
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses: Doctorates and Masters Theses

1-1-1994

Software metrics for monitoring software engineering projects Software metrics for monitoring software engineering projects

Edwin C. Lim
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Lim, E. C. (1994). Software metrics for monitoring software engineering projects. Edith Cowan University.
Retrieved from https://ro.ecu.edu.au/theses/1100

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses/1100

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses?utm_source=ro.ecu.edu.au%2Ftheses%2F1100&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ro.ecu.edu.au%2Ftheses%2F1100&utm_medium=PDF&utm_campaign=PDFCoverPages

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons
who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement. Where the reproduction of such material is

done without attribution of authorship, with false attribution of

authorship or the authorship is treated in a derogatory manner,

this may be a breach of the author’s moral rights contained in Part

IX of the Copyright Act 1968 (Cth).

 Courts have the power to impose a wide range of civil and criminal

sanctions for infringement of copyright, infringement of moral

rights and other offences under the Copyright Act 1968 (Cth).

Higher penalties may apply, and higher damages may be awarded,

for offences and infringements involving the conversion of material

into digital or electronic form.

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

·,.·,
'

SOFTWARE METRICS FOR MONITORING SOFTWARE
ENGINEERING PROJECTS

BY

Edwin LIM Chamg Yih

A Thesis Submitted in Partial Fulfilment of the
Requirements for the Award of

Master of Applied Science (Computer Studies)

at the School of Mathematics, Information Technology, and Engineering,
Edith Cowan University

Date of Submission: 25 August 1994

TABLE OF CONTENTS

ABSTRACT ... i
DECLARATIONii
ACKNOWLEDGEMENTS .. iii
LIST OF DIAGRAMS .. i\'
LIST OF TABLES ... ,.
LIST OF GRAPHS ... vi

CHAl'TER 1 : INTRODUCT...!Q!j

1.1 INTRODUCTION ... 1
1.1.1 Significance Of The Study .. 2
1.1.2 Major Questions To Be Addressed ... 3

1.2 METHOD OF INVESTIGATION .. 5
1.2.1 Research Methods And Techniques ... 5

1.3 ETHICAL ISSUES ... 7

CHAPTER 2 : LITERATURE REV! EW

2.1 SOFTWAREENGINEERING .. 8
2.1.1 What is software engineering? .. 9
2.1.2 Software Development Life Cycle ... I 0

2.1.2.1 The Waterfu!J Model .. I I
2.1.2.2 Prototyping Model ... 13
2.1.2.3 The Evolutionary Model .. 19
2.1.2. 4 The Spiral Model ... 23

2.1.3 Project Management Process .. 29
2.2 SOFTWARE METR1CS .. 30

2.2. I Why Measure? .. 32
2.2.2 What Are Software Metrics? .. 33
2.2.3 Types Of Software Metrics .. 3-l

2.2.3.1 Cost And Effort Estimation ... 35
Boehm's COCOMO ... 35
Putnam's SLIM Estimating Model ... 42
Albrecht's Function Point Analysis44
Lines Of Code Method .. 45

2.2.3.2 Productivity Measures And Models46
2.2.3.3 Quality Models And Measures49
2.2.3.4 Reliability Models ... 51
2.2.3.5 Performance Evaluation And Modds .. 52
2.2.3.6 Structural And Complexity Metrics .. 53

McCabe's Complexity Model .. 54
Halstead's Soft\vare Scie11ce .. ." 55

'!2.4 D3ta Collection ... 58
2.2 5 Future Directions Of Software Metrics .. 60

2.3 CAPA13ILITY MATURITY MODEL ... 61

2.3.1 Immature Versus Mature Software Organisat~ons 61
2.3.1.1 Software Process .. 63
2.3.1.2 Software Process Capability .. 63
2.3.1.3 Software Process Performance .. 63
2.3. 1 .4 Software Process Maturity ... 64

2.3.2 Overview of the Capability Maturity Model .. 64
2.3.3 Future Directions Of The CMM ... 68

2.4 FUNCTfON POINT ANALYSIS .. 68
2.4.1 Advantages And Disadvantages Of Function Point Analysis 70
2.4.2 Counting Function Points ... 71
2.4.3 Function Point Analysis: An Evaluation .. ." 73
2.4.4 Mark U Function Point .. 76

2.5 UNDERGRADUATE SOFTWARE ENGINEERING PROGRAMS 77
2.5. I Objt!ctives Of Software Engineering Courses .. 78

CHAPTER 3 ; 1993 SOFTWARE ENGINEERING PROJECT

3.1 OVERVIEW OF THE ORCHARD PROJECT .. 81
3.2 GOALS OF THE ORCHARD PROJECT .. 81
3.3 MAIN ASP!oCTSOF THE MANUAL SYSTEM ... 82

3.3.1 Fruit Production 82
3.3.2 Marketing .. 82
3.3.3 Taxation .. 83
3.3.4 StaffManagement. 83
3.3.5 Other Fann .. 83
3.3.6 Research .. 84

3.4 REQUIREMENTS OF THE NEW SYSTEM .. 84

CHAPTER 4: INFORMATION GATHERING

4.1 TOTAL HOURS SPENT ON THE PROJECT ... 85
4.2 DATA COLLECTED FROM THE RESEARCH QUESTIONNAIRE 86

4.2.1 Effort On Each Development Phase ... 87
4.2.2 Personal Attributes Of Group Members ... 89
4.2.3 Staff Adviser ... 89

4.2.3.1 Summary ... 95
4.2.4 Development Software Used .. 97
4.2.5 Other Factors .. 98

4.4 SCORE AWARDED TO PROJECTS ... 103
4.5 PEER ASSESSMENT SCORES ... 106
4.6 GROUPS' COURSE AVERAGES ... 107

CHAPTER 5 : MEASURING SOFTWARE INSTALLABILITY

5.1 SOFTWARE INSTALLAB!L!TY ... 1(>9
5.1.1 Software Installation Process .. I 09

5.2 SUMMAR¥ .. 112

CHAPTER 6: MEASURil'IG SOFTWARE SIZE

6. l MEASURING SOFTWARE SIZE USING ALBRECHT'S FUNCTION POINT
ANALYSIS .. 113
6.2 APPROACH USED TO MEASURE SOFTWARE SIZE .. 114

6.2.1 Rules For Counting Function Points ... 115
6.2.2 Defining The Complexity Adjustment Values .. 117
6.2.3 Evaluation Report ... 120
6.2.4 Size Of The Software ... 120
6.2.5 Scores Awarded For Solution Functionality ... 127
6.2.6 Summary .. _. .. 128

CHAPTER 7 : MEASURING PRODUCfiVITI'

7.1 MEASURING THE PRODUCTIVITY OF PROJECT GROUPS 131
7.2 PROJECT DELIVERY RATE .. 131
7.3 PRODUCTIVITY .. 134
7.4 STUDENT PROJECTS VS PROFESSIONAL PROJECTS 137
7.5 SUMMARY .. 145

CHAPTER 8 : MEASURING SOFTWARE QUA Lin'
8.1 ivlEASURING SOFTWARE QUALITY .. 147
8.2 QUALITY OF THE SOFTWARE .. 148

CHAPTER 9: MEASURING SOFTWARE USABJUT.X

9. l MEASURING SOFTWARE USABILITY ... 149
9. I .I Usability Exercise ... 149
9. 1.2 Usability Test Plan .. 150
9. l .3 Deriving Usability OfT he Application .. 150

CHAPTER! 0 : FINAL ANALYSIS AND CONCLUSION

10.1 FINAL ANALYSIS..................... 154
l 0. I. l Description Oflnfonnation .. 155

I 0.2 STATISTICAL METHOD USED ... I 58
10.3 CONCLUSIONS DERIVED FROM THE ANALYSIS ... 16 I

10.3. I Approach To Developing High-Quality- Low Defects Software I 62
10.3.2 Coding Reflects On Software Size And Functionality 164
10.3.3 Results Of Unrealistic Project Scope ... 165
10.3.4 Drawbacks Of Mixed Male/Female Project Groups .. 166
10.3.5 Quality Of Students' Effort Reflects The Quality Of The Final ProC:uct.. 168
10.3.6 Students And Staff Adviser Relationship .. .- .. 169
10.3.7 How Teams Choose To Spend Their Time .. 169
10.3.8 Effective Team Effort And Good Project Management.. 172
10.3.9 Drawbacks Of Working Alone In A Group Project.. : 174
10.3.1 0 Importance Of Selecting The Right Development Tools 176
10.3.1 I Usefulness OfUsingA Methodology .. I 78
10.3. I 2 Negative Impact Of Older Student(s) In A Group Project Environment I 78
I 0.3. 13 Productivity Of Students Reflects On Coding .. I 80

10.3. 14 Judging Functionality And Quality Of Undergraduate Software Projects 180
I 0.4 DIFFICULTIES ENCOUNTERED DURING ANALYSIS 181
I 0.5 CONCLUSION , ... 183

1 0.5.1 RECOMMEDATIONS TO PROJECT CO-ORDINATOR 187

BIBLIOGRAPHY ... 188
APPENDIX A : EV ALVA TION REPORT .. 194

ABSTRACT

As part of the undergraduate course offered by Edith Cowan Un\vemity, the

Department of Computer Science has (as part of a year's study) a software engineering

group project. The structure of this project was divided into two units, Software

Engineering l and Software Engineering 2. ln Software Engineering 1, students were

given the group project where they had to complete and submit the Functional

Requirement and Detail Systr-m Design documentation. In Software Engineering- 2,

students commenced with the implementation of the software, testing and

documentation. The software was then submitted for assessment and presented to the

client.

To aid the students with the development of the software, the department had

adopted EXECOM's APT methodology as its standard guideline. Furthermore, the

students were divided into groups of 4 to 5, each group working on the same problem.

A staff adviser was assigned to each project group.

The purpose of this research exercise was to fulfil two objectives. The first

objective was to ascertain whether there is a need to improve the final year software

engineering project for future stude·ats by enhancing any aspect that may be regarded

as deficient. The second objective was to ascertain the factors that lnve the most

impact on the quality of the delivered software.

The quality of the delivered software "vas measured using a variety of software

metrics. Measurement of software has mostly been ignored until recently or used

without true understanding of its purpose. A subsidiary objective was to gain an

understanding of the worth of software measurement in the student environment

One of the conclusions derived from the study suggests that teams who spent

more time on software design and testing, tended to produce better quality software

with less defects. The study also showed that adherence to the APT methodology Jed

to the project being on schedule and general team satisfaction \\~th the project

management. One of the recommendations made to the project co~ordinator was that

staff advisers should have sufficient knowledge of the software engineering process.

i. I'

" ,.,. ii ,,
'

DECLARATION

I certify that this thesiS- does not incorporate without

acknowledgment any material previously submitted for

a degree or diploma in any institution of higher

education; and that to the best of my knowledge and

belief it does not contain any material previously

published or written by another person except where due

reference is made in the text

Signature

')ate ... ~.1.0.1

ii

,,

,._:-

ACKNOWLEDGEMENTS

Special thanks to my family for their support, patience and understanding -

without them I would not be here today. Special thanks also to Foong Choo for her

constant encouragement and support.

I would like to take this opportunity to thank my supervisors Dr Jim Millar for

providing me with this research project, Dr Ken Mullin and Mr Stuart Hope for their

supervision and guidance. Appreciation is due to the 1993 software engineering

students for providing me with the necessary data for my research. I would also like to

thank all the staff members from the Computer Science Department for their insights

especially Dr Thomas O'NeilL Appreciation is also due to Mr Geoff Barrett for

helping me to proof read my work.

__ :..-,.-- -~'::-,
·_:.-: ...

...
Ill

LIST OF DIAGRAMS

. ::
" "

Figure 2.1.2.2.1 Diagram- Prototypi.ng Approach ... 14
Figure 2.1.2.4.1 Diagram- Spiral model.. .. 24
Figure 2.2.2.1 Diagram- Relations Of Product Metric And Process Metric 34
Figure 2.2.3.1.1 Diagram- Putnam's SLIM Model .. 42
Figure 2.2.3.2.1 Diagram- Fenton's Productivity Model .. :--········ ... ····· 47
Figure 2.2.3.6.1 Diagram- Derivation of V(G) for 8n example program 55

,,

iv

LIST OF TABLES

Figure 2.4.2.1 Table- Computing Function Point Mehics ... 72
Figure 2.4.2.2 Table- Computing Function Points- Complexity Adjustments Values 73
Figure 4.1.1 Table- Total Number Of Hours Spent On The Project .. 85
Figu.re 4.2.1.1 Table- Effot1 On Each Phase (In Percentage) ... 87
Figure 4.2.1.2 Table- Total Hours Spe-nt On Each Phase By Each Group 87
Figure 4.2. L3 Table- Average Hours Spent On Each Phase Per Student-Group 88
Figure 4.2.2.1 Table- Personal Attributes Of Each Group .. 89
Figure 4.2.3.1 Table- Staff Adviser ... 90
Ftgure 4.2.3.3 Table- Staff ~\dviser For Each Project Group .. 91
Figure 4.2.4.1 Table- Development Software Used ... 97
Figure 4.2.5.1 Table- Other Factors That Affect The Project .. 99
Figure 4.4.1 Table- Solution Functionality And Solution Quality ... l 04
Figure 4.5.1 Table· Total Peer Assessment Scores .. I 06
Figure 4.6.1 Table- Groups' Course Averages .. 108
Figure 6.2.2.1 Table- Processing Complexity Used For Calculating Software Size 120
Figure 6.2.5.1 Table- Scores Awarded for Solution Functionality .. 127
Figure 6.2.6.1 Table- Size Of Software Per Group .. 128
Figure 6.2.6.3 Table- Size Of Each Function Types .. 130
Figure 7.2.1 Table- Project Delivety Rate ... 131
Figure 7.2.3 Table -Software Development Platfonn .. 132

[Figure 7.2.4 Table- Breakdown OfDelivety Rate By Software Type 133
Figure 7.3 .I Table- Detiving Number Of Person-Month ... 134
Figure 7.3.3 Table- Productivity £(ate ... 135
Figure 7.4.1 (a) Table- New Development Of Projects (ASMA, 1993b) 137
Figure 7.4.1 (b) Table- New Pr~jccts De,•eloped Using 40L Tools (ASMA, 1993b) 138
Figure 7.4.2 (a) Table- Project Atttibutes (ASMA, I993b) .. 138
Figure 7.4.7 Table- Project Atttibutes Of Projects Developed Using 4GL Tools

(ASMA, 1993b) ... 138
Figure 7.4.3 Table- New Development Projects (Student Projects) .. 138
Figure 7.4.4 Table- Project Atttibutes (Student Projects) .. 139
Figure 7.4.5 Table~ Glossaty OfTem1s Used By ASMA (1993b) ... 139
Figure 7.4.6 (a) Table- Professional Projects VS Student Projects .. 140
Figure 7.4.6 (b) Table- Professional Projects (Using 4GL Tools) VS Student Projects 141
Figure 7 .4.9 Table -Productivity Data Taken From SPR (Jones, 1991) 143
Figure 7 .4.1 0 Table- Productivity Data Of Student Projects ... 143
Figure 7.4.11 Table- Productivity Data From SPR PC Projects (Jones, 1991) ... :, 144
Figure 7 .5.1 Table -Overall Productivity Rate ... 145
Figure 8.2.1 Table - Detennining Software Quality ... ~.48
Figure 9.1.2.1 Table- Fmmat Of Usability Test Plan .. 150
Figure 9.1.3.1 Table- Raw Usability Data ... L :. 1"51"
Figure 9.1.3.2 Table- Adjusted Usability Data .. 152
Figure 9.1.3.3 Table- Total Usability Score .. 152

v

LIST OF GRAPHS

Figure4.1.2 Graph- Total Houts Spent On Project By Each Group .. 86
Figure 4.2.3.2 Graph- Scores Awarded To Staff Adviser By Students .. 90
Figure 4.2.4.2 Graph- Scores Awarded For Development Software Used 97
Figure 4.2.5.2 Graph- Scores Awardf'.d For ThC APT Methodology ... 100
Figure 4.2.5.3 Graph- Scores Awarded For Communication With Client 101
Figure 4.2.5.4 Graph- Scoms Awarded For Project Management ... 102
Figure 4.2.5.5 Graph- Scores Awarded For Team Effort .. 102
Figure 4.2.5.6 Graph- Scores Awarded For Team Contribution .. 103
Figure 4.4.2 Graph~ Students' Project Score Sorted In Ascending Order 105
Figure 4.4.3 Graph ~ Solution Functionality ... 105
Figure 4.4.4 Graph- Solution Quality .. 106
Figure 4.5.2 Graph~ Total Peer Assessment Scores .. 107
Figure 4.6.2 Graph- Groups' Course Averages ... 108
Figure 6.2.5.2 Graph~ Software Size Versus Solution Functionality (Sorted According To

Score) .. 127
Figure 6.2.6.2 Graph- Size Of Software (Sorted In Ascending Order) i29
Figure 6.2.6.4 Graph- Size Of Each Function Types (In Percentage) Sorted According To

Overall Siu .. 130
Figure 7.2.2 Graph- Project Delivery Rate In Ascending Order .. 132
Figure 7.2.5 Graph- Project Delivery Rate By Software Type .. 133
Figure 7.3.2 Graph· NumberOfPerson-Month (In Ascending Order) 135
Figure 7.3.4 Graph- Group-Person Productivity Rate By Group ... 136
Figure 7.4.7 (a) Graph- Delivery Rate Of Professional & Student Projects 140
Figure 7.4.7 (b) Graph- Delivery Rate Of Professional (Using 4GL Tools) & Student

Projects .. l41
Figure 7.4.R Graph- Delivery Rate VS Size .. 142
Figure 7.4.12 Graph- Productivity Rate: Student Projects VS SPR Projects 145
Figure 8.2.2 Graph - Software Quality ... 148
Fi&rUre ~ .1.3.4 Graph ~Total Usability Score ... 153

vi

CHAPTER 1 : INTRODUCTION
·~~~-------------------

l.llliTRODUCTION

11Group projects are an important part of many software engmeenng

courses. Factors, such as group dynamics, egoless programming and team

organisation, that affect the way programmers work together cannot be taught

effectively in a classroom setting" (Calliss eta!., 1991, p. 25). To appreciate the

dynamics of group behaviour it is essential for students to participate in a group

project as this facilitate and enhances their understanding of the solutions to

problems experienced in a group project.

As part of the Bachelor of Applied Science (Infonnation Science) course

offered by Edith Cowan University, the Department of Computer Science has

formulated, in the final year of that course, a software engineering group project.

This group project is divided into two units, Software Engineering I and Software

Engineering 2 and they are offered in semesters one and two respectively. The

purpose of the project is to design a piece of software to meet a client's

requirements. During semester one, students are required to complete and submit

the Functional Requirement and Detail System Design documentation. During

semester two, the students undertake the implementation of the software, testing

and documentation. The maintenance phase is omitted because it is not feasible

within the current course structure.

Each group is required to present its product, whether it is completed or

not, before a judging panel that is usually made up of the project co.ordinator, the

scftware engineering unit CO·ordinator, the group's staff adviser and the client.

Each group is given an hour to present the functionality of their software.

For the past two years, the software engineering project has been a group

project. There were 16 groups, and each &rroup consisted of 4 or 5 students. For

each group, one student member was appointed project leader and their primary

Page I

were allocated roh!s such as programmer. documenter and tester. A staff adviser

was also assigned to each project group. The staff adviser was not to have any

active role in the project - rather he/she acted as a cOnsultant to the members of

each group.

The Computer Science department has adopted EXECOM's APT (1991)

methodology as the standard guideline for developing software. Since 1991,

students undertaking the software engine("ring project have applied this

methodology. Students had to purchase the licence to use this methodology.

1.1.1 Significance Of The Stu!!Y

There are two main objectives to this study. The first objective is to

ascertain whether there is a need to improve the final year software

engineering project for future students by enhancing any aspects that may be

regarded as deficient. Some of these aspects are:

0 The software development methodology
0 Arrangements between staff advisers and students
0 Quality of the project
0 Method(s) of conveying user requirements to project groups

The second objective is to ascertain the factors that have the greatest

impact on the quality of the delivered software. To achieve this, it is necessary

to firstly identify and measure the factors that influence software quality, and

secondly measure the software quality itself Some of the influencing factors

are:

CJ Quality of project management
Project scheduling
Risk management
Configuration management

Cl Availability of hardware, software and meeting rooms
o Access to client
0 Quality of team work
o Choice of software

Page2

l:l Influence of staff adviser
o Usefulness of the APT methodology
0 Individual attributes

Age
Gender
Experience

The key software quality measures are :

0 Functionality
0 Size
0 Usability
0 Perfonnance

Having identified and obtained a measure of the influencing fhctors and

software quality, the final step will be to perform a series of statistical analyses

to determine which factors have the highest impact on quality and to what

degree.

1.1.2 Major Questions To Be Addressed

For the past three years, studenfs undertaking the software engineering

project, have been developing software using the students' version of

EXECOM's (1991) APT methodology. It contains guidelines on the steps that

are required to produce a piece of software. The software that students

produced were assessed by the judging panel. Students were then awarded a

mark for their effori. The APT methodology is generally accepted by industry

in Western Australia but there is not any empirical data as to its usefulness in a

university environment. Students were instructed to use this methodology, but

were they producing quality software? The questions that will be addressed

are:

Page 3

D How useful was the APT methodology, from the students' point of

view?

0 Was it applicable to the type of software and paradigm used by the

students?

Each project group was assigned a staff adviser whose role was to act

as a consult<mt to students. In practice, it was not mandatory that students

report regularly to their staff adviser. However, the perception was that groups

who stayed in close contact \\~th their staff adviser improved their chances of

producing better quality software. The questions that will be addressed are :

IJ How did the staff members feel about being assigned to supervise a

project group(s)?

0 Did he/she have sufficient background in the area of software

engineering that could be beneficial to the group he/she was

supervising?

0 Was he/she familiar with the software engineering methodology

standard adopted?

0 Did he/she spend suff1cient time with the p;oject group to be of any

benefit to the students?

0 Did the staff adviser have a good uneierstanding of what was needed in

the proposed system?

Students had two semesters m which to complete the software

engineering project. This provided the students with sufficient time to

implement the various phases, which included the Functional Requirement,

Deiail System Design, Coding and Testing. The Maintenance phase was not

possible within the current project structure, due to its time constraints, and

tnerefore was not expected. The students were required to undertake Project

Management tasks such as risk management, configuration management and

task scheduling. The project leader within each group \vas appointed by the

members themselves. The questions that will be addressed are:

Page4

0 How much time did a group spend (in total) on the project?

0 How much time did individual students spend working alone versus

working in the group?

0 How muc.h time wa.s spent on each phase of the software development

life-cycle?

0 Was there peer assessment for each group?

0 How well was the project managed?

0 Did every member of the group contribute and, if so, how well was his

or her contribution received by the rest of the group?

lJ Were there any internal conflicts among members of a group?

The aim of the project was to provide students with the experience of

working in groups and to tackle a problem that was big enough to simulate a

"real-world" situation. The major component of the assessment by the judging

panel was the software demonstration. The students may be able to deliver

working software but there are many other factors involved in regard to the

quality ofthe software. Therefore, the following questions will be addressed:

0 What was the size of the final product?

0 How functional was the final product?

CJ How useable was the final product?

CJ How installable was the final product?

0 What score did the final product get from the judging panel?

1.2 METHOD OF INVESTIGATION

This whole research project, revolves around the software engineering

projects. Data will be collected from the students, staff advisers and by evaluating

the final product.

1.2.1 Research Methods And Techniques

The first method. of gathering data was the use of questionnaires. fn

total, t11ree questionnaires were pr~:pared. The first \VaS distributed, on a

weekly basis, between the period of April 1993 to June 1993. The second

Page5

I

questionnaire was distributed, again on a weekly basis, between the period of

August 1993 to November 1993. Towards the end of the secondsemester, a

third questionnaire was provided; each student was required to fill in this

questionnaire after their group's project demonstration and he/she was asked to

supply an estimate of individual effort. Some of the questions asked were

similar to those asked in the second set This is to allow cross-checking of

students' responses between the second and third set of questionnaires. The

aim of these questionnaires was to gather infomation on the effort that each

student was contributing to the project.

The second method of data gathering was by interviewing the staff

advisers. This was to ascertain the relationship between the staff adviser and

the students, the adviser's opinion about the whcle exercise of supervising a

project group, etc. Each interview was structured so that every staff adviser

received the same set of questions.

The third method of data gatheri11g was to measure the software

metrics of the software produced by each project group. The objective of this

exercise was to detennine the quality of the delivered software, such as

usability, instal\ability, functionality and size of the software.

Page6

-, .·.)

1.3 ETHICAL ISSUES

Since this research involves individuals, the data gatl!ered will be kept

confidential (as required by the Committee for the Conduct of Ethical

Research). The data gathered will be made known only to the supervisors! and the

investigator2. Students undertaking this research will not be knO\vn by name. The

only information the investigator has is the student's group number and personal

identifier. Infonnation on the staff advisers was restricted to their group allocation

number. The data will not be kept after the research is completed. All data

recorded in written fonn will be shredded and those stored on magnetic medium

(such as computer floppy diskettes) will be erased.

I Dr Ken Mullin, Mr Stuart Hope and Dr Jim Millar of the Department of Computer Science,
Mount Lawley Campus.

1 Edwin LIM Chamg Yih (Student Number 0899367)

Page 7

CHAPTER 2 : LITERATURE REVIEW

2.1 SOFTWARE ENGINEERl!'ffi

Developing a piece of software that satisfies user requirements, on budget

and on schedule is every software developers' dream. But in the real world, this is

often not the case. Software development projects are often !ate and exceed their

original projected budgets by as much as 100 to 200+%. So, whose fault is this?

The fault is usually due to ineffective initial estimates and to the managers

incapacity to accurately monitor the project's progress (Kemerer, 1993, p. 87).

Hence, one major problem that senior computer professionals in charge of

project teams face, is to keep effective control on all aspects of the project. The

Software Development Life Cycle contains a large software management

component covering a range of activities. If these activities are not properly

managed, potential errors are bound to occur, resulting in the project exceeding its

projected budget and schedule. To manage all aspects of the software

development, there must be some fom1 of measuring mechanism. It is common

management theory that, "you are not able to manage what you cannot measure"

(Grupe eta!., !991, p. 26).

This chapter will focus on the issue of good software engineering practices

and specifically on software metrics in project management. To facilitate this, the

role of measurement and software metrics will be considered, including their

impact on project management. Additionally the various paradigms that are

currently available will be discussed. Jn focusing on good software engineering

practices, the role that academic institutions are playing in the area of providing

students with theoretical knowledge on not only software engineering but also

practical skills in software development, will also be examined.

Page 8

2.1.1 What is software engineering?

An early definition of software engineering, which is found in the

literature, is (Pressman, 1992, p. 23) :

"The establishment and use of sound engineering principles in order to

obtain economically [sic] software that is reliable and works efficiently

on real machines."

However, developing a piece of software that is "reliable and works efficiently

on real machines" is much harder in the real world (Pressman, 1992, p. 23).

There are many problems associated wjth sofhvare development. Such

problems include late delivery of software, budget over-run, unreliable

software, poor maintainability and poor performance (Sommerville, 1989, p.

3). These problems are categorised by many indu~try observers as a "crisis".

Hence the term software crisis or software affliction (Pressman, 1992, p. 17),

which suggests a set of problems that are encountered in the development of

software. These problems are not restricted to software that does not work

properly. Rather, the affliction includes problems associated with the

development and maintenance of software.

According to Pressman (!992, p. 23), software engmeenng IS an

approach to a solution for software affliction that can be achieved by applying

specific tasks to" ... all phases of software development, using automated tools

to aid these tasks, using more powerful building blocks for software

implementation, using better techniques for software quality assurance ... ",and

by enforcing good project coordination, control and management. Software

engineering consists of a set of three key elements - methods, tools and

procedures. These elements will enable management to " ... control the process

of softwm e development and provide the practitioner with a foundation for

building high-quality software in a productive manner" (Pressman, 1992, p.

24).

Page9

The software engineering metlzods provide the technical ("how to's")

steps for building software. The tasks include "project planning and

estimation, system and software requirement analysis, design of data structure,

program architecture and algorithm procedure, coding, testing and

maintenance" (Pressman, 1992, p. 24). It also includes a set of criteria for

software quality. ·'rhe software engineering tools provide these methods with

automated or semi-automated support. Currently, there are tools that will

support all the methods mentioned above. All these tools can be integrated so

that information created by one tool can be shared among the other tools

through a system called CASE (computer-aided software engineering). The

software engineering procedures are what hold the methods and tools together,

and " ... enable rational and timely development of computer software"

(Pressman, 1992, p. 24). These methods, tools and procedures, as a whole, can

be view(;d as a software development methodolob'Y·

A simpler definition provided by the IEHE Standard Glosswy (?f

Software Engineering Terminology (Vliet, 1993, p. 5) defines software

engineering as "the systematic approach to the development, operation,

maintenance, and retirement of software".

2.1.2 Software Development Life Cycle

There are currently a number of life-cycle paradigms namely the

classic life cycle or wateJfal/ model, proto(vping, the evolutionary model, the

spiral model and the fourth-generation techniques. Selection of one of these

paradigms is dependent on the development approach to be adopted. Each

paradigms possesses its own strengths and weakness and in cenain instances

the strongest aspects of each are combined to benefit the software project.

Page 10

2.1.2.1 The Waterfall Model

The waterfall model IS the most commonly known paradigm.

EXECOMs APT methodology (1991), in line with other waterfall

methodologies, uses a systematic, sequential approach to software

development that begins at the system level and then progresses through

ar.a)ysis, design, coding, testing, and maintenance. This paradigm includes

the following activities (Pressman, 1992, p. 25):

(a) System Engineering ami Analysis .includes requirernenta gathering

at the system level \Vith a smaii amount of top-level design and

analysis.

