-Verlag.

I

141

Embley, D. W., Kurtz, B. D. & Woodfield, S. N. (1992). Object-oriented systems

analysis: A model-driven approach. Englewood Cliffs, NJ: Yourdon Press.

Frakes, W. B. & Nejmeh, B. A. (1988). An information system for software reuse.

In W. Tracz (Ed.) Software reuse: Emerging technology

(pp. 142 -151). Washington, DC: Computer Society Press.

Freeman, C. & Henderson-Sellers, B. (1991). OLMS: An object library

management support system. In J. Potter, M. Tokoro & B. Meyer (Eds.)

Technology of object-oriented languages and systems: Tools 6 (pp. 175 - 180).

Sydney: Prentice-Hall, Inc.

Gehani, N. (1989). Ada: All advanced introduction. Englewood Cliffs, NJ:

Prentice-Hall, Inc.

Gibbs, S., Tsichritzis, D., Casais, D., Nierstrasz, 0. & Pintado, X. (1990). Class

management for software communities. Communications of the ACM, Vol 33,

No9,90-103.

Gibson, E. (1990, October). Objects -born and bred. Byte, 245 - 254.

Henderson-Sellers, B. (1992). A book of object-oriented knowledge.

Sydney: Prentice-Hall, Inc.

Hooper, J. W. & Chester, R. 0. (1991). Software reuse: Guidelines and methods.

New York, NY: Plenum Press.

I .

142

Horton, S. (1990). Handling full text. In P. Gillman (Ed.) Text retrieval: The state

of the art (pp. 56- 64). London, UK: Taylor Graham.

Jacobson, I. (1991, M&rcb/April). Industrial development of software with an

object-oriented technique. Journal of Object Oriented Programming, 30-41.

Kendall, K. E. and Kendall, J. E. (1992). Systems analysis and design. Englewood

Cliffs, NJ: Prentice-Hall, Inc.

Khoshafian, S. & Abnous, R. (1990). Object orientation: Concepts, languages,

databases, user interfaces. New York, NY: John Wiley and Sons.

Kimmel, C. (1990). Integrating text into management systems. In P. Gillman (Ed.)

Text retrieval: The state of the art (pp. 101 - Ill). London, UK: Taylor

Graham.

Korson, T. & McGregor, J.D. (1990). Understanding object oriented: A unifying

paradigm. Communications of the ACM, Vol. 33 No.9, 40-60.

Kuhn, T. S. (1970). The structure of scientific revolutions.

Chicr.go: The University of Chicago Press.

Lewis, J. A., Henry, S.M., Kattura, D. G. & Schulman, R. S. (1992, July/August).

On the relationship between the object-oriented paradigm and software reuse:

An empirical investigation. Journal of Object Oriented Programming, 35- 41.

Meyer, B. (1988). Object oriented software construction. Englewood Cliffs,

NJ: Prentice-Hall, Inc.

143

Olle, T. W., Hagelstein, J., Macdonald, 1., Rolland, C., Sol, H. G., Van Assche, F. J.

M. & Verrijn-Stuart, A. A. (1991). Information systems methodologies: A

framework for understanding. Wokingham, England: Addison-Wesley

Publishing Company.

Page-Jones, M. (1988). The practical guide to structured systems design.

Englewood Cliffs, NJ: Prentice-Hall, Inc.

Pressman, R. S. (1992). Software engineering. A practitioner's approach. New

York, NY: McGraw-Hill, Inc.

Prieto-Diaz, R. & Jones, G. A. (1988). Breathing new life into old software. In W.

Tracz (Ed.) Software reuse: Emerging technology (pp. 152- 160). Washington,

DC: Computer Society Press.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. & Lorensen, W. (1991).

Object~oriented modeling and design. Englewood Cliffs, NJ: Prentice-Hall,

Inc.

Rumbaugh, J. (1995, January). OMT: The object model. Journal of Object

Oriented Programming, 21-46.

Salton, G. (1989). Automatic text processing. Reading, Mass: Addison-Wesley.

Scharcnberg, M. E. & Dunsmore, H. E. (1991, January). Evolution of classes and

objects during object-oriented design and programming. Journal of Object

Oriented Programming, 30- 34.

I
'

I

144

Soley, R. M. (Ed.) (1992). Object management architecture guide.

Framingham, MA: Object Management Group.

Tanzer, C. (1995, February). Remarks on object-oriented modeling of associations.

Journal of Object Oriented Programming, 43- 46.

Wirfs-Brock, R. J. & Johnson, R. E. (1990). Surveying current research in object­

oriented design. Communications of the ACM, Vol. 33 No.9, 104- 124.

Wirfs-Brock, R. J., Wilkerson, B. & Wiener, L. (1990). Designing object-oriented

software. Englewood Cliffs, NJ: Prentice-Hall, Inc.

145

Appendices

I
146

Appendix A. Code for the Class Find Search Tool.

The search tool is the Class Find class within Smalltalk\V for Windows, which is

listed below as a result of a Smalltalk File Out operation:

Wordindex variablesubclass: #ClassFind

instanceVariableNames:

'classOutput classWindow criteria searchAssoc '

classVariableNames: ••
poolDictionaries: ..

!ClassFind class methods

!ClassFind methods

browse: aPane

"************

Open a ClassBrowser on the class selected.

Ensure the selection is not a blank or

text line."

selection classNarne class I
selection := aPane selecteditem.

selection = ' '

ifFalse:

className := selection asArrayOfSubstrings first.

className = 'The'

ifFalse:

class := Smalltalk

at: className trimBlanks asSymbol

ifAbsent: [UndefinedObject].

class edit] 1 !

147

classList: aPane

"***************

Answer the contents of the classWindow."

aPane contents: classOutput!

classMenu: aPane

"***************

Answer a Menu for the class aPane. "

aPane setMenu: ((Menu

labels: 'clear and enter\enter more criteria\return

to last entry' withers

lines: #(0)

clear

"****

selectors: #(clear getCriteria defaultCriteria))

title: 'Criteria') . !

