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Abstract

Time series models have been applied in many areas including economics, stock
recruitment and the environment. Most environmental time series involve highly
correlated dependent variables, which makes it difficult to apply conventional
regression analysis. Traditionally, regression analysis has been applied to the
environmental dependent stock and recruitment relationships for crustacean species in
Western Australian fisheries. Alternative models, such as transfer function models
and state space models have the potential to provide unproved forecasts for these

types of data sets.

This dissertation will explore the application of regression models, transfer function
models, and state space models to modelling the puerulus stage of the western rock
lobster (Panulirus Cygnus) in the fisheries of Western Australia. The transfer
function models are consulted to examining the influences of the environment on
crustacean species and can be used where correlated variables are involved. These
models aim at producing short-term forecasts that may help in the management of the

fisheries.

In comparison with regression models, TFM models gave better forecast values with
state space models given the forecast values in the first two years. Overall, it was
shown that environmental effects, westerly winds and the Leeuwin Current, have a
significant effect on the puerulus settlement for Dongara and Alkimos. It was also
shown that westerly winds and spawning stock have a significant effect on the

puerulus settlement at the Abrolhos Islands.
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CHAPTER I
INTRODUCTION

1.1 About this Chapter.

This dissertation will compare the application of regression, transfer function, and
state-space modelling for analysing environmentally dependent stock and recruitment
related data. In particular, the puerulus stage of western rock lobster will be considered.
Section 1.2 briefly discusses the biological background to this study while section 1.3
looks at the statistical aspects. The data used in this report are described in section 1.4.

Finally, the objectives and significance of the research are stated in sections 1.5 and 1.6.

1.2 Biological Background.

The spawning of western rock lobsters, when they hatch their eggs occurs mainly in
waters of 40 to 100 m depth. The larvae are carried offshore by currents, spending 9-11
months in the open ocean between 400 and 1500 km offshore. They are then returned to
the continental shelf where they metamorphose to the first post larval stage, called
puerulus'. The puerulus then swim across the shelf to settle mainly on the inshore reefs

and moult into juveniles.

The modelling of environmentally dependent stock and recruitment relationships for

crustacean species has been considered essential for the management of the fisheries.

One of the crustacean species to be examined in this thesis is the puerulus stage of the
western rock lobster (Panulirus cygnus), from three regions of the western rock lobster
fishery of Western Australia. This puerulus stage is used to predict rock lobster catches
three years ahead and thus is important in the management of the western rock lobster

fishery (Caputi er al., 1995a). This fishery is one of the major rock lobster fisheries in the

! Puerulus is better referred to as pueruli. Throughout this dissertation, the term puerulus will be used.



world. The rock lobster is one of the exceptional single species in Western Australia,

worth about 200 to 300 million dollars a year (Morgan, 1980).

Environmentally driven changes in recruitment have been examined in the western rock
lobster fishery as well as for other crustacean fisheries. These changes may prove useful
in understanding the variation in the annual rates of the puerulus settlement as well as

making future predictions of puerulus abundance.

Thus understanding the factors, which affect the variation in puerulus settlement, will
assist in the management of the fishery. A variety of models were used at three sites,

Dongara and Alkimos and the Abrolhos Islands in Western Australia as illustrated in

Figure 1.1.

Figure 1.1 : Location of the Abrolhos Islands, Dongara and Alkimos in Western

Australia.
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1.3 Statistical Model Background.

The purpose of this dissertation is to examine environmental factors affecting the stock -
recruitment relationships (SRR) by developing appropriate time series models. Three
different approaches will be compared. Thus, for the environmental - stock - recruitment
relationships of the western rock lobster fishery in Western Australia. These approaches
are regression analysis, transfer function modelling and state space modelling (See

Appendix 1 for summary).

Regression analysis is a traditional method of analysis that can be used to determine if
dependency relationships exist in the data. It assumes each observation is independent
and normally distributed. However, highly correlated variables may be involved in the

analysis of these environmental time series.

For this reason, Box and Jenkins (1976) introduced transfer function models (TFM).
These models take into account the autocorrelation of the dependent variables. TFM
modelling consists of three main stages. These are identification, estimation and
diagnostics checking. TFM modelling can incorporate these correlated explanatory
variables. Therefore, these types of models are flexible time series models that can be

used for a variety of applications.

The third approach will examine the application of state-space models (SSM) including
structural models and regression models with Box-Jenkins’ Autoregressive integrated
Moving Average (ARIMA) disturbances. Well suited to stock assessment, the ‘state of
the system’ contains necessary information in order to predict the future. These are
particularly useful to obtain when missing data are involved and also when the data set

involved is non-stationary (Freeman and Kirkwood, 1994).

The aim of building models is to understand factors affecting variation in recruitment for
the given factors, Leeuwin Current level, westerly winds and the spawning stock. This
research will provide the most suitable model to explain the puerulus settlement rate that

can provide valuable biological as well as statistical information. It will also aid in




the management of the western rock lobster fishery in Western Australia by maintaining

sustainable stock levels.
1.4 Data.

1.4.1 Puerulus Settlement.

The Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the
Fisheries Department of Western Australia, from the coastal sites Dongara, Alkimos and
the Abrolhos Islands collected the puerulus settlement data used in this analysis. The
peak settlement of the puerulus occurs during the period September to November (refer to
the data given for this area in Appendix II). The mean number of puerulus per collector
during the period May to April was used as a measure of the index of abundance of the
puerulus settlement (Caputi ef al., 1995b). Unfortunately, for the Abrolhos region there

were five years of missing data. A full description of the data is given in Table 1.1.

Table 1.1 - Description of the Data

Region Starting Year | Last Year of | Missing Values | Number of
of Puerulus Puerulus Observations
Settlement Settlement
Dongara 1968/69 1992/93 N/A 25
Alkimos 1982/83 1992/93 N/A 11
Abrolhos Islands 1971772 1992/93 5 missing values | 22
from
1979/80 to
1983/84

The mean Fremantle sea level for the calendar year (January - December) was used as an
index of the Leeuwin Current strength (Pearce and Phillips, 1988). The impact of the
westerly winds during the period of peak settlement (October to November) was taken
into account by using rainfall as a surrogate variable. The spawning stock index for the
whole fishery was based on catch rates for the coastal fishery and the total catch for the

Abrolhos Islands (Caputi et al., 1995b). These factors were assessed to be significant



using regression analysis and will be examined here using a TFM approach. See

Appendix 2 for data for the puerulus settlement used in this dissertation.

1.4.2 Missing Values

TFM models cannot accept missing values. These missing values were estimated mainly
for this purpose. The catch - puerulus relationship which has been successfully used to

- predict catches was re-estimate with puerulus y,, and catch 4 years backwards C;,_,to

predict puerulus missing values for the Abrolhos Islands for the period 1979/80 to
1983/84. Catch estimates were used to predict the puerulus values four years previously
at different sites in WA. This relationship produced puerulus estimates that were realistic
from a biological perspective. This procedure had to be applied because TFMs cannot

involve missing values.

The earlier years should not be predicted too far in advance as changes in fishing
predictions may have altered the catch - puerulus relationship. The missing values for
catch-puerulus relationship for the Abrolhos Islands were estimated by

Iny,, =-68.031+5.047In(C,,_,) .
where ¥, is the puerulus settlement at the Abrolhos Islands, C,,_, is the catch four years

backwards. Using this equation, the missing values were estimated by the fishing

industry.

1.4.3 Effect of Environmental Conditions on Puerulus Recruitment.

The strength of the Leeuwin Current has a positive influence during the larval phase of
the puerulus settlement at Dongara and Alkimos (Pearce and Phillips, 1988, Caputi et al.,
1995a). The impact of the westerly winds in southern locations and the Leeuwin Current
was used to examine the variation of puerulus settlement at Dongara and Alkimos, while
the impact of westerly winds in the northern regions and the spawning stock are both
examined for the area of Abrolhos Islands. Fremantle sea level for the calendar year

(January to December) was used as an index of the current strength from that year. The



regression analysis (Caputi at al., 1995a) and will be examined here using a TFM

approach.

For the two sites, Alkimos and Dongara stock-recruitment relationships were investigated
and the spawning stock was found to be an insignificant factor. On the other hand, the
decline in Abrolhos Islands settlement was explained by the reduction in spawning stock

which plays a major part in the analysis (Caputi et al., 1993).
1.5 Aim of Research.

The research objectives are as follows:

1) To apply and compare regression models, transfer function and state-space models for
the environmental-dependent stock recruitment relationships of crustacean species in
Western Australia.

2) To find if the application of state-space models provide a better insight into the
factors that affect the recruitment of crustacean species.

3) To investigate whether the increased complexity of transfer function and general

state-space models justify their use in practice.

1.6 Significance of Research.

State-space methods and TFMs have not been applied extensively to analyse stock-
recruitment and environmental relationships for rock lobsters in Western Australia, in the
fisheries literature or elsewhere. The dissertation will determine the feasibility of using

such models for the better management of the fishing industry.

1.7 Computer Software.

Throughout this dissertation Minitab will be used to illustrate the application of multiple
regression models. The Statistical Computing Associates (SCA)? package will be used

for illustrating the application of transfer function models. To illustrate the application of

The SCA package can be used extensively for the analysis of the data using Regression, ARIMA and TFM modelling




state-space models to the given data computer packages such as S-plus for Windows and
STAMP will be used.

1.8 Structure of the Dissertation.

This dissertation will assume that the reader has a basic knowledge of Box-Jenkins’
ARIMA models and linear stationary and non-stationary stochastic models. Chapter II,
III and IV will provide the theory and application of analysing the multiple regression
models, transfer function models and state-space models. The environmental data sets for
the western rock lobster data described in section 1.4 and a variety of other applied data
sets will be used by way of example throughout this report. The results of using the three
models for puerulus settlement data set are produced in chapter V and used to compare
the application of state space models and transfer function models with multiple

regression models.




CHAPTER 11
REGRESSION ANALYSIS

2.1  About this Chapter.

This chapter will investigate regression analysis as introduced in section 2.2. Section 2.3
outlines the mathematical formulation of multiple regression. Also stated in section 2.3
are the assumptions of regression models as well as the problems that may be
encountered in the application of this model. Section 2.4 reinforces the importance of a
graphical analysis prior to the application of regression models. Section 2.5 focuses on
the estimation of the linear regression model for the puerulus data. Diagnostics are

discussed in section 2.6 and section 2.7.

2.2 Multiple Regression Models.

Regression analysis is a common statistical tool that is widely used to represent the
relationship of one or more independent variables with multiple dependent variables. The

method can be easily applied for time-dependent data obtained in equal time intervals.

Chatfield (1989) discusses the possibility of using simple linear regression models for
time series data. Caputi et al. (1993) and Caputi et al. (1995a) in particular illustrate that
the fluctuations of the puerulus settlement in the coastal sites of Dongara and Alkimos.
These fluctuations are mainly caused by the environment. Simple linear regression
models were used to represent the environmental relationships on the western rock lobster

fishery as well as other fisheries in Western Australia.

Suppose x,,,-:-,x, are &, predictor variables influencing a value of a univariate
dependent variable y,. Then the observations are

(xlp'”’xkp,y,)s t= l,2...n



assuming that these observations were taken over n periods of time. The conditional
expectation of the response variable y, given x, is linear forj = I...k is given as

E(y, 1 %, x,)= Bo+ Bixy, +--+ Box, +€4,
where f3;,i=0... k are fixed parameters and ¢, is the regression model error term. The
parameters, f3;, would be estimated from the given observations. The error term is given
as

Er =D, _E(yr le:""’xkt)'

The value of the dependent variable at time ¢ differs from its expectation. The multiple

regression model is then given as,
Yo = Bo+ Bix, +--+ Bexy + €
where f3,, i =0...k are parameter values and ¢, is the error term. If the arrays y,,x,,€,

are defined as

A X, - Xu Eir B,

A 3 X1z X2 2R B,
y, = X, = Ep = ,and B =

yn xln . xlal 8nR ﬁk

Then this can be represented in the form
Yy, =x,B+ey, (2.1)
Equation (2.1) is called a multiple regression model (Johnson and Wichern, 1992,

pp. 287-290).

2.2.1 Assumptions.

Some of the assumptions involved in describing a multiple regression problem are stated

below:

1) For each specific combination of values of the independent variables

x, =(x,,"--,x, ), y, is a random variable with a certain probability distribution;




2) the y, observations are statistically independent of one another;
3) for any fixed combination of x, =(x,,---,x, ), y, is normally distributed. In other
words,
y, ~NID(uy, |x, c2).
This assumption is required for inference-making purposes

(Kleinbaum and Kupper, 1988, pp. 136-137).

The ordinary least squares (OLS) method can then be used to estimate the regression
coefficients. This method is based on the assumption that the residuals, €,, are
independent of the input variables. The error terms are assumed normally distributed

random variable with mean zero and variance O'e,,,z by (i), that is, € ~ NID (0, O'C’RZ)

(Draper and Smith, 1981, p. 460-461).

2.2.2 Problems and Pitfalls.

In practice, many difficulties may arise when applying regression analysis and in this
section, two main classes of problems will be discussed in detail. These are

a) problems due to the assumptions, and

b) problems arising due to the form of the data

(Wetherhill et al., 1986, p. 14).

2.2.2.1 Problems Due to the Assumptions.

1) The assumptions stated in section 2.2.1 that might not be valid. This can result in an
incorrect or an ineffectual model.

2) The linear form of the model fitted to the data may not be appropriate. In this case, a
transformation would then be required to fit a non-linear model to the data

(Wetherhill et al., 1986, p.14).

2.2.2.2 Problems Due to the Form of the Data.

Multicollinearity is one major difficulty that arises. This problem occurs when the

exploratory variables are highly correlated. This produces near or exact linear
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relationships among the exploratory variables. The exploratory variables are
multicollinear when [x/x,[', where x, =(x,,,--,x, ) is near-singular. A complex linear

relationship is illustrated in example 2.1, to show the effect of multicollinearity. This is

referred to as an ill-conditioned system.

2.2.3 Example 2.1.

This example investigates the relationship between the number of households ( x,,) and
the number of occupied households ( x,,) and the monthly sales (y,) (see Appendix II).

A company specialising in manufacturing backyard satellite antennae predicts sales by
geographic sales district. Therefore, nine districts are randomly selected to develop and
test a model. For each district, the number of antennae sold in the previous month, the
number of households and the number of owner occupied households were recorded. The

variables x, and x, were regressed on y,. A multiple regression model was produced
as shown by Figure 2.1. It was concluded that the exploratory variables x,, and x,, are
strongly linearly related to y,, the multiple regression model, which can be shown by the

close relationship or high correlation (R?). In this example, problems were caused when

estimating the model parameters and in the interpretation as well. These problems can be
caused by multicollinearity since it can be concluded [x/x,|", where x, =(x,,,x,,),

0.0318 -0.0478

produced a near linear relationship as x, =[ 0.0478  0.0722

roos
], and x, x, is near-

singular.

Figure 2.1 — Multiple Regression Model for Sales data

Regression Analysis
The regression equation is

Ye = - 2.4 + 2.40 x + 1.44 x5,

Predictor Coef StDev T P
Constant -2.38 10.91 -0.22 0.834
Hie 2.402 2.221 1.08 0.321
o 1.444 3.525 0.41 0.696
8§ = 12.10 R-Sq = 92.8% R-Sqg(adj) = 90.4%
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Figure 2.1 — Multiple Regression Model for Sales Data (Cont.)

Analysis of Variance

Source DF sSs MS F P
Regression 2 11318.9 5659.5 38.63 0.000
Error 6 879.1 146.5

Total 8 12198.0

Source DF Seq SS

Hye 1 11294.4

Hae 1 24.6

Durbin - Watson Statistic = 2.04°

2.3 Data Analysis.

Exploratory data analysis may be used to reveal the features of the data set under study.
This helps to show interesting aspects in the sets of data. A main objectives of data
exploration is the detection of errors in the data. A few of the features that need to be
examined are the linear relationships, time trends and outliers (Wetherhill et al., 1986,

pp. 14-15, 18-19).

The presence of outliers in the dataset may lead us to detect non-normality,
heteroscedacity3 or even the need for transformation. Figure 2.2 (a) and (b) show the

probability plot (Q-Q plot) (see Johnson and Wichern, 1992, p. 157) for x,, and x,, in
example 2.1 (section 2.3.3). Though, a few outliers exist for x,,, this plot clearly shows
that x, follows a normal distribution for the remaining data. No outliers exist for x,,

which shows that x,, follows a normal distribution.

? Heteroscedacticity is the local variability of data changes across the study area

(Gooverts, 1997, p. 82)
4 The durbin-Watson Statistic is explained in more detail in section 2.5.4.
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Normal Probability Plct for X1

Figure 2.2 — (a) Probability Plot for Number Of Households
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The exploratory data analyst uses such graphical methods as a major tool. Various
methods for plotting the data are given to help the analyst gain an insight into the
structure of the data. Univariate plots are useful for the purpose of finding outliers.
Bivariate plots are also examined, which can involve any standard two-dimensional plot
as shown in Figure 2.3 from example 2.1, section 2.3.3 (Wetherhill et al., 1986, p. 30).

When the number of owner-occupied households (x,,) is plotted against the number of
households ( x,,), it can be deduced that these two variables affect the analysis because of

the presence of an outlier in the data.

Figure 2.3 - Bivariate plots of the Sales data.
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2.4 Linear Estimation.

The main objective for the investigator is to develop an equation that will allow the
prediction of the response for certain given values of the predictor variables. Therefore,
values for the constant regression coefficients, f and the error variance ofk, must be
determined so as to “ fir ” the model in (2.1) to the observed y, (Johnson and Wichern,

1992, p. 289). For finding the best estimate of the linear multiple regression equation, the

14




least squares approach is used. The sum of squared differences of observed y, model

is then given by
S(B) = Z(yj - .;’1)2 = Z(yj - Bo - leu T T kala)z (2.2)
=l =
=(y1 - xt’B)’(yt - xtﬁ) .

This is known as the error sum of squares. The least squares estimates of the regression

parameters 3 are determined by the coefficients ﬁ, which are chosen by the least

squares criterion so that the sum in (2.2) is a minimum (Johnson and Wichern, 1992,

p- 289).

The deviations, &, =y, — ﬁo - ﬁ,x,, - B,‘x,,, are called residuals. Thus, the

deviations in (2.2) are also related to the residual sum of squares. The unknown

parameter 0'2 is derived from the information given from the vector of residuals

R

£x =¥, — X, (Johnson and Wichern, 1990, p. 289). The minimisation of S(f) = £,€,,
leads to the system of equations (x,'x,)B =x,'y,, which are called normal equations.
This system of equations can be solved explicitly as ﬁ=(x,’x,)"(x,’ ¥,); assuming

(x;x,) has an inverse (Chaterjee and Price, 1977, p. 72).

A variety of computer packages are used for estimating multiple regression models.
Packages including Scientific Computing Associates (SCA), SPLUS for Windows and
Minitab for Windows, which will be used for the purpose of this research. These
packages also use multiple analysis of variance (MANOVA). The MANOVA in Table

2.1 shows the significant results produced when estimating a multiple regression model.

