Edith Cowan University
Research Online

Theses: Doctorates and Masters Theses

1-1-1996

A search tool to enhance the selection and utilisation of reusable
software modules within the object-oriented paradigm

Robert H. Cross
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses

6‘ Part of the Computer Sciences Commons

Recommended Citation

Cross, R. H. (1996). A search tool to enhance the selection and utilisation of reusable software modules
within the object-oriented paradigm. Edith Cowan University. Retrieved from https://ro.ecu.edu.au/theses/
949

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses/949

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses?utm_source=ro.ecu.edu.au%2Ftheses%2F949&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=ro.ecu.edu.au%2Ftheses%2F949&utm_medium=PDF&utm_campaign=PDFCoverPages

Edith Cowan University
Research Online

Theses: Doctorates and Masters Theses

1996

A search tool to enhance the selection and
utilisation of reusable software modules within the
object-oriented paradigm

Robert H. Cross
Edith Cowan University

Recommended Citation

Cross, R. H. (1996). A search tool to enhance the selection and utilisation of reusable software modules within the object-oriented paradigm .
Retrieved from http://ro.ecu.edu.au/theses/949

This Thesis is posted at Research Online.
http://ro.ecu.edu.au/theses/949

http://ro.ecu.edu.au
http://ro.ecu.edu.au/theses
http://ro.ecu.edu.au/thesescoll

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose
of your own research or study.

The University does not authorize you to copy, communicate or
otherwise make available electronically to any other person any
copyright material contained on this site.

You are reminded of the following:

e Copyright owners are entitled to take legal action against persons
who infringe their copyright.

e A reproduction of material that is protected by copyright may be a
copyright infringement. Where the reproduction of such material is
done without attribution of authorship, with false attribution of
authorship or the authorship is treated in a derogatory manner,
this may be a breach of the author’s moral rights contained in Part
IX of the Copyright Act 1968 (Cth).

e Courts have the power to impose a wide range of civil and criminal
sanctions for infringement of copyright, infringement of moral
rights and other offences under the Copyright Act 1968 (Cth).
Higher penalties may apply, and higher damages may be awarded,
for offences and infringements involving the conversion of material
into digital or electronic form.

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

A Search Tool_"'.
to Enhé’ncé the Selection and Utilisation_
of Reusable Software Modules

~ within the Object-Oriented 'Paradigm
by

Rabert H. Cross B. Bus.

A dissertation submitted in partial fulfilment of the
requirements for the Award of

Master of Science
at the
- Faculty of.Sciencé, Technol'ogy and Eng:in'eéﬁ.ng',

Edith Cowan University

. Dateof Subimission: 8{h February 1996 "

i
 Abstract”

Thé._afﬁnit”y for réuse'\'#i'thii_} the'object'-‘or"i_ehted paradi am méy enable high levels of -
productivity; hdw'évér, 'gain"s:'w_ill_b'c_cc':)mc realisable only if a sy.ster'ns developer has y

access to tools which aid in the selection of classes.

A 'mcihod for Object-'oriént_ed analysis and design is detailed aﬁd its proc’e.'ss is
assisted by an object-oriented search to0l based on reference and corporate llbrary -

technology. The search tool contr’ ues to the determination of __‘_.Iv}'iiitable ex:i's'ting
inhéfifable classes and an explanation of its construction and use is included. A

practiéal demonstration of the method, using the search tool, is elaborated.

The thesis demonstrates that text retrieval techniques used in modern libraries maji _

be successfully applied to determine suitable classes for the object-oriented

| paradigm.

iii -

I certify that this thesis does not incorporate without acknowledgment any
material previously submitted for a degree or diploma in any institution of
higher education; and that to the best of my knowledge and belief it does

fiot contain any material previously published or written by another person

except where due reference is made in the text.

e ey

iv
._ ~ Acknowledgments

I wish to thank my supervisors, Dr Thomas O'Neill and Dr James Millar for their - o
véluablé advice. Additional acknowledgment is extended to Dr Ken Mullin and : I
Mr William Laidman for their proofing and comments. My wife, Eltie, has

‘provided continual encouragement and support, I owe a debt of gratitude to Dr - |

- O'Neill for his unstinting time and enduring patience throughout the past year. | S

- Table of Contents
Abstract
Declaration
Acknowledgments
- List of Figures
~ Chapter .
1 Introduction
- 1.1 ‘The Aim
1.2 The Problem Addressed
1.3 The Significance
14 The Structure
2 The Object-oriented Paradigm
2.1 Defining the Paradigm ' _
22 Defining the Approach to Analysis and Demgn Methods S
23 The Analysis and Design Process . .
24 Modelling the Process
2.5 Summary
3 . Applying the Object-oriented Paradigm
31 The Example
3.2 - The Analysis and Design
- 33 Summary
4 Achieving Reuse of Software Components
44 The Reuse of Software Components _
4.2 Storing and Retrieving Reuse Components
43 Full and Free Text Retrieval |
4.4 Summary
5 The Search Tool
51 ° Development of the Search Tool
.52 Operating the Search Tool
53 Summary '
© 6. . The Demonstration System
61 Completion of the Analysis and Design
62 Description of the ATM System
63 Surnmary

.. 7. .. . Conclusion

Page

-ll'

iiv -

v,

17
22

%
41 .

42

42

' 72': o

73
73

o
S79
8.

84 -

104

; 5':{:1_'16-.;"_- o
116
o121

- _-'136

vi

Reference List \ B - om0 1407
Appendices _ - -
A Code for the Class Find Search Tool _ 146 -
B Code for the Word Index Class from Digitalk 157
C Code for the ATM 159 . .. -
List of Figures
Figure L
1 The symbol for a class. 30
2 The symbol for a subsystem. © 30,
3 Depiction of a state. 3
4 Anevent causing a change in state, - 31
5 Astate in which an activity is initiated. 32 _
6 Anevent with an action, 32
7 The symbols for a Functional Model. | 33"
8 State and transition symbols for state net diagram, 34 .
9 Sending a message to another object. - 34
10 An association between object groups. 35
11 Various representations of one to many relationships. 36
12 Many to many object group associations. 36
13 Aggregation of object groups. - 37
14 One to many relationships with partlclpatlon _
constraints. 37
15 Many to many relationships with participation .
constraints. 38
16 Aggregation symbolised by a triangle. 38
17 Synchronous object group interaction. 39
18 Asynchronous object group interaction. 39
19 Conveying attribute information. 40 -
20 Modelling inheritance. 40
21 The high-level Object Model for the ATM. 45
22 The ATM subsystem as an aggregation of classes. 46
23 High dependency between objects. 47
24 The initial detailed Object Model for the ATM. 48
25 The Dynamic Model for Card Reader. 50
26 The Dynamic Model for User Interface. 51
27 The validate model for User Interface. 52
28 The cancel model for User Interface. 53
29 The deposit model for User Interface. 54 .
30 The withdraw model for User Interface. 55

vii

Figure - .

- 31 'The transfer model for User Interface. N 56
32 The query model for User Interface. . ' 57
33 The Dynamic Model for Account. ' - 58
34 The deposit model for Account. _ 39
35 The withdraw model for Account. I . 60
36 The transfer model for Account. -6l
37 The Dynamic Model for Deposit Slot. 62
38 The Dynamic Model for Dispenser. . ' 63
39 The Dynamic Model for Receipt Printer. ' 63
40 The Dynamic Model for Customer, - 64
41 The transact model for Customer. 65
42 The deposit model for Customer. _ _ 66
43 The withdraw model for Customer. 67
44 The transfer model for Customer. 68
45 Dictionary of activities and actions for the ATM. 69
46 The ATM Object Model with associations. 70
47 The Object Model with Customer interaction. 71
48 Dictionary of attributes for the ATM. 72
49 Dewey classification. 77
50 Growth of new words with an increase in the text size. 80
51 Aninverted list. 31
52 The initial Object Model for Class Find. : 86
53 The Dynamic Model for Class Find. : _ 87
54 The operate model for Class Find. - 88
55 The initialise model for Class Find. __ -89
56 The locate-classes model for Class Find. 90
57 The lookup model for Class Find. ' 91
58 The transfer-output mode! for Class Find. 92
59 Dictionary of activities and actions for Class Find. - 92
60 Associations for Class Find. 03 .
61 Dictionary of attributes for Class Find. _ 94
62 The final Object Model for Class Find. 95
63 A Venn diagram for the test environment. o 97
64 Initiating the search tool. S 105
65 The initialised search tool. ' 105
66 The search tool showing menu choices. ' ' 106
67 Entry of terms to the search tool. 107
68 The result of a search. 108
69 Selection of the result of a search. 108
70 Selecting initiators and implementors of a service _ §

method. 109

71 The initiators and implementors of a service method. - 110 -
72 Search tool dictionary contents for the test environment. 111
73 Test results on modified code for the search tool. 112

74 Determining the number of classes. 130

Figure

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

viii

Test results on unmodified code for the search tool,

Test results for erroneous input to the seavch tool.
The final Object Model for the ATM.
Initiating the demonstration ATM.

Entering an account identification number,
Entering account balances,

Account details.

Changing account details.

The ATM waiting for use.

Entering card details.

Card held by ATM.

An unreadable bank card inserted.

Selecting the transaction.

Selecting the account.

Entering the amount.

Request for insertion of deposit.

Completion of a deposit transaction,
Dispensing 1aoney for a withdrawal transaction.
Insufficient funds for the requested transaction.
Request for source of funds.

Request for destination of funds.

Completion of a transfer transaction.

Result of a query transaction.

Cancellation of a transaction.

Test resuits from operation of the ATM.

14

114
119
122
123
124

124 0
125 °

126
126
127
127
128
129

129

130

130

131
132

132

(133

S 133
134
135

135

1 Intrbduc,tion

1.1 _ The Aim

" The object-oriented paradigm shows considerable proinise in terms_of. faster

| development of quality computing systems. The advantages claimed depend largely . |
on the affinity that the objélt.:t—_oriented pafzi'digm has for reusing software

components; however, it is difficult to determine a structure suitable for storing and
retrieving coﬁapfinents for reuse. Modern reference and corporate library '.
organisations have made advances in retrieving information that is unstructured,

The study aims to demonstrate that text retrieval techniques of a modern library
organisation may be applied to determine suitable classes for th.e objcct-orié.ﬁtc_d. |

>

paradigm.

1.2 - The Problem Addressed

Commion libraries of modules available for reuse today include:

o the library supplied with the Smalltalk environment and the extensions for
Dashboeard and FreeDrawing that are provided by Digitalk; - |

. Objectworks_from ParcPlace and PARTS from Digitalk that includc software
maodules for siiders, radio buttons and other usei‘ interface tools; |

R th_é C-++ libraries from Microsoft and Borland,

« the library supplied with Eiffel;

-« CommonViews from Glockenspiel; and

" e Gehani's ADA modules - supplied with Ada: An Advanced Introduction (1_989).’ -

It may be expected that the number of such modules will continve to increase

- beyond the collection representing the most elementary operations to the situation

Pk TR Ry T s T D S

.wherc'a module may be developed for many required operations. Thus, to attaina

: worklng knowlcdge of the existing modules and to keep. abreast of new modulcs are |

~ demanding tasks for today S programmers.

It is recognised that tools must be provided to enable and-cncdﬁrage software
developers to find relevant modules for reuse. As Meyer (1988, p. 28) states, "the _
best reusable components in the world are useless if nobody knows they exist, if it

takes a long time to obtain them, or if they cost too much", This is supported by

Frakes & Nejmeh (1988, p. 142) who'say "a fundamental problem in software reuse _ |

is the lack of tools to locate potential code for reuse".

Without su_itablé tools, software deyclopers may come to know only a limited
number of modules that might be erﬁployed_in a practical application, with the |
remaining development implementéd as newly written code. ..Thi's is evidenced by
the fact that, even th.ough libraries of common code have existed for many years,

. software development has not taken full advantage of them. This position is
supported in part firstly by Frakes & Nejmeh (1988, p. 142) who cite DeMarco as
estimatin g "that in the average sofiware deve loPment environment oﬁly. about five -
' .percent of code is reused”; and secondly, by Hdéper & Chester (1991, p. i) who
affirm that software libraries of revsable éomponents have been used for many

years.

A more beneficial approach to the discovery and use of relevant software modules is

're'q'Uired'. Frakes & Nejmeh (1988, pp. 144 - 145) suggest an approach based on the

~ practice in modern library organisations for searching free-form text, which matches

search words with document contents. One advantage of this approach is that it

removes the necessity of guessing future requirements of information searchers,

“because the task of association is performed at the time of search rather than atthe @

time of storage.

This te'mporal matching technique forms a si gni.ficant part of the study. More
specifically, it will be incorpo_reited in'a tool which indicat_és to the object-oriented
software developer those reusable library mbclu_les that match his/her search

specifications.

| ,1_3 The Significance

Meyer (1938, p. 27) points out that "reusability as a dream is not new , .. Theré
should be catalogues of software modules. . [so that} we would write leés
software, and perhaps Ido a better job at that-_'\;hicf:'.fl_we do get to develop".

| Complementary to this, Henderson-Sellers (1992, p. S1) states that "reusability is
_oh(;, of the major advantages that an objeq_f';oriented approach can provide". Thus,
taking both together, the significance of; this study is to realise the dream of reuse by

- applying the full-text search techniquc';within the object-oriented paradigm.

_ _1.4'. __The Structure

Chapter 2 cncz__ipsﬁ'lat'es ai: .lliterraturi.:. review of contributors i the ﬁeld of objcct-
orientation. D;iails of the a:Ss.oéi;_‘ai_'éd-principles are ascertained fro.m many sources,
including devatees such as Rum!;'éugh!_,l Blaha, Premerlani, Eddy & Lorensen (1991),
Rumbaugh {1995), Embley, K.u_rtz & Woodfield (1992), WirfS—Brock, Wilkerson &
Weiner (1'99(.}), Wirfs-Brock & Johnson (1990), Booch (1994), Henderson-Sellers

_ (1992), Tanzer (1995) and from organisations such as the Object Management

- Group (Soley, 1992) and Digitalk (1992). Furthermore, an approach to obj'cqr.-,_:_:_ '
oriented systems design is drawn from the work of Rumbaugh et al. (1991), initi_gll')ﬁr .
‘and Embley et al. (1992}, latterly. Then, continuing with an example of the

- paradigm, Chapter 3 incorporates the object-oriented design of an application that is o

taken from the field qf automatic teller proccsSing, described in Wiffs-Brock, __

- Wilkerson & Weiner (1990).

Chapter 4 includes a literature review of reusable softwafc cbmponcnts and the way
in which the reuse may be achieved. In general, the discussion embraces the gains
offered by reuse, varicus traditional methods provided by reuse (for example,
Booch, 1987) and the advantages to reuse tendered by the object-oriented paradigm
(Hooper & Chester, 1991). Then, as a means of achieving reuse, the chapier
incorporates é description of text retrieval techniques for libraries, based upon the
work of Corte:z & Kazlauskas (1986) and Salton (1989). Finally, this description
serves as the foundation for a detailed account of the innovative process (the search
tool) for matching search criteria with software module content within the object-

- oriented paradigm,

Chapter 5, using the principles outlined in the earlier chapters, establishes t}le
de.sign, specification and implementation of the object-oriented tool to achievé the
desired selection and u_tilis_atidn’ of existing software modules. The methods
espoused for specifying the autorﬁated teller systcﬁl in Chapter 3 are employed in

the design of the matching tool.

Chapter 6 illustrﬁtés the result of using the search tool within a test environment thaf

| impleménts a suBséf of the aforemehtioned autﬁinatic teller processing application.

: The' subset i s limited to a éort_idn that may be convén_i__cntiy demonsirated on a
personal computer; ﬁ'owc_ver, ihis does not in_cli_caté a ﬁi’n_i__tation of the search too.l -

itself.

~ Chapter 7 presents conclusions about the design, specification, implementation and"”-'..;.__ .

~ proven capability of the search tool. Then, a judgement is given of its ability to

enhance the selection and utilisation of :i‘eusable software modules within the object-
oriented paradigm. Subsequently, future research directions to augment the search

tool as a viable innovation are suggested.

Finally, the study includes a number of appendices that des_cribe the environment

and technicalities of the tool developed.

2 The Object-oriented Paradigm

Object—orientatibn is a relatively new approach for the develop'rﬁent of computer-
based applications. Kuhn (1962), in his treatise on scientific method, talks of a
paradigm shift as a stage in the development of major new ideas. Henderson-Sellers
(1992, pp. 15 - 16) contends that object-orientation is a major paradigm shift similar
in significance to "the Copernican revolution in astronomy, in Darwinian evolution,
and m the adoption of the underlying ideas of plate tectonics in geology”. Booch -
(1994, 40) maintains that the object-oriented paradigm "will form the foundation for

the next generation of software architectures in numerous domains”.

* The thought process for object-orientation is different to the established methods
that precede it. In support, Jacobson (1991, 35 - 36) affirms that "with an object-
oriented analysis technique, it is possible to avoid . . . [thinking] like machine.s... .
which is a sheer waste of human activity", whereas in the object-oriented paradigm

"they can . . . be made closer to life and thus become more comprehensible”.

To provide a comprehensive discussion on the object-oriented paradigm, this

chapter addresses four areas: namely, defining the paradi gm; defining the approach '

to analysis and design methods; the désign steps; and modelling the design stebs. A

separate section treats each area, reflecting its individual signficance.

In the first section, an understanding of the object-oriented paradigm is based ona -

study undertaken by Henderson-Sellers (1992, pp. 18 - 28). Then, the fundamental

" principles of the paradigm are defined in terms of the literature available,

| Speciﬁcélly, the principles of object, class, encapsulation, inheritance and

'_ ._'--p'o.lqurphism are stated. -

‘With the foundation principles established, the second section considers the _
processes of analysis and design. There are many methods available; however, the
discussion is limited to those methods further "evolved" by more recent writers. A~

rationale for the determination of an evolved method is given.

The third section outlines the method described primarily by Wirfs-Brock,
Wilkerson and Weiner (1990). It provides a holistic description of the object-
oriented analyéis and d.esign proceés, with detailed advice on determining class, -

~ inheritance relationships and collaborations between classes.

* The fourth section describes the analysis and design methods from anobject- -
oriented modelling perspective. The discussion is based on work by Rumbaugh et
al. (1991) and Embley et al. (19'92'), because they satis'fy the aforementioned

rationale.

2.1 __ Defining the Paradigm

The important issues for the objec_t-ﬁriénted paradigm may be found in Exhibit 8 of
‘A Book of Object; Oriented Knéwledge (Henderson-Sellers, 1992, p. 18). In this
exhibit, the writings of twelve works on object-orientation are examined for the
importance of .irlforr.nat.ion hiding, encapsulation, objects, classification, classes,
- abstraction, inheritance, polymorphism, dynamic binding, persistence and |
composition, Henderson-Sellers (1992, pp. 19 - 28) draws the conclusion that, for a
design and/ur implementation to be considered object-oriented, the follewing |
proﬁerties must be present:
» encapsulation;
_. o the idea of abstract classes;_éljd

.. _p'olymorphism and inheritance.

This is supported by Booch (1994, 37) who says that "object orientation involves
data abstraction, encapsulation, and inheritance with polymorphism. If any of these
elements [i.e. properties] are miSsing, you have something less than object

orientation". These properties are defined in the general discussion below.

The basis of the paradigm is the object which, according to the Object Management
Group (Soley, 199'2,. p. 42), has a "distinct identity, which is immutable, persists for
as .long as the object exists, and is independent of the obj ec_.t_'é properties or |
behaviour:". An object is defined by de Champeaui &Faurg (1992, 22)as"a
conceptual entity". that: .\
¢ referstoa th'ing identiﬁable by the users of the target system - either a
tarigible. system or a mental construct
& has features that span a ldcal state space
has operators that can change the statu# of the system l.dcally while thesé
| _'operations may induce invocations of operations in peer obje'cts. |
The essence of the concept of an object is the definition provided by Hendefsdn-
Sellers (1992, p. 19), who sé.ys that "an objéct is ésépﬁtially an ericapsﬁiﬂaticﬁ_i of data |
and functionality”. Thus, objects consist of data z_mc.i.. _procedﬁres that manipl._llate.

some or all of the data in response to requests from within and without the object.

In addiﬁon to the software services needed to manipulaie an object, the paradigm
prdvidés a :mech'anis'm for "grouping software ideas into classes of things"

. (Hendé'rson-Sél.lers, 1992, p. 19). As Rumbangh et al. (1991, p. 24) states:

: Idehtifyin g and documenting individual objects and relationships

among objects is useful, but very tedious and not powerful enough

for documenting most systems. ., ... To manage this complexity we

need some method of abstracting and grouping a large body of facts

into smaller, more comprehensive units.

To address the complexity, the object-oriented paradigm abstracis behaviour to a

| class, defined by Soley (1992, p. 67) as "an implementation that can be instantiated
to create multiple objects with the same behaviour”. Thus, every objectis a
member of a class which contains the description of the behaviour possessed by
each of its objects. Advancing these notions, given a class, any two of its objects
with the same state will behave in an independent, but exactly similar, manner when

responding to a request of the same form and content.

The behaviour of an object is provided by its service methods, each of which is
déscribed by Soley (1992, p. 70} as the "code that may be executed to perform a
requested service”, While genefal terminology refers to these procedures as
“methods", this study uses "service methods” in order to identify more explicitly
their essential function. Wirfs-Brock & Johnson (1990, 106) points out that, for an
object to satisfy its responsibility, "performing a request involves executing some
code, a {service] method, on the associated data". This is supported by Smalltalk/V
for Windows Tutorial and Programming Handbook (Digitalk, 1992, p. 68), which
describes service methods as "the al gorithms that determine an object's behaviour

and performance" and are "like function definitions in . . . {structured] languages”.

Apart from the classification of behaviour, the paradigm employs the software
engineering technique of encapsulation to preserve the integrity of each object. A
service method of an object operates only on that object's data and, as Wirfs-Brock
& Johnson (1990, 106) say, other objects "are prevented from making direct access
to the data”. Rumbaugh et al. (1991, p. 7) describe this use of encapsulation as
"separating the external aspects of an object, which are external to other objects,
frdm the implementation details of the object, which are hidden from other objects”,
The Henderson-Sellers (1992, p- 19) perspective is that "it's gluing together data and

functionality", while Jacobson (1991, 35) indicates that only the object knows its

10 -

int_erhal structure. In the paradigm, the encapsulation process may realise the
modularity principles espoused by software engineering authors such as Page-Jones
(1988, pp. 57 - 102) for:

o low coupling - "the degree of interdependence between two modules”; and

« high cohesion - the manner in which "the activities within a single module are

related to one another".

‘Due to the need for encapsulation, objects inherently lead a discrete existence,
Thus, in a world made of many objects, another criterion to be addressed is a
mechanism for communication. In the object-oriented paradigm, such
comm_ﬁnication is enacted by a message handling system supervised entirely by the
environment, which are "similar to function calls in . . . languages" (Digitalk, 1992,
p. 46). When a message is sent to an object, a service method is performed. In an
example provided by Soley (1992, p. 42), if the date-of-hirth is required of a Person
object, a date-of-birth request is sent as a message to that Person object causing its
date-of-birth service method to respond. Furthermore, it may be necessary to allow
oné object to cause complex resultant actions via a muitiple message handling
mechanism. Thus, an object-oriented programming environment may allow a
structure of concatenated messages, when successive messages are sent to temporary

objects resulting from preceding messages.

Th.e data structure and behaviour of an object are not only available from the class to
which an object belongs, but may also be "inherited” from other defined classes.
Korson & McGregor (1990, 42 - 43) describe inheritance as "a relationship between
classes that allows for the definition and implementation of one class to be based on
that of other existing classes”. That is, the class provides its objects not only with
the behaviour described within it, but also with the behaviour of classes to which it

is linked in a hierarchy. To provide inheritance within objeci-oriented

11

environments, the mechanisms of multiway tree data structures are provided which,
as Booch (1987, p. 296) sziys, "derive much of their utility from the fact that they can
represent a hierarchy among items". Specifically, the tree mechanism is described
by Booch (1987, p. 297) in the following terms;
A tree is a collection of nodes that can have an arbitrary number of
references to other nodes. There can be no cycles or short-circuit
references; for every two nodes there exists a unique simple path
connecting them. . .. One [base] node is designated as the root of a
tree. . . . If a given node references any other nodes, we say that it iS
the parent of these subordinate nodes; each of the subordinate nodes
is a child of the parent. . . . we say that a parent node is the ancestor
of its children and the children are descendants of their parent.
Within the inheritance hierarchy offered by the tree mechanism, a single parent class
makes its data structure and service methods available to all its descendant classes.
In the literature, a parent class is also known as a superclass and the descendant
classes as subclasses. From the nature of the inheritance mechanism, a detailed
account of the message handling process is as follows:
o A message is sent to an object under the environment's control,
. The system will parse the message in order to identify the service method to be
performed on the object.
» If the object's class contains the service.method, then the service method is
performed.
« If the object's class does not contain the service method, then [in the purest
object-oriented sense] a search of the tree mechanism is initiated. The search
follows a single thread from the object’s superclass towards the root, terminating
at the first class containing the relevant service method. Then, the ancestral

service method is performed on the object's data structure.

E
4
!
:
i

12

-« If the search reaches the root class and if there exists no match of message to
service method, then the message is erroneous.
Because the concept described above allows any class only a single superclass node,
it is known as single inheritance. A discussion on multiple inheritance is deferred

until later.

The .énv'ironment allows a developer to add classes to any existing class library by
cm'ploying the inheritance tree mechanism. This stresses the importance of
inherifance to aid reusability of behaviour between objects of different classes.
Furthermore, it provides a ready means of packaging classes in such a way that they
may be conveniently used, wifh little or no modification, to solve new problems. An
example of this use of inheritance is given by de Champeaux & Faure (1992, 24) as
follows:

Inheritance supports reuse of code in the following way: if a class A

in a library is sufficiently close to fulfill a particular task, we

incorporate A in the implementation, introduce B as a subclass of A,

and make additions to B to reach the desired functionality It is

permitted that these additions to B overwrite functionality available

in A.