Clear ClassFind browser before

listing new search matches."

classOutput := OrderedCollection new.

self getCriteria!

defaul tCri teria

"**************

use the previous entry as the search words

which make up the search criteria."

jdefaultCriterial

criteria = nil

ifTrue: [

criteria := ''].

defaultCriteria :=criteria.

criteria :=

Prompter

prompt: 'Enter Criteria 1

Ill -------------·--·~----~~

148

default: defaultCriteria.

self locateClasses!

getCri teria

"**********

Obtain the search words which make

up the search criteria. "

criteria : =
Prompter

prompt: 'Enter Criteria'

default: ''

self locateClasses!

initialise

"*********

For every method in every class, build the

searchAssoc dictionary where the key is

every word in the instance or class method

name and comment, and the value in every

class which contains the indexed word. The

words are cleaned by removing non-alphabetic

bytes, and composite words are separated

into single words, each of which is stored in

the Wordindex class by its addWord:for:

method. The List Pane is opened."

!classText codeStream word!

super initialize.

classoutput := OrderedCollection new.

Behavior allClasses do: [:eachClassl

classText : = ReadWriteStream on: ''

! ..
l
I
·' ' ' I

I

iii

I

149

"lllll#llllll###ll########l#lll##llllll##l#lll#l#l

For each class, stream all of the source code :It

for each instance method #

##llll####lll#ll##l#lll#l###ll######l##l####lll##"

eachClass methodDictionary

keysDo : [: eacbMe thad I
codeStream := (eachClass

sourceCodeAt: {eachMethod

as Symbol))

asStream.

"######ll##l###l#l#l#########l####l##ll###ll#lll

Stream over the instance method source. #

Substitute a space for non alpha bytes and #

insert a space before upper case characters #

###ll##l#l#l##ll#lllll####l#ll######ll###l#l###'

codeStream do: (:char!

char isLetter

ifTrue: [

char isUpperCase

ifTrue: [

classText space].

classText nextPut: char]

ifFalse: [

classText space]]].

• ###I######## I# I############# I# II## 11#11#11# 1.' .. ##I ##Ill

For each class, the class methods are streamed #

using the instance source, repeated for a #

10.5 percent performance increase over initiating #

a new method twice #

#I #Ill# I I Ill##### I #II## ##1##111##111# ###II 1##1 1##1#111'

eachClass class

rnethodDictionary

keys Do: [: eachMethod I
codeStream := (eachClass

sourceCodeAt: (eachMethod

asSyrnbol))

!50

asStream.

codeStream do: {:charl

char isLetter

ifTrue:

char isUpperCase

ifTrue:

classText space] .

classText next Put: char]

ifFalse: [

classText space]] J.

"111

Add all words, except the elementary stopwords, #

in self stream described by className string to #

the words dictionary I

111"

classText reset.

[(word : = classText nextWord)

whileFalse:

nil]

(#('a' 'and' 'in' 'of' 'the' 'to') "stopwords"

includes: word asLowercase)

ifFalse:

self open.!

self addWord: word asLowerCase

for: (eachClass name)] 1].

locateClasses

"************

Determine the classes which use the words

contained in the instance variable *criteria*

and develop a list for the ClassFind Browser. "

lcriteriaStream inAndMode inNotMode lastWordErrorl

CursorManager execute change.

inNotMode :=false.

inAndMode := false.

searchAssoc := Dictionary new.

criteria = nil

151

ifTrue:

criteria : = ' '] .

criteriaStream :=

ReadWriteStream on: (criteria asLowerCase

asArrayOfSubstrings) .

•••
#Stream the search words. Set inNotMode on #

discovering *not* and inAndMode on #

#discovering *and*. Set lastWordError if #

the last word is *and* or *or* #

llll#ll#l#lll##llll#######l###l##ll###l####lll"

criteriaStream do: [:wordl

lastWordError := false.

(criteriaStream peek isNil)

if'l'rue: [

word = 'and•

ifTrue: [

word := ''

inAndMode : = true.

lastWordError := true].

word = 'or'

ifTrue: (

word := ''

lastWordError := true]].

word= 'or'

ifFalse:

word = 'not'

ifTrue: [

inNotMode := true]

ifFalse:

word = 'and'

ifTrue:

inAndMode := true]

ifFalse:

self lookup: word

withAndMode: inAndMode

andNotMode: inNot.Mode.

152

inNotMode := false.

inAndMode := false]].

'llllllllll##lllll#llllllllllll#i#lllll

Initiate the transferOutput method #

when the term has been evaluated #

lllllllll#l#llllll#l#l#llllllllilllll#'

((criteriaStream peek isNil)

or: [{(criteriaStream peek = 'and') not

and: [(word = 'and') not

and: [(criteriaStream peek = 'or') not

and: [(word = 'or') not

and: [searchAssoc notNil

and: [inNotMode = false]]]]])])

ifTrue: [

self transferOutput.

searchAssoc :=Dictionary new]]].

CursorManager nor.mal change.

classWindow contents: classOutput!

lookup: aWard withAndMode: inAndMode

andNotMode: inNotMode

"***********************************

Determine which classes use each search

word and undertake boolean operations on

the classes. The output is the *searchhssoc*

dictionary containing the result for each

boolean operation. The method

locateDocuments: is inherited from the

Wordindex class. "

lclassList allClasses dynamicArray value addWordl

'#lli#lll##l##llill#lll#ill#llllilll

Locate classes containing aWard #

#l##llll##llll##llllll###l#l##lllll'

classList :=

(self locateDocuments:

153

(aWard asArrayOfSubstrings)) .

"#### ## ### ## ### #### # # ###### ######### # #################

If inNotMode, find the complement of the selected #

classes from the universe of classes #

###"

inNotMode = true

ifTrue: [

allClasses := OrderedCollection new.

Behavior allClasses do: [:class!

allClasses add: (class name)].

dynamicArray := classList asOrderedCollection.

allClasses do: {:class I
dynamicArray remove: class

ifAbsent: [

dynamicArray add: class]].

classList : = dynamicArray asArray] .