15



Table 2.1

Multiple Analysis of Variance - MANOVA Table

Source of Sum of Degrees of Mean Square (SS/df) F
Variation Squares (S5) Freedom
@h
Treatment SS(R) g-1 g _ ) A (R/
2%~ %) (e-D)
I=1 SS(E)
4
Z nl-s
I=1
Residual(Error) SS(E) g Y
in,—g ZX(XU_XI)
1=l I=1 j=1
Total (Corrected | SS(T) ] g
for the mean) Zn, -1 ZZ (x; — X)(x; x)
1=1 I=1 j=I
In this table,
n is a random sample containing xy, xp .... Xig, »

SS(R) denotes the regression sum of squares,

SS(E) denotes the residual sum of squares,

SS(T)=SS(R)+ SS(E) denotes the corrected total sum of squares,

g refers to the number of dimensions of an arbitrary set of observations of vector x,

I=12...gand j=12...n.

(Johnson and Wichern , 1992, p. 245).

The MANOVA stage analyses the variation the component parts in y,.

One part

analyses the variation due to relationship with x, and one part is due to the error

(Younger, 1985, pp. 418, 483).

From the analysis of the data given in example 2.1 (section 2.3.3), the values for the

MANOVA results based on the relationship between x,,, x, and y, is provided in Table

2.2.
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Table 2.2

Multiple Analysis of Variance for Sales Data.

Source of Sum of Degrees of | Mean Square | F
Variation Squares Freedom

Regression 11318.9 2 5659.5 38.63
Error 879.1 6 146.5

Corrected total 12198.0 8

The critical value (with a = 0.05) of the #-tests is £y 25,6 = 2.447. Since the t-statistics for
B, and ﬁz are both less than the critical value, it can be concluded that neither x,, nor

x,, is linearly related toy,. On the other hand, it can be noticed that the coefficient of

1

determination is 92.8% (from Figure 2.1) while the P value is less than the 0.05 level of
significance. It can be deduced that at least one of B, and Bz is significantly different
from zero. As a result, it can be concluded that at least one of x; and x,, is linearly

related to y,. This is the result of collinearity.

2.5 Diagnostics.

Regression diagnostics is an important stage in the building of linear regression models.
For the purpose of checking the adequacy of the model, some simple graphical techniques
as well as some formal statistical tests may be utilised (Neter et al., 1989, p.113). This
analysis checks the adequacy of the model prior to using the estimated models for
important decision-making. This is a major process in which “outliers” can have a
considerable effect on the analysis of the given response or exploratory variables. This
effect may not be easily detected from an examination of residual plots. High leverage
points or influential observations may cause a significant effect on the inferences of the

data (Johnson and Wichern, 1992, p. 311).
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To detect if any of the assumptions have been violated, the plots and tests that were used
in this research are given below. Some of the following plots and tests may be used to
analyse if £, ~ NID(0,5,"):

1) Plots of the residuals against the fitted values can help identify two types of
phenomena. They can be used to detect any instability in the variance and the
dependency of the residuals on the fitted values §,. These also help to reveal any
outliers with large homogenous variance. An error may occur in the analysis if the
term [, is omitted from the model by mistake. The plot for example 2.1 (section
2.3.3) is shown in Figure 2.4. This plot clearly reveals a few outliers that may be

causing problems in interpretation.

Figure 2.4 - Plot of Residuals versus Fitted Values

20

10 =

Residuals

2) Plot of the residuals against the independent variables x,, , for j =1, 2... k for every
t = 1,2...n. These plots are formed, by plotting the residuals £, against each
exploratory variable involved x, and x, for example 2.1 (section 2.3.3). A few

outliers, shown in Figure 2.5 (a) and Figure 2.5 (b), can be detected from each plot.

These may have an effect on estimation of the parameters as well as the interpretation.
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Figure 2.5 - (a) Residuals versus Number of Households
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Figure 2.5 -(b) Residuals versus Number of Occupied Households
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3) If data from example 2.1 are treated as chronological data, a residual plot can be
constructed by comparing the residuals against the chronological order of sampling.
Figure 2.6 can reveal any outliers that may exist, a non-constant variance over time
and a linear or quadratic trend that should have been included in the model. This also
helps to detect any serial correlation that may exist in the data. According to Figure
2.6, the residuals do not appear to be stationary. The outliers that exist in the data

have affected the analysis of the data.
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Figure 2.6 - Residuals versus Time

20 -

4) To detect serial correlation, the autocorrelation function (ACF) is used.
Autocorrelation may be caused if exploratory variables are omitted; or an
inappropriate equation is estimated

An alternative tool called the Durbin-Watson test (D), is defined as
. 2
Z (ij —€G-nr )
D - i=2
2 Ex
i=1

where € ; is the residual at point j about the fitted regression model. We test the null

hypothesis Hy: p = 0 against the alternative hypothesis Ha: p > 0.

For various numbers of observations n, and for £ = 1,2...5 independent variables both
give the critical values at the (1-a) % level of significance (di, dy). Using the D test we
can then test for positive serial correlation as described in (Durbin and Watson, 1950,
1951),
1. One-sided test against p > 0. If D < dj, conclude that D is significant then reject Ho,
at confidence level (1-q) %.
If D > dy, conclude that D is not significant and do not reject Ho,

If d. < D < dy, the test is inconclusive.
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2. One-sided test against the alternative p < 0. Repeat step 1 using (4- D) in place of D.
3. Two-sided equal-tailed test against the alternative p # 0. If D < dp or (4- D) < dy,
conclude that D is significant and reject Hp at level 2q.
If D < dy and 4- D> dy, conclude Dis not significant and do not reject Hyp at level 2¢.
Otherwise, the test is said to be inconclusive.
Figure 2.7 shows that the ACF of residuals for example 2.1 (section 2.3.3). Figure 2.7
clearly shows that an inappropriate equation has been estimated or multicollinearity can
be detected in example 2.1 (section 2.3.3). On the other hand, no positive autocorrelation
(p) can be detected to exist in example 2.1 as D = 2.04 > dy = 1.699 which is not

significant.

Figure 2.7 - ACF of Residuals for Example 2.1
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5) To detect normality the probability plot (Q-Q plot) of the residuals is an important
plot, which is used as a visual check of the residuals. This checks if the assumption
of normality is valid, by showing if an approximate straight line is produced. Any
outliers can be spotted in this case (Liu et al., 1992, pp. 4.29-4.30). From Figure 2.7

it can be deduced that the residuals do not follow a normal distribution.
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Figure 2.8 - Normal Probability Plot of the Residuals for Example 2.1
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2.6 Analysis of the Puerulus Settlement Data.

The simple linear regression models for the puerulus settlement off the shores of

Dongara, Alkimos and Abrolhos Islands were estimated using the Minitab package.

It must be noted that a logarithmic transformation was applied for the puerulus settlement
because of the skews in the abundance distribution. This led the data to have
multiplicative log normal distribution (Peterman, 1981). This transformation also helped
to avoid negative predicted values of puerulus settlement and helped to analyse the data

from a realistic biological point of view.

A graphical analysis of the residuals was carried out by Minitab for Windows. For each
model, four plots were constructed. These four plots are:

1. a probability, normal plot or a Q-Q plot of the residuals;

2. atime series plot of the residuals;

3. a histogram of residuals;

4. aplot of the residuals versus fits.
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Let model (A), model (B), model (C) and model (D) represent the simple linear
regression models for Dongara, Alkimos, Abrolhos Islands (without estimated missing

values) and Abrolhos Islands (with estimated missing values) respectively.

2.6.1 Puerulus Settlement off Dongara.

A logarithmic transformation was applied to the puerulus settlement for Dongara. The
regression model, known as Model (A) was as follows,

Iny, =-1.058+0.0139x, +0.0638x,, + €.
Here §,, is the puerulus level for Dongara, x,, is the sealevel and x,, is the rainfall.
Figure 2.9 shows the regression results for Model (A) with R* = 55.4 %. The residuals

plot diagnostics in Figure 2.10 for Model (A) are negative with large fit values. These

plots provide contradictory results. Therefore it cannot be concluded whether

€~ NID (0, GE,RZ)’ It is also inconclusive at o = 0.05 level of significance whether the

residuals are serially correlated.

Figure 2.9 - Regression Results for Model (A) :Puerulus settlement at Dongara
Region

Regression Analysis
The regression equation is

Inys; = - 1.06 + 0.0139 X350 + 0.0638 x:3q

Predictor Coef StDev T P
Constant -1.058 1.605 -0.66 0.517
RKym 0.013883 0.005706 2.43 0.024
HKap 0.06381 0.02446 2.61 0.016
s = 0.4210 R~-Sqg = 55.4% R-Sg(adj) = 51.3%

Analysis of Variance

Source DF Ss MS F P
Regression 2 4.8391 2.4196 13.65 0.000
Error 22 3.8984 0.1772

Total 24 8.7376

Source DF Seq SS

x1T 1 3.6331

x2T 1 1.2060

Durbin-Watson Statistic = 1.25
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2.6.3.2 With Estimated Missing Values

For the Abrolhos Islands, the multiple regression Model (D), for the puerulus settlement
off these shores was;

In y,, = 0.341-0.009x;, +1.250In x,, + & .
Again y,, is the puerulus level for the Abrolhos Islands, x,, is the rainfall and x,, is the

spawning stock. Figure 2.15 shows the regression results for Model (D), with
R* = 39.1%. From the residual plot diagnostics for Model (D) (see Figure 2.16), it

cannot be concluded that the residuals do follow a normal distribution.

Figure 2.15 - Regression Results for Model (D) : Puerulus settlement at Abrolhos
Islands Region

The regression equation is
lny;. = 0.34 - 0.00865 %3 + 1.25 1lnx,:

Predictor Coef StDev T P
Constant 0.341 1.338 0.25 0.802

Xic -0.008651 0.005916 -1.46 0.160

1nx,. 1.2499 0.3913 3.19 0.005

S = 0.4225 R-Sq = 39.1% R-Sg(adj) = 32.7%

Source DF SS MS F P
Regression 2 2.1776 1.0888 6.10 0.009
Error 19 3.3920 0.1785

Total 21 5.5697

Analysis of Variance

Source DF Seq SS
b 219 1 0.3562
Ty, 1 1.8215

Dugh;p'w Yatson Statistic = 1.48
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CHAPTER III
TRANSFER FUNCTION MODELS

3.1 About this Chapter.

In chapter II, the use of the regression model was described as a model that relates one
response variable to more than one exploratory variable. A common problem affecting
this class of models occurs when the residuals are serially correlated. Therefore, the use
of another class of models, called transfer function models, is considered in this case.
These models are introduced in section 3.2 and their statistical background is given in
section 3.3. An iterative modelling strategy, given in section 3.4, is also used to
formulate this class of models. This is described to be similar to that of Box-Jenkins’
methodology, consisting of three important stages: identification, estimation and
diagnostics checking. The identification method is then described in section 3.4 and
different ways for identifying transfer function parameters are given in section 3.5. The
parameters are then estimated and checked as shown in sections 3.6 and 3.7. The

application to the fisheries data is given in section 3.8.

3.2 Transfer Function Models.

The class of transfer function models will be introduced here in order to account for the
correlated structure of time series data. Due to the flexibility of transfer function models,
these models can be used in a variety of applications. Transfer function models are
widely used in applications such as engineering, economics, management science and

environmental science (Liu et al., 1992, Chapter 8).

A possible dynamic response is caused when an immediate output is not affected by
change in the level of the input. The transfer function model (Box and Jenkins, 1976,
p. 355) represents this dynamic response, which also models the disturbance or

noise
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in the system. This is an example of a dynamic relationship which is encountered with

transfer function models (TFMs).

3.3 Statistical Background of TFM.

TFMs take into account relationships within and between exploratory variables which can
be expressed in the form

w.(B) B'X + +a),‘(B)

Y =C+——= e ———
5(B) " 5,(B)

B’X, +N,. (3.1)
where
6,(B)=1-6,,B-6,,B*~..~68, B",i=1,..k and
w,(B)=w,,-w,B-w,,B*~..~w, B*,i=l,..k

Bis a backshift operator, eg. BX, =X, ,, B°X,=X,_,,...,B°X, =X,_,.

[

For example, for a TFM with one input variable, (3.1) can be re-written in the form of
57 (B)Y,=C +w/(B)B’X,, +N,.
Here N, represents the stochastic noise component such that

O(B)
! ¢(B) tF

For N,, it is assumed that £, ~NID(0,0'€2 ). This is defined as a Gaussian white noise
process The roots of the polynomials ¢(B) and@(B) given by

6(B) =1-6,(B)—6,(B)’ —...—6,(B)"and

¢(B)=1-¢,(B)~¢,(B)’ ~...—¢,(B)’

respectively. 6

3 A white noise can be represented by a linear combination of random ‘shocks’. Thus, a sequence

of those random variables is called a white noise process.

% In general, a Box-Jenkins’ ARIMA(p, d, ¢) can be defined as

w,=¢,w,_l+¢2w,_2+---+¢pw, , tEr +08(,,)F +0qe(,_q)F,

where W, is defined as V’Y,
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In this term, the polynomial 6(B) is called a moving average component of order g
(MA(g)) and ¢(B)is called a autoregressive operator of order p (AR(p)). These are

assumed to lie outside the unit circle to ensure stationarity and invertibility (Chatfield,

1989, p. 41, Box et al., 1976, pp. 50-51, 9).

For (3.1), the orders b, r and s need to be determined. Thus, the linear combinations

w,(B), --,@,(B) and §,(B),...,6,(B) need to be estimated.

It must be noted that all parameters b, r, s (for the actual TFM) and p, g (for the noise
model) must be estimated to ensure a successful TFM model be provided. Estimating as

few parameters as possible could help produce accurate forecasts.

It can be shown that the TFM can also be expressed in a linear form. For example,
consider the following TFM model

(- wB)

y =c+4=98)
=CTi—eB)

Xlr-3+Nt’

~Y =C+(1-wB)(1-6B)"' X, ,+N,,

Y =C+(-wB)(1-(-1)6B-(-1)(-1)6,B*+..)X,,+N,,
Y =C+(1-wB)(1+8B-6,B*+..)X,,+N,,

.Y =C+(1+6B -8B —wB-wéB’ +w6,B>--)X,_,+N,,

Y =C+@,,+v,B+v ,B*+---+v,  B")B’X, +N,.
t 1,0 11 1,2 1,k It t

In general (3.1) can be expressed in the linear form
Y,=C+(o+v, B+v ,B’+--+v B")B"X, + 32)
ot (Vo + Vv B4y, B ++v, ,B¥)B'X, +N,

The transfer function model described in (3.1) assumes that the relationship between X,

and Y, is uni-directional and the input series and the noise component of the model are

assumed to be independent of each other.

31



3.3.1 Assumptions of the TFM.

It must be pointed out that the system being modelled is assumed to be stable. The input
series are stationary. This can be confirmed by checking if the data have a constant mean
and a constant variance. Consider the data given in example 2.1 (section 2.3.3), where

X,, and X, ,can be shown to be close to stationarity as an almost constant mean and a

constant variance can be deduced from Figure (3.1) (a) and (3.1) (b).

Figure 3.1 (a) - Time Series Plot of Number of Households

Figure 3.1 (b) - Time Series Plot of Number of Occupied Households

3.3.2 Interpreting the Terms of the TFM

The TFM terms are b, @,(B) and J,(B) as shown by (3.1) and v,(B) as shown by (3.2).

These terms are interpreted as follows :

32




a) A change in the input may not affect the response until after an initial period of a

delay. With relation to the polynomial, w,(B)/5,(B) , this time delay is represented
by the parameter b. The parameters of w,(B), the numerator polynomial, describe the
initial effects of the input process. The decay pattern that results from the initial effect
of the response variable are characterised by the denominator polynomial J;(B).

b) The parameters v;, v;1, ¥;2, ..., in (3.2) are called TFM weights or impulse response
weights for the input series X, . Given the weights at each time lag, these weights

are used to measure the effect of the input series on the output series. For this

dynamic system, the concept of stability is significant.

Definition: Stability.
The system is said to be stable if the infinite series v, , + v, ;B + v, ,B*+ - converges for

IB|<1.

This definition of stability implies that a total change in the input would result in the total

change of the output (Box and Jenkins, 1976, p. 340).

3.4 Modelling Strategies of TFM.

The classical approach to time series modelling which was first proposed by Box et al.
(1976) is adopted for building TFMs. This iterative modelling strategy consists of three

stages. These are identification, estimation, and diagnostic checking.

The identification stage is the most difficult stage for TFM modelling. A major step in
identifying a TFM model is concerned with a preliminary estimation of the parameters.
These estimates help to express the model in a rational form. A method must be used to
devise the orders r, s and b for the TFM model in 3.1. A common method that was
introduced by Beguin et al. (1980) is called the corner method. The identification stage
therefore, involves a great deal of analysis and calculations which makes it the most

difficult.
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Both the Linear Transfer Function (LTF) method and estimation using Edlund’s
regression approach are outlined in the next few sections. Both approaches will be
described and illustrated. An approach looking for estimation at adding moving average

(MA) and autoregressive (AR) terms to the regression model are also examined.

Description : The Corner Method.

This method was devised by Beguin ef al. in 1980. In the selection of an autoregressive-
moving average, or a “mixed” ARMA (p, ¢g), model, a problem generally occurs in
finding the orders p and g. A solution to this problem uses the corner method to find the

values p and q.

Lui and Hanssens (1982) altered the corner method to help find the orders r, s and b. The
transfer function would then be expressed in a rational form. Using this method, an

[(M +1)xM ] array C is constructed with A (f, g) at its f, g-th element, where f= 0,1,

2,..,Mand g=1,2,..,M. A gxgmatrix A (f, g) is constructed for each input variable

to the transfer function input-output system. This is defined as

r,i,f U . r’i,f-—g+l
A (f, g) - r’i,f+l r’i,f . r’i,f—g+2 , (3.3)
r,i_f+g—l r’i,f+g-2 . T,i,f

Vii

wheref20,g21, 17, ;= and 7, ; = 0 for Vj < 0. The C array can then be obtained

by calculating determinants of A (f, g) in (3.3) for different values of f and g. The

structure of this array is represented in Table 3.1 (Liu and Hanssens, 1982).

Let the ¥, ; denote the estimate of the true TFM weights v, of the rational polynomial
w,(B)/6,(B) . It follows that v,,,, is the maximum value of lv,; |, where i = 1,2,..k, and j

t,max

=0,1,2,..K.
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The orders r, s and b are determined from the pattern if and only if the first b rows and the

south-east corner starting at the (s + b -1)™ row and (r + 1) of the C array are all zeros

(Liu and Hanssens, 1982).

Table 3.1
The Corner Table
I’\z ] 1 2 r r+1 M
0 T~ 0 0 0 0
1 0 0 0 0
b -1 0 [1] . 0 [1] .. 0
b A, 1) Ab, 2) Ab.r) Ab,r+1) Ab, M)
s+b -1 As +b - 1)) Ais +b -1,2) X X 5 X
s + A(s +b, 1) A(s +b,2) x 0 0
M AM. 1) AM D) - x 0 0
3.4.1 Example 3.1

Consider the data used in chapter II. This is a simple example to help illustrate how the
corner table method works to identify the TFM. The corner tables for the two inputs

Number of Households ( X, ) and Number of Occupied Households ( X,, ) are represented
by Table 3.2 and Table 3.3 respectively.