Modern programming langnages may use the software engineering concept of
overloading, an ability of service methods in different classes to respond correctly to
identical messages. Overloading is defined by Henderson-Sellers (1992, p. 252) as
"using the same operator symbol to mean two different things". For example, the '+
operator may be used to add: |

« integers - for example (3 + 4);

s floats - for example (3.3 + 4.4); and

o points - for example (30, 60 + 40, 30).

13

Khoshaﬁén & Abnous (1990, pp. 68 - 73) state that "overloading allows operations
with the same name but different semantics and implementations to be invoked for
oh,zectsof dif'fercﬁt-‘ types” which is "one of the most powerful and useful concepts of
| object iﬁ_r_igpta:tion".: These same authors continue with "object-oriented systems take
ovcrloading one step further and make it available for any operation of any object
type" of which "the most important advantage is code saving”. This ability, called
polymorphism, is defined by Booch (1994, 37) as:
a concept in type theory, according to which a name . .. may denote
objects of many different classes that are related by some commeon
superclass; thus, any object denoted by this name is able to réspond
to some common set of operations in different ways.

The polymorphic capability relies not only on the inheritance tree mechanism, but
also on an ability to bind the service method to the object exactly at the time of
message reception. That is, a class service method may be used by its subclasses
without redefinition. Instead of describing'common service methods for every class,
they may be provided in classes towards the top of the hierarchical inheritance tree.
Consequently, the object-oriented paradigm encourages a reduction in the amount of

code that might be developed.

Khoshafian & Abnous (1990, pp. 133 - 136) point out that "in many situations . . . it
is very convenient to allow a subclass to inherit from more than one immediate
superclass" but that “combining instance variables or {service] methods of
immediate predecessors is not .. . simple. The problem is that predecessors could
have instance variables or [service] methods with the same name, but with totally
unrelated semantics". Recognising these difficulties, Booch (1991, p. 110) states
that “the need for multiple inheritance in object-oriented programming langnages is
still a topic of great debate”. This may be, according to de Champeaux & Faure

(1992, 25), because "multiple inheritance induces an ambiguity when a class inherits

14

conflicting features from parent classes. Each programming language has its own
recipe for resolving such an ambiguity of which disallowing multiple inheritance is
the most rigorous one”. Uniil an environment is able to resolve automatically any
conflict that may be caused.by multiple inheritance, single inheritance is the safer

option.

Inheritance fulfils the open-closed principle espoused by Meyer (1988, pp. 23 - 24),
who says that each software module should be: open, as it is "still available for
extension" because the developer will "seldom grasp all the implications of a
subp;ogram"; and simuitaneously closed, as it "may be compiled and stored ina |
library, for others to use". While the principle may appear contradictory,
Henderson-Sellers (1992, p. 63) points out that, for the object-oriented paradigm,
“once a class is tested and accepted into a library, it should not need to be 'opened-

up'. .. while remaining 'open’ to further extendibility by inheritance".

Many languages support, in varying degrees, the object-oriented paradigm. Indeed,
Booch (1991, p. 494) provides a list of 112 such languages, three of which are
deemed by Bobch to be the "most influential and widely used", namely, Smalltalk,
C++ and CLOS. To this collection, Rumbaugh et al. (1991, p. 318) add the Eiffel
language. Each of these four languages supports the principles of objects and
classes, encapsulation, single inheritance and polymorphism. Furthermore,
Rumbaugh et al. (1991, p. 318) point out that "some languages, such as C++
(Version 2), CLOS [and] Eiffel . . . support multiple inheritance. Many others do
not". Although Smalitalk employs single inheritance, Borning & Ingalls (cited in
Booch, 1991, pp. 475 - 476) point out that multiple inheritance is also possible by
redefining service methods within the language. Additionally, Ada 95 has recently
become available; however, at the time of writing there is insufficient evidence for a

comparison with the aforementioned languages.

e —

15

As mentioned above, the first language identified by Booch is Smalltalk. According
to Rumbaugh ét al. (1991, p- 325), "Smalltalk is not only a lan'guage but alsoa
development environment incorporating some functions of an operating system"” of
which a "strength is the class library, which was designed to be extended and
adapted to meet the needs of the application”. These authors add that "for a single-
user development, it offers arguably the best features of both language and
environment. . . . {to achieve] the goals of extensibility and reusability". In his
discussion of Smalltalk, Booch (1991, pp. 474 - 475) says that "it is a 'pure’ objeCt-
oriented programming language, in that everything is viewed as an object - even |
integers and classes"; further, that it is a "most important object-oriented
programming language, because its concepts have influenced . . . almost é__vcry
subsequent object-oriented programming language”; and finally, that the languaéé
laid "much of the conceptual foundation of . . . the ideas of message passing and |

polymorphism"”.

The second major object-oriented language is C++, of which Rumbaugh et al. (1991,
pp- 326 - 327) say that "the implementation of run-time [service] method resolution
is efficient" and further that:

because of its origin as an extension of C, its backing by major

computer vendors, the perception of it as a nonproprietary laﬁ guage,

and the availability of free compilers, C++ seems likely to become

the dominant language for general use.
However, reflecting that this language is a superset of the C language, Rumbaungh
et al. (1991, p. 326) point out that "C++ is a hybrid language, in which some entities
are objects and some are not", that "a C++ data structure is not automatically object- |
oriented”, thereby placing “"a serious restriction on the ability to reuse library classes

by creating subclasses” and also that “C+-+ does not contain a standard class library

16

as part of its environment" with the consequence that "different libraries may be
incoﬂipatiblc". The view of Booch (1991, p. 483 - 5) is that, instead of undergoing a
- formal design process, "design, documentation, and implenientation went on
simultaneously" until the language was considered complete and that "the definition

of C++ does not include a class library”,

Of the above two languages, Booch (1994, 38) says that:
C++ and Smaliltalk are the most pervasive object-oriented
programming languages. It is likely that this situation will not
change, but only become more entrenched over time. C++ has
developed a following with organizations that are already
experienced withC. ... A Striking difference between C-++ and
Smalltalk, however, is that the C4+-+ environment is relatiVely tool-

poor, whereas Smalltalk is relatively tool-rich,

The third language is CLOS - the Common Lisp Object System - which is the result,
according to Booch (1991, p. 486), of a project undertaken in 1986 to standardise
object-oriented dialects of LISP, "many of which were invented to support ongoing
research in knowledge representation”. Furthermore, Booch (1991, p. 488) points
out that "the definition of CLOS does not include a class library". Independently,
Rumhaugh et al. (1991, p. 328) say that "ZL.OS . . . has most of the advantages of a
'p_ure.'l 6bject—0riented language" but that "CLOS currently does not have a class
]ibr;ciry", instead of which, class libraries are developed by individual users, with

"some sharing of classes between organizations”.

The last object-oriented language considered is Eiffel, about which Rumbaugh et al. |

(1991, p.327) say "Eiffel has good software engineering facilities for encapsulation,

- access control, renaming, and scope. . . . [and that it] is arguably the best

17

commercial OO language in terms of its technical capabilities” but that only "a
modest class library is provided", Henderson-Sellers (1992, pp. 263 - 236) points
out that the Eiffel language has an intelligent compiler which undertakes class
linkage and computation "without programmer prescription or intervention" and
with a syntax that is relatively easy to learn. Because the output is C code, Eiffel is

portable across hardware and operating system platforms.

One of the outcomes of this study is a software development tool which will assist
in the éelection and utilisation from a class library linked with an object-oviented
language. To realise this outcome, a desirable characteristic of the software
environment is a comprehensive class library from which a profile of each class may
be developed. Given the above findings and the desire for an extensive class -

library, the Smalltalk language proved to be the only timely suitable choice.

2.2 Defining the Approach to Analysis and Design Methods

The purpose of this section is twofold: firstly, a clarification of the position of the
study on analysis and design; and secondly, a determination of the latter-day
literature to be reviewed, deemed necessary because there are numerous tomes that

address these processes.

The first issue is the ambiguous delineation of the analysis and design processes that

take place before programming begins. Olle et al. (1991, pp. 1 - 2) explain that

~ "most information systems methodologies use the term ‘analysis' to refer to an
activity which precedes that of 'design’. . . . [and] before the design commences, it is

| logical enough to ‘analyse' the environment in some way" in order to derive the
resuftant design specification, which "is what a designer can hand to a system
constructor after he or she has completed the design”. Extending this, Olle et al.

(1991, p. 47 - 49) say that "any breakdown of the systems lifecycle into stagesis

18

| arbitrary" and that "it is often difficult to de'termine exactly where business analysis

ends and system design begins". Independently, Kendall & Kendall (1992, p. 3) link

the two activities together with a task description as follows:
Systems analysis and design, as performed by systems analysts, seeks
to analyze systematically the data input. . . and information output
within the context of a particular business. Further, systems analysis
and design is used to analyze, design, and implement improvement in
the functioning of businesses.

Some authors differentiate analysis and design, as de Champeaux & Faure (1992,

' 21) explain:

Twenty years ago, a distinction was made between analysis and
design. Analysis is aimed at describing whar a target system is
supposed to do to obtain agreement with a customer . . . while design
is aimed at describing siow the desired system will work without
going into implementation details in design, a solution is
outlined, the required number of processes is determined, processes
are aliocated to processors, and al gorith_mS and data structures are
selected while satisfying additional resource, performance and
contextual .constraints.

In this vein, but with a contrasting differentiati,on;'Pressman (1.992, p. 146) describes

the objectives of the analyst as: - | | o

- identify the customer’s need;
" ¢ evaluate the system concept for feasibility;
e perform economic and technical analysis;
+ allocate functions to hardware, software, people, database, _and other

system elements;

& establish cost and schedule constraints;

19

& create a system definition that forms the foundation for all
subsequent engineering work.
The subsequent steps, according to Pressman (1992, p. 317), are:
¢ preliminary design which is "the transformation of requirement.;. into
data and software architecture”; and
o detail design which "focuses on refinements to the architectural
representation that lead to detailed data structure and algorithmic

representations for software”.

As exemplified by the various positions of the above authors on this matter, the
delineation is clearly a subjective selection. Consegquently, the approach taken in
this study is to treat the object-oriented analysis and design exercise as a continuum
of detail description. At the beginning, the analyst/designer is concerned with the
problem domain and a direction towards the solution. By the end, the detail of the
solution within the specific environment of available class libraries should be

understandable by the implementors of the solution.

The second issue (the aforementioned determination of literature to be reviewed) is
based upon an investigation of object-oriented analysis and design conducted by de
Champeaux & Faure (1992, 21}, who point out that "“in this early stage [of emerging

new analysis and design methods] the methods diverge, as is to be expected”.

Recapping the discussion in Section 2.1, it may be accepted that the method of
analysis and design should incorporate the essential characteristics of encapsulation,

inheritance and polymorphism. A number of the available methods do not appear to

20

support these essential characteristics and,'_of these methods, de Champea'ﬁx & Faure - |
(1992, 27 - 29) observe the following:
¢ Edwards' method - "it appears that behaviour encapsulation is not
supported".
¢ Coad & Yourdon's method - "seems iiot to offer parallelism for the
objects"; that is, every object must céésrj operation and wait for a
response to each request, rather than allowing independent operation -
for each object. |
L 2 Schlaér & Mellor's method - appeérs to be directly built from data
analysis without the encap.sulation of process.
4 Bailin's method - "inheritance . . . is not me_ntioned".
¢ Colbert's method - "doesn't mention inheritance”.

¢ Gibson's method - “inheritance . . . is not discussed".

The findings of de Champeaux & Faure (1992) are supported by Embley et al.
(1992, p. 16), who describe the evolution that has occurred in some of these -
methods, stating that: |
¢ The Objcct—Oriented Systems Analysis (OOSA) method of Schlaer &
Melior in 1988 is based on Entity Relationship models.
¢ The declarative, behavioural and interactive information prese.ntcd
within the Object-Oriented Analysis (OOA) method of Coad &
Yourdon in 1990 is extended by the Object-oriented Modeling
 Technique (OMT) method of Rumbaugh et al. in 1991.

" While the method described by Booch (1991) has not béen included within the
de Champeaux & Faure study, it is worthy of consideration for its development of
multiple models that equate with the methods of Rumbaugh et al. (1991) and | _
Embley et al, (1992), both of which are described below. Inherently, the Booch . - R

2]

model development requires the use of a computer drawing package in order to
“render a model. This need for graphic rendering sets Booch's modelling method
apart from the others in the area and it is not obvious that the graphic intricacies
benefit the analysis and design processes. Perhaps, practitioners may be more
comfortable with model diagrams that may be easily sketched and immediately

understandable by the implementors,

- Further, Rumbaugh (1995, 21) advises that he has "accepted a position with Rational
Software Corporation”, leading to a partnership with Booch and "working ‘o bring

. . . methods together by a process of mutual evolution, so that eventually the
differences will be minor and can be ignored. . . . [and] learning and using OMT will

be protected under future method evolution”.

According to de Champeaux & Faure (1992), the methods that satisfy the above
essential characteristics are those of Wirfs-Brock, Wilkerson and Weiner (1990),
Rumbaugh et al. (1991) and one under development by Kurtz, Woodfield, &
Embley (n.d.). Itis assumed that this last method has subsequently been described
by Embley, Kurtz & Woodfield (.1992). In support of the method described by
Rumbangh et al. in 1991, Embley et al. (1992, p. 16) observe that it "extends the
declarative behaviour, has wide recognition and is the latest in the evolutionary
sequence described", Further, D'Souza & Graff (1995, 23) say that "the OMT

methodology is arguable one of the most popular for object-oriented development”.

An examination of the object-oriented analysis and design literature is therefore
based mainly on the well-founded methods described by Wirfs-Brock, Wilkerson &
. Weiner (1990), Rumbaugh et al. (1991) and Embley et al. (1992) and these are

* developed in the next two sections. The first of these sections investigatesthe . .. |

22

process of object-oriented analysis and design; then, the second concentrates on

modelling the analysis and design aspects of object-oriented sysiems.

2.3 __The Analysis and Design Process

‘Following the discussion above, this section establishes a holistic process for object-
oriented analysis and design. The process is based particularly on the work of
Wirfs-Brock, Wilkerson & Weiner (1990), Wirfs-Brock & Johnson (1990) and
Rumbaugh et al. (1991). . |

'From the writing of Wirfs-Brock, Wilkerson and Weiner (1990) and éontinued by
Rurhbaugh et al. (1991), object-oriented analysis and desi gn for any problem
demands the sequence of steps set out below:

Understand the problem - its raison d'3tre, domain and specific parameters.

. Idéntify the objects - their abstract classes and subsystems (groups of classes).

» Determine the responsibilities of objects - their sefviéc methods.

» Determine the associations between objects ~ the messages they send and
receive.

o Detail the attributes contained by objects - the data structures to represcnt_t_héi_i' |
states,

» Build the inheritance links - their optimal positioning in the hierarchy.

These steps are achieved by the methods described in the remainder of this section

and are undertaken in an iterative and incremental fashion. Booch (1991, p. 190)

explains that object-oriented analysis and design is "an iterative process:

implementing classes and objects often leads us to the discovery or invention of new

classes and objects whose presence simplifies and generalises our design" and, .

furt.hcr, that it "is an incremental process: the identification of new classes and -

objects usually causes us to refine and improve upon the semantics of and

relationships among existing classes and objects”. In support, Rumbaugh et al. |

23

(1991, p. 166) say that "the entire software development process is one of continual

iteration; different parts of a mode! are often at different stages of completion"‘.

Understand the Problem

To obtain an understanding of the problem, Booch (1991, p. 191) explains'.'that- "by
studying the problem'’s requirements and/or by engaging in discussions with domain
experts, the developer must learn the vocabulary of the problem domain".
Rumbaugh et al. (1991, p. 150) recommend the production of a "problem statement
[which] should state what is to be done and not how it is to be done. It should be a

statement of needs, not a proposal for a solution".

Identify the Objects
The objects and their abstract classes are determined once the problem is
understood, for which Wirfs-Brock, Wilkerson and Weiner (1990, p. 38) explain
that, from a written specification, the developer is "looking for noun phrases”, in
which the plural is changed to the singular, adding that "if ydu can formulate a
statement of purpose for that candidate class, the chances are even higher it will be
included in your design”. The authors (1990, pp. 38 - 39) offer the following
guidelines for choosing candidate classes:
§ Model physical objects such as disks or printers on the network.
& Model conceptuai entities that form a cohesive abstraction, such as a window
or display, or a file.
© | If more than one word is used fbr the same concept, choose {the] one that is
most meaningful in terms of the rest of the system. ...
o Be wary of the use of adjectives. . . . If the adjective signals that the
behaviour of the object is different, then make a new class.
Be wary of sentences in the passive voice, or those whose subjects are not

part of the system, . . . Is it masking a subject that might be a class required

24

by your application? . . . Subjects {may be] things which are outside the
system. . . . Does the sentence suggest an object that may need to be
modeled? ...
& Model categories of classes as individual, specific classes. . . . You will
probably alter the taxonomy of classes later,
¢ Model known interfaces to the outside world, such as the user interface, or
interfaces to other programs or the operating system, as fully as your initial
understanding allows.
Wirfs-Brock, Wilkerson and Weiner (1990, p. 39) then say thai "the resuit of this
procedure is the first, tentative list of the classes in your program”. In a similar vein,
Rumbaugh et al. (1991, p.153) explain that "objects include physical entities, such
as houses, employees, and machines, as well as concepts, such as trajectories,
seating arrangements, and payment schedules” and advise "don't be too selective;

write down every class that comes to mind. Classes often correspond to nouns™.

Wirfs-Brock, Wilkerson and Weiner (1990, p. 47) advise that the list of classes may
be refined, adding that the developer should re-examine the candidate classes "in
order to identify as many abstract classes as possible in order to help identify
the structure of the software . . . and to help identify classes . . . overlooked”.
Rumbaugh et al. (1991, pp. 153 - 155) explain that "if two classes express the same
information, the most descriptive name should be kept"; that “if a class has little or
nothing to do with the problem, it should be eliminated”; and that "a class should be
specific. Some tentative classes may have ill-defined boundaries or be too broad in
scope”. Scharenberg & Dunsmore (1991, 32) discovered that an important step
“was to realize that in the domain of objects [an] object became
anthropomorphic (i.e., we began to think of it almost as a living entity able to tell us
things about related objects) [although] not all objects becrine

anthropomorphic". The step of identifying classes adds to the understanding of the

25

requirements and, according to Coad (1991, 44), "expands and refines the strategy of
'where to look, what to look for, and what to consider or challenge.! The strategy
places extra emphasis on examining the problem domain and establishing the

system's responsibilities in that context”.

Taking abstraction further, Wirfs-Brock & Johnson (1990, 111} state that:
a complex system requires many levels of abstraction, one nested
within the other. Classes are a way of partitioning and strzcturing an
application for reuse. But a design often has groups of classes that
collaborate to fulfill a larger purpose. A subsystem is a set of such
clésses (and possibly other subsystems) collaborating to fulfill a
comimon set of responsibilities.
They further explain that "subsystems simplify a design. A large application is
made less complex by identifying subsystems within it and treating those
subsystems as classes”. They add that "a subsystem is not just a bunch of classes”
and that "one way to test if a group of classes form a subsystem is to try and name
the group. If the group can be named, the larger role they cooperate to fulfill has

been named”.

Determine the Responsibilities

The desired behaviour of the objects grouped within a class may be defined as the
responsibility of the class. Each object accomplishes this responsibility with its own
methods or the methods of objects which may be in other classes. Wirfs-Brock,
Wilkerson and Weiner (1990, pp. 62 - 63) define responsibilities as "a sense of the
purpose of an object and its place in the system" and “all the services it provides”
and advise that responsibility should be shared among the classes of objects sharing
a task so that they "evenly distribute system intelligence". According to Gibson

(1990, 246), the objective is to "elicit a list of desired and necessary behaviors for

26

the system" and the way to achieve this is to "interview the users of the prospective
application and observe them in action to see what they do, who and what they

interact with, in what order, and what the outcomes of different actions are".

Determine the Associations
When an object requires the method of an object in another class to accomplish its
responsibility, the object is said to form an association with that other object. An
association is defined by Rumbaugh et al. (1991, p. 156) as "any dependence
between two or more classes™ ani: "a reference from one class to another”.
Furthermore, Tanzer (1993, 43) defines an association as "the set of the set of links
between two (or more) objects of a single class or of different classes” where “a link
is a physical or conceptual connection between objects”. To understand the
associations, Wirfs-Brock, Wilkerson and Weiner (1990, p. 91) advise the developer
to:

ask the following questions for each responsibility of each class. . . Is

the class capable of fulfilling this responsibility itself? . . If not, what

does it need? . . From what other class can it acquire what it needs?.

.. fand] for each class, ask: What does this class do or know? . .

What other classes need the result or information?
They further advocate that "if a class turns out to have no interactions with other
classes, it should be discarded . . . [after] rigorous . . . check and cross-check”.
Another form of association is aggregation, described by Wirfs-Brock, Wilkerson
and Weiner (1990, p. 92) as when "X's are composed of Y's" which "can sometimes
imply a responsibility for maintaining information" and "often fulfill a responsibility
by delegating the responsibility to one or more of their parts”". Rumbaugh et al.
f 1991, pp. 156 - 160) advise that "associations often correspond to stative verbs or

verb phrases. These include physical location . . ., directed actions,

L 2 ek Ee—

27

communication . . ., ownership . . ., or satisfaction of some condition". The authors
warn that the developer should:
¢ eliminate any associations that are outside the problem domain or deal with
implementation constructs;
& omit associations that can be defined in terms of other associations because
they are redundant; and
¢ if one of the classes in the association has been eliminated, then the
association must be eliminated or restated in terms of the other classes.
These same authors contend that at this stage the developer should "specify

multiplicity, but don’t put too much effort into getting it right".

Detail the Attributes

Rumbaugh et al. (1991, pp. 161 - 162) say that the next step is to identify the
attributes of the object, which are the "properties of individual objects” and which
"usually correspond to nouns followed by possessive phrases”, however "if the
independent existence of an entity is important, rather than just its value, then it.is
an object”. Coad (1991, 44) says that "defining attributes adds strategy steps . .. and

an overall emphasis on what an object is responsible to know over time (its state)”.

Build the Inheritance Links
In order to identify the source of the behaviour of classes, the class hierarchy is
determined. Wirfs-Brock, Wilkerson and Weiner (1990, pp. 119~ 121) say that:
a good design balances the goal of small, easily understood and
reused classes with the conflicting goal of a small number of classes
whose relationships with each other can be easily grasped.
To achieve this, the authors advise the developer to seek "similar responsibilities
that can be generalized, thus allowing them . . . to be moved higher in the

hierarchy", then "remove unnecessary classes, and reassign their responsibilities

28

where needed”. Rumbaugh et al. (1991, p. 163) add that "inheritance can be added
in two directions: by generalizing common aspects of existing classes into a
superclass (bottorn up) or by refining existing classes into specialized subclasses
(top down)". According to Rumbaugh et al. (1991, pp. 163 - 165), the former is
achieved "by searching for classes with similar attributes, associations, or
operations” while the latter "are often apparent from the application domain". They
further advise that "attributes and associations must be assigned to specific classes in
the class hierarchy. Each one should be assigned to the most general class for which
itis apprﬁpriate“ and that "multiple inheritance may be used to increase sharing, but
only if necessary, because it increases both conceptual and implementation

complexity”.

In conclusion, the overall ﬁro.cess for the developer is to:

1. gain sufficient understanding to be able to begin to solve the problem;

2. group real-life objects that exhibit identical behaviour into classes and,
subsequently, classes into subsystems;

3. identify the responsibility of each object and, when appropriate, the associations
they need to form in order to meet their commitments;

4. understand which information must be held by an object in order to perfonﬁ its
desired behaviour; and

5. for each class of objects, determine the class that may provide suitable inherited
behaviour.

The means of achieving this process is described in the next section using the

modelling techniques described by Rumbaugh et al. (1991) and Embley et al.

(1992).

o et e T ————

29

24 Modelling the Process

The need for modelling is best stated by Olle et al. (1991, p. 45), who explain that
“the concept of modelling is inherent in any information system methodology" and
that a "methodology should start with analytical modelling of a business area and

continue with a prescriptive model for each information system”.

Independently, Embley et al. (1992, p. 5) say that, to gather information and
document systems, the analyst "concentrates on building a model fwhich]
captures specific characteristics exhibited by system objects, and model construction
drives the process of acquiring knowledge and asking questions about the systé.m".
Models are used extensively within the object-oriented paradigm and this is
supported by de Champeaux & Faure (1992, 23) with their observation that, from
“structured analysis, "object-oriented analysis . . . methods have inherited . . . the

usage of graphics instead of text to represent the models".

The information contained within the models may be supplemented by a dictionary
description because, as Rumbaugh et al. (1991, p. 156) say, "isolated words have too
many interpretations, so prepare a . . . dictionary [which] describes

associations, attributes and operations”.

The two methods described - the Object Modeling Technique (OMT) by Rumbaugh
et al. (1991) and the Object-oriented Systems Analysis (OSA) method by Embley et
al, (1992} - suggest similar modelling approaches for the object-oriented paradigm.
Rumbaugh (1995, 21) points out that, gnided by "user experience and good ideas
from other authors, and new insights”, OMT is evolving and a further book is in
progress, which "will be the legitimate descendant of both [OMT and Booch]

methods". Given the intrinsic need to understand the problem and using the process |

30

steps discussed in the previous section as a foundation, the modelling techniques are

described below.

Identify the Objects

The first step is to identify the object groups, which may be either classes or, as
discussed previously, subsystems: the latter, for analysis and design purposes, may
be modelled in the same manner as a class. A class is represented in the OMT

Object Model by a rectangle as shown in Figure 1.

Class

Figure 1. The symbol for a class.

If the model is complex, understanding is aided by dividing portions of the system
into subsystems, each of which, according to Rumbaugh et al. (1991, p. 199),

"encompasses aspects of the system that share some common properties".