"## ##># ## # # # ## # #### # # # ## ## ###### ## ##### ### ## #######

If inAndMode, AND classList and searchAssoc, #

which is the result to-date of the boolean AND #

##"

inAndMode = true

ifTrue: (

dynamicArray := classList asOrderedCollection.

classList do: [:class!

((searchAssoc keys) includes: class)

ifFalse: [

dynamicArray remove: class] 1.

(searchAssoc keys) do: [:class I
(dynamicArray includes: class)

ifFalse: [

searchAssoc removeKey: class]].

classList := dynamicArray asArray].

154

"#*#####U##################U#########

Add aWard to the resultant classes #

#########1#########11#################"

classList do: [:class!

value := searchAssoc at: class

ifAbsent: [value := OrderedCollection new].

addWord : = ReadWri teSt ream on: ' '

((value size) > 0)

ifTrue: [

inAndMode = true

ifTrue: [

addWord nextPutAll: ' and 'J

ifFalse: [

addWord nextPutAll: ' or ']] .

inNotMode = true

ifTrue: [

addWord nextPutAll: 'not '].

addWord nextPutAll: aWard;

reset.

value add: (addWord nextLine) .

searchAssoc at: class put: value]!

open

"***

Create a browser window consisting of a

List Pane with the menu classMenu for

entering search criteria and a selection

facility to open a ClassBrowser."

topPanel

Cursor offset: 250@100.

(topPane := TopPane new)

label: 'ClassFind Browser';

model: self.

topPane addSubpane:

(classWindow := ListBox new

model: self;

changed: #selectCriteria;

------------,

I

155

framingRatio: (0@0 extent: 1 @ 1);

when: #getMenu perform: #classMenu:;

when: #getContents perform: #classList:;

when: #select perform: #browse:).

top Pane openWindow. !

transferOutput

"*************

Transfer the result of the searchAssoc dictionary

to classOutput, the List Pane stream."

I line I
"11111111111111111111111111111111

Show the number of responses #

11111111111111111111111111111111"

line := ReadWriteStream on: (String new).

line reset;

nextPutAll: 'The number of responses is ';

nextPutAll: (searchAssc..c keys size t•rintString);

cr;

reset.

classOutput add: (line nextLine).

"111111111111111111

Show t~e class #

111111111111111111"

searchAssoc associationsDo: [: classPair I
line reset;

nextPutAll: (classPair key).

"11

Show the search words contained in the class #

11 "

50 timesRepeat: [line space].

line position: 25.

(classPair value) do: [:wordExaminedl

line nextPutAll: wordExamined].

line cr;

reset.

156

classOutput add: (line nextLine)].

line reset;

cr;

reset.

classOutput add: (line nextLine) !

157

Appendix B. Code for the Wm·d Index Class from Digitalk.

The ClassFind search tool inherits methods from the Word Index class, supplied by

Digitalk separately from the Srnalltalk\V for Windows r~nvironment, which is listed

below as a result of a Smalltalk File Out operation:

ViewManager subclass: #Wordindex

instanceVariableNames:

'documents words '

classVariableNames: ''

poolDictionaries: •' !

!Wordindex class methods

!Wordindex methods

addDocument: pathName

"Add all words in document described by

pathNarne string to the words dictionary."

word wordStream I
(rlocuments includes: pathName}

ifTrue: [self removeDocument: pathName].

wordStream := File pathName: pathName.

documents add: pathName.

[{word := wordStream nextWord) --nil]

whileFalse: [

self addWord: word asLowerCase for: pathName].

wordStream close!

addWord: wordString for: pathName

"Add wordString to words dictionary for

document described by pathName."

(words includesKey: wordString)

ifFalse: [words at: wordString put: Set new].

(words at: wordstring) add: pathName!

!58

initialize

"Initialize a new empty Wordindex."

documents := Set new.

words :=Dictionary new!

locateDocuments: queryWords

"Answer an array of the pathNames for

all documents which contain all words

in queryWcrds . "

answer bag I
bag := Bag new.

answer := Set new.

queryWords do: [:word

bag addAll:

(words at: word ifAbsent: [#()])].

bag asSet do: [:document

queryWords size =
(bag occurrencesOf: document)

ifTrue: [answer add: document]].

Aanswer asSortedCollection asArray!

removeDocument: pathName

"Remove pathName string describing a

document from the words dictionary."

words do: [:docs I docs remove: pathName].

self removeUnusedWords!

removeUnusedWords

"Remove all words which have empty

document collection."

newWords I
newWords :=Dictionary new.

words associationsDo: [:anAssoc

anAssoc value isEmpty

ifFalse: [newWords add: anAssoc]).

words := newWords!

I

159

Appendix C. Code for the ATM.

The demonstration ATM encompasses the Smalltalk classes ATM, Card Reader,

User Intetface, Account, Deposit Slot, Dispenser and Receipt Printer. They are

listed below as a result of Srnalltalk File Out operations:

ViewManager subclass: #ATM

instanceVariableNames:

'cardReader userinterface account depositSlot dispenser

printer state '

classVariableNames:

poolDictionaries: ''

!ATM class methods

! ATM methods

initialise

"*********

Establish link to User Interface class."

userinterface := Userinterface new initialise!

printeroutput: aPane

"*******************

Answer printer Text Pane contents."

aPane contents: (printer contents)!

I

., ·,'

160

wait: aninteger

"* * *** *****-* * * *
* * * * * * ****** * * *

Wait for aninteger seconds." ,,
I endTime I

endTime := Time fromSeconds:

((Time totalSeconds)' + aninteger) .

[((Time now) < endTime)] whileTrue'i [] i

Object subclass: #CardReader

instanceVariableNames:

'pinAndid I

classVariableNames: ' '

poolDictionaries: ''

!CardReadei' class methods

!CardReader methods

eject

"****

Answer true if card ejection complete.

Always answer true. "

"true!

notPIN

"*****

Answer true if card has been kept.

Always answer true. "

keepCard
'

keepCard := true.

"'keepCard!