(b) SofiHJm·e Requirement Atw~~·sis intensifies the requireme.1ts

gath~ring processes and focuses specifically on the software. The

analyst must fully understand the infom1ation domain of the

software, as well as the required functions, performance of the

system and the user interface. The requirements for both the system

and the software are documented and are reviewed with the

customer.

(c) Design process focuses on the pro1:,rram's data structure, software

architecture, procedural detail and interface characterisation.

Before coding begins, this process translates the requirements into a

form that can be assessed for quality. The design then becomes a

part of the software configuration after it is documented.

(d) Coding process is where the design is translated into a machine

readable format by the programmers. Typically, a high-level

programming Janguage(s) is used to achieve this.

Page II

[

(e) Testi11g is a process of executing a program with the intention of

finding error(s). It is a critical element of software quality

assurance and it also represents the ultimate review of

specification, design and coding. Vliet (1993, p. 12) further

explains that testing is not a phase that is conducted after the

implementation of the system. Testing itself can be regarded as hvo

separate activities, namely verification and validation. Verification

is to determine whether the system meets its requirement (are we

building the system right). Validation is to detennine whether the

system meets the user's requirement (are we building the right

system).

(f) AfabztellaJlce of software is something that cannot be avoided -

software changes due to several reasons. The following are types of

maintenance process.

Corrective maintenance is the process of removing one or more

errors found on the system. Adaptive muintenance is the process of

modifying the software to properly interface with a changing

environment. Pe,fective mainlenance is the process of adding or

modifying of existing functions on a successful system. The final

type of maintenance process is known as preventive rnainlenance. It

is a process of increasing the system's future maintainability (Vliet,

1993, p. 15). Examples of preventive maintenance activities include

updating of documentation, adding of comments and/or improving

the modular structure of the system.

The waterfall model is probably the most common paradigm used

in the sofhvare industry. The main reason for its development was that, in

the past, there were not enough tools available to synthesise software

(Vliet, 1993, p. 34). However, the waterfall model is considered to have a

Page 12

number of problems for software development. Zelkowitz (cited in Vliet,

1993. p. 34) provides sufficient quantitative evidence that the model has

many shortcomings. For example, the strict sequencing of phases enforced

by this model cannot always be followed.

2.1.2.2 Prototyping Model

Prototyping is a process that requires the software developer. to

create a preliminary model of the software to be built. Figure 2.1.2.2.1

shows the typical prototyping approach (Alavi et al.. 1991, p. 88). This

model can be in three different formats (Pressman, 1992, p. 27) :

(a) a paper prototype or PC-based model that shows the human

machine interaction in a forn1 that can be easily understood by the

user.

(b) a working prototype that implements a portion of the function

required by the desired system.

{c) an existing system that performs part or all the necessary function

but has othe·c features that will be improved and/or incorporated.

onto it.

Page 13

Oalemline initial set or
inlormation requirements

Use 4Gls, CASE. or other quick-build
tools to develop a prototy~

Evaluate ptotol)•pa

Stop

Modily p!'Ototype

Figure 2. 1.2.2.1 Diagram - Prototyping Approach

Prototyping is particularly useful in a situation where the users are

unable to clearly define their requirements. Using protot)•ping, the user

interface can be quickly developed, providing users with an impression of

what the completed system will look like and what type of functions it will

provide.

Alavi (1984, p. 562) provided four recommendations for the

prototyping techniques. Alavi states that :

(a) both users and designers must be familiar with the prototyping

approach and recognise its pitfalls.

(b) since prototyping is a relatively new paradigm, there is a need for a

positive attitude from those who use it in order to get positive

results.

Pnge 14

(c) prototyping is very useful in situations where user requirements are

unclear or ambiguous - it seems to be a good way to clarifY those

requirements.

(d) prototyping also needs to be planned and controlled. There must be

an imposed limit on the number of iterations, and explicit

procedures for documenting and testing procedures must be

established. In addition, more useful aspects of the traditional

paradigm that make the process manageable and controllable,

should also be applied.

Alavi (1984, P- 557) conducted field interviews' and found the

following advantages and disadvantages of prototyping. The advantages

are:

0 It provides a user with a tangible means of understanding and

examining the proposed system and for extracting more meaningful

feedback from users in terms of their needs and requirements.

0 It provides a common &rround where users and designers can

identify potential problems and opportunities early in the

development process. It also provides an effective way to extract

and clarifY user requirements.

0 It serves as a practical means to encourage and achieve user

participation and commitment to a project.

0 It allows users and data processing personnel to improve

communication and relationship between them, and also to enhance

their appreciation of each or' ~:·s job.

J Alavi (1984) conducted in-depth interviews with 12 project managers and I 0 systems analysts
from six organisations that uses the prototyping approach.

Page 15

[J It helps to ensure that the system will perform its expected or

required tasks before spending large sums of money on the

development of the entire system.

The disadvantages are (Alavi, 1984, p. 358) ·.

0 Prototype might have limited capabilities and captures only the key

features of the operational systems. Sometimes, unrealistic user

expectations are created by overpraising the prototype, and these

expectations are subsequently not met.

0 Prototypes are ditlicult to manage and control, due to lack of

knowledge in planning, budgeting, managing and controlling them.

CJ It is difficult to prototype large systems because it is unclear how a

large system should be di' ·Jed for the purpose of prototyping or

how aspects of the system to be prototyped are distinguished and

boundaries set.

CJ It can be difficult to retain user enthusiasm. ln some cases, user

involvement and interest declines after the \vorking prototype was

developed.

There are a variety of prototyping methods. Most of which aim to

be more rapid than conventional development, thus reducing prototyping

cost and risk (Tate, 1990, p. 240). The types of prototyping methods

include (Tate, 1990, p. 240) :

CJ Ad hoc or quick and dirty methods
Quick and dirty methods, in the literal sense, are often a recipe for

disaster in software development But one can assume that "quick"

refers to rapid prototyping and "dirty" for the ignorance or extreme

simplification of non-essentials. However, e~perience indicates

(Tate, 1990, p. 240) that though prototypes need only be completed

Page 16

in key aspects. they must be developed to a reasonable standard,

especially if they are to be accepted in practice.

0 Executable specification
One main purpose of prototyping is the detemlining, clarifying, or

validating of user requirements. The concept of direct execution of

specifications based on these requirements is very desirable. When

compared with other prototyping methods, it has the great

advantage of being very direct. ?ractically, executable

specifications4 are not quite as direct as was expected. The reason

for this is because the requirements that are not explicitly specified

cannot be confirmed.

If the specifications are to be executed in the nom1al way, they

must be clear and unambiguous. This implies the use of fonnal

specification languages\ which unfortunately are not very user~

friendly. Some research work has been conducted to develop

experimental systems with " ... semi~fonnal, graphical front-ends

that are reasonably flexible and user-friendly but are supported by a

more formal back-end" (Tate, 1990, p. 241).

Tate (1990, p. 241) pointed out that some might argue that

executable specifications are in fact not prototyping. Specifications

that can be executed are basically still specifications. Their ability

to be executed is but another aspect of their understandability.

Executable specifications are still extremely useful for validating

requirements- which is one of the main purpose of prototyping.

4 Executable specification is the protf•lype that serves as a representation of requirements
(Pressman, 1992).

5 Formal specification languages are often mathematical in fonn (for example, in the form of
pred'tcate c<~lculus). It is a formal method that provides a me.ans for specifYing a system so that
consist':!ncy, completeness, and correctness can be assessed in a systematic manner (Pressman,
!992).

Pnge 17

0 Very High-Level Languages nnd Application Generators
"Ve1y high-level languages'' refers to " ... languages that are higher

level or briefer and more natural in expression, than those normally

used in conventional software development" (Tate, 1990, p. 241).

This category includes fourth-generation languages (4GLs} or

fourth-generation techniques (4GTs), various high-productivity

languages that are domain specific (in varying degrees) and

languages specifically developed for rapid prototyping.

All these lar.guages and techniques have one common ability, and

that is " ... to specify some characteristic of software at a high level

... then automatically generate source code based on the developer's

specification" (Tate, 1990, p. 241). The direct use of this high-level

description on part of the system makes the use of high-level

languages appropriate for rapid prototyping.

An application generator's functior, is very similar to that of high

level languages. It can produce a part or all of an application from

suitable specifications. These specification might be expressed in

graphical, tabular, menu choice or language fonn, or a combination

of these. Some would consider application generators as a potential

prototyping tool and if the code that it generates is efficient, the

application generator can be considered as a high-productivity

application-building tool.

Cl Reuse
This suggests that the prototype is assembled using a set of existing

software components. A software component may be a data base, a

program or a module. Each of these components can be designed in

a manner that enables them to be reused without a detailed

knowledge of their internal workings.

Page 18

The hypothesis proposed by Alavi et al. (1991, p. 86), was that by

adding data modelling as a preceding step to prototyping, it would give

prototyping more structure and make it more efficient. In an experiment6

conducted by Alavi et al. (1991, p. 86), system designers combining data

modeliing and prototyping, reported lower task satisfaction and more

stress. It was also felt that the task was more complex. However, the

experiment did confirm Alavi's hypothesis because these system designers

did in fact achieve superior design results. It also showed that including the

data modelling step reduces the number of prototype iterations to design

the "right" system.

2.1.2.3 The Evolutionary Model

The evolutionary model is based on three simple principles (Gilb,

1988, p. 84):

Q Deliver something to a real end-user.

0 Measure the added-value to the user in all critical dimensions.

0 Adjusi both design and objectives based on observed realities.

The basic evolutionary concepts are well~defined concepts in engineering

literature and engineering practice in other disciplines. However, in the

software community, its capability is yet to be fully recognised and

exploited (Gilb, 1988, p. 84).

6 The subjects for Alavi's et al. (1991) experiment were evening graduate students (52 men and 36
women} from two MIS classes at a large state university. Their average age was 26.2 and 72
percent had full or part-time professional employment in MIS.

Page 19

The evolutionary model consists of a collection of many concepts.

The primary concepts are (Gill>, 1988, p. 85) :

Cl Multi-objective driven
Conventional software planning is done in tem1s of the functional

deliverables. According to Gilb (1988, p. 86), there is very little

emphasis in the industry on how quality and resource attributes of a

system are controlled. As a result, control over these attributes· is

lost. The reason provided by Gilb (1988, p. 86), is that there is

insufficient knowledge among software engineers and teachers in

defining critical attributes such as usability and maintainability.

The evolutionary model is built on iteration that leads to " ... clear

and measurable multi-dimensional objectives" (Gilb, 1988, p. 89).

These oQjectives must contain all functional, quality and resource

objectives that are necessary for the long-term and short-term

survival of the system under development.

a Early, frequent iteration
In most software engineering projects, the first useful results are

delivered one or more years after the project commences. Gilb

(1988, p. 89) found that the initial planners of such projects actually

believe in the possibility of an earlier delivery, but they lack both

motivation and method in finding early and frequent software

deliveries.

Management who desire an earlier delivery, paradoxically also

believe in the conventional wisdom that there is a long initial cycle

before the !lrst usetiil phase ;, delivered. Gilb (1988, p. 89),

however believes that such first phases can he suh~divided into

many smaller phases, hence providing an earlier delivery.

Page 20

The evolutionary planning uses the concept of selecting the most

crucial steps with the highest user-,value (which may be financial)

to development-cost ratio for earliest implementation. This user

value might increase management goodwill and encourage their

support for the rest of the system.

0 Complete analysis, design, build and test in each step
Software projects tend to waste a lot of time on the detailed

requirements analysis, detailed design, coding and testing phases. It

is a very ditftcult task, especially for large projects, because there

are " ... too many unknowns, too many dynamic changes and too

many complex interrelationships in the system" (Gilb, 1998, p. 90).

The evolutionary model is created to provide developers with early

warning signals of tim ttening unpleasant realities. Unpleasantries

still exist but if they occur, they wili not get a chance of becoming

too large. Gilb (1988, p. 90), suggests that one must learn to design

a more "open-ended" system architecture. The evolutionary model

starts with an elementary design that is easy to modify, adapt, port

and change -both in the long and short terms. It provides for early

utilisation of the system to experience its usefulness and

capabilities at an early stage.

(J User orientation
Software projects are mostly oriented towards the machine, the

algorithm, or the deadline, but rarely towards the user. With the

evolutionmy model, developers are specifically appointed to

"listen" to user reactions, early and frequently. The user can

directly participate in the development process. ln this case, neither

the budget nor deadline is overrun. The overall system is "open

Page 21

ended" and the developers " ... are mentally, economically, and

technically prepared to listen to what the user or customer wants"

(Gi!b, !988, p. 92).

"The principle of selecting the highest available value-to-cost ratio

.... is a dynamic one" (Gilb, !988, p.92). The user values should

change as the user gains experience. This a !lows the user to provide

new ideas that were not in the initial plans. If the idea is good, the

developers must find practical and reasonable ways of

imp!ementin6 them as soon as possible. All developers should

realise the importance of feedback, the changes of ideas about

value, and the experiencing of development cost estimation.

!J Systems approach, not merely algorithm orientation
Many software engineering methods are oriented towards current

computer programming languages. These methods contain fe\\:

references to Data Engineering aspects of software, documentation,

training, marketing and motivation (Gilb, 1988, p. 93).

The evolutionary model is a method that is not merely restricted to

software development. It can be used in any creative process.

0 Open-ended basic systems architecture
What is most desirable from a system is one that will survive and

succeed under conditions which change according to time.

According to Gilb (1988, p. 93), a good software engineer should

constantly be making detailed study of the available design

technologies which may lead to more adaptable systems.

In terms of the evolutionary model, open architectures are vital.

Without open architectures, a lot of effort will be wasted in the

Page 22

has an open architecture, modification or enhancement can easily

be made.

D Result orientation, not software development process

orientation
In the traditional software deveiDpmenl cycle. :he process seems to

be more significant than the result. Uilh (1988, p. 94) stresses that

software developers are so tangled up in the fonnalities of a process

that the software engineering efforts have " ... extremely unclear,

unmeasurable and unstated objectives in critical quality and

resource areas" (Gilb, 1988, p. 95). It is necessary to focus on more

important issues such as usability and maintainability.

Planners can choose to ignore some of these concepts, but in doing so, the

model will lose some of its po\\"er.

The evolutionary model is a management perception tool. It will

help management to comprehend and control the complex tasks which they

are responsible for. It does this by using one of the oldest management

strategies- "divide and conquer". This model breaks the task into many

smaller deliverable results. The benefit of this is that the deliverable results

can be used by someone trying to perfonn some serious work with them

(Gilb, 1988, p. 112). These results have to be further adjusted, hence it

does not imply a full-scale software release.

2.1.2.4 The Spiral Model

The spiral model is based on various refinements of the waterfall

model. This model can accommodate the models discussed in the previous

sections as special cases and also provides guidance as to which

combination of the previous models best fit a given software situation.

Page 23

Determine Objectives,
Alternatives, Constraints

Plan Next Phases

Evaluate Alternatives,
Identify, Resolve Risks :

Develop, Verify Next-Level Product

Figure 2 .1.2.4.1 Diagrnm - Spiral model

Figure 2.1.2.4.1 (Boehm, 1988, p. 64) represents the spiral model of

the software process. The radial dimension " ... represents the cumulat!\';:;

cost incurred in accomplishing the steps to date" (Boehm, 1988, p. 65),

The angular dimension represents the progress made in completing each

cycle of the spiral. From the diagram, it can be observed that each cycle

involves a advancement that addresses the same sequence of ::;teps. Each

cycle of the spiral begins with the identification of (Boehm, 1988, p. 65) :

0 the key characteristics of the software such as performance,

functionality, adaptability etc.

0 the alternative methods of implementing the software (for example,

use of design A or design B etc.).

0 the constraints that are associated -with the application of the

alternatives such as cost, schedule etc.

Page 24

The next step is to weigh the method of implementation against the

key chamcteristics and constraints. This process usually helps to identity

the areas of uncertainty that may become a risk(s) to the project. If the

risk(s) is identified, the next step will be to fonnulate a cost~effettive plan

to resolve the risk. This may involve prototyping, simulation,

benchmarking etc. Once the risk(s) is assessed, the next step is determined

by the type ofrisk(s) remaining. From the next step onwards, it can be seen

how the spiral model accommodates the good features of existing software

development paradigms. With the risk management ofth~ spiral model, it

can avoid many of the problems that are encountered by these paradigms.

For example (Boehm, 1988, p. 65) :

CJ If a project has low risk in areas such as user interface or

performance, but has a high risk in budget and schedule, then the

spiral model will resemble the waterfall model.

CJ If a piece of software has a low risk in design and code breakage

but the presence of errors in the software constitutes a high risk,

then the spiral model will resemble the two~ leg model of precise

specification and formal deductive program development.

0 If a project has low risk in areas such as budget, schedule or control

but has a high risk in defining the wrong user interface or user

decision supports requirement, then the spiral model will resemble

the evolutionary development model.

D If automated softw"re generation capabilities {such as 4GL tools)

are available and depending on the risk involved, the spiral model

can accommodate them as an option for rapid prototyping or for

application of the transfonn model.

0 If the high risks found in a project involve a mix of risk items listed

above, then the spiral approach will also reflect an appropriate mix

of the process model.

Page 25

After each cycle is completed, the software will be reviewed by the

principal people or organisations concerned vvith it. The review involves

all asr~cts of the software developed during the previous cycle, including

ihe plans for the next cycle and the resources that are required to carry

them out. The main objective of the review is to ensure that all parties

concerned are jointly committed to the approach for the next phase. It is

important to note that each component of the software can be divided to

form its own spiral. Therefore, the review-and-commitment step may

extent " ... from an individual walkthrough of the design of a single

programmer's component to a large scale requirements review involving

the developer, user, customer and maintenance organisations" (Boehm,

1988, p. 65).

The spiral model has a number of additional advantages, as listed

below(Boehrn, 1988, p. 69):

0 It focuses early attention on the choices involving the reuse of

existing software.

lJ It assists in the preparation for life-cycle evolution, growth, and

changes of the software.

o It supplies a mechanism for combining software quality o~jectives

into the software development.

Q It concentrates on removing errors and unattractive alternatives at

an early stage.

IJ It can deduce how much effort and resources are needed for a

particular type of project.

IJ Jt does not employ different approaches for software development

and software maintenance.

Q It provides a practicable framework for integrated hardware

software system development.

Page 26

Although the spiral model appears to be more adaptable than the

other types of development paradigms, there are some difficulties that are

associated with this model. Boehm (1988, p. 69) describes these

difficulties as three main challenges that involve matching to contract

software, relying on risk-a3sessment expertise and the need for further

elaboration ofspiml model steps".

lJ Matching to contract software.
According to Boehm (1988, p. 70), the spiral model works well on

internal software development, but it requires more work if it is to

compete in the world of contract software acquisition. In the world

of contract software acquisition, it is harder to procure great

degrees of flexibility and freedom without losing accountability and

control. lt is also harder to interpret contracts whose deliverables

are not well specified in advance. Although enhancement has been

made to support a more flexible contract mechanism, there is still a

need to ensure that the acquisition managers are comfortable m

using these procedures.

0 Re(J'iltg on risk-assessment e\"[Jertise.
The spiral model relies heavily on the ability of the software

developers to identify and manage sources of project risk. Not all

software developers have the necessary experience to effectively

carry out this task. For example, if a te:lm of inexperienced

developers were to produce a specification with a good level of

understanding on low-risk elementg but poor level of understanding

on high-risk elements, the project will fail (Boehm, 1988, p. 70).

Another aspect of risk-driven specification is that they are people~

dependent. For example, a design created by an expert may be

Page 27

I

implemented by non-experts. This means that the expert will have

to produce very detailed documentation for the non-experts, to keep

them from making mistakes.

Q The need for further elaboratiOJI of spiral model steps.
Basically, a lot of work has to be done on the spiral model to ensure

more consistent use of the model. There is a " ... need for more

detailed definitions on the nature of the spiral model specifications

and milestones, the nature and objectives of spiral model reviews,

the techniques for estimating and synchronising schedules, and the

nature of the spiral model status indicators and cost-versus-progress

tracking procedures" (Boehm, 1988, p. 71). There is also a need for

guidelines and checklists to identify the potential sources of project

risks and their most effective risk-resolution techniques (Boehm,

1988, p. 71).

Highly experienced people will have no problems using the spiral

model, but the majority of people have va~ying degrees of

experience and understanding. Accordingly, it is important to

ensure a consistent interpretation and use of the spiral approach

across the project.

Page 28

2.1.3 Project Management P1·ocess

It is too often the case that data processing managers struggle through

huge projects, working against impossible deadlines, delivering systems that

barely work and do not meet their users' requirements, and consequently later,

spend a lot of time and effort on maintenance (Pressman, 1992, p. 42). This is

a sign of weak project management. In order to conduct a successful software

project, it is necessary to consider the follo\ving elements :

(a) Beginning A Software Project
Before planning a project, objectives and scope must be established,

alternative solutions must be considered, and technical and

management constraints must be identified. Lack of this information,

makes it impossible to define an accurate estimate of the project cost, a

realistic break-down of project activities, or a reasonable project

schedule that provides a significant insight on progress.

(b) Measures And Metrics
Measurement and metrics assist in understanding the technical process

that is used to develop a product and the product itself The process is

measured so that it can be improved. The product itself is also

measured so that its quality can also be improved.

(c) Estimation Process
Estimation is an important element in rnanagmg a project. After a

software prcject is planned, estimation is used to project the human

effort required, the project duration and its cost.

(d) Risk Analysis
Risk analysis is another crucial element in managing a project. As

stated in Gilb (1988, p. 73), "If you don't actively attack project and

technical risks, they will actively attack you". Risk analysis is a series

Page 29

of risk management steps that are classified as risk identification, risk

assessment, risk prioritisation, risk management strategies, risk

resolution and tisk monitoring.

(e) Scheduling
After a set of project activities is identified, the interdependencies (if

any) are established, the effort associated with each activity is

estimated, the people and other resources are assigned, and a lilsk

network1 is created. Hence, a time-line schedule is developed.

(f) Tracking And Control
After the development schedule is established, tracking and control

activity begins. All activities on the schedule are tracked by the project

manager. If any of the activities should fall behind schedule, the project

manager can use a project scheduling tool to ascertain the impact of the

schedule slippage on project milestones and delivel)' date. In doing so,

the project manager can then redirect resources, reorder activities or in

the worse case scenario, alter the delivery date.

2.2 SOFTIVARE METRICS

Software metrics is a subject that has long been considered in the domain

of software engineering. The first re~earch work carried out was conducted by

Maurice Halstead (!nee, 1990, p. 298). Halstead's study looked into the area of

product metrics (see Section 2.2.3.6) that involves program code. The idea behind

Halstead's work is that useful properties of a system or part of a system can be

anticipated from counting tokens in source code. The second wave of metric

research started during the 1970s. The research involved the characterisation" ... of

the control flow of a prot,TTam or subroutine in terms of a number which, somehow,

quantified its unstructuredness" (Ince, 1990, p. 298). McCabe is renowned for his

7 A task network is a schematic on the various types of activities that are involved in the software
engineering project.

Page 30

study in this area. However, the most promising area of research involYes system

design metrics. Such metrics can be drawn from the architectural design and

measure the degree of isolation of modules in a system. Jt is believed that a good

system is one where its modules can be read and tested in isolation, and integrated

with minimum problems (!nee, 1990, p. 298).

Software metrics provide quantifiable measurement of any activity

involved in software engineering. According to Fenton (1991, p. ix), such

activities include matters that relate to " ... measuring and predicting software

project costs, measuring and improving productivity, and measuring and

predicting the quality and complexity of software products". Clapp (1993) added

that metrics also consist of proiect size, personnel, computer use, unit progress,

schedule progress, volatility, requirements and design progress, testing progress

and incremental release content.

Fenton (1991, p. ix) stresses the importance of software metrics in software

engineering. He claims that even though there are literatures that talk about

software metrics, they barely emphasise its impOiiance. One main reason software

engineering remains more of an ideology than a discipline is that measurement has

mostly been ignored by some of the leading authorities who have shaped its

direction (Fenton, 1991, p. ix). Even with books that describe methods on how to

achieve software quality, many still do not know how to assess their products.

Hence, it is impossible for developers to detem1ine whether they have achieved

anything even with the available methods. Many of the measuring teclmiques

(ffietrics) are being used without really understanding their true purpose (Fenton,

1991, p. ix) .

. Software developers must recognise the principles of software metrics that

involve cost, schedule ftnd quality goals, quantitative goals, compari~on of plans

with actual performance throughout development, monitoring data trends for

indication of likely problems, metric.s presentation, and investigation of data

Page 31

values (Clapp, 1993). Management must balance their pnmary goals when

selecting the rnetrics to use for their particular project.

2.2.1 Whv Measure?

The previous section mentioned the types of activities that sofuvare

metrics can be used to measure. One simple question remains : why measure?

There are several reasons why a measure is necessary. According to Kizior

(1993, p. 45), measures can assist a company detennine whether it is

competitive or not; they can assist the company to detennine whether it

requires improvement at its productivity and quality levels; measures can be

used to assess new tools and techniques; they can help to compare results after

taking some course of action and they can assist the estimating process. Ince

(1990, p. 297) summarised the uses ofmetrics:

0 as a means to predict the resource requirements for later parts of a

software project. Since requirements are constantly changing, it is vital

for developers to have the means to recalculate the project resources

needed.

CJ to be used as a qualityMassurance enforcement mechanism.

0 to be used as a mechanism for assessing the performance of staff on a

software project.

0 to be used in assessing competing development methods, organisational

structures and individual ways of working.

Cl to be used to assist development staff procure a quantitative estimate of

the quality of their work.

Cl to be used as the foundation for intelligent and semiMintelligent

software development tools.

Pressman (1992, p. 56) also said that if" ... ,,,.e do not measure, there is

no real way of determining whether we are improving. And if we are not

Page 32

prevent the problems such as schedule and budget overrun, poor productivity

etc. Measurement can provide benefits at the strategic level, at the project

level and at the technical level. By requesting and assessing productivity and

quality measures, senior management can set up important goals for

improvement of the software engineering process.

2.2.2 What Are Software Metrics?

The previous two sections discussed the types of activities that

software metrics can be used to measure and the reasons for measuring, but it

has not explain what software metrics are. This section will explain the various

categories of software metrics.

A software metric is a numerical \·aiue that is extracted from a software

project. There are two types of metrics, namely, product metrics and process

metrics (Ince, 1990, p. 297). Product metrics are numerical values extracted

from some document, or a piece of source code. Process metrics are numerical

values that depict a software process such as the amount of time require to

debug a module. Metrics can also be categorised as result metrics and

predictor metrics (lnce, 1990, p. 297). Predictor metrics are normally product

metrics that can be used to predict the value of another metric. The predicted

metric (nonna!ly a process metric) is known as a result metric (see Figure

2.2.2.1). Therefore, using features of a system specification to predict the

amount of resources reguired by the software project is an example of product

metrics (the system specification) being used to predict a result metrics

(project resource).

Page 33

Predicts
Product Metric ----------7 Process Metric

(Predictor Metric) (Result Metric)

Figure 2.2.2.1 Diagram- Relations Of Product Metric And Process
l\'letric

2.2.3 Types Of Software Metrics

It is now apparent that software metrics are important in software

engineering. Symons (1992, p. 16) stated that "a reliable and credible method

for measuring the software development cycle is needed that has a reasonable

theoretica1 basis and that produces results that practitioners can trusC Hence,

software metrics have been used to measure a wide range of software

engineering activities. These activities include (Fenton, 1991, p. 9):

0 Cost and effort estimation models and measures

0 Productivity n: .. sures and models

0 Quality control and assurance

0 Data collection

0 Quality models and measures

0 Reliability models

0 Perfonnance evaluation and models

0 Algorithmic I computational complexity

a Structural and complexity metrics

For the purpose of this research, not all the metrics mentioned above

will be used. For eXample, the cost estimation metric may not be applicable to

the project that is provided by this department. According to Baker (1991, p.

1290), in order to initiate a metrics program, the following should be

considered :

Page 34

1. Define the object of measurement

2. IdentifY the attributes to be measured

3. Determine the purpose of the measurement results

4. Collect data based on steps 1, 2 and 3

5. Modify the measurement based on experience

2.2.3.1 Cost And Effort Estimation

This type of metric was first created entirely for managerial

purposes. Managers wanted a method that would help them predict project

costs at an early stage in the software development life-cycle. Since then,

many models for software cost and effort estimation have been proposed

and used. The best-known models are Boelun's COCOff/0 (Constructive

Cost Model), Putnam's SLIM model and Albrecht's function point model

(Fenton, 1991. p. 10). In these models, the general approach to estimating

effort is to make effort a pre-defined function of one or more variables.

These variables can be, for example, the 'size' of the software - defined as

lines of code in COCOMO and number of function poims in Albrecht's

model.

Most cost-estimation models have adjustment (actors called cost

drivers built into them. These cost drivers serve as indicators for the

various factors that are believed to have affect on the amount of effort

required to produce a piece of software of a given size (Kitchenham, 1992,

p. 212).

Boehm's COCOMO
Boehm introduces a hierarchy of software estimation models

(COCOMO) that takes three forms. They are :

o Basic COCOMO
This model is applicable to small-to-medium s1ze systems

usually developed in an in-house environment. Other aspects of

Page 35

this model includes phase distribution of effort, schedule and

activities. 1t is suitable for quick, early rough estimation of

software costs, but its accuracy is rather restricted because it

lacks in factors such as hardware constraints, personnel quality

and experience, use of modem tools and techniques, and other

factors that might have significant impact on software costs

(Boehm, 1981, p. 58).

