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Abstract: A reconfigurable optical add/drop multiplexer (ROADM) struc-
ture based on using a custom-made fiber array and an Opto-VLSI processor
is proposed and demonstrated. The fiber array consists of N pairs of angled
fibers corresponding to N channels, each of which can independently
perform add, drop, and thru functions through a reconfigurable Opto-VLSI
beam steerer. Experimental results show that the ROADM structure can
attain an average add, drop/thru insertion loss of 5.5 dB and a uniformity of
0.3 dB over a wide bandwidth from 1524 nm to 1576 nm, and a drop/thru
crosstalk level as small as -40 dB.
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1. Introduction

The explosive growth in demand for the transmission capacity and network is leading to an ur-
gent need for flexible, cost-effective optical components. The challenge for dense wavelength
division multiplexing (DWDM) technology is being extended from developing long-haul point-
to-point links to building out flexible automatically switched optical networks [1]. Reconfig-
urable optical add-drop multiplexers (ROADMs) are attractive components in DWDM systems
because they can handle the vast data traffic capacity and control the optical channels for op-
timum network performance [2, 3]. A ROADM is a device that can dynamically add, block,
pass or redirect modulated infrared (IR) and visible light beams of various wavelengths in fiber
optic systems that employ WDM. It is used to remotely reconfigure, add and drop capacity at
each node, which allows for network upgrades without affecting in-service traffic and helps
minimize operational expenditures, especially in the metro/regional environment.

Several techniques have been developed for realizing dynamic add/drop multiplexing [4,
5, 6], such as wavelength blocker (WB) [7], wavelength selective switches (WSS) [8], and
planar-lightwave-circuit (PLC) ROADM [9, 10]. Each technology has various tradeoffs among
bandwidth, flexibility, channel isolation, switching times, reliability, integration, and cost. High
cost is the main factor preventing ROADMs from wide application in current communication
systems.

In this paper, we propose and demonstrate a novel ROADM structure employing custom fiber
arrays and Opto-VLSI processors. The opto-VLSI processor can be programmed to generate
multiphase steering holograms to adaptively steer wavelength channels, thus achieving add,
drop, and thru operations. Proof-of-concept experiments demonstrate that a high-performance
ROADM can be achieved with high flexibility, cost-effectiveness, broad bandwidth, large wave-
length numbers, high channel isolation, and relatively simple structure.

2. Opto-VLSI processor

An Opto-VLSI processor consists of an array of electro-optic cells independently addressed
by a Very-Large-Scale-Integrated (VLSI) circuit to generate a reconfigurable, reflective digital
holographic diffraction grating capable of steering and/or multicasting an optical beam. Figure
1 shows a typical layout and a cell design of a multi-phase Opto-VLSI processor. It comprises a
VLSI circuit, evaporated aluminum, a quarter-wave plate (QWP), liquid crystal (LC), Indium-
Tin Oxide (ITO) and a glass. ITO is used as the transparent electrode, and evaporated aluminum
as the reflective electrode. The quarter-wave plate (QWP) layer between the liquid crystal and
the VLSI backplane is responsible for polarization insensitivity (polarization dependent loss
for optical beam steering is as low as 0.5 dB [11]). The ITO layer is generally grounded and a
voltage is applied at the reflective electrode by the VLSI circuit below the LC layer to generate
digital phase holograms for optical beam control. Some specific memory elements that store a
digital voltage value are assigned to each pixel. This device is electronically controlled, soft-
ware configurable, and polarization independent. It is a cost effective solution because of the
high-volume manufacturing capability of VLSI chips as well as having capability of control-
ling multiple incident beams in one compact Opto-VLSI module, and very reliable since beam
steering/multicasting is achieved with no mechanically moving part.

The deflection angle for the Opto-VLSI processor, θm, is given by [11]:

θm = arcsin(
mλ
d

) (1)

where m is the diffracted order (usually only the first order is considered), λ is the vacuum
wavelength, and d is the grating period.
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Fig. 1. Opto-VLSI processor structure

3. ROADM architecture

The structure of the reconfigurable optical add-drop multiplexer is shown in Fig. 2. The WDM
signal launched at the input-port are routed, through a circulator, to an N-channel arrayed
waveguide grating demultiplexer (AWG 1) where each output port dedicated to a wavelength
channel (from λ1 to λN) is connected to a corresponding optical fiber of the following fiber
array. The fiber array consists of N pairs of optical fibers. Each pair consists of an upper fiber
(connect to AWG 1) and a lower fiber (connect to AWG 2). The angle between the upper and
lower fibers is θ , which is optimized to minimize the insertion loss and crosstalk. A lens array
is used to collimate the divergent beams from the upper optical fibers. The collimated beams
illuminate different pixel blocks on the Opto-VLSI active window which is tilted at an angle
φ with respect to the lens array. When a blank hologram is used, the collimated beam from an
upper optical fiber is placed in such a way so that the reflection from the Opto-VLSI falls onto
the area between the upper and lower optical fiber pairs. By employing an appropriate holo-
gram into the Opto-VLSI processor, the collimated beam is independently steered and coupled
to either the upper fiber (for thru operation) or the lower fiber (for drop operation). All dropped
wavelengths are multiplexed via AWG 2 and sent to the drop-port through a circulator. The
added wavelengths launched at the add-port propagate along the same paths of the dropped
wavelengths but in the opposite directions, where they are steered by the Opto-VLSI processor,
coupled to the upper fibers and multiplexed via AWG 1 to reach the thru port.