J,:

,_,. __ -· ·.- "

- '..--, .
'. '

161

readableCardinsS:r'ted

"*******************

*****************~~~

Get PIN and customer identification

number from card. "

cardRead

cardRead := self readPinid.

"'cardRead!

readPinid

"********

Get PIN and customer identification

number from simulated card entry, which

must consist of a four digit integer for

the PIN and a two digit integer for the id."

validEntry entry number!

pinAndid = nil

ifTrue: [

pinAndid : = ' '] .
validEntry := false.

[validEntry = false] whileTrue: [

"#*###########

Get input #

#############"

pinAndid :=

Prompter

prompt: 'Enter the 4 digit PIN S:nd 2 digit Id'

'' default: pinAndid.

"##*###############

Validate input #

##################"

(pinAndid = nil

or: [

pinAndid isEinpty])

ifFalse:

I
162

entry := pinAndid asArrayOfSubstrings

first.

number := entry ~sinteger.

(nUmber isinteger

and:

eni:ry size = 4])

ifTrue:

entry := pinAndid asArrayOfSubstrings

last.

number := entry asinteger.

(number isinteger

and:

(entry size= 2)])

ifTrue: [validEntry :=true]]]].

"'pinAndid!

unreadableCardinserted

"*********************

Answer true if card unreadable.

Always answer true . "

"true!

ATM subclass: #Userinterface

instanceVariableNames:

'screen pin id accouritNo amount srcAccount dstnAccount

eject timesValidat~d '

classVariableNarnes: ' '

poolDictionaries: ' '

!Useririterface class methods

!Userinterface methods

.··'

163

account

!I******

Show selection message. "

screen contents: ..
'

cr;

nextPutAll: Please select the account' .

self screenOutput: screen.!

"*':~'***

' **'*'***

Show message to enter amount. "

screen contents: '.
'

cr;

nextPutAll: Enter amount of transaction';

cr;

cr;

nextPutAll: in whole dollars';

cr.

self screenOutput: screen!

cancel: aPane

"************

Result of *Cancel* button selection. Show

cancellation message and abort transaction."

screen contents:

cr;

nextPutAll:

cr;

c:t:l;

nextPutAll:

self ScreenOUtput:

self eject.

self wait: 2.

self welcome!

'.
'

sc~een.

The transaction has 1
;

been cancelled 1
•

-,,.,
',,,-_:

I
164

- /"
·cheql~C!Account: aPane

"i******************

Result of *Cheque* account button selection

following transaction selection. "

accountNo := 1.

"***#########**#########
Deposit or Withdraw #

*******'***************"
(state= 'Deposit'

or:

state= 'Withdraw'])

ifTrue: [self amount].

"**#######
Query #

#########"
state = 'Query'

ifTrue: [self queryAccount] .

"*'*'*####*#*
Transfer #

****########"
state = 'Transfer Source'

ifTrue: [

srcAccount := 1.

state := 'Transfer Dstn'.

screen contents:

cr;

nextPutAll:

cr;

nextPutAll:

'. ,

.Select the account for';

destination of funds'.

self screenOutput: screen]

ifFalse:

state = 'Transfer Dstn'

ifTrue: {

dstnAccount := 1.

self amount]] !

'->>-'-
,-_-·.

165

deposit: ciPane

"*************

Result of *Deposit* button

state = 'Enter PIN'

ifTrue:

state := 'Deposit'.

self account)!

depositMade: aPane

"*****************

' "·- : _,

(.--~
select~bh."

Result of *Deposit Slot* button selection

to complete the deposit transaction."

actionCoroplete

state = 'Deposit'

ifTrue:

actionComplete := account depositid: id

account: accountNo

amount: amount.

printer contents: actionComplete contents.

self printerOutput: printer;

thanks)!

eject

"****

Complete a normal transaction - wait:

is a method of the superclass."

complete I
complete := cardReader eject.

complete

ifTrue:

eject contents:

self wait: 3.

eject contents:·

-"'trUe]

eject'.

·' . -- ~- ;-
,, ___ ,,_.:

'·;'; <··- ·:--:- --. ,-_; ..
" ;; ~~,--' ., '; >'-,

-, ,- -.. -- ''-. ~-- ;-.-...
/•c :_:; :· •,·,:, ,• ;;._, .. -;:._

' '

i'
I

I

ifFalse: [

"false]

en terPIN

"*******

166

Show PIN entry message"

screen contents:

cr;

nextPutAll:

cr;

cr;

nextPutAll:

cr.!

held

"***

'. '

Please enter your PIN' ;

and press OK';

Show held message and close with no card eject."

closeSent I
screen contents:

cr;

'. '

nextPutAll: ' You must contact your branch';

cr;

cr;

nextPutAll: to regain your card' .

self screenoutput: screen.

closeSent := cardReader notPIN.

closeSent ifTrue:

self wait: 5.

self welcome] !

initialise

****·******
Establish link to Account and Card Reader,

and , build User Interface view. -'.'

account := Account n€W initialise.

:c .,--

I

:= CardReader new. cardReader

self open;

welcome!

initWindowSize

"*************

167

Window is full size."

~(Display width@ (Display height)).!

insert

"*****

Determine and validate the entered amount in

any screen position following the text. Show

deposit slot insertion message."

actionComplete

(self validAmount)

ifTrue:

amount := screen contents

screen contents:

cr;

asArrayOfSubstrings

last

asFloat.

' .
'

nextPutAll: Place de9osit in slot'.
self screenOutput: screen]!

invalidPIN

"*********

Re-enter the PIN up to two additional

times. Hold the card if PIN incorrect."

timesValidated := timesValidated + 1.

(timesValidated > 3)

ifTrue: [self held]

ifFalse: [self enterPINJ!