Table 3.2
Corner Table for the Number of Households.
1 2 3 4 5 6 7 8 9
0 29 09 02 .01 00 00 00 00 00
1 58 28 18 .09 05 03 01 01 *x**x
2 21 -.32 25 .01 -.08 06 Q0 ***%x Kukxw
3 63 18 37 .22 12 14 * ok kkk * ok k k& * ok k ok k
4 1.00 61 38 _21 18 * Kk ok k ok * ok k ok k * ok k ok k * ok ok ok k
5 63 | 03 03 - .10 krtks exekt AKEEE AmEEE EERER
6 42 ’ - 03 .00 * ok k kk *k ok kk * k k k k * ok kk ok * ok ok kk * ok k ok Kk

~

[¥%}

[¥%}
1

11 Ak hkhkk khkhkhkk khhhkk khkhhkhk hhkhkhkhk dhkhkhkk *hkhkkk
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Table 3.3
Corner Table for_the Number of Occupied Households.

1 2 3 4 5 6 7 8 9
0 37 13 05 .02 .01 00 00 00 00
1 60 30 23 .13 .07 05 03 01 *xxxx
2 17 -.37 33 -.04 -.10 10 —.02 **kxk wxkww
3 L67 .28 41 .27 .19 (19 HEARE KkRAK kKRR
4 1 00 53 29 -15 16 khkkhkhk hhkhkhkhk hhkhkh K*hkkhkk
5 70 I - 01 01 - 09 hkhkkhkk hhkhkkhkkhk Khkhkkkk Khkhkkkk *hkkk*k
6 50 | _.01 .00 khkhkhkk hhkkkk hkkkkk hhkhkkk Khhkkhkkhkk khkkk*k
7 .37 I _.15 khkhkhkk Khhkkkk hhkkkk hhkkkk khkkkk khkhkhkk *hhkkkk
8 .57 I***** khkkkk kkhkkkk hhkkkk khhkkkk khkkkk khkkhkk khkkkk

It was deduced from both tables that b=0,5s=6, r=1.

3.5 First Stage of Identification Process - Estimation of Parameters.

3.5.1 Estimation of TFM Weights.

Consider for simplicity the following two-input transfer function model

v, =c+ 2By %8

+N
5(B)" " 5,(B)

BZr [

This model can then be expressed in the following linear form based on the model in
(3.2)
Y, =C+(p, g +v B+..+v B")X, +(v,g +v, B+..+v,  B*)X, +N,.  (34)

The K;’s must be reasonably large values which are chosen judiciously by the analyst.

Using (3.4), the transfer function weights v 0, V1,1,..., ¥y x, and v, 4, V5 ..., ¥, 4 can be

estimated using the OLS method.

The B estimates of OLS can be expressed as

p=lx'x)'xy

(Liu and Hanssens, 1982).
Liu and Hanssens (1982) pointed out two problems that may be encountered when using

the ordinary least squares method :
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1. The XX matrix may be ill-conditioned as a result of being near-singular. This would
occur if one of the input series contains an autoregressive (AR) factor with roots close
to one. If an input series follows a moving average (MA) process, then this problem
may be less serious. Common filters are mostly applied when this problem occurs. For

example, consider the two input series X,, and X,, which follow AR processes
(1-0.60B)(1-0.80B) X,= €, ,
(1-0.70B) X ,,= ¢, .

Therefore, the common filter, being the largest factor, that is chosen is recommended to
be (1-0.80B). It is important to point out that this is done for numerical accuracy rather

than statistical efficiency.

2. The second problem may occur when the noise series, N,, may not be white noise.
This would then imply the inefficiency of the OLS estimates of 3. This problem may

be avoided by transforming the input and output variables, using the principle
components regression (PCR) method, or using generalized least squares (GLS)
method. The principle component regression (PCR) is a biased regression technique

used to reduce the effects of multicollinearity (Liu and Hanssens, 1982).

3.5.1.1 Identification of Noise Model.

Having obtained preliminary estimates of the parameters of the transfer function model,

the estimated noise series is provided by
A 1, —1,A
B AT TCHES AESELRUNES ADE
DX _py DX oy o+ DX,

where 7, is an estimate of the true noise series defined as
n =V4'N,
(Wei, 1990, pp. 289-290).
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By examining the standard identification tools for univariate time series, the sample ACF
and partial autocorrelation function (PACF), the appropriate model for the noise can then
be identified as

£r =9, (B)9; (B)n,,
assuming the input was prewhitened previously to give

B, =v(B)x, +¢€,.
The series, N,, should not be assumed to be white noise. When the series does not

exhibit any seasonal behaviour then it would be best approximated by a low-order
autoregressive process such as

Nt = ;Em ’
(1_¢1B)
(Lui et al., 1992, p. 8.14).

3.5)

The noise model relating to example 3.1 was identified as in (3.5). As, the number of
parameters was larger than the number of observations, the orders, b=0,r=1,s =1 of

the operators were chosen as a better alternative.

3.5.2 Principal Component Regression (PCR) Method.

To overcome the major problem of multicollinearity encountered when using least
squares estimators in multiple regression, principal components analysis is often
used as a first step in assessing the reasonableness of the data. This is the best known

method that uses biased regression estimators.

Consider the standard regression model defined in (2.1). In principle component
regression, the analyst is first required to transform the predictor variables to principal
components. The data are transformed by finding the Principal Components (PC) for
each variable. The transformed data are then regressed against the original responses.
The PC’s for each observation are given by

Z=X_U,
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where (i,k) element of Z is the value (score) of the kth PC for the i th observation, and
Uis a (pX p)matrix whose k th column is the k th eigenvector of X X,. X,f8 in (2.1)
can be rewritten as X ,UUB =Zb, where b=U’f. Equation (2.1) can therefore be

rewritten as

Y, =Zb+¢.

Now that the predictor values have been transformed we need to undertake the following
steps:
a) find UXY,,
b) find b which gives the biased estimators such that
b=U[UX'x,Ul'UXY,
(Jackson, 1991, pp. 271-273).

This method would only prove to be successful when the variables are highly correlated.
A major step in identifying a transfer function model is concerned with the estimation of

TFM weights.

3.5.3 Example 3.2

The Standardized Linnerud Data is published by the SAS Institute, Inc. to illustrate the
PCR method (Jackson, 1991, pp. 267 -268). This data set is measured on 20 middle-aged
men in a fitness club and consists of three physiological variables. These variables are
predictors and are identified by Weight (X,,), Waist (X2,) and Pulse (X3,). Three exercise
variables are the responses and are identified by Chins (¥y), Situps (Y2 and Jumps (Y3).

First, we set X and Y as 20 x 3 matrices. Then the matrix U is found, by finding the

eigenvectors. These eigenvectors are produced by solving the matrix X X,. The
residual sum of squares and crossproducts are Y'Y -Y'Zb,, where Z =XU, and

b,=[U'X'XUJ'U'X'Y . Hence, b, is
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12.5471 5.9615 7.7904
59615 10.7186 10.7097 |.
7.7904 10.7097 17.9390

The parameter estimates b, where b=Ub,, are then computed via PCR analysis. The

results are given in Table 3.4.

Table 3.4 - Principle Component Regression Analysis

Chins (Y1) Situps (Y2 Jumps (Y30
Constant - (C) 0.0003 0.0002 -0.0003
Weight X1 0.3695 0.2904 -0.2597
Waist (X5 -0.8840 -0.8937 0.0147
Pulse (X -0.0264 0.0164 -0.0532

3.6 Identification Methods of Transfer Function Models.

3.6.1 The LTF Method.

The linear transfer function (LTF) identification procedure is based on finding the least
squares estimates of the TFM weights using the original or filtered series. The corner

method is then used to determine the rational form of the transfer function model.

A major step in identifying a transfer function model is concerned with the estimation of
TFM weights. These estimates help to express the model in a rational form by the use of
the corner method. A five-stage procedure that incorporates filtering and least squares

estimation is given as follows:

Stage 1

Build ARMA models for all input series after the series are appropriately differenced to

achieve stationarity.
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If no AR factors are found or the roots of the AR factors are large (not close to 1) then
Proceed to Stage 2
else
If there are processes with AR roots close to 1 then
Choose a common filter from the AR factors.

Apply this filter to all input series and the output series.

Stage 2

a) Perform least-squares estimation of the transfer function weights for the series
obtained from Stage I. The value K; should be chosen from subject-matter
considerations and should be sufficiently large to avoid truncation bias.

b) It is also important to check the sample ACF of the residuals since they provide
information about the reliability of the usual least squares hypothesis testing. It is
recommended to omit the unnecessary terms in (3.3) if it is clear that they can be

deleted.

Stage 3

Build an ARMA model for the residuals computed from the linear model selected in
Stage 2. If the residuals are white noise then

Proceed to Stage 5
else

Go to Stage 4.

Stage 4

Using the Stage 3 ARMA model as a filter, perform OLS estimation of the transfer
function weights based on the filtered series. Alternatively, the full transfer-noise model
may jointly be estimated by nonlinear least squares. The significance tests of the weights

can be carried out in the usual regression manner.
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Stage 5

If no prefiltering was used in Stage I then
The noise model is the one obtained in Stage 4

else
Compute the noise of the original output series by using the transfer function

weights from Stages 2 or 4 and identify an ARMA model for the noise. Then,

obtain a rational form @,(B)/8,(B) for the input series X, , by using the corner
method on v, (B), if necessary. Note that the corner method should be used only if

some of the transfer function weights are significant.

3.6.2 Edlund’s Method.

The PCR method can be applied when using Edlund’s technique which provides a ‘good’
method for producing efficient estimates of v,(B). This method involves the use of
biased regression techniques to estimate TFM models. This method is shown to be easy

and reduces time for usage (Edlund, 1984). In his paper, Edlund (1984) focuses mainly

on the problem of the estimation of the v,; weights. The regression approach by Pukkila

(1982), considered to be successful due to the efficient estimates produced, was also

investigated.

3.6.2.1 The Regression Method

It was found by Pukkila (1982) that the linear model, given in (3.2), produces reasonably
good estimates. Despite this fact, some serious problems were found to occur to disturb
the estimates of the transfer function weights. Three of these problems are (a)

determining lag K;, (b) multicollinearity, and (c) the residuals being autocorrelated.

The first problem is encountered when determining the values K;. This problem can be

solved by assuming that the values v, ; are approximately zero for j > K;. It must be noted
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that although many degrees of freedom will be lost if large values of K; are chosen, it is

recommended by Edlund (1984) to begin with these large values initially.

Multicollinearity is a second problem, which occurs when the supposed independent
variables are not independent. To reduce the effects of multicollinearity, Edlund (1984)
proposes the use of biased regression techniques. Introducing the bias results in deflating
the variance of the estimate, and as a result a lower value of Mean Square Error (MSE) is
obtained in comparison to the OLS estimator. The principal component estimators are

produced by the PCR method as described earlier in this section (Edlund, 1984).

Finally, if the residuals are correlated, one of the basic assumptions of multiple regression
will then be violated. If this problem occurs, then the analyst would not be able to utilise
the standard regression diagnostic checks described in chapter II. As a result of this
problem, a bias in the estimate of the variance of the disturbance N, will also be
introduced. This problem can be dealt with by using GLS instead of OLS, or by

transforming the input and output variables.

Edlund (1984) presents the following two-step procedure for the purpose of identifying

the impulse response function when the input variables are correlated.

Stage 1

Identification, estimation and checking of the noise model and transformation of the input
and output variables. The multiple regression model

Y =C+v X, ++v X _, +4,, (3.6)
where it is assumed that the weights v, ;=0 for K+1 variables, then (3.6) can be estimated
using a biased regression technique such as principal component regression,

a) the estimated residuals are then computed by

ﬁ/ =Y, —ZQi(B)X" =Y, _é+";l,0XIr +“;l.ler—l +‘”+";i.KXir—K‘

i=l

The noise model
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ﬁf = O(B) 8IF ’
¢(B)

is then identified and estimated using the standard Box-Jenkins procedure for ARMA

models.

b) The estimated operators are then used to transform the original variables Y,, X, and
X ,, such that,
O(B)Y, = ¢(B)Y,, for all ¢

and
6(B)X, =¢(B)X, foralls
where i is the number of inputs.

Stage 2

Estimation of the impulse response function from the transformed variables ¥, and X’ .
In this second step, the linear model

Y/ =C+9, X, +9 X, _ ++V X, , +€;, (3.7)
is re-estimated by a biased regression technique. In (3.7) the residuals €, almost follow

a white noise process, and the bad effects of multicollinearity should be decreased by

biased regression. Good estimates of v;; should be obtained and the transfer function

model may be identified.

If the estimated residuals in (3.7) are not white noise then Step 1 could be repeated using

the estimated values of v, in (3.7) for calculating the residuals n,. Step 2 is then
performed again. In the end acceptable estimates of v,; will be obtained (Edlund, 1984;

Edlund, 1989).

3.7 [Estimation of the TFM.

Assuming that the tentative TFM has been identified as in (3.1), then the parameters
6,(B)=(4,....6,),w,(B)=(wy,m,,...,0,) ,¢(B)=(¢,....4,)', and &B)=(6,,....6,)
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and 0; need to be estimated. Various estimation procedures can be used to estimate

(3.7). Two well-known techniques that are used to estimate the TFM are the conditional
maximum likelihood method’ and the exact likelihood method®. A nonlinear

estimation procedure developed by Marquardt (1963) can also used.

3.8 Checking the Fitted TFM.

The form of the transfer function model was specified. Then, the parameters were

estimated by employing a non-linear least squares algorithm as described in section 3.7.

It is then necessary to check the ‘adequacy’ of the fitted model so that it meets all of the

following listed criteria (Lai, 1979, pp.24-25):

a) It must involve a small number of parameters (according to the principle of
parsimony).

b) The transfer function component of the model must represent a stable linear dynamic
system.

¢) The noise ARIMA model has to be stationary.

d) The residuals of the model should not be autocorrelated and should be independent of
the input variables.

e) Good prediction values.

3.8.1 Checking the Parameter Estimates

Firstly, check the parameter estimate with its estimated standard error. Testing if the
estimates are significantly different from zero can do this. The estimates are not
considered significant if they lie within their corresponding standard error limits. The

model can then be represented by fewer parameters (Lai, 1979, p.26).

" The reader is referred to Farag (1994).
8 This estimation technique is discussed in more detail in Farag (1994).
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Check the stability of the fitted TFM Model, that is , the following conditions are
required:
1. forr=1then -1<§, <1,
2. forr=2then

6 +96, <1,

6, -0 <1,

-1<4, <1
If the fitted TFM is of order r # 0, the 6 parameters must satisfy the above mentioned
requirements. The model would have to be re-idenified if the stability requirement fails.
To check the stationarity and invertibility of the noise model, it is required that:
l. Forp=1,9=1,

-1<¢ <1,
-1<6 <1

2. Forp=2,9=2,

o +¢,<l, 6 +6,<l,
¢, — ¢ <1, 92—9,<1,
-1<¢, <L -1<6, <1

If the TFM weights in v(B) are correctly fitted, the estimated autocorrelations would then
have zero mean and variance s’ =%n, where m=(n-y-p’), with mean g, number of

* .
parameters p and number of observations n.

As an approximate guide to the significance of individual autocorrelation estimates, the

values i%/— can be used. A chi-square test can be used as a helpful overall check.
m

That is, if the fitted model is adequate, the quantity given by

Q=my r, " (k) (3.8)
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would approximately follow a xz distribution with K-p-q degrees of freedom. It must be
noted that in (3.8) the number of degrees of freedom would depend on the number of

parameters in the noise model (Lai, 1979, p. 26; Box and Tiao, 1975).

The chi-square test would then show that the TFM or the noise component of the model
is inadequate. As a result the TFM or the noise model would be incorrect (Lai, 1979, p.

27).

The criterion, used in assessing the suitability of the model, is namely the Akaike
Information Criterion (AIC) (Akaike, 1974). This criteria reflects the closeness of fit to

the data and p” estimated number of parameters. AIC is defined as

AIC(p')znlogoA';.+2p', (p'=1---,p..)

where

a2

A2 . < ar

6. = —,
1=p"+l (n—p)

a’ is the square of the residuals,

n is the total number of observations, and

p’ is the number of parameters.

3.9 Analysis of the Puerulus Settlement Data.

The TFMs for the puerulus settlement off the shores of Dongara, Alkimos and the

Abrolhos Islands were estimated using Minitab for Windows and SCA.

3.9.1 Applying Edlund’s Method to Dongara.

Using the PCR method different values of K, are determined as a first step, the results are

shown in Table 3.5.
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Table 3.5- Determining Appropriate Values of K; for Original Series (Using PCR
method)

Values of K; K, =5, K, =6, K, =1, K, =38,
K;=5 K,=6 K= K,=8
Residual Sum of 0.7253 0.4216 03379 4.1918x10°
Squares and (too large)
Crossproducts
AIC 59.92537 32.58304 -0.35624 172.5763
T (Min)

The residuals series from can then be identified as an AR(2) model in the form of

(1-03288B +05288B%) n, = ¢, .

Therefore, the estimated operator (1—03288B +0.5228B %) can be used to transform the
original X, X, and Y,. Thus,

Y/ = (1-0.3288B +0.5228B*)Y,,

X/ =(1-0.3288B +0.5228B*)X,,,

X;, =(1-0.3288B +0.5228B°)X,,.

In Table 3.6, PCR is applied to estimate the impulse response function from the
transformed variables.

Table 3.6 -Determining Appropriate Values of K; for the Transformed Variables
(Using PCR method)

ValuesofK, K1=5, Kl=6, Kl=7, Kl=8,
K2=5 K2=6 K2=7 K2=8

Residual Sum of 0.2492 0.1530 -697.1217 -269.6530

Squares and

Crossproducts

AlC -11.5585 -10.115 5271726 165.0787
T (Min)

From Table 3.6, K= 5 is chosen, as it is almost white noise and follows an MA(1)

process. Reasonable estimates of TFM weights are shown in Table 3.7.
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Table 3.7 - Estimates of the Transfer Function Weights when K; = 5, K, = 5.

B Vii B Vij

C 1.0286

V0 0.0245 V2o 0.0272

Vi 0.0120 Va1 -0.0339
Vi 0.0084 Va2 -0.0134
» -0.0034 Vas 20.0163
Ve -0.0096 Vss 0.0267

Vs 20.0125 Vas 0.0501

Having estimated the TFM weights, these can then be used to construct the corner table
(see section 4.4), the orders for the TFM are determinedtobe b=0, r=1 and s = 2 for

X,andb=0,r=3,s=1for X,,.

Figure 3.2 - Estimate of Dongara’s Model (Output by SCA Statistical System)

TSMODEL DONGARA. MODEL IS LNY;r, = C + @
(Wl0-wll*B~wl2*B**2)/(1-dll*B)X;, + @
(W20-w21l*B)/ (1-d21*B-d22*B**2-d23*B**3)X;, + @
1/ (1-THETA1l*B-THETA2*B**2)NOISE.

SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- DONGARA
VARIABLE TYPE OF ORIGINAL DIFFERENCING
VARIABLE OR CENTERED
LNYir RANDOM ORIGINAL NONE
X0 RANDOM ORIGINAL NONE
Xan RANDOM ORIGINAL NONE
PARAMETER VARIABLE NUM./ FACTOR ORDER CONS- VALUE STD
LABEL NAME DENOM. TRAINT ERROR
VALUE
1 C CNST 1 0 NONE .0000
2 wlo X1T NUM. 1 0 NONE .1000
3 wil X1T NUM. 1 1 NONE -.1000
4 wi2 X1T NUM. 1 2 NONE ~.1000
5  dil X1T DENM 1 1 NONE .1000
6 w20 X2T NUM. 1 0 NONE .1000
7 w21 X2T NUM. 1 1 NONE -.1000
8  dz1 X2T DENM 1 1 NONE .1000
9  dz22 X2T DENM 1 2 NONE .1000
10 d23 X2T DENM 1 3 NONE .1000
11 THETAL  LNYLT D-AR 1 1 NONE .1000
12 THETA2  LNYLT D-AR 1 2 NONE .1000

estim Dongara. hold resids(resl), fits(fitl).