Within the OSA Object-Relationship Model, object groups are represented by the
same rectangle symbol. The OSA method specifically identifies abstract entities,
which Embley et al. (1992, pp. 127 - 128) describe as "independent high-level object
classes [that] have an identity of their own, . . . related to, but separate from the
information they request” and which use the modelling symbol of a shaded rectangle

shown in Figure 2.

Figure 2. The symbol for a subsystem.

31

Determine the Responsibilities

The Rumbaugh et al. (1991, pp. 84 - 85) OMT Dynamic Model describes the
behaviour of an object, employing state diagrams, which are "a graphical |
representation of finite state machines"”, to represent events and states depicting the
internal changes that result from messages received. The authors explain that a state
represents "attribute values and links" and an event "is something that happens at a
point in time. . . . [becanse] an event has no duration . . . compared to the granularity |
of the time scale of a given abstraction”. A state is depicted in the OMT Dynamic

Model by a rounded rectan gle, as shown in Figure 3.

Idle

Figure 3. Depiction of a state.

In 'Figure 4, the event time-out causes the Connect state to be changed to the
Disconnect state, with the dot describing the event number-dialled as an initial event

for the model.

number-diafiad

fima-out

Figure 4. An event causing a change in state.

+Entering a state may cause an activity to be initiated. An activity is an operation that

tﬁkes‘i_ime to complete and will be terminated when the state changes. In OMT,

32

Rumbaugh et al, (1991, p. 93) show an actmty within a state symbol preceded by a

"do " notatlon, as shown in Fi gure 5.

Busy

" do: sounct-signal

Figure 5. A state in which an activity is initiated.

- An event may cause an action to take piace, which Rumbaugh et al. (1991, pp. 92.

- 93) describe as "an instantaneous operation. . . . associated with an event. . . . [that]
represents an operation whose duration is insignificant compared to the resolution of

the state diagram”, such as the action disconnect-line, as shown in Figure 6.

Connect] time-out! disconnect line Disconnect

J do: sound-signal

Figure 6. An event with an action.

The event may also carry information about a condition that must exist before the
event may occur and which is mcluded togethcr with the event name in the form

"event [condltlon]"

_ Addition_ally, OMT makes provision for modelling noninteractive program§ with the

Functional Madel,ﬂoz'f which Rumbaugh et al, (1991, pp. 123 - 124) say:

o it uses a data flow diagram technique, which is "a graph showing the flow of
data values from their sources in objects through processes that transform them
to their destinations in other objects”;

« it consists of "processes that transform data, data flows that move data, actor
objects that produce and consume data, and data store objects that store data

passively”; and

T S T T

33

e it specifies "the results of a computation without specifying how or when they

- are computed”.
The symbols used in a Functional Model are shown in Figure 7. Here, a rectangle
symbolises an external actor, processes are shown by an ellipse, data stores are

represented by parallel lines and arrows depict data flows.

Actor

data flow

data store

Actor

Figure 7. The symbols for a Functional Model.

According to Embley et al. (1992, pp. 60 - 79), "the objective of behaviour
modelling is to understand and document the way each object in a system interacts,
functions, responds or performs”. They primarily employ state net diagrams to
model the behaviour of each object, whilst providing a “shorthand version . . .
similar to traditional finite state machine notation” such as that described above for

the OMT approach.

- From the description by Embley et al., 1992, p. 60), a state net diagram consists of:

¢ states, which represent "an object status, phase, situation, or activity";
¢ the change to another state by the connected transitions which consist of

triggers, “the events and conditions that activate state transitions"; and

34

& actions, which "may cause events, create or destroy objects and relationships,
observe objects and relationships, and send or receive messages".
In Figure §, the states Connect and Disconnect are represented by the rounded
rectangles and the transition between the states is represented by the reétangle, in
which the top section contains the trigger description and the bottom section
contains the action description. From the OSA description by Embley et al. (1991,
p. 64), “the @ symbol . . . designates that the trigger is based upon an event. . . . [and’

~is] read . . . as 'at,, 'when', or 'upon".

N @time-out
connect disconnect
disconnect line

Figure 8. State and transition symbols for state net diagram.

‘A change of state in one object may cause a message to be sent to another object and -
OSA uses the 'lightning-strike' symbol showa in Figure 9 to represent, within one
object, the message that becomes an event in another object. The message symbol

may be shown emanating from either the transition or the state,

message

frigger

action

message . . .

trigger

aclion

Figure 9. Sending a message to another object.

35

.. Determine the Associations _

- Within the OMT Object Model, Rumbaugh et al. (1991, pp. 27 - 28) symbolise an
association as a straight line connecting the object groupings, as shown in Figure 10,

: cxplaini'n g that "the name of a binary association usually reads in a particular |

 direction, but the binary association can be traversed in either direction”. The object
groups may be classes or subsystems, depending on the level of abstracticn to be

represented, where each may appear within the same diagram.

Object Group

tiascripifon
of
sssociation

Cbisct Group

Figure 10. An association between object groups.

- Rumbaugh et al. (1991, p. 30) state that "many instances of one class may relate to a

single instance of an associated class". The symbols used to show the multiplicity of

- association are shown in Figure 11, where 11 (a) shows one class associated with a

“known range of many object groups, as indicated by the numbers at the multiple
_re]aﬁonship end; 11 (b) shows one class associated with an unbounded upper range
- of many object groups, represented in a similar manner; and 11 (c) shows one class
- -associated with an unknown number of many object groups symbolised by a solid

. circle on the tail.

" Object Group

_descrption
of .
assoclation

2-4

Object Group

@

| Object Group

36

dascription
of
assoclation

2+

 Object Group

()

Object Group

description
of
associalion

g O_bject Group

©

Figure 11. Various representations of one to many relationships.

A.many to many relationship is symbolised by a solid circle on both the head and

the tail, as shown in Figure 12,

Object Group

descﬁp.'bn
of
assoclation

Object Group.

“: Figure 12. Many to many object group associations.

Rumbaugh et al. (1991, p. 58) say that "aggregation is a special form of associatioﬁ"'

* where multiple objects "are tightly bound by a part-whole relationship” including

"part ekplosions and expansions of an object into constituent parts”, for example, "a

- company is an aggregation of its divisions”. This type of association is symbolised

by a diamond, as shown in Figure 13.

9
E
!
;
;

37

- Object Group

Object Group Object Group

Figure 13. Aggregation of object groups.

As in the OMT method, associations are represented in the OSA Object-
Relationship Model by straight lines joining the object groups. The multiplicity is
described as participation constraints, shown in Figure 14, where 14 (a) indicates
one object group associated with a known range of many object groups, 14 (b)
shows one object group associated with an unbounded upper range of many object

groups and 14 (c) shows one object group associated with an unknown number of

many object groups.

it
i
Oblect Group Object Group Chlect Sroup
11 1 i 11
dsscription | description description
of of of
association - assaciation ' association
- R 2 o
Object Group : Object Group . Object Group
=) (b})

Figure 14. One to many relationships with f}articipation constraints.

i

38

The multiplicity representation for many to many associations between object

groups is shown in Figure 15, employing participation constraints,

Oblect Group

o
desernption

of
association

o

QOblect Group

Figure 15. Many to many relationships with participation constraints.

The OSA method includes the ability to model aggregation in a similar manner to

the OMT method, employing a solid filled triangle as shown in Figure 16.

Object Group

o o

Oblect Group Object Group

Figure 16. Aggregation symbolised by a triangle.

Embley et al. (1992, p. 167) point out that objects may interact with other objects in
many ways, as "an object may send information to another object, . . . request

information from another object, . . . alter another object, and . . . cause another

39

object to do some action” and, as shown in Figure 17, for synchronous interaction

the object classes are joined with an extension of the message symbol.

Object Group

message

Object Group

Figure 17. Synchronous object group interaction.

Asynchronous interaction is also covered by. Embley et al. (1992, pp. 172 - 173), as
they explain that objects "frequently interact indirectly with each other” because they
may leave messages at an intermediate place and, in this case, t_he:symbol is a solid

circle as shown in Figure 18,

" Object Group

messags

place

messago

QOblect Group

Figure 18. Asynchronous object group interaction.

40

Detail the Attributes
Within the OMT Dynamic Model, events convey information that may be data
values - the object's attributes - and these are included with the event name, as

shown in Figure 19 and which are listed in a dictionary.

| State i avent {atiribute)

Figure 19. Conveying attribute information.

Build the Inheritance Links
Inheritance is symbolised by Rumbaugh et al. (1991, pp. 39 - 40) as a hollow
triangle pointing from the subclass (or subclasses) to the superclass, as shown in

Figure 20.

Superclass

Subclass Subclass

Figure 20. Modelling inheritance.

Embley et al. (1992, pp. 38 - 39) use the same symbol for inheritance (the is-a
relationship), explaining that “we do not label an is-a relationship set because the

transparent triangie tells us to read the relationship set as is-a”.

41

25 Summary

This chapter has outlined the available literature on the object oriented paradigm and
also some approaches to design employing the paradigm. The essential principles of
the object-oriented paradigm include encapsulation, inheritance and polymorphism.
A selection from the approaches of Wirfs-Brock, Wilkerson & Weiner (1990),

-~ Rumbaugh et al. (1991) and Embley et al. (1992) support the essential principles and
describe the elements of a method that may be used. In the next chapter, an example

analysis and design is undertaken.

42

3 Applying the Object-oriented Paradigm

The previous chapter provides a literature review of the object-oriented paradigm
and of the applicable analysis and design process. Dependant upon the identified
steps of this process, this chapter employs a modelling approach to analyse and
design a partial solution for a selected example. The solution is partial because the
choice of appropriate classes is deferred until later, when a search tool will be used

to assist in the discovery of suitable reuse classes.

3.1 The Example

Tb ensure adherence to given specifications, the example is not fabricated
specificaily for this study, rather it is selected from the available literature in the
field of object-oriented analysis and design. The example is taken from Desigﬁz'ng
Object-Oriented Software by Wirfs-Brock, Wilkerson & Wiener (1990, pp. 51 - 52)
and is an Automatic Teller Machine (ATM) application. However, the hardware
component for an ATM is unavailable and the example must simulate an ATM on a

personal computer. The full description of the example is as follows:

An automated teller machine (ATM) is a machine throngh which bank
“customers can perform a number of the most common financial
- transactions. The machine consists of a display screen, a bank card
reader, numeric and special input keys, a moncy. dispenser slot, a deposit

slot and a receipt printer,

When the machine is idle, a greeting message is displayed. The keys

and deposit slot will remain inactive until a bank card has been entered.

43

When a bank card is inserted, the card reader attempts to read it, If the
card cannot be read, the user is informed that the card is unreadable, and

the card is ejected.

If the card is readable, the user is asked to enter a personal identification
number (PIN). The user is given feedback as to the number of digits |
entered at the numeric keypad, but not the specific digits entered. If the
PIN is entered cbrrectly,' the user is shown the main menu {described
below). Otherwise, the user is given up to two additional chances to
enter the PIN correctly.- Failure to do so on the third try causes the
machine to keep the bank card. The user can retrieve the card only by

dealing directly with an authorised bank employee.

The main menu contains a list of the transactions that can be pcrforméd.
These transactions are:

deposit funds to an account,

withdraw funds from ah_account,

transfer funds from one account to another, and |

query the balance of any account.

The user can select a transaction and specify all relevant information.
When a transaction has been completed, the system returns to the main

menu.

‘At any time after reaching the main menu and before finishing a
transaction (includin g before selecting a transaction), the user may press

-the cancel Key. The transaction being specified (if there is one) is

cancelied, the user's card is returned, the receipt of all transactions is = - '

printed and the machine once again becomes idle.

If a deposit transaction is selected, the user is asked to specify the
account to which the funds are to be deposited and the amount of the

deposit and is asked to insert a deposit envelope.

If a withdrawal transaction is selected, the user is asked to specify the
account from which funds are to be withdrawn and the amount of the-
withdrawal. If the account contains sufficient funds, the funds are given

to the user through the cash dispenser.

If a transfer of funds is selected, the user is asked to specify the account
from which the funds are to be withdrawn, the account to which the
funds are to be deposited and the amount of the transfer. If sufficient

funds exist, the transfer is made.
If a balance enquiry is selected, the user is asked to specify the account
whosc_'balari'ce-is requested. The balance is not displayed, but is printed

on the receipt.

3.2 The Analysis and Design

~ In this section, the specification from the previous section, which supplies an
understanding of the problem, is modelled for each of the process steps. There is no
definitive modelling methodology; indeed, the one employed here is drawn from
both Rumbaugh et al. (1991) and Embley et al. (1992). However, while generally

adhering to the former, this section avails of featnres from both of them wherever, in -

45

the author's opinion, these features better suit the object-oriented analysis and design

continuum.

Identify the Objects

The first step is to identify and represent the object abstractions in an Object Model
and, to assist the reader, a convention of bold print will be adopted within the thesis
text to identify object groupings (classes and subsystems). From nouns within the

example, the candidate object groups immediately identified are:

ATM Card Reader
Customer Dispenser
Screen Receipt Printer
Keys Account

Deposit Slot
Of these candidate classes, the ATM may be considered a subsystem that associates
with the Customer and Account classes, leading to a high level view of the Object

Model shown in Figure 21.

transacts
| Account

operated by

Customer

Figure 21. The high-level Object Model for the ATM.

46

The nouns Screen, Keys, Deposit Slot, Card Reader, Dispenser and Receipt

Printer signify aggregate components of an ATM, represented in Figure 22.

3
Recelpt Printer . . Card Reader -
Dispenser Screen -
DepositSiot] . | Kevs

'F\'iguk-eﬁ-Z'Z.-- The ATM subéystem_as an aggregation of classes..

47

The classes Deposit Slot, Card Reader, Dispenser and Receipt Printer may be
considered to be self-sufficient; however, the same cannot be said of the classes

‘Sereen and Keys which, as is shown in Figure 23, exhibit a strong dependency on

each other.
Screen
walcome] asterisk
" priterPIN held
account
cancef _
o no-funds
unreadable
source
thanks
o ' dstn
number {digit}
menu
amount
_ insert
invalid-PIN output
refact "
Keys

Figure 23, High dependency between objects.

The single self-reliant class User Ihterface may be substituted for the classes
Screen and Keys and the Object Model may be redrawn devoid of associations

except for the aggregation association, as shown in Figure 24.

Customer

Deposit Slof.

Dlsponser -

48

C A

ol Cord Reader . _'- .

_Usef Interface

Account -

Recelpt Prlhf_e-'r —

L _Figiq}-'e 24, _"rhe- init_'ial _:dqtili_. ledObject Moa‘el for the ATM o

49

Determine the Responsibilities

The next step is to model the responsibilities of the objects identified above by
constructing Dynamic Models, each of which will determine a service method. To
assist the reader in distinguishing text relating to these models, the adopted

" convention is to represent Dynamic Model information in Helvetica font, with the
following additional identification: States in bold; events in italic; (attributes})

bracketed; and 'activities' and 'actions' enclosed by single quotation marks.

For the Card Reader, Figure 25 shows that from an ldle state the event readable-
card-inserted causes the action 'read-pin-id' to be initiated. The object then enters &.1.
Hold Card state that initiates an association with User Interface by sending the
message validate and passing the attributes (PIN and id), which is an event causing a
change of state in User Interface. The Hold Card state remain__ﬁ until, under normal
circumstances, the event gject - a message from another object__':-- initiates the action.
'ej'ect—card‘ and returns the object to the Idle state. Altemative'l:y, the not-PIN event
initiates the ‘keep-card' activity, then the card-kept event chaﬁges the state fo idle.
Inserting an unreadable card causes the event unreadab!e—card—:‘nsened, changing
the state to Un readéble and causing a message to be sent to the User Interface.
Then, the message-sent event results iﬁ'an_ ‘eject-card’ action and a return to the

idle state.

50

Card Reader o
Usar Interface valldate{PIN, id}

User Interface unreadable

readable-card-inserted
. freadpin-ld

uneadable
-cart-inseried

Hold Card

message-sent
leject-carnd

card-kapt

Unreadable

Kéep Card

doe kagp-card

Figure 25. The Dynamic Model for Card Reader. -

The Dynamic Model for the User Interface is modeiled in Figure 26, showing that _
the ev.ent validate chénges the state to Validate, which intiiates the validate’
activity. If the PIN is incorrect, the event close-sent causes a return to the ldle state,
otherwise the validated event initiates the 'menu’' activity to display the transaction
selection menu within the User Interface. The selection of a transaction key causes
either a deposir-pressed, withdraw-pressed, transfer-pressed or query-pressed
event, which changes the state to Deposit, Withdraw, Transfer or Query and
ihifiates the relevant activity, following which the complete event changes the state

to ldle.

51+

User Interface

unreadable Unreadable

do: unreadable J

maossage-sent

validatelPIN, Id
" Validate

CIosz',/" do: validate
N

cancelfedicancel validated

do: welcome : cancelied/cance!
1 ' “ccmf&!e Jeposit
: deposil-pressed Menu
to: deposit "~ ¥ do: meny
canceliedicance) i
\(_Wilhdraw .

complels withgraw-pressed

Idle

. do: withdraw'
cancelledicance!

T Transfer transfer-pressed,
complate :
do: ransfer
canceliedicancel
complels Query

query-pressed

do: query
Figure 26. The Dynamic Model for User Interface.

The detail of the 'validate’ activity may be found in another model, which is
displayed in Figure 27. The events validate, validated and close-sent are repeated in
this model as a point of reference in order to locate the rﬁodel for the ‘validate'
activity in the environment of the User Interface. Within the Store state, the (PIN)
and (id) attributes are held for later comparison, then the afiributes-stored event
changes the state to Enter PIN. As each digit of the PIN is pressed, the number-key-
pressed initiates the 'asterisk’ activity. When the PIN has been entered, the OK-key-
pressed event changes the state to Compare PIN. At mosi, three invalid entries are
atlowed, therefore the not-PiNevent initiates the ‘invalid-PIN' activity, then either the

retry-allowed event iterates the process through the Enter PIN state or the PIN-

rejected event changes the state to Held, in which the user is informed that the card

52

will not be returned and a message sent to Card Reader, then the close-sent event
follows. The is-PIN event changes the state to Validate, in which a message is sent
to Account to check the (id) attribute. An invalid-account event changes the state to

Held or a valid-account event changes the state to Validated, resulting in a validated

event.

User Interface validate

validalelPIN, id)

Store
{PIN, Id)

PiN-stored

Enler
PIN
do: enter-PIN

retry-atfowed
.'\Q-'ass-sen.'

do: held

Asterisk

do: asterisk

numbar-key-prassad
OK-key-pressed

s FiN-refeclad

Invalid
FIN

do: invalid-PiN

Compara

Card Reader not-PIN tnvatid-account

.= validatad Validated L

Validate
{id}

valig-account

Account check(id)

Figure 27. The validate model for User Interface.

53

On pressing the cancel key, the action 'cancel' sends a message to the Card Reader
and the 'cancel' action informs the user that the transaction has been cancelled, as _

shown in Figure 28,

User Interface cancel
Card Apader aject

@._ cancellsd

T

canceladicancel

Figure 28. The cancel model for User Interface.

In Figure 29, the event deposit-pressed initiates the 'account' activity to ascertain
the banking account number. The account-selected event changes the state to Store
the attribute (account), then the account-stored event initiates the ‘amount’ activity
to obtain the deposit amount. Each numeric-pressed event iterates through the
Getling Amount state until the ok-pressed event occurs, initiating the 'insert'
activity and sending a message to Account. The action-complete event initiates the
thanks' activity, sending a message to the Card Reader to cause the card to be

ejected, which is followed by the complete event.

54

User Interface deposit

deposit-pressed

Account account-selecied

do: account Store

{account)

account-slored

Amount

do: amount
nunmaric-presseddight)

numerc-pressed (digh)

gction-complole

{emount)
de ingert

Card Reader eject .
: Account deposit{id, account, amaunt}

Figure 29, The deposit model for User Interface.

In a similar manner, the event withdraw-pressed initiates the 'account’ activity, as
shown in Figure 30. The account-selected event changes the state to Store the
attribute {account), then the event account-stored initiates the 'amount' activity to
obtain the withdrawal amount. Each numeric-pressed event iterates through the
Getting Amount state until the ok-pressed event occurs, initiating the ‘output’
activity and sending a message to Account. Then, either the insufficient-funds event
initiates the 'no-funds’ action and the 'thanks' activity or the action-complete event
initiates the 'thanks' activity, sending a message to the Card Reader to cause the

card to be ¢jected and resuiting in the complete event.

55

User Interface withdraw

. withdraw-pressed f Account

account-selected

do: account
Store
(account)
Amount
do: amount
numeric-pressed(digit)
numeric-pressed (digit),
Getting
Amount
insufficient-funds OK-pressed
complete /no-funds
QOutput
Thanks (amount)
do: thanks do: output

action-complete

-~

Card Reader eject

Account
withdraw(id, account, amount)

Figure 30. The withdraw model for User Interface.

The event transfer-pressed results in behaviour similar to those in the two previous
models, as shown in Figure 31. The 'source' activity obtains the account number
from which funds are transferred, then the src-account-selected event changes the
state to Store the attribute (src-account), following which the event src-account-
stored initiates the 'dstn' activity to obtain the account to which funds are
transferred. The dstn-account-selected event changes the state to Store the (dstn-
account) attribute, then the dstn-account-stored event initiates the 'amount’ activity
to determine the amount to be transferred. Each numeric-pressed event iterates
through the Getting Amount state until the ok-pressed event occurs, changing the

state to Store the (amount) attribute and sending a message to Account. Either the

i ez

56

insufficient-funds event initiates the 'no-funds' action and the 'thanks' activity or the
action-complete event initiates the ‘thanks' activity, sending a message to the Card

Reader to cause the card to be ejected and resulting in the complete event.

User Interface transfer

Store
(src-account)

src-account-stored

Dstn
src-account-selected do: dstn

dstn-account-selected

Source
do: source

Store
(dstn-account)

dstn-account-stored

Amount
do: amount

numeric-pressed (digit)

numeric-pressed (digit)

' Getting
Amount

insufficient-funds
/no-funds

Thanks Store
do: thanks (amount)
action-compiete
Card Reader eject
Account

transfer(id, src-account, amount, dstn-account)

Figure 31. The transfer model for User Interface.

57

The event query-pressed results in the initiation of the ‘account' activity, as shown
in Figure 32. The account-selected event changes the state to Store the (account)
attribute, then the account-stored event changes the state to Query Account in
which a message is sent to Account - initiating the account balance printout - then
the action-complete event changes the state to Thanks where a message is sent to

the Card Reader, then the complete event follows.

User Interface query

query-pressed f Account \ account-selected

f Store
'Ldo: account) 'L(accou nt)

account-stored

complete

i

Thanks l action-complete (Query j

do: thanks f k Account

N

Account query(id, account)

Card Reader eject

Figure 32. The query model for User Interface.

58

To perform its transaction responsibilities the User Interface associates with
Account, which is modelled in Figure 33. A check event changes the state from
Idle to Check Account, in which messages are sent to the User Interface, then the
id-checked event changes the state to Idle. A guery event changes the state to
Query Amount in which messages are sent to the User Interface and the Receipt
Printer, then returning to the Idle state as a result of the transaction-complete event.
The deposit, withdraw and transfer events change the state to Deposit, Withdraw or
Transfer respectively, then either a timeout or transaction-complete event returns

the state to Idle.

Account

User Interface

 Use User Interface
invalid-account

= valid-account

Check
Account

User Interface id-checked

action-complete check (id)

1 S
deposit (id, account, amount) Deposit
timegut \do: deposit

transaction
-complete

query (id, account)

transaction
-complete

withdraw(id, account, amount)

transaction
-complete

Receipt Printer query
(account, amount)

Withdraw

do: withdraw

i

transfer
(id, src-account

amount, dstn-account)
Transfer

do: transfer

Figure 33. The Dynamic Model for Account.

59

The behaviour of the 'deposit' activity is displayed in Figure 34, showing that the
event deposit changes the state to Wait for Deposit, in which a message is sent to
the Deposit Slot. Then, either the timeout event occurs or the action-complete event
changes the state to Add, when the (amount) attribute is added to the balance for the
(account) attribute and messages are sent to the User Interface and the Receipt

Printer, then the transaction-complete event follows.

Account deposit

deposit
(id, account, amount)

Wait for timeout
Deposit

action
-complete

Deposit Slot deposit Add
(account,
amount)

transaction
-complete

User Interface

action-complete Receipt Printer printout

(transaction, account, amount)

Figure 34. The deposit model for Account.

60

The 'withdraw' activity is displayed in Figure 35, showing that the withdraw event
changes the state to Subtract where the (amount) attribute is subtracted from the
(account) attribute. The insufficient-funds event changes the state to No Funds
where a message to that effect is sent to the User Interface, followed by the
transaction-complete event. The sufficient-funds event changes the state to Wait for
Withdraw, in which a message is sent to the Dispenser, then the action-complete
message changes the state to Withdrawal Complete, in which messages are sent to
the User Interface and the Receipt Printer, followed by the transaction-complete

event.

Account withdraw User Interface

// action-complete

Withdrawal
Complete

transaction-complete

action-complete .) .
Receipt Printer printout
(transaction, account, amount)

Wait for
withdraw

sufficient
-funds

Subtract

(account,
amount)

withdraw
(id, account, amount) Dispenser

withdraw(amount)

insufficient
-funds

transaction
-complete

User Interface
insufficient-funds

Figure 35. The withdraw model for Account.

61

As shown in Figure 36, the transfer event changes the state to Subtract where the
(amount) attribute is subtracted from the (account) attribute. The insufficient-funds
event changes the state to No Funds at which time a message to that effect is sent to
the User Interface, then the transaction-complete event follows. The sufficient-
funds event changes the state to Add, where the (amount) attribute is added to the
balance for the (account) attribute and messages are sent to the User Interface and

the Receipt Printer, followed by the transaction-complete event.

Account transfer User Interface

action-complete

Add
(account,
amount)

transaction-complete) .

Receipt Printer transfer
(src-account, amount, dstn-account)

sufficient-funds

transfer

(id, src-account
. amount, dstn-account)

Subtract

(account,
amount)

insufficient-funds

transaction-complete

User Interface
insufficient-funds

Figure 36. The transfer model for Account.