IJ Intermediate COCOMO
This model is a compatible extension of the Basic COCOMO

model. It has greater accuracy and is more detailed. This makes

it more suitable for cost estiination at the more detailed stages

of software product definition {Boehm, 1981, p. 114). It also

embodies an additional 15 predictor variables known as cost

drb•ers. These cost drivers are further explained later in this

section. However, this model has two limitations which affects

detailed cost estimates for large software projects. These

limitations are (Boehm, 1981, p. 344):

Jts estimated distribution of effort by phase may be

inaccurate.

It can be unmanageable to use on a product with many

components.

1J Advanced COCOMO
This model addresses the limitations found in Intermediate

COCOMO. It overcomes these limitations by providing

(Boehm, 1981, p. 344):

a set of P!wse-Sensltit1e Effort lf.IU!tipliers for each cost

driver attributes. By using these multipliers, the amount

Page 36

of effort required to complete each phase cau be

detennineci.

a Three-Level Product Hierarchy, where the same cost

drivers may be applied to components that are grouped

at module, subsystem or system level.

This model includes capabilities such as a procedure for

adjusting the phase distribution of the development schedule.

For estimating overall development schedule and effort

distribution by activities, this model uses the same techniques

used in Intermediate and Basic COCO MO.

COCOMO can be applied to three classes of software projects, which

Boehm calls organic mode, semi-detached mode and embedded mode

(Vliet, 1993, p. 103). Organic mode refers to relatively small, simple

software projects that involve small project teams whose members

generally have lots of experience with similar projects in their

organisation. Semi-detached mode refers to intermediate software

projects whose project members consist of mixed levels of experiences

(including those that have no experience at all). Embedded mode refers

to software projects that must be developed within a set of tight

hardware, software and operational constraints.

COCOMO model is associated with a set of 15 cost driver attributes

that are grouped into four categories, namely product attributes,

hardware attributes~ personnel attributes and project attributes. Each of

these 15 attributes is associated with a rating of I to 6 points, 1 being

"very low" and 6 being "extra high". Based on these ratings, the effort

multiplier can be determined from a table published by Boehm, and the

product of all the effort multipliers will give the effort adjustment

factor.

Page 37

Product attributes include:

0 Required software reliability
A software can be said to be reiiable if it can perform its intended

tasks satisfactorily. Quantitatively, software reliability can be

defined as a probability. An unbiased estimator (R) can be obtained

for the probability by perfonning the following steps (Brown &

Lipowcited in Boehm, 1981, p. 372):

Choose N inputs or input sequence randomly from the

operational profile distribution

Use the inputs to exercise the software for N runs

Use the success criterion to determine how many runs

resulted in satisfactory outcomes (M).

Calculate the estimator R = MIN

0 Size of application database
The amount of effort required to develop a piece of software

depends on the size and complexity of the data base. It is vel}'

difficult to characterise the specific attributes of the software data

base which influence the software's cost. Most software complexity

metrics have concentrated on program complexity and exclude data

complexity. The size of the data base (D/P) can be defined as a

ratio of(Boehm, 1981, p. 386)

DIP~
Data base size in bytes or characters

Program size in number of delivered source instructions

where data base size refers to the amount of data to be assembled in

storage by the time of software acceptance.

Page 38

0 Complexity of the product
In this case, the effort multiplier is presented as a function of the

level of complexity of the module to be developed. A rating is

given to the function operated by the module. These functions can

be control, computation, device-dependent, or data management

operations (Boehm, 1981, p. 390).

Hardware attributes include :

(J Run-time performance constraints
The effort multiplier is presented as a function of the degree of

execution time constraints imposed on a software subsystem. "The

rating is expressed in terms of the percentage of available execution

time expected to be used by the subsystem and any other

subsystems consuming the execution time resource" (Boehm,

!98!, p. 401).

0 Memory constraints
The effOrt multi pi ier is presented as a function of the degree of

main storage constraint imposed on a software subsystem. Main

storage refers to direct random access storage such as core,

integrated-circuit etc., but excludes devices such as drums, disks,

tapes, or bubble storage" (Boehm, 1981, p. 41 0).

CJ Volatility oftbe virtual machine environment
The effort multiplier is presented as a function of the level of

volatility of the virtual machine based on the subsystem to be

developed. In a given software subsystem, the underlying virtual

machine is a composite of hardware and software that the

subsystem calls upon to achieve its tasks (Boehm, 1 98 I, p. 41 3).

Page 39

CJ Required turnaround time
The effort multiplier is presented as a function of the level of

computer response time experienced by the project team

developing the subsystem. It is defined in terms of average response

time measured in hours (Boehm, 1981, p. 415).

Personnel attributes include :

0 Analyst capability
A different rating is given to the level of capability of the analysts

working on the software subsystem. For each rating, a set of

multipliers is to be multiplied to account for the difference in the

capability of the analysts (Boehm, 1981, p. 427).

CJ Programmer capability
The effOrt multiplier is presented as a function of the level of

capability of the programmers working on the software module.

The ratings are represented in terms of percentiles (Boehm, 1981,

p. 435). The major factors that are considered include :

Programmer's ability

Efficiency and thoroughness

Ability to communicate and cooperate

a Applications experience
The effort multiplier is presented as a function of the level of

applications experience of the project team. The ratings are defined

in tenns of experience in a particular type of application (Boehm,

1981, p. 431).

CJ Virtual machine experience
The effmt multiplier is presented as a function of the level of

virtual machine experience of the project team (Boehm, 1981, P.

439).

Page 40

0 Programming language experience
The effort multiplier is presented as a function of the level of

programming language experience of the project team. The ratings

are defined in tenns of experience with the programming language

used (Boehm, 1981, p. 442).

Project attributes includes:

a Use of modern programming practices
The effort multiplier is presented as a function of the degree to

which modem programming practices are used (Boehm, 1981, p.

451). Such practices includes:

Top-down requirements analysis and design

Structured design notation

Top-down incremental development

Design and code walkthroughs or inspections

Structured code

Program librariart

Cl Use of software tools
The effort multiplier is presented as a function of the degree to

which software tools are used (Boehm, 1981, p. 459).

0 Development schedule constraint
The effort multiplier is presented as a function of the level of

schedule constraint imposed on the project team. The ratings are

defined in tenns of the percentage of schedule stretch-outs or

acceleration (Boehm, 1981, p. 466).

Even though COCOMO is well-known and widely used, there are still

some criticisms about it's approach, as Kitchenham (1992, p. 213)

pointed out. First, the COCOMO model has 15 cost drivers and many

are treated as if they are independent of one another, but there is

Page 41

I
[

evidence that they are not. A report produced by Kitchenham (1992, p.

214) states that project teams with high virtual machine experience

usually have high programming-language experience, hence there is a

relationship between the two factors. Secondly, the model assumes that

the factors are applicable in all organisations and thirdly, the factors

require a subjective evaluation. This is a problem because it is vel)'

difficult to ensure that different estimators make subjective

assessments in the way as described by the model's builder.

Putnam's SLIM Estimating Model
The SLIM estimating model was developed by Larry Putnam of

Quantitative Software Management in the late 1970s (Kemerer, 1987,

p. 417). Putnam's SUM model"is a dynamic multivariahle model that

assumes a specific distribution of eftbrt over the life of a software

development project. The model was derived from labour distributions

encounkred on large projects" (Pressman, 1992, p. 87). The

distribution etTort is presented graphically by what is known as the

Raylelgh-Norden cun!e (Figure 2.2.3.1.1).

' !.Wf>:ot.:n Md E""'""'"l1>'>'1 Wcri< • 60%
Ollh>V,e-C)W Elbl

Figure 2.2.3.1.1 Diagram- Putnam's SLIM: Model

Page42

The Rayleigh.~Norden curve can be used to derive the "software

equation" that relates the number of delivered lines of code (L) to effort

(K) and development time (t). The software equation is (Pressman,

1992, p. 87):

where <; is a state-of-teclmology constant and reflects the throughput

constraints that affect the progress of the programmer. For example; -if

Ck = 2000, that suggests a poor software development environment

(such as no methodology or poor documentation). If c, ~ 8000 or

11000, that suggests a good or excellent software development

environment, respectively. The constant Ck can be derived for local

conditions using historical data collected from past development

efforts.

The equation above can be rearranged to form the expression

for development effort (K). The expression for development effort is as

follows (Pressman, 1992, p. 88) :

where K is effort expended (in person-years) over the entire life cycle

for software development and maintenance, and td is the development

time in years. This equation can be related to development cost by

including the labour rate factor($/person-year).

In a study conducted by Kemerer (1987, p. 420), the SLIM model was

used to estimate software costs based on the data gathered from 15

large completed business data-processing projects. From the study, it is

Page 43

shown that the SUM model does not do well via the magnitude of

relative error' (or MRE) test. MRE is defined as:

MRE ~ MMf,l - MM net

MMBCI

where MMcst is the estimated effort and MMnc1 is the actual effOrt.

The average percentage error is 772 percent, with the smallest erfor

being 21 percent. It also shows that the errors are all biased and eftbrt

is overestimated in all 15 cases. Kemerer (1987, p. 422) suggested that

this may be due to the fact that SUM was originally developed using

data from defence-related projects where productivity is usually lower

than those business data-processing systems.

Albrecht's Function Point Analvsis
Function point analysis is a technique that helps programmers to

estimate efficiently the amount of time required to develop an

application, based on its complexity (Davis, 1992, p. 88). This

estimation method increases the effectiveness of project management

as developers have a better idea how to schedule programming time

and allocate resources. Davis (1992, p. 88) also added that estimation

based on this method can vary by as much as ± 35 per cent during the

early stages of the development cycle and by as little as l 0 per cent

during design definition stages. More of function point analysis is

discussed in Section 2.4.

8 The MRE test is used to determine the errors of underestimating and overestimating the amount of
effort put into the projects.

Page 44

Lines Of Code Method
One of the main criticisms concerning_ function points is that they are

subjective whereas lines of code are objective. Counting function

points still requires human involvement, and this implies subjectivity.

However, it is not entirely true that lines of code are an objective

metric (Jones, 199 J, p. 49). There are three problems associat~d with

lines of code.

0 There are no national or international standard for a line of code

that encompasses all procedural languages. Ever since the inception

of the software industry, lines of code have been used. According to

Jones (1991), it is very surprising that after all this time, the basic

concept of a line of code has never been standardised.

Q Currently, software can be produced usrng methods such as

application generators, spreadsheets, graphic icons, reusable

modules of unknown size and inheritanr::e. For software developed

using either of these methods, entities such as lines of code are

totally inapplicable.

CJ The number of lines delivere-d will be less as the level of language

gets higher. So~ the most powerful and advanced languages \viii

appear less productive than the more primitive low~levellanguages.

Software cost estimation models serve as an essential foundation

for software project planning and control. Only when a software project

has clear definitions of its primary milestones and reasonable estimates of

the time and money it will require to accomplish them, a project manager

cannot tell whether his/her project is under control (Boehm, 1984, p. 19).

Page 45

' ' I

However, according to Kusters eta!. (1990, p. 190), after evaluating

a number of selected cost estimation rnodels9, they concluded that these

models cannot accurately measure software cost. The models need to be

adapted into the environment in which they will be used. In Kemerer's

(1987, p. 427) paper, the conclusion that was derived was that models that

were developed on different environments do not work well uncaliberated,

hence calibration is essential. Kusters eta!. (1990, p. 190) also added that,

despite the great number of publications on cost estimation models, they

were unable to find any empirical data that shows the capability of these

models to predict effort and software cost accurately. They believed that an

organisation should not completely relies on the estimates derived from a

single model.

2.2.3.2 Productivity Measures And Models

Almost everyone with experience of working in large software

projects, knows that by putting more people on to a late project will delay

the project even more (Brooks cited in Fenton, 1991, p. 260). Productivity

metrics are used to measure the productivity of personnel during different

software processes and in different environments. The model shown in

Figure 2.2.3.2.1 (Fenton, 1991, p. 1 1) identifies that productivity is a

function of value and cost. It endeavours to detern1ine the individual

components of these in measurable form. Fenton also suggested the

productivity model will project a more accurate view of productivity than

models measuring si::e of output divided by effort.

Fenton (1991, p. 262) pointed out that in general, people do not like

to be monitored and measured. If people know that they are being

evaluated, there is a temptatiofl by them to manipulate the data. Hence, he

9 Kusters eta\. (1990) selected Before You Leap, Estimacs, SPQR20 and BIS!Estimator as the cost
estimation models for their_study.

Page46

suggests that productivity should be viewed as an attribute of the human

resource. After all, the measuring of productivity can be viewed as the

measuring of a major software resource ... people! In this context,

productivity refers to the people working on a part(s) of the development

of the software such as coding, documenting etc. Therefore, productivity

can be viewed as an external resource attribute.

According to Horst Remus (cited in Gilb, 1988, p. 256) of IBM,

productivity improvement techniques must be focused more on

management than on software developers. Gilb (1988, p. 257) himself

added that many software developers believed that productivity can be

improved by using more sophisticated programming langt1:.ges and/or more

sophisticated software support tools. There is some truth in this viewpoint

but as Remus concluded from his observation at IBM (cited in Gilb, 1988,

p. 256), productivity will greatly improve if the productivity of

management is improved~ not through technical means.

Quality

1\
·' \

Reufabmty \

-· Vallie

Defects

·· .•.
"···-.
Quantity

I \
I \

Si~e \

Producijvity ----- ~-- ·-. -- ·-.

//
Personnel

\

Time\

Functionality Money

·--Cost
/~./1·~--~-

i -
Resources

I\ . .
I

' \
HNV '

S/W

------.
Complexity

>
/\ .

/1 \\.
Environmental

Constraints

\

Pr~blerh
Difficulty

i
'------------------~--~--··---~-..J

Figure 2.2.3.2.1 Diagram- Fenton's Productivity Model

Even though there are many problems associated with measuring

productivity using the lineMof-code (LOC) approach, many companies will

continue to use this method simply because it can be relatively easy to

Page 47

compute automatically (Fenton, 1991, p. 265). However, there is another

approach that may prove to be a b~tter productivity measure ... the function

point method.

Behrens (1983, p. 649) did a study to determine the productivity of

application development using the function point rnethvl Behrens

collected data from 11 projects completed in !980 and 14 projects

completed in 1981. The function point data were collected manually oil a

specially designed form. These data went through extensive review to

ensure consistency and uniformity. Cost data were collected from an

automated project management system. Consulting and user time was

collected manually from the project records. The time data went through

extensive auditing to ensure accuracy.

From the study, by mapping the project cost against the project size

(function points), it shows thRt if the project size increases, their unit costs

also increases. Behrens (1983, p. 649) states that this is a significant

productivity result. The same- result was derived when productivity

(hour/function point) is mapped against project size.

Behrens then examined two major attributes of these projects :

development environment and programming language. The results showed

an average unit cost of 0. 77 for the on-line environment and 1.52 for batch

(Behrens, 1983, p. 650). This is the second important productivity result

because it shows that the productivity for the on-line environment is

approximately twice that of batch.

The languages that were used include Wang Utilities, Databus,

Focus, CMS Exec, PL/1 and COBOL. From the study, it shows that Wang

Utilities is 41 per cent less costly than Focus and 67 per cent less costly

Page 48

than COBOL (Behrens, 1983, p. 651). Behrens pointed out that language is

dependent ofthl" development environment.

The final analysis showed that project size, development

environment, and language are determinants of system development

productivity. Other project attributes such as years~of-systems-experience

and user experience (customer's people working on the project) were also

tested but found not to be significant in Behrens' study. Although the data

from Behrens' study is old, it does show that the function point method can

be used as a general measure of development productivity.

2.2.3.3 Quality Models And Measures

Most experts believe that even with metrics that can accurately

estimate software cost and measure productivity, it will not guarantee the

success of the sofhvare if quality is not considered. Total Quality

111anagement (TQM) was introduced to the software world from industry,

where it had proved very effective in ensuring the quality of the finished

product. Keyes (1992) stated that " ... TQM focuses on the product and is a

process whereby continuous improvement is constantly stressed". It is also

added that many Information Systems (IS) only use TQM in the early

stages of software development. Fewer than 5 per cent of these

organisations maintain the quality improvement process throughout the

product life cycle. Management must realise that ifTQM is not enforced at

an early stage, the cost of detecting and repairing of defects, and software

maintenance will be high.

McCall's model and Boehm's COCOMO model are two we!J

known software quality models. McCall's and Boehm's models attempt to

identify key attributes of quality from the user view of the final product.

Page 49

[

These atlributes are usually called quality factors (Vliet, 1993, p. 71).

McCall described these quality factors as (Pressman, 1992, p. 551):

0 Correctness : The degree to which the program satisfies the user's

requirement.

0 Reliability : The degree to which the program is expected to

perfom1 its intended function with acceptable precision.

0 Efficiency : The amount of computing resources and code required

by the program to perfonn a task.

0 Integrity : The degree to which access to the software or data by

unauthorised persons can be controlled.

Cl Usability : The effort required to Jearn, operate, prepare input, and

interpret the output of the program.

0 l'rfaintaiuabilit)' : Generally, the effort required to locate and fix an

error in a program.

CJ Flexibility : The etfort required to modify a working program.

0 Testabili~l': The effort required to test a program to ensure that it is

perfom1jng its intended function.

0 Portability : The effort required to transfer a program from one

hardware and/or software system environment to another.

0 Reusability : The degree of a program or part of a program, that can

be reused in other applications.

0 Interoperability : The effort required to link one system to another.

These attributes are often considered too high-level to be

meaningful and measurable directly. Hence, these high-level attributes are

decomposed into lower-level attributes called quality criteria (Fenton,

1991, p. 223). The quality criteria again require one further level of

decomposition to associate them with a set of low-level, directly

measurable attributes known as quality metrics (Fenton, 199 I, p. 225).

There are two types of attributes namely, internal and external

attributes. According to Vliet (1993, p. 71), internal attributes of a piec.e of

software can be measured purely in tenns of the software itself. Examples

Page 50

of internal attributes are modui'arity, size, defects encountered etc. External

attributes of the software can only be measured with respect to how the

software relates to its environment. Examples of external attributes are

maintainability, usability, reliability etc. In many cases, the quality criteria

of the internal attributes may have direct impact on the external quality

attributes. For example, the reliability (external attribute) of the software

cannot be directly measured. To measure reliability, it is necessary to

directly measure the number of defects (internal attribute) encountered On

the software so far. This direct measure can provide an insight to the

reliability of the software.

The idea of quality on a piece of software varies from person to

person. This is true in the case of software quality. The software engineers,

project management and the client may have different definitions of what

quality is. There might also be trade-otTs between the various quality

attributes such as maintainability and timeliness (Shepperd, 1990, p. 312).

2.2.3.4 Reliability J\lodeis

Musa and his colleagues (cited in Pressman, 1987, p. 459) describe

software reliability models in the following manner: "Software reliability

models are used to characterise and predict behaviour important to

managers and engineers. In order to model software reliability one must

first consider the principle factors affecting it : fault generation, fault

removal and the environment. Fal!!t generation depends primarily on the

characteristics of the developed code (code created or modified for the

application) such as size and development process characteristics such as

software engineering technologies and tools used, level of experience of

personnel, etc. Note that code can be developed to add features or to

remove f.1.ults. Fault removal depends on time, operational profile, and the

quality of the repair activity. The environment depends on the operational

Page 51

over tin1e, software reliability models are generally fomlUlated in terms of

random processes".

There are two categories of a software reliability model. One model

predicts reliability as a function of chronological (calendar) time. The

other model predicts reliability as a function of elapsed processing time

(CPU execution time). According to Musa and his colleagues, the model

based on CPU execution time reveals the best overall results (Pressma"n,

1992, p. 583). There are two models, based on CPU execution time, which

are not too complicated and yet yield fairly good results. They are the basic

execution model and the logarithmic Poisson execution time model (Vliet,

1993, p. 360).

With all these reliability models around, it is difficult to conclude

that there is one measuring technique that can consistently give accurate

results over different data sources. So in prac.tice, what developers have

done is to use several measuring techniques in a particular case, hoping to

select one (if any) that will produce the more trustworthy results.

2.2.3.5 Performance Evaluation And Models

This involves the measurement of a specific software product

attribute ... efficiency. Evaluation of perfom1ance includes external system

performance aspects such as response times and completion rates. It also

evaluates the performance of internal workings of a system such as the

efficiency of algorithm (Fenton, 1991, p. 13).

Systems performance evaluation has been developed mainly in

isolation with respect to other disciplines such as computer architecture,

system organisation, operating systems, and software engineering (Ferrari,

1986, p. 678). Ferrari proposed several answers for the cause of this

Page 52

compare to other scientific fields, and it is one that is still rapidly

developing. Ferrari (1986, p. 679) suggests thai perhaps it is this rapid

advancement that has " ... characterised this field so far, there has been little

incentive for reflection, and the quantitative evaluation of system

perfonnance certainly requires a more reflexive attitude than the

introduction of new, more powerful functionalities''.

Another likely reason for the isolation of performance evaluation is

that computers are very complex machineries. This is because, it is

extremely hard to quantify the needs and the behaviour of their human

users. The third likely reason as proposed by Ferrari (1986, p. 679),

suggests that a sizeable fraction of computer scientists view the field of

computer science as an art form, thus cannot and should not be subjected

to quantitative assessment.

2.2.3,6 Structural And Complexity Metrics

Structural complexity metrics are mainly used for measuring

specific quality attributes such as reliability and liUrilllainabilit;•. However,

these attributes cannot be measured until some working model of the code

is available. From the developers' point of view, it is desirable to be able to

predict which parts of the software system are likely to be less reliable or

require more maintenance than others. The type of metrics used are

McCabe's cyclomatic and Halstead's complexity metrics (Pressman, 1992,

p. 573).

Page 53

McCabe's Complexity Model
To determine the complexity of a software, McCabe suggests a

11mathematical technique that will provide a quantitative basis for

modularisation and allow us to identifY software modules that will be

difficult to test or maintain" (Shepperd, 1988, p. 30). He suggested that

the number of control paths through a module would be a better

indicator, since this is distinctly related to testing effort. McCabe's

model uses classical graph them}' to describe the complexity of the

software. This method counts the number of edges in the program (e),

the number of nodes (n), and the number of connected components (p).

Hence, the cyclomatic number of the program can be calculated using

the formula (Shepperd, 1988, p. 31) :

V(G) = e- 11 + 1 (See Figure 2.2.3.6.1)

where Vis the cyclomatic complexity and Gas the program graph. In

the case, where there are more than one component, the cyclomatic

complexity can be calculated using the formula (Shepperd, 1988, p. 31)

V(S) =e-11 +2p

where S is a set of connected components. Each component must

contain a single entt)' and a single exit node.

Page 54

~- ·.
) BEGIN

l / '
r-----\) REPEAT

'(
,.---.,,

11

. (,__ _) writeln/readln

.I
(·.1

IFnum>O

~.

()NODE (11)

J EDGE {e)

V(G.J=l2·9+1"4

[I .. /··-"
.~ ·/ ,,.---.

i (· ELSE JF () write In
i l- . ·..,._ ..

i j \ ///
' (\

I ! \. ·--- .-, \
i writeln -, ' --- ./.
: ·--.. {
--------""\. 1 UNTIL

·r
L_~ ·-. --(· .. I ENO

, __ _

FigLJre 2.2.3.6.1 Diagram- Derivation of V(G) for an example
program

Halstead's Software Science
Software science was introduced by Maurice H. Halstead. Its main

concern was with the implementation of algorithms as computer

programs (Felican eta!., 1989, p. 1630). Halstead's theory of software

science is possibly the best known and most thoroughly studied

(Pressman, 1992, p. 573). Software science uses a set of primitive

measures that may be derived after code is generated or estimated once

design is complete. These primitive measures are (Curtis et al., 1979, p.

98):

Pnge 55

Cl n 1 - the number of distinct operators that appear in a program

0 n2 - the number of distinct operands that appear in a program

Cl N 1 -the total number of operator occurrences

Cl N2 - the total number of operand occurrences

The operators can be regarded as the language's standard operators (for

example, "+", "-", "*" etc) and keywords (such as IF-THEN-ELSE,

BEGIN-END statement etc) and the opera11ds can be regarded as the

variables and consttlnts used by the programmer (Felican et al., 1989,

p. 1630). From these primitive measures, Halstead was able to develop

expressions for :

CJ the overall program lellgth (N)

0 the potential minimum volume (V) for an algoritlun

0 the actual volume (the number of bits required by a program)

0 the pl'ogramlevel (a measure of software complexity)

[J the language /e~·el (a constant for a given language)

CJ development effort(£)

0 development time (T)

0 the projected number of faults in the software.

Halstead shows that the length N can be estimated using the equation

(Pressman, 1992, p. 573):

and program volume Vmay be defined as:

However, it should be noted that V may va~ depending on the

programming language used and the volume of infonnation (in bits)

required to a specific program.

Page 56

In theory, a minimum volunu:: must exist for a particular

algorithm. Halstead defines a volume ratio L as the ratio of the volume

of the most compact fonn of a program to the volwne of the actual

program. In actuality, L must always be less than 1. Using the primitive

measures, the volume ratio may be expressed as (Pressman, 1992, p.

575):

Halstead proposed that each language be categorised by a

language level (/), which varies among languages. He theorised that I is

a constant for a given language, but other work indicates that I is a

function of both the language and the programmer (Pressman, 1992, p.

575).

The effort (E) required to develop the software can be

approximated by the equation (Mills, 1988, p. 12):

where n can be obtained from the relationship

N ~ n log,(n/ 2)

The corresponding programming time (T, in seconds) can be derived

from E by dividing by the Stroud number (S). The Stroud number is

usually taken as 18 for these calculations (Mills, 1988, p. 12).

E
r~s

However, if only the value of length (NJ is known, then time (T) can be

approximated using this equation (Mills, 1988, p. 12):

Page 57

Halstead's theory has generated some controversy and not

everyone agrees that the underlying theory is correct. But experimental

verification of Halstead's findings have been conducted for a number of

programming languages. In particular, Felican et al. (1989, p. 1630)

conducted an experiment by examining about 550 Pascal programs in

the data processing centre of the University of Udine, which represent

the widest test of Halstead's theory with regard t<,l Pascal programs.

They concluded that Halstead's formulas underestimate the number of

total operators for programs written in high level languages such as

Pascal. They suggested that the reason for this inconsistency was

derived from the nature of the language itself.

2.2.4 Data Collectiorr

1t would be ideal to be able to gain control O\l'er the software process by

accurately predicting and measuring software cost and personnel productivity.

However, this all depends on how careful and well planned the task of

collecting data is carried out. E\·en with the "best" metric around, if the data

collection method is poor and inconsistent, the results derived from the metric

would be rendered meaningless. The collection of data requires human

observation and reporting. This requires managers, system analysts,

programmers, testers and users to record mw data on forms.

Manual recording of data is associated with problems such as bias,

error, omission and/or delays. Therefore, autonwtic data capture is more

desirable. However, to ensure the accuracy and completeness of data, much

human intervention is required. Hence, in most cases, the manual recording

technique is still the best.

Page 58

•

Basili et a!. (!984, p. 728) suggest the use of a goal-directed data

collection method. This model starts with a set of goals that are to be satisfied.

These goals are used to generate a set of questions that are to be answered. Jt

then proceeds stepvby-step through the design and implementation of a data

collection and validation mechanism. Analysing the data may provide answers

to the questions and it may also generate a new set of questions. This model

relies heavily on an interactive data validation process- the people who supply

the data are interviewed for validation purposes concurrently with the software

development process (Basili et a!., 1984, p. 728). The model that Basili et a!.

(1984, p. 729) proposed consists of six basic steps, with considerable feedback

and iteration occurring at several different places. These steps are:

0 Establish the Goals of the Data Collection
According to Basili et al. 11984, p. 729), the goals that are set, reflect

the type of development methodology used. A goal is to assist in the

understanding of the environment and to focus on the attention of

techniques that are applicable in that environment. Without a goal, the

data collected might end up being incomplete or irrelevant. Example of

a goal- fo add new piece o.ffunctionaliry to an existing ,\ystem.

[J Develop a List of Questi0ns of Interest
After the goal(s) has been :onceived, it can be used to develop a list of

questions that are to be answered. Without these questions, data

distributions that are needed for assessment purposes may have to be

produced in an ad hoc manner, and be incomplete or inaccurate.

Example of a question of inrerest might be - "What is the distribution of

changes across ,\ystem components?"

Page 59

0 Establish Data Categories
After the questions of interest have been set up, a categorisation

scheme must be created. Each categorisation scheme mus~ be complete

and consistent. Each category can be further subRcategorised. Er:ample

of main data calegot)1 - Modificution. Example of subMcategory for

Modification can be "optimise system petformance", 11change

development support environment" etc.

0 Design and Test Data Collection Form
A data collection form is used to provide a pennanent copy of the data

and to reinforce the programmers' memories. Designing fonns can be a

very tricky process because they often represent a compromise among

conflicting objectives. The fom1 must be designed so that the data

collected can be used to answer the questions of interest.

0 Collect and Validate .Data
Once the fonns have been filled in by the necessary people, they are

checked for correctness, consistency and completeness. During the

validation process, if the checks reveal some problems, the people who

filled in the fonns will be interviewed.

D Analyse Data
The data are analysed by calculating the parameters and distributions

needed to answer the questions of interest.

2.2.5 Futl.!re Directions Of Software 1\Jetrics

The history of software me tries has been domin"ted by product metrics.

Furthermore, these metrics have been applied only to conventional notations

used in the development of software using procedural languages. According to

Ince {1990, p. 300), there is a need for more research on software metrics in

other areas. For example :

Page 60

0 There is a need for data metrics to measure the unstructuredness of the

stored data in an application.

0 More study is needed on the use of mathematical notations for

specification and system desigr, that are often used in safety-critical

systems.