THE FOLLOWING ANALYSIS IS BASED ON TIME SPAN 1 THRU 25
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Figure 3.2 - Estimate of Dongara’s Model (Output by SCA Statistical System) - Cont.

>> HEAVY COMPUTATION FOLLOWS. PLEASE WAIT !!! <<
ITERATION 1, USING STANDARD ERROR = 33.51927086
ITER. OBJ. PARAMETER ESTIMATES
1 .8261E+03 1.43 .147E-01 .931E-02 .220E-01 .418E-01
.614E-01 .543E-01 -.135E-01 .201E-01 .322E-01
.142 .115
2 .1087E+02 .604 .112E-01 .312E-02 .630E-02 .184E-01
.536E-01 .105E-01 -.168 -.725E-01 -.107
.738E-01 .655E-01
3 .1153E+01 .570 .118E-01 .277E-02 .645E-02 .458E-01
.515E-01 .674E-02 -.235 -.899E-01 -.304
.720E-02 -.831E-01
4 .1125E+01 .585 .120E-01 .288E-02 .673E-02 .560E-01
.518E-01 .664E-02 -.237 -.967E-01 -.333
-.187E-01 -.730E-01
5 .1104E+01 .599 .121E-01 .295E-02 .701E-02 .655E-01
.521E-01 .649E-02 -.242 -.107 -.364
-.305E-01 -.697E-01
6 .1080E+01 .614 .123E-01 .299E-02 .730E-02 .759E-01
.525E-01 .630E-02 -.248 -.121 -.398
-.426E-01 -.677E-01
7 .1054E+01 .631 .125E-01 .303E-02 .761E-02 .870E-01
.529E-01 .608E-02 -.255 -.136 -.433
-.566E-01 -~.669E-01
8 .1026E+01 .650 .127E-01 .305E-02 .794E-02 .986E-01
.532E-01 .581E-02 -.264 -.153 -.470
-.727E-01 -.676E-01
9 .9970E+00 .669 .128E-01 .307E-02 .828E-02 .110
.535E-01 .550E-02 -.274 -.170 -.508
-.907E-01 -.701E-01
10 .9690E+00 .689 .129E-01 .307E-02 .863E-02 .122
.538E-01 .512E-02 -.284 -.188 -.545
-.110 -.743E-01

ITERATION TERMINATED DUE TO:
MAXTMUM NUMBER OF ITERATIONS 10 REACHED

TOTAL NUMBER OF ITERATIONS . . . . . . . . . . . . 11
RELATIVE CHANGE IN (OBJECTIVE FUNCTION)**0.5 . . . .1413D-01
MAXIMUM RELATIVE CHANGE IN THE ESTIMATES . . . . . .2118D+00

REDUCED CORRELATION MATRIX OF PARAMETER ESTIMATES

1 2 3 4 5 6 7 8 9 10 11
1 1.00
2 . 1.00
3 .59 . 1.00
4 . . . 1.00
5 -.67 . -.87 . 1.00
6 -.82 . -.49 . .58 1.00
7 1.00
8 . . . . . . -.85 1.00
9 -.53 . . . . .68 . . 1.00
10 .59 . 1.00
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Figure 3.2 - Estimate of Dongara’s Model (Output by SCA Statistical System) - Cont.

THE RECIPROCAL CONDITION VALUE FOR THE CROSS PRODUCT MATRIX OF
THE PARAMETER PARTIAL DERIVATIVES IS .443349D-04
SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- DONGARA

VARIABLE TYPE OF ORIGINAL DIFFERENCING
VARIABLE OR CENTERED

LNY;r RANDOM ORIGINAL NONE
Xir RANDOM ORIGINAL NONE
Xor RANDOM ORIGINAL NONE

PARAMETER VARIABLE NUM./ FACTOR ORDER CONS- VALUE STD T

LABEL NAME DENOM. TRAINT ERROR

VALUE
1 C CNST 1 0 NONE .6891 1.6572 .42
2 wlO X7 NUM. 1 0 NONE .0129 .0037 3.50
3 wll Xir NUM. 1 1 NONE -.0031 .0070 .44
4 wl2 Xir NUM. 1 2 NONE -.0086 .0040 2.14
S dll Xir DENM 1 1 NONE .1220 .5423 .23
6 w20 Xor NUM. 1 0 NONE .0538 .0238 2.26
7 w21l Xor NUM. 1 1 NONE -.0051 .0374 .14
8 dz1 Xor DENM 1 1 NONE -.2845 .5948 -.48
9 dz22 X DENM 1 2 NONE -.1881 .2991 -.63
10 dz23 Xor DENM 1 3 NONE -.5448 .3296 -1.65
11 THETAl  LNYir D-AR 1 1 NONE -.1099 .1957 - .56
12 THETA2  LNYir D-AR 1 2 NONE -.0743 .2182 - .34

TOTAL SUM OF SQUARES . . . o .873755E+01

TOTAL NUMBER OF OBSERVATIONS . 25

RESIDUAL SUM OF SQUARES. . . . . . . .969044E+00

R-SQUARE .861

EFFECTIVE NUMBER OF OBSERVATIONS 20

RESIDUAL VARIANCE ESTIMATE . . . . . .484522E-01

RESIDUAL STANDARD ERROR. . . . . . . .220119E+00

The model in (3.1) was estimated and the results shown in Figure 3.2. The linear form of
this model produced an almost exact relationship due to the high correlation between the

input variables.

319.1.1 Checking the fitted TFM of Dongara

To first check the stability of the TFM, it is required to check the parameter estimates.
Since r = 1 (for X,), -1 <0.1220< 1, r =3 (for X,,), -1<0.4484 < 1, then the TFM is

stable and does not have to be re-identified. For the noise model, since p = 2, then
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The residuals can be then identified as an AR(2) model in the form of
(1-1.8669B +-0.8721B*) n, = ¢,;, .
Therefore, the estimated operator (I1—1.8669B +-0.8721B*) can be used to transform the

original X,,, X,, and Y,. Thus,
Y/=(1-1.8669B +-0.8721B%YY,,
X/ =(1-1.8669B +-0.8721B*) X

It

X;, =(1-1.8669B +-0.8721B*)X,,.

In Table 3.9, PCR is applied to estimate the impulse response function from the

transformed variables.

Due to the shortage of this series, a guess can be taken of the orders of the input variables.

These were b=0,r=1s=1for X, andb=0,r=1,s=1 for X,,. The model in (3.1)

was estimated and the results shown in Figure 3.4. Again, an almost exact linear

relationship was formed due to the high correlation between the input variables.

Figure 3.4 - Estimate of Alkimos’ Model (Output by SCA Statistical System)

TSMODEL: ALKIMOS. MODEL IS LNY;; = C + @
(W10 - W11*B) / (1-D11*B)X;, + @

(W20 - W21*B) / (1-D21*B)X;, + @

1/ (1-THETA1*B)NOISE.

SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- ALKIMOS

VARIABLE TYPE OF ORIGINAL DIFFERENCING
VARIABLE OR CENTERED

LNY2T RANDOM ORIGINAL NONE
xir RANDOM ORIGINAL NONE
xaT RANDOM ORIGINAL NONE
PARAMETER VARIABLE NUM./ FACTOR ORDER CONS- VALUE STD
’ LABEL NAME DENOM. TRAINT ERROR
VALUE
1 C CNST 1 0 NONE .0000
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Figure 3.4 - Estimate of Alkimos’ Model (Output by SCA Statistical System) - Cont.

ESTIM ALKIMOS. METHOD IS CONDITIONAL. @

2 W10 X1T
3 wll XiT
4 D11 X1T
5 W20 X2T
6 w21l X2T
7 D21 X2T
8 THETAl LNY2T

NUM.
NUM.
DENM
NUM.
NUM.
DENM
D-AR

I = Gy SRy

STOP-CRITERIA ARE MAXIT (80). @

HOLD RESIDS(RES1),

FITS(FIT1).

PP PRPORREO

THE FOLLOWING ANALYSIS IS BASED ON TIME SPAN

>> HEAVY COMPUTATION FOLLOWS.

PLEASE WAIT !!!

ITERATION 1, USING STANDARD ERROR =

ITER.
1

2

3

10

11

12

13

14

15

16

17

18

OBJ.
.2247E+03

.8999E+02

.1461E+02

.1334E+02

.1983E+01

.1573E+01

.1386E+01

.1371E+01

.1362E+01

.1358E+01

.1356E+01

.1354E+01

.1353E+01

.1351E+01

.1350E+01

.1350E+01

.1349E+01

.1348E+01

PARAMETER ESTIMATES

-.205

.490E-01

.821

2.94

-5.26

.225E-01

.450E-01

-.139E-01

-4.92

.301E-02

-5.10

-.434E-02

-5.10

-.409E-02

-5.12

-.634E-02

-5.11

-.606E-02

-5.11

-.623E-02

-5.11

-.614E-02

-5.10

-.670E-02

-5.09

-.664E-02

-5.08

-.720E-02

-5.07

-.716E-02

-5.05

-.777E-02

-5.04

-.771E-02

-5.04

-.781E-02

.129E-01
.353E-01
.637E-02
.294
.375E-02
.624E-01
.505E-02
.555
.711E-02
.860
.115E-01
.707
.123E-01
.696
.126E-01
.678
.128E-01
.674
.125E-01
.673
.125E-01
.671
.123E-01
.660
.122E-01
.658
.121E-01
.649
.120E-01
.648
.119E-01
.641
.119E-01
.639
.118E-01
.639
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NONE .1000
NONE -.1000
NONE .1000
NONE .1000
NONE -.1000
NONE .1000
NONE .1000
1 THRU 11
<<
27.74417747

.172E-01 -.780E-01

.162

.129E-01 -1.40

.296

.160E-01 -1.35

.158

.196E-01 -1.22

.454

.244E-01 -1.00

.403

.128E-01 -.367

.418

.126E-01 -.553

.398

.134E-01 -.498

. 487

.136E-01 -.580

.434

.138E-01 -.549

.471

.140E-01 -.585

.446

.143E-01 -.570

. 449

.145E-01 -.595

.427

.146E-01 -.579

.426

.147E-01 -.602

. 406

.148E-01 -.580

.409

.149E-01 -.608

.387

.150E~01 -.592

.397

.504E-01

.687E-01

.108

.153

.166

.163

.163

.162

.162

.162

.162

.161

.161

.160

.160

.159

.159

.159



Figure 3.4 - Estimate of Alkimos’ Model (Output by SCA Statistical System) - Cont.

19 .1348E+01 -5.04 .117E-01 .151E-01 -.611 .159
~.779E-02 -.637 -.382

20 .1347E+01 -5.01 .117E-01 .150E-01 -.586 .158
-.847E-02 -.631 -.386

21 .1346E+01 -5.00 .117E-01 .152E-01 -.615 .158
-.841E-02 -.630 -.365

22 .1346E+01 -5.00 .116E-01 .152E-01 -.597 .158
-.852E-02 -.630 ~.377

ITERATION TERMINATED DUE TO:
RELATIVE CHANGE IN (OBJECTIVE FUNCTION)**0.5 LESS THAN .1000D-03

TOTAL NUMBER OF ITERATIONS . . . . . . . . . . . . 22
RELATIVE CHANGE IN (OBJECTIVE FUNCTION)**0.5 . . . .9035D-04
MAXIMUM RELATIVE CHANGE IN THE ESTIMATES . . . . . .3287D-01

REDUCED CORRELATION MATRIX OF PARAMETER ESTIMATES

1 2 3 4 5 6 7 8
1 1.00
2 1.00
3 . 1.00
4 . .83 -.88 1.00
5 -.79 . . . 1.00
6 . . . . 1.00
7 -.68 . -.68 . . 1.00
8 -.73 .74 ~-.84 -.77 . .78 1.00

THE RECIPROCAL CONDITION VALUE FOR THE CROSS PRODUCT MATRIX OF
THE PARAMETER PARTIAL DERIVATIVES IS .688427D-04

SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- ALKIMOS

VARIABLE TYPE OF ORIGINAL DIFFERENCING
VARIABLE OR CENTERED

LNY,r RANDOM ORIGINAL NONE
p o RANDOM ORIGINAL NONE
Xar RANDOM ORIGINAL NONE
PARAMETER VARIABLE NUM./ FACTOR ORDER CONS- VALUE STD
T
LABEL NAME DENOM. TRAINT ERROR
VALUE
1 c CNST 1 0 NONE -5.0018 2.8496
-1.76
2 W10 y o NUM. 1 0 NONE .0116 .0145
.80
3 Wil Kir NUM. 1 1 NONE -.0152 .0164
.93 -
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Figure 3.4 - Estimate of Alkimos’ Model (Output by SCA Statistical System) - Cont.

4 Dl1
-.43

5 w20
2.41

6 w21l
-.15

7 D21
-1.23

8 THETAl
-.39

TOTAL SUM OF SQUARES . . .
TOTAL NUMBER OF OBSERVRTIONS .

X1t
Xor
Xor

Xor

LNY2r

DENM

RESIDUAL SUM OF SQUARES.

R-SQUARE . . .
EFFECTIVE NUMBER OF OBSERVATIONS .
RESIDUAL VARIANCE ESTIMATE .

STANDARD ERROR.

RESIDUAL

1

3.9.2.1 Checking the fitted TFM of Alkimos.

1 NONE
0 NONE
1 NONE
1 NONE
1 NONE
.928709E+01
11
.134605E+01
.823

9
.149561E+00
.386731E+00

~.5970

L1577

.0085

-.6297

-.3770

1.3747

.0655

.0563

.5136

.9739

To first check the stability of the TFM, it is necessary to check the parameter estimates.

Since r =1 and ﬂA

r=1and5A2

the model is stable.

= -0.5493 (for X, ), the condition -1 < & < 1 is satisfied. Since

=-0.6732 (for X,, ), the condition -1 < &, < 1 is satisfied. This shows that

The model diagnostic plots of the residuals were produced via

Minitab as shown in Figure 3.5. From the residual model diagnostics, it appears that the

regression assumptions are almost satisfied as the Q-Q plor almost follows a straight line

and the I-chart of the residuals is stationary and there is only one outlier in the residual

versus fit plot which seems to affect the small data set.
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In Table 3.10, PCR is applied to estimate the impulse response function from the

transformed variables.

Table 3.10 -Determining Appropriate Values of K| for the Transformed Variables
(Using PCR method)

ValuesofK,- Kl=5, Kl=6, Kl=7, . Kl=8,
K2=5 K2=6 K2=7 K2=8
Residual Sum of 1.1877 0.5738 -0.7301 0.0967
Squares and
Crossproducts
AIC 9.803155 25.74656 N/A N/A
T (Min)

The residuals for K = 5 follows an MA(1) process therefore it can be concluded that it is
almost white noise. Using the estimates of TFM weights shown in Table 3.11 to help

identify the TFM.

Table 3.11- Estimates of the Transfer Function Weights when X; =5, K> = 5

; G

C 0.1197

V] 0 0.0014 V20 2.8338
V] Al 0.0154 V2.1 1.4762
V| 2 0.0201 V22 -2.2526
V] 3 0.0203 V23 0.1600
Via -0.0012 V24 0.7688
Vi -0.0136 Vas -0.1977

The orders for the TFM are b=0,r=1,s=1for X, andb=0,r=1,s=1for X,

the TFM weights estimated can be determined. The model in 3.1 was estimated and the
results shown in Figure 3.6. The linear form relationship produced an exact relationship,
this again is due to the high correlation between the input variables. The residuals of this

model are white noise.
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Figure 3.6 - Estimate of Abrolhos Islands’ Model (Qutput by SCA Statistical System)

TSMODEL ABROLHOS. MODEL IS LNY;, = C +@
(W10-W11*B)/(1-D11*B)X;, + @
(W20-W21*B) /(1-D21*B)LNX,, + @

1/(1-THETA1*B)NOISE.

SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- ABROLHOS

VALUE

.0000
.1000
.1000
.1000
.1000
.1000
.1000
.1000

22

STD
ERROR

.284

.38

.28

.25

VARIABLE TYPE OF ORIGINAL DIFFERENCING
VARIABLE OR CENTERED
LNY3, RANDOM ORIGINAL NONE
X3z RANDOM ORIGINAL NONE
LNX(r RANDOM ORIGINAL NONE
PARAMETER VARIABLE NUM./ FACTOR ORDER CONS-
LABEL NAME DENOM. TRAINT
VALUE
1 C CNST 1 0 NONE
2 W10 X3T NUM. 1 0 NONE
3 Wil X3T NUM. 1 1 NONE -
4 D11 X3T DENM 1 1 NONE
5 W20 LXAT NUM. 1 0 NONE
6 W21 LXAT NUM. 1 1 NONE -
7 D21 LX4T DENM 1 1 NONE
8 THETAl1  LNY3T D-AR 1 1 NONE
ESTIM ABROLHOS. METHOD IS CONDITIONAL. @
STOP-CRITERIA ARE MAXIT(80). @
HOLD RESIDS (RES1), FITS(FIT1).
THE FOLLOWING ANALYSIS IS BASED ON TIME SPAN 1 THRU
>> HEAVY COMPUTATION FOLLOWS. PLEASE WAIT !!! <<
ITERATION 1, USING STANDARD ERROR = 8.72869610
ITER. OBJ. PARAMETER ESTIMATES
1  .5756E+01 2.88 .745E-03 .130E-01  .115
.108 .196 .153
2 .2996E+01  -.792 .283E-02  .701E-02  .896
.350 .700 .127
3 .2860E+01  -.936 .281E-02  .719E-02  .880
.540 .631 .723E-01
4  .2775E+01  -1.05 .269E-02  .743E-02  .858
.629 .581 .762E-01
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Figure 3.6 - Estimate of Abrolhos Islands’ Model (Qutput by SCA Statistical System)-

Cont.