I

168

menu

"* **
** * *

Show screen based menu. Note that this is

not a Smalltalk menu."

screen contents: '. '
cr;

nextPutAll: Select action key to';

cr;

cr;

nextPutAll: deposit, withdraw,';

cr;

cr;

nextPutAll: transfer or query';

cr;

selectAtEnd.

self screenOutput: screen!

no Funds

"******

Show insufficient funds message."

screen contents:

cr;

nextPutAll: ' There are insufficient funds';

cr;

cr;

nextPutAll: to complete the transaction'.

self screenOutput: screen.

self wait: 3!

okKeyPressed: aPane

"******************

Common use *entry* button."

state = 'Enter PIN'

ifTrue: [self validate]

state = 'Deposit'

' ~
I

169

ifTrue: [self insert].

state = 'Withdraw'

ifTrue: [self output].

state = 'Transfer Dstn'

ifTrue: [self store].

state = 'Query'

ifTrue: [self query].

•••••••••••••••••••••••••••••••••••
Prevent Text Pane save message #

ll#l#l#lllllllll#lllllllll#lll#lll"

screen modified: false!

open

"***

self

Create the view of the User Interface. "

reader I

labelWithoutPrefix: 'Demonstration ATM';

noSmalltalkMenuBar.

self addSubpane:

(screen := TextPane new

changed: #screenOutput:;

framingBlock: [:box I
(box leftTop

rightAndDown: ((box width* 5//100)

@ (box height * 5//100111

extentFromLeftTop: ((box width * 40/ /100)

@ (box height • 45//100111;

style: (SubPane noScrollbarsFrameStyle)).

self addSubpane:

(StaticText new

centered;

contents: 'Card Reader';

framingBlock: [:box I
(box leftTop

rightAndDown: {(box width* 18//100}

-~

170

@ (box height • 58//100111

extentFromLeftTop: ((box width* 20//100)

@ (box height • 5//100))]).

self addSubpane:

(reader := GroupPane new

framingBlock: [:box!

(box leftTop

"Card Reader"

rightAndDown:

@

((box width* 4//100)

(box height * 64//100)))

extentFromLeftTop:

@

reader addSubpane:

(Button new

defaultPushButton;

contents: 'readable';

framingBlock: [:box!

(box leftTop

((box width* 46//100)

(box height* 7//100))]).

rightAndDown: ({box width* 1//100)

@ (box height* 2//100)))

extentFromLeftTop: ((box width* 34//100)

@ (box height • 99//100))];

when: #clicked perform: #readableCardinserted:).

reader addSubpane:

(eject := TextPane new

frarningBlock: [:box!

(box leftTop

rightAndDown: ((box width * 36/ /100)

@ (box height * 20//100)))

extentFromLeftTop: ((box width* 28//100)

@ (box height * 70/ /100))];

style: (SubPane noScrollbarsFrameStyle)).

reader addSubpane:

(Button new

defaultPushButton;

contents: 'unreadable';

framingBlock: [:bmcl

(box leftTop

rightAndDown: ((box width * 65/ /100)

I

171

@ (box height * 2//100)))

extentFromLeftTop: ((box width * 34//100)

@ (box height * 99//100111;

when: #clicked perform: #unreadableCardinserted:).

self addSubpane:

(Button new

defaultPushButton;

contents: 'OK' ;

idOK;

framingBlock: [:boxl

(box leftTop

rightAndDown: ((box width * 21/ /100)

@ (box height * 751/1001 I I

extentFrornLeftTop: ((box width* 12//100)

@ (box height * 8//100))J;

when: #clicked perform: #okKeyPressed:).

self addSubpane:

(StaticText new

centered;

contents: 'Deposit Slot';

framingBlock: [:box I
(box leftTop

rightAndDown: ((box width* 15//100)

@ (box height* 85//100) II

extentFromLeftTop: ((box width * 20/ /100)

self addSubpane:

(Button new

defaultPushButton;

@ (box height ' 5//1001 I J I.

"Deposit Slot"

framingBlock: [:boxl

(box leftTop

rightAndDown: ((box width * 10/ /100)

@ (box height * 90/ /100)))

extentFromLeftTop: ((box width* 30//100)

@ (box height * 5//100))] ;

when: #clicked perform: #depositMade:).

self addSubpane:

(Button new

I

defaultPushButton;

contents: 'Cancel';

framingBlock: [:boxl

(box leftTop

172

rightAndDown: ((box width * 471 /100)

@ (box height * 88//100)))

extentFromLeftTop: ((box width * 12//100)

@ (box height* 8//100))];

when: #clicked perform: #cancel:).

self addSubpane:

{Button new

defaultPushButton;

contents: 'Deposit';

framingBlock: [:boxl

(box leftTop

rightAndDown: ((box width * 55/ /100)

@ {box height* 5//100)))

extentFromLeftTop: ((box width * 12/ /100)

@ (box height * 8/ /100))];

when: #clicked perform: #deposit:).

self addSubpane:

(Button new

defaultPushButton;

contents: 'Withdraw' ;

framingBlock: (:boxl

(box leftTop

rightAndDown: {(box width * 55/ /100)

@ (box height * 15/ /100)))

extentFrornLeftTop: {{box width * 12/ /100)

@ (box height * 8/ /100)) 1;

when: #clicked perform: #withdraw:).

self addSubpane:

(Button new

defaultPushButton;

contents: 'Transfer';

framingBlock: [:boxl

{box 1eftTop

rightAndDown: ((box width * 55/ /100)

i73

@ (box height * 25/ /100)))

extentFroroLeftTop: ((box width* 12//100)

@ (box height* B//1001)];

when: #clicked perform: #source:).

self addSubpane:

(Button new

defaultPushButton;

contents: 'Query';

framingBlock: [:box[

(box leftTop

rightAndDown: ((box width * 55/ /100)

@ (box height * 35/ /100)))

extentFromLeftTop: ((box width * 12/ /100)

@ (box height * 8/ /100))];

when: #clicked perform: #query:).

self addSubpane:

(StaticText new

centered;

contents: 'Account';

framingBlock: [:box!