As shown in Figure 37, an association between the Account and the Deposit Slot
objects leads to the event deposit changing the state from Idle to Money. Then,
either the timeoutevent changes the state to Timed Out, at which time a message is
sent to Account then the message-sent event follows, or the money-inputevent
changes the state to Input Received, in which a message is sent to Account

followed by the message-sent event to change the state to Idle.

Deposit Slot

‘|‘ message-sent ‘ Timed Out

Ide
—

deposit
timeout
message-sent
Account
—~ timeout

Input money-input

Received

Account action-complete

Money
do money

Figure 37. The Dynamic Model for Deposit Slot.

An association also exists between the Account and Dispenser objects, as shown in
Figure 38. The withdraw event changes the state from Idle to Dispense Money,
then the money-dispensed event changes the state to Advise, when a message is

sent to Account, followed by the message-sent event to change the state to Idle.

63

Dispenser

withdraw(amount)

message-sent 3
Dispense

Money

Ad . money-dispensed

vise %

Account
action-complete

Figure 38. The Dynamic Model for Dispenser.

The Receipt Printer issues receipts as a result of printout or transfer or query
events, as shown in Figure 39. Then, the receipt-printed event changes the state to

Eject Receipt, followed by the receipt-ejected event to change the state to Idle.

Receipt Printer

S

jpt M’ Idle query (account, amount)
receipt-gjec

~—_ 2/

transfer (src-account

amount, dstn-account)
printout

(transaction, account, amount)

A 4

N
Printout
do: printout
\ 7
4 N
receipt-printed
Transfer
do: transfer
\.
Y
- 1 N
| VIR Teceipt-printed

Query

Eject Receipt ¢ do: query

receipt-printed
J

Figure 39. The Dynamic Model for Receipt Printer.

The Customer sends messages to the classes that make up the ATM in response to
events initiated by them and, although not resulting in the construction of software,
the Customer is modelled as an integral part of the system and serves as mechanism
for checking the completeness of the other models. As shown in Figure 40, the
Customer inserts a card and then, in response to the enter-PIN event, enters the PIN
- which may require re-entry - changing the model to the Transact state and
initiating the 'transact' activity, after which the card is ejected. Entry of an
unreadable card results in an unreadable event, a message is displayed in state Bad

Card, then the eject-card event returns the state to Not Involved.

Customer

Bad l p Card Reader
[card J unre adele (Insert)/\/' unreadable-card-inserted

card

gject-card welcome
Not

Involved

Card Reader
readable-card-inserted

enter-PIN

PIN is enter-PIN
invalid

invalidPIN

asterisk

User Interface

PIN number-key-pressed

entered

PIN-entered

i~ User Interface

ok-pressed

Figure 40. The Dynamic Model for Customer.

65

The 'transact’ activity is modelled in Figure 41, which shows that a key is pressed in
response to the menu event, resulting in either the Deposit state initiating a 'deposit'
activity, the Withdraw state initiating a 'withdraw' activity, the Transfer state

initiating a 'transfer' activity or, for a query, the selection of an account resulting in

the printout of a receipt.

Customer transact

~——___deposit-key-pressed

S bt
— ¥ Deposit
withdraw-key-pressed do: deposit

print-receipt

query-key-pressed

cancel

transfer-key-pressed

Wait for
response Transfer
do: transfer

print-receipt

no-funds

print-transfer

User Interface
query-pressed

query-advice

Select
Account

User Interface
account-selected

print-receipt

Wait for
card

eject-card

Figure 41. The transact model for Customer.

66

The 'deposit' activity from Figure 41 is modelled in Figure 42, showing that an
account is selected in response to the account event, an amount is entered following

the amount event and money is deposited following the insert event.

Customer deposit
User Interface
deposit-pressed
/\/ ™
Select
account
deposit-key-prassed Wait for Account
L response
/
amount
print-receipt Enter Amount
N
Deposit money

amount
-entered

Amount

insert
Entered

User Interface
numeric-pressed(digit)

Deposit Siot
money-input

User Interface,
ok-pressed

Figure 42. The deposit model for Customer.

67

As shown in Figure 43, the ‘'withdraw' activity results in the account event changing
the state to Select Account, the amount event changing the state to Enter Amount

and a change of model state to Retrieve Money following the output event.

Customer withdraw
User Interface
withdraw-pressed
/ 7 N,
¢ \/\g Select
account
withdraw-key-pressed Wait for Account
response
\, /
. 7/
amount
print-receipt Enter Amount
N

Retrieve money
amount

-entered
. %

\ (\
Amount

ot | Entered User Interface
L numeric-pressed(digit)

User Interface
ok-pressed

Figure 43. The withdraw model for Customer.

68

The 'transfer' activity for Customer is modelled in Figure 44, showing that a source

and then a destination account is selected, then an amount is entered to complete the

transaction.
Customer transfer
User Interface
transfer-pressed
N
Select
source Source
transfer-key-pressed Wait for Account
response
s
~__ . w
- N
Select
Destination
Account

\ I
print-transfer amount
-entered
N
Amount
Entered User Interface
numeric-pressed(digit)

User Interface
ok-pressed

Figure 44. The transfer model for Customer.

A dictionary contains the information for activities and actions that are not described .

69

by a Dynamic Model, as shown in Figure 45.

Class Activity / Action |Description

Card Reader gject-card gject card from ATM.

1Card Reader keep-card place card into an intemal store for retrieval by
banking staff.

Card Reader read-pin-id read PIN and customer id from magnetic stripe on
card.

Deposit Slot money start rollers; stop rollers when paper received.

Receipt Printer printout print"The amount of $' (amount) * has been "
{transaction} " on your " {account) * account".

Receipt Printer transfer print "The amount of $' {amount) " has been
transferred from your " (src-account) " account to
your* (dstn-account) " account".

Receipt Printer query print"Your " (account} " account balance is $"
{amount}.

User Interface account show "Please select the account".

User Interface amount show "Enter amount to be deposited in whole
dollars".

UserInterface asterisk show **",

User Interface cancel show "The transaction has been cancelled"”,

User Interface compare-PIN entered-PIN := PIN ifTrue: [is-PIN], ifFalse; [not-pin].

User Interface dstn show "Select the account for destination of funds®,

User Interface enter-PIN show "Please enter your PIN and press OK".

User Interface held show "You must contact your branch to regain your
card",

User Interface inseri show "Place deposit in slot”.

User Interface invalid-PIN if (times-validated) > 3, retry-allowed, otherwise
show "The PIN entered is invalid - try again”,
increment (fimes-validated), PIN-rejected.

User Interface menu show “select action key 1o deposit, with draw,
transfer or query". '

User Interface no-funds show "There are insufficient funds to cormnplete the
transaction”.

User Interface output show "Take money from dispenser”,

User Interface source show "Select the account for source of funds”.

User Interface thanks show "Thank you for banking with us".

User Interface unreadable show "The card cannot be read by this ATM",

User Interface welcome show "Welcome to the ATM, please insert your
card",

Figure 45. Dictionary of activities and actions for the ATM.

Determine the Associations
In determining the behaviour of objects, the associations between classes have been
defined by the lightning strike symbol and these may be described within the Object

Mode!, as shown in Figure 46.

70 g
o
;
ATM _
[
|
)
. s
‘Card Reader .. :
. vn!lda.l.e[PlN.H] ' noL-PIN
unrgadable - o i
ajacl] o : o ‘
;
: User Inferface
Customer o
7#f chockiki) :
Guanyid, account) ;
depoait(id, accounl, amount) :
withdraw{id, accouny, amount) A
translatfid, src-nocounl, [
amounl, dstn-pocount} _
i
acioncomplole
nsuliclant-hinds rt
imvkd-aceount .r
vehd-aceounl ;
. limaoul .
" Deposit Slot actioncompleta Account
. doposit
it oo g
rransfar{erc-2ccounl,
Amounl, dsin-scoount)
query{aceaunt, anﬁunu
" Dipenser scton-omplete ‘Recelpt Printer

Figure 46. The ATM Object Model with associations.

71

For completeness, the behaviour initiated by the Customer which interacts w1th
other classes is obtained from the Customer Dynamic Model and displayed Withi_n_ o

the Object Model, as shown in Figure 47,

Card Rédde'r

readabls

~card-insered unreadabla .

- ~carcinsaned

numbar-key-prassed
ck-pressad
eccount-selacted
numeric-pressed{digl)

User Interface

Customer deposht-pressed
. . withd raw-pressed
transfar-pressed
query-pressed
money-input
" Deposit Slot

Figure 47. The Objecr Model with Customer interaction.

Detail the Attributes

72

Atiributes have been determined within the Dynamic Models, represented within

brackets, which are described in the dictionary as shown in Figure 48,

Receipt Printer
Receipt Printer
User Interface

User Interface
User Interface

User interface
User Interface

User Interface

User Interface

src-account

transaction
account
amount
dstn-account
id

PIN

src-account

times-validated

Class Aftribute Description

Account account A choice of "cheque” or "savings".

Account amount The value of the transaction in whole dollars,

Account dstn-account The choice of "cheque” or “savings” that describes
the account to which funds are transferred.

Account id The unique identification for a customer,

Account src-account The choice of "cheque" or "savings" that describes
the account from which funds are transferred.

Dispenser amount The value of the fransaction in whale dollars,

Receipt Printer account A choice of "cheque” or "savings”,

Receipt Printer amount The value of the transaction in dollars and cents.

Receipt Printer dstn-account The choice of "cheque” or "savings" that describes

the account to which funds are transferred.

The choice of "cheque” or "savings” that describes
the account from which funds are transferred,
One of "deposit", "withdraw" or “query",

A choice of "cheque" or "savings",

The value of the transaction in whole dollars.

The choice of "cheque” or "savings" that describes
the account to which funds are transferred.

The unique identification for a customer.

The four digit Personal Identification Number
contained on the tvansaction card.

The choice of "chegue" or "savings" that describes
the account from which funds are transferred.

The number of times a PIN entry has been validated
for a card insertion,

Figure 48. Dictionary of attributes for the ATM.

3.3 Summary

Apart from the inheritance links, the development of an ATM has been specifiéd_by

employing the proccss steps and modeliing approaches outlined in the previous

chapter. This specification will be extended following the investigation of reuse

issues and the EOHStruction of a search tool described in the next two chapters,

73

4 Achieving Reuse Of Software Components

Reuse is an important goal for the software industry because, as Booch (1987, p. 6)

points out, "it simply makes sound engineering sense to apply the principles of reuse
to the discipline of software development”. As cited in Chapter 1, Meyer (1988,

p. 27) says, "there should be catalogues of software modules . . . [so that] we would
write less software, and perhaps do.a better job at that which we do get to develop",
explaining that "as early as 1968, . .. D. Mcllroy was advocating 'mass produced

[1L]

software components', -

This chabter sﬁécifit_:ally addresses reuse, the barriers to achievin g it and the méans
by which it may be applied in the object-oriented paradig'm. In the first section,
reuse is defined, its rationale is examined, its relationship with the object-oriented
paradigm is described and barriers to its employmént are outlined, Then, having
identified the retrieval of information aBout components as the principal barrier to
reuse, the second section examines approaches to alleviate this barrier. In some
cases, the method of retrieval directly affects the way in which the information is
stored. Furthermore, some methods have the requirement that searchers must follov;f
those thought processes employed in the storage classification phase. This

requirement raises a difficulty which is overcome in the approach of full and free

© text retrieval. The third section defines this approach and, based mainly.on Salton n

' (1989), examines the issues in efficiently implementing it,

4.1 The Reuse of Software Components

To understand reuse, Horowitz & Munson (cited in Booch, 1987, p. 7) explain that
it "can come in many forms . . . [such as] prototyping, reusable code, reusable

designs, application generators, formal specifications and transformation systems,

74

and off the shelf'commerc'gf'i\l packages”. Meyer (1988, p. 31) poi.nts.o'ut'that "once
everything has been said, software is defined by code. A satisfactory policy for
reus.ability must ultimately produce reusable programs". Dusink & Hall (1991,

" PpP- 1 -3) define reuse as: |

| a means to support the conétruction of new programs using in a

syste;natical way existing designs, design fragments, program texts,
documentation or other forms of program repféscntation.

- These authors classify reuse either as transformational, in which "abstract
spéciﬁcations are transformed automatically into efficient target progréms
using transformation rules", or as compositional, in which "soft_wa_ré components . .

are used as basic building blocks in the software construction process”. .

_.'l‘herc'are compelling reasons for achieving the goél of ci;ﬁcient reuse, 'as'.M.atsumo'to'
(cited in Prieto—Diaz & Jones, 1988, p 152) points out that "in process control
applications, Toshiba has reported productivity increases of 14 percent every year by
- ﬁpplying a 'software factory-' approach that emphasizes reusability". The opportunity

exists to increase productivity because, according to Jones (cited in Prieto-Diaz &

Jones, 1988, p. 152), "o_flly [about] 15 percent of ail soft\#are.is unique.a'nd Speciﬁc
to a single application. The rerﬁaining 83 percent is common, generic and
~ potentially reusable across applications”, Booch (1987, p. xvii) aéserts?that "a
carefully engineered collection of re_uSébIe software components can .feduce'the cost
~ of software deve]c)pment, improve the quality of software products, and accelerate -

| software production”. Booch (1987,_ p. 6) adds that "just as with hardware ..

;:omponents, we may develop classes of reusable softwaré components that are
.functionally similar but that exhibit different time and space behaviour, and then we

" can use them to create more complex software systems”,

75

In an earlier chapter, the inheritance mechanism of the object-oriented paradigm was
explainéd showing that, instead of changing and adding to the existing source code,
a new class inherits some of its behaviour frorﬁ the existing classes. This is
supported by Hooper & Chester (1991, p. 74) who say that "object-oriented design
... promises inéreased software reuse" with the ability "to 'grow’ software . . ,
through inheritancé". However, Jette & Smith (cited in Hooper & Chester, 1991,

p. 77) explain that "extensive use of inheritaﬁce and message passing will increase
the need for good browsing tools to isolate which class/method is responsible for a

problem”.

Following an experimént in which object-oriented programmers were compared
with a control group of structured programmers, Lewis, Henry,l '.Katlura & Schulman
(1992, 38 - 40) conclude that: |
¢ The object-oriented paradigm does promote higher productivity than the
procedural paradigm. | |
+ When reuse is not a factor, the object-oriénted_ parzidigm does not promote
higher productivity.
¢ The object-oriented .paradi gm does promote higher productivity than the
procedural paradigm when reuse is employed,
+ Given moderate encouragement to reuse, the object-oriented paradigm does.
promote higﬁcr productiv.ity than the procedural paradigm.
o Given strong encouragement to reuse, the object-oriented paradigm does
p’rdmote higher productivity than the procédural paradigm. |
¢ The object-oriented pafadigm demonstrates a particular affinity to the reuse

- - process.

There are inherent overheads in achié;_ving Yeuse of software components. One is the

cost of réuse_and Boach (1987, p. 6), poini{ing out that "if it costs more to finda

76

component and understand i.t.s' behavior than it does to build it from scratch, then
‘there will be little chance for retxse outlmes the followmg cost issues:
o It simply takes more effort to build a component that is generahzed and
hence approprlate for reuse than one that-.ls not designed with reuse in mind.
¢ A component that is reused must be robust enough to suffer the abuse of a
wide range of applications. Obscure, stressful applications will often
uncover failure cases that would not be detected in general use, and so the
cotnponent must be repaired if it is to continue to be reusable. _
¢ Once a component is de51gnatecl as reusable, there must be conﬁguratton

.management m place to track the component over its llfe

_A_nother barrier is.the need to persuade programmers to use modules develOped'by
another person because, a.s Meyer (1988, p. 28) points out, "the 'Not Invented H_ere_'
~ complex is well known" and therefore "the psychological difficulties should not be '

underestimated”, even though "the main roadblocks are technical”,

The ability to locate the desired software module is perhaps the most important
b'arrier and Booch (1987, p. 6) states the need for "a mechanism with which to.
efflc1ently retrteve an 1nd1v1dual component"”, More emphancally, Frakes & Nejmeh
| (1988, pp. 142 - 143) stress that "a fundamental problem in software reuse is the
_ lack of tools 0 locate potential code for reuse” and that “if potentially reusable
software components cannet be locatecl retrleved and reviewed effectlvely, reuse is __ -
ne1ther feasnble n01 valuable" Meyer {1988, p- 28) is cited in Chapter 1, claxmmg
that "the best reusable components in the world are useless if nobody knows they
_ex1st [or] 1f it takes a long time to obtam them“ Explaining the steps to reuse,
:'-_"Dusmk and Hall (1991 p. 4) say that "some form of software component llbrary
' 'f;_must be ava_llable,.for the storage of components (and their descrt_ptlon_s) and to y

al low forms of br'o'wsi_ng'.an_d qil'_ery'in g".

e D

77

“ The next section addresses the last of (hese-barri@rs - the approaches for storing and o

retrieving software components.

4.2 Storing and Retrieving Reuse Components

Thé'_.traditional approach has been to store information using a classification scheme,
| whiéh is a means of obtaining order based on a controlled and structured index
' voca'l:'J.ulary. Prietb—Diaz & rches (1988, p. 155) explain that classification consists
of "names or symbols representing concepts or classes, listed in systematic order, to N

display relationships between classes”.

According to Prietb-Diaz & Jones (1988, p. 155), "two types of classif_ic.atibn _
scheméis. are used in library science - cﬁﬁmerative and faceted", of which "tﬁé
traditic;nal, enumerative method postulates a universe of knowledge divided into . |
success:._ively narrower classes”. An example is the Dewey Decimal system, u'éed'to: _
locate the shelf positi.on of books within a library, where all possible classes are |
prede_fiﬁed and listed in the classification schedule. A problem arises when a choseﬁ
classification may hot be obvious to all sear_chers, _becatise a librarian could place tﬁe
title Sf_fucturea' Systems Programming in any bf the categories shown in Figure_49 o

{(drawn from Prieto-Diaz & Jones, 1988, p. 15'6)_.

001.61 system imalysis

001.6425 software |
003 systems T
620.72 systems analysis . .
620.73 systems construction -

Figure 49 - Dewey '(_:l'as__sl_ificatic'm.' _ S 1 SR

- Of faceted classification, Prieto-Diaz & Jones (1988, p. 155 - 157), say thatit"is ~ -

“more straightforward .. [because] to classify a title, g_fcrm_is selected from each L

78

R facet to best describe the concepts in the title" so that it "relies. not on the breakdown o

of the universe, but on the building up or synthesizing from the subject of particular

- documents". 'Each' cor_nponent is matched into elemental classes, which are grouped
into facets, considered by Prieto-Diaz & Jones (1988, p. 155) to be "the

perspectives, viewpoints or dimensions of a particular domain",

The above methods, however, rel yona common unders.tandin.g between'the ;iers'oii
selectrng the storage criteria and the people retrlevmg the mformatton Addrtlonally, _
for these methods, Huang (cited in Frakes & Nejmeh, 1988 p. 143) concludes that
"no methodology for large scale software development prov1des areliable storage
.and retrieval mechamsm for a code-level library”. Frakes & Nejmeh (1988, p. 144)
also point out that these methods "are usually limited in their ability to handle data

that is not highly structured, such as text or source code."

Mortimer Taube (cited in Cortez & Kazlauskas 1986, pp. 56 - 58) developed a -
concept of usmg some of the actual woads contamed ina document as the search
“keys in order to cope with "the massive growth of scientific and _techmcal |
~ information, and the need to store and retrieve this information rapidly". Thisfull
and fr_ee text retrieval.concept is supported by Frakes & Nejmeh (1988, p. 144), who ._
expiain that because systems employing this approach "are capabie of handling |
unetructured data, they can be used to s.tore and retrieve p_roducts ...suchas...
desig.n documents [and] code". Stlpport is als__o provided.hy Gibbs,-_Tsichritzis_,
' Caéa’is, Nierstrasz and Pintado (1990, 93) who say that one way "of representing an |
object c]as:s so that the i_nfonnation needed to use the class can be easily located and
_. incorporated within an apolication . would be to represent classes by source
text" ' Accordmg to Horton (1990 p- 59) |

' the_ main advant_age_ of full text . .. is the ablllty to 1dent1fy precise

B WOrd's__and'phrases' and su_btlettes of meaning in the original context,

79

withoﬁt the filter of an abstract, which can omit important

information or terms

:The concept is also supported by Freeman & Henderson-Scllers (1991 P. 175), who. .

_say that "a method of cataloguing and classu’ylng Object Classes utl]lsmg Fulltext -
_. storage may obviate the high intellectual requlrement requrred to establlsh

controlled vocabulary entries".

To apply the full and free text process, Salton (1989, p. 232) explams that for each
word, "a separate index is constructed that stores the record 1dent1ﬁers or record
addresses, for all records 1dent1fled by that term" Using words related to the search.
~ the documents which contain them may lead to the desired mformatron or, as -
Kimmel (1990, p. 106) explains, "often the documents themselves . . act only as

pointers to the information source”. The approach is detailed in the next section.

4.3 Full and Free Text Retrieval

Although the concept of indexing every word for gtdfége'appears onerous,'the-re)rt '
_retrieval process may be very. fact bccduse many words are use’d'frequently -Sélton |
{1989, pp. 105 - 108) points out that "six words (the, of, and, to, a and in) account

for over 20 percent of all word occurrences in English" while "the 50 most frccuent o

words cover more than half of alt word occurrences in ordinary text", As a result,

beyond a moderate size, the number of words to be indexed grows at a lower rate

) than the size of the text, as shown in Figure 50 (drawn from Salton, 1989, p. 108).

-80

* Number -) Average -Auéruge

ofword " pumberof - increase in
occuirences ' separate ~ . number of
' words .- . words
500 : 223.6 _ R
1000 3162 - 92,6
2000 447.2 ' “131.0
4000 632.5 _ 1853
. 6000 - 7746 71420,
8000 ' 894.4 ' 119.8
10000 1000 . 105.6.

12000 1095.4 T 854

Figure 50. Growth of new words with an increase in the text size. ~

The method, explamed by Salton (1989, pp. 232 - 233) is to store words - or terms -
in a file "known as an inverted mdex or inverted file" as follows
¢ The complete file is first represented as an array of indexed records,
where each row represents a record, or document, and each column
specifies the assignment ofa particular term,
~@ 'The record-term array is inverted (actually transposed) in such a way
that each row of the inverted array then specifies the records |
corresponding to some particular term.
¢ The rows of the inverted term-record array are m"anipulateld. in |
accordunuu with a particular qucry specification to 'detérminé the set
of records that respond to the QUery.
For exam{file, the document positions stored in the inverted file construction for the
a IBM STAIRS (Storage and Information Retrieval System) software link each term
_tu a'sét of addresses, each one of which denotes the parzigraph - sentence - word
position of an occurrence of the term. As an illustration, if the second sentence in |
the.'third parugraph is 'The quick brown fox jumps over the lazy dog', then the
address for each word is specnfled by the number of paragraphs from the start of thc

S document the number of sentences from the beginning of the paragraph and the o

81

number of words from the begmnmg of the sentence, as shown in Fxgure 51 Note -

that word storage is not case sensitive.

= P

I~ N WL O W

Term ~ Para Sentence Para Sentence ~ Word-
brown . e T
dog
fox
jumps
lazy
over
quick
the

W LW W W W
NESESECENE S SN

Figure 51. An inverted list

. _FolloWin'g the stOrage of the document in the manner described ahove ; quéries Inay-:
be formulated by retrlevmg ‘the address of search words Salton (1989 p- 232)
explams that the query may be enhanced by j jommg search words Wlth boolean
operators of which the following are used |

¢ The or operator treats two terms as effectively synonymous. In
partlcular gwen the query (term 1 or term 2), the presence of elther
term ina record sufﬁces to retneve that record.
¢ Theand operator comhmes terms into term phraseSﬁ thus the quer'y _
B (tenn 1 and term 2) indicates that both tenns .'must_helpr.ese'nt_ fot _.
retrieval. - |
. . The not operatot_' is a resttiction, or term-narrowing, operetor that is .
o nortnal._ly used in oonjunctionw_ith'the and operator to restrict the
_n'pplicobility.of pafticular terms; thus the query (term 1 and not tefm
| 2) leads to the retrteval of all records containing term 1, prov1ded that o

_ term 2 is not also present in the words

82

- According to Salton (1989, pp. 232 - 236), the inverted index free and full text
method is faster than "sequential searches of the record file, as well as éccess |
" methods based on pointer-chain tracing as in the multilist method" and that it
"exhibits substantial advantages in témis of processing efficiency”. The method
does have disadvantages and Salton (1989, p. 236) explains that:

+ the records are normally retrieved in the order in which they appear ili":t;he -

inverted lists; |
o alarge output may overwhelm the user; and on the other hand,
‘¢ narrowly fonnﬁlated queries using and operators n‘ia}f géncrate very l_ittie

output, -

Additi_bnally Salton (1989, p. 246) describes .'_‘various methlods dés'igned to reduce N
the size of the index term set, and hence the inverted index itself”, such as: |
the use of truncated terrﬁs instead of full word forms; |
o the implementation of hash-table transformations to reduc:f;' vari.a_blé-le.ngth_ L
- word_foﬁns to short fixed-iength codes; and
¢ replacement of full term entries with word fragments,
However, Salton (1989,_p. 246) warns that these methods hzive "the disadvant_age ¥ .
_. of a loss of subject disCrirﬁinatio_n, possibly leading to reduced retrie val | |
 effectiveness, bécause the short forms of thellterms do not always specify topics |
p_recise]y".. Another method described by Salton (1989, p. 279) isto "eliminate
common fuhcfion words from the document texts by consulting a special dictionary,
© orstop list, containing a list of high frequency function words", taking advantage of N
| the knowledge that "most function words are characterized by high occurrence
frequencies in ordinary texts”. A further capability, according to Salton (1989,
pp. 299 - 301), is the use of a thesalirus which "takes low-frequency, overly specific
terms and ;Ep!aées them with 'less-speciﬁc, medium-frequency thesaurus 'heads™

which “broadens index terms whose scope is too narrow to be useful in retrieval", e

83

R _.Thc author explains; h__owevcr, that F‘thcsau_m'ses valid for subject areas of reasonable

scope are constructed manually, or intellectually by committees of experts”.