5 .2711E+401 -1.14 -.251E-02 .785E-02 .826 1.25
.687 ~-.545 .709E-01

6 .2651E+01 -1.23 ~.231E-02 .850E-02 .781 1.26
.729 -.517 .596E-01

7 .2588E+01 -1.32 -.219E-02 .940E-02 .721 1.28
.762 -.496 .450E-01

8 .2534E+01 -1.42 -.220E-02 .104E-01 .662 1.31
.786 -.483 .307E-01

9 .2526E+01 -1.81 -.194E-02 .119E-01 .568 1.40
.866 -.463 .186E-01

10 .2510E+01 -1.83 -.202E-02 .119E-01 .580 1.39
.863 -.466 .483E-02

11 .2505E+01 -1.85 -.201E-02 .119E-01 .611 1.38
.856 -.471 .353E-02

12 .2503E+01 -1.88 -.191E-02 .121E-01 . 627 1.38
.851 -.475 .386E-02

13 .2502E+01 -1.94 -.170E-02 .122E-01 .625 1.38
.863 -.476 .167E~02

14 .2502E+01 ~-1.96 -.163E-02 .122E-01 .630 1.37
.890 -.490 -.516E-04

ITERATION TERMINATED DUE TO:
RELATIVE CHANGE IN (OBJECTIVE FUNCTION)**0.5 LESS THAN .1000D-03

TOTAL NUMBER OF ITERATIONS . . . . . . . . . . . . 14
RELATIVE CHANGE IN (OBJECTIVE FUNCTION)**0.5 . . . .2730D-04
MAXIMUM RELATIVE CHANGE IN THE ESTIMATES . . . . . .1031D+01

REDUCED CORRELATION MATRIX OF PARAMETER ESTIMATES

1 2 3 4 5 6 7 8
1 1.00
2 -.47 1.00
3 1.00
4 1.00
5 1.00
6 -.54 1.00
7 .50 -.95 1.00
8 1.00

THE RECIPROCAL CONDITION VALUE FOR THE CROSS PRODUCT MATRIX OF
THE PARAMETER PARTIAL DERIVATIVES IS .239327D-04

SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- ABROLHOS

VARIABLE TYPE OF ORIGINAL DIFFERENCING
VARIABLE OR CENTERED

LNY3. RANDOM ORIGINAL NONE
Xar RANDOM ORIGINAL NONE
LNXr RANDOM ORIGINAL NONE
PARAMETER VARIABLE NUM./ FACTOR ORDER CONS- VALUE STD
T

60



Figure 3.6 - Estimate of the Abrolhos Islands’ Model (Output by SCA Statistical System)-

Cont,

PARAMETER VARIABLE NUM./ FACTOR ORDER CONS- VALUE STD
T

LABEL NAME DENOM. TRAINT ERROR
VALUE

1 Cc CNST 1 0 NONE -1.9616 1.6353
-1.20

2 w10 Xap NUM. 1 0 NONE -.0016 .0072
-.23

3 wil Xap NUM. 1 1 NONE -.0122 .0068
1.80

4 D11 Xap DENM 1 1 NONE .6295 .4159
1.51

5 w20 LNXyp NUM. 1 0 NONE 1.3714 . 7497
1.83

6 w21l LNXr NUM. 1 1 NONE -.8904 2.2327
.40

7 D21 LNX,r DENM 1 1 NONE -.4897 1.1890
-.41

8 THETAl LNY3p D-AR 1 1 NONE -~.5156E-04 .2473
-E-03
TOTAL SUM OF SQUARES . . . e e e .556967E+01
TOTAL NUMBER OF OBSERVATIONS e 22
RESIDUAL SUM OF SQUARES. . . . . . . .250211E+01
R-SQUARE . . . .. .480
EFFECTIVE NUMBER OF OBSERVATIONS .. 19
RESIDUAL VARIANCE ESTIMATE . . . . . .131690E+00
RESIDUAL STANDARD ERROR. . . . . . . .362891E+00

3.9.3.2 Checking the Fitted TEM of the Abrolhos Islands.

To first check the stability of the TFM, it is required to check the parameter estimates.
Since r =1 (for X,, ),-1<0.6451 < 1,and r=1 (for InX,,) -1 < 0.4550 < I,therefore,

the TFM is stable and does not have to be re-identified.

For the noise model, for parameter, ¢,, -1 < 0.0388 < 1. This ensures the stationarity of

the noise model. Figure 3.7 also shows that the residuals are approximately normal and

stationary, and there is some serial correlation observed in the data.
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(1-B)InY,, =c+(w,)(1- B)X,,, +(0,,)(1-B)X_,, + & .
E. The data in this TFM model is differenced and contains a moving average term of
order one (ARIMA(0,1,1) ),
(1-B)InY,, =c+(w,)1-B)X ,, +(@,)1-B)X,, +(1-6B)c,. .
F. The data in this TFM model is differenced and contains an autoregressive term of

order one (ARIMA (1,1,0) );
(1 - ¢1B)(1 - B)ln YL.I =c+ (wlo )(1 - B)XL.II + (wzo)(l - B)Xz,,zr tép.

G. This TFM model contains an autoregressive term as its denominator;

&
TR £ .
(1 - elB)

In YL.I =c+ (wlo)XL,u+ (wZO)XL.

3.9.4.1 Applying Simple Models for the Puerulus Settlement at Dongara

According to Dongara, the best model, from Table 3.12, was Model A (an MA(1) model)
with R? = 60.4 %, according to the AIC criterion was

In¥,, =-1617 + 0011X,,, + 0074X,,, + (1+0328B)z,. .

where the residual plots for this model are illustrated in Figure 3.8.

Table 3.12-The Area of Dongara (1968/1969 - 1992/1993)

Model Number of R* (%) AIC
Parameters
fitted
A 4 60.4 -11.587
B 4 61.9 -11.119
C 5 62.6 -8.764
D 3 44 4 - 9.682
E 4 50.2 -8.328
F 4 63.0 -10.535
G 4 612 -10.936
Regression 3 55.4 -12.792
Model
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Table 3.14 - The Area of Alkimos (1982/1983 -1992/1993)

Model Number of R*(%) | AIC
Parameters
fitted
A 4 67.3 4017
B 4 73.8 3.718
C 5 87.4 3.286
D 3 279 5393
E 4 78.0 2913
F 4 33.1 7.283
G 4 73.2 3.764
Regression 3 66.1 16.700
Model

The results for the LTF method and Edlund’s method are worse compared with the

simplified TFM model (Model E) is shown in Table 3.15.

Table 3.15 - Comparing LTF, Edlund and simplified TFM medels for the Alkimos

Area.

R*(%) AIC
LTF method Series too short not enough data
Edlund’s method 82.3 17.16348
Model E 78.0 2913
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CHAPTER IV
STATE SPACE MODELLING

4.1 About this Chapter.

State space models discussed in section 4.2 are a powerful tool in modelling time series
data. Regression model with ARIMA disturbances is a special class of state space models
which is discussed in section 4.3. Section 4.4 discusses structural space models. A
special class of structural models, called linear growth models is examined and
demonstrated by application. The parameters in these models are estimated using the
Kalman filter, which is outlined in detail in section 4.5. Finally, the regression model
with ARIMA disturbances are applied to the fisheries data in all three location and

compared with linear growth models in section 4.6.
4.2 State Space Modelling.

State-space methods were originally developed by control engineers to navigate systems
such as controlling the position of a space rocket. They have also been found to be useful
in modelling time series data. These equations have been used to focus on a set of m state
variables, which change over time (Harvey, 1981, p. 101). In state-space models, the
actual observation is given by
| Observation = signal + noise

This signal is represented in the form of a linear combination of a set of variables, called
state variables. These variables thus constitute a state vector at time 7. The state of the
system is described by this vector and is referred to as the ‘state of nature’ (Chatfield,

1989, p. 181).
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Definition: State

The state of a system or of a mathematical process is a minimum set of variables (called
state variables) which contains sufficient information about the history of the system or

process to allow computation of future behaviour (Timothy and Bona, 1968, p. 105).

In mathematical terms, a system can be described as a set of m input variables

(m

o, a?,---,0™ and a set of n observation variables y,,¥,, -, ¥,

The general State Space Model (SSM) consists of m random variables. The N variables

are observed and are defined by the Nx1 vector y,. These observations are related to

the state variables by a measurement or transition equation. Thus, a stationary SSM can
be represented in the form
Y. = Hlat +E 4.1(3)

t(ss)?

o =T, +Rn,. 4.1(b)

Equation 4.1(a) is known as the observation equation and produces an N x1 vector. Eqn
4.1(b) is known as the transition equation and an mx1 vector is produced. Both
equations are referred to as state equations. The reader is referred to Appendix 1 for more

detail on equations 4.1(a) and 4.1(b). The error g, is an N X1 vector which is a white
noise variable with a normal distribution with a zero mean and covariance matrix Z,.

The white noise 7, is a gx1 vector [ n®

n®1'. The vector 7, follows a
normal distribution with zero mean and covariance matrix Q,. The disturbances 7, and

€, are both serially uncorrelated. They are also both uncorrelated with each other for

1ss)

all time periods, and with the state vector, o, (Harvey, 1989, pp. 100-102).

The system matrices are the measurement vectors H, and Z, and the transition vectors
T,, R, and Q, . If these matrices do not change over time The SSM is said to be time-

invariant or time-homogeneous (Harvey, 1989, p. 101).
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4.2.1 Example 4.1.

The SSM withm =2, N=5,n =135 and g =4 can be represented as follows

Fy] ] Fh” h12- Fel(:.\')j
y2 h'zl }52 PR 82(s.t)
a’
y3 = h’ll h’32 a(g)] + 83(ss)
Y, hy, h42 - Eyss)
_ySJ _h’7l hSZJ _85(s.t)J

) b . )

I:a: ]_ T, T;Z]I:al—l]_'_[’il o s ']4] n,
@ | . )

a, T, T,jo hy Iy Iy Iylhh

4.2.2 Assumptions of SSMs.

The SSM is assumed to have the following assumptions (Harvey, 1989, pp.115 -116,
pp. 101-102) :

a) E(y,)and the autocorrelations of y,are independent of ¢ for weak stationarity,
b) ¢, is azero mean white noise term with variance Z, and 7, is a vector white noise

with variance matrix Q,, that s,
€ Z, O
[ ”"”] ~ NID 0,|: ' .
n 0 g

Two further assumptions are specified by (Harvey, 1981, pp. 101-102) for the state space

system:

c) The initial state vector, o, has a mean of a, and a covariance matrix F,, that is,

E(o,) =ayand Var(a,) = F,.
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d) The disturbances &y, and 7; are uncorrelated with each other in all time periods, and

uncorrelated with the initial state, that is,
E(g,,m, ) =0, for all s, for t=1,...,N

and  E(,,) =0, EMa,)=0 for r=1,...,N

4.2.3 State Space Representation of an ARMA Model.

First, consider an ARIMA(p, d, q) process expressed in the Box-Jenkins’ form

¢(B)(1-B)"y, =6(B);, (4.2)

where ¢(B) =1- zp“cpiB’
j=1

9
and 6(B)=1-)6,B’
j=1

Assume @(B), 6(B) have roots outside the unit circle and & is a sequence of

independent N (0,0°%)random variables. Therefore, (1— B)“ y, = A y, will be stationary

and invertible (Chatfield, 1989, p. 41).

Equation (4.2) can then be re-written in the form

y, = ivjyj +6(B), , 4.3)

where

¢(B)Y(1-B)' =1 —iva’
j=t

’

and r = p+d.

The ARIMA(p, d, g) model can be represented in the state space form
y,=Hzo, (4.4 (a))
o, =To,  +RE, : (4.4 (b))
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where H,,T, ,R and ¢, , if f is defined as max(r,q +1), therefore,
H, is a 1x f vector given by

H=[(1 o .. o]
T, is an f X f matrix given by

vv 1 0 .0
v, 01 .0

vf_,OO.l

Vs

where v, =0 fori > r.

R isan fx1 vector given as

where Gj =0for j >gq.

and

o, = .V,,

&, = zviy,-u i t _ile,.é,_H i J=20f
i=) =i

The above equations for ¢, can be confirmed by substituting state space equations (4.4).

By definition H,q, =y, , by substituting in equation (4.4 (b)) then

o, =vioy,  t+ja,, +¢,
r q
=vy.t Zviyr-i +20.‘§:-i +¢,
i=2 i=1

= iviyr-i +0(B)E,
i=1

-y, by (4.3)
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and aj,r = vjal,l—l +aj+|.l+| +0j—l§

. q
= vjyl—l + zviyl—Hj—i +zei€"l+j_i +0j—]é’
Py

i=j+]
r q
= ZV,-.V,-H/_,- + 29,-5,_”]_,- where j> 1
i=j

i=j-I

(Kohn and Ansley, 1986).

4.2.3.1 Example

Consider ARIMA (1,1,2) model
(1-0.2B)Vy, =&, +0.8¢,_, +0.1¢,_,

y, =12y, ,+0.2y, ,+& +0.85 _, +0.1§, _,

r=p+d=2, qg=2

Therefore, f=max(r, g+1) =3.

The state space form is then given by

y=[t 0 O
12 1 0 1
o =12 0 1|o_ +|08|E
and 0 00 0.1
y,
where ¢, =| 0.2y, , +0.85, +0.1&, , |.
0.1,

4.3 Regression Models with ARIMA Disturbances.

Consider the regression model
y,=2,'B+o, ,
where [ isa 1x p vector of coefficients;
@, is generated by the ARIMA model in (4.2);

y, and z, are observations in the form of 1x p vectors.
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The disturbance @, is generated by the stationary ARIMA process

a)l = ¢lwt—| tet ¢pwl—p + et - 9|e,_| et _eqe’_q

assuming e, are NID(0,07) and independent (Kohn and Ansley, 1985).

Kalman filtering techniques may be used for estimating regression models with ARIMA
disturbances. Thus, a series with missing observations can be used (Harvey and Phillips,
1979). This model will be considered for the analysis of the puerulus settlement data to

analyse environmental - stock recruitment relationships.

4.4 Structural Time Series Modelling.

Structural time series models are a special class of state space models. These are
modelled as a sum of meaningful and separate components and are well suited to stock

assessment.

A Basic Structural Model (BSM) is represented as the observed value in terms of one or
more unobserved components, called the state vector. These components can be

partitioned into separate groups. Thus, a s-seasonal BSM model is

s—1
- 3)
Vo= =2+
j=1
The structural model can be represented in a state space form. That is, the one-

dimensional state would be &, ={,,B,,7,,Y,.1-Yi-2+"**»Y,_s+»] and the state noise vector,

consisting of uncorrelated white noise disturbances, would be 17, =[n"” n® n]. For

example, assuming s = 4, the basic structural model has observation equation

:ut
ﬂt
y,=0l 01 0 0]y |+¢
Yie1
Yi-2 ]

t(ss)?
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and transition equation

[, 7 [t 1 0 0 ofg] [t o O]
B, 01 0 0 OoffB | |01 ofn®
7, [={0 0 -1 =1 —1f y [+{0 O 1|n®
Y, (00 1 0 O}y, |0 0 Ofn®
7,.] [0 0 0 1 O0]7.,] [0 0 O]

with covariance matrix, ¥, = diag(n",n®,n'”) Equivalently, this can be written as

y: :(1 010 0)a,+8,(,,)
and
11 0 0 0] 1 0 O]
01 0 0 © 01 ofp®
Q = 0 0 -1 -1 —la,_l+0 01 7‘,‘(2)
00 1 0 O 00 0|n®
00 0 0 | 0 0 0

(Janaceck and Swift, 1992, pp. 88-89).

The state space methodology can then be applied to determine the local level, trend and

seasonal components.

Without the seasonal component, structural models will be of the form
Y=l + €
_ B )
ur - ur-l + t-1 +T[, ,

Br = ﬁr—l +77r(2)-

This is called a linear growth model. The first equation is the observation equation, while

’
the next to two equations. The state vector ¢, = [/,L, [3,] , where [, is the local level,
which changes through time and f is the local trend or growth rate which may evolve.

In state-space form, the observation equation is
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y, = [l O{ﬁ']+e‘,m)

and the transition equation is

o L L)

9

or

(Chatfield, 1989, p. 184).

All the main structural models have a time-invariant state space form. In this chapter,
structural models incorporate in addition the effect of explanatory variables. This class of
models is described in more detail in Harvey (1981) and Harvey (1989). The observation

equation for the linear growth model will then be of the form :

K,
Y. = [1 O:':B :|+ Bix, + Bzﬂz: + €5

where ¥ and y, are exploratory variables.

4.4.1 Example 4.2.

In order to test structural models, an analysis was undertaken of the consumption of
spirits in the UK (Y gpiri) from 1870 to 1938 see Appendix 2 for data). The diagnostics
of this model are shown below in Figure 4.1. Involved are two dependent variables (1)
the real income per capita (Xspin), and (2) the relative price of spirits (Xspricer). The
statistical software used to fit a linear growth model for this time series is STAMP® which

incorporates an exact maximum likelihood routine (see section 4.5).

 STAMP is a structural time series Package by Simon Peters (with Bahram Pesaran and Andrew Harvey)
Copyright © LondonSchool of Economics and ERSC centre in Economic Computing version 3.
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4.5 Evaluation of the Likelihood Function.

Maximum likelihood estimation procedures are developed for regression models with
ARIMA disturbances. These are similar to random-walk parameter models as shown by

(Harvey, 1981, p.204) which are defined as
yt=x:ﬁt+£t’ t=1,--T

where the vector f3

1

ﬁt = ﬁr—l +nr ’
where 1, ~ NID(0,0°Q) .

is generated by the process

In this case, the most convenient way to derive the likelihood function is Kalman filter
recursions. The Kalman filter recursions is a set of recursive equations that are used to

estimate parameter values in a state space model, using the likelihood function.

The maximum likelihood method is applied to estimate the parameters

¥=|H K T o2 o2|. One very well known numerical maximisation routine
n Y

£(ss)
that is applied for state-space models is called the expectation-maximisation or EM
algorithm. In STAMP, the exact likelihood function is used, which can be relied upon to
produce more accurate results. This is preferred by the analyst and is used for
estimating'® structural models. After the parameter values are estimated, the model can

then be checked (Janaceck and Swift, 1992, p. 93).

4.5.1 The Expectation-Maximisation (EM) Algorithm.

An algorithm for nonlinear optimisation algorithm that is appropriate for time series
applications involving unknown components. This forms what is called the Expectation

Maximisation (EM) algorithm (Shumway, 1988, p. 200).

' The interested reader should refer to Farag (1994) as the estimation procedures, namely, the
maximum likelihood and exact likelihood methods are explained in more detail.
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Consider the unobserved signal process @, and an unobserved noise process €,.,,. Both
processes form the function ¥, an incomplete data set. Log likelihood logL(y,¥) may

be based on the complete data set, or log likelihood based in an incomplete data set,
where the parameters denoted by the matrix ¥ are to be estimated. The incomplete-data
likelihood, which requires maximising a function using one of the conventional non-
linear optimisation techniques. In comparison, for the complete-data likelihood, the

maximisation technique is usually very easy, except for the unobserved values of ¢, and

£,y (Shumway, 1988, p. 200-201).

The EM algorithm was used for estimating the unknown parameters in an unobserved
component model. Consider a general model that is time-invariant as follows,

yf =Htaf+£

£(s5)

af = T‘Iaf—l + Rtnf

with a, and P, are known, and Var(n,) = Q is unrestricted. If the elements in the state
vector are observed for ¢ = 0,...,N, the log-likelihood function for the y,’s and ¢;’s would

be

N
log L(y,,00) = =N/ log 2z — N/j logh _%";.(y' -H,a,)
N
—Nn/ logzn—f%log|Q|—%i§l<a. ~T/0,_YQ" (@, - Na,_))

—n/log2r — Yilog|Ry| - Y4 (s —ap) Py (@ ~a,).

It follows that the iterative procedure of the EM algorithm proceeds by evaluating

dlog L
E[ 08 yN].

4
This is conditional on the latest estimate of ¥ . The expression is then set to a vector of

zeros and solved to yield a new set of estimates of ¥ . The likelihood will remain the

80



same or increase at each iteration under suitable conditions. It will also converge to a

local maximum (Harvey, 1989, p. 188).

The EM algorithm requires modification to be applied to the basic structural model. The

EM is a very slow procedure compared with the Kalman filter.