0 Not much is knO\vn about metrics that can be performed on non

procedural languages like Pro log, because there is no notion of control

flow.

0 Not much work has been conducted on notations for specification.

Most of the research is concentrated on resource estimation. There is a

major requirement for research into metrics for the maintenance of

such notations.

2.3 CAPABILITY MATliRITY MODF.L

For the past two dee-ades, new software methodologies and technologies

have not resulted in a significant improvement in software productivity and

quality. Both industry and government organisations have realised that the

problem lies in their inability to manage the software process. Even with the best

methods and tools, developers cannot possibly hope to achieve their goals when

the project is disorganised.

2.3.1 Immature Versus Mature Software Organisations

Organisations are require to understand the differences between

immature and mature software organisation before they can set any goals for

process improvement. An immature software organisation is one where the

software processes are defined by developers and management during the

duration of the project. Based on unrealistic estimates, the project schedules

and budgets are often inaccurately projected. In situation where the project is

behind schedule, product functionality and quality are often compromised, and

activities such as reviews and testing are frequently eliminated (Paulk et al.,

Page 61

1993, p. 2). There will be no means of judging the product's quality or for

solving problems associated with the product or process objectively. This

makes it very difficult to predict the quality ofthe product.

A mature software organisation is an organisation that has full control

over the software development and maintenance processes. Members of the

development staff are fully aware of the software process and the work

activities are executed as planned. The roles and responsibilities for each

process are carefully defined and are made clear throughout the entire

organisation and the project. Software quality and customer satisfaction are

monitored by the managers. Unlike the immature software organisation,

product quality is objectively and quantitatively measured. The problems that

are associated with product and process are carefully analysed. Project

schedules and budgets can be realistically estimated, based on histoiical data.

By doing so, the proposed development cost, schedule, software functionality

and quality of the software are usually realised (Paulk eta!., 1993, p. 2)

ft is obvious that there is a need for a software process maturity

framework This framework serves as a evolving path from ad hoc,

undiscipline processes to mature, disciplined software processes. This

framework acts as a foundation where initial improvement programs can be

established. Having established the initial foundation, future improvement

programs can be further applied onto the framework. The software process

maturity framework is created based on the combined concepts of software

process, software process capability, software process perfonnance and

software process maturity (Paulk eta!., 1993, p. 3).

Page 62

2.3.1.1 Software Process

According to Paulk et al. (1993, p.3), a sojiware process can be

defined as " ... a set of activities, methods, practices and transfomtations ... "

that developers use in the development and maintenance of software and

other associated products such as project plans, design documents and

code. As the organisation matures, the software process also matures and

will be more consistently implemented throughout the organisation.

2.3.1.2 Software Process Capability

So.fllvare process cupuhil i~v describes the results that can be

accomplished after following a software process. ft provides the

organisation with a means of predicting the expected outcome of future

projects undertaken by the organisation (Paulk et al., 1993, p. 3).

2.3.1.3 Softwa1·e Process Performance

"Software process performance represents the actual results

achieved by following a software process" (Paulk et al., 1993, p. 4).

Therefore, software process perfommnce focuses on the results achieved

and software process capability focuses on the results expected. The actual

performance of a project may not reflect the full process capability of the

organisation because the capability of the project is constrained by its

environment. For example, changes in technology may increase the

learning curve of the project's staff. This may prevent the organisation

from fully utilising its processing capability.

Page 63

2.3.1.4 Software Process Maturity

Software process maturity implies a proce=.~ which has been " ...

explicitly defined, managed, measured, controlled and effective" (Paulk et

al., 1993, p. 4). Maturity suggests a growth in capability. This implies that

the organisation's software process has improved and is consistently 0eing

practiced in all projects engaged by the organisation. Software process is

generally well-understood through documentation and training. The

process is constantly being observed and refined by its users. Consistent

application of the software process will eventually help improve

productivity and quality.

2.3.2 Overview of the Capability Maturity Model

Very often, software engineers and managers are fully aware of their

problems but they may not agree on which improvements are most crucial.

Without an organised strateb'Y for improvement, it is extremely hard to have an

idea on which improvement activities to achieve first. Paulk et a!. (1993, p. 5)

suggests designing an evolutionary path that will improve an organisation1s

software process maturity in stages. The software process maturity framework

structured these stages so that improvements at each stage \Vill serve as the

foundation for improvements for the next. This framework acted as a road

map for consistent process improvement. It does not serve as a "quick-fix" for

projects in trouble but rather as a guide for early detection and identifYing of

deficiencies in the organisation.

The Capability Maturity Model (CMM) provides software

organisations with guidelines on how to achieve control over their

development and maintenance process and how to improve toward

accomplishing software engineering and management excellence. The CMM

was desi!,JTied to direct software organisations in selecting the right process

Page 64

maturity and identifYing some of the most critical issues that are related to

software quality and process improvement (Paulk et al., I 993, p. 5). An

organisation can continue to improve its software process by concentrating on

this finite set of activities and working assertively to accomplishing them.

The CMM is divided into five maturity levels. Each of these levels

define an ordinal scale for determining the maturity of an organisation's

software process and for assessing its software process capability. The levels

also assist the organisation to prioritise its improvement efforts. Each maturity

level accommodates a layer that serves as the foundation for continuous

process improvement. Each level also includes a set of process goals when

achieved will improve the process capability of the organisation. The five

maturity levels are characterised as (Paulk et al., 1993, p. 7):

0 Level I -Initial Level
At this level, the organisation usually does not have a stable

environment for developing and maintaining software. The software

process capability at this level is often unpredictable because the

software process is often changed as the work progresses. Schedules,

budgets, functionality and quality are usually unpredictable too.

Performance depends on the capabilities of individuals whose skills,

knowjedge and motivations varies. Performance can only be

determined on an individual basis (Paulk ct al., 1993, p. 9).

IJ Level 2- Repeatable Level
At this level, procedures for managing a software project, and methods

for implementing these procedures are instituted. Experience for

planning and managing of new projects is acquired from similar

projects. Its objective is to establish an effective management processes

for software projects. This will pem1it the organisations to apply the

successful practices that \Vas developed on earlier projects. An

Page 65

effective process is one that has been practiced, documented, enforced,

trained, measured and able to improve (Paulk et al., 1993, p. 10).

Projects at this level are said to have basic software management

control. Realistic project commitments are derived from the results

gathered from previous projects and from requirements of the present

project. The roles of software managers are to track software costs,

schedules, and functionality. Software requirements and work products

developed to satisfied these requirements are baselined, and their

integrity controlled. Software project standards are also defined and the

organisation ensures that they are strictly followed (Paulk el al., 1993,

p. 10).

0 Lr?<•e/ 3- Dejiued Level
At th1s level, the standard process for developing and maintaining

software is documented. This includes both software engineering and

management processes. These processes are then combined to form a

cohesive whole. Processes established at this level are used (and

changed, if reguired) to assist the software managers and technical staff

to perform more efficiently.

Projects tailor the organisation's standard software process to create

their own defined software process. This will explain the unique

characteristics of each project. This tailored software process will

include a cohesive, integrated set of well-defined software engineering

and management processes. A well-defined process is one that includes

" ... readiness criteria, inputs, standards and procedures for performing

the work, verification mechanisms, outputs, and compiF.lion criteria"

(Paulk et al., 1993, ·p. II). Since the software process are well-defined,

it provides management with an awareness of the technical progress on

all projects.

Page 66

1:1 Leve/4- Ma11aged Level
At this level, the quantitative quality goals for both software products

and processes are established. Productivity and quality are measured to

determine any important software process activities. The data gathered

are stored and analysed in an software process database. Software

processes are equipped with well~defined and consistent

measurements. These measurements fonn the quantitative foundation

for assessing the projects' software processes and products. Controls

over the products and processes are accomplished by reducing the

variation in their process performance so that it falls within the

favourable quantitative bot.odaries (Paulk eta!., 1993, p. 12).

Cl Level 5- Optimising Ll!l•el
At this level, the organisation concentrated mainly on improving its

software process. The organisation has the ability to recognise

weaknesses and reinforce the process pro-actively. Data on the

usefulness of the software process is utilised to can)' out cost benefit

analyses on new technologies and proposed modification to the

organisation's software process. Effective software engmeermg

practices are identified and deployed throughout the organisation.

Defects found are analyse to determine their causes. Software

processes are assessed to prevent known defects from repeating and the

lesson learned are. administered onto future projects. The main

objective of the organisation is to continue improving their process

capability, in effect. improve the process perfom1ance of their projects

(Paulk eta!., 1993, p. 13).

Page 67

The CMM is a model that describes the main attributes that would be expected

to characterise an organisation at a particular maturity level. The CMM is

described at an adequate level of abstraction so that it does not unnecessarily

constrain how the software process is implemented. The CMM must be

properly interpreted, based on informed professional conclusion. Paulk et a/.

(1993, p. 14) pointed out that the CMM does not explicitly instruct an

organisation on how to improve. It merely describes an organisation at each

maturity level. He also added that it usually takes a couple of years (maybe

more) for an organisation to move from one level to the next.

2.3.3 Future Directions Of The CMM

The CMM is not the solution to all problems. It does not cover all the

issues that are vital to the success of a project. According to Paulk et al. (1993,

p. 51), CMM presently does not address "expertise in particular application

domains, advocate specific software technologies, or suggest how to select,

hire, motivate, and retain competent people". Although these issues are

important to the success of a project, some of them have been analysed in

other contexts. Unfortunately, they have not yet been incorporated into CMM.

The CMM was intentionally developed to provide an systematic, disciplined

framework so that it can address software management and engineering

process 1ssues.

2.4 FUNCTION POINT ANALYSIS

Allan Albrecht was looking for a method of measuring productivity in

software development. Realising that the line of code approach was not very

reliable, Albrecht wanted to develop an alternative method. Hence in 1979, he

developed the function points model (Heemstra et al., 1991, p. 230). As the name

suggests, this model counts function points, as opposed to the very popular lines of

code model. In fact, function point analysis is conducted even before coding

begins. Function points relate directly to the client's requirement in a way that is

Page 68

more easily understood by the client than SLOC (Albrecht eta\., 1983, p. 639).

Function points can also be used as a general measure of development

productivity, which may be used to illustrate productivity trend (See Section

2.2.3.2).

In addition, function point analysis does not count functions that are found

to be necessary by the programmer but were not specifically requested by the user.

Therefore, a function point is regarded as one end-user requested function (Grupe

eta\., 1991, p. 24). For example, if a user requests that this month's sales figures

be retrieved from a data base, that request becomes one function point.

After it was first developed, the function points model was later revised by

Symons into what was later known as the Mark II (see Section 2.4.4) function

points model (O'Brien et al., 1993, p. 3). Although many consider function point

analysis to be a relatively new concept, it has arose as an important methodology

tbr estimating and validating the limits and size of a software project. With this

knowledge, it is possible to measure productivity and the influence of\'arious tools

and procedures (Kizior, 1993, p. 42). Kizior (1993, p. 42) added that function

point analysis is not used to measure work input, quality, or value to the user.

Though the importance of function point analysis has been recognised, it

has not been well publicised. This is found to be the case when Kizior (1993, p.

42) conducted a review on textbooks pubiished within the past eight years which

deal with software design, systems analysis and design, and general information on

system concepts. Kizior (1993, p. 42) found that of the 32 books reviewed, only

two made explicit mention of function point analysis.

Page 69

2.4.1 Advantages And Disadvantages Of Function Point Analysis

Function point analysis has become popular within the last several

years due to its inherent advantages. These advantages are (Kizior, 1993, p.

45):

D. Function point analysis measures function that is delivered to the user

0 lt is not dependent on hardware and software

0 It is reliable early in the design cycle to aid the estimating process

0 It can be meaningful to the end user

Having listed the advantages, the accuracy of counting function points

is proportional to the knowledge of the person counting. According to Kizior

(1993, p. 46), counting function points ca1mot be considered as a science

because some subjective judgements had to be made. Furthennore, Ratcliffe

and Rollo (cited in O'Brien et al., 1993, p. 3) showed that the count achieved is

dependent on the notation used to describe the software requirements. In

addition, it was found that experienced analysts were more accurate tn

function point count than those without a notable level of experience (Graham

et al., 1990, p. 71). It is also fair to say that it does not make anyone proficient

in counting function points simply by undertaking a function point training

course. Beginners should be assisted for a period by an experienced analyst so

that they may be able to achieve consistent results. Other drawbacks of

function points are that they cannot (Kizior, 1993, p. 46):

Q Measure individual >effort

Cl Measure productivity (only to a certain degree)

0 Measure quality

CJ Measure value to user

Ferens et al. (1992, p. 641) state that the functimi points method is not

readily suited for real-time or scientific environments. They did, however,

briefly mention that authorities such Capers Jones, Donald Reifer, and John

Page 70

Gaffney and Richard Werling are attempting to adapt the function points

concept into these environments. They also added that little independent

research has been done on real-time variations of function points. Therefore, it

is difficult to ascertain whether function points can be useful outside the data

processing envirorunent.

2.4.2 Counting Function Points

The principle of function point analysis is simple. It is based on the

number of functions that are delivered in the final system. The general

assumption is that the more function points an application has, the more

complex system becomes (Grupe et al., 1991, p. 24). The more complex the

system, the longer it will take and the more expensive it becomes to develop

the system.

Simply put, function point analysis is a weighted sum of five primary

end-user function-related attributes. The function points that are identified

during system analysis are grouped into five categories which will be adjusted

by a complexity factor (Gmpe eta!., 1991, p. 24). These categories are:

t:l the external input type (for example : mouse input)

CJ the external output type (for example : viewing items on a screen)

D the external inquiry type (for example : accessing a record without

update)

CJ the logical internal file type (for example: master and transaction files)

[] the external interface file type (for example : sharing files with other

applications and external files)

Albrecht et al. (1983, p. 639) pointed out that" ... these factors are the

outward manifestations of any application. They cover all the functions in an

application. Each of these categories of function types are counted individua11y

and then weighted by numbers reflecting the relative value of the functions to

the user/customer". Function points is the weighted sum of these function

Page 71

types. Organisations that use function point methods often develop criteria for

detennining whether a particular entry has a simple, avemge or complex

weighting factor (See Figure 2.4.2.1). According to Albrecht et al. (1983, p.

639), the weighting factors used were 11determined by debate and trial". And as

mentioned before, the detennination of the complexity of these function types

is somewhat subjective.

Weighting Factor

MeasurementParameter__. __ _,c,'"""'-' -~S';'Im"";'pii'''----"A'"';'"""'''--C"''"m"':"pll•"'-----1
Number of user in • 3 4 6 -
Number of user outputs 4 5 7 "'
Number of user inquiries 3 4 6 =
Numberoffiles 7 10 15 "'
Number of extemalinterfact"s 5 7 10 "'

Counl·total =
""'===

Figure 2.4.2.1 Table- Computing Function Point Metrics

To calculate function points, the following equation is used {Pressman, 1992,

p.49):

FP ~Count-total* [0.65 + (0.01 *SUM(}~))]

where Count-total is the sum of all FP entries obtained from the table in Figure

2.4.2.1. Fj (where i = 1 to 14) are complexity adjustment values based on the

responses to questions listed in Figure 2.4.2.2. The constant values in the

above equation and the weighting factors that are applied to information

domain counts are determined empirically.

Page 72

Rate each factor on a scale of 0 to 5:
0 =No lnHuence 1 = Incidental 2 = Moderate 3 = Averoge 4 =Significant 5 =Essential
F;:

Does the system require reliable backup and recovery?
Are data communications required?
Are there distributed processing functions?
Is performance critical?
W1\l the system run in an existing, h~avily utilis-o.:u operatior al environment?
Does the system reqtJire on-line data entry?
Does the on-line datil entry rl'-luire the inpll! transaction to be built over multiple screens or operations?
Are the master files updated lJn-line?
Are the inputs, outputs, files, •)r inql,litie.s complex?
Is the Internal processing complex?
Is !toe code designed to be rl''l)Sable?
Are conversion and installation included in the design?
Is the system designed for multiple installations in different organisations?
Is !he aDolication desiQned to facilitate chang~ and ease of use by the user?

Figure 2.4.2.2 Table~ Computing Function Points- Complexity
Adjustments Values

Once the fUnction points have been calculated, they can be used as a measure

of software productivity, quality, and other attributes. For example :

Productivity = FP I person-month
Quality = defects I FP

Cost = SIFP
Documentation = pages of doctJmentalion I FP

2.4.3 Fundion Point Analysis: An Evaluation

The function point metric, like the lines of code metric, IS

controversiaL Those that are for the function point metric, claim that function

points are programmingwlanguage independent. Hence, making it suitable for

applications using conventional and non·procedural languages. Proponents

also claim that function points is more attrnctive as an estimation tool because

estimution can be made early in the life~cyc\e of a project (Pressman, 1992, p.

51).

On the other hand, the opponents are claiming that the function point

metric requires some "sleight of hand" because some part of the computation is

based on su~~ective rather than objective data (Pressman, 1992, p. 51). That is

to say, when two individuals are performing a function point count on the

same system, they may not come up with the same. ~:umber of function points.

Page 73

l

They also claim that function points have no direct physical meaning ... "

because they are only numbers (Pressman, 1992, p. 51).

To detennine whether function point analysis is indeed as good as it is

claimed to be, Heemstra and colleague {1991, p. 229) perfunned a series of

studies. The studies include an analysis based on the data from a large survey

of Dutch organisations, from an experiment regarding the use of software cost

estimation models and from a field study aimed at the adjustment factor of the

function point analysis model. The questions that Heemstra et al. (1991, p.

229) were attempting to answer are :

IJ Is function point analysis actually used in practice?

IJ How is function point analysis used in practice?

0 How reliable are the estimates made with function point analysis?

CJ Are models based on function points better then models based on lines

of code?

D How effective are the function point analysis adjustment

characteristics?

The report produced by Heemstra eta!. (1991, p. 236) (based on their

data from the survey of Dutch organisations) confirmed that function point

analysis is indeed widely used in the Netherlands. If this model became a

standard tool, it could provide organisations \\ith necessary infonnation of

their previous experiences so that they could learn from them in a methodical

way. HO\vever, Heemstra's report also showed that using this tool alone will

not resolve all the problems in this area.

From the experiment, function point analysis performed auite well as a

tool for measuring size. Its result superseded the lines of code method as an

estimator within the setting of Heemstra's experiment. This also proved to be

the case in a study conducted by Graham eta!. (1990, p. 71). In Graham's

study, function point analysis also proved to be more consistent than the line of

Page 74

code method. Henr:.e, the results confinn that function point analysis is a more

acceptable metric for measuring software size.

However, the results from the field study regarding the adjustment part

of the model is less than satisf.1ctory. Experienced users showed no confidence

at all in the adjustment characteristics. In Heemstra's (1991, p. 236)

experiment, there were many disagreements against the notion of a small set of

generally applicable cost drivers. Heemstra concluded that precaution

measures must be considered when using any model. After all, a model is not

a machine where questions are fed from one end and the correct answers

produced from the other end.

Function points have proved to be a broadly popular measure with both

practitioners and academic researchers. According to Dreger (cited in

Kemerer, 1993, p. 87), it is estimated that there are around 500 major

corporations worldwide currently using the function point analysis method.

Graham et al. (1990, p. 65) also state that function points are currently being

used by numerous large Australian organisations to measure productivity for

project review purposes and effort estimation. And according to a survey

conducted by the Quality Assurance Institute (Kemerer, 1993, p. 87), the

function point method was found to be the best available MIS productivity

measure. In addition, Ferens et al. (1992, p. 641) pointed out that the

International Function Points User's Group (lFPUG) has been formed to

continually improve the function points theory and practice. The IFPUG is also

studying and revising some of Albrecht's equations.

Page 75

2.4.4 Mark TI Function Point

The aim of the Mark II approach was to overcome some of the

weaknesses of Albrecht's function point approach. Ho\vever, Symons (1988, p.

8) pointed out that there will never be any evidence that the Mark H approach

will give higher results to that of Albrecht. With the Mark lJ approach, the

methods for counting data elements has been introduced to make the

complexity classification of inputs, outputs and entities more objective. ~he

concept of "logical files" has replaced by "entities". This means that instead of

having five attributes like Albrecht's method, Mark II only has three : inputs,

outputs and entities (Ferens et al., 1992, p. 641). The Mark II approach assigns

·unadjusted Function Point's (UFP) to data based on its usage (create, delete,

etc.) in transactions, whereas Albrecht's approach will assign UFP's to all the

data that exist in the system (Symons, 1988, p. 8).

Symons (1988, p. 8) pointed out some of the differences or similarities

between Mark II and Albrecht's function point model as :

0 The Mark II approach requires an understanding of entity analysis and

the rules for entity counting is now available. In Albrecht's approach,

knowledge of entity analysis is desirable but it has no entity counting

conventions yet.

a The Mark I1 approach has fewer variables in the UFP component.

Hence, it has a number of advantages such as greater ease of

calibration against measurements and estimates.

CJ Even though this theory has not yet to be examined, according to

Symons, the Mark II approach has the capability of improving the

measurement of the work-output in the maintenance and enhancement

activities. Albrecht's approach can only measur~ the total size of a

changed component, without distinguishing on how big or small these

changes are. The Mark II approach can measure the size of the changes

Page 76

made to a component, if the number of data elements changed are

recorded and the references to these changed entities are accounted for.

0 The Mark II approach may require about 10 to 20 percent more effort

(than Albrecht's approach) for counting each input and output data

elements. This suggests that Albrecht's approach may be applied

slightly earlier in the project life-cycle. Symons (1988, p. 9) believes

that it may still be able" ... to produce reasonably accurate estimates_ of

the number of data elements per transaction for early sizing purposes".

2.5 UNDERGRADUATE SOFTWARE ENGINEERING PROGRAMS

According to Grant et al. (1991, p. I 06), the state of Software Engineering

practice in Australia is still generally rather primitive. It is believed that

educational institutions such as Edith Cowan University have a major role to play

in the transfom1ation of this practice. What is needed by these educational

institutions are degree programs with a strong emphasis on Software Engineering.

The computing curricula in Australia tend to have an emphasis either in Computer

Science, Information Systems or Computer Systems Engineering. There is a need

to develop a curriculum with a strong Software Engineering emphasis. There must

be a fair balance of both theoretical and practical technical foundations.

Furthermore, it is believed that with careful planning and direction, software

engineering projects can provide students with an opportunity to experience how

software is being developed in the real-world (Shaw et al., 1991, p. 33). 1~ is very

difficult to define a completely satisfactory curriculum, because software

engineering has yet to reach the stage of being a mature engineering discipline.

Page 77

2.5.1 Objectives Of Software Engineering Courses

The previous section pointed out the need for software enginee-.ring

programs in educational institutions. This section will discuss the main

objectives of these programs, from the students' point of view. When

undertaking such programs, the students are expected to (Grant et al., J 991, p.

107):

Cl develop adequate technical skil1 in analysis, design and programming

o understand the primary concepts of Software Engineering

CJ develop and/or improve their inter/intra personal skills so that they can

participate in a software development team

0 participate in practical work that requires the understanding and use of

these concepts and skills

CJ appreciate (through experience) the benefits of methodological

approaches to systems development and the consequences of ad hoc

approaches

Students must understand and accept the benefits of undertaking a

practical software engineering project. Therefore, educational institutions

should provide students with a learning environment where students can

experience and learn the important role that methodology plays in the success

of the project. Hence, the final year software engineering project is technically

complex that requires a high degree of communication and control. It is

believed that the project will definitely fail (or not up to standard) if it is" ...

approached in an ad hoc manner" (Grant et al., 1991, p. 108). However, it is

not easy to select a one-year software engineering project. As mentioned

before, the project is technically complex but at the same time, it should not be

too complex that it cannot be completed in t-.vo semesters. lt must be made

clear to the students that such a project is to be treated as a software

engineering project and not a programming assessment (Adams, 1993, p. I 12).

Page 78

A well~defined project will provide adequate time to demonstrate to students

the need for software engineering disciplines and the approach to managing

complex projects. The students must put into practice the theories they have

acquired, such as group organisation and project management. (Grubb, 1991,

p. 2) ..

The projects that are provided by the Department of Computer Science

of Edith Cowan University require a lot of team work and communication

among students, staff advisers and the clien/(5). The students are required to

work in teams of 4 to 5 members each. Group projects play an imtmrtant role

in many software engineering courses. As Call iss et al. (1991, p. 25) suggest,

11 factors, such as group dynamics, egoless pro.!:,rramming and team organisation,

that affect the way programmers work together cannot be taught effectively in

a classroom settings". The students must experience the problems of working

in a group (Briggs, 1991, p. 48) because this will serve as an important step

towards the students' appreciation of the solutions to these problems.

The group project was designed so that it required students to

communicate with each other, their staff adviser and the client. The most

common form of communication is through !,TTOup meetings. Although there is

no penalty for students who are absent from group meetings, it is expected that

they establish some fonn of group communication either written, verbally or

electronically. It is an objective of the Edith Cowan University Computer

Science department that students can learn the benefits of effective

communication and the consequences of poor communication. According to

Grant et al. (1991, p. 108), there is sufficient. anecdotal evidence that

concentration on communication skills has provided the behavioural and social

tmnsfonnations in computing graduates most appreciated by employers in

recent years."

Page 79

The development methodology enforced by the university is the APT

(EXECOM, 1991) methodology. The APT methodology is based on the

waterfall model. Though students working on the software engineering project

are free to select other types of methodologies, the majority of students still

use APT. However, data10 gathered from the 1993 software engineering

students showed that the APT methodology was not very suitable in many

cases. Nonetheless, this model serves as a good learning methodology from the

students1 point of view.

HI from a study conducted as part of this (hesis.

Page 80

CHAPTER 3 : l 993 SOFTWARE ENGINEERING PROJECT

3.1 OVERVIEW OF THE ORCHARD PROJECT

The 1993 software engineering project was called the Orchard Project. The

client for this project was Mrs Vivian Campbell, who is a lecturer of Edith Cowan

University. Bunbury campus and is also an orchardist. The aim of this project was

to develop a software system which would allow orchardists and horticulturalists

to fonnulate an efficient fann management strategy ("Orchard", 1993).

The students undertaking this project were required to use the tools and

techniques acquired in their course to analyse requirements and data. This will

enable the students to produce a system that provides orchardists with B. means to

identify and collate all the vital areas of orchard operations. These operations

include the identification of optimal fruit varieties, staff management, farm

infrastructures and create efficient marketing strategies ("Orchard", 1993).

The students were also encouraged to develop the database so that it would

meet the orchardist's other requirements. These requirements included keeping

detailed insecticide spray and fertiliser records, irrigation schedules and

identifying which fruits are most profitable on the local and international markets

("Orchard", 1993).

3.2 GOALS OF THE ORCHARD l'ROJECT

According to the client, Mrs Campbell, the orchard management system

should be able to provide the orchardist with essential information such as tax and

superannuation, and should also provide information that wilJ aid the orchardist in

making managem\!nt decisions such as purchasing and hire of workers. The goals

of the system was to aid the orchardist in making a greater profit and producing

excellent fruit for the local and overseas markets.

Page 81

[

't

I

3.3 ~AIN ASPECTS OF THE MANUAL SYSTEM

There are six main aspects in Mrs Campbell's orchard business. These

aspects are:

D Fruit production

0 Taxation

o Otherfarm

3.3.1 Fruit Production

0 Marketing

0 Staffmanagement

CJ Research

Fruit production deals mainly with the growing and maintaining of

trees. The activities that are associated with it, are :

ordering of new trees

planting of trees

pruning and training trees

application of fertilisers and sprays

fmit thinning

fruit picking and packing

irrigation

Other aspects that are also involved in fruit production includes fencing, pest

control, mowing and weed control and machinery maintenance.

3.3.2 Marketing

Marketing includes recording of sales information for both local and

overseas markets. The sales infom1ation records the quantity of the various

fruits sold as well as its price. However, in the local situation, the prices of

these fruits vary from day to day. Accordingly the orchardist has to be well

aware of the current prices. The orchardist will alSo need to maintain

information regarding the crates and disposable trays used, for they all have

monetary values.

Page 82

3.3.3 Taxation

In taxation, the primary concern is keeping the business' accounts up to

date. The accounts are divided into income and expenditure. Those that are

classified as income are fruits sold, other fam1 income (see Section 3.3.5) and

bank interest. The fruits sold are categorised by variety (eg. apples and peaches

etc). The other farm categories are income derived from the sale of wool ar1d

livestock.

The expenditure accounts are categorised as follows :

-labour - fertiliser
-pesticides - herbicides
-trees -insurance
-electricity - rates
-bank charges -machinery repairs

-cartage -hire of machinery
- ;~uit packaging

3.3.4 Staff Management

Staff management includes the hiring and firing of employees,

calculating and paying of employees' wages, and calculating and paying of

employee's superannuation. The wage of an employee is calculated based on

the employee's job type, age, mode of employment and hours worked.

3.3.5 Other Farm

Other farm aspects include stock control on items such as fertiliser,

pesticides etc, materials used for fencing and water storage. It also includes

livestock management, mainly related to sheep.

Page 83

3.3.6 Research

Research mainly involves the identification of new varieties of trees

and fruits, and new methods for maintaining the growth of the trees and fruits.

3.4 REQUIREMENTS OF THE NEW SYSTEM

The new system should be able to perform all of the crucial tasks

mentioned in the previous section. The client has identified those tasks as being:

0 calculate the taxes based on information stored in the mcome and

expenditure accounts.