44 _Summary

| The chapter has examined the issues of reuse, mcludmg those that apply to the |
object-orlented paradigm, concluding that an important bamcr to reuse 1s the lack of -
a capability to retrieve relevant information about software modules The full and
free text retrieval method overcomes the dlfﬁculty that the searcher has in -

understanding the thought processes used in the storage of mforma.rcn and in the

G

”next chapter, a scarch tool 15 ccnstructed to employ pertment parts of thxs method

84

5 The Search Tool

The previous chapter establishes the requirement for an objected-oriented search
tool to indicate potential classes based upon search criteria, then it espouses the

technique of full and free text retrieval as a beneficial search mechanism.

This chapter details both the construction of the tool and its usage. More

specifically, the first sectidn develops the requirement, describes the analysis and
design and outlines the test procedures. Then, the second section provides details on
the_ environment required to implement the tool, on operation of the tool, on exiierin’g |

the search criteria and on evaluating the resul.

5.1 Development of the Search Tool

Complying with the process described in Chapter 2, the analysis and design of the
search tool is undertaken within this section by an understa.nding of the needé ofa
software consfructor together with thé manner in which these needs may be fulfilled,
an idchtification_c)f the objects involved, their résponsibililies, their "association_s, ' |
| ‘their attributes and a determination of the inheritan’ce links that énhance the

implementation.

Uﬁderstand the Problem |

An application developer within the object-oriented paradigm, wishing to implement

a desired functionality, can articulate a natural language specification of a deéirecl

software class but may not understand the capability of all classes in the library. To

 relieve this lack of understanding, it has been shown in previous discussion that a

 search too! is needed to find suitable candidate classes by initiating a search based -

“on th_é_ natural laﬁguagc:spécification. Thus, words that express the main theme ofa -

35

natural language specification may be input to the tool, _Wﬁbsc resultant output lists
potentially suitable classes. The identification of classes by the tool should take
~ place quickly, even if preparation for the search requires a significant amount of "

time.

The séarc_:h may produce a list of many or few classes, in which ca_sés the application

developer may need to refine the search. Additionally, the application developer
will examine in detail the service methods of identified classes. Asa result of the
detailed examination, the séar’ch may be extended to fui’th_cr classes .that associate
with the class under inspection. If an appropfi_ate_class is';nvailab]e, then ultimately

it will be found.

- Identify the Objects

From the above problem identification , a Class Find search tool is developed.. The .
tool requires access to service method text code for all classes within the library.

| This access is provided indirectly to Class Find by Smalltalk's Behavior object,

which is able to read every service method within all classes.

| ‘The Class Find tool will establish a Dictionary object to store the information in a
manner designed for full 'and:';*..-?rce text retrieval. Each word of the service method

| text code, except stop wdrd_s as identified by Salton (1989), will form Dictionary
key_s, where for each key the Dictionary value will be a set of all classes that contain
tﬁat key word. A Window object will be established by the Class Find object for
the 6utput list developed. For further investigation, a Smalltalk Class Browser

_ objébt may be established for a detailed examination of a class.

L N B P

- 86

All of the objects thus identified - Class Find, Dictionary, Window, Class L

Browser and Behavior, together with Behavior's relationships with all classes - are S

shown in Figure 52.

. Window | Defionay -

- Behavior IR CiossFind.'.._

o lmad every service mathod

all classes

- Class Browser

- Figure 52, The initial Object Model for Class Find.

87

Determine the Responsibilities

The behaviour of the Class Find object is des’cribéd 1n Figurc 53 which shows that, ~

from the Closed state, constriction of the search tool is commenced by invoking the -

initialise’ activity to build the dictionary. Here, the keys are the service method text
words - except stop words - and the values are sets of classes that contain the words.

Then, _the 'opén' action invokes the formation of a window for the search tool.

When the wfhdow—fs-ope'n event occurs, the Class Find tool is in the Idle state. The

event class-menu, resulting from making a menu choice, changes the state to

~ Operate, which is described in detail below. The edit-message-sentevent returns

the state to ldle. From either the Operate or Idle states, a close event returns the

Class Find tool to the Closed state,

Class Find

Inifiglise

Closed

Initialise

close | .

do: inltialise

open

Opearate
do: operate |’

edif-massage

l ! {HB. Mndoiv—!s-b;}en

. Figure 53. The Dynamic Model for Class Find.

R,

88

Detail of the 'operate’ activity is shown in Fi gure 54. The event class-menu results

in the following choices:

e "clear and enter”, initiating the 'clear' activity which clears previous output from

the window and prompts for the search tefrns, followed by initiation of the ‘gét-.

criteria’ aétivity; |

e« enter more criteria“, iﬁitiatihg the 'gat-criteria'..activity which proﬁqpts for the
search terms; or, '

. "return to .last entry", initiating the ‘default-criteria’ activity which presents the
previous search terms for possible modi_ficatioﬁ.

Then, the locate-classes eve,l_it reSulfé in a &isp_lajé of =ach .class and the search

~criteria met. A select event, resulting from the use of a mouse to select a class,

changes the state to Browse, while a close event may occur as described previously.

Within the Browse state, a message is sent to the identified class to open a Class:

Browser object, resulting in the edit-message-sent event,

Class Find operate
. clags-meny - s

m dafault-crileria
do; class-menu : '

gel-crteria

Default

. Critaria
“do: default
~criteria

Cloar =
" do: clear

dit_-m'essage-senr

Get
Criteria
do: get-criteria

gal-crileria

Browse

do: browse

locate-classes

Locats
Classes

do: locate
-classes

sofect locate-classes

" class edit

Fig_:ur ‘-’54 Thﬁ operate model for Class Find. ~ =~ - T

—

89

The search tool is built as a result of the initialise event, as shown in Figure 53,
From the Get Code state, a message sent to the Behavior object results in the
each-method event and Class Find changes to the Stream state, at which time non-
alphabetic characters are removed from the (code-stream) attribute. As it is normal
Smalltalk practice to define identifiers as compound words, each of which may
commence with a capital letter, these are separated into individual words, then all
characters are changed to lower case. Class Find returns to the Get Code state as a
result of the more-cdde event or chan ges to the Add state as a result of the all-code
event, at which point the (code-stream) attribute is added to the Dictionary cbject

and the gpen event occurs.

Ciasé Find initialise

Behavlor
ali-ctassas melhod-dictionary

Initlatise
L

oach-method
4 {cods-stream}

morg-coda
] Stream
{code-stream)

Add
{code-stream)

Dictionary
add{code-stream}

Figure 55, The initialise model for Class Find.

v

90

The 'locate-classes' activity, resulting in a display of each class that meets the
search criteria, is shown in Figure 56. Within the Lockup state, for every search
word other than or, and or not, each class containing that word is found and added
to the {class-output) attribute. The fookup-completed event changes the state to
Transfer Output, where the (class-output) attribute is prepared for listing, then the
oufput-transferred event changes the state to Qutput, sending the (class-output)
attribute to the Window. If the more-criteria event occurs, the actions are iterated,
otherwise either the select event occurs because a class is selected or a close event

OCCcurs.

Class Find locate-classes

Leokup

P {word, class-output)

[4

‘ locale-classes

do: lookup

fookup

o -compleled
mosu-crijarnia

Transier
Output
{class-autpul)
do: transfer-output

selact oulput-transferred

{class-output)

Window
contents(class-output)

Figure 56. The locate-classes model for Class Find.

91

The 'lookup’ activity, illustrated in Figure 57, is initiated by the focate-classes or
more-criteria events. From the Find state, a message is sent to the Dictionary
object to locate the (word) attribute, resulting in the find-completed event and a
change of state to Not. If the (word) attribute has been negated in the search term,
then the (class-list) attribute is complemented and the complement-completed event
changes the state to And. If the (word) attribute is part of a boolean expression
linked by an and operation, a union is undertaken between the current and previous
(class-list) attributes and the union-compieted event changes the state to Add. The

(class-list) attribute is added to the output and the lookup-completed event occurs.

Class Find lookup

Dictfonary

/ locala{word)

find-compleled
Find {class-lisl)

. focate-riassas

b (word) ’
Wm-m;da/ y

Not
(word)

il

cormplemant
omplaled
{class-list)

uion-complated
{elass-ist)

Figure 57. The lookup model for Class Find.

The transfer-output' activity, initiated by the lookup-completed event, is shown in
Figure 58. From the Notify state, a user display is prepared indicating the number of

responses to the search. When the size-transferred event occurs, the state is

92

changed to Output Candidate, in which the (ciass) attribute is prepared for output.

When the class-transferred event occur: .. (Search-term) attribute is output and

the output-transferred event occurs.

Class Find transfer-output

sizg-translerred

Notify

@ lokuprompleied \f (racpanse-size)

Oulptt
Candidate

{class}

puiput-transtarred

Cutput
Criteria
{search-term)

dags-ransforred

Figure 58. The transfer-output model for Class Find.

Figure 59 shows a dictionary for activities and actions that are not described by a

Dynamic Model.

Class Activity / Action [Description

Class Find browse Open Class Browser on selection.

Class Find class-list Show the accumulated output from the search,

Class Find class-menu Show “clear and enter" - select for clear,
show "enter more criteria®, select for get-criteria;
show "return to last entry”, select for default-criteria.

Class Find clear Initialise (class-output}, then induce get-criterta.

Class Find defauit-criteria Show previous entry in prompting for search input,
then induce locate-classes.

Class Find get-criteria Prompt for search input, then induce locate-classes.

Class Find open Open list window. For menu - induce locate-classes;
for change - induce class-list, for selection - induce
browse.

Figure 59. Dictionary of activities and actions for Class Find.

93

Determine the Associations
From the behaviour explained above, the associations between classes are defined

by the Object Model, as shown in Figure 60.

Window Dictionary
locate
add
contents {code-stream) {word)
{class-outpul)
find-completed
{class-list)
- all-classes method-dictionary
Behavior ClassFind
P
each-method{codg-stream) ’
edi
all classes
opan-on

Class Browser

Figure 60. Associations for Class Find.

94

Detail the Attribuies
From the Dynamic Models, attributes are identified and described in a dictionary, as

shown in Figure 61.

Class Atftribute Description

Class Find class The name of the class that contains the search
term.

Class Find class-list A list of classes that contain the search term.

Class Find code-stream All text for each service method.

Class Find class-outpug The search cutput, consisting of the number of

responses, each class matching the search term
and the relevant search term.

Class Find response-size The number of classes matching the search term.

Class Find search-term Tnd words and boolean expressions on which the
search is based.

Class Find word Each word input to the search,

Dictionary code-stream A stream of words, each of which is to be stored.

Dictionary word The key word to be Jocated.

Figure 61, Dictionary of attributes for Class Find.

Build the Inheritance Links

The desired behaviour to open and manage a Window is provided by inheritance
from the View Manager class, Available from the Smalltalk/V vendor, additional
to the standard class library, is the Word Index class, which incorporates the
necessary behaviour to store and retrieve text words in a Dictionary using full and
free text principles. Inheriting from View Manager and Word Index, as shown in
Figure 62, relieves the development requirement for detailed interaction with the

Window and Dictionary classes.

95

. View Manager

Wordindex

operates in
Window
T sloras in
Dictionary
, alt-classes method-dictionary
Behavior
each-method{cods-siream)
all classes
apenﬁ
Class Browser

ClassFind

Figure 62. The final Object Model for Class Find.

96

Testing the Search Tool __

Test procedures are developed to ensure that the search tool accurately fulfils the

requirement described above. As Page-Jones (1988, p. 268) points out, these

procedures "should contain test cases comprising test data deliberately and

fiendishly crafted to expose as many defects as possible, together with the predicted

output for each test input”. The test procedures cover:

 accuracy, ensuring that each and every class that contains the search word is
exhibited; and

» functionality, affirming predicted behaviour for normal input and expected
behaviour for erroneous input.

For a credible test plan, modification for the test process is minimised and the final

code is completely tested.

Accuracy and normal functionality are tested by searching for occurrences of words
within an environment for a known result: namely, none, one and multiple; negation
of none, one and multiple; intersection; union; and combinations of negation,
intersection and union. The known environment consists of four new classes, as
follows:

+ A class named Class0, with no methods;

o A class named Classl, inherited from class Class0, with a method named
'methoda’ containing the words wordinone and wordinonetwo and another
method named 'methodb’ containing the words werdinonetwothree and
wordinonethree;

o A class named Class2, inherited from class Classl, with a method named
'methodc' containing the words wordinonetwo, wordinonetwothree,
wordintwo and wordintwothree; and

e A class named Class3, inherited from class Class2, with a method named

'methodd’ containing the words wordinonetwothree, wordinonethree and

97

wordinfwothree, a method named 'methode’ containing the word wordinthree
and a method named 'methodf' containing no additional words.
Therefore, a test environment is created covering all possibilities where classes have
none, one and multiple methods, where methods contain none, one and multiple
words and where the occurrence of words is as follows:

wordinzero is not present in any class;

« wordinone occurs once, in Class];

» wordintwo occurs once, in Class2;

o wordinthree occurs once, in Class3;

+« wordinonetwo occurs twice, in Classl and Class2;

« wordinonetwothree occurs three times, in Classl, Class2 and Class3;

« wordinonethree occurs twice, in Class1 and Class3; and

» wordintwothree occurs twice, in Class2 and Class3.

With minimal modification, the test environment is limited to Class0, Classl,

Class2 and Class3, for which the Venn diagram is shown in Figure 63,

Unlverse

Closs2
wordinonetwo
wordinone wordintwo

wordinongtwothrae

wordinonethree wardintwothree

wordinthres

Classd

Figure 63. A Venn diagram for the test environment.

98

To demonstrate satisfactory performance of the search tool, the following plan tests

each region of the above Venn diagram and each logical combination.

Test
1.

10.

Input

wordinzero

wordinone

wordintwo

wordinthree

wordinonetwo

wordinonetwothree

wordinonethree

wordintwothree

not wordinzero

not wordinone

Expected Oufput
Number of responses is zero.

Number of responses is one, showing
class Classl.

Number of responses is one, showing
class Class2.

Number of responses is one, showing
class Class3.

Number of responses is two, showing
classes Classl and Class2.

Number of responses is three, showing
classes Classl, Class2 and Class3.

Number of responses is two, showing
classes Classl and Class3.

Number of responses is two, showing
classes Class2 and Class3.

Number of responses is four, showing
classes Class0, Classl, Class2 and
Class3.

Number of responses is three, showing
classes Class(, Class2 and Class3.

99

Test Input Expected Output
11. not wordintwo Number of responses is three, showinyg
classes Class0, Classl and Class3.

12. not wordinthree Number of responses is three, showing
classes Class(, Classl and Class2,

13. not wordinonetwo Number of responses is two, showing
classes Class0 and Class3,

14. not wordinonetwothree Number of responses is one, showing
class Class.

15. not wordinonethree Number of responses is two, showing
classes Class0 and Class2.

16. not wordintwothree Number of responses is two, showing
classes Class? and Class1.

17. wordinone or wordinonetwo Number of responses is two, showing
classes Class1 and Class2.

18. wordinone or wordinonetwo or Number of responses is three, showing

wordinonetwothree classes Classl, Class2 and Class3,

19. wordinzero or wordinone or Number of responses is three, showing
wordinonetwo or classes € lassl, Class2 and Class3.
wordinonetwothree

20. wordinone and wordinonetwo Number of responses is one, showing
class Classl.

21. wordinone and wordinonetwo Number of responses is one, showing
and wordinonetwothree class Classl1.

Test
22,

23.

25.

26.

27,

28.

29,

30.

Input

wordinzero and wordinone
and wordinonetwo and
wordinonetwothree

not wordinone or not
wordinonetwo

not wordinone and
wordinonetwo

not wordinone and not
wordinonetwo

not wordinone and not
wordinonetwo and not
wordingnietwothree

wordinone and wordinonetwo

or wordinonetwothree

not wordinone and
wordinonetwo or
wordinonetwothree

not wordinone and not
wordinenetwo or
wordinonetwothree

not wordinone and not
wordinonetwo or not
wordinonetwothree

100

Expected OQutput
Number of responses is zero.

Number of responses is three, showing
classes Class0, Class2 and Class3.

Number of responses is one, showing
class Class2.

Number of responses is two, showing
classes Class0 and Class3.

Number of responses is one, showing
class Class0.

Number of responses is three, showing
classes Classl, Class2 and Class3.

Number of responses is three, showing
classes Classl, Class2 and Class3.

Number of responses is four, showing
classes Classs0), Class1, Class2 and
Class3.

Number of responses is two, showing
classes Class0 and Class3.

Then, after reverting to the original code - unmodified for testing - the tests are

- repeated using the full environment. Using an approach independent to that used by

the search tool, the total number of classes - denoted by N - is derived.

The test processes are:

Test Input

31

32,

33.

34.

35.

36.

37.

38.

39,

40.

41.

42.

43,

wordinzero

wordinone

wordintwo

wordinthree

wordinonetwo

wordinonetwothree

wordinonethree

wordintwothree

not wordinzero

not wordinone

not wordintwo

not wordinthree

not wordinonetwo

101

Expected Qutput
Number of responses is zero.

Number of responses is one, showing
class Classl.

Number of responses is one, showing
class Class2,

Number of responses is one, showing
class Class3.

Number of responses is two, showing
classes Class1 and Class2.

Number of responses is three, showing
classes Classl, Class2 and Class3.

Number of responses is two, showing
classes Classl and Class3.

Number of responses is two, showing
classes Class2 and Class3,

Number of responses is N.

Number of responses is (N - 1).

Number of responses is (N - 1),

Number of responses is (N - 1).

Number of responses is (¥ - 2).

Test Input

44,

45.

46.

47,

48.

49.

50.

51.

52.

53.

54.

55.

not wordinonetwothree

not wordinonethree

not wordintwothree

wordinone or wordinonetwo

wordinone or wordinonetwo or

wordinonetwothree

wordinzero or wordinonge or

wordinonetwo or

wordinonetwothree

wordinone and wordinonetwo

wordinone and wordinonetwo

and wordinonetwothree

wordinzero and wordinone

and wordinonetwo and

wordinonetwothree

not wordinone or not
wordinonetwo

not wordinone and
wordinonetwo

not wordinone and not
wordinonetwo

102

Expected Qutput
Number of responses is (N - 3).

Number of responses is (¥ - 2).
Number of responses is (N - 2).

Number of responses is two, showing
classes Classl and Class2.

Number of responses is three, showing
classes Class1, Class2 and Class3.

Number of responses is three, showing
classes Classl, Class2 and Class3.
Number of responses is one, showing

class Class]1.

Number of responses is one, showing
class Class1.

Number of responses is zero.

Number of responses is (N - 1).

Number of responses is one, showing

class Class2.

Number of responses is (¥ - 2).

Test
56.

57.

38.

59.

60.

Input

not wordinone and not
wordinonetwo and not
wordinonetwothree

wordinone and wordinonetwo
or wordinonetwothree

not wordinone and
wordinonetwo or
wordinonetwothree

not wordinone and not
wordinonetwo or
wordinonetwothree

not wordinone and not
wordinonetwo or not

wordinonetwothree

103

Expected Qutput
Number of responses is (¥ - 3).

Number of responses is three, showing
classes Class1, Class2 and Class3.

Number of responses is three, showing

classes Class1, Class2 and Class3.

Number of responses is N.

Number of responses is (¥ - 2).

Acceptable behaviour restlting from erroneous input may be tested as follows:

Test
61,

62,

63.

Input / Description

or wordinone

An or expression truncated at the

beginning.

wordinone or

An or expression truncated at the

end.

and wordinone
An and expression truncated at
the beginning.

Expected Cutput

Number of responses is one, showing
class Classl.

Number of responses is one, showing
classes Classl.

A message advising a zero response.

T U S R

104

Test Input/ Description Expected Ountput
64. wordinone and '
An and expression truncated at A message advising a zero response.
the end.

65. and not wordinone or
wordinonetwo Number of responses is two, showing
A compound expression classes Classl and Class2,
truncated at the beginning.

5.2 Operating the search tool

The above description comprises the analysis and design for a search tool to aid the
object-oriented developer, where the models incorporated within the description
provide information required for future maintenance of the search tool. The
environment for which the search tool is built is as follows:

» Dual 486 series personal computer;

« DOS version 6.2 operating system;

» Microsoft Windows version 3.11; and

o Digitalk Smalltalk/V for Windows version 2.0.

Appendix A contains the Smalltalk/V for Windows code for the search tool, which
is a Smalltalk class named ClassFind. Appendix B contains the code for the
WordIndex class which, although supplied by Digitalk, is additional to the standard

Smalitalk/V for Windows environment,

Within this section, actions undertaken within the Smalltalk environment by the

application developer are shown in bold Helvetica, such as press the Enter .J key.

105

Within Smalltalk, the action required by the developer to build the search tool is the
selection of the expression ClassFind new initialise followed by the selection of

Smalltalk and Do It, as shown in Figure 64.

ClassFind new initialise ‘:ﬁ
i

3 R £ . R * i u) o
L B B R G ooy,

Figure 64. Initiating the search tool.

The search tool, for which the visible portion is a control bar and a display window,

is shown in Figure 65.

Figure 65. The initialised search tool.

106

It should be noted that the initialisation involves a time consuming build of a
dictionary, requiring some minutes, in order to achieve fast search output. The use
of the tool is not unduly compromised, however, as developers will close and
rebuild the search tool only following the completion of each new application.
Using a mouse, the Criteria entry on the control bar is selected to open a menu, as

shown in Figure 66.

malltalk/V ClassFind Browser

Figure 66. The search tool showing menu choices.

Selection of a menu entry enables the following actions:

o clear and enter clears the previous results from the output windows before
prompting for search terms;

» enter more criteria prompts for search terms, the result of which follows the
previous output; or

o return to last entry prompts for search terms, with the last entered search
criteria visible and available for modification. The result of the search follows
the previous output.

All of the above choices enable entry of the search terms, as shown in Figure 67.

107

Enter Criteria

[corner and bottom| |

Figure 67. Entry of terms to the search tool.

The entry of search terms may be any of the following:
e A single word, such as corner.
e More than one word, such as corner bottom.
e Words joined by boolean operators, such as
corner or bottom
corner and bottom
corner and not bottom.
The boolean and and or operators are evaluated from left to right.
e Any combination of the above, including separate terms not explicate joined by
an or operator, where each term is separately searched, such as

corner and bottom point or bottom.

When the search terms have been entered, selection of the OK button with the
mouse or pressing the Enter .J key, results in a display of the classes meeting the
search criteria. Figure 68 illustrates a result in which nine classes match the

selection criteria.

108

malitaik/V ClassFind Br

The number of responses is 9

Rectangle bottom and corner
winRectangle bottom and corner
Point bottom and corner

TextTool bottom and corner
TextSelection bottom and corner
GraphPane bottom and corner
TextPane bottom and corner
AnimatedObject bottom and corner
winOrawltemstruct bottom and corner

Figure 68. The result of a search.

Selection of any one class - any line - with the mouse opens a Class Browser object

on that class. Figure 69 shows the result of selecting Rectangle.

hottom

WinRectangle bottom and corner
Point bottom and corner
TextTool bottom and corner
TextSelection bottom and corner
GraphPane bottom and corner
TextPane bottom and corner
AnimatedObject bottom and corner
winDrawltemStruct bottom and corner

lectangle |

bottom
“Answer the y-coordinate of
the bottom of the receiver.™
“rightBottom y

R A D I

Figure 69. Selection of the result of a search.

109

The Class Browser provides ready access to the text code of each service method,
as shown in Figure 69 where the service method bottom is selected. Additionally,
by using the mouse to select Method on the control bar of the Class Browser, every

class initiating or implementing the selected method may be ascertained by selecting

Senders or Implementors, as shown in Figure 70.

instance

bottom
center
containsPoint:
corner

corner:

expandBy:

extent

extent:

height

height:

insetBy:

intersect:
intersects:
isRectangle

left

leftBotton
leftBottom:extent:
leftBottom:rightiop:
leftTop

leftTop:
leftTop:extent:
leftTop:rightBottom:
mapClientToScreen:
mapScreenToClient:

Figure 70. Selecting initiators and implementors of a service method.

Smalltalk/V Rectangle | Clas

i

AT

2

ot

'

o,

P B

I)

=

i

«

<3
A

R R,
S s

%

"Answer the y-coordinate of

R
ERIS

Browser

the bottom of the receiver.”
tBottom y

MmN AT Y A OGN A

5
|

SRR R SR

110

The result of selecting Senders and Implementors, with the service method text
displayed, is shown in Figure 71.
§ fuuqunnlgu!:«nJrrurJrHJan”

TextPane>>selectToCursor:
VinRectangle class>>fromRectangle:

“Answver the Point of the left bottom corner.’
“self left@self bottom

oy

B s S S s S s s Fﬁ

ottom
“Answer the y-coordinate of
the bottom of the receiver."
“rightBottom y

I R R e

Figure 71. The initiators and implementors of a service method.

With the implementation of the search tool, the test processes developed in the
previous section may be applied. Classes Class0, Classl, Class2 and Class3 are
developed for test purposes such that wordinzero is not present in any class,
wordinone is present in Class1, wordinonetwo is present in Classl and Class2 and
wordinonetwothree is present in Classl, Class2 and Class3. Additionally, a new
method 'onlyTestClasses' is defined within the class Behavior which answers a set
consisting of the classes Class0, Class1, Class2 and Class3. The Class Find text

code is modified by changing two references from ‘allClasses' to ‘onlyTestClasses'.

The search tool may be employed to ensure that words are held in the Class Find
dictionary in the manner described above, that is:

o wordinone occurs once - in Classl;

« wordintwo occurs once - in Class2;

o wordinthree occurs once - in Class3;

111

o wordinonetwo occurs twice - in Classl and Class2;
o wordinonetwothree occurs three times - in Classl, Class2 and Class3;
« wordinonethree occurs twice - in Classl and Class3; and

o wordintwothree occurs twice - in Class2 and Class3.

Entry of these words leads to the correct results shown in Figure 72.