4.5.2 The Kalman Filter.

The main objective in state space modelling is to estimate the signal in the presence of

noise. Therefore, the state vector @, needs to be estimated (Chatfield, 1989, p. 187).

A set of equations, defined as the Kalman filter, allows an estimator to be updated as soon
as a new observation becomes available. In particular, this is a two-stage process.

The prediction equations forms the optimal predictor of the next observation of ¢,, given
all the information is available. Then, using the updating equations, the new observation

is then incorporated into the estimator of the state vector (Harvey, 1981, p. 102).

4.5.2.1 The General Form of the Kalman Filter.

This stage is concerned with ¢, from time ¢ - 1, and the optimal estimator is denoted by
the known vector a,_,, based on the observations up to and including y,.;. Denote the
covariance matrix of the estimation error by P,_, which is also known, that is

P_ =El(a,_—a, ) —a,, Y].

The optimal estimator of ¢, is calculated by the prediction equations given a,_, and P,_,

These are

a,,=Ta,,_, 4.5)
and

P,,=TP_T,+RQR,. =1,..T (4.6)

The updating equations are given by
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a =a,_,+ Pm—lH:’F:_l(.V: -Ha,,_)

and
P

4

= Pm—l - Ptlt—lHt’Ft_lH P,

5 te—1
where
F,=H,P H,'+z,. t=1,....,T

tS el

The prediction error V,is ¥, —z,a,,_,,where t = 1,...,T, is an N x1vector. This vector has

zero mean, E(V,) =0, and covariance matrix, F,, where E(VV,) = F, (Harvey, 1981,

pp. 110, 116-117).

4.5.2.2 The Log-Likelihood Function.

The variance of the conditional distribution required for the likelihood is
F= E{(x, - xm_,)z}of X, at time t—1. This, therefore, will be the one step prediction
error variance. The one step prediction error is

Vi=2%~X. =% —Ha,_, ’
Assuming g, is independent of H (e, —a,,_,), thus the variance F,

F, = HP

’ 2
I|I—IH + Ge ’
with mean and covariance matrix a,_and P,_ of the estimator ¢,_, at time ¢—1. Thus,
prediction equations of the Kalman filter were developed for the state estimate a,,_, and

its variance P,,_, as defined in (4.5) and (4.6).

The log-likelihood function to be evaluated using the Kalman filter

_ N 1 & 1&y?
log L(W)=—-——Ilog2mr ~— ) logF ——) -,
logL(¥) =-—"log 2,§g’2§.F,

The smoothed estimator is denoted by a,,; and its covariance at time ¢, is denoted by P,; .

The smoothing equations may therefore be written as
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ar=a,+ PT (at+IIT - Tt+1at)
and

* *’
P,=PF+P (Pror — Py )P,
where

P’ =PT;

t+1

| t=T-1,..,1
and a,; =a,and P, = P,, and P, =P).; + q,

starting the algorithm at r = T (Harvey, 1981, pp. 115-117).

A modified version of the Kalman filter has been obtained to help predict future
observations. This also helps in interpolating missing values with the aid of the modified

fixed-point smoothing algorithm (Kohn and Ansley, 1986).

Missing data is allowed when estimating arima.mle commands to determine regression
model with ARIMA disturbances. This would then allow the Kalman filter to be used
with the state space representation of Kohn and Ansley (1986). However, missing values

at the beginning of the series are not permitted.

4.5.3 Application of the Kalman Filter.

Consider the model

Ve=4+0,+E,, &,y ~ NID(0,07%)

@, =05, , +1,. n, ~ NID(0,40)

Then, if T =4, and the observations are y,=4.4, y, =4.0, y, =3.5, y, =4.6, then the

remaining entries are calculated in the following steps :
1. First the prediction equations would reduce to

a,,=a,, and P

fr-1 -1

=P +gq

while the updating equations are

a = at!t-l(yt Gy )/(P;!t—l + ]) ’
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and

P, =P, —Ptl2t-—l /(P:

Ie—

1+

Let z, = ¥ - 4, and ¥, V5, V3, s are available. The variable o, has a mean of ag and

covariance matrix 4 Py. The values of the observations are given in Table 4.1, given

ap=4,Pp=12 and g=4.

Given y; = 4.4,
a, =ay+ (B +q)(z,—a,) (P, +q+1)=0.188
P =P —P} /(P,+1)=0.923

Since, from the measurement equation H, =1, then V, for all ¢ is defined as,
Vi=2-a,=04-14)=-3.6

Similarly, for t=2, a, =0.032, P, =0.480, and V, =-0.188,
for t=3, a; =-0.403, P, =0.324 and V, =-0.532,

for t=4, a,=0.412, P, =0.245 and V, =1.003.

The final estimates obtained are a,=0.412 and P, =0.245. These values may now be

used as starting values for the smoothing algorithm.

Table 4.2 - Smoothed Estimators and Residuals.

T 1 2 3 4

7 44 40 35 4.6

Z, 0.4 0.0 0.5 0.6
a, 0.612 0.103 -0.405 0.460
P 0.923 1.366 2.155 0.293
v -3.600 -0.612 -0.603 1.005
a 0.552 0.266 0.839 0.460
P, 1.397 1951 0.225 0.293
e, -0.152 -0.266 -1.339 0.14
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4.6 Diagnostics.

As described in the previous chapters, the state space models estimated in this chapter can
be used as the basis for modelling multivariate time series. In particular, regression
models with ARIMA disturbances are obtained and tested in this chapter. The method

for testing the residuals is as described in chapter II.

4.7 Analysis of the Puerulus Settlement Data.

In this section the state space models are represented as regression models with ARIMA
disturbances and linear growth models. Both models are applied to the puerulus

settlement data for all locations.

For Dongara, the results are calculated using the regression models with ARIMA
disturbances (see section 4.5). The S-plus computer package is used to obtain the

models. These results are summarised in Table 4.3 for Dongara.

Table 4.3 - Regression Models with ARIMA Disturbances Applied to Dongara
Puerulus Settlement Data.

Model AlIC Log-Likelihood
ARIMA((1,0,1)) 28.3515 203515
ARIMA(1,0,0) 27.4625 21.4624
ARIMA(0,0,1) 28.5683 22.5683
ARIMA(1,1,1) 24.3992 16.3992
ARIMA(2,0,0) 18.4602 10.4602
ARIMA(2,0,1) 10.8966 0.8966

From Table 4.3, it can be concluded that the best model is a regression model with
ARIMA(2,0,1) noise. The S-plus printout is given in Appendix 3. This model converges
and has a minimum AJC value of 10.8966. The variance-covariance matrix between the

parameters in the model is given as
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Table 4.4 - Regression Models with ARIMA Disturbances Applied to Alkimos
Puerulus Settlement Data.

Model AlIC Log-Likelihood
ARIMA((1,0,1)) 22.10953 14.10953
ARIMA(1,0,0) 22.24731 16.24731
ARIMA(0,0,1) 26.9179 209179
ARIMA(1,1,1) 23.41894 15.41894
ARIMA(2,0,0) 18.68386 10.68386
ARIMA(2,0,1) 17.67991 7.679914

From Table 4.4, it can be concluded that the best model is a regression model with
ARIMA(2,0,1) noise. This model converges and has a minimum AJC value of 17.6799,

and a variance-covariance matrix between the parameters in the model is

0.0895 -0.01491 0.0461
-0.0149 0.0766 -0.0298
0.0461 -0.0298 0.0958

From the residual plot, which is given in Figure 4.5, a conclusion can be drawn that the
residuals are approximately normal. Due to the size of the data set, it can be difficult to

determine whether that is true or not.

Therefore, according to this the regression model with an estimated innovations variance
(6%) of 0.1296,
Iny,, =-0.0035x,, +0.0395x,,, + &> 4.9)

where
€y = 0.01 408,,_”(“) - 0.62768,,_2)(55) +e, +-0.6407¢, .
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CHAPTER V
CONCLUSION

5.1 Comparison of Models.

5.1.1 Results for the Dongara Area.

A multiple regression model (Regression) was developed to represent the relationship

between the puerulus settlement (Iny,,), the rainfall ([f ) and the Fremantle sea level
(x,,) at Dongara. This model, with R*=55.4 %, was given in Chapter II, as
Iny,, =-1.058+0.0139x, +0.0638x,, +&.

Secondly, a transfer function model (TFM) was developed to represent the relationship
between the puerulus settlement, the rainfall and the Fremantle sea level at Dongara.
This model, with R* = 60.4 %, was given in Chapter III, as

Iny,, =-1.617+0.011x, +0.074x,, + (1+0.328)¢,,..

Thirdly, a linear growth model (with R? = 58.3%) (SSM1), classified in chapter IV as a
structural time series model consists of an observation equation
l A _ l‘tl
n,, =01 0 5 +0.104x,, +0.0722x,, + &,
t

and the transition equation
U, 1 1u, I 0fn®
o Lo L)
Finally, a multiple regression model with ARIMA(2,0,1) disturbances (SSM2) was
developed to represent the relationship between the puerulus settlement, the rainfall and
the Fremantle sea level at Dongara. This model, with R*= 61.6%, was given in Chapter

IV, as
In y,, =0.0075x,, +0.057x,, +¢&,,,

where ,,, =0.7845¢,,,, —0.1288¢,, . +e, +0.9948e, .

1(ss)
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Based on the AIC criterion, it can be shown that structural fits or SSM1 fits (with
AIC = 4) for Dongara do not perform well. Turning points for these fits seem to be under
estimated in the data set. TFM’s (with AIC = —11.587) are a better fit than regression fits
(with AIC = -12.792) but more parameters are involved in the model. Overall, regression
models with ARIMA disturbances seem the best fit for Dongara with minimum AIC
value of -19.111.

5.1.2 Results for the Alkimos Area.

For the Alkimos area, a multiple regression model was developed to represent the

relationship between the puerulus settlement (In y,,), the rainfall (x,,) and the Fremantle
sea level (x,,) at Alkimos. This model, with R? = 66.1%, was then given in Chapter II, as

Inj,, = -6.590+0.021x, +0.108x, +€&,.

Then, a transfer function model was developed for Alkimos to represent the relationship
between the puerulus settlement, the rainfall and the Fremantle sea level. This model,
with R? = 78.0 %, was represented in Chapter III as

(1-B)Iny, =0.158+0.019(1- B)x, +0.172(1- B)x,, +(1-1.675B)¢ . .

Then, the observation equation, of the linear growth model with R =53.1%,is

Iny,, =1 O{Z‘}+0.0l7xl, +0.115x,, +€,,,

t

and the transition equation is
ul 1 1 M—l ] O ny(l)
81710 1B8.]T0 1]n2®]

Finally, a multiple regression model with ARIMA(2,0,1) disturbances with R*=54.1%
was developed to represent the relationship between the puerulus settlement, the rainfall
and the Fremantle sea level at Alkimos. This model was given in Chapter IV, as

Iny,, =-0.003x, +0.039x,, +¢€

#(ss)

where €,,, =0.014,¢,_,,.,-0.628,¢, ,,. +e +0.641le ,.

1(ss)
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From Figure 5.2, it can be shown that the linear growth fits for Alkimos are the worst
models with an AIC value of 19.277. This is because of bad starting points for slope and
level seem which seem to over estimate and under estimate turning points in the data set.
TFM’s has the minimum AIC value compared with regression fits which produced an
AIC value of 16.700. TFMs provide a better fit with minimun AIC value but more
parameters are involved in this model. Regression models with ARIMA disturbances are

the second best fit to the data for Alkimos.

5.1.3 Results for the Abrolhos Islands Area.

A multiple regression model was developed to represent the relationship between the

puerulus settlement (Inj,,), the rainfall (x, ) and the transformed stock recruitment
(x,,) at the Abrolhos Islands. This model, with R® = 69.6%, was given in Chapter II, as

In§,, =0.918—0.014x, +1.16x, +£,.

A transfer function model was developed to represent the relationship between the
puerulus settlement, the rainfall and the transformed stock recruitment at the Abrolhos
Islands without estimated missing values. This model, with R? = 57.9%, was given in

Chapter HI, as
(1-B)Iny,, =0.072-0.147(1- B)x,, +2.746(1 - B)x,, + (1-1.285B)¢ . .
A linear growth model, with R* = 25.1 %, with observation equation
o H,
Inj,, =[t 0] *|-0.008x, +2.375x, +¢,,.

B,

and the transition equation is

o Jao )
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60.4%) and (4) linear growth models or SSM1 models (with R?>= 58.3%). The results in
addition to forecasts for these models are given in Table 5.1.

Based on the AIC criteria, for Alkimos, the order of the models from best to worst were as
follows: (1) TFM models (R2 = 78.0%), and (2) regression models with ARIMA(2,0,1)
disturbances (with R = 78.6 %), (3) regression models (with R* = 66.1%), (4) linear
growth models (with R? = 70.6%). The results in addition to the forecasts for these

models are given in Table 5.2.

Table 5.1 - Comparison of Multiple Regression Models, Transfer Function Models

(TFM), Linear Growth Models (SSM1) and Multiple Regression Model (with
ARIMA(2,0,1) Disturbances) Models (SSM2) for Dongara

Year 1992/93 1993/94 1994/95 1995/96
Iny,, 4.043 4.143 4.635 5.389
Forecasts In §, for 4.346 3.855 4.261 5.248
Regression Model (3.170, 4.860) | (2.880, 4.550) (4.430, 5.910)
(95% C.L) (R* =55.4%)

Forecasts In §,, 4.290 4.038 3.729 5.084

(Best TEM Model - (3.260,4.810) | (2.950, 4.510) (4.310, 5.860)
Model A) )

(95% C.1) (R* =60.4%)

Forecasts In §, , for 4562 3.985 3.873 5.212

Linear Growth Model (3.893,4.074) | (3.783, 3.963) (5.121, 5.302)
(SSM1 Models)

(95% C.I) (R* =58.3%)

Forecasts In 3.670 3.900 3.976 4.998

For Regression Model (3.482,4.804) | (3.973, 5.296) (4.728, 6.050)
with ARIMA (2,0,0)

Disturbances

(SSM2 Models) (95%C.1.)

(R* = 61.6%)
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Table 5.2 - Comparison of Multiple Regression Models, Transfer Function

Models(TFM), Linear Growth Models (SSM1) and Multiple Regression Model (with

ARIMA(2,0.1) Disturbances) Models (SSM2) for Alkimos

Year 1992/93 1993/94 1994/95 1995/96
Iny,, 2.303 1.946 3.807 4.431
Forecasts In y, , for 2.706 3.831 3.461 3.104
Regression Model (0.336,2.950) | (0.097,2.710) (2.490, 5.100)
(95% C.L) (R* = 66.1 %)

Forecasts for In 3, 2.497 1.640 1.401 3.800

(best TFM. Model - Model E) (1.370,3.350) | (0.815, 2.800) (2.680, 4.670)
(95 % C.L) (R* =78.0 %)

Forecasts In y,, for 2.853 2.059 1.988 4.156

Linear Growth Model (1.643,2.474) | (1.573, 2.403) (3.741, 4.572)
(SSM1 Models)

(95 % C.1) (R* =70.6 %)

Forecasts In §, , for 2.521 2.709 2.926 3.834

For Regression Models with (2.645,2.772) | (2.883,3.01) (2.789, 2.916)
ARIMA (2,0,1) Disturbances

(SSM2 Models)

(95 % C.1)(R* =78.6 %)

For the Abrolhos Islands, the order of the models from best to worst were as follows: (1)
regression models with ARIMA(2,0,0) disturbances (with R? = 75.0%). (2) regression
models (with R? = 69.6%), (3) TFM models (R? = 57.9%), (4) linear growth models (with
R? = 25.1%), according to AIC criterion. The results in addition to the forecasts for the

Abrolhos Islands are given in Table 5.3.

From Table 5.1, 5.2 (for the areas of Dongara and Alkimos) TFM models were fitted
with a reasonable R? value compared with multiple regression models, SSM1 models and
SSM2 models. From Table 5.3 (for the Abrolhos Islands), SSM2 models were fitted

with a reasonable R? value to the data compared with multiple regression models, SSM1
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models and TFM models. For Dongara and the Abrolhos Islands SSM2 models were
concluded to be a better model to fit the data. For the Abrolhos Islands, this shows that
SSM2 models perform best when missing values are involved . For Alkimos, which is a

very short data set, TFM models perform better.

Table 5.3 - Comparison of Multiple Regression Models, Transfer Function Models

(TEM), Linear Growth Models (SSM1) and Multiple Regression Model (with
ARIMA(2.0,0) Disturbances) Models (SSM2) for the Abrolhos Islands (without

estimated missing data)

Year 1992/93 1993/94 1994/95 1995/96
Iny,, 3.761 3.296 4.673 4.890
Forecasts In §,  for 3.725 3.936 3.417 3.724
Regression Model (3.315, 4.444) | (3.868, 4.997) (3.832, 4.961)
(95% C.L)R? =69.6 %)

Forecasts In §,, (best TFM | 3.884 4.191 3.278 4.141

model — Model E) (3.520, 4.870) | (2.600, 3.950) (3.470, 4.820)
(95% C.1)Y(R?* =57.9 %)

Forecasts In §,, for 4.049 5.322 4215 6.015

Linear Growth Model (5.289,5.355) | (4.182, 4.248) (5.981, 6.048)
(SSM1 Models)

(95% C.L)R® =25.1%)

For Regression Models with (3.797,3.815) | (4.744, 4.762) (4.548, 4.565)
ARIMA (2,0,0) disturbances

(SSM2 Models) _

(95% C.LYR? =75.0 %)

In forecasting, SSM2 models produced a smaller confidence interval (C.1.) compared with
multiple regression models, TFM models and SSM1 models but for the Abrolhos Islands
the actual values are not in the confidence intervals. This indicates that SSM2 models

can produce more reliable forecasts compared with multiple regression models, TFM
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models and SSM1 models. For SSM2 models, the forecast values of 1993/1994 to
1995/1996 in all three locations were much more reasonable to the actual values
compared with the forecast values from multiple regression models, TFM models and
SSM1 models. For Alkimos, it can be deduced that the TFM models seem to have a

better short term prediction.

The forecast values for SSM2 models produced reasonable estimates of the puerulus
population for all areas. Though, due to management changes for the Abrolhos Islands
area from 1993/94 to 1995/96 it was difficult to forecast using the same model. Overall,
it can be deduced that rainfall and sea level do have a significant effect on puerulus
settlement for Dongara and Alkimos. Also the spawning stock and rainfall have an effect

on the puerulus settlement at the Abrolhos Islands.

In general, SSM2 models can give us a more reliable forecast within the next three years
and a better fit for the data compared with multiple regression models. For long term
forecast, multiple regression models can give a better forecast value compared with
SSM2 models. This could be reflected from the forecast values in 1995/1996 for

Dongara.

The SSM2 models could not predict future values due to changes in fishing practices.
The changes in the last three years in fishing practice also show in the confidence interval
(especially for the Abrolhos Islands) where, in 1995/96, the predicted value was 4.556
compared with the actual value 4.890 with confidence interval (4.548, 4.565).

5.3 Future Research Directions.

A variety of models were applied to the forecasting of puerulus settlement. Other models,
which are worthy of consideration, include regression models with ARIMA disturbances
with time-varying parameters that can be represented as in (Chatfield, 1989, p. 186)

X, =a,+bu, +n,
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where X, is an explanatory variable known to be linearly related to an explanatory
variable u,. The regression coefficients a, and b, are allowed to evolve through time

according to a random walk. As a Kalman filter approach, this model would be
represented as
X, =hb, +n,,

6,=6,_+w,.

where 6, = [a, b,], B =]l u,]. The regression models with time-varying coefficients

were not applied here due to the unavailability of suitable software. New software would

need to be developed.