D identify the variety of trees that are the least or most profitable

CJ create a budget and to project cash flow

D identify sales trends based on year to year comparison of costs

CJ maintain records on which sprays and fertiliser are being applied

0 irrigation scheduling

Page 84

CHAPTER 4: INFORMATION GATHERING
~~~~~~~~~~--

4.1 TOTAL HOURS SPENT ON THE PROJECT 

This section presents the total number of hours spent on the project by each 

group. The data were initially gathered during a pilot study, which lasted for 14 

weeks. The data were collected on a weekly basis in the fonn of questionnaires. 

Students were asked to log the number of hours spent on the project for the week. 

Since it was not mandatory for the students to take part in this research project, a 

major portion of the data gathered were inconsistent and incomplete. Therefore, a 

second set of questionnaires were prepared. These questionnaires were given to 

the students after their project demonstration. This was to ensure that all the 

students for each group were accounted for. It was mandatory that all students 

participate in this exercise. Students were requested to answer the questionnaires 

to the best of their ability and they were requested not to confer with each other. 

The data gathered are presented in Figure 4.1.1 and Figure 4.1.2. 

Group Totat Hours Maximum 

2 
3 
4 
5 
6 
7 
6 
9 

2200 
1600 
2380 
1277 
2:047 
1950 
2000 
2550 

5 
4 
5 
4 
5 
4 
3 
6 

Page 85 

440 
400 
476 
319 
409 
488 
667 
425 



I 

Total Hours Spent" On The Project 

3000 

2500 

~ 2000 .. 

"' 1600 

0 1500 1277 1370 

~ 
§ 1000 
z 

500 

5 10 3 

2200 
1950 2000 2047 

7 8 6 2 

Group Number 

2370 2360 

4 

2550 

9 

Figure 4.1.2 Graph- Total Hours Spent On Project By Each Group 

4.2 DATA COLLECTED FROM THE RESEARCH QUESTIONNAIRE 

From the second set of questionnaires (as mentioned in th~ previous 

section), other types of data were also collected. These were : 

a The number of hours spent on each phase of the development life-cycle. In 

this case, the life-cycle included requirement, analysis, design, coding and 

testing phases. 

0 The personal attributes of each member of a group- age, gender and study 

mode 

a The quality of project management. 

a The usefulness and effectiveness of the APT (EXECOM, 1991) 

methodology. 

0 The effectiveness of having a staff adviser. 

a The effectiveness and usefulness of the product(s) used to develop the 

software. 

a The quality of user requirements obtained from the client. 

D The effectiveness of working as a team. 

CJ The quality of contribution made by each team member. 

a The ability to meeting deadlines. 

Page 86 



4.2.1 ill!Q.rt On Each Development Phase 

The effort employed in each phase of the development life-cycle was 

broken down into five. phase~ - requirement, analysis, design, coding and 

testing. The details of effort collected from each student was expressed in 

percentage terms. The data for each group were then totalled and averaged to 

detennine the effort (in percentage) for each phase. The results are presented 

in Figure 4.2.1.1. 

2 23 26 19 " 14 100 

' 9 13 10 54 15 100 
4 14 26 25 17 19 100 
5 10 21 18 38 14 100 
6 16 19 15 36 14 100 
7 17 24 22 25 13 100 
8 18 23 30 19 10 100 
9 12 24 23 14 27 100 

Figure 4.2.1.1 Table- Effort On Each PhHSc (In Percentage) 

The same information in Figure 4.2.1.1 is translated into number of 

hours spent on each phase. This calculation is derived using the total number 

of hours obtained from Figure 4.1.1 -Total Number Of Hours Spent On 

The Project. The results are presented in Figure 4.2.1:2. and Figure 4.2.1.3. 

Group Bteal.jown Of Effort Per Grou ln Hours 

Number Requirement Analysis Desi n Cod in Testin 

1 367 465 543 558 418 
2 506 572 418 367 317 

' 140 200 160 860 240 
4 338 609 585 407 440 
5 128 271 223 479 176 
6 325 389 307 739 267 
7 332 463 424 488 244 
8 353 467 600 380 200 
9 305 603 575 367 700 
10 249 425 216 332 148 

Average 306 446 405 500 317 
Minimum 128 200 160 332 148 
Maximum 506 609 sou 860 700 

Figure 4.2.1.21able- Total Hours Spent On Each Phase By Each 
Group 

Page 87 



Group Breakdown Of Effort In Aver a e Per Studcnt.=:oo_!!:p · In Hours 

Number R uirement Analysis Design Coding Testing 

1 77 93 109 112 84 
2 101 114 84 77 63 
3 35 so 40 215 60 
4 68 122 117 81 88 
5 32 68 56 120 44 
s S5 78 S1 148 57 
7 83 116 106 122 61 
B 118 156 200 127 67 
9 51 100 !i6 61 117 
10 50 85 43 66 30 

Average 66 98 91 113 67 
Minimum 32 so 40 61 30 
Maximum 118 156 200 215 117 

Figure 4.2.1.3 Table- Average Hours Spent On Each Phase Per Student
Group 

Judging from the tables above, the majority of the groups spent more 

time on Analysis and Coding and Jess time on Requirement and Testing. It was 

found that most of the groups went out into the industry to conduct their own 

research on methods for calculating tax, and gaining more information on the 

operations of an orchard business. This is reflected in the amount of time spent 

on Analysis. As for Coding, the software used to developed the application 

were relatively new {except to; Objectvision Pro). This lack of previous 

exposure to the software obviously contributed to an increase in the time 

required to complete coding. 

As for Requirement, students spent the least amount of time on this. 

This was probably due to the fact that the client could not be reached by the 

students directly and the user requirements were provided in two information

gathering sessions (each lasted for about one hour). However, some teams did 

further their research among local orchardists. Students also spent less time on 

Testing. The assumption being that since the majority of the projects were 

behind schedule, their software was not fully tested. However, during the 

demonstration of these projects, most of the groups told f~le judging panel that 

extensive testing was indeed conducted. Based on the information presented in 

Section 6.2.3 - Evaluation Report, it shows otherwise. It would appear that 

Page 88 



the software testing was limited to the various modules rather than the whole 

systems. 

4.2.2 Personal Attributes Of Group Members 

Figure 4.2.2.1 presents the composition of the groups based on the 

students' age. gender and study mode. 

Gender Stud Mode 
Group Average Male Female Studying Studying 

Number Aoo Student Student Full Time Part Time 
1 26 5 0 4 1 
2 22 4 1 5 0 
3 23 2 2 4 0 
4 22 4 1 5 0 
5 23 4 0 4 0 
6 27 4 1 3 2 
7 28 4 0 4 0 
8 26 3 0 2 1 
9 22 6 0 6 0 
10 23 5 0 4 1 

F1gure 4.2.2.1 Table- Personal -\ttributes Of Each Group 

The average age of all the students was around 24 years old. Out of the 

41 st~dents, 12 per cent were female students and 12 per c.ent were pa11-time 

students. 

4.2.3 Staff Adviser 

Each group was assigned a staff adviser, whose role was to act as a 

consultant to the group members. Figure 4.2.3.1 and Figure 4.2.3.2 presents 

the rating (out of !0) that students gave for their staff adviser, and the total 

number of times the students met with their staff adviser. The "meetings" that 

these students had could be group or individual meetings. Student meetings 

with staff advisers were not compulsory under the project guidelines. 

Page 89 



[ 

I 
I. 

Staff Meeting 
Group Adviser's With Staff 

Number Ratint~ Adviser 
1 4.2 15 
2 6.6 2 
3 2.6 0 
4 6.2 10 
5 5.0 7 
6 6.0 6 
7 2.0 6 
6 3.3 4 
9 7.0 25 
10 6.2 20 . 

Figure 4.2.3. I Table- Staff Adv1ser 

Scores Awarded To Staff Advl&:rs 

1:1 
6.2 

7 
7 . 6.2 

6.0 
0 6 ~ .l -0 

:I 
5 

; 4.2 0 
• 3.3 • 0 2.6 u 

~ 8 0 ,n" 
"' 

: J -
7 3 8 5 6 10 2 9 4 

Group Number 

Figure 4.2.3.2 Graph- Scores Awarded To Staff Adviser By Students 

The results in Figure 4.2.3.1, indicate that some groups have minimal 

or no interaction with their staff adviser. 

It is also important to point out that Group 5 a 'ld 7 had two different 

staff advisers. Their first staff adviser left some time during the middle of the 

first semester. These groups were then reassigned to another st.1ff adviser 

(Staff Adviser 3). It is not clear the number of meetings these groups had with 

the respective: staff advisers. For example, Group 5 stated that they had about 

7 meetings with their staff adviser but their staff adviser (Staff Adviser 3) did 

not mention any meeting he had had with the group. Of course, all these data 

Page90 



were based on the individual recollections of the event and Staff Adviser 3 

was responsible for 4 groups. 

In conforming with the university's Ethical policies, the name of each 

staff adviser will remain anonymous. Therefore, each staff adviser was 

assigned a unique number. Figure 4.2.3.3 shows which group(s) were assigned 

to which staff adviser. The data represented in italics were those groups whose 

software was not evaluated because they could not be made operational. 

Despite the fact that all software was operational for the assessment 

presentation, it \Vas only possible to get 10 of the 16 working for subsequent 

analysis. However, the data from staff advisers for these groups was taken into 

consideration. 

Staff Group 
Adviser Number 

1 1 
2 2 
3 3 
3 5 
3 7 
3 10 
4 4 
5 6 
6 8 
7 9 
8 11 
9 12 
10 " 11 14 
12 15 
13 16 . Figure 4.2.3.3 Table- Staff Advrser For Each Project Group 

To better tmderstand the relationship between staff advisers and 

students, as well as their opinion of being appointed staff adviser, the staff 

advisers were interviewed on a structured basis. The results from these 

interviews are as follows: 

Page 91 



0 Staff Adviser I : 
This staff adviser had general knowledge about the APT methodology. 

According to him. he had meeting3 with his group once every two 

weeks during the first semester. Each meeting lasted for about half an 

hour. During semester two, he met with his group three times, each 

lasted for about half an hour. He commented that it was a good idea to 

have a staff adviser assigned to each project group. He claimed that this 

would provide students with a "contact point", so that students could 

come for help if they were having problems (that were related to the 

project). 

0 Staff Adviser 2 : 
This staff adviser knew very little about the APT methodology. He said 

that he saw his group about three times during the first semester and 

notal all during the second semester. He commented that having a staff 

adviser for each group was essential because students "need to have 

access to a staff member". · 

0 Staff Adviser 3 : 
This staff adviser was not very familiar with the APT methodoiOb'Y· He 

said that there was no fixed time or date for meetings with his groups. 

According to him, he did meet with Group 10 for about half an hour 

per week (for !4 weeks), 2 meetings with Group 3 for about half an 

hour each, during semester one. During semester two, he had 4 

meetings with Group 15 for about an hour each. It is important to note 

that the staff adviser for Group 15 was Staff Adviser 12. He 

commented that by assigning members of the staff of the department as 

staff advisers did not really emulate a real-world software development 

environment. This is a cause for concern, as the aim of the software 

engineering project was to provide students with "real-world" 

expenence. 

Page 92 



0 Staff Adviser 4 : 
This staff adviser was not very familiar with the APT methodology. He 

met with the project leader once every two to three weeks during 

semester 0ne and two. He did meet with the \vhole group once, towards 

the end of semester one. He commented that members of the staff 

should volunteer to become a staff advi!.:er. Since staff members were 

being assigned to be staff adviser, the department should at least 

provide some fonn of training so that the staff adviser would know 

what to do and what to expect. That way, the staff adviser will be more 

beneficial to the group. 

0 Staff Adviser 5 : 
This staff adviser was familiar with the APT methodology but had no 

in-depth knowledge. He said that his group never set up any meetings 

with him. All he received from the students were progress reports (once 

every 2 to 3 months). He further added that students should take the 

initiative of setting up meetings and not the other way around. He said 

that looking at the progress report was not adequate. He claimed that 

personal contact was important if a staff adviser was to evaluate the 

group's progress. He commented that it was important to have someone 

supervise the student but it would be more effective if members of the 

staff were willing and interested, instead of just assigning them to 

groups. 

0 Staff Adviser 6 : 
This staff adviser was not very familiar with the APT methodology. 

The meetings between students and the staff adviser were very rare. He 

claimed that the students worked independently. He did not offer any 

advice or opinions on matters related to the project. He had no 

background in software engineering and was not fully aware of the 

project's requirements. 

Page 93 



! 

[ 

Q Staff Adviser 7 : 
This staff adviser had about 6 meetings with the group, each lasted 

between 30 minutes to an hour. The staff adviser also provided the 

students with presentation skills (2 - 3 hours), lectures on entity

relationship modelling (4 hours) and advice on designing a better user 

interf>ce (2- 3 hours). 

Q. Staff Adviser 8 : 
This staff adviser had reasonable knowledge on the APT methodology. 

He did offer his students advice and opinions at the beginning of the 

project. He had about 4 meetings with the students, each la.sting for 

about 12 minutes. Due to the lack of meetings with the students, he was 

not aware of the students' progress. He commented that he came from a 

different discipline and had no knmvledge in System Analysis and 

Design and because of his lack of background knowledge, he was of no 

real assistance to the students. 

o Staff Adviser 9 : 
This staff adviser had an average knowledge on the APT methodology. 

He met with his group once every hvo weeks during semester one, but 

in semester two, he did not have any meetings with his group. 

Q Staff Adviser 10: 
This staff adviser had a fair knowledge of the APT methodology. He 

said that during the semester one, he met with the project leader about 

four times, each meeting lasted from 15 to 45 minutes. During semester 

two, he again had about four meetings with the project leader, but each 

lasted only from 2 to 5 minutes. 

Page 94 



IJ Staff Adviser 11 : 
This staff adviser was very familiar with the APT methodology. He had 

very little contact with his group. When they did meet, tho students 

were often poorly organised or not well prepared. He thought that 

having a staff adviser for each group was a good idea because it 

worked out quite well with the previous years' projects. 

l:l Staff Adviser 12 : 
There is no infonnation on how familiar this staff adviser was with the 

APT methodology. The staff adviser said that it would help the student 

greatly if the role of the staff advisers was clearly defined. 

IJ Staff Adviser 13: 

There is no infonnation available from this staff adviser. 

4.2.3.1 Summary 

Based on the infonnation and comments from the staff advisers, the 

following can be concluded : 

0 The staff advi!lers should have a reasonable amount of knowledge 

regarding the standard software development methodology adopted 

by the Computer Science department. This would ensure that they 

know what ~o expect from the students. 

0 Meetings with students on a regular basis should be made 

mandatory so that st?.ff advisers are aware of their problems and 

progress. 

0 Staff advisers should be interested and volunteer for the role. This 

way, the staff adviser will be more interested in the progress and 

development of the group project. 

D Staff advisers should have sufficient knowledge of the software 

development process. 

Page 95 



D Staff advisers should have a clear understanding of the nature of the 

software engineering project. 

If the criteria mentioned above are satisfied, it should ensure that 

all groups will have a conipetent degree of supervision from their staff 

adviser. Then students can really have a taste of what the "real-world" 

situation is like. It is true that in certain cases, students were experiencing 

"real-world" problems (eg. difficulty in meeting deadlines) with their 

project. Some would argue that not all human beings are the same, hence 

not all staff advisers are the same, but from the students' point of view, 

they were being assessed on their project. The role of the staff adviser 

should be an added advantage rather than a disadvantage to the students. In 

addition, supervision should be consistent across all teams. 

Staff advisers 4 ar.d 7 scored ve1y well from the students they 

supervised. Staff adviser 4 maintained a consistent meeting schedule with 

his group's project leader. By doing so, the amount of interaction between 

the staff adviser and student was high. Staff AJ.viser 7 seems to have taken 

a more active role with the students by providing them with more in-depth 

guidance. From these, it is clear that the high level uf student-staff adviser 

interaction, ha~ earned them the highest ratings. However, it is interesting 

to note that Group 2 only met with their staff adviser (Staff Adviser 2) 

about 2 to 3 times and yet, they awarded a score of 6.6 (the third highest) 

for their staff adviser. This is important to point out that there is an element 

of students not wanting to say anything negative about senior members of 

the department, which contributes to the distortion of results. 

Page 96 



4.2.4 Development Software Used 

This section presents the type of software that each group used to 

develop their software. The students were also asked to provide a rating (out of 

10) for the software they used. V./hen questioned on the reason for their 

selection, the majority stated that their software had received positive reviews 

from computer articles and magazines. The data are presented in Figure 

4.2.4.1 and Figure 4.2.4.2. 

Group Development Software Usefulness Of 
Number """ The Software 

1 Microsoft Access 6.0 
2 Microsort Access 5£ 
3 Paradox For Windows 5.0 
4 t.1icrosort Access 8.5 
5 Microsoft Access 6.8 

' Paradox For Windows 5.0 
7 Microsoft Access 5.5 
8 Microsoft Access 6.3 
9 Microsoft Access 5.5 
10 Obiectvision Pro 3.8 

Figure 4.2.4.1 Table- Development Software Used 

Scores Awarded For Development Software Used 

"l 

:j 
' T 
6 t 
5 

4 

3 

2 

5 

3.6 

5 

r 

5.5 5.5 

r 
5.6 

r 

6.8 
6 6.3 

8.5 

1 

0~~~~~-L_LLrLL~~~.~_L.~~~ 

10 3 6 7 9 2 6 5 4 

Group Number 

Figure 4.2.4.2 Graph- Scores Awarded For Development Software Used 

All development software selected were relatively new in the market. 

Since all these packages operated in the Windows environment, they promised 

Page 97 



screen design facilities, and importing of colourful graphic images. All the 

software selected provided some fom1 of 4GL-Iike tools to help make design 

easier. The key word here is "design". When Microsoft released Access 

Version 1.0 and subsequently Version 1 .I, their aim was to provide end-users 

with capabilities to design their own applications. The same applies to Paradox 

for Windows. These packages have integrated fonn and report design 

facilities. Ac; for Objectvision Pro, its early counterpart Objectvision was VCI)' 

similar to Microsoft Access. Boriand promised that users could develop 

applications with Objectvision without any programming. With Objectvision 

Pro, Borland added a report generator and programming language (Turbo C++) 

to make it more powerful. Each piece of software has its own pros and cons, as 

reviews from various computer magazines suggest. 

4.2.5 Other Factors 

This section presents the remaining factors which may or may not have 

effected the results of the software engineering project. 

D Project Management : 
For each group, one member was elected as project leader. His/her role 

was to oversee the software development process. Every member of 

each group was asked to provide a score (out of I 0) on how the project 

was managed. 

Q APT Methodology: 
The students were also asked to provide a score (out of 1 0) for the 

usefulness of the APT met,.odology. This was bash::ally to gain some 

infonnation on the worth of the methodology, especially in a university 

environment. 

Page 98 



Cl Communication With Client.: 

The user requirements for the system were provided by the client via tele

conferencing and written exchanges channelled through the project co

ordinator. The students were asked to award a score (out of 10) on how 

satisfied they \Vere \vith the method(s) used for communicating with the 

client. 

Cl Team Work: 

The students were asked to award a score (out of IO) on how satisfied they 

were with the way their group operated. 

0 Contribution To Project: 

The students were also asked to award a score (out of 10) on how satisfied 

they were that their contribution was being valued by the rest of the team. 

D On Schedule: 

The students \\'ere asked whether they felt they were able to complete their 

project on schedule. 

Figure 4.2.5.1 presents the results obtained. The results are all based on group 

averages. Figure 4.2.5.2 to Figure 4.2.5.6 presents each of these factors in 

ascending order. 

Group APT Communication Project r~m Contribution Oo 
Number Methodoloav With Client Man<Jrlement Wo<1< To Proiect Schedule 

1 4.2 3.2 6.6 7.0 8.2 y., 
2 4.2 4.6 7.0 r.o 7.4 No 
3 3.5 3.3 5.0 3.8 6.5 No 
4 4.9 3.2 9.0 8.7 8.8 No 
5 5.3 3.0 8.3 7.5 8.3 y., 
6 3.8 2.6 5.7 5.6 7.4 No 
7 2.6 3.0 4.3 5.0 5.6 No 
6 4.3 4.0 6.3 6.7 6.3 y., 
9 3.0 3.3 6.3 8.6 9.0 No 
10 3.4 1.0 7.3 5.5 6.0 No 

Average :<.9 3.1 6.9 6.6 7.8 
Minimum ,. 1.0 4.3 3.6 5.6 
Maximum 5.3 ••• 9.0 .. 9.0 . Frgure 4.2.5.1 Table- Other Factors That Affect The ProJect 

Page 99 



0 -0 
";; 
0 
e 
0 
u 

" 

7 

Scores Awared Foe" The APT Methodology 

9 10 3 6 2 8 4 5 

Group Number 

Figure 4.2.5.2 Graph- Scores Awarded For The APT Methodology 

The APT methodoiD!,')' (EXECOM, 1991) is the standard development 

methodology adopted by Edith Cowan University's Computer Science 

Department. To use the APT methodology, students must first purchase the 

licence for the methodolot,ry. Although this methodology has been used by this 

department since 1991, there was not any infom1ation regarding its 

effectiveness in developing software in a university environment. As a result, 

1993's software engineering students were asked on h .w they felt about this 

methodoloh'Y· From the score awarded by the students (see Figure 4.2.5.1 and 

Figure 4.2.5.2), it can been seen that the APT methodology was not \veil 

received. The average score for was 3.9, with a minimum of 2.8 and a 

maximum of 5.3. As for its usefulness, almost all the students reported that the 

APT methodology was either not complete (student's version) and/or not 

suitable for developing software using 4GLs tools and software. 

Page 100 



Scores Awarded For Communication With Ciient 

10 

9 

8 

0 
~ 

7· - 6 0 

= s 4.6 
0 4 
~ 4 3 3 3.2 32 3.3 3.3 
0 2.0 u 

~Jnll[il.llJ1lliJ 
~ 

10 6 5 7 4 3 9 8 2 

Group Number 

Figure 4.2.5.3 Graph- Scores Awarded For Communication \Vith Client 

As previously mentioned, the user requirements were provided by the 

client via tele-conferencing. In total, there were two such conferences, each 

lasted for about an hour. If the students were to have any questions, they were 

asked to forward them to their staff adviser or to the project coordinator. 

Students had no direct access to the client. fn theory, information was to be 

passed between the client and the students via the project coordinator. The 

scores awarded by the students (see Figure 4.2.5.1 and Figure 4.2.5.3) 

indicate that this method of communication was not very effective -with an 

average of 3.1, minimum of I and maximum of 4.6. The students had a tight 

schedule to meet and infonnation was not obtained and provided efficiently. 

As a iesult, all the systems that were evaluated addressed ditTerent aspects of 

the orchard business. Some members of the judging panel were heard to 

remark that, "if some of the various teams' software were combined, it would 

make a better application". It J5 fair to say that the user requirements were 

poorly defined from the students' point of view. 

Page!Ol 



0 

" i5 
; 
0 
~ 
' 0 
w 

1~ I 

t 8 

7 

6 

5 

4 

3 

2 

1 

0 

Scores Awarded For Project Management 

9 
83 83 83 

7 7.3 r r 
6.6 

5.7 
5 

4.3 

7 3 6 2 10 5 8 9 4 

Group Number 

Figure 4.2.5.4 Graph· Scores Awarded For Project Management 

Scores Awarded For Team Effort 

1~ J 
8 . 7.5 r 

6.7 7 7 

8.7 8.8 

0 7 
" 
i5 6 5.5 5.6 

5 
; 5 .. 
0 3.8 • 4 • 

] ' 0 3 w 
2 

1 

0 I i 
3 7 10 6 8 2 5 4 9 

Group Number 

Figure 4.2.5.5 Graph- Score~ Awarded For Team Effort 

Page 102 



Scores Awarded For Team Contribution 

10 
8.8 9 

9 8 8.2 8.3 8.3 

8 7.4 7.4 

0 7 
~ - 6 0 

6.5 
5.8 

~ 5 0 
• 4 -0 
u 

3 "' 
2 

0 

7 3 2 6 10 ., 5 8 4 9 

Group Number 

Figure 4.2.5.6 Graph- Scores Awarded For Team Contribution 

A peer assessment was also conducted. By this, students from each 

group were requested to give a score (out of 10) on how they felt the project 

was being managed, how well did the students work as a group and the 

contributions made by each student to the project. Based on the result from 

Figure 4.2.5.1 (also see Figure 4.2.5.4 to Figure 4.2.5.6), the majority of 

them managed quite well, except for Groups 3 and 7. Group 7 has one of the 

lowest scores for Project Management, Team Work and Contribution To 

Project. Whereas Groups 4 and 9 scored extremely well on all counts. It is 

interesting to note that although these groups had good project management 

views and high team spirits, it does not automatically follow that their 

productivity rate will be high (See Chapter 7 for details on individual groups' 

productivity rate). 

4.4 SCORE A WARDED TO PROJECTS 

This section presents the score that was awarded to each project by the 

judging panel. Members of the judging panel included the client, project 

coordinator, unit coordinator and the group's respective staff adviser. Each group 

Page 103 



questioning towards the end of the demonstration. The scores awarded were based 

on the groups' : 

• Presentation 
• Statement of the problem 
• Approach to the problem 
• Documentation at the presentation 
• Solution functionality 
• Solution qual it'.' 
• Quality of design for the software 

The scores for solution functionality were awarded by the judging panel based on 

their perception of the soluiion's functionalities. The scores for solution quality 

were awarded by the judging panel based on their perception of the quality 

(usability, fitness for purpose, performance) of these functionalities. These results 

are presented in Figures 4.4.1 to 4.4.4. 

2 
3 

' 5 
6 
7 
8 
9 

2 
3 

' 3 
5 
3 
6 
7 

Page 104 

82.6 
67.3 
60.6 
65.3 
67.5 



" 0 
0 
~ 

0 
s 
£ 
~ 
0 
u 

" 

100.0 I 
60.0 

60.0 

40.0 

45.0 

2 

Score Awarded To Each Project 

54.2 

10 

60.6 

r 

6 

65.3 

7 

67.0 

r 

3 

67.3 

5 

Group Number 

67.5 

8 

79 2 82.6 
766 

I 

9 4 

Figure 4.4.2 Graph- Students' Project Score Sorted In Ascending Order 

25.0 I 
20.0 l 

' 14.2 
15.0 .L 

10.0 1 8.7 

::lit 
10 2 

Solution Functionality 

192 19.6 20.0 20.0 202 2Q.4 20.7 

16.0 

I 

8 6 9 3 5 4 7 

Group Number 

Figure 4.4.3 Graph- Solution Functionality 

Page 105 



Solution Quality 

-~ 
25.0-.. 

18.0 = 20.0 17.0 a 15.7 15.7 16.4 
c- 14.2 0~ 

s~ 15.0 11.0 12.0 
-o 10.2 
~!i 9.0 

OJ1 
•o 10.0 
,f-
• 5.0 • • 0 
0 

0.0 "' 10 2 8 3 6 5 7 4 9 

Group Number 

Figure 4.4.4 Graph - Solution Quality 

4.5 PEER ASSESSMENT SCORES 

At the end of each semester, the students of each group were askeJ to 

award a mark for _their team-mates' performance and contribution to the project. 

Students were requested to award a score out of 13 and 15 for semester one and 

two, respectively. These scores are presented in Figure 4.5.1 and 4.5.2. 

Peer Assessment 

Group I ~emester3; ~emester5; Total ~~ut Of 
Number Out0113 Out Of t5 28 

1 11.38 11.93 23.31 
2 10.15 12.23 22.38 
3 10.07 12.08 22.15 
4 11.30 13.28 24.58 
5 9.82 11.69 21.51 
6 11.95 11.29 23.24 
7 11.05 13.50 24.55 
8 9.17 9.63 18,80 
9 13.00 15.00 28.00 
10 8.42 9.53 17.95 

Average 10.63 12,02 22.65 
Minimum 8.42 9,53 17.95 

Maximum 13.00 15.00 28.00 

Figure 4.5.1 Table- Total Peer Assessment Scores 

Page 106 



Groups' Peer Assessment 

30.00 28.00 

• • 25.00 
0 
u 
~- 20.00 
-~ c_ 
•o 15.00 E-. , 
~0 10.00 .-• " 5.00 • • • 0.00 ~ 

23 24 23 31 24.55 24.58 
21.51 22.15 22.38 . . 

17.95 18.80 

I 
I 

10 8 5 3 2 6 7 4 9 

Group Number 

Figure 4.5.2 Graph- Total Peer Assessment Scores 

From the figures presented above, the majority of the groups did 

reasonably well. Group 10 has again received the lowest score. Group9 has the 

largest group and they all scored each other very well. It is obvious that this group 

worked well as a team. This is supported by the data gathered for Project 

Management, Team Work and Team Contribution (For more information, see 

Section 4.2.5- Figure 4.2.5.1). 

4.6 GROUPS' COURSE AVERAGES 

The fonnation of groups for the Software Engineering Project was based 

on the students' course averages. The project coordinator 11 at that time, selected 

the students for each group based on their individual course averages. The 

objective was to distribute the students between the groups to provide a reasonable 

academic balance. The data are presented in Figures 4.6.1 and 4.6.2. 

! l Mr Ah Hung, former lecturer and software engineering project coordinator, who has left the 
employment of this university. 

Page 107 



Group course 
Number Aver~~ 

1 6020 
2 61.16 
3 60.56 

' 64.57 
5 65.55 
6 61.67 
7 66.63 
8 66.61 
9 67.36 
10 60.46 

Average 63.48 
Minimum 60.20 
Maximum 67.36 

Figure 4.6.1 Table~ Groups' Course Averages 

100.00 

90.00 

~ 80.00 
g 70.00 60.£0 

' • ~ 
j 
• 
" , 
0 

<.> 

60.00 

50.00 

40.00 

30.00 l 
20.00 

10.00 . 

0.00 -

Groups' Course Average 

60.48 60.56 61.18 61.67 
64.57 65.55 

:- -

l 
10 3 2 6 4 5 

Group Number 

66.51 65.63 67.36 

-

,_l-.l __ LJ_LJ~ 

8 7 9 

Figure 4.6.2 Graph- Groups' Cou1·se Averages 

Based on the data above, the course averages have a range difference of 