(box leftTop

rightAndDown: ((box width * 83/ /100)

@ (box height * 8/ /100)))

extentFromLeftTop: ((box width * 12/ /100)

@ (box height * 5//100)}]).

self addSubpane:

{Button n.v.w

defaultPushButton;

contents: 'Cheque';

framingBlock: [:boxl

(box left'rop

rightAndDown: ((box width* 83//100)

@ (box height • 15//100111

extentFromLeftTop: ({box width * 12/ /100)

@ (box height* 8//100))];

when: #clicked perform: #chequeAccount:).

self addSubpane:

(Button new

defaultPushButton;

contents: 'Savings ' ;

framingBlock: [:box I
(box leftTop

174

rightAndDown: ((box width* 83//100)

@ (box height * 25//100)))

extentFromLeftTop: ((box width* 12//100)

@ (box height* 8//100))];

when: #clicked perform: #savingsAccount:).

self addSubpane:

(StaticText new

centered;

contents: 'Printer' ;

framingBlock: [:boxj

(box leftTop

rightAndDown: {(box width* 55//100)

@ (box height* 45//100}))

extentFromLeftTop: ((box width * 40/ /100)

@ {box height * 51 /100))]).

self addSubpane:

(printer := TextPane new

changed: #printer;

framingBlock: [:box l
(box leftTop

rightAndDown: ((box width* 55//100)

@ (box height* 50//100)))

extentFromLeftTop: ((box width* 40//100)

@ (box height * 30//100))];

style: (SubPane noScrollbarsFrameStyle)).

self addSubpane:

(StaticText new

centered;

contents: 'Dispenser' ;

fram~ngBlock: [:boxl

(box leftTop

rightAndDown: ((box width* 65//100)

@ (box height* 85//100)))

extentFromLeftTop: {(box width* 20//100)

175

@ {box height * 5//100))]) .

self addSubpane:

(dispenser := TextPane new

framingBlock: [:box I
(box leftTop

"Dispenser"

rightAndDown: {(box width* 65//100)

@ {box height * 90//1001 I I

extentFromLeftTop: ((box width * 20//100)

@ (box height * 5//100))];

style: (SubPane noScrollbarsFrameStyle)).

self openWindow.!

output

"*****

Determine and validate the entered amount in

any screen position following the text, then

complete the withdrawal transaction."

actionComplete

{self validAmount)

ifTrue: [

amount := screen contents

asArrayOfSubstrings

last

screen contents:

cr;

asFloat.

'. '

nextPutAll: Take money from dispenser' .

self screenOutput: screen.

actionCornplete : = account withdrawid: id

account: accountNo

ac tionComplete

notNil ifTrue:

amount: amount.

printer contents: actionComplete contents.

self printerOutput: printer.

dispenser contents:

self wait: 2.

money'.

176

dispenser contents: '].

actionComplete

isNil ifTrue:

self noFunds 1

self thanks] !

query: aPane

"***********

Result of *Query* button selection."

state = 'Enter PIN'

ifTrue:

state := 'Query'

self account] !

queryAccount

"***********

Complete query transaction."

actionComplete I
actionCornplete := account queryid: id

account: accountNo.

printer contents: actionComplete contents.

self printerOutput: printer;

thanks!

readableCardinserted: aPane

"**************************

***********~'***************

Result of card reader *readable* button selection."

pinAndid

state =
ifTrue:

"

timesValidated := 1.

pinAndid := cardReader readableCardinserted.

self validate: pinAndid]!

I

savingsAccount: aPane

~********************

177

Re,>ult of *Savings* account button selection

following transaction selection."

accountNo := 2.

"#######################

Deposit or Withdraw #

#######################"

(state = 'Deposit'

or:

state= 'Withdraw'])

ifTrue: [self amount].

"#########

Query #

#########"

state = 'Query'

ifTrue: [self queryAccount].

"#####if######

Transfer #

############"

state = 'Transfer Source'

ifTrue:

srcAccount := 2.

state := 'Transfer Dstn'.

screen contents:

cr;

nextPutAll: Select the account for';

cr;

nextPutAll: destination of funds' .

self screenOutput: screen]

ifFalse:

state = 'Transfer Dstn'

ifTrue:

dstnAccount := 2.

self amount]]!

178

screenOutput: aPane

"******************

Answer screen Text Pane contents."

aPane contents: (screen contents)!

source: aPane

"**********""*
*******"i<*****

Result of *Transfer* button selection."

state = 'Enter PIN'

ifTrue:

state := 'Transfer Source'

screen contents:

cr;

'.
'

nextPu tAll: Select the account for'

cr;

nextPutAll: source of funds'.

self screenOutput: screen]

store

"****

Determine and validate the entered amount in

any screen position following the text, and

complete the transfer transaction."

actionCornplete

(self validAmount)

ifTrue:

amount :=screen contents

asArrayOfSubstrings

last

asFloat.

actionComplete := account transferid: id

source: srcAccount

amount: amount

dstn: dstnAccount.

I

actionComplete

notNil ifTrue:

179

printer contents: actionComplete contents.

self printerOutput: printer].

actionComplete

isNil ifTrue:

self noFunds 1 .

self thanks]!

thanks

"*****

Show thank you message, eject card and show

welcome message."

complete I
screen contents:

cr;

'.
'

nextPutAll: Thank you for banking';

cr;

cr;

nextPutAll:

self screenOutput: screen.

complete := self eject.

complete ifTrue:

self wait: 2.

self welcome]!

unreadableCardinserted: aPane

''****************************

with us'.

Result of card reader *unreadable* button

selection."

messageSent complete

state = ' '

ifTrue:

messageSent := cardReader unreadableCardinserted.

messageSent ifTrue:

screen contents: ' '. '

180

cr;

nextPutAll: The card cannot be read' ;

cr;

cr;

nextPutAll: by this ATM'.

self screenOutput: screen.

complete := self eject.

complete ifTrue:

self wait: 3.

self welcome]]]!

valid.Amount

"**********

Validate amount entered on the screen

as a number of whole dollars. "

entry entryAmountj

entry := screen contents asArrayofSubstrings.

" # # # ### ### ##### ### # #.# # ### ### ## *## # ## ###

Ensure that screen was not deleted #

1######1##########################11##"

entry isEmpty

ifTrue:

entry := #(0)].

entryAmount := entry last asFloat.