These approach as well as other Kalman techniques can be explored and compared for
environmental data sets. The impact of management changes in the model can be also

explored as more data is being collected.

5.4 Conclusion.

The main aim of this research has been to compare the application of multiple regression
models, TFM models, SSM1 models and SSM2 models so as to examine the relationship
between the westerly winds and the Leeuwin Current, and the puerulus settlement at
Dongara and Alkimos. Another objective is to examine if the westerly winds and the
spawning stock, have a significant effect on levels of puerulus settlement at the Abrolhos
Islands in the western rock lobster fishery. In general, SSM2 models have generally
produced better results than the other three stochastic models examined in this thesis.
Therefore, SSM2 models may be considered suitable for modelling relationships to

environmental data sets.

The aims of this research were to apply and compare regression models, transfer functon

models and state space models for the environmental-dependent stock recruitment
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relationships of crustracean species in Western Australia. These models have been
applied and compared in this chapter and it was found that the application of state-space
models which was found to provide a better insight into the factors that affect the
recruitment of crustacean species. The third aim of this research was investigate the
increased complexity of transfer function and general state-space models justify their use

in practice.

In conclusion where there are missing values in the data sets SSM2 models seem to
handle these datasets much better than TFM models. However, SSM2 models can only
produce reliable forecasts for the input processes compared with the TFM models. TFM
models can produce reliable forecasts for the output process as well. Thus, regression
models with ARIMA disturbances are best applied to environmental data with missing
data involved. These regression models are generally easier to forecast and easier to
explain the process to biologists. The SSM2 approach accounts for a marked
autocorrelation in the time series data. Overall, SSM2 models are best applied than

dynamic TFM models to environmental data.
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APPENDIX I
Glossary

Regression Analysis

t =1,2...n determines the time of the observation;

i = 1...k, where k is the number of explanatory variables involved in the data analysis of a
regression model;

n is the number of observations;

at the " observation;

A

B, is aconstant;

y, is the output vector;

’

x, = (x,...,x,) is the i"™ input vector; x is the transpose of x,

¢ is the constant present in the regression model;

~

B represents a vector for the estimated regression coefficients where f,

i=0,.,k; g, are error terms in a regression model. These error terms are

normally distributed random variables with mean zero and constant variance
2

o,

ER
y, are the fitted values for the regression analysis;

Iny, is the expectation or predicted value of the puerulus settlement.

Transfer Function Models (TFM)

t =1,2...n determines the time of the observation;

i = |...k where k is the number of explanatory variables involved in the data analysis of a
TFM;

n is the number of observations;

at the " observation,
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Transfer Function Models (TFM) (Cont.).

Y is the output factor;

X, is the i input vector;

"

N, is defined as the noise model as part of the TFM ;

C is the constant present in the TFM;

g, are error terms in a TFM from the noise component. These error terms are

normally distributed random variables with mean zero and constant variance

o’

Exp

K =Max(K;, K3),

n=N-K,
ﬂ=[C Vio Yiu " Yk, Yoo Y v2.L2]
and

Y=[YK+1 Yero o YK+n]

X:[l x° x' ... xk x° x' .. XKZ}
~ ~ -1 ~ 1 ~1 ~2 ~2 ~2
where

X/ =B’ X° and XOZ[X,',KH Xi,K+2 Xi,K+n];

Vii = VioViVige o are called TFM weights or impulse response weights for the
input series X, ,wherei =1,2,....kandj=0,1,2,....K;. ;

B is defined as a backshift operator ;

TFM a Transfer-Noise Function Model, in these models the parameters b, r, and s
need to be estimated. Chapter Il gives an in depth description of the model,

b is a time delay parameter, an order to be determined in a TFM;

r is an order of the polynomial &(B)=1-6,B-§ ,B*——§ B, to be

determined when identifying a TFM,

113



Transfer Function Models (TFM) (Cont.).

s is an order of the polynomial @,(B)=@,,-®, B-w, ,B*— -0, B, to be
determined when identifying a TFM;

p is an order of the autoregressive component ¢(B)of the ARMA model , where
¢(B) = 1-9,(B) - ¢,(B)’——¢,(B)";

q is an order of the moving average component 6(B)of the ARMA model, where
6(B)=1-6,(B)~-6,(B)’—-—6,(B)";

d is difference operator of the ARMA model;

ARIMA(p, d, q) - Autoregressive Integrated Moving Average model, with

autoregressive terms p, difference term d, and moving average terms g;

w, is a variable defined as V¢X, which is equivalent to (1-B)"X,;

X means the transpose of X ;
lnf, is the expectation or predicted value of the puerulus settlement;
C, is the catch for the fishing zones encompassing the three settlement sites.

A (f, g) is the determinant in a corner table at its f, g" element where
f=012,..M, f20and g = 1,2,....M, g > 1, where M is the maximum f and g
components;

v, are the true values of the impulse response weights;

v, ,; are the estimated values of the impulse response weights;

State Space Models.

Y, is an output factor

%, is an N x m matrix for the actual observations,

a;, 041, are m X I matrices,
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State Space Models (Cont.).

T, is an m X m matrix,

R; an m X g matrix,

N is a g X 1 matrix,

H; is an N X m matrix of known parameters,
K; is a fixed matrix of order m X g.

€,:s) 18 an N x1 vector,

4, is the local level,

B, is the local trend,

7, is the seasonal index,

s is the number of seasons,

€4.€24,6, are assumed to be additive and mutually uncorrelated white noise

disturbances.
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APPENDIX I

Data Sets Used

Sales Data
District | Number of Number of Occupied Monthly Sales ( y,)

Households ( x|, ) Households ( x,,)

(in 10,000s) (in 10,000s)
1 14 11 50
2 28 18 73
3 10 5 32
4 30 20 121
5 48 30 156
6 30 21 98
7 20 15 62
8 16 11 51
9 25 17 80
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Dataset used for Example 3.2 - Linnerud Data

ID # Weight Waist Pulse Chins Situps Jumps
1 191 36 50 5 162 60
2 189 37 52 2 110 60
3 193 38 58 12 101 101
4 162 35 62 12 105 37
5 189 35 46 13 155 58
6 182 36 56 4 101 4?2
7 211 38 56 8 101 38
8 167 34 60 6 125 40
9 176 31 74 15 200 40
10 154 34 56 17 251 250
11 169 31 50 17 120 38
12 166 33 52 13 210 115
13 154 34 64 14 215 105
14 247 46 50 1 50 50
15 193 36 46 6 70 31
16 202 37 62 12 210 120
17 176 37 54 4 60 25
18 157 32 52 11 230 80
19 156 33 54 15 225 73
20 138 33 68 2 110 43
Dataset used for Example 3.2 - Standardized Linnerud Data

Weight Waist Puise Chins Situps Jumps
ID # X1 X2 X3 Yi Y2 V3
1 0.50 0.19 -0.85 -0.84 0.26 -0.20
2 0.42 0.50 -0.57 -1.41 -0.57 -0.20
3 0.58 0.81 0.26 0.48 -0.71 0.60
4 -0.67 -0.12 0.82 0.48 -0.65 -0.65
5 0.42 -0.12 -1.40 0.67 0.15 -0.24
6 0.14 0.19 -0.01 -1.04 -0.71 -0.55
7 1.31 0.81 -0.01 -0.27 -0.71 -0.63
8 -0.47 -0.44 0.54 -0.65 -0.33 -0.59
9 -0.11 -1.37 2.48 1.05 0.87 -0.59
10 -1.00 -0.75 -0.01 1.43 1.69 3.50
11 -0.39 -0.44 -0.85 1.43 -0:41 -0.63
12 -0.51 -0.75 -0.57 0.67 1.03 0.87
13 -1.00 -0.44 1.10 0.86 1.11 0.68
14 2.77 3.31 -0.85 -1.60 1.53 -0.40
15 0.58 0.19 -1.40 -0.65 -1.21 -0.77
16 0.95 0.50 0.82 0.48 1.03 0.97
17 -0.11 0.50 -0.29 -1.03 -1.37 -0.88
18 -0.87 -1.06 -0.57 0.29 1.35 0.19
19 -0.92 -0.75 -0.29 1.05 1.27 0.05
20 -1.64 -0.75 1.65 -1.41 -0.57 -0.53
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Dataset used for Example in Chapter 1V

1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891

1892
1893
1894
1895
1896
1897
1898
1899
1900
1901

1902
1903
1904
1905
1906
1907
1908
1909
1910
1911

1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922

SpinL

1.7669
1.7766
1.7764
1.7942
1.8156
1.8083
1.8083
1.8067
1.8166
1.8041
1.8053
1.8242
1.8395
1.8464
1.8492
1.8668
1.8783
1.8914
1.9166
1.9363
1.9548
1.9453
1.9292
1.9209
1.9510
1.9776
1.9814
1.9819
1.9828
2.0076
2.0000
1.9936
1.9933
1.9797
1.9772
1.9924
2.0117
2.0204
2.0018
2.0038
2.0099
2.0174
2.0279
2.0359
2.0216
1.9896
1.9843
1.9764
1.9965
2.0652
2.0369
1.9723
1.9797

SpriceL

1.9176
1.9059
1.8798
1.8727
1.8984
1.9137
1.9176
1.9176
1.9420
1.9547
1.9379
1.9462
1.9504
1.9504
1.9723
2.0000
2.0097
2.0146
2.0146
2.0097
2.0097
2.0097
2.0048
2.0097
2.0296
2.0399
2.0399
2.0296
2.0146
2.0245
2.0000
2.0048
2.0048
2.0000
1.9952
1.9952
1.9905
1.9813
1.9905
1.9859
2.0518
2.0474
2.0341
2.0255
2.0341
1.9445
1.9939
2.2082
2.2700
2.2430
2.2567
2.2988
2.3723

SpiritL

1.9565
1.9794
2.0120
2.0449
2.0561
2.0678
2.0561
2.0428
2.0290
1.9980
1.9884
1.9835
1.9773
1.9748
1.9629
1.9396
1.9309
1.9271
1.9239
1.9414
1.9685
1.9727
1.9736
1.9499
1.9432
1.9569
1.9647
1.9710
1.9719
1.9956
2.0000
1.9904
1.9752
1.9494
1.9332
1.9136
1.9091
1.9136
1.8886
1.7945
1.7644
1.7817
1.7784
1.7945
1.7888
1.8751
1.7853
1.6075
1.5185
1.6513
1.6247
1.5391
1.4922
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Dataset used for Example 4.2 in Chapter IV
SpinL Spricel.  SpiritL.

1923 2.0136 24105 1.4606
1924 2.0165 2.4081 1.4551
1925 2.0213  2.4081 1.4425
1926 2.0206 24367 1.4023
1927 2.0563 2.4284  1.3991
1928 2.0579 2.4310 1.3798
1929 2.0649 24363 1.3782
1930 2.0582 2.4552 1.3366
1931 2.0517 2.4838 1.3026
1932 2.0491 2.4958  1.2592
1933 2.0766  2.5048  1.2635
1934 2.0890 25017 1.2549
1935 2.1059 2.4958 1.2527
1936 2.1205 2.4838 Missing
1937 2.1205 2.4636 Missing
1938 2.1182 2.4580 Missing

119



Puerulus Settlement Data at Dongara from 1968 — 1995.

Rainfall Sealevel In(Puerulus Settlement)
Xy X2| lny 1t

1968 53 71.4 4.55388
1969 26 65.2 2.63906
1970 47 72.7 3.55535
1971 78 74.6 4.20469
1972 60 67.9 3.49651
1973 47 73.2 4.41884
1974 80 79.3 5.07517
1975 64 80.7 4.58497
1976 84 73.7 4.74493
1977 70 68.2 4.45435
1978 59 74.5 5.20401
1979 56 69.2 4.35671
1980 52 69.1 4.59512
1981 67 72.3 441884
1982 38 67.4 3.68888
1983 55 73.1 4.65396
1984 106 76.6 5.25227
1985 49 73.7 4.85203
1986 41 694 4.09434
1987 54 65.5 4.11087
1988 63 77.1 4.44265
1989 86 78.1 5.32301
1990 54 70.0 4.66344
1991 86 69.4 4.53260
1992 68 69.9 4.04305
1993 66 64.7 4.14313
1994 29 68.3 4.63473
1995 110 74.9 5.38907
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Puerulus Settlement Data at Alkimos from 1982 — 1995,

Rainfall Sealevel In(Puerulus Settlement)
X Xy lny 2.t

1982 38 674 0.69315
1983 55 73.1 2.30259
1984 106 76.6 3.73767
1985 49 73.7 2.56495
1986 41 69.4 1.09861
1987 54 65.5 2.48491
1988 63 77.1 3.87120
1989 86 78.1 3.21888
1990 54 70.0 2.70805
1991 86 69.4 2.56495
1992 68 69.9 2.30259
1993 66 64.7 1.94591
1994 29 68.3 3.80666
1995 110 74.9 4.43082
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Puerulus Settlement Data at the Abrolhos Islands from 1971 — 1995,

Rainfall In(Spawning In(Puerulus Settlement)
Stock)
X5 InX, lny;,

1971 78 3.68888 3.87120
1972 30 3.61092 4.20469
1973 32 3.49651 4.33073
1974 45 3.78419 4.87520
1975 51 3.61092 4.66344
1976 35 3.58352 4.66344
1977 44 3.58352 4.72739
1978 16 3.55535 5.20949
1979 33 3.49651 Missing
1980 38 3.29584 Missing
1981 36 3.21888 Missing
1982 27 3.29584 Missing
1983 53 3.29584 Missing
1984 50 3.25810 3.95124
1985 13 3.29584 4.70953
1986 34 3.13549 3.71357
1987 55 3.40120 4.00733
1988 41 3.33220 4.12713
1989 38 3.17805 3.97029
1990 28 3.04452 4.07754
1991 73 2.94444 3.71357
1992 41 2.94444 3.76120
1993 33 2.94444 3.29584
1994 19 3.2580 4.67283
1995 42 3.4965 4.89035
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APPENDIX III
Estimated Regression Models with ARIMA disturbances
(Using Splus version 4.0)

Dongara Results.

> dongara5 fit
$model:
$model$order:
[11201

$modelSar:
[1] 0.7845047 -0.1288463

$model$ndiff:
[110

$model$ma:
[1] 0.9947838

$var.coef:

ar(1) ar(2) ma(l)
ar(1) 0.0431212562 -0.029359747 0.0004171374
ar(2) -0.0293597474 0.043100657 0.0004051890
ma(1) 0.0004171374 0.000405189 0.0004769909

$method:
[1] "Maximum Likelihood"

$series:
[1] "Inylt"

$aic:
[1] 10.89663

$loglik:
[1] 0.8966252
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Dongara Results (Cont.).

$sigma2:
[1] 0.05329282

$n.used:
[1] 23

$n.cond:
[1]2

$converged:
[11F

$conv.type:
[1] "iteration limit"

$reg.coef:
[1] 0.007537681 0.056774283

$reg.series:
[1] "x1.dat"

Residuals.

> dongara$5.diag <- arima.diag(dongara5.fit, acf.resid=T,
+ resid=T, plot=T)

> dongara5.diag

Sacf.list:

$acf list$acf:

b 1
[1]

[1,] 1.000000000

[2,] -0.076507039

[3.]1 -0.154877648

[4,] -0.227105796

[5.] 0.049641673

[6,] 0.051200144

[7.] 0.036928143

[8,] 0.142622203

[9,] -0.364687562
[10,] -0.010408816
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Dongara Results (Cont.).

[11,] 0.073397532
[12,] 0.103727214
[13,]-0.033816744
[14,] -0.009074821
[15,] -0.181079775

$acf list$lag:
|

[.1]
(1] O
2] 1
3.1 2
4] 3
5] 4
6] 5
[7.] 6
81 7
[9.] 8
[10,] 9
[11,] 10
[12,] 11
[13,] 12
[14,] 13
[15,] 14
$acf.list$n.used:
[1] 23
$acf listStype:

[1] "correlation™

Sacf list$series:
[1] "resid"

$acf.list$snames:
character(0)
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Dongara Results (Cont.).

$gof:
$gof$statistic:
[1] 1.929280 1.989574 2.020939 2.488784 5.547715 5.550207
5.674113 5.921577
[9] 5.947879 5.949773

$gof$df:
1112345678910

$gof$p.value:

[1] 0.1648372 0.3698023 0.5680722 0.6466454 0.3527421
0.4754094 0.5782740

[8] 0.6560161 0.7451232 0.8194653

$gof$lag:
[1134567 89101112
$std.resid:
1 2 3 4 5 6 7
8

NA NA 0.2270815 -0.06039654 -1.715631 0.4774403 0.1405477 -
1.760235

9 10 11 12 13
14 15
-0.3075773 -0.06712753 1.906652 0.05735652 1.481581 -
0.3476892 -1.318868

16 17 18 19 20 21
22
0.4393456 0.3257606 1.266694 -0.3907165 0.2435639 -1.537417
0.9114188
23 24 25

1.041146 -0.05082021 -1.570229

$resid:

1 2 3 4 5 6
7 8

NA NA 0.07394324 -0.01703183 -0.4561407 0.1229084
0.03545064 -0.4377797

9 10 11 12 13
14
-0.07571184 -0.01639428 0.4627725 0.01385156 0.3563207 -
0.08332892
15 16 17 18 19
20
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Dongara Results (Cont.).

-0.3151512 0.1047165 0.07747157 0.3006544 -0.09257781
0.05762205

21 22 23 24 25

-0.3632179 0.2150562 0.2453886 -0.01196554 -0.3693601

$series:
[1] "Iny1t"
ARIMA Model Diagnostics: Inylt
Plox of Sangaraizca Resiquals
: | . l T l 1 1 | T 1 l | I |
- I‘ACF Blox of Reslauals "
[ = - - -
L3S I [T T
1 T
3 I
: : F-wlue'ot‘ammss U‘H(EHUSUC * :
2
ia
c------- - - - - - - - - -
Alkimos Results.

> alkimos6.fit <- arima.mle(lny2t, model = list(order=c(2,0,1)), xreg=x2.dat,
+ var.coef=T,reg.coef=T)

> alkimos6.fit

$model:

$model$order:

[1]1201

$model$ar:
[1] 0.01402415 -0.62764168
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Alkimos Results (Cont.).
$model$ndiff:

[1]0

$model$ma:
[1] -0.640668

$var.coef:
ar(1) ar(2) ma(l)

ar(1) 0.08952947 -0.01490798 0.04611733
ar(2) -0.01490798 0.07659237 -0.02977887
ma(l) 0.04611733 -0.02977887 0.09585048

$method:
[1] "Maximum Likelihood"

$series:
[1] "Iny2t"

$aic:
[1] 17.67991

$loglik:
[1] 7.679914

$sigma2:
[110.1296068

$n.used:
[1]9

$n.cond:
[1]2

$converged:
[1T

$conv.type:

[1] "relative function convergence'

$reg.coef:
[1]-0.003519045 0.039542467
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Alkimos Results (Cont.).