around 7 per cent. 

Page 108 



,_. 

' ! 

CHAPTER 5: MEASURING SOFTWAREINSTALLABILITY 

5.1 SOFTWAREINSTALLABILITY 

The Orchard project was to provide students with a real-life problem and 

the students' task was to develop an application that could be marketable or at 

least usable by the client. It was expected that the software presented should be as 

professional as possible. Before the software could be used, it must first be 

in~talled on the client's computer. Since not everyone was computer literate, the 

software installation program (if any) should pt:rform most of the installation 

process without or with a minimum of user intervention. This section would 

prestmt the outcome of the investigation into the installability of the software 

developed by each !,'foup. 

5.1.1 Software Installation Process 

Group 1 : It did not have any installation program. The user needed to create 

a directory on the hard disk and then copy all the files from the 

floppy disk over to the hard disk. To execute the software, the user 

would need to start Windows and then load Microsoft Access 

version 1.0. From Access, the user could then open the necessary 

file to execute the application. 

Group 2 : There was no installation program. All the associated files were 

compressed so that it would fit onto one high density floppy disk. 

Unfortunately, the students failed to provide the software utility for 

r~trieving these compressed files. To retrieve the software, the user 

would need to create a new direct'Jry on the hard disk, then 

uncompress the file onto the new directory. The proc-edure to 

execute this application was identical to that of Group 1. 

Page 109 



Grou11 3 : This software came with an installation program in fonn of a DOS 

batch file. All the necessary files were compressed into a self

extracting12 file. All the batch file did was execute this self

extracting file. The user had to be aware of the need to create a new 

directory on the hard disk first, then to copy all the files on the 

floppy disk onto this directory. Only then could the user execute the 

batch file. To execute the application, the user had to first sta1t 

Windows and then load Paradox for Windows. Once in Paradox for 

Windows, the user had to then set the Working and Private 

Directory to the directory where the application's files were 

located. The user could then start the application by selecting the 

right fonn n. 

Group4: ThiswasthesamesituationasGroup I. 

Group 5 : There was no installation pro,gram for this group. The situation was 

the same as Group 1 with the exception of a batch start-up file. By 

running this start-up file, it would automatically load Windows and 

Microsoft Access, and start the application. Unfortunately, the path 

for Windows and Access were hard-coded into the batch file and if 

the user had Windows, Access and the application located in 

different directories, the batch file would fail in the start-up 

process. 

12 A self-extracting file was a file that contains all the files that are compressed. It comes in form of 
an executable file. 13y executing this file would automatically uncompress all the files. 

13 In this context, a form refers to either an input or output screen, created either by the user or an 
application generator. 

Page 110 



Group 6 : It had no installation program, however all the necessary files were 

compressed in a self-extracting file. The user would need to create 

a directory on the hard disk, copy the self-extracting file over to the 

directory and uncompress the file from there. The execution 

procedure was identical to that of Group3. 

Group 7 : The software had its own installation program. The installation 

program was created by Microsoft Access Distribution Kit version 

1.1. The instaJiation procedure was like any standard installation 

program found in all Microsoft products. With the disk, came the 

installation program and the Microsoft Access Runtime module. 

This is an ideal situation for the user, especially when the software 

is being distributed for use. The software could still be executed 

from Access but only in version I. I. 

Group 8 : It had its own installation program. Similar situation as Group 7 

except that the software was developed under Access version 1.0. 

GrouJl9 : This software also had an installation program but it was not 

created rrom Microsoft Access Distribution Kit. The installation 

program would install the software on the hard disk but it did not 

come with the Runtime module. Hence, the application could only 

be accessed through Microsoft Access. 

Group 10 : There was no installation program. The installation process was 

identical to Group 1. 

Groupll - 16 : Despite intense effort, it was not possible to get these pieces 

of software working. Hence they have been left out of all 

metrics gathering. 

p,,ge Ill 



5.2SUMMARY 

Out of the 10 pieces of software, only three had proper professional 

installation programs. The remaining seven required a considerable degree of user 

intervention. For a user who had experience using an operating system such as 

DOS, this would not pose a problem. However for a user who was not computer 

litenite, it is probable they may have not been capable of installing the software. 

Unfortunately, access was not provided to either of the user's or technical manuals 

which means a more detailed assessment into the installability of the proposed 

software could not be Wldertaken. 

The results of this assessment should take into account the fact that the 

Department of Computer Science was unable to provide the students with the 

necessary tools and software. For example, to create an installation program for 

software developed in Microsoft Access and Paradox for Windows, the Microsoft 

Access Distributed Kit and Paradox Application Distribution Kit were required. It 

would appear that the groups that created their own installation program used their 

own distribution kit and regrettably this resource \vas not available to all the 

groups. Access to these resources would definitely enhance the students' learning 

process, with particuiar regard to the development of a professional piece of 

software. It was surprising to find that Group 10, which used Objectvision Pro, 

did not have a good installation program. After all, Objectvision Pro comes with 

its O\Vll Runtime module. 

Software that comes with its own Runtime module does not require the 

client to have a copy of the development software. For example, to execute Group 

7's application, the installation program will load Access' Runtime module 

together with the application. From the client's point of view, he or she need not 

purchase Microsoft Access. From a security point of view, the user will not be able 

to modify the design of the application directly. 

Page 112 

' 



CHAPTER 6 : MEASURING SOFTWARE SIZE 

6.11\IEASURlNG SOFTWARE SIZE USING ALBRECHT'S FUNCTION 

POINT ANALYSIS 

As part of this research project, all the software developed by the 1993 

software engineering student~ w2.s measured to detennine the size. The metric 

used, was Albrecht's Function Points. This metric was selected because it has been 

widely accepted and used. Furthennore. all the software was produced using 4GL

type development software - Microsoft AcceSS'", Borland ParadoX'" for Windows, 

Borland Objectvision'" Pro and Gupta SQL Windows•". With 4GL-type 

applications, it is difficult (if not impossible) to detennine the size in terms of 

lines of code of the software because they usually include automated coding. 

Therefore, it is more reasonable to calculate the size of software in terms of 

functions d .... livered rather than lines of code produced. 

In total, there were 16 groups of students developing the same application. 

However, only 15 groups submitted their software for evaluation. All software 

appeared to function during the project demonstrations 14 . Unfortunately, out of the 

15 pieces of software that was submitted for evaluation, only 10 were found to be 

functioning. Out of the I 0 pieces of software, one of them required some 

modifications before it was capable of being executed on the computer \Vhere the 

evaluation was to be conducted. Of the five pieces of software that were not 

functioning, one of them was because the students failed to provide a password for 

their software. With the remaining four pieces of software, it appears that the 

students failed to submit their final version for evaluation. 

14T1Je project demonstration was part of the project assessment. Each group was required to 
demonstrate their software before a judging pa11el. 

Page 113 



Although function points can be counted from the requirements 

specification the groups' project documentation was not available for this purpose. 

Furthermore, it was felt that counting function points from the software delivered 

would yield a more accurate result in relation to the number of function points 

delivered. 

6.2 APPROACH USED TO MEASURE SOFTWARE SIZE 

Even though function point analysis is widely discussed in the literature, 

none provide a detailed description on the procedure involved in counting function 

points. The primary reason [s that the methods available for counting function 

points are constantly being revised by the International Function Points User's 

Group (IFPUG). The only publi~hed materials that provides an up-to-date 

description on the procedure for counting function points are published by fFPUG 

itself. Unfortunately, the latest version of the Function Points Manual was 

unavailable. As a result, the method for counting function points was taken from 

Dr. Eberhard Rudolph's" ( 1989) seminar paper. Even though, Dr. Rudolph's paper 

was slightly dated it proved to be quite useful since the 1993 software engineering 

project was a straight database-type application running on a standalone ~.;cmputer. 

The following sections will explain how the processing complexity was 

defined, how the size of the software was detennined and the problems 

encotu1tered during the evaluation. 

15 Dr. Rudolph presented a three day seminar on Function Point Analysis. His methods for counting 
function points are also recognised by the Australian Software Metrics Association (I993a). 

Pnge 114 



6.2.1 Rules For Counting Function Points 

The first stage of counting function points i<\ to count the raw flmctlott 

poiuts. This is achieved by identifYing and classif)'iu& the individual functions 

provided by the software for its end-user. As mentioned in Section 2.4.2 

Counting Funetion Points, then~ are five types of functions- external input, 

external output, logical files, external interfaces and external inquiries. 

0 External input 
Any data that enters the information system from the user should be 

considered as an external input. It will be counted when the system 

adds, changes or deletes data in a logical file type. Therefore, functions 

that were counted include : 

data input screen 

data update screen 

data deletion screen 

0 External output 
An external output type does not modifY the contents of the internal 

logical files. External output types can reach the users directly as 

reports or messages. External output types of the same format but of 

different output medium should only be counted as one output type. 

However, the same information presented in different fonnat, allowing 

for the characteristics of the output device are counted as separate 

external outputs. The functions that were counted include: 

0 Reports 

0 Start screen output 

0 End screen output 

Page 115 



o Logical files 
Each major logical group of user data in the application system should 

be considered as an internal logical file type. In order to be counted as 

a logical file, a logical user view had to be generated, used and 

maintained by the information system. An internal logical file should 

be directly used by at least one external input, external output or 

external inquiry type. Internal logical files that are not accessed by an 

input, output or inquiry types are not to be counted. 

0 External interfaces 
Files or control information that are passed or shared among different 

systems should be counted within each information system as an 

external interface. type. With the 1993 software engineering project, 

there were not any external interfaces. However, the client did express 

interest in the ability to share data bet\veen Quicken'w for Windows and 

the proposed system. Unfortunat~ly, none of the groups were able to 

achieve this ·functionality. Therefore, in this case the external interface 

count was set to zero (0). 

0 External inquiries 
An external inquiry type is a query facility that is offered by the 

application. It is characterised by a unique input/output combination. It 

triggers off an immediate response without updating the internal logical 

files. It is entered to direct the search so that the desired information 

can be found. The functions that were counted include : 

0 Help screens 

IJ Menu selection screens 

0 Lookup tables 

0 Online query 

Page 116 



6.2.2 Defining The Complexity Adjustment Values 

Before deriving the final function points for a piece of softWare a 

prerequisite is the detennination of the software's processing complexity. This 

can be determined by adjusting the 14 general application attributes. For each 

of these attributes, a value must be assigned (degree of influence- DI) which 

ranges from 0 to 5 - where 0 suggests "either not present or no degree of 

influence" and 5 suggests "strong influence throughout the application 

development". The following is a list of the 14 attributes with its associated 

value of influence. The reason for selecting the value of influence for each 

attribute, is also explained. 

0 Data communication 
This attribute is present when information is being sent and received 

over some fonn of communication facility. This was set to zero (0) 

because the software was developed for a standalone environment. 

There was no use of communication facilities such as telephone lines. 

0 Distributed functions 
This attribute is present when the system's data is distributed and 

processed over more than one processor. This was set to zero (0) 

because there was no need for distributed processing. Since the 

application was developed for a standalone environment, all data were 

stored and processed locally. 

Q Performance 
This attribute is present when performance objectives such as response 

time and throughput are stated and approved by the end user. This was 

set to two (2) because the performance of the system could be met by 

standard design and coding practices. The end user had not specifically 

set the criteria for acceptable performance. 

Page 117 



I 

I 

0 Heavily used configuration 
This attribute is present when the system requires special design and 

implementation considerations. It is typically concerned with main 

storage or disk storage limitations and processor time. This was set to 

three (3) because the operational restrictions required minor attention 

in the project plan. 

a Transaction rate 
This attribute represents the flow of information within the system. 

This was set to two {2) because the transaction rate was moderate, 

however this transaction rate could be met with standard design and 

coding techniques. 

0 Online data entry 
This attribute represents the amount of transactions that were entered 

interactively. This was set to five (5) because more than 30 per cent (in 

fact, all) of the transactions were entered interactively. 

0 End user efficiency 
This attribute gives credit to the emphasis in designing functions that 

provide efficient user infom1ation access. This was set to five {5) 

because special tools such as 4GLs were used in the design and 

development phases to promote end~user efficiency. 

CJ Online update 
This attribute detennine the degree of online updates perfonned by the 

system. This was set to three (3) because online updating was provided 

for all the major logical int~>:rnal files. 

0 Complex processing 
This attribute reflects the comple-xity of the programming logic. This 

was set to one (1) because of its extensive logical processing. 

Pngell8 



0 Reusability 
This attribute is present when the code of the resulting application 

programs has been designed, developed, and supported to be usable in 

other information systems. This was set to zero (0) because no 

consideration for reusability was specified. 

0 Installation ease 
This attribute is present when the infonnation system requires specific 

installation considerations during its transition from the current system 

to the new system. This was set to one (1) because a conversion plan 

was required but no data conversion was needed. 

CJ Operational ease 
This attribute is present when the system requires effective start-up, 

back-up and recovery procedures. This was set to zero (0) because no 

special operational considerations were stated by the user. 

CJ Multiple sites 
This attribute is present when the system has been specifically 

designed, developed and supported, to be installed at multiple 

locations. This was set to zero (0) because there was no requirement to 

consider more than one location. 

a Facilitate change 
This attribute is present when the system has been designed, developed, 

and supported to facilitate modifications of its functions at a later 

stage. This was set to two (2) because the application was to be 

implemented as a series of modules. 

The settings of all these attributes were applied to the ten pieces of 

software that were evaluated. This was to ensure consistency in the method of 

measuring function points. Below is the table (Figure 6.2.1.1) representing 

Page 119 



these attributes with its associated value of influence and the Total Degree of 

Influence that was used to calculate the final function points. 

Processing Complexity 

ATIRIBUTES 01 
1 Data Communications 0 
2 Distributed Functions 0 
3 Performance 2 
4 Heavily Used Configurations 3 
5 Transaction Rate 2 
6 Online Data Entry 5 
7 End User Efficiency 5 
8 Online Update 3 
9 Complex Processing 1 

10 Reusability 0 
11 Installation Ease 1 
12 Operational Ease 0 
13 Multiple Sites 0 
14 Facilitate Changes 2 

Total Degree of Influence 24 

Figure 6.2.2.1 Table- Processing Complexity Used For Calculating 
Software Size 

6.2.3 Evaluation Reuort 

All the software that was tested had some form of bugs or logical 

errors. In some cases, the software caused the system software and Microsoft 

Windows to crash. See Appendix A for the list of errors. 

6.2.4 Size Of The Software 

This section presents the size of the ten software projects that were 

evaluated. For ethical reasons, the students' name and group number will 

remain anonymous. Each group has been assigned a different group number. 

The Total Unadjusted Function Points is derived by adding the totals 

of the five function types. The Adjustment Factor is calculated from the 

equation: 

Adjustment Factor~ 0.65 + (0.01 X Total Degree Of Influence) 

Page 120 

• 



where the Total Degree Of llif/llence is obtained from Figure 6.2.2.1. The 

actual function points were calculated using the following equation : 

Function Points= Total Unadjusted Function Points X Adjustment Factor 

For more infonnation, see Section 2.4.2 Counting Function Points. 



D Grou J I 
External Inputs ___1§_ Simple X 3 ~ 

~Averag<l X 4 
_O_Compll9: X B ~ 

Tlltills .£.. 
Eltemal OU!puts _L_Simple X 4 ~ 

__ O_Average X 5 ~ 

_o __ Complex X 7 ~ 

Totals 7 -
Logical Files ___!L_ Simple X 7 ~ 

____L_ Aver2ge X 10 ~ 

__!!____Complex X 15 ~ 

Totals ,. 
~ 

lnterfuees ___Q___ Simple X 5 ~ _, __ ,_., X 7 , 
__ O_Complex X 10 

Totals 0 
~ 

Extemallnqulres -2Q_Simpla X 3 , 
__ l_A~- X 4 
__Q___ Complex X 6 , 

Totals " ~ 
Total Unadjusted Function Points 

Adjustment Factor 

Function Points 

0 Grou 2 
External Inputs _1_5_Simple X 3 , 

__ O_Average X 4 , 
0 Complex X B 

Totals ~ 

External Outputs --..E_ Simple X 4 , 
__ O_Average X 5 • 
_O_Comp\ex X 7 • 

Totals ~ 

Logical Files _2_2_Simple X 7 • 
__ O_Avera[Je X 10 • 
__ o_ Complex X 15 

Totals 22 
~ 

lnterfae&s __ O_Simple X 5 
__ O_Average X 7 
__ O_Complex X 10 , 

Totals 0 
~ 

Externallnqulrus _B_Simpla X 3 • • ___Q___ Aver3ge X 4 , 
__ O_Complex X B 

Totals ...L 
Total unadjusted FuncHon Points 

Adjustment Factor 

Function Points 

Page 122 



0 Grou 3 
Elrtemallnputs 

Extemal Ol.ltpUts 

logical Fil~ 

Interfaces 

External Inquires 

0 

~Simple X 3 • 
__!LAveraga X • • 
~Complex X 6 • 

Totools " -
__Q_Simple X • • 
__!__Av1lmQII X 5 • 
__ o_comple>:: X 7 • 

Totals 13 
~ 

~Simple X 7 • 
___Q_ Average X 10 • 
__Q___ Complex X 15 • 

Totals 29 -
___Q_ Simple X 5 • 
___Q___ Avemge X 7 
_O_Complex ' 10 • 

Totals 0 -
_a_ Simple X 3 
__ O_Average X ' • 
___Q__ Complex X 6 • 

Totals 8 
~ 

Total Unadjustetl Function Points • 

Adjustment Factor 

Function Points 

--.1!.._ Simple 
2 Average 

--,-Complex 

Totals ----v-
~ 

16 Simple 
--,-Average 
-a-complex 

Totals~ 

0 Simple 
~Average 
--0-Complex 

Totals--0--
_1_1_Simple 

1 Average ----a-Complex 
Totals~ 

X 4 : 
X 5 = 
X 7 = 

X 7 " 
X 10 :: 

' 15 

' 5 
X 7 "
X 10 : 

X 3 ::. 

X 4 " 
X 6 

Total Unadjusted Fum:tlon Polrtts = 

Adjustment Factor 

Function Points 

Pnge 123 



a Grou 5 
External Inputs _t!_Simpte ' 3 ~ 

--.2.._ AVl)raS!I ' 4 
_1_5_Complex ' 6 ~ 

Totals 42 -
Exterr. I Outputs ___.!.__Simple ' 4 ~ 

__ o_Av&rillJe ' 5 ~ 

--..L_ Comple~ X 7 ~ 

Tobls 7 -
logical Files _1_6 _ Slmpla X 7 

__Q___Averdj)e ' 10 ~ 

__ O_Complex X 15 ~ 

Total$ ...lL 
Interlaces ____!L_ Simple X 5 ~ 

__Q___ Average X 7 ~ 

__ o_ Cornplell" ' 10 ~ 

Totals 0 -
Extemaiii'ICJulros __ 3_Simple X 3 ~ 

___a__ Averag& X 4 ~ 

__ o_ Complex X 6 ~ 

Totals 5 
~ 

Total Unadjusted Function Points ~ 

Adju$tment Factor 

Function Points 

a Grou 6 
r.""~•cmc,~1 o1,=_.co,-------4-.2c-'s"•m=,o1,=----=,c-,3-==--,.-. 

--.--Average x 4 "' 

E~emal Outputs 

logical Files 

Interfaces 

Extemallnquiras 

--,-Complex x 6 :: 
Totals~ -

0 Simple 
--,--Average 
---0-Complex 

Totals--0--
38 Simple 

---,-A~rage 
--,-Complex 

Totals~ -
0 Simpl(> 

--0--AV&r.:l!).'l 

---,-Complex 

Totals _,2..... 

19 Simple ---a-Average 
--0-Complex 

Totals ----;g--

>: 4 = 
X 5 :: 

X 7 " 

X 7 
Y. 10 "' 
X 15 :: 

X 5 :: 

X 7 " 
X 10 " 

3 = 
4 ~ 

6 

Total UnadjusiO!d function Points 

Adjustment factor 

FllliCtJon Points 

Page 124 



D Grou 7 
Ext~rnallnpuls 

External Outputs 

Logical Files 

lnterfaCt~s 

Extemallr.quircs 

I Files 

_1_8 _Simple ' 3 0 

___!___Average ' 4 
_6_Complox ' 6 0 

Tob:lls ...21... 
_3_Slmple ' 4 0 

__ ,_Average ' 5 0 

__ <_Complex ' 7 0 

Tot!ls ..4.. 
....12._ Simpls ' 7 0 

--.2..._ Al'efll9e ' 10 0 

_O_Complox ' 15 0 

Totals -11... 
__ o_Simple ' 5 0 

__ O_Average ' 7 0 

_o_ c"""'~ ' 10 
Totals ~ 

_<_Simple ' 3 
__ 0_ Average ' 4 0 

__ 1_ Complex ' 6 0 

Tobls 5 -
Total Unadjusted Function Points 0 

Adjustment Factor 

Funcllon Points 

__ 5_Simp\e 
0 Avernga 
0 Complex 

Totals--5-

9 Simple 
0 Averuge 
0 Complex 

Totals 9 

__ O_Simpla 
0 AveragQ 
0 Complex 

Totals~ 

a S1mp!e 
0 Average 

--,-Complex 

Totals~ 

)I 4 :: 

' 5 
X 7 = 

)( 7 : 
X 10 
X 15 " 

X 5 
)\ 7 = 
X 10 " 

X 3 " 
X 4 = 
' 6 

Adjuslme~t Factor 

Function Points 

Page 125 



Q Grou 9 
Eldemallnpu\5 

EKiernal Outputs 

logical Files 

Interfaces 

Extemallnquires 

o Grou' 10 
External Inputs 

External Ovtpvts 

I. 
Logical Files 

Interfaces 

External Inquires 

____!L Simple X 3 • 
__ o_Averag" X ' • 
__ ,_Complex X 6 • 

Totals 17 -
__ ,_Simple X ' • 
__ 3_Aororuge X 5 • 
_a_ Complex ' 7 • 

Totals ...I... 
_1_4_Simplo ' 7 • 
____Q__ Average ' 10 • 
_o_c~p~ox ' 15 • T.,.,. " -
__ a_ Simple ' 5 • 
__ a_ Average ' 7 • 
__ a_ Complex X 10 • 

Totals ....!!.... 
__ ,_Simple 

' 3 • 
__ a_ Average ' ' __ 2_ Comptex ' 6 • 

Tobls ...1L 
Total Unadjusted Function Polnls • 

Adjustment Factor 

Function Points 

3 Simple 
--a-Average 
--0-CompleK 

Totals~ 

0 Simple 
--,-A~eroge 
--,-Complex 

Totals~ 

12 Simple 
--,- Averag& 
--,-Complex 

Totals~ 

0 Simple 
--0-Aversge 
--0-Compl!llC 

Totals--a-

3 Simp!& 
--0-Avernga 
--,-Complex 

Totals--,
~ 

X 3 "' 
X 4 : 

' 6 

' ' X 5 = 
X 7 :: 

X i :: 
X 10 :: 
)( 15 = 

)( 5 = 
X 7 = 
' 10 

X 3 :: 
X 4 
)( 6 = 

Total Unadjusted Function Points = 

Function Points 

Page 126 



6.2.5 Scores Awarded For Solution Functionality 

This section presents the score awarded by the judging panel for the 

groups' software solution functionality and presentation skills. These scores 

were awarded by the judging panel based on a presentation given by each 

group. The score is given out of 25 points. The results are presented in Figure 

6.2.5.1 and Figure 6.2.5.2. 

Size Of Solution 
Software In Functionality 

Group Function (Scor~5~ut or 
Number Points 25 

1 341 20.2 
2 271 14.2 
3 375 20 
4 356 20.4 
5 311 20 
6 414 19.2 
7 311 20.7 
8 143 16 
9 195 19.6 
10 91 8.7 

Average: 280.8 17.9 
Minimum: 91 8.7 
Maximum: 414 20.7 

Figure 6.2.5.1 Tahle- Scores Awarded For Solutmn _Functionality 

450 

400 c 
:8 350 u c , 300 ... 
c 
-~ 
f c 250 

i~ 200 
0 

" 150 
5 100 • ·" " 50 

0 

Software Size Versus Solution Functionality 

_/ 

I 

10 2 8 6 9 3 5 
Group Number 

4 

lc:::J SofiW are Size ---+-Scores Awarded I 

7 

25 

e 
20 0 

u e 
15 1g;n 

~N 
o-=o u-

10 
c , 
~0 
c •• 5 2 
0 

"' 
0 

Figure 6.2.5.2 Graph~ Soft'tYare Size Versus Solution Functionality 
(Sorted According To Score) 

Page 127 



Based on the results presented above, the majority of the sofuvare with 

a size of 300+ function points scored around 20 points, except for Group 6. 

This group had the highest function point count of 414 but only scored 19.2. 

points. The results did however reflect the fact that software with poor 

fun91ionality S9ored less. For example, Group 10 had the smallest size of 91 

function points and it only scored 8. 7 points (the lowest). 

6.2.6 Summary 

This chapter presents the size of the ten pieces of software that were 

evaluated using Albrecht's Function Point method. Even though these pieces of 

software were quite functional, they were in no way near "perfect" or ready to 

be used by the client. For each piece of software that was tested, a brief 

"evaluating repOJi" was presented to indicate the functionality of the sothvare. 

By doing so, it provides a comparison of the software's functionality against its 

SIZe. 

Figure 6.2.6.1 and Figure 6.:!.6.2 presents the size of software for each 

group in function points. Figure 6.2.6.3 aild Figure 6.2.6.4 presents the size of 

each function type for each group, in tenus of function points. 

Size In 
Group Function 

Number Points 

1 341 
2 271 
3 375 
4 3:. "; 
5 311 
6 414 
7 311 

• 143 
9 195 
10 91 

Figure 6.2.6.1 Table- Soze Of Software Per Group 

Page 128 



Size Of Software In Terms Of Function Points 
450 414 

400 
341 

315 
356 

" 
350 

·!5 
300 "-

311 311 

271 ,----
c 
0 
~ 250 u 

r 
c , 195 
~ - 200 
0 1~3 
" 150 • ~ 
E 91 , 

100 z r-
50 

0 
10 ' 9 2 5 7 1 4 3 6 

Group Number 

Figure 6.2.6.2 Graph- Size Of Software (Sorted In Ascending Order) 

By looking at the graph in Figure 6.2.6.2 and the data presented in the 

evaluation report (A[1pendix A), it can be se!n that the laqest software is not 

necessarily seen as the most "functional". Although in theory, it could be 

expected that the software with higher function point count would indeed be 

more "functional". Even though Group 6 had the largest function count, 

comments p~esented in their evaluation report indicate that their software was 

not well developed. In fact, it was one of two that crashed not only the system 

software environment, but it also crashed the operating environment 

(Microsoft Windows). Group 3's software also crashed the operating 

environment when trying to access one of its mndules, yet this group has the 

second highest function point count. 

Looking at the two extreme ends, Groups 10 and 8 rank the smallest in 

size. Again, by examining the evaluation report, it can be seen that both pieces 

of software Jack in functionality. Group 1 O'.s soft1.vare did not have reports and 

most of its functions were poorly developed. Group 8's software was relatively 

easy to use but it Jacked in functionality. 

Page 129 



i 
I 

Group E>demal ~I logical Exlemal 
Number lnDut 0 . .Files lnnuires 

I 132 28 129 94 
2 45 " 154 18 
3 141 53 203 24 
4 135 116 112 " 5 174 46 112 17 
6 156 0 252 57 
7 126 45 160 18 
8 54 20 63 24 
9 54 31 98 36 
10 9 0 84 9 . . 

F1gure 6.2.6.3 Table- S1ze Of Each FunctiOn Types 

Function Types (Excluding External Interfaces) 

100% 

c 
-~ 60% 

0 a. 
c 60% 
0 

"' u 
c • 40% ~ -0 
• • 20% ~ 

E • z 
0% 

10 • 9 2 5 7 1 4 3 6 

Group Number 

'1!11 External Input 0 External Output 0 Logical Files a External Inquiries 
L.·-···--·------------------·----

Figure 6.2.6.4 Graph- Size Of Each Function Types (In Percentage) 
Sorted According To Overall Sizt> 

From Figure 6.2.6.4, both pieces of software with the smallest (Group IO) 

and largest (Group 6) size had zero (0) for its external output In Group JO's case, 

report options were in the menu's structure but they were not functioning when 

tested. With Group 6, the report options had been completely omitted. 

Page 130 

' 



CHAPTER 7 : MEASURING PRODUCTIVITY 

7.1 MEASURING THE PRODUCTMTY OF PROJECT GROUPS 

. 
The productivity of developers is mainly concerned with software project 

management. It is used to measure the software development "output" as a 

function of effort applied. This chapter will present the productivity of each group 

based on two methods. The first method is based on the Australian Software 

Metrics Association Project Databases - Release 3 (1993b). It measures 

productivity as Project Delivery Rate (ie. the number of hours required to deliver 

one function point) and is derived using the equati_on below. 

Effort (Hours) 
Project Delivery Rate = 

Size (Function Points) 

The second method is based on the productivity equation that is often used in 

Function Point Analysis (Pressman, 1992). 

Size (Function Points) 
Productivity = 

Person- Month 

7.2 PROJECT DELIVERY RATE 

As mentioned above, this method of measuring productivity is based on the 