(entryAmount = 0)

ifFalse: [

"################l########ll####l############

Answer true if entry is integer or float #

#~iliz~c~s I

l#lll#lll#l#l##l#l#l#llll##l#l######ll#l##l#"

((entryAmount - (entryAmount asinteger)) = 0)

ifTrue: ["true]].

181

"####1##1#1#1##1#1#11######1#11

t Re-enter if amount invalid #

111111111111#11#11111111111111"

self amount;

screenOutput: screen.

"false

validate

"*******

Validate PIN entry against PIN on card,

then validate customer identification

number on card is a valid account. "

entry enteredPinl

entry := screen contents asArrayOfSubstrings.

"1111#1111111111####11#111111111#111##1

Ensure that screen was not deleted #

II###I##I##I#####IHI#U#I####IIII####"

entry isEmpty

ifTrue: [

entry:= #(0)].

(entry last nsinteger = 0)

ifTrue:

self enterPIN;

screenOutput: screen)

ifFalse:

"#1######11111111111111111111111

Validate entry against card #

1111111111111111111111111111111"

(entry last asinteger = pin)

ifFalse: [self invalidPIN]

if True: [

182

"11111111111111111111111111

Validate id in Account #

11111111111111111111111111"
(account check: id)

ifTrue: [self menu]

ifFalse: [self held]]] !

validate: aString

"****************

Store PIN and id. "

pinAndid!

pinAndid := aString,

pin := pinAndid asArrayOfSubstrings first asinteger.

id := pinAndid asArrayOfSubstrings last asinteger.

state:= 'Enter PIN'.

self en terPIN. !

welcome

"******
*""'*****

New customer transaction."

state := ''

"111111111111111111111111111111

Printer action is complete #

llllllllllllllllllllllll#lllll"
printer contents: '•.

self printerOutput: printer.

I
I

"############HI#########

Show welcome message #

##l#l##########ll#ll####"

screen contents:

cr;

'.
'

183

nextPutAll: Welcome to the ATM, please' ,·

cr;

cr;

nextPutAll: insert your card'.

self screenOutput: screen!

withdraw: aPane

"**************

Result of *Withdraw* button selection."

state = 'Enter PIN'

ifTrue:

state := 'Withdraw'.

self account l !

ViewManager subclass: #Account

instanceVariableNames:

'account accountWindow accountContents dispenser

depositSlot printer '

classVariableNames:

poolDictionaries: ' '

!Account class methods

!Account methods

accountMenu: aPane

''*****************

Answer a Henu for a Pane. "

aPane setMenu: ({Menu

labels: 'enter or change account balances' withers

I ..

184

lines: # (O)

selectors: #(changeBalances))

title: 'Account Entry').!

changeBalances

"*************

Enter or modify a numeric customer identification

number and two account balances."

validEntry end id key balances value default I
balances : =· Orderedcollection new.

validEntry := false.

end := false.

"1####1#1111###1#11111111111111111##111#11111

Get customer id, terminate when no entry #

1111#1#1#111111#1111######111#####1111111111"

[validEntry = false

or: [end = false]]

whileTrue:

validEntry := true.

id :=

Prompter

prompt: 'Enter account number'

default: ' '

(id = nil

or:

id isErnpty])

ifTrue: [

end : = true]

ifFalse: [

"1#1111111111111

Validate id #

111111111111111"

key := id asinteger.

key isinteger

ifFalse: [validEntry := false]

185

ifTrue: [

value := account at: key

ifAbsent:

value := {#{0.00 0.00) asOrderedCollection)].

default : = ReadWri teStream on: ' '

value do: [:field[

default nextPutAll: {field printString);

nextPutAll: '].

"11111111111111111111111111111111111

Get cheque and savings balances #

11111111111111111111111111111111111"

balances :=

Prompter

prompt: 'Enter cheque and savings account

balances'

default: (default contents).

"111111111111111111111

Validate balances #

111111111111111111111"

balances isNil

ifFalse:

{balances asArrayOfSubstrings size = 2)

ifTrue: [

value := OrderedCollection new.

(balances asArrayOfSubstrings)

do' I 'field J

field asFloat

isNwnber

ifFalse: [

validEntry := false]

ifTrue: [

value add: (field asFloat) J]]]].

account at: key put: value.

self updateContents]]!

I

186

check: aNurober

"*************

Answer true if aNumber is an Account key,

otherwise answer false."

answer I
answer := ((account keys) includes: aNurnber).

"answer!

depositid: anid account: anAccount amount: anAmount

"**

Add deposit to Deposit transaction.

account balance."

actionCornplete value balance

transactionComplete I
actionComplete := depositSlot deposit.

actionComplete ifTrue: [

value := account at: anid.

balance := value at: anAcccunt.

balance := balance + anAmount.

value at: anAccount put: balance.

account at: an!d put: value.

"#111111111#1111111

Advise printer #

1111111#1#1####111"

transactionComplete :=

printer printout: 'deposited'

account: anAccount

amount: anAmount.

self updateContents.

AtransactionComplete] !

I
187

initialise

"*********

Establish link to Dispenser, Deposit Slot

and Receipt Printer. Open a Dictionary."

dispenser := Dispenser new.

depositSlot := DepositSlot new.

printer := ReceiptPrinter new.

account := Dictionary new.

self open;

changeBalances.!

listContents: aPane

"******************

Answer account details window contents."

aPane content~: accountContents!

open

"***

Create a window on the account details,

consisting of a List Box and the menu

accountMenu for modifying details."

line I
self labelWithoutPrefix:

'Accounts for Demonstration ATM'.

self addSubpane:

{accountWindow := ListBox new

changed: #selectCriteria:

frantingRatio: (0 @ 0 extent: 1 @ 1);

when: #getMenu perform: #accountMenu:;

when: #getContents perform: #listContents:).

self open Window. !

188

queryid: anid acc'ount: anAccount

"*******************************

Query transaction to determine balance."

value balance transactionComplete

value := account at: anid.

balance := value at: anAccount .

•••••••••••••••••••
Advise printer #

lll##ll###ll##l#ll"

transactionComplete := printer query: anAccount

amount: balance.