$reg.series:
[1] "x2.dat"

Residuals :
> alkimos6.diag <- arima.diag(alkimos6.fit, acf.resid=T, resid=T, plot=T)

Warning messages:

1: lag.max > series length : reduced to series length - 1 in: acf(resid,
lag.max = lag.max, plot = F)

2: NAs generated in: cumsum(acf.list$acf[2:(n.parms + gof.lag + 1)]*2)

> alkimos6.diag
$acf list:
$acf.list$acf:

1
[.1]
[1,] 1.00000000
[2,] 0.17225194
[3,] 0.06369496
[4,]-0.23519218
[5,] -0.33081383
[6,] -0.29935488
[7,] 0.04552769
[8,] 0.07047667
[9,] 0.01340965

$acf list$lag:

.

(1]
[1.]
(2]
(3.]
[4.]
[5.]
(6.]
(7.]
(8.]
[9.]

00~ WNhAh WLWN—O
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Alkimos Results (Cont.).

$acf.list$n.used:
[119

$acf list$type:
[1] "correlation”

$acf list$series:
[1] "resid"

$acf.list$snames:
character(0)

$gof:

$gof$statistic:

[1] 1.786328 2.592849 2.611504 2.656206 2.657825 NA NA NA
[9] NA NA

$gof$df:
[1112345678910

$gof$p.value:
[1710.1813741 0.2735080 0.4554764 0.6168994 0.7525610 NA NA

[8] NA NA NA

$fgofSlag:
[11 3456 7 8 NANANANA
$std.resid:
1 2 3 4 5 6 7
8 9

NA NA -0.1556 -1.0748 -1.5922 0.9760 -0.3392 1.5252 1.1885
10 11
0.3318 -0.6075

Sresid:
1 2 3 4 5 6 7

8

NA NA -0.06652 -0.4094 -0.5856 0.3544 -0.1225 0.5499
9 10 11

0.4281 0.1195 -0.2187
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Alkimos Results (Cont.).

$series:
[1] "Iny2t"
ARIMA Model Diagnostics: Iny2t
Rloe of Sungdamlzéd Reslauals
; L
’ ! . AEF Ploe O:QHMMI;‘ ! * * "
¥
|
3 — 1 1
¢ 3 Payalue maooar:e‘ss of ArSwdsde ¢ !
i:
e

Abrolhos Islands Results.

> abrolhos6.fit <- arima.mle(Iny3t, model = list(order=c(2,0,1)), xreg=x3.dat,
+ var.coef=T, reg.coef=T)

> abrolhos6.fit

$model:

$modelSorder:
[11201

$model$ar:
[1] 0.5428477 -0.1477915

$model$ndiff:
[110

$model$ma:
[110.2661509
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Abrolhos Islands Results (Cont.)

$var.coef:
ar(1) ar(2) ma(l)

ar(1) 8.302064 -1.9795020 8.342422
ar(2) -1.979502 0.5262213 -1.973636
ma(l) 8.342422 -1.9736359 8.449343

$method:
[1] "Maximum Likelihood"

$series:
[1] "Iny3t"

$aic:
[1] 1.452933

$loglik:
[1] -8.547067

$sigma2:
[1] 0.03277408

$n.used:
[1715

$n.cond:
[112

$converged:
[T

$conv.type:

[1] "relative function convergence"
$reg.coef:

[1]-0.012227 1.437816

$reg.series:
[1] "x3.dat"
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Abrolhos Islands Results (Cont.).

Residuals.

> abrolhos6.diag <- arima.diag(abrolhos6.fit, acf.resid=T, resid=T, plot=T)
Warning: couldn't compute acf.list or gof due to NA's>

> abrolhos6.diag -

$std.resid:

1 2 3 4 5 6 7

8 9 10

NA NA -0.2103 0.2685 0.3943 -0.5304 0.7434 1.4288 NA NA
11 12 13 14 15 16 17

18 19

NA NA NA -0.6491 0.8856 -2.3463 -0.5447 -0.7217 -0.6193

20 21 22

0.3402 1.9115 -0.4140

$resid:

1 2 3 4 5 6 7 8 9
NA NA -0.0394 0.0487 0.0714 -0.0960 0.1346 0.2587 NA
10 11 12 13 14 15 16 17

18

NA NA NA NA -0.1220 0.1609 -0.4249 -0.0986 -0.1306
19 20 21 22

-0.1121 0.0616 0.3460 -0.0749
$series:
[1] "Iny3t"

ARIMA Model Diagnostics: Iny3t

Plot of Ganqaralzed Reclauais
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APPENDIX IV
Estimated Regression Models
(Using Minitab version 11.0)

Minitab Regression Results for Dongara

The regression equation is

Inylt = - 1.06 + 0.0139 x1t + 0.0638 x2t
Predictor Coef StDev T P
Constant -1.058 1.605 -0.66 0.517
xX1lt 0.013883 0.005706 2.43 0.024
x2t 0.06381 0.02446 2.61 0.016
S = 0.4210 R-Sg = 55.4% R-Sg(adj) = 51.3%
Analysis of Variance
Source DF SS MS F P
Regression 2 4.8391 2.4196 13.65 0.000
Error 22 3.8984 0.1772
Total 24 8.7376
Source DF Seq SS
X1t 1 3.6331
X2t 1 1.2060
Unusual Observations
Obs xlt Inylt Fit StDev Fit Residual
St Resid

2 26 2.6391 3.4630 0.2008 -0.8239
-2.23R

R denotes an observation with a large standardized residual

134



Minitab Regression Results for

Alkimos

The regression equati

Iny2t = - 6.59 + 0.02
Predictor Coef
Constant -6.590
x1lt 0.02079
x2t 0.10817
S = 0.6273 R-Sg

Analysis of Variance

Source DF
Regression 2
Error 8
Total 10
Source DF
x1lt 1
x2t 1

on 1is

08 x1t + 0.108 x2t
StDev T
3.758 -1.75 0.118
0.01126 1.85 0.102
0.05708 1.90 0.095
= 66.1% R-Sg(adj) = 57.6%

SS MS F
6.1395 3.0698 7.80
3.1476 0.3934
9.2871
Seq SS

4.7265
1.4131
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Minitab Regression Results for Abrolhos Islands

The regression equation is
Iny3t = 0.918 - 0.0136 x3t + 1.16 log(x4t)

17 cases used 5 cases contain missing values

Predictor Coef
Constant 0.9183
x3t -0.013567
log(x4t) 1.1579
S = 0.2687 R-Sqg

Analysis of Variance

Source DF
Regression 2
Error 14
Total 16
Source DF
log(x3t) 1
x4t 1

StDev
0.8774
0.003934
0.2551

= 69.6%

SS
2.3129
1.0109
3.3239

Seg SS
1.4543
0.8586
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T
1.05
-3.45
4.54

R-Sg(adj)

MS
1.1565
0.0722

P
0.313
0.004
0.000

65.2%

F
16.02

P
0.000



APPENDIX V
Estimated Structural Models
(Using STAMP)

DONGARA
Time Domain Estimation

Dependent variable is LNY1T

Sample period 1968 to 1992 25 Observations
Estimate Parameter Standard Error t-ratio
.0207 &y (Level) .0198 1.0432
.0000 &4y (Trend) 1.0000 .0000
.1135 ay (Irregular) .0432 2.6278

Dependent variable is LNY1T

Sample period 1968 to 1992 25 Observations
Estimate State RMSE t-ratio

-1.3934 Level 1.3904 -1.0022

.0160 Trend .0323 .4939

.0104 X1T .0051376 2.0330

.0722 X2T .0216 3.3385

Observation Actual Fitted Error Residual RMSE

1968 4.5539 .0000 4.5539 Missing Missing
1969 2.6391 3.4756 -.8366 Missing Missing
1970 3.5554 4.1600 -.6047 Missing Missing
1971 4.2047 4.7929 -.5882 Missing Missing
1972 3.4965 2.5101 .9864 1.2288 .8027
1973 4.4188 2.4523 1.9665 2.2792 .8628
1974 5.0752 5.2089 -.1337 -.2313 .5779
1975 4.5850 5.1717 -.5868 -1.0519 .5578
1976 4.7449 4.1799 .5650 .9161 .6167
1977 4.4544 3.8193 .6351 1.1199 .5671
1978 5.2040 4.4610 .7430 1.4870 .4997
1979 4.3567 4.5052 -.1485 -.3107 .4779
1980 4.5951 4.4361 .1590 .3457 .4601
1981 4.4188 5.0081 -.5892 ~-1.3328 L4421
1982 3.6889 4.1073 -.4184 -.8708 .4805
1983 4.6540 4.5992 .0548 .1229 .4454
1984 5.2523 5.6430 -.3907 -.7091 .5510
1985 4.8520 4.5803 L2717 .5785 .4697
1986 4.0943 4.3245 -.2302 ~-.5095 .4518
1987 4.1109 4.0645 .0464 .1003 .4626
1988 4.4427 5.1608 -.7182 -1.5509 .4631
1989 5.3230 5.1743 .1487 .3309 .4495
1990 4.6634 4.3303 .3332 .7591 .4389
1991 4.5326 4.8265 -.2939 -.6336 .4638
1992 4.0431 4.5625 -.5194 -1.2124 .4284
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DONGARA (CONT.)

statistic

1 *kkk k%

2 * k *k

3 * %

4 * %k

5 * %k %

6 * % k k

7 * % k k k

8 * % % %

95% C.I. ++4+++++++0++++++4+++
Log-likelihood kernel 3.5399

Prediction error variance .1733
Prior and missing observations 4

Obs.

Residual skewness -.0204
Residual kurtosis 2.0280

Normality tests

Skewness chi”2(1l)= .0015982
Kurtosis chi”®2(1l)= .9054
Normality chi~2(2)= .9070

Sum of squares of standardized residuals
Sum of squares about the mean
Mean of standardized residuals

Heteroscedasticity test F( 7, 7) =

Steady State 25

21.0054

2

R2 = .5834
RD2= .7100

Actual Trend Cycle Seasonal
1968 4.5539 -1.7768 .0000 .0000
1969 2.6391 -1.8740 .0000 .0000
1970 3.5554 -1.8862 .0000 .0000
1971 4.2047 -1.8441 .0000 .0000
1972 3.4965 -1.7742 .0000 .0000
1973 4.4188 -1.6571 .0000 .0000
1974 5.0752 -1.5946 .0000 .0000
1975 4.5850 -1.5518 .0000 .0000
1976 4.7449 -1.4437 .0000 .0000
1977 4.4544 -1.3337 .0000 .0000
1978 5.2040 -1.2478 .0000 .0000
1979 4.3567 -1.2449 .0000 .0000
1980 4.5951 -1.2457 .0000 .0000
1981 4.4188 -1.3026 - .0000 .0000
1982 3.6889 -1.3233 .0000 .0000
1983 4.6540 -1.2982 .0000 .0000
1984 5.2523 -1.2912 .0000 .0000
1985 4.8520 -1.2669 .0000 .0000
1986 4.0943 -1.2946 .0000 .0000
1987 4.1109 -1.3132 .0000 .0000
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0.5312
.1436

.9072

Autocorrelation:Q-

.295211
.136937
.094119
.140858
.126417
.171942
.243895

2/sqgrt

158576

{ 23)=

.278
.791
.046
.646
.157
.157
.295
.258
.417029

O NUlkWwWNN

Exogenous Irregular

ooy U1 UTOY U1 > U1

.7092
.9795
.7404
.2013
.5295
.7765
.5616
.4956
.1990
.6557
.9957
.5816
.5326
.9204
.2637
.8528
.6382
.8335
.4394
.2936

.6215
-.4664
-.2988
-.1525
-.2588

.2995

.1082
-.3588
-.0104

.1324

.4561

.0200

.3082
-.1989
-.2515

.0994
-.0947

.2855
-.0504

.1305



DONGARA (CONT.)

1988
1989
1990
1991
1992

B> b U i

ALKIMOS

. 4427
.3230
.6634
.5326
.0431

-1.
-1.
-1.
-1.
-1.

Time Domain Estimation

Sample period 1982

Estimate

.0
.0
.3

000
000
894

3555
3200
3037
3509
3934

.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000

v U oo

Dependent variable is LNY2T

to 1

992

Parameter

11 Observations

.2252
.5376
.6185
.9094
.7575

Standard Error

ay (Level)
4y (Trend)
ay (Irregular)

1
1

.0000
.0000
.1836

Dependent variable is LNY2T

Sample period 1982 to 1992

Estimate
-7.0909
.0673
.0158
L1242

Observation

1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992

AcC

State
Level
Trend

X1T1
X2T1

tual

.6931

NN WWN R N WN

.3026
L7377
.5650
.0986
.4849
.8712
.2189
.7081
.5650
.3026

Residual skewness
Residual kurtosis

Normality

Skewness
Kurtosis
Normality

Sum of squares of standardized residuals
Sum of squares about the mean
Mean of standardized residuals

tests

chi”2(1)=
chi®2(1)=
chi~2(2)=

Fitted

.0000
.8125
.8333
.8577
.5644
.0593
.4709
.7018
.6798
.5159
.8534

= U d

BN W N bW

.4635

2.

7240

.3223
.0286
.3508

11 Observations

RMSE
3.7693
.0648
.0122
.0589

Error

.6931
1.4901
-4.0956
-3.2928
-.4658
2.4256

.4003
-1.4830

. 0283
-.9510
-.5508
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.4271
.1054
.3486
. 0259
.3211

t-ratio
.0000
.0000

2.1213

t-ratio
-1.8812
1.0387
1.2978
2.1111
Residual RMSE
Missing Missing
Missing Missing
Missing Missing
Missing Missing
~-.2324 2.0039
1.5675 1.5474
.3525 1.1357
-1.6805 .8825
.0333 .8475
-1.0118 .9399
-.7201 .7650
7.0045
5.7101
-.3792



ALKIMOS (Cont.)

Heteroscedasticity test F( 3, 3) = _ 1.0099
Lag:i:::====:==========O===========:::::::::Autocorrelat ion M Q—~
statistic
1 *ok ok ok ok ok ok | -.339100 1.423
2 *******| -.319873 2.870
3 | # 4k ko k ok .395160 5.447
4 *okok ok | -.230910 6.502
5 * | -.047512 6.558
6 [ ** .056258 6.663
95% C.I.+++++++++++4+04+++++++++++++ 2/sqgrt( 9)= .666667
Log-likelihood kernel -4.1399
Prediction error variance .3894
Prior and missing observations 4
Steady State 11
R2 = .7063
RD2= .7824
Obs. Actual Trend Cycle Seasonal Exogenous Irregular
1982 .6931 -7.7637 .0000 .0000 8.9750 -.5182
1983 2.3026 -7.6964 .0000 .0000 9.9521 .0469
1984 3.7377 -7.6291 .0000 .0000 11.1934 .1734
1985 2.5650 -7.5618 .0000 .0000 9.9317 .1951
1986 1.0986 -7.4946 .0000 .0000 9.2710 -.6778
1987 2.4849 -7.4273 .0000 .0000 8.9920 .9202
1988 3.8712 -7.3600 .0000 .0000 10.5755 .6557
1989 3.2189 -7.2928 .0000 .0000 11.0635 -.5519
1990 2.7081 -7.2255 .0000 .0000 9.5511 .3825
1991 2.5650 -7.1582 .0000 .0000 9.9826 -.2594
1992 2.3026 -7.0909 .0000 .0000 9.7600 -.3665
ABROLHOS ISLLANDS
Time Domain Estimation
Dependent variable is LNY3T
Sample period 1971 to 1992 22 Observations
Estimate Parameter Standard Error t-ratio
.0632 ay(Level) .0200 3.1623
.0000 &y (Trend) 1.0000 .0000
.0000 4y (Irregular) 1.0000 .0000
Dependent variable is LNY3T
Sample period 1971 to 1992 22 Observations
Estimate State RMSE t-ratio
-1.5177 Level 1.4092 -1.0770
.0485 Trend .0575 .8429
-.0111 X3T .0026042 -4.2719
1.9478 LX4T .4798 4.0599
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ABROLHOS ISLANDS (Cont.)

Observation Actual Fitted Error Residual RMSE
1971 3.7812 .0000 3.7812 Missing Missing
1972 4.2047 1.4607 2.7440 Missing Missing
1973 4.3307 4.6898 -.3591 Missing Missing
1974 4.8752 4.7997 .0755 Missing Missing
1975 4.6634 4.9115 -.2480 -.6137 .4041
1976 4.6634 4.9401 -.2766 -.9692 .2854
1977 4.7274 4,.7583 -.0309 -.1064 .2903
1978 5.2095 5.0175 .1919 - .6527 .2941
1979 Missing 5.1442 Missing Missing Missing
1980 Missing 4.9477 Missing Missing Missing
1981 Missing 5.0047 Missing Missing Missing
1982 Missing 5.3634 Missing Missing Missing
1983 Missing 5.3206 Missing Missing Missing
1984 3.9512 5.4482 -1.4969 -1.5530 .9639
1985 4.7095 4.4990 .2106 .6829 .3083
1986 3.7136 4.1754 -.4618 -1.5750 .2932
1987 4.0073 4.0774 -.0701 -.2094 .3347
1988 4.1271 4.0925 .0346 .1315 .2631
1989 3.9703 3.8521 .1182 .441e6 .2676
1990 4.0775 3.8611 .2164 .8198 .2640
1991 3.7136 3.2231 .4904 1.6062 .3053
1992 3.7612 4.1826 -.4214 -1.5424 L2732
Diagnostic Results are not reliable
Log-likelihood kernel 11.0209
Prediction error variance .0632
Prior and missing observations 9
Steady State 22
R2 = -.26E+09
RD2= -.35E+09
Obs. Actual Trend Cycle Seasonal Exogenous Irregular
1971 3.7812 -2.5361 .0000 .0000 6.3173 .0000000
1972 4.2047 -2.4948 .0000 .0000 6.6995 .0000000
1973 4.3307 -2.1236 .0000 .0000 6.4544 .0000
1974 4.8752 -1.9949 .0000 .0000 6.8701 .0000
1975 4.6634 -1.8024 .0000 .0000 6.4658 .0000
1976 4.6634 -1.9270 .0000 .0000 6.5905 .0000
1977 4.7274 -1.7630 .0000 .0000 6.4903 .0000
1978 5.2095 -1.5375 .0000 .0000 6.7470 .0000
1979 Missing .0000000 .0000 .0000 Missing Missing
1980 Missing .0000000 .0000 .0000 Missing Missing
1981 Missing .0473 .0000 .0000 Missing Missing
1982 Missing .0035731 .0000 .0000 Missing Missing
1983 Missing -.0002458 .0000 .0000 Missing Missing
1984 3.9512 -1.8385 .0000 .0000 5.7898 .0000000
1985 4.7095 -1.5654 .0000 .0000 6.2749 .0000
1986 3.7136 -2.0154 .0000 .0000 5.7289 .0000
1987 4.0073 -2.0055 .0000 .0000 6.0129 .0000
1988 4.1271 -1.9071 .0000 .0000 6.0342 .0000
1989 3.9703 -1.7970 .0000 .0000 5.7673 .0000
1990 4.0775 -1.5410 .0000 .0000 5.6185 .0000
1991 3.7136 -1.2094 .0000 .0000 4.9230 .0000
1992 3.7612 -1.5177 .0000 .0000 5.2789 .0000000
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ABROLHOS ISLANDS (Cont.)

Log-likelihood kernel 11.0209
Prediction error variance .0632

Prior and missing observations 9
Steady State 22

R2 = -.9258
RD2= -1.6119
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