documentation provided by the Australian Software Metrics Association Project 

Database- Release 3 (!993b). Figure 7.2.1 and 7.2.2 pt-.:·c".nts the project delivery 

rate for each group. 

Page 131 



" 
16.0 ~-
14.0 

~ 12.0 ~-
;.. 10.0 

~ 8.0 + 

Project DeliverY Rate 

6.3 6.7 7.0 
8.1 

13.1 

' 

140 
15.1 

' 

~ 6.0 + 4.1 4.3 4.9 

~ ~~ illR ol_,_l'--'--'--.L-'-Ll~l_l_"L.L.-LL_,__L--'-, 
5 3 6 7 4 2 9 8 10 

Group Number 

Figure 7.2.2 Graph- Project Delivery Rate In Ascending Order 

Figure 7.2.3 presents the types of software and hardware development 

platform used by each group. Seventy per cent of the groups used Microsoft 

Access, twenty per cent used Paradox for Windows and ten per cent used 

Objectvision Pro. 

Page 132 



16.0 T 

' 
14 .. 0 t 
12.0 + 

' 10.0 + 
8.0 ~ 
6.0 .2. 

' 

Project Delivery Rate By Software Type 

15.1 

8.5 

4.6 

4.0-:- D 
~:~ ~--'----' __ ..... ____ --- --+----.L.. _ _.. ___ _ 

Mcrosofl 
Access 

Paradox For 
Wndows 

Software Type 

Objectvision Pro 

Figure 7.2.5 Graph - Project Delivery Rate By Software Type 

From the available systems software, the majority of the groups 

selected Microsoft Access. Surprisingly, groups using Access seem to have a 

iower delivery rate of 8.5 Hrs/FP than the groups using Paradox for Windows 

which not only produced the largest software but also had a very high delivery 

rate, with an average of 4.6 Hrs!FP. It is important to point out that only two 

groups used Paradox for Windows - a very small sample. Objectvision Pro was 

only used by one t-rroup, therefore it is very difficult to make any definite 

conclusion. 

Page 133 



[ 

7.3 PRODUCTIVITY 

This section will present the productivity rate of each project group. The 

method for determining the groups' productivity is derived by dividing the size of 

the software in function points with the number of person-months worked. Before 

the productivity rate can be derived. it was necessary to first detennine the number 

of person-months spent developing the software in each group. In this particular 

case, the number of person-months was defined based on the following three 

assumptions. 

Q Members of each group spent four hours during the weekdays, working on 

the project 

0 Members of each group spent six hours during the weekends, working on 

the project 

0 There are four weeks in a month. 

This was necessary because the data regarding the number of actual hours spent by 

each student were not available. It also provides a means to compare the 1993 

software engineering project with future students' projects. Based on these 

assumptions, it is calculated that each student could spend 32 hours per week on 

the project, bringing a total of 128 hours per month. from this value, the number 

of person-months spent by each group can be derived. The data are pn~sented in 

Figure 7 .3.1 and 7 .3.2. 

2 

' ' 5 
6 
7 
8 
9 

Page 134 

16.5 
10.0 
16.0 
15.2 
15.6 
19.9 

• 



20.0 

18.0 
16.0 

.1:: 14.0 

1i 
'I 

j 
12.0 

10.0 
8.0 

6.0 

4.0 

2.0 

10.0 

r 

Number Of Persun-Month Per Group 

185 166 
17.2 

15.2 15.6 16.0 

12.5 
10.7 

19.9 

r 

0.0 W--L,-L,L,..L.Jl.,-J--L.,_J....J...,_l_L,.-l...l_,_l.--L,..l....L,._l_l.., 

5 10 3 7 8 6 2 4 9 

Group Number 

Figure 7.3.2 Graph- Number Of Person-Month (In Ascending Order) 

After deriving the number of person-months for each group, the 

productivity rate for each group was detennined. Figures 7.3.3 to 7.3.4 present the 

productivity rate in tenns of function points delivered by each group and by each 

student (on average) of a group. These ligures are derived by using the following 

the equat:0ns. 

Size (Function Points) Productivity Rate Per Group M Person = 
Number Of Person- Month 

Productivity 
Rota Por ...... Number Of Porscm- Group-Porson 

Number Students Slzo (FPs Mottth (PM {FP.,PM) 
• 1 5 341 18.5 18.4 

2 s 211 172 15.8 
3 • 375 12.5 30.0 
4 5 356 18.6 19.1 
5 • 311 10.0 31.2 
6 5 ,,. 16.0 25.9 
7 4 311 15.2 20.4 
8 3 143 15.6 9.2 

• 6 195 19.9 9.8 
10 5 91 10.7 8.5 

Avomg11: 1M 
Minimum: 8.6 
Maximum: 31.2 

' ' . F1gure 7.3.3 Table- Prodoetov•ty Rate 

Page 135 



Group-Permn Producll1111y Rate By Group 

35.0 

l 30.0 

25.0 j 
.. 20.0 
.!! 
~ 15.0 
• 
j 

9.2 9.8 
10.0 8·5 

... 5.0 

0.0 
10 8 9 

158 

2 

18.4 

1 

19.1 2D.4 
,.... 
I. 

4 7 

Group r.llm btu 

25.9 

6 

30.0 

3 

312 

17 

5 

Figure 7.3.4 Graph -Group-Person Productivity Rate By Group 

The data presented in this section (Section 7.3) will not be used in the 

remaining sections of this chapter. It will be used in Chapter 10 for the final 

analysis. 

Page 136 
"··.·· 

,.-· 
·.--. 



7.4 STUDENT PROJECTS VS PROFESSIONAL PROJECTS 

-
This section compares the project delivery rate (hours to deliver one 

function point) and productivity rate (function points per person-month) of student 

projects against projectr;; developed by organisations from industry. The data 

presented in Figures 7.4.1(a) and 7.4.2(a) are details of projects developed by 

organisations from the industry. It is taken from the Australian Software Metrics 

Association (ASMA) Project Database- Release 3 (1993b). In total, there are 86 

projects from 15 organisations. The data belay.' are taken from eight projects 

developed for the personal computer platform and are categorised in order to make 

a comparison of projects of a similar type. Figures 7.4.l(b) and 7.4.2(b) further 

refined the data to present those projects that were developed using 4GL tools. The 

data presented in Figures 7.4.3 and 7.4.4 are details of projects developed by the 

software engineering students. The data are presented in the format used by the 

Australian Software Mebics Association. This is to improve the means of 

comparing the results of students and professional projects. Figure 7.4.5 presents 

a glossary of the terms used on the tables below. 

Delivery 
ASMA .... ·~i Hardware Time Recording """'lopmont 

10 fHrsiFP} (FP Platform t.ev•l M- Tvoo 
4 18.5 502 PC I c NO/X 
9 1.7 917 PC 3 D ND/X 

10 1.9 273 PC 3 B NO 
11 1.3 220 PC 1 A NO 

" 5.5 1355 PC 1 E CP/X 
24 4.3 597 PC 1 c NDJI'1 
49 2.3 1362 PC 3 B NO 
62 6.9 151 PC 1 A ND/PS 

Average: 5.3 672.1 
Minimum: 1.3 151 
Maximum: 18.5 1352 . 

Figure 7.4.1 (a) Table- New Development Of ProJects (ASMA, 1993b) 

Page 137 



I 
I 

I 
I 

Delivery 
Tlffie Recocdlng ASMA - ~.~ ........ ~ IIH<SIFPJ ID Platfonn Level Molhod 

9 1.7 917 PC 3 0 NO/X 
10 1.9 273 PC 3 B NO 
11 1~ 220 PC 1 A NO 
24 4,3 597 PC 1 c NIJIP1 
49 2~ 1362 PC 3 B NO 

Average: 2.3 673.8 
Minimum: 1.3 220 
Ma:drnurn: u 1362 . 

Figure 7.4.1 (b) Table- New ProJeCts Developed Using 4GL Tools (ASMA, 
1993b) 

Ebpsed Maxlmum 
ASMA v .. , Lwlguaga Appllcation Tlmc Team 

ID 1m DBMS r;..- Generator CASE IM"""") ••• 
4 1991 y., JGL No 14 8 
9 1991 v .. 4GL No No 8 
10 1991 y., 4Gl No No 5 2 
11 1991 y, 4Gl No 3 2 
16 1992 y, 3Gl No No 
24 1992 y., 4GL No 6 6 
49 1992 Yeo 4Gl No 11 4 
82 1992 y., JGL No y., 26 3 . . 

F1gure 7.4.2 (a) Table- Project Attr~butes (ASMA, 199Jb) 

Tools (ASMA, 1993b) 

Delivery 
o .... Rate fF~~ Hanlware nrne Recording Development 

Number I (H<S/FP) Platfonn Level Method Type 

1 7 341 PC 1 8 NO 
2 8.1 271 PC 1 B NO 
3 4.3 375 PC 1 8 NO 
4 6.7 356 PC 1 B NO 
5 4.1 311 PC 1 8 NO 
6 4.9 414 PC 1 8 NO 
7 6.3 311 PC 1 B NO 
a 14 1<3 PC 1 8 NO 
9 13.1 195 PC I B NO 
10 15.1 91 PC 1 8 NO 

Average: 8,4 280.8 
Mlnlmllm: 4.1 91 
Maximum: 15.1 414 . . 

Figure 7.4.3 Table- New Development Projects (Student ProJects) 

Page 138 



Development- Phase 1 
Development- Packaged Software 

9 

• 9 
9 
9 
9 
9 

• 5 
4 
5 

• 3 
6 

Based on the results presented in the tables above, it is clear that 

professional developers are producing function points at a higher rate than 

students. The data from ASMA shows that professional developers took around 

5.3 hours to deliver one function point, whereas the students took around 8.4 

hours. Another interesting result showed that professional developers that used 

4GL tools took around 2.3 hours to deliver one function pomt. The size of the 

sofu.vare produced by the students are also relatively small when compared with 

the delivery rate and elapsed time. Figures 7.4.6 (a) and 7.4.7 (a) combined the 

data from the ASMA and student projects. Similarly, Figures 7.4.6 (b) and 7.4.7 

(b) combined the data from ASMA projects developed using 4GL tools and 

student projects. The data in the table are sorted according to the projects' delivery 

Page 139 



rate. The Project ID with a prefix of "P" signifies a professional project and "S". a 

student project. 

P9 
P10 
P49 
55 
P24 
53 
S6 
P16 
57 
S4 
PS2 
S1 
52 
59 
sa 

510 

1.9 
2.3 
4.1 
4.3 
4.3 
4.9 
5.5 
6.3 
6.7 
6.9 
7.0 
8.1 
13.1 

Note: I 

273 
1362 
311 
597 
.375 
414 
1355 
311 
356 
151 
341 
271 

5 
11 
9 
6 
9 

• 
9 
9 

26 
9 
9 
9 
9 
9 

Figure 7.4.6 (a) Table- Professional Projects VS Student Projects 

-- 16.0 i. 
~ .. ~_ ' 

14.0 t 
e. 12.0 T 
! 10.0 ~ 

Professional Projects VS Student Projects 

13.1 

81 

15.1 
14.0 

16.5 

~ 8.0' 55 63 6.7 6.9 7.0 

i m ~ . ~ . n o a n o. n [lrr_w.LL..-'-L,-l...L.LL;-LL, 
~1~~-~-aS6Pffi~M~MA~S6SW~ 

Project ID 

Note : Prefix •p• signilies Professional Project and"$" signifies Student Project 

Figure 7.4. 7 (a) Graph - Delivery Rate Of Professional & Student Projects 

Based on the table above, almost 75 per cent of the professional projects 

are on the upper half of the table and the majority of the students' projects are on 

the lower half. As mentioned before, it clearly shows that professional developers 

are more productive. The two professional projects (P82 and P4) appear to be less 

Page 140 

• 



productive. However, it is important to note that P82 took 26 months to deliver 

151 function points, and P4 took 14 months to deliver 502 function points. 

Furthennore, both projects were developed using 3GL languages without the aid of 

an application generator. 

p" 
ss 
P24 
S3 
S7 
S1 
S6 
sa 

S10 
S2 
S4 

2.3 
4.1 
4.3 
4.3 
6.3 
7.0 
4.9 
14.0 
15.1 

1362 
311 
597 
375 
311 
341 
414 
143 
91 

271 
356 

6 
5 

11 
9 
6 
9 
9 
9 
9 
9 
9 
9 
9 

Profe!Gional Projects (Using 4GL Tools} VS Student 
Projects 

4.3 4.3 4·9 
4.1 

6,3 6.7 7.0 
8.1 

13.1 

15.1 
14.0 

P11 P9 P10 P49 55 P24 S3 S6 57 S4 51 S2 S9 S6 S10 

Project ID 

Note : Prefix "P' signifie-s Profesalonal Project and "S" &lgnlfles St\Jdent Projeet 

Figure 7.4. 7 (b) Graph- Delivery Rate Of Professional (Using 4GL Tools) 
& Student Projects 

Page141 

'·.· 



1400 

1200 

1000 

Delivery Rate • Student Projects )IS ASMA Projects 

16 

14 

~800 
.11600 

12 [ 

10 ~ 
8 ~ .. 

400 1 
6 ~ 

4 .!! 
2l 

2

:~~W4L4~~~~~~~L4LLrU-~~~~J4: 
810 S8 S9 P11 S2 P10 S5 87 S1 S4 S3 S6 P24 F9 P49 

Project 10 

I c=J Size (FPs) -+--De Ivery Rate (1-hffl ) 

Note : Prefix •p• signifies Professional Project and "S" signifies Student Project 

Figure 7.4.8 Graph· Delivery Rate YS Size 

Figures 7.4.6 (b) and 7.4.7 (b) show all professional projects developed 

using 4GL tools are on the upper half of the table. Figure 7.4.8 provide further 

supporting evidences that professional developers are more productive. 

The table below (Figure 7.4.9) is taken from Caper Jones (1991, p. 454). 

The data was collected by Caper Jones' company Software Productivity Research 

(SPR). The main objective for having this data is to enable a comparison between 

the productivity rate of professional projects against the student projects. As 

before, the data from the students' projects are coUected and presented in the 

fonnat used by the SPR. However, to ensure a reasonable comparison, the number 

of person~rnonths was redefined. The nwnber of hours each student could spent 

was set to 40, bringing a total of 160 hours per month. The data from the students' 

projects are presented in Figure 7.4.10. 

Page 142 



L: 

[ 

Effort Schedule 

Tedmoloav I~~~:, (P"""'" (Eiap':! o ........ P~uotivity 
Codo r~ FP• M~fh~\ Months ..... fallon FPo!PM) 

A MF D 566 40.3 10.5 3.6 "'" 14.58 
8 MF D 193 13.8 6.0 2.3 199 13.99 
c MF D 145 16.0 3.5 4.6 166 9.06 
D MF E 63 5.2 2.0 2.6 163 12.12 
E '" D 69 16.2 3.7 4.4 174 4.26 
F MF D "' 110.0 8.0 14.4 335 3.80 
G MF M 266 306 5.3 5.9 380 9.36 
H MF E .... 164.3 22.0 6.6 1000 3.68 
J PC D 392 34.0 11.0 3.1 914 11.53 
K MF E 202 12.;! 2.5 3.2 67 16.50 
L MF E 57 ~-. 0- 5.0 1.5 103 9.83 
M PC E 60 50.0 11.3 6.3 1407 1.60 
N MF D 79 7.1 7.0 1.0 121 11.06 
p PK E 513 104.4 7.0 14.9 1181 4.91 
a MF E 671 186.9 16.0 11.7 1541 3.59 
R MF M 3162 120.0 12.0 10.1 2136 25.98 
s MF 0 158 28.5 5.7 4.8 • 450 5.54 
T MF 0 63 14.2 4.3 3.3 110 4.44 
u PC· E 405 35.0 5.3 7.0 1195 10.95 

Avera e: .,, 52.4 7.8 6.0 716 9.0 
KEY: 

TYPE TECHNOLOGY 
D c Development MF = Mainframe 
E"' Enhancement PC "' Micro Computer 
M "' Maintenance PK = Packane 

Ftgure 7.4.9 Table- Productivity Data Taken From SPR (Jones,l991) 

Effnrt Schedule 

Technolonv Type '~~~=) (Pers':; (Eiap-:, Docuroon- ProducUvity 
Codo FPs Momhs Months Slaff tation ' ~fPsmM'i' 

1 PC 0 341 14.8 9.0 5.0 - 23.02 
2 PC 0 271 13.8 9.0 5.0 - 19.71 
3 PC 0 375 10.0 9.0 4.0 - 37.50 
4 PC 0 356 '14.9 9.0 5.0 - 23.93 
5 PC 0 311 8.0 9.0 4.0 - 38.97 
6 PC 0 414 12.8 9.0 5.0 . 32.36 
7 PC 0 311 12.2 9.0 4.0 - 25.52 

• PC 0 143 12.5 9.0 3.0 - 11.44 
9 PC 0 195 15.9 9.0 6.0 - 12.24 

10 PC 0 91 ••• 9.0 5.0 - 10.63 

Avera e: 281 12.3 9.0 4.6 . 23.53 

KEY: 
TYPE TECH~OLOGY 

D c: Oe.velonment PC - Micro Comouter . . 
Frgure 7.4.10 Table- ProductiVIty Data Of Student ProJects 

The data from SPR is different from that obtained from the ASMA. Here, 

the students appear to be more productive than those projects from the SPR. The 

students were delivering around 23 function points per person-month. whereas the 

SPR projects were only delivering around 9 function points. It is important to 

point out that the students' projects were not completed Out of the 19 projects 

from SPR, 3 were developed for the personal computer platform. Among the 

Page 143 



enhancements. When this data is separated from the main table (See Figure 

7.4.11), a separate set of averages were derived. Again, it shows that the SPR 

projects were delivering less function points per person~month (around 8 function 

points per person-month). The average software size, elapsed month and number 

of staff were very similar. But the effort put in by the SPR projects were very high 

(around 40 person-months) when compared to the students' projects (around 15 

person·months). Since many details about the projects from SPR were kept 

confidential (Jones, 1991 ), it is not possible to determine what causes the low 

delivery rate. One possible reason could be the different method that SPR used for 

deriving the project function points. 

Effort Schedule 
Size (Person· (Elapsed Documen· Producti~~ 

Codo Technology Type_ [JFPs) Months) Months) Staff la!ion fFPs/PM 
J PC 0 392 34.0 11.0 3.1 914 11.53 
M PC E 80 50.0 11.3 6.3 1407 1.60 
u PC E 405 35.0 5.3 7.0 1195 10.95 

Avera e: 292 39.7 9.2 5.5 1172 8.03 . . 
F1gure 7 .4.11 Table- Productivity Data From SPR PC ProJects (Jones, 

1991) 

The graph in Figure 7.4.12 presents the productivity of both sets of 

projects together 1,vith the Size of the software. As mentioned before, SPR projects 

were producing rather large software but their productivity rate was quite low. 

Though the majority of the students' productivity rate were quite reasonable, there 

were a few that were very low and had a small software size. 

Page 144 



I 
I 

450-

400 

350 

- 300 • ft: 250 

.i 200 

' 
T 
T 
' c 
I . 
' I • 
I 

·r 
' 

Productivity. Student Projects VS SPR Projects 

./G, 
1\ 1/ 

In 150 

100 

50 
0 
~[£1 - ... 

M 10 8 9 2 5 7 4 3 J u 6 

Project 10 

: r=:::J Silll (FPs) -+-Productivity (FFSIFM) ! 

T 3s.oo 
t 30.00 :a 

25.00 '!; t 
l 

t 
I 

1 
cl 

.. 
20.00!:.. 

f1 
15.00 ~ 

10.00 ~ 

5.00 £ 
0.00 

Note :Project JD in alphabet refers to SPR p1ojects, lhose in numerical value refer to student projecls. 

Figure 7.4.12 Graph- Productivity Rate: Student Projects VS SPR 
Projects 

7.5SUMMARY 

Figure 7.5.1 presents the compilation of productivity rates derived from 

the sections above. Groups with high productivity rates are represented in bold 

typeface and those with low productivity rates are represented in bolr!-italic 

typeface. 

Group Productivity Productivity Project 
Number Rate Of Each Rate Of Each Delivery 

Group Student Rate 
(FPs/PM) (FPoiPM) (H<SIFP) 

1 23.0 4.6 7.0 
2 19.7 3.9 8.1 
3 37.5 9.4 4.3 
4 23.9 4.8 6.7 
5 39.0 9.7 4.1 
6 32.4 6.5 4.9 
7 25.5 6.4 6.3 
8 11.4 3.8 14.0 

• 12.2 2.0 13.1 
10 10.6 2.1 15.1 . 

Figure 7.5.1 Table- Overall ProductiVIty Rate 

Groups 8 and 10 had the lowest delivery rate, eacn taking 14 and 15.1 

hours to deliver one function point, respectively. Groups 3 and 5 had the highest 

delivery rate. They were delivering around 30 function points per person-month, 

Page 145 

• 



with each student producing around 7 function points. The size of the their 

software was well above the average size orzso:s function points. 

When the statistics of students' projects were compared with the statistics 

of professional projects from the ASMA, it shows that the students took a longer 

time to deliver one function point, at a rate lower than the ASMA average. Yet 

when the same statistics were compared with statistics of projects from SPR, the 

students were delivering higher function points ~r person-month. Of course, when 

comparing statistics like these~ there are other aspects which need to be taken into 

consideration, aspects such as the type of applications being developed and the 

type of software development platfonn used. This infonnation was not known for 

the SPR projects. 

Page 146 



l 

' : 

CHAPTER 8 : MEASURING SOFTWARE QUALITY 

8.1 MEASURING SOFIW ARE QUALITY 

It is difficult, if not impossible, to develop software that is totally perfect. 

There will always be some problems. Some of these problems can be easily fixed 

whilst others may require a considerable amount of rework. The software that was 

produced by the students was certainly no different. This chapter will present the 

quality of the software based on the number of defects found. The equation used to 

derive the quality of these software are taken from Pressman (1992, p. 47). 

Quality = 
Function Points 

Defects 

The definition of defects may vary from person to person. In this case the 

defects have been classified as follows : 

CJ Any operation that causes the application to "halt" (in Microsoft Access) 

or terminate during processing without making any changes to the external 

logical files. 

0 Any operation that was reported to be successful but failed to complete or 

achieve its designated task(s). 

Q Any defects that were detected during the evaluation process (see 

Appendix A for more infonnation). 

Functions that were presented in the software menus but not implemented 

were not counted as defects because they were not counted as function points. 

Defects were only counted on functions that were delivered. 

Page 147 



8.2 QUALITY OF THE SOFTWARE 

This section presents the quality of the software evaluated. For more 

information on the types of defects or bugs that were found, see Appendix A. The 

results on the quality of the software are presented in Figures 8.2.1 and 8.2.2. 

2 271 21 o.ons 
3 375 10 0.0267 
4 356 6 0.0169 
5 311 2 0.0064 
6 414 16 0.0386 
7 311 4 0.0129 

• 143 2 0.0140 
9 195 ' 0.0205 

Figure 8.2.1 Table· 

Software Quality 0.0989 

0.1000 I 
0.0900 

o.ons 
0.0800 

' ~ 0.0700! 

~ 0.0600 

.!! 0.0500 t 
~ 0.0386 

~004001 :... 0 00 0.0267 
~ .03 0.0205 
a o.02oo o.0129 o.0140 °·0169 

0 0064 0.0086 D D 0.0100r n 
0.00000 D I I I 

5 1 7 • 4 9 3 6 2 10 
Group ~mber 

. Figure 8.2.2 Graph ·Software Quahty 

Page 148 



[ 

I 

CHAPTER 9 : MEASURING §OFrW ARE USABILITY 

9.1 MEASURING SOFTWARE USABILITY 

This chapter describes the method used for determining the usability and 

leamability ofthe software produced by each project group. It will also present the 

results derived from the usability exercise. 

9.1.1 Usability Exercise 

The usability exercise was conducted by presenting a group of five 

independent students with a list of tasks to be performed by each application. 

The students that took part in this exercise were required to have some 

background 'with Microsoft Windows. Students in the 1993 Software 

Engineering Project were not allowed to participate. Each student was given 

30 minutes to perform the tasks specified. 

Since each of the applications covers different aspects of the orchard 

project, it was difficult to create a generic usability test plan. Therefore for 

each application, a unique set of tasks was provided. This set of tasks consists 

of four main sections. Each section focused on one module of the application. 

The tasks to be perfom1ed included creating, deleting and updating of records. 

The students were also required to check whether an updated record was 

indeed updated, and a deleted record was deleted. 

The students \vere required to log their start and finish time for each set 

of tests. At the end of the test, the students were asked to comment to their 

perception of the application's usability and l~amability. 

Page 149 



9.1.2 Usability Test Plan 

This section describes the format of the usability test plan and its 

format on how data were collected from each student (See Figure 9.1.2.1). 

The tasks specified from A to D vary from application to application, although 

the objective of its operations remain the same. 

SOFTWARE#1 
NAME: 
TIME (START}: __ 

Please Circle One A~ptjate An5wer 
V•'Y V•"' 

TASK Eas~· OK "'"' Comments 
A \. Create two FRUIT recortls. 1 2 3 • 5 

2 Update OM of the FRUIT records. 1 2 3 ' 5 
3. De1ote one of the FRUIT records 1 2 3 • 5 
4, Fil'ld the updated record. Is the rocord updated 

properly? . v~ No 
5. Find the <W-e!OO roeord. 1:!; t.e record deleted? v~ No 

B 1. Create two EMPLOYEE records. 1 2 3 ' 5 
2. UpdatllooeofthoEMPLOYEE records. 

1 2 3 ' 5 
3. Dele\;! one of the EMPLOYEE records 1 2 3 ' 5 
4. FIOd lile updated record. Is tho roc:ord updated 

propeny? YM No 
5. Firld tho deki!ed rtlCOfd. Is the rooord deleted? YM No 

c \. Create two SALES records. 1 2 3 4 5 
2 Update ono of the SALES records. 1 2 3 ' 5 
3. Oelets one ol th6 SALES records 1 2 3 4 5 
4. Find the updated record. Is the rocord updated 

prt>p(lrty? YM No 
5. Find the deleted record. Is the rerord delekld? YM No 

D 1. Create two BLOCK rocords. 1 2 3 4 5 
2. Updal6 Ol1il ol th6 BLOCK r!!COrds. 1 2 3 4 5 
3. Delete one of the BLOCK records 1 2 3 4 5 
4, Fi'ld trnJ updal\>d record Is the record updated 

propurty? YM No 
5. Find the dekltod record. Is lhe reo:Jrd deleted" v~ No 

LEARNING: 
How easy was it Ill gat used to the apprteatioo? 1 2 3 4 5 

USAGE; 
Was 11 easy to locate the modukls? 1 2 3 • 5 
Was the apptiea\1011 easy to use? 1 2 3 4 5 

OVERAlL FEEL: Grtlat OK lous;t 
How did lha applieation fiMll to use? 1 2 3 4 5 

TIME !FINISH): .. F1gure 9.1.2.1 Table- Format Of llsabllity Test Plan 

9.1.3 Deriving Usability Of The Application 

Not all the students were able to perfom1 all the tasks specified. The 

results from each task varied from student to student. Some were able to 

perform a task successfully while others encountered problems. Therefore to 

Page 150 



gather the score for each task, an average was derived. Avemges were also 

derived for the applications' LEARNABJLITY, USAGE and OVERALL 

FEEL. Responses with "YES" or "NO" were calculated by deriving a 

percentage based on the number ~~Jf"YES" responses. This is to determine the 

percentage of the application's operation success rate. The amount of time 

taken was also calculated in tenns of minutes. Figure 9.1.3.1 presents the raw 

data collected from the exercise. 

Averogo Tasks locate Ease Of OvemU Task$ Aveml}e 
Group Score ~~~ama~? Modules """ Feel Succese Rate Durotlon 

Number {0<rt0f60) out of5 out of 5 out of5 outof5 out Of8IJO% Minutes 
1 47.8 3.8 3.2 3.6 3.4 640 32.8 
2 50.8 3.4 3.8 3.4 3.2 "" 29.8 
3 472 3.4 42 3.4 3.2 720 32.2 
4 54.0 4.4 42 4.4 4.4 720 19.6 
5 51.8 4.2 4.8 4.6 4.6 800 19.:i! 
6 47.7 3.8 3.6 3.6 3.2 715 31.4 
7 49.0 4.8 4.6 4.4 4.0 740 21.8 
8 52.8 3.2 3.6 3.0 2.6 800 22.4 
9 54.6 4.4 3.6 4.0 4.4 "' 20.2 
10 19.8 1,3 3.5 1.3 1.0 125 222 

Average 47.5 3.7 4.0 3.6 3.4 62ll 252 
Minimum 19.8 1.3 3.2 1.3 1.0 125 192 

Maximum 54.6 4.8 4.6 4.6 4.6 800 32.8 

F>gure 9. I .3.1 Table- Rllw Usability Data 

After the raw data were derived, some of the data were scaled down to 

a more reasonable range, 1111d the data were weighted as follows : 

• Average tasks score 10 
• Leamability 5 
• Locate modules 5 
• Ease of use 5 
• .Overall feel 5 
• Task success rate 5 
fl' Average duration 2 

For the Average Duration, time ranges between 11 to 20 minutes are scored as 

2 and 21 to 30+ m.inutes as 1. The weightings were determined by a subjective 

assessment of the importance if each element. Figure 9.1.3.2 presents the 

final set of data derived. 

Page 151 



Average '"""'" Easaor -0\lerall Tasks Average 
Group ~~Skll Sc~~~ ll~amab;r Modules u .. Feel s~::ce;s ~5~ta OU!lltlon 

Number Out or 10 Out of 5 Out of5 out or 5 Oulo15 Oul0f5 Out012 
1 8.0 3.8 3.2 3.8 3.4 4.0 1 
2 8.5 3.4 3.8 3.4 3.2 3.0 1 
3 7.9 3.4 4.2 3.4 32 4.5 1 
4 9.0 4.4 42 4.4 4.4 4.5 2 
5 8.8 4.2 4.8 4.6 4.6 5.0 2 

• a 3.8 3,8 3B 32 4.5 1 
7 8.2 4.8 4.6 4.4 4.0 4,6 1 
8 8.8 3.2 3.6 3.0 2.6 3.8 1 
9 9.1 4.4 3.8 4.0 4.4 4.7 2 
10 3.3 1.3 3.5 1.3 1.0 0.8 1 

Average 7.9 3.7 4.0 3.6 3.4 3.9 1.3 
Minimum 3.3 1.3 32 1.3 1.0 0.8 1.0 
Maximum 9.1 4.8 4.8 4.6 4.6 5.0 2.0 . .. 

Ftgure 9.1.3.2 Table- Adjusted Usabthty Data 

After all the necessary data were adjusted, the total usability score for 

each application was derived. These scores were derived by calculating the 

sum of all the data presented in Figure 9. 1.3.2, of each application. The total 

usability scores were presented out of 37 Figure 9.1.3.3 and 9.1.3.4 presents 

the total usability score of each application. 

Total 
Group U~bl!lty S~~re 

Number Oul0f37 
1 27.0 
2 26.3 
3 27.6 
4 32.9 
5 33.8 
6 27.6 
7 31.6 
8 26.0 
9 32.4 
10 12.2 

Average 27.7 
Minimum 12.2 

Maximum 33.6 

'Figure 9.1.3.3 Table- Total Usability Score 

Page 152 



Software Usability Score 

31 6 32.4 32.9 33·8 

" 
35.0 

M 
3QO 0 26.0 2<3 27.0 27.6 27.8 

~ 25.0 e. 
e 20.0 
0 
u 

15.0 "' ! 10.0 

m 5.0 " 
0.0 

t12.2 

l 
' 

10 8 2 1 6 7 9 4 5 

Group flklm ber 

Figure 9. i .3.4 Graph- Total Usability Score 

Based on the average score, the majority of the applications did veiy well 

from the usability test, with the exception of Group tO's application. It scored the 

lowest and its well below the average score. 

Page 153 

. , .. 

• 



---------------- -----············-.•-·"··---~--" ... - '-·-------··--· 

CHAPTER ill : lFINAL ANALYSIS AND CONCLUSION 

10.1 FINAL ANALYSIS 

All the data necessary for the final analysis has been collected and 

presented in chapters 3 to 9. Information on software size and the number of 

defects found has been derived. Albrecht's function point method has been used to 

measure the size of the software. At the same time, guidelines have been 

established to ensure that the software was being measured consistently. As for the 

number of defects, the same approach was derived from the tests performed on 

each piece of software. The usJbility of the software was determined by asking a 

group of students to perfonn a series of tasks on each piece of software and 

proVide feedback _on its usability, through the use of a questionnaire. Members of 

the judging panel provided the information on team scores, solution functionality 

and solution quality. The students provided the information on cross scores. The 

students' course averages were obtained from the university's Student Services 

Department. The remaining information was gathered from the software 

engineering students by means of questionnaires. It has to be stated that the 

accuracy of this infonnation is dependant upon the accuracy of the data provided 

by the students. The information gathered has been divided into 30 sub-categories 

which fall under two major categories. Processl6 and Product 17• These sub

categories are listed below: 

PROCESS 
0 Team size 0 Total hours spent • Requirement time 

• Analysis time 0 Design time 0 Coding time 

• Testing time • Requirement time(%) • Analysis time(%) 

• Design time(%) • Coding time(%) • Testing time (?-·0) 

• Project management • On schedule • Team work 

• Contribution to project • Cross scores • Average age 

• Course averages • Female students(%) • Part-time students(%) 

• Staff adviser's advice 0 APT methodology • Development software 

• Access to client • Productivity Rate 

1(• Process is a metric of numerical value that describes a software process such as the amount of 
time required to code a piece of software. (For more information, refer to Section 2.2.2) 

17 Product is a metric of numerical value that is extracted or derived from a piece of software. 
(For more informalion, refer to Section 2.2.2) 

Page 154 



I 
I 

PRODUCT 
• Solution fimctionality • Solution quality • Software size 
• Software usability • Defects found 

10.1.1 Description Of Information 

Process 
CJ Team size 

The size of each group varied from 3 to 6 students. 

IJ Total hours spent 
The average total hours spent on the project by each group. 

IJ Requirement time 
The total hours spent on the requirement phase by each group. (See 
Section 2.1.2.1 for the explanation of the development phases) 

CJ Analysis time 
The total hours spent on the analysis phase by each group. 

Cl Design time 
The total hours spent on the design phase by each group. 

IJ Coding time 
The total hours spent on the coding phase by each group. 

0 Testing time 
The total hours spent on the testing phase by each group. 

o Requirement time(%) 
The percentage of time spent on the requirement phase by each group. 

IJ Analysis time (~'0) 
The percentage of time spent on the analysis phase by each group. 

IJ Design time(%) 
The percentage of time spent on the design phase by each !,1I'Oup. 

IJ Coding time(%) 
The percentage of time spent on the coding phase"by each group. 

IJ Testing time(%) 
The percentage of time spent on the testing phase by each group. 

Page 155 

0 



IJ Project management 
The average score on how satisfied er.ch group was with the 
management of their project. The score was out of tO. 

IJ On schedule 