The number respdhses
Class1 wordinone

The number of responses is 1
Class2 wordintwo

The number of responses is 1
Class3 wordinthree

The number of responses is 2
Class1t wordinonetwo
Class2 wordinonetwo

The numder of responses is 3

Class1 wordinonetwothree
Class2 wordinonetwothree
Class3 wordinonetwothree
The number of responses is 2

Classt wordinonethree
Class3d wordinonethree
The numder of responses is 2

Class2 wordintwothree
Classd wordintwothree

Figure 72. Search tool dictionary contents for the test environment.

112

On the basis of the modification described above, the test procedures are completed

as shown in Figure 73.

Test | Resulting Qutput Verified
1. | Number of responses is zero. v
2. | Number of responses is one, showing class Classl. v
3. { Number of responses is one, showing class Class2. v
4. | Number of responses is one, showing class Class3, v
5. | Number of responses is two, showing classes Class1 and Class2. v
6. | Number of responses is three, showing classes Classl, Class2 and Class3. v
7. | Number of responses is two, showing classes Classl and Class3. v
8. | Number of responses is two, showing classes Class2 and Class3. v
9, | Number of responses js four. showing classes ClassQ, Class1, Chass2 and v

Ciassd.
10, | Wumber of responses is three, showing classes Class0, Class? and Clase? v
11. | Number of responses is three, showing classes Class0, Class] and Class3. v
12. | Number of responses is three, showing classes Class{), Classl and Class2, v
13. | Number of responses is two, showine classes Class0 and Class3. v
14, | Number of responscs is one, showing class Class0. v
15. | Number of responses is twg, showing classes Class0 and Class2. v
16. | Number of responses is two, showing classes Class0 and Classl. v
17. | Number of responses is two, showing classes Classl and Class2. v
18. | Number of responses is three, showing classes Class1, Class2 and Class3. v
19. | Number of responses is three, showing classes Class1, Class2 and Class3, v
20. | Number of responses is one, showing class Classl. v
21. | Number of responses is one, showing class Classl. v
22. | Number of responses is zero. v
23. | Number of responses is three, showing classes Classf), Class2 and Class3. v
24. | Number of responses is one, showing class Class2. v
25, | Number of responses is two, showing classes Class0 and Class3. v
26. { Number of responses is one, showing class Class0. v
27. | Number of responses is three, showing classes Classl, Class2 and Class3, v
28, | Number of responses is three, showing classes Classl, Class2 and Class3. v
29, | Number of responses is four, showing classes Classs0, Class1, Class2 and v
Class3.
30, | Number of responses is two, showing classes Class0 and Class3. v

Figure 73. Test results on modified code for the search tool,

Then, after reverting to the original code - unmodified for testing - the tests are
repeated vsing the full environment. An approach, independent of that used by the

search tool, is used to determine the total number of classes, as shown in Figure 74.

113

Smalltalk
Show it (

=

AT

s

-y nane trimBlanks = *°*
ifFalse: [noOfClasses :=no0fClasses+ 1
“noNfclasses

x;e
by
xh

o
o
o
w
o
o
.v.

Figure 74. Determining the number of classes.

The test procedures are repeated on the unmodified code, as shown in Figure 75,

where N is the total number of classes.

114

Test | Resulting Output Verified
31. | Number of responses is zero. v
32, | Number of responses is one, showing class Classl. v
33. | Number of responses is one, showing class Class2. v
34. | Number of responses is one, showing class Class3. v
35. | Number of responses is two, showing classes Classi and Class2. v
36. | Number of responses is three, showing classes Classl, Class2 and Class3. v
37. | Number of responses is two, showing classes Class1 and Class3, v
38, | Number of responses is two, showing classes Class2 and Class3. v
39. | Number of responses is V. v
40. | Number of responses is (¥ - 1). v
41, | Number of responses is (¥ - 1), v
42. | Number of responses is (IV - 1). v
43, | Number of responses is {¥ - 2), v
44, | Number of responses is (V - 3). v
45, | Number of responses is (¥ - 2). v
46. | Number of responses is (¥ - 2}, v
47, | Number of responses is two, showing classes Classl and Class2. v
48, | Number of responses is three, showing classes Classl, Class2 and Class3. v
49, | Number of responses is three, showing classes Class1, Class2 and Class3, v
80. | Number of responses is one, showing class Classl. v
51, | Number of responses is one, showing class Classl. v
52, | Number of responses is zero. v
53. { Number of responscs is (N - 1), v
54. | Number of responses is one, showing class Class2. v
55. | Number of responses is (¥ - 2). v
56. | Number of responses is (VN - 3), v
57. | Number of responses is three, showing classes Classl, Class2 and Classd. v
58. | Number of responses is three, showing classes Classl, Class2 and Class3, v
59. | Number of responscs is . v
60. | Number of responsces is (¥ - 2). v

Figure 75. Test results on unmodified code for the search tool.

The test procedures for erroneous input are shown in Figure 76.

Test | Resulting Qutput Verified
61, | Number of responses is one, showing class Closs]. v
62. | Number of responses is ong, showing class Classl. v
63. | A message advising p zero response. v
64. | A messape advising a zero response. v
65. | Number of responses is two, showing classes Class] and Class2. v

Figure 76. Test results for erroneous input to the search tool.

115

5.3 Summary

Following the principles and process outlined in earlier chapters, the construction,

usage and testing of the search tool is described. In the next chapter, the tool is used

to complete the ATM design.

116

6 The Demonstration System

For the development of an ATM, previous chapters have demonstrated an analysis
and design method to identify the objects, determine the responsibilities and the
associations and detail the attributes. In this chapter, the method is completed by
ascertaining the inheritance links - using the search tool to discover suitable classes -
and by developing test procedures. Then, an ATM system that corresponds with

both the requirement and the analysis and design method is described,

6.1 _ Completion of the Analysis and Design

To complete the analysis and design of an ATM, the method requires that the
developer build the inheritance links and establish test procedures, described in this

section.

Build the inheritance links

A number of classes have been established in previous chapters. From the
requirements for each class, the search tool is used to locate suitable classes based
on the text content of each class. In practice, this is an iterative process, refining the
search terms until suitable classes ars discovered. Described below are both the
requirement for each class and the end result for each search operation, indicating

that the search tool is successful at discovering suitable classes.

117

Card Reader

Regquirement for class: Represent the basic operation of a mechanical device by
responding with a boolean value (true or false) and manage numbers. To
simulate insertion of a card, prompt for an entry of the card details.

Search tool operation: An input of basic and boolean and number into the
search tool directs the developer to the Object class, while an input of prompt
and entry indicates a relationship with the Prompter class.

User Interface
Requirement for class: Enable text to be displayed «r an entry cancelled.
Initiate events with a pushbutton. Append, search for and accept text.

Search tool operation; From an entry of display and text and enter and
cancel the developer is directed by the search tool to the Window class and its
inherited Sub Pane class. An input of event and pushbutton to the search tool
directs the developer to the Button class. An input of append and search and
accept and text directs the developer to the Text Pane or the Text Window
classes, however, further investigation with the Class Browser shows that the
Text Window class is only used for initiating a single window.

Account

Requirement for class: Look up the customer identification number - a unique
key - and operate on the value contained by the key. To establish the account,

promipt for entry of the account details. Build and restore a list of the indexed

values for each account.

Search tool operation: 'The search tool entry of look and up and key and
value and contains directs the developer to the Dictionary ciass. A search tool
entry of prompt and entry indicates the use of the Prompter class. A search
tool entry of build and restore and list and index and value directs the
developer to the List Box and Debugger classes, while further investigation of
each class leads to the selection of the List Box class.

118

Deposit Slot and Dispenser
Requirement for class: Represent the basic operation of a mechanical device by
responding with a boolean value (true or false) and manage numbers.

Search tool operation: An input of basic and beolean and number into the
search tool directs the developer to the Object class.

Receipt Printer

Requirement for class: Represent the basic 0peration of a mechanical device by
responding with a boolean value (true or false) and manage numbers. Append
text within a form that may be closed.

Search tool operation: An entry to the search tool of basic and boolean and
number directs the developer to the Object class, while entry of append and
text and form and close leads to the selection of the Text Pane class.

The aforementioned search operations successfully discover suitable classes,
although in practice, the search demands many iterations. Salton (1989, p.236),

cited in Chapter 4, explains that the resultant output from the search may be too little

or too large, depending on the input for the search. With experience, the developer

learns to use boolean operators to broaden or narrow the search. Additionally,

provision of a thesaurus may reduce the experience required; however, Salton (1989,

p- 301), cited in Chapter 4, describes the difficulty in constructing a thesaurus.

Within Smalltalk/V, the View Manager class contains the behaviour to open and

manage the Text Pane and List Box classes and their parent Sub Pane and

Window classes, The final Object Model for the demonstration ATM is shown in

Figure 77.

2N

Window

119

Sub Pane

A

List Box

Y

Oblsct

View Manager

T
Text Pane
Card Reader
procipt
YeldalsP I, k) .
unaatabio
wfodd
Prornpter Usar Interface
Dictionary
Deposit Siot Account
Dlspensar Recelp!t Printer

FAN

Figure 77. The final Object Model for the ATM.

Testing the ATM

120

The following procedures are developed to test the functionality and accuracy of the

demonstration ATM, based on setting up and operating an account with all of the

required functions,

Test
1.

Input

Set up an account with an
identification number 10 and
with a cheque balance of $123.15
and a savings balance of
$462.55.

Insert card with PIN 1234 and
identification number 10. Enter
aPINof 1111.

Enter a PIN of 1111 a further
two times.

Insert card with PIN 1234 and
identification number |1. Enter
a PIN of 1234.

Insert card with PIN 1224 and
identification number 10. Enter
a PIN of 1234. Deposit $50 in
the cheque account.

Insert card with PIN 1234 and
identification number 10. Enter
a PIN of 1234, Withdraw $50
from the savings account.

Expected Output

The Account window shows id: 10;
cheque balance: $123.15; and savings
balance: $462.55.

Request for PIN re-entry.

Because only three attempts are
allowed, the card is held and the user
informed.

Because there is no identification
number 11, the card is held and the
user informed.

A transaction receipt is produced for a
$50 deposit. The Account window
shows id: 10; cheque balance: $173.15;
and savings balance: $462.55.

A transaction receipt is produced for a
$50 withdrawal. The Account window
shows id; 10; cheque balance: $173.15;
and savings balance; $412.55,

Test Input
7. Insert card with PIN 1234 and
identification number 10. Enter
a PIN of 1234. Withdraw $500
from the savings account.

8. Insert card with PIN 1234 and
identification number 10. Enter
a PIN of 1234. Transfer $50
from the cheque account to the

savings account.

9. Insert card with PIN 1234 and
identification number 10. Enter
a PIN of 1234. Transfer $50
from the savings account to the
cheque account.

10. Insert card with PIN 1234 and
identification number 10. Enter
a PIN of 1234. Query the
balance of the cheque account,

6.2 Description of the ATM System

121

Expected Output

Because there are insufficiont funds,
the user is informed and the card
¢jected.

A transaction receipt is produced for a
$50 transfer. The Account window
shows id: 10; cheque balance: $123.15;
and savings balance: $462.55,

A transaction receipt is produced for a
$50 transfer. The Account window
shows id: 10; cheque balance: $173.15;
and savings balance: $412.55.

A transaction receipt shows a cheque
account balance of $173.15, The
Account window shows id: 10; cheque
balance: $173.15; and savings balance:
$412.55.

The ATM system developed for this study simulates the operation of the system

analysed and designed in previous chapters. Operation of a button is achieved by

placing the mouse over the graphic button and depressing the left mouse button.

Appendix C contains the Smalltalk/V for Windows code for the demonstration

ATM, consisting of the Smalltalk classes ATM, Card Reader, User Interface,

Account, Deposit Siot, Dispenser and Receipt Printer.

122

Within the Smalltalk environment, the action required to initiate the demonstration
is the selection of the expression ATM new initialise, followed by the selection of

Smalltalk and Do It, as shown in Figure 78.

malltalk/V Tr

]

B RS

5%

A 111 heu initia)ise)

CEFHI

S

Fakl

s
et

=
o

AL

)
LA

R,
R

Figure 78. Initiating the demonstration ATM.

The operations involved in using the ATM are:
e establish or modity account details;

e insert a bank card and enter the PIN;

e deposit funds;

e withdraw funds;

o transfer funds;

e query funds; and

e cancel a transaction.

The operations are described below in more detail.

123

Establish or Modify Account Details
The first task following the initialisation of the system is to establish the accounts

available to the ATM. A prompt is made for the account identification number, as

shown in Figure 79.

Smalltalk/V Prompter

Enter account number

Figure 79. Entering an account identification number.

Then, two balances are entered, where the first balance is for the cheque account and
the second balance is for the savings account. Figure 80 shows entries of $123.15

for the cheque account balance and $462.55 for the savings account balance.

124

SmallalklV Prompter

Enter cheque and savings account balances

[123.05 46255

Figure 80. Entering account balances.

In the same manner, further account identification numbers and balances may be
entered. When all account details have been entered, a subsequent null response for
the account identification number completes the entry sequence and the account
details are available for inspection in a window. This is shown in Figure 81, in

which a window reflects the status of each account, allowing inspection during the

ATM transaction.

Accounts for Demonstration AT

10 123.15 %462.55
15 740.16 62.38
20 12.41 896.85

Figure 81. Account details.

125

Further account details may be added and existing account balances modified by
selecting Account Entry and enter or change account balances, as shown in
Figure 82, enabling entry of the account identification number and account balances

as previously described.

Accounts for Demanstra

sount Entry

ter or change acco

20 12.,m 896.85

Figure 82. Changing account details.

Insert a Bank Card and Enter the PIN
The appearance of the ATM as it first appears with a welcome message is shown in

Figure 83.

126

Demonstration ATM

Welcone to the ATH, please

Account

insert your card

Printer

Card Reader

Deposit Slot Dispenser

i

Figure 83. The ATM waiting for use.

Entry of a card is simulated by operating the card reader readable button, then
transmitting information contained on the card - the PIN and the account number.

Figure 84 shows the entry of 1234 for the PIN and 10 for the account number.

SmalltalkiV Prompter

Enter the 4 digit PIN and 2 digit Id
Account

[123a 1]] -

Printer

Card Reader

Dispenser

|

Deposit Slot

Figure 84. Entering the card details.

The PIN is then input to the ATM and the OK button operated. If either the account

identification number contained on the card does not exist or the PIN tendered to the

127

ATM is incorrect for three attempts, then the card is not ejected and a message on

the ATM screen, shown in Figure 85, informs the user.

Demonstration ATM

Account

You must contact your branch

to regain your card

Printer

Card Reader

Dispenser

AR

Deposit Slot

Figure 85. Card held by ATM.

Entry of a bank card which cannot be read is simulated by operating the card reader
unreadable button. The card is ejected, shown in Figure 86 by the appearance of

‘eject’ within the card reader and an ATM message to the user.

Demonstratian ATM

Account

The card cannot be read

by this ATH

Printer

Card Reader

Dispenser

jeers

Deposit Slot

Figure 86. An unreadable bank card inserted.

128

If the card is valid, a selection of the transaction type is requested, as shown in

Figure 87.

Oemonstiatinn ATM

Account

Select action key to
deposit, withdraw,

transfer or gquery

Printer
Card Reader
Deposit Siot Dispenser

Figure 87. Selecting the transaction.
A transaction selection is made by operating the Deposit, Withdraw, Transfer or

Query button.

Deposit transaction
Operation of the Deposit button results in a request for the appropriate account to

be selected, as shown in Figure 88.

129

Demonstration ATM

Please select the account

Account

Printer
Card Reader
Deposit Slot Dispenser

Figure 88. Selecting the account.

In response to the ATM request, the amount of the transaction is entered and the OK

button operated, as shown in Figure 89.

Demonsiration ATM

Enter amount of transaction

Account

in whole dollars

54

Printer

Card Reader

Dispenser

NS |

Deposit Slot

Figure 89. Entering the amount.

Insertion of money into the deposit slot is then requested, as shown in Figure 90.

This insertion is simulated by operating the Deposit Slot button.

130

Demonstratinn ATM

Place deposit in slot

Account

Printer
Card Reader
Deposit Slot Dispenser

Figure 90. Request for insertion of deposit.

Figure 91 shows the completion of the transaction, consisting of:
» a printed receipt - simulated on the ATM receipt printer;
» the card ejected - simulated by 'eject' appearing within the card reader; and

o athank you message displayed on the ATM.

Demanstration ATM

Thank you for banking

Account

with us

Printer

The amount of $50
Card Reader has been deposited
on your cheque account

Dispenser

W

Deposit Slot

Figure 91. Completion of a deposit transaction.

131

Withdrawal Transaction

Operation of the Withdraw button results in a request for selection of the relevant
account, followed by entry of the transaction amount, as described above and shown
in Figure 88 and Figure 89. Figure 92 illustrates that if there are sufficient funds, the
ATM:

o issues a printed receipt - simulated on the ATM printer;

o dispenses the money - simulated by 'money' appearing within the dispenser; and

o displays a message on the ATM screen for the user to take the money.

Demonstration ATM

Take money From dispenser Account

Printer

The amount of $50
Card Reader has been withdrawn
on your cheque account

Dispenser

Deposit Siot

Figure 92. Dispensing money for a withdrawal transaction.

Then, the transaction is completed in the manner described above for the deposit

transaction by ejecting the card and displaying a thank you message.

If there are insufficient funds in the account, the transaction is aborted and the ATM
informs the user, as shown in Figure 93. Then, the bank card is ejected and the

transaction terminated.

132

Demansiration ATM

There are insufficient funds

Account

to complete the transaction

Printer
Card Reader
Deposit Slot Dispenser

Figure 93. Insufficient funds for the requested transaction.

Transfer Transaction
Operation of the Transfer button results in a request for selection of the account that

is the source of funds, as shown in Figure 94.

Demonstration ATM

Account

Select the account for
spurce of Funds

Printer

Card Reader

Dispenser

Srme—

Deposit Slot

Figure 94. Request for source of funds.

The destination account is then requested, as shown in Figure 95.

133

Demonstration ATM

Account

Select the account For
destination of funds

Printer
Card Reader
Deposit Slot Dispenser

Figure 95. Request for destination of funds.

Following the selection of an account for the destination of funds, the amount to be
transferred is requested in the manner described above and shown in Figure 89.
Then, the transaction is completed as shown in Figure 96, consisting of:

o a printed receipt - simulated on the ATM receipt printer;

« the card ejected - simulated by 'eject’ appearing within the card reader; and

o athank you message displayed on the ATM.

Demonstratinn ATM

Account

Thank you For banking

with us

Printer

The amount of $50@

Card Reader has been transferred
fFrom your cheque account
to your savings account

Deposit Siot

Dispenser

E—

Figure 96. Completion of a transfer transaction.

134

If there are insufficient funds for the transfer, the transaction is aborted and, as

previously shown in Figure 93, a message on the ATM screen informs the user.

Query Transaction

Operation of the Query button results in a request for selection of the account, in the

manner described above and shown in Figure 88. Figure 97 illustrates the following

result:

« the balance of the account is shown on the transaction receipt, simulated on the
receipt printer;

o the card is ejected; and

» athank you message is displayed on the ATM.

Account

Thank you For banking

with us

Printer

Vour cheque account balance

Card Reader is §173.15

G
Depaosit Siat Dispenser

Figure 97. Result of a query transaction.

Cancellation of the Transaction
At any time, depression of the Cancel button terminates the transaction and ejects

the card, as shown in Figure 98.

135

Demonstration ATM

The transaction has

Account

been cancelled

Printer
Card Reader
Deposit Slot Dispenser
]

Figure 98. Cancellation of a transaction.

The system description in this chapter demonstrates that all aspects of the test

procedures function correctly and accurately, which is confirmed in Figure 99.

Test | Resulting Output Verified

1. | The Account window shows id: 10; cheque balance: $123.15; and savings v
balance: $462.55.

2. | Request for PIN re-entry. v

3. | Because only three attempts are allowed, the card is held and the user v
informed.

4. | Because there is no identification number 11, the card is held and the user v
informed.

5. | A transaction receipt is produced for a $50 deposit. The Account window v
shows id: 10; cheque balance: $173.15; and savings balance: $462.55.

6. | A transaction receipt is produced for a $50 withdrawal. The Account v
window shows id: 10; cheque balance: $173.15; and savings balance:
$412.55.

7. | Because there are insufficient funds, the user is informed and the card v
ejected.

8. | A transaction receipt is produced for a $50 transfer. The Account window 7
shows id: 10; cheque balance: $123.15; and savings balance: $462.55.

9. | A transaction receipt is produced for a $50 transfer. The Account window v
shows id: 10; cheque balance: $173.15; and savings balance: $412.55.

10. | A transaction receipt shows a cheque account balance of $173.15. The v

Account window shows id: 10; cheque balance: $173.15; and savings
balance: $412.55.

Figure 99. Test results from operation of the ATM.

136

6.3 Summary

The chapter has used the method described in this study to complete the analysis and
design, then the construction, of a demonstration ATM. The method includes the

successful operation of the search tool to discover suitable reusable classes.

137

7 Conclusion

In order to utilise the object-oriented paradigm effectively, a developer requires
tools that aid the selection of classes, a statement that is supported in the study by
such authors as Booch (1987), Meyer (1988), Frakes & Nejmeh (1988), Hooper &
Chester (1991) and Dusink & Hall {1991). The study demonstrates an effective

method of achieving reuse by employing modern text retrieval techniques,

The structure of the study follows a logical pattern, commencing with an
examination of the principles of the object-oriented paradigm ascertained from
sources such as Wirfs-Brock, Wilkerson & Weiner (1990), Wirfs-Brock & Johnson
(1990), Booch (1991}, Rumbaugh et al. (1991), Embley et al. {1992),
Henderson-Sellers (1992), Booch (1994), Tanzer (1995), Rumbaugh (1995) and
from organisations such as the Object Management Group (Soley, 1992) and
Digitalk (1992). Then, the aspects of analysis and design for the object-oriented
paradigm are examined, particularly as described by Rumbaugh et al. (1991) and
Embley et al. (1992). Methodical steps for object-oriented analysis and design are
outlined as:

(i) identify the objects;

(ii) determine the responsibilities;

(iif) determine the associations;

(iv) detail the attributes; and

(v) build the inheritance links.

Steps (i) to (iv) above are demonstrated in the initial analysis and design of an ATM
application, specified in Wirfs-Brock, Wilkerson & Weiner (1990). While step (v)
is as germane as the other steps, its treatment is deferred until a reuse background is

established and a suitable direction identified.

138

fssues in reusing software components are examined, particularly as they relate to
object-orientation. Lewis et al. (1992) are cited to demonstrate that it is this reuse
capability which may lift the object-oriented paradigm to higher levels of
productivity than procedural methods. Frakes & Nejmeh (1988) describe the
difficulties in employing standard information technology approaches to store and
retrieve unstructured information and they support the concept of using full and free
text retrieval concepts to store and, subsequently, locate reusable software code. An
explanation of full and free text retrieval is provideaq, citing Salton (1989), then the
principles are employed to develop a search tool. Following analysis and design, the
tool is constructed using Smalltalk; then, a description of the search tool and
instruction tn its use are included. Verification of the tool is provided by working to

a comprehensive test plan.

Operation of the tool is convenient for a system developer, because:

e it may be prepared for use within a few minutes;

« it rapidly responds to search queries which may then be expanded or narrowed;
and

« the tool window may be iconised out of the developer's work area while
remaining available for use as required.

The tool is easy to use because natural language is input. Horton (1990) is cited as

claiming that, employing natural language, subtleties of meaning may be found

without filtering out important information. The search tool incorporates a ready

ability to extend the search, in line with Kimmel's (1990) advice that a search may

act as a pointer to further information.

The search tool is successfully employed by the developer to build the inheritance

links - step (v) of the methodical steps outlined earlier in this chapter - and thereby

139

complete the analysis and design of the ATM. The system is then demonstrated and

its operation verified.

Whiist the process of employing full and free text retrieval is effective, the
experience obtained in developing a demonstration ATM suggests a further
direction in its development, namely the incorporation of a thesaurus. This may
reduce both the experience required of the developer and the search time using the
tool. The advantages of thesaurus usage are addressed within the study by citing
Salton (1989), together with the difficulty of thesaurus construction requiring a

committee of experts.

Additionally, Booch (1994) is cited promoting both Smalltalk and C++ as the most
pervasive languages. Reporting the issues in following the analysis and design in
this study to develop a search tool for a class library in a C++ environment would

add to a general understanding of object-oriented analysis and design.

Enhancing reuse within the object-oriented paradigm, ihe study demonstrates that
the text retrieval techniques of a modern library may be employed in finding suitable

classes within the object-oriented paradigm.

140

Reference List

Booch, G. (1987). Software components with Ada. Reading, MA:

Benjamin/Cummings Publishing Company.

Booch, G. (1991). Object-oriented design, with applications.
Menlo Park, Calif: Benjamin/Cummings Publishing Co,

Booch, G. (1994, November). Coming of age in an object-oriented world. /EEE
Software, 33 - 41.

Coad, P. (1991, January). New advances in object-oriented analysis. Journal of

Object Oriented Programming, 44 - 49,

Cortez, E. M. & Kazlauskas, E. J. (1986). Managing informariort systems and

technologies. New York: Neal-Schuman Publishers, Inc.

de Champeaux, D. & Faure, P. (1992, March/April). A comparative study of
object-oriented analysis methods. Journal of Object Oriented Programming,

21 -33.

Digitalk, Inc. (1992). Smalitalk/V for Windows tutorial and programming
handbook. Los Angeles, CA: Author.

D'Souza, D. & Graff, P, (1995, February). Working with OMT: Model integration.

Journal of Object Oriented Programming, 23 - 29.

Dusink, L. & Hall, P. (Eds.) (1991). Software re-use Utrecht 1989. London:

Springer-Verlag.

14}

Embley, D. W., Kurtz, B, D. & Woodfield, S. N. (1992). Object-oriented systems

analysis: A model-driven approach. Englewood Cliffs, NJ: Yourdon Press.

Frakes, W. B. & Nejmeh, B. A. (1988). An information system for software reuse.
In W. Tracz (Ed.) Software reuse: Emerging technology
(pp. 142 - 151). Washington, DC: Computer Society Press.