"transactionComplete!

transferid: anid source: aSrcAccount amount: anAmount dstn:

aDstnAccount

"**

Transfer transaction. Subtract from source

account and add to destination account."

value srcBalance dstnBalance

transactionComplete I
value := account at: anid.

"#l##lll##lll#l#llll#ll
Get source balance #

#l####llllll#ll#lll#ll"

srcBalance := value at: aSrcAccount.

srcBalance := srcBalance - anAmount.

"ll##lll#llll#lllll###ll#l#lll#

Determine sufficient funds #

ll#l##l##lll#l#lll#llll##lll#l"

(srcBalance negative)

ifTrue:

transactionComplete :=

ifFalse:

nil]

I' '

189

"######111111111111

Transfer funds #

11#1111111#1111111"

value. at: aSrcAccount put: srcBalance.

dstnBalance :=value at: aDstnAccount.

dstnBalance := dstnBalance + anAmount.

value at: aDstnAccount put: dstnBalance.

account at: anid put: value.

"1111111111#111111#

Advise printer #

111111111111111111"

transactionComplete :=

printer transferSrc: aSrcAccount

amount: anAmount

dstn: aDstnAccount.

self updateContents].

AtransactionComplete!

updateContents

"*******'~*****

****.*********

Update the account details window in key order."

~~ne count sortedKeys\

accountContents := OrderedCollection new.

accountContents add: 'Id Cheque Savings'.

sortedKeys :=account keys asSortedCollection.

sortedKeys do: [: id j

line := ReadWriteStream on: (String new).

count := 1.

line nextPutAll: {id printString).

50 tirnesRepeat: [line space].

(account at: id) do: [:balance]

line position: { {15 * count)

- {balance printString size));

nextPutAll: {balance printString).

count := count + 1].

line cr;

190

reset.

accountContents add: {line nextLine)].

accountWindow contents: accountContents!

withdrawid: anid account: anAccount amount: anAmount

"***

**

Withdraw transaction. Subtract withdrawal

from account balance. "

actionComplete value balance

transactionComplete I
actioncomplete := dispenser withdraw: anAmount.

"11111111#111111111111111111111

Dispenser action completed #

I# #H~##I# ## ### ##### ##111##1# # #"

actioncomplete ifTrue: [

value := account at: anid.

"#11######11###1

Get balance #

##1#1###11###1#"

balance := value at: anAccount.

balance :=balance - anAmount.

"####1######1##1##1111111#111#1

Determine sufficient funds #

#11#11111111111111111111111111"

{balance negative)

ifTrue: [

transactionComplete := nil]

ifFalse: [

value at: anAccount put: balance.

account at: anid put: value.

··11111111111111111

Advise printer #

11##11##1#11111111"

transactioncomplete :=

1
';,
-,,-'
·;·-,;,:--

191

printer printout! 'withdrawn'

account: anAccount

amount: anAmount.

self updateContentsl.

AtransactionComplete] !

Object subclass: #DepositSlot

instanceVariableNames:

classVariableNames:

poolDictionaries:

''

' '

!DepositSlot class methods

!DepositSlot methods

deposit

"******

Answer true if deposit action complete.

Always answer true. "

actionComplete]

actionComplete := self money.

actionComplete ifTrue: [Atrue]!

money

"****

Answer true if parcel inserted.

Always answer true. "

moneyinpu t I
moneyinput := true.

"rnoneylnput!

;:,

Object subclass: #Dispenser

instanceVariableNames:

'amount '

classVariableNames: '•

poolDictionaries: "

!Dispenser class methods

!Dispenser methods

withdraw: aFloat

H**************•

192

Answer true if dispenser action complete.

Always answer true."

amount := aFloat.

"true!

Object subclass: #ReceiptPrinter

instanceVariableNan-es: ' '

classVariableNames ~ ' '

poolDictionaries: ''

!ReceiptPrinter class methods

!ReceiptPrinter methods

printout: aTransaction account: anAccount amount: anAmount

"***

**

Formulate printout message. "

output

output : = ReadWriteStream on:

output cr;

nextPutAll: The amount of$';

nextPutAll: (anAmount asinteger printString);

cr;

193

nextPutAll: has been ':

nextPutAll: aTransaction;

cr;

nextPutAll:

anAccount = 1

ifTrue:

on your

output nextPutAll: 'cheque'].

anAccount = 2

ifTrue:

output nextPutAll: 'savings'].

output nextPutAll: ' account';

cr;

reset.

"output!

query: anAccount amount: aBalance

"********************************

Formulate query message."

output I
output := ReadWriteStream on:

output cr;

nextPutAll:

c>nAccount = 1

ifTrue:

Your

''

output nextPutAll: 'cheque'].

anAccount = 2

ifTrue:

output nextPutAll: 'savings'].

output nextPutAll: ' account balance';

cr;

nextPutAll: is $' ;

nextPutAll: (aBalance printString);

cr;

reset.

"output!

.. , __

194

transferSrc: srcAccount amount: ~aunt dstn: dstnAccount

"***

**

Formulate printout message. "

output I
output := ReadWriteStream on:

output cr;

nextPutAll: The amount of $';

nextPutAll: (anAmount as Integer printString);

cr;

nextPutAll:

cr;

nextPutAll:

srcAccount = 1

ifTrue: [

has been transferred';

from your ' .

output nextPutAll: 'cheque').

srcAccount = 2

ifTrue: (

output nextPutAll: 'savings']

output nextPutAll: ' account';

cr;

nextPutAll: to your '

dstnAccount = 1

ifTrue:

output nextPutAll: 'cheque'].

dstnAccount = 2

ifTrue: (

output nextPutAll: 'savings']

output nextPutAll: ' account';

cr;

reset.

"'output!

-.. __ ,.
-~-' _.-·.--

	A search tool to enhance the selection and utilisation of reusable software modules within the object-oriented paradigm
	Recommended Citation

	Edith Cowan University
	Research Online
	1996

	A search tool to enhance the selection and utilisation of reusable software modules within the object-oriented paradigm
	Robert H. Cross
	Recommended Citation