The 1-D ROADM structure shown in Fig. 2 can easily be extended to a 2-D structure by using
a 2-D large-area Opto-VLSI processor in conjunction with a 2-D custom fiber array, and a 2-D
microlens array. This will dramatically decrease the cost per channel and extend the capability
of add, drop, and thru operation.

4. Experiments and results

In order to demonstrate the principle of the ROADM, a custom-made fiber array was fabricated
with the angle between the upper and lower fiber pairs being 1.5 o. Generally, the larger the
angle between the fiber pairs, the lower the crosstalk between the upper and lower fibers, and
the larger the insertion loss for the thru and add/drop operations. The tradeoffs between the two
parameters (loss and crosstalk) was minimized by optimizing the angle between the upper and
lower fibers of the custom fiber array. Figure 3 shows the experimental setup, where add, drop
and thru operation were investigated. A tunable laser source with a range from 1524 nm to 1576
nm was used in the experiment. Two optical spectral analyzers were employed to monitor the
thru-port (OSA 1 in Fig. 3) and drop-port (OSA 2), respectively. A 2 mm diameter lens with a
focal length of 5 mm was used to collimate the light from the upper fiber at 1mm diameter, and
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Fig. 2. Novel ROADM structure employing AWGs, a custom-made fiber array, and an
Opto-VLSI processor for optical beam steering.

the collimated beam was launched onto the active window of the Opto-VLSI processor. The
1-D, 256-phase-level Opto-VLSI processor used in the experiments has 1×4096 pixels with
1 μm pixel size and 0.8 μm dead spacing between adjacent pixels. A Labview software was
developed to generate optimized phase holograms that steer the incident beam along desirable
directions.

Fig. 3. Experimental setup for demonstrating the concept of the ROAD structure shown in
Fig. 2.

When no phase hologram applied, the Opto-VLSI processor acted like a mirror. Before the
appropriate phase hologram was uploaded, the Opto-VLSI processor was slightly tilted so that
the reflected collimated beam is focused onto an area between the upper and lower fibers (called
zeroth-order spot). In the experiment, the zeroth-order direction has an angle of 0.61 o with
respect to the upper fiber, and 0.89o with respect to the lower fiber. Two phase holograms were
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Fig. 4. (a) Measured transmission versus wavelength for drop operation, and phase holo-
gram used for channel dropping. (b) Transmission and crosstalk versus wavelength for the
thru operation.

Fig. 5. A ROADM structure with multiple add/drop ports.

generated and optimized for steering and coupling the incident collimated beam to either the
upper fiber (thru) or the lower fiber (drop). The transmission versus wavelength for the drop
operation is shown in Fig. 4(a). Also shown in the same figure is the phase hologram used
for dropping all channels over the wavelength span. Figure 4(b) shows the transmission and
crosstalk versus wavelength for the thru operation. The laser power launched into the fiber
array was +2 dBm. As shown in Fig. 4, the drop and thru optical power levels were from -2.9
dBm to -3.4 dBm, exhibiting a uniformity of ±0.3 dBm. Therefore, the measured insertion loss
for drop/thru operation was about 5.5 dB. Figure 4(b) shows that the thru-to-drop crosstalk was
below -40 dBm.

This device has high flexibility for wavelength port assignment because each wavelength
channel can be routed from AWG 1 via an optical fiber and mapped onto an appropriate pixel
block dedicated to add or drop that particular wavelength channel. Note that in Fig. 2 all the
drop channels are multiplexed and routed to a single output port and all the add channels are
launched from a single Add port. However, the structure can be modified so that each channel
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is dropped/added through a dedicated fiber port, as illustrated in Fig. 5. Note that the add, drop,
and thru signal levels can be balanced by simply reconfiguring the steering phase holograms of
the Opto-VLSI processor. Note also that, by using a 2-D opto-VLSI processor, one can increase
the number of channels significantly. For example, by using a 2-D 8192x80 pixel Opto-VLSI
processor, a 128-channel ROADM can be realised.

5. Conclusion

We have proposed a ROADM structure based on a custom fiber array and an Opto-VLSI proces-
sor. Experiments have shown a high drop/pass isolation level less than -40 dB, more than 50 nm
bandwidth with uniformity of ±0.3 dB, and an insertion loss as small as 5.5 dB. This ROADM
structure exhibits high flexibility, broad bandwidth, high channel isolation, cost-effectiveness,
high reliability, and compact size, and has the potential to meet the requirements for high optical
performance in reconfigurable optical networks.
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