Freeman, C. & Henderson-Sellers, B. (1991). OLMS: An object library
management support system. In J, Potter, M. Tokoro & B. Meyer (Eds.)
Technology of object-oriented languages and systems: Tools 6 (pp. 175 - 180).
Sydney: Prentice-Hall, Inc.

Gehani, N. (1989). Ada: An advanced introduction. Englewood Cliffs, NJ:

Prentice-Hall, Inc.

Gibbs, S., Tsichritzis, D., Casais, D., Nierstrasz, O. & Pintado, X. (1990). Class
management for software communities. Communications of the ACM, Vol 33,

No 9, 90 - 103.

Gibson, E. {1990, Qctober). Objects - born and bred. Byfe, 245 - 254,

Henderson-Sellers, B. (1992). A book of object-oriented knowledge.

Sydney: Prentice-Hall, Inc.

Hooper, J. W. & Chester, R. O. (1991). Software reuse: Guidelines and methods.
New York, NY: Plenum Press,

e)

142

Horton, S. (1990). Handling full text. In P. Gillman (Ed.) Text retrieval: The state
of the art (pp. 56 - 64). London, UK: Taylor Graham.

Jacobson, 1. (1991, March/April). Industrial development of software with an

object-oriented technique. Journal of Object Oriented Programming, 30 - 41.

Kendall, K. E. and Kendall, J. E. (1992). Systems analysis and design. Englewood
Cliffs, NJ: Prentice-Hall, Inc.

Khoshafian, S. & Abnous, R. (1990). Object orientation: Concepts, larguages,

databases, user interfaces. New York, NY: John Wiley and Sons.

Kimmel, C. (1990). Integrating text into management systems. In P. Gillman (Ed.)
Text retrieval: The state of the art (pp. 101 - 111). London, UK: Taylor

Graham.

Korson, T. & McGregor, J. D. (1990). Understanding object oriented: A unifying
paradigm, Communications of the ACM, Vol. 33 No. 9, 40 - 60.

Kuhn, T. S. (1970). The structure of scientific revolutions.

Chicago: The University of Chicago Press.

Lewis, J. A., Henry, S, M., Kattura, . G. & Schulman, R. S. (1992, July/August).
On the relationship between the object-oriented paradigm and software reuse:

An empirical investigation. Journal of Object Oriented Programming, 35 - 41,

Meyer, B. (1988). Object orignted software construction. Englewood Cliffs,

NI: Prentice-Hall, Inc.

143

Olle, T. W., Hagelstein, J., Macdonald, 1., Rolland, C., Sol, H. G., Van Assche, F. J.
M. & Verrijn-Stuart, A. A. (1991). Information systems methodologies: A
framework for understanding. Wokingham, England: Addison-Wesley
Publishing Company.

Page-Jones, M. (1988). The practical guide to structured systems design.

Englewood Cliffs, NJ: Prentice-Hall, Inc.

Pressman, R. S. (1992). Software engineering. A practitioner's approach. New

York, NY: McGraw-Hill, Inc.

Prieto-Diaz, R. & Jones, G. A. (1988). Breathing new life into old software. In W.
Tracz (Ed.) Software reuse: Emerging technology (pp. 152 - 160). Washington,

DC: Computer Society Press.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. & Lorensen, W. (1991).
Object-oriented modeling and design. Englewood Cliffs, NJ: Prentice-Hall,

Inc.

Rumbaugh, I. (1995, Jannary). OMT: The object model. Journal of Object

Oriented Programming, 21 - 46.
Salton, G. (1989). Automatic text processing. Reading, Mass: Addison-Wesley.
Scharenberg, M. E. & Dunsmore, H. E. (1991, January). Evolution of classes and

objects during object-oriented design and programming. Journal of Object

Oriented Programming, 30 - 34.

144

Soley, R. M. (Ed.} (1992). Object management architecture guide.
Framingham, MA: Object Management Group.

Tanzer, C. (19935, February). Remarks on object-oriented modeling of associations.

Journal of Object Oriented Programming, 43 - 46,

Wirfs-Brock, R. J. & Johason, R. E. (1990). Surveying current research in object-
oriented design. Communications of the ACM, Vol. 33 No. 9, 104 - 124.

Wirfs-Brock, R. I., Wilkerson, B, & Wiener, L. (1990). Designing object-oriented

sgftware. Englewood Cliffs, NI: Prentice-Hall, Inc.

IR et s b e ey e 2 Lo Cteae e e e noewnaRAT SEASTRIRR A RS T

145
Appendices

146

Appendix A. Code for the Class Find Search Tool.

The search too!l is the Class Find class within Smalitalk\V for Windows, which is

listed below as a result of & Smalltalk File Out operation:

WordIndex variableSubclass: #ClassFind
instanceVariableNames:
‘classOutput classWindow criteria searchAssoc '
classVariableNames: ''

poolDictionaries: '* !
IClassPind class methods | !
IClassFind methods !

browse: aPane

Mkkkdhhhkhkhdhdi

kxkhkhkkhkrkkx

Open a ClassBrowser on the class selected.
Ensure the selection is not a blank or
text line."
| selection className class |
selection := aPane selectedItem,
selection = "

ifFalse: {

className := selection asArrayOfSubstrings first.
className = 'The'
ifFalse: [

class := Smalltalk

at: className trimBlamnks asSymbol
ifAbsent: {UndefinedObject].

class edit]]!

147

classList: aPane

Nkdkkhhikrdkhkihkhkkhi

R R R E S LR AR

Answer the contents of the classWindow."

aPane contents: classOutput!

classMenu: aPane

Bkkdhkhkdhkhdhkrk

hkkkkdkhkhkhkrhkhrhhk

Answer a Menu for the class aPane."
aPane setMenu: ({Menu

labels: ‘'clear and enter\enter more criteria\retﬁrn
to last entry’' withCrs

lines: #(0)

selectors: #(clear getCriteria defaultCriteria))

title: 'Criteria').!

clear
% k&
LR
Clear ClassFind browser before
listing new search matches."
classOutput := OrderedCollection new.

self getCriterial

defaultCriteria

Hhkdhkhhkhkhhkahrhhk

dhkkkhkkkhkdhhkhkhk

Use the previous entry as the search words
which make up the search criteria."
| defaultCriterial
criteria = nil
ifTrue: {
criteria := ''],
defaultCriteria := criteria.
criteria := '
Prompter

prompt: 'Enter Criteria’

148

default: defaultCriteria.

self locateClasses!

getlCriteria

W okokok koW ok ok kK

LER T T E & RS Y]

Obtain the search words which make
up the search criteria.®
criteria :=
Prompter
prompt: *‘Enter Criteria'
default: ''.

self locateClasses!

initialise
0ok odrokk ok ok ok ok ok

ok hkhkkkdk Ak wF .

For every method in every class, build the
searchissoc dictionary where the key is
every word inlthe instance or class method
namg and comment, and the value in every
class which contains the indexed word. The
words are cleaned by removing non-alphabetic .
bytes, and composite words are separated |
into single words, each of which is stored in
the WordIndex class by its addwWord:for:
method. The List Pane is opened."
JelassText codeStream word|

super initialize.

c¢lassOutput := OrderedCollection new.

Behavior allClasses do: [:eachClass|

classText := ReadWriteStream on: ''.,

i

149

CpEEF R R R R R e R R R
For each class, stream all of the source code
for each instance method
#HFFHFFERARF AR SRR R RS R R R

eachClass methedbictionary
keysDo: [:eachMethod|
codeStream := {(eachllass
sourceCodedt; {(eachMethod
asSyrmbol})

asStream.

CREGFASH SRR E SRS AR SRR AR S A
Stream over the instance method source.
Substitute a space for non alpha bytes and
insert a space before upper case characters
$REHE RS G H R G R RE R R R E
codeStream do: {:char|
char isLetter
ifTrue; [
char isUpperCase
ifTrue: |
classText space].
classText nextPut: charl
ifFalse: [

classText space]]].

nEHE R SRR R R R AR R R R R R
For each class, the class methods are streamed
$ using the instance source, repeated for a #
10.5 percent performance increase over initiating
a new method twice
FHEFRB LSS HF R HER S E RS R R R R R R
eachClass class
methodDictionary
keysDo: [:eachMethod|
codeStream := [(eachClass

sourceCodeAt: (eachMethod
asSymbol))

150

asStream.
codeStream do: (:char]
char isLetter
ifTrue: [
char isUpperCase
ifTrue: |
classText space].
classText nextPut: char]
ifFalse: |

classText space]]].

"REFBHAEGH A HHRBH R AR FEF RS E SRR R R R ER B ISR EFBES
Add all words, except the elementary stopwords,
in self stream described by className string to
the words dictionary
FHEHFEGHAFRFEHF R BV EH B SRS R R RABEHF RS ER RS RS

classText reset.
[{word := classText nextWord) == nil]
whileFalse: [
{(#{ra' 'and' 'in' 'of' 'the' 'to'} "stopwords"
includes: word asLowerCase)
ifFalse: |
self addWord: word asLowerCase
for: (eachClass name)l]l].

self open.!

locateClasses

Wxkdkhdkhkhkix

R EE EE LR SR L &8

Determine the c¢lasses which use the words
contained in the instance wvariable *criteria*
and develop a list for the ClassFind Browser."
|criteriaStream inAndMode inNotMode lastWordError |

CursorManager exscute change.

inNotMode := false.

inAndMode := false.

searchAssoc := Dictionary new.

criteria = nil

151

ifTrue: |
criteria := ''],
criteriaStream :=
ReadWriteStream on: (criteria asLowerCase

asArrayOfSubstrings} .

CHERR AR A R S A S S R R R R R
Stream the search words. Set inNotMode on
discovering *not* and inAndMode on
discovering *and*. Set lastWordError if
the last word is *and* or *or*
S HFFHHEHER RS SRR A AR S R
criteriaStream do: [:word|
lastWordError := falsge.
(criteriaStream peek isNil)
ifTrue: [
word = 'and'
ifTrue: |
word := '',
inAndMode := true.
lastWordError := true].
word = ‘or'
ifTrue: [
word := ''.
lastWordError := truell.
word = 'or!'
ifFalsgse: [
word = 'not!
ifTrue: [
inNotMode := true}
ifFalse: |
word = 'and'
i1fTrue: |
inAndMode := true]
ifFalse: [
self lookup: word
withAndMode: inAndMode
andNotMode: inNotMode.

152

inNotMaode :
inAndMode :

false.
false]].

"HEFEF RS ES AR SR R R R R
Initiate the transferOutput method
when the term has been evaluated
#FHEFEHHFH A SRR R R R

({criteriaStream peek isNil)

or: [{{criteriaStream peek = 'and'} not
and: [{word = 'and') not

and: [({eriteriaStream peek = ‘or’') not
and;: [(word = 'or') not

and: [searchfssoc notNil
and: [inNotMode = false]]]1]1)1)
ifTrue: [
self transferOutput.
searchAssoc := Dictionary newll].
CurscrManager normal change.

classWindow contents: classQutput!

lookup: aWord withAndMode: inAndMode
andNotMcde: inNotMode

IR EEEEE L AL ELES R EREEEEREEELEEEELELES &S

EEREEE R A SR ERER AR AL R R EREEERE RS REEE &N

Determine which classes use each search

word and undertake boolean operations on

the classes. The output is the *searchAssoc*
dictionary containing the result for each
boolean operation. The method
locateDocuments: is inherited from the
WordIndex class."

|classList allClasses dynamicArray value addWord|

“ERSE R R RS R R R
locate classes containing aWord
i R S R R

classbList :=

(self locateDocuments:

153

(aWord asArrayOfSubstrings)).

"REHEHEER SRR R AR R R R R R R S R R R
If inNotMode, find the complement of the selected
classes from the universe of classes
S S E B R R R R R R R R R R
inNotMode = true
ifTrue: [
allClasses := OrderedCollection new.
Behavior allClasses do: [:class|
allClasses add: (class name)]}.
dynamicArray := classList asOrderedCollection.
allClasses do: [:class|
dynamicArray remove: class
ifabsent: [
dynamicArray add: class]].

classList := dynamicArray asArray).

OB A AR R R R R R R R R R R
If inAndMode, AND classList and searchAssoc,
which is the result to-date of the boolean AND
#HEF AR EF AR RS R R R R R R R S
inAndMode = true
ifTrue: [
dynamicArray := classlist asOrderedCollection.
classlList do: [:class}
({(searchAssoc keys) includes: classg)
ifFalse: [
dynamicArray remove: class]].
{searchAssoc keys) do: [:class|
(dynamicArray includes: class)
ifFalse: |
searchAssoc removeKey: class]].

clagsList := dynamicArray asglArray].

154

v SRR SRR AR R R AR R R R
Add aWord to the resultant classes
f#hhEREGFHFERAERGH AR B HAR RS SRR R AR RS

classList do: [:class|

value := searchAssoc at: class
ifAbsent: [value := OrderedCollection new].
addWord := ReadWriteStream on: ''.
((value size} > 0)
1fTrue: [
inAndMode = true
ifTrue: [
addiWord nextPutAll: ' and '}
ifFalse: [
addWord nextPutAll: ' or ']].
inNotMode = true
ifTrue: [
addWord nextPutAll: 'not '].
addWord nextPutall: aWord;
reset.
value add: (addWord nextLine),

gsearchAssoc at: class put: value]!

open

LIS 4

%k Kk

Create a browser window consisting of a
List Pane with the menu classMeru for
entering search criteria and a selection
facility to open a ClassBrowser."
| topPane|
Cursor offset: 250@100,
(topPane := TopPane new)
label: 'ClassFind Browser';
model: self,
topPane addSubpane:
(classWindow := ListBox new
model: self;

changed: #selectCriteria;

155

framingRatio: (080 extent: 1 @& 1);

when: #getMenu perform: #classMenu:;
when: #getContents perfoxrm: #classList:;
when: #select perform: #browse:).

topPane openWindow, !

transferOutput

Hibkdkkkhkikkrdhhkk

kv hkhkhhkhkk kiR

Transfer the result of the searchAssoc dictionary
to classQutput, the List Pane stream."”
| 1ine|
"R SRR R R SR RS
Show the number of responses
AR SRR R R R R
line := ReadWriteStream on: (String hew).
line reset;
nextPutAll: 'The number of responses is ';
nextPutall: (searchAsscc keys size printString);
cr;
reset.

classOutput add: (line nextLine).

CHEEERE R R
Show the class
FHEFF R R
searchAssoc associationsDo: [:classPair]|
line reset;

nextPutall: {(classPair key).

CEES R R R R R A R R
Show the search words contained in the class
$4 AR GRS RS AR SRR SRR RS R R R R

50 timesRepeat: [line space].
line position: 25.
(classPair value) do: [:wordExamined |

line nextPutall: wordExamined] .

line cr;

reset.
c¢lassCutput add:
line reset;

or;

reset.

classOutput add:

156

(line nextlLine)].

{line nextLine)!

157

Appendix B. Code for the Word Index Class from Digitaik.

The ClassFind search tool inherits methods from the Word Index class, supplied by
Digitalk separately from the Smalltalk\V for Windows rﬁnviron_ment, which is listed

below as a result of a Smalltalk File Out operation:

ViewManager subclass: #WordIndex
instanceVariableNames:
'documents words '
clagsVariableNames: '

pecolDictionaries: *°' !
IWordIndex class methods ! |
IWordIndex methods !

addDocument: pathName
"Add all words in document described by
pathName string to the words dictionary."
| word wordStream |
{(documents includes:; pathName)
ifTrue: [self removeDocument: pathName].
wordStream := File pathName: pathName.
documents add: pathName.
[{word := wordStream nextWord) == nil]
whileFalse: |
self addWord: word asLowerCase for: pathName].

wordStream close!

addWord: wordString for: pathName
"Add wordString to words dictionary for
document described by pathName."
{(words includesKey: wordString)
ifFalse: [words at: wordString put: Set new].

(words at: wordString) add: pathName!

PRI ittt

158

initialize
"Initialize a new empty WordIndex."
documents := Set new.

words := Dictionary new!

locateDocuments: queryWords
"Answer an array of the pathNames for
all documents which contain all words
in queryWerds."
| answer bag |
bag := Bag new.
answer := Set new.
queryWords do: [:word |
bag addall:
{(words at: word ifAbsent: [#{()}]1)].
bag asSet do: [:document |
queryWords size =
(bag occurrencesQf: document)
ifTrue: [answer add: document]].

“answer asSortedCollection asArray!

removeDocument : pathName
"Remove pathName string describing a
document from the words dictionary.®

words do: [:docs | docs remove: pathName].

self removelnusedWords!

removelnusedWords
"Remove all words which have empty
document ceollection.”
| newWords |
newWords := Dictionary new.
words associationsDo: [:anAgsoc |
anAssoc value isEmpty
ifFalse: [newWords add: anaAssocl}.
words ;= newWords! !

159

Appendix C. Code for the ATM.

The demonstration ATM encompasses the Smalltalk classes ATM, Card Reader,
User Interface, Account, Deposit Slot, Dispenser and Receipt Printer. They are

listed below as a result of Smalltalk File Out operations:

ViewManager subclass: #ATM
instanceVariableNames:

‘cardReader useriInterface account depositSlet dispenser

printer state '

classVariableNames:

poolDictionaries:
I12AT™ class methods ! |
{ATM methods !

initialise

Nk khdkxxx

I EEEEE S BN E"

n

Establish link to User Interface class.

userInterface := UserInterface new initialise!

printerOutput: aPane

[EEFEFEEEELEEEEEEE LS &L
I E X EREEERELEEEE LSS &8
Answer printer Text Pane contents."

aPane contents: (printer contents)!

;iGO. ;

"wéit{_éﬁfnteéer:.f'

hé*&*%*{%fié*%*'”'

E***************

: Walt for anInteger seconds
';| endTlme Rl "
endeme 1= Tlme fromSeconds : _
: ((Tlme totalSeconds) ® anInteger)

] [((Tlme now} < endTlme)] whlleTrue []‘

_Object eubclaes- #CardReader'-
e 1nstanceVar1ab1eNames |
plnAndId
classVarlableNames o

poolchtlonarles AR
ICardReader ¢lass methods 1 1
| cardReader methods -!

- eject

"ok ok k

***.**
Answer true 1f card ejectlon complete{
Always answer true T

:Atrﬁel '

notPIN |

_{;*f**;

'*fg**t_f
Answer true 1f card has been kept
Always answer true '

_ [keepCard | :

keepCard - true.'

' e“keepCard!

161

'readaﬁiéCardInséftedf h

n****i*%******i*****

. ********.***********‘k .
‘Get - PIN and customer 1dent1f1catlon
number frcm card L ' _ _ Lol T

cardRead 1= self readPlnId

~cardRead!

.readPihid
thkkkkhxkF
khkkhkkk%k**
Get PIN and bustomér identificafion o
number from gimilated cérd entry, whiéh
must consist of a four digit integer for
the.?IN and a two digit integer'fbf the id."
i valldEntry entry nunber|
pinAndId nll :
ifTrue: [
pinAndid := ''].
validEntfy 1= false.
[validEntry = false] whileTrue: [

TERR RS
' #.Get input #
B
pinAndId :=-
Prompter L . _
prompt 'Enter the 4 dlglt PIN and 2 d1g1t Id'f_"
default plnAndId o

R - o N i_*-:;f.’ -ﬂf_ﬁ;iﬁ_ﬁl*

validate input # ' - L : :

SRR FHEEEERER IR RS
{(pinAndId = nil

Cor: [.
' pinAndId isEmptyl)
;fFalse: [

162

entrY_i plnAndId asArrayOfSubstrlngsLni;f,:_,..”

flrst

¥ number .= entry asInteger L
'-(number 1sInteger ' -

'and' [

entry size ='4j1

1fT*ue { | . :
entry := plnAndId asArrayOfSubstrlngs -
' _ ' last ' e
numbexr. ;= entry_asInteger;

(number isInteger

and: | . _

(entry size = 2)])

ifTrue: [validEntry := truellll.
~pinAndrd! | '

unreadableCardInserted

‘o *’.**.****.**.E:i'***********
_.*.***"**********.*.*.
Answer true if card unreadable,
Always answer true."

“true! 1

;:ATM sﬁbClaSs} #UéerInterface

- 1nstanceVar1ableNames ' o . . _
g'screen pin id acecountNo amount srcAccount dstnAccount _..'

_eject tlmesValldated ! '
classVarlableNames.."

poolDictionaries: '*' !

|UserInterface class methods ! !

!UéefIntefféCe methods !

1163

' account
I II o
ek kkkkk

Show selectlon message.

”75creen contents. 3 ‘;]
cxr; . .) . o L
nextPutaAll: ° Please select the account’.

self.screenOutput:_screen..

amc:unt:

h*iﬁ**

ﬁ?i%

_ Show message to entef amount. "

. .screen contents: ' ny

cr; L _
nextPutAll: ° Entef amount of tfenseefien'f'.
cr; - ' o
cr; _ S
nextPutAll: : ih whole dollars';
cr. ' | ”

seif screenOutput: screen!

cancel: aPane

u*j*********f
ARk hkhHhkh* KKk _
Reeult cf'*Caﬂcel*-buttcn eelection{' Show
' cancellatlon message and abort transactlon

screen ccntents..”.'“;

cI; . :
--eHGXtPUtﬂll' . _ThE_tranéectionehég'{
._'cr, . : o - _ .
cr' _ | i
'-nextPutAll Y .u"cEEEﬁ-caﬁcellea?.

self screenOutput Ecreeﬁ._-

'_self eject

fself-wa;t:32;e

 self welcome!

164 . -7 _ : : :; _:f - ﬂi

o il _
. chegquedccount.: aPane
WK e e ek ok ke ok

Ak khkrkkkrhhkkhkhkhdhdkk

Result of *Cheque* accounp'buttdn-selectiqnﬂ-:.

following transaction selection.”

“accountNo := 1. ' '

SRS

Deposit or Withdraw
O RRREERERR R R

(state = 'Deposit’

or: [

state = 'Withdraw'])

1fTrue: [self amount].

"SRR ES
Query
HHE SR
state = 'Query'

ifTrue: [self queryAccount].

CHA R
Transfer
LRSS L
~state = ‘'Transfer Source'
ifPrue: [
- srcAccount = 1.
state := 'Transfer Dstn'.

screen contents: ! ':

er; o -

nextPutAll: ' .Select. the account for';

cxr; I o |
| nextPutAll: ' destination of funds'. !

: self screenOutput: scréen]
ifFalse: [|
state ﬁ-!Transfer Dstn'
'_fifoue}'{: | : : : ..:'_ “%ﬂj:. f “.ﬁf1 ;f. : ::_::é

-':dStnAccount':= 1.

| self amount]]!

165

deposit: aPane

ll*************

_************** j:. PR

. Result of *Dep051t* button select10n"‘”“5“
state ;"Enter PIN' |)

ifTrue- [' _*V

state := 'Deposit’.

AP

self account]!

depositMade: .aPane
u***********{i****

Result of *Depos;t Siot* button selectlon
to_;omplete the deposit transaction,"
| actionComplete | |
sﬁate = 'DEposit‘ _ _
i ETrue: t . S : . | TR o "f:.% | 3
" actionComplete := account depositId: id .
| ' ' -account: accountNo
amount: amount.
printer contents: actlonComplete contents,
self prlnterOutput prlnter
thanks]'

eject'”

CmkEE ok
**;*_*'.k- .
| - Complete a normal tranSaCtién - wait:
is a method of the superclass." |
| complete | I B |
complete := cardReader. e3ect :’a'.55' j. uﬁf-_.h .: f.;-i i ¥'; Hf'.' K

.CGﬁplpte

'":1fTrue [_)
.;_eject contents ";fejéct'.
::'self walt 3. '

'-1ieject contents

i"ﬁ:F*truel

ifFalse: [..

. ~false]!

-enterPIN
0ok dekok ok d R

*******.*.-2

Show PIN entry message“

screen contents Lot
' cr; : _ _

hextPutAll:"' Please enter your PIN';
cr; | | |
nextPutAll: ' - : and'press.OKF;
cr,! - |

“held

"k kR ;

Nk kow B . : ' _. o E S g
ShOW'held meesage and close with no card ejectﬂﬂ.
_ | closeSent I - o ' '
'ecreeﬁ'cbntents:" T
cr; A o I | o :
nextPutAll: ' You must contact your branch'; | '
ors o _ . .

cr;

'nextPutAll '_ to regaln.your card'
: self screenOutput screen.
| closeSent := cardReader notPIN
closeSent 1fTrue L
self*wait:_s. ”

self welcome] |

initialise

'u+¥#¥¥*¥44'e.
;**********--Wyf _ _
. EStabllSh 11nk to Account and Card Reader,

and bulld User Interface V1ew.ﬂx_

Account naw 1n1t1allse;

;account

167

cardReader := CardReader new.
self open;

welcome !

initWindowgize
hddkhkkhkhkhkhkhkhdg

Fhkhkhkhkkwhhkkrkhkhkr

Window is full gsize."

*(Digplay width @ (Display height)).!

ingert
Wkokokk ok
* ok kK E ok
Determine and validate the entered amount in
any screen position following the text. Show
deposit slot insertion message."®
| actionComplete |
(self validAmdunt}
ifTrue: [
amount := screen contents

asArrayOfSubstrings

last
asFloat,
screen contentg: v
cr:
nextPutAll: Place demosit in slot'.

self screenOutput: screen]!

invalidpPIN

It % de ok ok kk ok ok

LA L E S TR X

Re-enter the PIN up to two additional
times. Hold the card if PIN incorrect.®"
timesValidated := timesValidated + 1.
(timesValidated > 3)
ifTrue: [self held]
ifFalse: [self enterPIN]!

k
v
3

168

Inenu

ko ok

k&

Show screen based menu. Note that this is
not a Smalltalk menu."®
screen contents: ' '
cr;
nextPutAll:

Select action key to':
cr;

cx;

nextPutadll: deposit, withdraw, ';
cr;

cr;

nextPutAll: transfer or query':
cr;

selectAtEnd.

self screenQutput: screen!

noFunds

W ek Kok oK
deodk ok k ok k ok
Show insufficient funds message."

screen contents: '

cr;
nextPutall: ' There are insufficient funds';
cr;
cr;
nextPutaAll: ' to complete the transaction'.

self screenQutput: screen.

self wait: 3!

ckKeyPressed: aPane

Nkkkkdhdkxhkddhdkdkddikh
LR A E S L EEEEEEEEEREE X
Common use *entry* button.®
state = 'BEnter PIN'
ifrrue: [self validate].

state = 'Deposit!'

169

ifTrue: [self insert].
state = 'Withdraw'
ifTrue: [self output].
state = 'Transfer Dstn'
~ifTrue: [self store].
gstate = 'Query’

ifTrue: [self guery].

CEREES R R R R
Prevent Text Pane save message
FHER R R R R R R R R

screen modified: false!

open
LU
* kkk
Create the view of the User Interface."
| reader |
self

labelWithoutPrefix: 'Demonstration ATM';
noSmalltalkMenuBar.
self addSubpane:
(screen := TextPane new
changed: #screenQutput:;
framingBlock: {:box|
(box leftTop
rightAndDown: {(box width * 5//100}
@ (box height * 5//100))}
extentFromLeftTop: {(({box width * 40//10Q0)
@ (box height * 45//100})}1;:
style: (SubPane noScrollbarsFrameStyle}}.
self addSubpane:
(staticText new
centered;
contents: 'Card Reader';
framingBlock: [:box|
{box leftTop

rightAndDown: ((box width * 18//100) -

170

@ (box height * 58//100)))
extentFromLeftTop: {{box width * 20//100)
@ (box height * 5//100))1).
self addSubpane: '
(reader := GroupPane new "Card Reader"
framingBlock: [:box|
(box leftTop
rightAndDown: ((box width * 4//100)
a (box height * 64//100)))
extentFromLeftTop: ({(box width * 46//100)
@& {box height * 7//100})1).
reader addSubpane:
{(Buttcon new
defaultPushButton;
contents: 'readable’;
framingBlock: {:box]
(box leftTop
rightAndbown: {{box width * 1//100)
@ {box height * 2//100)))
extentFromLeftTop: ((box width * 34//100)
@ (box height * 99//100))1;
when: #clicked perform: #readableCardInserted:).
reader addSubpane:
{eject := TextPane new
framingBlock: [:box|
{box leftTop
rightAndDown: ((box width * 36//100)}
@ {box height * 20//100})}
extentFromLeftTop: {{box width * 28//100)
@ (box height * 70//100})];
style: (SubPane noScrollbarsFrameStyle)).
reader addsubpane:
(Button new
defaultPushButton;
contents: ‘unreadable’;
framingBlock: [:box|
(box leftTop _ _
rightAndDown: ((box width * 65//100)

171

@ (box height * 2//100)))
extentFromLeftTop: {(box width * 34//100)
@ (box height * 99//100))];
when: #clicked perform: #unreadableCardInserted:).
self addSubpane:
{(Button new
defaultPushButton;
contents: 'OK';
idOK;
framingBlock: [:box|
(box leftTop
rightAndDown: ((box width * 21//100}
@ (box height * 75//100}))
extentFromLeftTop: ({box width * 12//100)
@ (box height * 8//100))1;
when: #clicked perform: #okKevPressed:),
gelf addSubpane:
(StaticText new
centered;
contents: 'Deposit Slot':
framingBlock: [:box|
{(box leftTop
rightandbown: ({box width * 15//100)
a {box height * 85//100}))}
extentFromLeftTop: {(box width * 20//100)
@ {box height * 5//100}11).
self addSubpane:
{Button new "Deposit Slot"
defaultPushButton;
framingBlock: [:box|
(box leftTop
rightAndDown: ((box width * 10//100)
g (box height * 90//100)))
extentFromLeftTop: {{box width * 30//100)
@ (box height * 5//100))];
when: #clicked perform: #depositMade:).
self addSubpane:

(Button new

172

defaultPushButton;
contents: 'Cancel’;
framingBlock: [:box|
(box leftTop
rightAndDown: ({box width * 47//100)
@ (box height * 88//100}))
extentFromLeftTop: ({box width * 12//100)
@ (box height * 8//100})];
when: #clicked perform: #cancel:).
self addSubpane:
{(Button new
defaultPushButton;
contents: ‘'Deposit’;
framingBlock: {:box|
(box leftTop
rightandbown: ((box width * 55//100)
@ {box height * 5//100}))
extentFromLeftTop: {(box width * 12//100)
@ (box height * 8//100))1};
when: #clicked perform: #deposit:),
self addSubpane:
(Button new
defaultPushButton;
contents: 'Withdraw';
framingBlock: [:Dbox|
(box leftTop
rightandDown: ({box width * 55//100)
@ {box height * 15//100})}
extentFromLeftTop: {{box width * 12//100)
@ (box height * 8//7100))1;
when: f#iclicked perform: #withdraw:).
self addsubpane:
{Button new
defaultPushButton;
contents: 'Transfer';
framingBlock: [:box|
{box leftTop _
rightAndDown: ((box width * 55//100)

self

self

self

self

@ {(box height * 25//100})))
extentFromLeftTop: ((box width * 12//100)
@ (box height * 8//100))1;
when: #clicked perform: #source:).
addSubpane:
(Button new
defaultPushButton;
contents: ’'Query’;
framingBlock: [:box|
{box leftTop
rightAndDown: {{box width * 55//100)
@ {box height * 35//100)))
extentFromLeftTor: ((box width * 12//100)
@ (box height * 8//100))1;
when: #clicked perform: #query:).
addSubpane:
(StaticText new
centeread;
contents: ‘'Acccunt’;
framingBlock: [:box]|
{box leftTop
rightAndDown: ((box width * 83//100)
@ {box height * 8//100)))
extentFromLeftTop: {{box width * 12//100)
@ (box height * 5//100)}]}).
addSubpane:
{Button nﬁw
defaultPushButton;
contents: 'Cheque';
framingBlock: [:box|
{box leftTop
rightAndDown: {{box width * 83//100)
@ {box height * 15//100}})
extentFromLeftTop: ({(box width * 12//100}
@ (box height * 8//100))1;
when: #clicked perform: #chequeAccount:).
addSubpane:

{Button new

selt

self

self

174

defaultPushButton;
contents: 'Savings';
framingBlock: [:box|
{box leftTop
rightAndbown: ({box width * 83//100)
@ (box height * 25//100}))
extentFromLeftTop: ({(bex width * 12//100)

@ (box height * 8//100))1;
when: %¥clicked perform: #savingslccount:),
addsubpane:

(StaticText new
centered;
contents: ‘'Printer’';
framingBlock: [:box|

(box leftTop

rightAndDown: {(box width * 55//100)
@ (box height * 45//100}})

extentFromLeftTop: ((box width * 40//100}

@ ({box height * 5//100))1]}.

addsubpane:
(printer := TextPane new
changed: #printer;
framingBlock: [:box]|

{(box leftTop

rightdndbown: ((box width * 55//100)
@ {(box height * 50//100)))

extentFromLeftTop: {{box width * 40//100)

_ @ (box height * 30//100})1;
style: (SubPane noScrollbarsFrameStyle)}.
addSubpane:

(StaticText new
centered;
contents: 'Dispenser';
framingBlock: [:box|
: tbox leftTop _

| rightAndpown: ({box width * 65//100)

@ {(box height * 85//100)))

extentFromLeftTop: {(box width * 20//100)

175

@ (box height * 5//100))1).
self addsubpane: '
(dispenser := TextPane new "Dispenser’
framingBlock: {:box|
(box leftTop
rightaindDown: {{box width * 65//100)
6} {box height * 90//100)))
extentFromlLeicTop: {({box width * 20//10Q)
@ (box height * 5//100))];
style: (SubPane noScrollbarsFrameStyle)).
self openWindow. !

output

ok koW d ok

*hkkhkkx

Determine and validate the entered amount in
any screen position following the text, then
complete the withdrawal transaction."
| actionComplete |
{self walidAmount)}
ifTrue: |
amount := screen contents
asArrayOfSubstrings
last
asFloat.
screen contents: ' b
cr;
nextPutall: Take money from dispenser’'.
self screenfutput: screen,
actionCompiete := account withdrawId: id
account: accountNo
amount: amount.
actionComplete
notNil ifTrue: |
printer contents: actionComplete contents.
self printerOQutput: printer. |
dispenser contents: ' money’ .

self wait: 2.

176

dispenser contents: ‘' '].
actionComplete
isNil ifTrue: [

self noFunds] .
self thanks]!

query: aPane

Ndkkdhhhkdkkdhhkx

khkhkhkkhkhkhx

Result of *Query* button selection.®
state = 'Enter PIN'
ifTrue: [
state := 'Query',

self account]!

quervAccount

Itk &k ik dok ok k &

LR R R A RSN

Complete query transaction."
| actionComplete |
actionComplete := account queryId: id
account: accountNo.
printer contents: actionComplete contents.
gelf printerOutput: printer;

thanks!

readableCardInserted: aPane

LR S S A SR AL R A ELE A RS EE S BN S,

**********ﬂi'***************

Résult of card reader *readable* button selection.®
| pinaAndid |
state = "'
ifTrue: [
timesValidated := 1.
pinAndIid := cardReader readableCardInserted.
self validate: pinAndId]!

177

savingsAccount: aPane

LEETE XIS EE S EEEEESEE R LR

LR R R ES AR R R L L RS SR & B

Result of *Savings* account button selection
following transaction selection."
accountMNo := 2,
A R R
Deposit or Withdraw
#EH S HEFRFHFAFR IR FFRFEAE
{state = 'Deposit’
or: [
state = 'Withdraw']}

ifTrue: [self amount].

"HER S

Query

#hHEEEAE"

state = 'Query’

ifTrue: [self cuervaccount]}.

"G FEEEREE
Transfer
$hEEH SR RA"
state = ‘Transfer Source'
ifTrue: [
srcAccount := 2,
state := 'Transfer Dstn'.

screen contents: ' '

Cr;
nextPutall: ! Select the account for';
CcX;

nextPutAll: destination of funds',

self screenfutput: screen]
ifFalse: [
state = 'Transfer Dstn'
ifTrue: [
dstnAccount :=.2.

self amount]]!

178

screenQutput: aPane

Hrkwkrthkhkrhkhhhhkhkddid

ke hkhkwrkhkhkhkhrhhkkdhkin

Answer screen Text Pane contents.”

aPane contents: (screen contents}!'

source: aPane

Wk de e ke ok f ek ok g Ak

PR R R R R

Result of *Transfer* button selection.”
state = 'Enter PIN'
ifTrue: [
state := 'Transfer Source',

screen contents: ! '

cr;

nextPutAll; ! Select the account feor';
or;

nextPutAll: source of funds'.

self screenlutput: screen]!

store

L 3 2

*kkk ok

Determine and validate the entered amount in
any screen position following the text, and
complete the transfer transaction."
| actionComplete |
(self validAmount)

ifTrue: [

amount := screen contents
' asArrayOofsubstrings
last :
_ asFloat. _
actionComplete := account transferId: id

© source: srcAccount.
amount : amount -
dstn: dstnaAccount.

179 : - 3

actionComplete
notNil ifTrue: |
printer contents: actionCemplete contents.
self printerOutput: printer]..
actionComplete
igNil ifTrue:'[
self noFunds].
self thanks]!

thanks
Ik ok ok ok
*E T I AKX
Show thank you message, eject card and show
welcome message.”
| complete |

screen contents: ' '

Cx;
nextPutall: Thank you for banking';
Cr;

Ccr;

nextPutAll: ! with us'.

self screenQutput: screen.
complete := self eject.
complete ifTrue: |

self wait: 2,

self welcome]!

unreadabl eCardInserted: aPane

IR S EEEEE R E R SRR S SRR E S AR SRR EE S

IR R E R AT EEEIEEEREEEE S SR S8R AN

Result of card reader *unreadable* button
selection,"
| messageSent complete |
state'; P
LETrue: |
messageSent := cardRéader unreadableCardIﬁserted.
messageSent ifTrue: |

screen contents: ' 1

180

cr;
nextPutAll: ° The card cannot be read';
cx; '

cr;

“hextPutall: by this aTM'.

self screenOutput: screen.
complete := self eject.
complete ifTrue: [

self wait: 3.

self welcome]]]!?

validamount

IESEEEE SRR S

kkk ok ok ok okok ok k ok

Validate amount entered on the screen
as a number of whole dollars."
| entry entryAmount |

entry := screen contents asArrayofSubstrings.

U R R R R
Ensure that screen was not deleted
A A R R

entry isEmpty

1fTrue: [

entry := #(0}].

entryAmount = entry last asFloat.
(entryAmount = (€}
ifralse: |

R R R R R A R R

Answer true if entry is integer or float

with zero cents
FHERGFFFER R R R R
{ {entryAmount - (entryBmount asInteger))} = 0)

ifTrue: [“true]].

181

"R RS RER R R SRR
Re-enter if amount invalid
FEHH GRS

self amount;

screenQutput: screen.

~false

validate

Nokk k% ok

kK KEIkKk

Validate PIN entry against PIN on card,
then validate customer identification
number on card is a valid account."

| entry enteredpPin|

entry := gscreen contents asArrayQfSubstrings.

"t E R ARG S S R R R SRS
Ensure that screen was not deleted
REFHF R R R R R R R R

entry isEmpty

ifTrue: |

entry := #{0)].
{entry last asInteger = 0)
ifTrue: [
self enterPIN;
screenCutput: screen)

ifFalse: [

hEG AR R R R A R

Validate entry against card

i E R S T B S A L EE R SR L EissEis
(entry last asInteger = pin)
ifFalse: [self invalidPIN]

ifTrue: [

182

"R B A

validate id in Account

HHAE A R F SR
(account check: id)
ifTrue:; [self menu]
ifFalse: [self held]]]!

validate: aString

Nk kdhhkdhkhdhbkdnkdx

*ThkFhkhkhkdkkhkhrhkhhkihkkx

Store PIN and id."
| pinAndId]
pinAndId := aString.
pin := pinAndId asArrayOfSubstrings first asInteger.
id := pinAndIld asArrayQfSubstrings last asInteger.
state := 'Enter PIN',
self enterPIN.!

walcome

ndkdkkk*

* Mk ok ok X

New customer transaction."
state = '',
PREFEF AR R
Printer action is complete
FHEEFFHERAA R R R R S F SRR SRR
printer contents: "‘.

self printerOutput: printer.

183

“HEEEHES ARG E RS
Show welcome message
EEE RS I S I L RS T T R

screen contents: ! i

cr;

nextPutall: ' Welcome to the ATM, please';
cr;

cr;

nextPutall: ! insert your card'.

self screenQutput: screen!

withdraw: aPane

HhkkkhkrhkERT*hkk®h

LE LRSS R E R LR L2

Result of *Withdraw* button sgselection.®
state = 'Enter PIN'
ifTrue: |
state := 'Withdraw'.

gelf account]! !

ViewManager subclass: #Account
instanceVariableNames :
'account accountWindow accountContents dispenser
depesitSlot printer !
classVariableNames: '’

poolDictionaries: ' !
l2ccount class methods ! !
lAccount methods !

accountMenu;: aPane

R A RS TREERELEE R L& &3]

R A S ETEE RS EETEEFE &3
Answer a Menu for aPane."

aPane setMenu: ({Menu

labels: 'enter or change account balances' withCrs

184

lines: #(0)
selectors: #(changeBalances})

title: 'Account Entry').!

changeBalances

W%k ok ok ok ok ok ok

XA R R LR SRS RS BN
Enter or modify a numeric customer identification

number and two account balances.®

| validEntry end id key balances value default |

balances := OrderedCollection new.
validEntry := false,
end := false.

t R R R R R R
Get customer id, terminate when no entry
SRR AR RS R R R R
fvalidEntry = false

or: [end = false]]

whileTrue: |

validEntry := true.

id :=

Prompter
prompt: 'Enter account number'
default: '°',

{id = nil

or: [

id isErpty])

ifTrue: [
end := true}

ifFalse: [

"
Validate id
Eh A FER RS
key := id asInteger.
key isinteger
ifFalse: [validiEntry := false]

185

ifTrue: [

value := account at: key
~ifAbsent: |
value := (#(0.00 0. 00} asOrderedCollection)].
default := ReadWriteStream on: ''.

value do: [:field]
default nextPutall: {(field printString):
nextPutall: 1.

"REHEE R H AR R SRR R
Get: chegque and savings balances
FHEF R E R R
balances :=
Prompter
prompt: 'Enter chegue and savings account
balances'

default: (default contents).

"R R
validate balances
Attt o R
balances isNil
ifFalse: |
{balances asArrayOfSubstrings size = 2)
ifTrue: f
value := OrderedCollection new.
{balances asArrayOfSubstrings)
do: [:field]
field asFloat
isNumber
ifFalse: [
validEntry := false]
ifTrue: [
value add: {field asFloat)}]}]].
. account at: key put: wvalue. '

self updateContents]]!

186

check: aNumber

Hdd ke draddhddek k¥

tA SRR EE & L ERE LS

Answer true if aNumber is an Account key,
otherwise answer false."
| answer |
answer :1= ({account keys) includes: aNumber).

~“answer !

depositId: anId account: anAccount amount:; anamount

RS EFETEEEEEAEEEEEE R ESAER SR SR SR L EEEREEREEEEETEREEE S EEREY

I ZEEEE SIS ER AR L ARRSE SRR R TR REEEEEEELLEEES S EE KRR

Deposit transaction. Add deposit to
account balance."
| actionComplete value balance
transactionComplete |
actionComplete := depositSlot deposit.

actionConmplete ifTrue: {

value := account at: anId.
balance := value at: anAcccunt,
balance := balance + anAmount.

value at: anAccount put: balance.

account at: anld put: value.

CEEE AR R R
Advise printer
cEEE S SIS ST ES S
transactionComplete :=
printer printout: 'deposited’
account: anAccount
amcount: anAmount.
self updateContents.

~“transactionComplete]!

187

initialise
Wodkdedekkkdkk

*kdkokkok ok okh

Establish link to Dispenser, Deposit Slot
and Receipt Printer. Open a Dictionary."
dispenser := Dispenser new.

depositSlot := DepositSlot new.

il

printex ReceiptPrinter new.
account := Dictionary new.
self open;

changeBalances. !

listContents: aPane

Nk kdkhkdkhhkdrrdhbhkdrnhxx

LR AR S SRS R EREEEEEEFER]

Answer account details window contents."

aPane contente: accountlontents!

open

n ok ok ok

* k&%

Create a window on the account details,
consisting of a List Box and the menu
accountMenu for modifying details.”
| line | _
self labelWithoutPrefix:

'Accounts for Demonstration ATM'.

self addSubpane:
{accountWindow := ListBox new
changed: #selectCriteria:
framingRatio: {0 @ 0 extent: 1 @ 1);
when: #getMenu perform: #accountMenu:;
when: #getContents perform: #listContents:).

self openWindow. !

188

queryid: anTd account: anAccount

Il***********************.********
**************‘h;;\";\'***************l
Query transaction to determine balance."

| value balance transactionComplete |

value := account at: anId.
balance := value at: anhccount.
U R
Advise printer
LEaaEE e i L E R Ss Tk
transactionComplete := printer query: anAccount

amount: balance,

~“transactionComplete!

transferlId: anId source: aSrciAccount amount: anfmount 4stn:

aDstnAccount

IER R FEEEET R R R ST A S S LR L ESE SRR SE TR AR RS SRR AR LS ST R L EE Y]

(AR X R R R RIS R R R AL R ER SRR LR ERE SRR EEREE RS ESSEEREEEEEELERERSE]

Transfer transaction. Subtract from source
account and add to destination account.*
| value srcBalance dstnBalance
transactionComplete |
value := account at: anld.
"R R R
Get source balance
FH A SRR
srcBalance := value at: aSrcAccount.

srcBalance := srcBalance - anAmount.

PEF RS R SR
Determine gufficient funds
FHFF SRR R R S R
{(srcBalance negative)
1fTrue: [
transactionComplete := nil]

ifFalse: [

189

dRF R R

Tranzsfer funds

SRR E R E ST E
value at: aSrcAccount put: srcBalance,
dstnBalance := value at: aDstnAccount.
dstnBalance := dstnBalance + anAmount.

value at: aDstnAccount put: dstnBalance,

account at: anlId put: value.

i R
Advise printer
FHES AR
transactionComplete :=
printer transferSrc: aSrcAccount
amount: anAmount
dstn: aDstnaAccount,
self updateContents].

“transactionComplete]

updateContents

Nnhkkkkrrkharhkhk s

ke kh ckok ok kKK ok

Update the account details window in key order.*
| -ine count sortedKeys|
accountContents := OrderedCollection new.
accountContents add: 'Id Cheque Savings'.
sortedKeys := account keys asSortedCollection.
sortedkeys do: [:id]
" 1ine := ReadWriteStream on: (String new).
count := 1,
line nextPutAll: {id printString).
50 timesRepeat: [line space].
(account at: id) do: [:balance]
line position: ({15 * count}
' - {balance printString size)}:
nextPutall: (balance pfintString).

count := count + 11.

line cr;

190

reset.
accountContents add: {line nextLine)l.

accountWindow contents: accountContents!

withdrawId: aniId account: anAccount amount: anAmount

IEEE RS ST IR SRR E RS TR AR AR R RS LR R LR L EE R R R RN

IR ESE R EEE RS LR TR SRR LS SRR R E RS RE SRR ESF R EEEEEEE S SR LT

Withdraw transaction. Subtract withdrawal
from account balance." |
| actionComplete value balance
transactionComplete |
actionComplete := dispenser withdraw: andmount.
O g ER R R
Dispenser action completed
4R R

actionComplete ifTrue: |

value := account at: anId.

EEE R TS

Get balance

ERE R R
balance := wvalue at: anAccount.
balance := balance - anAmount.

PR R
Determine sufficient funds
RS R R R R R
{balance negatiwve)
ifTrue: [
transactionComplete := nill
ifralse: [
value at: anAccount put: balance.

account at: anlId put: value.

S E ST LT
Advise printer
SHEFF SRS ES RS FESE

transactionComplete :=

191

printer printout: 'withdrawn'
account: anAccount
amount : anAmount.
self updateContents].

~“transactionComplete]! !

Object subclass: #DepositSlot
instanceVariableNames: '
classvVariableNames: !

poolDictionaries: '' !
IDepositSlot ¢lass methods ! |
IDepositsSlot methods |

deposit
nk ok ok ok kX

*ofe # ok kK

Answer true if deposit action complete.
Always answer true."
| actionComplete |
actionComplete := self money.

actionComplete ifTrue: [~true]!

money
ok kokk
kohk ok k
Answer true if parcel inserted.
Always answer true."
| moneylInput |
moneylInput ;= true.

“moneylInput! !

192

Object subclass: #Dispenser
instanceVariableNames:
'amount !
classVariableNames: ''

pocolDictionaries: ' {

!Dispenser c¢lags methods !
!'Dispenser methods !

withdraw: aFleoat

eSS XS SRS R &K

R E AR S E AR LR E LN

Answer true if dispenser action complete.
Always answer true,®
amount := aFloat.

“true! |

Object subclass: #ReceiptPrinter
instanceVariableNanes: '
classVariableNames: '

poolDictionaries: ' !
1ReceiptPrinter class methods ! !
IReceiptPrinter methods !

printout: aTransaction account: anAccount amount: andmount

Hkhkhkhhhhrhrhdkdhdhhhdhrrdhrhrhdhhdhhdhhbdhrdhrkoddarrdhhbrhhhhhd

X RS XS R LSS SRS SRS RS SRS E RS R R R RS RS ER LT EREEEEEEE TR TR XY

Formulate printout message.®
| output |
output.:= ReadWriteStream on: ‘',
output cr;
nextPutAll: ' The amount of §';
nextPutAll: (anAmount asInteger printString);.

CcI;

LR i T

193

nextPutAll: ' has been ';
nextPutAll: aTransaction;
cr; |
nextPutall: ' on your ',
anAccount = 1
ifTrue: [
output nextPutAll: 'cheque'].
anhccount = 2 |
ifTrue: [
output nextPutAll: 'savings'],
output nextPutAll: ' account';
or;
reset,

~output!

guery: anfAccount amount: aBalance

IES S S ST TR SIS S E LTS E LR ETEEESE T

EE S E S R E SRS EEEL LRSS R L EE ST REE TR EEE]

- Formulate query message."

| output |
output := ReadWriteStream on: ''.
cutput cr;

nextPutAll: ' Your '.

endccount = 1 |
ifTrue: [

output nextPutaAll: ‘cheque'].
anAccount = 2
ifTrue: [

output nextPutaAll: 'savings'].

output nextPutAll: ' account balance';
or;
nextPutAll: ' is §';

nextPutAll: {aBalance printString);
cr;

reset.

“output!

194

‘transferSrc: srcAccount amount: anfmount dstn: dstnAccount

ll**1‘:#*

khkkkhbhkhhhkhktrhhhhhddhhkdhhhihbhhodhhbddhhhhdhddrhhhdkdhhh vk kddi

Formulate printout message."
[output |
output := ReadWriteStream on: ''.
output cr; .
nextPutAll: ' The amount of §';
nextPutAll: (anAmount aslInteger printString);

cx;

nextPutAll: ' has been transferred';
cr;

nextPutAll: ' from your ',

srchccount = 1
ifTrue: |
output nextPutAll: 'cheque’'l,
srcAccount = 2
ifTrue: [

output nextPutAll: ‘'savings'],

output nextPutAll: * account';
cr;
nextPutAll: ' to your '.

dstnAccount = 1
ifTrue: [

output nextPutAll: ’'chegue'].
dstnlAccount = 2
ifTrue: {

output nextPutaAll: ‘savings'].
output nextPutAll: ' account';

cr;

reset,

~output! !

	A search tool to enhance the selection and utilisation of reusable software modules within the object-oriented paradigm
	Recommended Citation

	Edith Cowan University
	Research Online
	1996

	A search tool to enhance the selection and utilisation of reusable software modules within the object-oriented paradigm
	Robert H. Cross
	Recommended Citation