Whether each group felt they were able to complete their project on 
schedule. 

IJ Team work 
The average score on how satisfied each group was with the way the 
group operated. The score was out of 10. 

o Contribution to project 
The average score on how satisfied each team member was with their 
contribution being received" by the rest of the team. The score was out 
of 10. · 

0 Cross scores 
Part of the assessment of the project involved each team member 
giving a score (out of 28) for the contribution made by other team 
members. The cross score is the average of all the scores given by the 
members of each group. 

Q Average age 
The average age of the students in each group. 

o Courses averages 
The average of all the course averages of students in each group. 

IJ Female students(%) 
The percentage of female students in each group. 

IJ Part-time students(%) 
The percentage of part-time students in each group. 

CJ Statfadviser's advice 
The average score on how satisfied each group was with their staff 
adviser's advice. The score was out of 10. 

IJ APT methodology 
The average score on how satisfied each b'TDUp was with the use of the 
APT methodology. The score was out of 10. 

Page 156 



0 Development software 
Each group had to select their own software platform. This is the 
average score on how satisfied each group was with the development 
software chosen. The score was out of 10. 

IJ Access to client 
The average soore on how satisfied each group was with the method(s) 
used for communicating with the client. The score was out of 10. 

0 Productivity Rate 
The delivery rate of function points per person-month. (For mo.re 
information, refer to Chapter 7) 

Product 
o Solution functionality 

The avemge score of each piece of software's functionality which was 
awarded by the judging panel. The score was out of25. 

o Solution quality 
The average score of each piece of software's quality which was 
awarded by the judging panel. The score was out of25. 

Cl Software size 
TI1e size of each piece of software (in function points) was derived by 
the investigator using Albrecht's Function Point Analysis. (For more 
information, refer to Chapter 6) 

o Software usability 
The average score of each piece of software's usability which was 
derived after conducting a series of usability tests. The score was out of 
37. (For more in' .~rmation, refer to Chapter 9) 

o Defects found 
The nwnber of defects found on each piece of software was derived 
after conducting a series of tests. (For more information, refer to 
Chapter 8) 

Page !57 



10.2 STATISTICAL METHOD USED 

The next phase, after all the information had been compiled, was to apply 

some statistical measurement of correlation to this information. The aim of this 

was to determine the relationship (if any), between the information categorised 

above. For exampl-::, based on this study, questions which could be raised, are, 

"Does more time spent by students on software testing affect the quality of the 

software?" or "Would more time spent by students on coding produce software of 

a bigger size?". These are some of the questions that will be addressed. 

In order to obtain the answers to these and other questions, four types of 

statistical methods were considered. These methods were : linear regression, 

Pearson's correlation coefilcient, Spearman's rank correlation coefficient and 

Kendall's rank-order correlation coefficient Out of these four statistical methods, 

Spearman's rank correlation coefficient method was selected for the research. The 

results obtained through the use of the linear regression approach and Pearson's 

correlation coefficient method were abnormally influenced by the outliers IS in the 

data. These two methods are more suitable for nonnally-distributed attribute 

values. Some useful results were obtained using Kendall's rank-order correlation 

coefficient method. However, these were not sufticient tOr the purposes of arriving 

at any major conclusions. 

The Spearman's rank correlation coefficient method was chosen because it 

produced sufficient results that were able to address the questions proposed by the 

research. The Speannan·s rank correlation coefficient is very similar to the 

Pearson's correlation coefficient method, except that the tbm1er is a robust 

measure. The use of a robust measure is preferred because •· ... most software 

measurements are not normally-distributed and usually contain atypical values ... " 

(Fenton, 1991, p. I 02). The rank correlation coetlicient method is not easily 

influenced by both abnonnal values and non-linearity of the underlying 

!8 Outliers' data are those that are abnormally high or low in a series of data. 

Page 158 



relationship. It is also not inclined to be influenced by very large values. The main 

difference bet\veen Spearman's and Pe~.rsoll's method ;s that, the former 

calculates the correlation coefficient based on the rank of the attribute values 

whereas the latter is based on the raw values. Spearman's is considered better for 

"behavioural"' data, which best describes the data used here, where large sections 

were obtained from survey material. 

Speannan's rank correlation coefficient is denoted by r,. This can be 

derived at by using the fonnula presented below (Freund et al., 1992, p. 51!). 

6(I;d'> 
r ~ 1- -'";'---:'
s n(n'-I) 

The rank correlation coefficient for a given set of n pairs of x's and y's is 

calculated within several steps, where x andy arc the attribute values (Freund et 

al., 1992, p. 511). First the x's andy's are ranked among themselves from low to 

high (or high to low). In this exercise, the values were rank in ascending order. 

The rank was obtain~d by giving the smallest attribute value the rank value of I, 

the next rank value of 2 and so on. In the event where two or more attribute values 

are the same, an average of the related rank values is derived and assigned to these 

attribute values. The value ford is derived from the differences between the ranks 

and is substituted into the formula (Freund et al., 1992, p. 511). The correlation 

coefficient value varies from -I to I, where I indicates a perfect positive iinear 

relationship, -I indicates a perfect negative linear relationship, and 0 indicates no 

relationship (Fenton, 1991, p. 102). The results from the analysis are presented in 

Figure I 0.2.1. 

Page !59 



'.::-_· 
''"' .. _-- ~~~--

-- _-;·. 

,.-;· -
,', .- --~ 

" "''" 

;} 

' • 
~ 
N 

fi 
~ 
0 

;!' i ;1~1 c 
'll i 
"' 

~ 

0 3 
~ • . • 
~ 
" 

J 
n 

f 
1~1 



10.3 CONCLUSIONS DERIVED FROM THE ANALYSIS 

The conclusions derived from the analysis are presented in themes. In this 

study there are 14 themes. These themes were divided into three categories, 

namely Process vs Product (to determine those attributes of process that most 

influence attributes of the product), Process vs Process (to determine the interM 

relationship between various attributes of the process) and Product vs ?roduct (to 

determine the inter-relationship between various attributes of the product). They 

are: 

PROCESSVSPRODUCT 
• Approach to developing high-quality- low defects software 
• Coding reflects on software size and fimctionality 
o Results of unrealistic project scope 
• Quality of students' effort reflects the quality of the final product 

PROCESS VS PROCESS 
., Students and staff adviser relationship 
• How teams choose to spend their time 
• Effective team effort and good project management 
• Dmwbacks of working alone in a group project 
• Importance of selecting the right development tools 
• Usefulness of using a methodology 
• Negative impact of older students in a group project environment 
• Drawbacks of mixed male/female project groups 
• Productivity of students reflects on coding 

PRODUCT VS PRODUCT 
• Judging functionality and quality of undergraduate software projects 

Page 161 



PROCESS VS PRODUCT. 
10.3.1 Approach To Developing High-Quality- l..ow Defects Software 

(a) Testing Time vs Solution Quality (0. 71) 
Testing Time(%) vs Solution Quality (0. 71) 
Design Time(%) vs Defects Foonrl (-0.59) 

The results showed that the teams who spent mo.re time on 

software design and testing, tended to produce better quality software 

with less defects. 

By spending more time on design, the tean:s would be able to 

define a better solution to the problem. Vliet suggests (1993, p. 171) 

that a good design is a major factor in developing a successful product. 

Vliet (1993, p. 171) postulated that a "well-designed system is easy to 

implement, is understandable and reliable, and allows for smooth 

evolution". Conversely, badly designed systems are harder to maintain, 

difficult to test and are less reliable. The design phase can be regarded 

as one of the most crucial phases in the software development life

cycle. 

More time spent on conducting software testing should enable 

students to locate and remove major 'rrors and bugs, thereby producing 

a better quality software product. During the construction of software, 

many errors are bound to be made. Locating and fixing these errors 

through excessive testing is a very time consuming activity and it is fair 

to say that not all errors will be found (Vliet, 1993, p. 315). Vliet 

suggests (1993. p. 315) that to have good testing is as difficult as 

having a good design. 

This has been supported by the results that hJve been obtained. 

However, it would be reasonable to expect the results to show that 

extensive testing results in the software having fewer defects. This 

Page 162 



relationship was not evidenced in the analysis. This may well he due to 

time constraints as testing was onlY conducted against the sofuvare 

design and coding and not on the software's logical constraints and 

business functionality. 

(b) Solution Quality vs Total Hours Spent (0.58) 
Solution Quality vs Team Work (0.62) 
Solution Quality vs Contribution To Project (0.51) 

The results revealed that teams--which spent more time on their 

project received higher marks for software quality. It also showed that 

if the students were satisfied with their contribution to the project and 

worked as a t~am, they also tended to produce better quality software. 

Students who spent more time together on group activities 

should invariably exhibit high team morale. Working well together also 

implied that team interaction was high. When team interaction was 

high, students would have an opportunity to maximise their 

contribution to the project. This tended to create an environment where 

there was no dominant individual controlling the team. Allowing every 

student to have his or her say in the project improved the flow of ideas 

and suggestions. Having obtained a wider range of ideas and 

suggestions, the students could then select those that were applicable to 

their problem. Students who were able to produce a well-defined 

solution invariably produced a better quality software. 

(c) On Schedule vs Defects Found (-0.80) 

This result showed that those projects that were on schedule 

tended to have less defects. 

Page 163 



l. 

The result suggested that teams who completed their project on 

time dedicated sufficient time to ·proper software testing. It also 

implied that the students did not have to rush to complete their 

software. Facing schedule pressure often results in poor product quality 

(Gilb, 1988, p. 326). Sufficient testing and time to complete the project 

were some of the important factors that led to the development of 

sotlware with fewer defects. Running behind schedule usually has 

disastrous effects on the project. Jones (I 991 , p. 226) said that 

sometimes schedule pressure can actually have some positive impact 

on !fie team morale. Jones (1991, p. 226) also pointed out that 

e~cesslve and unrealistic schedules are probably one of the most 

"destructive influences in all of software". Jones (1991, p. 226) stated 

that unrealistic schedules not only tend to cause the projects to tail but 

they also "cause extraordinarily high voluntary turnover arnang staff 

members". 

10.3.2 Coding Reflects On Software Size And Functionality 
(a) Productivity Rate vs Solution Functionality (0.57) 

Productivity Rate vs Software Size (0.79) 
Productivity Rate vs Software Usability (0.66) 
Coding Time vs Solution Functionality (0.52) 
Coding Time vs Software Size (0,90) 

The resuits showed that the teams who were more productive 

and S!=lent more time on coding, knded to produce a larger piece of 

software \vith greater perceived functionality. It also sho\',red that the 

teams who were more productive, tended to produce a piece of 

sothvare with higher usability. 

It was apparent that the amount of time that was spent on 

ceding directly impacted on the size of the S<:lftwai:e but not necessarily 

on its proposed functionalities. This implies that to produce a larger 

piece of software, the product.ivity rate of the students wouid have to be 

!?age 164 



high. It is fair to conclude that the productivity rate of students and the 

time spent on coding are inter-relate<f, as shown in Section 10.3.13. 

10.3.3 Results Of Unrealistic Project Scope 
(a) Analysis Time(%) vs Software Size (-0.66) 

A11aly.vis Time(%) vs Productivity Rate (-0.63)" 
RequirementTime (%) vs Software Size (-0.56) 
Requirement Time (%) J.'S Productil•ity Rate (-0. 65) 
Requirement Time(%) vs Solution Quality (-0.58) 
Requirement Time(%) vs Usability (-0.65) 

The results reflected that the students who spent a larger 

proportion of their time on analysis and requirement, would produce a 

smaller piece of software that was lacking in quality and usability. The 

supporting results also indicated that the students who spent a larger 

proportion of their time on analysis and requirement were less 

productive. 

The results seem to be unusual. The data presented in Sections 

4.2.3 and 4.2.5, implied that the teams generally were not very satisfied 

with their staff adviser's advice and their client. The information 

presented in Section 4.3, indicates that the majority of the staff 

advisers were inexperienced and therefore, of little benefit to the 

students. Accordingly it was apparent that not all of the students were 

properly supervised and the requirements were not clearly defined by 

the client. Furthermore, the majority of the students were new in the 

area of software development and it was reasonable to say that these 

students would not have had sufficient experience to realistically define 

their scope. Bearing all this in mind, the analysis and requirement 

phases were conducted during the first semester of the project The 

coding phase then commenced in second semester. It was apparent that 

19 NOTE : Although Analysis Time(%) and Productivity Rate are both process metric, they are 
represented here as supporting results. All supporting results will be represented in italic. 

Page 165 



the students then realised that their scope was unrealistic and they were 

unable to handle the situation. Confronted with fear and confusion, and 

having no positive supervision, the majority of students were left to 

their own devices. Hence this led to the negative effects on 

productivity, software size, quality and software usability. 

According to Pressman ( 1992, p. 68), the scope describes the 

"function, performance, constraints, interfaces and reliability" of the 

software. With this project, the students were more concerned with the 

functions and interfaces of the software. Unfortunately, thes.e two 

requirements were not clearly defined by the client. Hence the students 

had no choice but to define their own set of functions and interfaces. 

As a result, some groups fell into the trap of over-defining the scope. 

It is recommended that staff members with sufficient 

background in software engineering should be assigned to be staff 

advisers. This would be fair to the students as they would be able to 

benefit and learn from their staff adviser's advice. A further 

recommendation is that students should have more access to the client. 

That would allow the client's requirements to be easily gathered and 

verified. 

10.3.4 Drawbacks Of Mixed Male/Female Project Groups 
(a) Female Students(%) •1s Defects Found (0.76) 

The result showed that the soft\vare would have more defects if 

there were more female students in the group. 

This result reqmres some interpretation. The groups were 

primarily male in make-up. When students were working in group, 

some sort of a bond tended to be established between them. Also when 

Page 166 



working closely together, members of the opposite sex would tend to 

be hesitant about voicing out the problems and errors found during the 

development of the software. They might worry about hurting the other 

member's feelings or ego. 

Generally, when a group was comprised entirely of male 

students, they tended to be more frank and open toward one another. 

But when dealing with a member of the opposite sex, the males tended 

to be more polite and less aggressive. Helen Marshall (1987, p. 45) 

proposed that male students were more active and more confident in 

debates, whereas female students were more self--conscious when 

talking in public. It would seem that the inability to express one's 

opinion outrightly towards a member of the opposite sex was the cause 

of this negative impact. 

One other possible reason may lie with the mind set of today's 

society. We are now moving towards the twenty-flrst century and many 

have come to believe and accept the right of equal opportunities for 

both men and women. But, when it comes down to more technical 

matters, men still believe that they are better at handling the situation. 

As Marshall (1987, p. Ill) said, "many people still feel, for example, 

that males should take lead in activities and projects, and that females 

shouldn't be 'pushy'". Marshall (1987, p. 42) also argued that a 

consideration of the enrolments of tertiary students, would show that 

there was a heavy concentration of male students in engineering and 

computer science courses and female students in humanities, social 

science, librarianship and nursing courses. Assuming that -this was the 

case, women students may not be taking (or invited to take) a more 

active role in contributing to the project. Women students may ended 

up only doing clerical activities. Jf this was the case, the group would 

Page 167 



only be partially utilising their human resources, hence leading to this 

negative outcome. Unfortunately, there were no all-female project 

teams on which to further develop this hypothesis. 

10.3.5 Quality Of Students' Effort Reflects The Quality Of The Final 
· Produc1 

(a) Cross Scores vs Solution Functionality (0.66) 
Cross Scores vs Solution Quality (0.81) 
~ross Scores vs Usability (0.59) 
Course Averages vs Usability (0.60) 

The results disclosed that high cross scores were given by t~ouns 

whose· software \vas perceived by the judging panel as representing a 

good product They also indicate that teams with higher course 

averages tended to produce software with better usability. 

The score for peer·assessment was awarded by each student and 

was based on their perception of the overall perfonnance of each 

member. It seems to suggest that students who awarded each other high 

marks were also happy working as a team. This in itself implies that the 

students were satisfied with all the various aspects of how their project 

team was managed. It was fair to say that teams that felt good about 

their own performance were sure that they had developed the software 

well. The results above support the conclusion that there was a positive 

relationship between the marks allocated within a group and the marks 

awarded by the judging pane1 for software functionality and quality. 

This was further supported by the usability score that was derived. 

Teams having higher course averages also tended to produce software 

with high usability. This implied the brighter and harder working 

students did have a positive impact on the overall project. 

Page !68 



It is recommended that if similar research is to be conducted in 

the future, the students' scores from· the programming units and units 

where the students are required to work as a team should be used, 

rather than just the students' course averages. Using these proposed 

scores can provide an insight Into individual students' programming 

skills and team interaction. 

PROCESS VS PROCESS 
10.3.6 Students And Staff Adviser Relationship 

(a) Staff Adviser's Advice vs Team Work (0.72) 
Staff Adviser's Advice vs Contribution To Project (0.62) 
Staff Adviser's Advice vs Project Management (0.67) 

The results displayed that if the students were satisfied with 

their staff adviser's advice, they were also. satisfied with their 

contribution to the project, working as a team and the way the project 

was managed. 

Teams having valued feedback from their staff advisers seemed 

to work better as a team, value each other's contributions and were 

happier with the management of the project. If students felt they were 

being well-directed, they were happier with the way the team was 

working. 

10.3.7 How Teams Choose To Spend Their Time 
(a) Team Size vs Total Hours Spent (0.66) 

The result evidenced that if a team were to have more students, 

they tended to spend more time on the project. The data seemed to 

suggest that larger teams would have more man-hours to devote to the 

various tasks. In smaller teams, tht: student'5 did not have the luxury of 

rerfonning some tasks as thoroughly as they would have liked. In 

Page 169 



certain cases, smaller teams might have had to compromise certain 

activities such as software testing. 

(b) Team Size vs Hours Spent In Testing (0.66) 

The result exhibited that if a team had more students, they 

tended to spend more time on software testing. 

The observation made was that for larger teams, the students 

would have enough human resources to spare for conducting extensive 

so~are testing. Unfortunately, in cases where there were only three 

students in a group, each student would have to perfonn in the majority 

of the tasks. With no one to delegate the tasks to, a team of three 

students would have to work twice as hard compared to a team of six 

students. By almost doubling the work load and having to meet an 

inflexible schedule, the small team would choose to sacrifice the time 

on testing over time allocated for coding. 

According to Shneiderman (1980, p. !29). some social 

psychological research suggests that members of small groups tend to 

encourage each other to perfonn better because they feel that the group 

members will "recognise good work and criticise poor performance··. 

Unfortunately, small groups are also most likely to be affected by 

anxiety and fear of failure. Teams should not be allowed to get down to 

a small size. A group of tive students is a reasonable size and is 

recommended for future undergraduate software engineering projects. 

Page 170 



(c) Requirement Time vs Analysis Time (0.66) 
Requirement Time(%) vs Analysis Time(%) (0.65) 

The results revealed thn.t the teams who spent more time 

gathering requirements, would flso spend more time analysing these 

requirements. 

Most of the students spent a fair amount of time conducting 

their research into meeting the requirements of the project. They were 

able to obtain infonnaticn from orchardists, the Taxation Department 

and the Weather BUreau. Having obtained thls infonnation, the students 

also spent a large proportion of their time analysing the infonnation. 

(d) Total Hollrs Spent vs Design Time(%) (0.56) 
Total Hours Spent vs Coding Time(%) (·0.81) 
Total Hollrs Spent vs Testing Time(%) (0.73) 

The results indicated that if the teams had more time to spend, 

thl':y would spend it on design and testing, and not on coding. 

Expending more time on the design phase would lead teams to 

define a better solution to the problem. By spending more time on 

software testing, the students were able to locate and remove potential 

errors and bugs. If the studenis were able to define a proper solution 

and perfonn sufficient testing, in the long nm, the software would 

require less re-coding and modification. However, the amount of time 

spent on testing depends greatly on the amount of spare time the group 

has before meeting the deadline. In cases where projects were behind 

schedule, software testing was often compromised (Paulk et al. 1993, p. 

2). 

Page 171 



(e) Coding Time(%) vs Analysis Time (-0.98) 
Coding Time(%) vs Analysis Time_(%) (-0.58) 
Coding Time(%) vs Design Time (-0.77) 
Coding Time(%) vs Design Time (%)(-0.73) 

These results showed that the teams who spent more time on 

analysis and design, would subsequently spend less time on coding. 

The data presented here provides further support to the point 

made in the previous section (Section (d)). The students could better 

understand the problem through extensive analysis and derive a better 

solution through extensive desigO. If the students were clear on what to 

develop and how to develop it, they were most likely to build the right 

software the first time around. If this were the case, the software would 

require less re-coding and modification. 

10.3.8 Effective Team Effort And Good Project Management 
(a) Total Hours Spent vs Team Work (0.61) 

Analysis Time vs Team Work (0.66) 
Analysis Time vs Contribution To Project (0.57) 
Design Time vs Team Work (0.55) 
Design Time vs Contribution To Project (0.58) 
Design Time(%) vs Contribution To Project (0.60) 

The results showed that if the teams had more time to spend, 

they would spend it on team activities. It also showed that the students 

who spent more time on analysis and design, were also satisfied with 

their contribution to the project and team work. 

It was important that every student worked as part of the team, 

and contributed to the project whenever possible. B:::ing a team project, 

every students' opinions and suggestior.s should be heard. Whenever 

possible, the students should function as a team. The data suggests that 

teams who spend more time on team activities like analysis and design 

Page 172 



were also satisfied with their individual contribution to the project and 

team work. This implied that the students were functioning as a team 

during the analysis and design phase, which was not unexpected. 

(b) Testing Time vs Team Work (0.58) 
Testing Time(%) vs Team Work (0.55) 
Testing Time vs Cross Scores (0.85) 
Testing Time(%) vs Cross Scores (0.68) 

These results evidenced that the teams who spent more time on 

software testing, were more satisfied with their team work and gave 

each o!her a good score during the peer-assessment 

In most cases, the software coder(s) would be different from the 

software tester(s). This result indicates the involvement of team effort. 

Hence, it is fair to say that testing is good for team spirit. The fact that 

the students score each other highly for the peer-assessment suggested 

that students gave good marks to each other when they saw effort in 

testing. 

(c) Project Management vs Team Work (0.79) 
P1·oject Management vs Contribution To Project (0 .. 92) 
Team Work vs Contribution To Project (0.87) 
Total Hours Spent vs Cross Scores (0.72) 

These results indicate a positive correlation between 

satisfaction with the project management, satisfaction that individual 

contributions were recognised and satisfaction with the way the team 

worked together. In addition. they also show that if the students had 

mor'O! time to spend on the project, they tended to award each other a 

higher score for the peer-assessment. 

Page 173 



i .. 

i 
I 

Sommerville (1989, p. 24) said that the project leader must 

understand the characteristics of his or her team members and 

understand how these individuals worked together. A well-managed 

project provided an environment where team members were well 

accepted by their. peers and their contributions appreciated. A group 

that worked well together implied that every student was able to 

participate in the development process. Cases where the students spent 

more time working on the project, suggested evidenc0 of team 

involvement thereby leading to the high peer-assessment score. It is 

believed that the students awarded the peer-assessment score based on 

their hOurs together working as a team. 

10.3.9 Drawbacks Of Working Alone In A Group Project 
(a) Coding Time vs Contribution To Project (-0.54) 

Coding Time(%) vs Contribution To Project (-0.63) 
Coding Time(%) vs Team Work (·0.69) 

The results reflected that the teams who spent a larger 

proportion of their time on coding, were less satisfied with their 

contribution to the project and team work. It tended to suggests that too 

much time spent coding is not good for ter.m spirit. 

In most cases, especially with students, the coder(s) tended to 

work independently from the team. The coder(s) would develop the 

software according to the desibTil specifications without having input 

from the rest of the team. This suggested that there was not much team 

effort involved and not every student had a say on how the software 

was to be coded. This argument is supported by the results presented 

above. [t suggests that the remaining team members were not very 

satisfied when someone from their team \Vorked alone. 

Page 174 



It would be ideal if the students were able to developed an 

egoless programming environmer~~ to work in. Sommerville (1989, p. 

37) defines egoless programming as "a style of project group working 

which considers programs to be common property and responsibility of 

the entire programming group irrespective of which individual group 

member was responsible for their production". Weinberg (cited in 

Sommerville, 1989, p. 37) suggests that by making the production of a 

program a group effort, rather than an individual effort, creates a good 

working environment. To support the views expressed, Sommerviile 

(1989, p. 38) pointed out that programmers who wrote the program 

tended to defend that program against criticism. That defensiveness 

tended to work against good team spirit. 

(b) Staff Adviser's Advice vs Coding Time(%) (-0.67) 
Staff Adviser's Advice vs Analysis Time (0.61) 

'I earns who were happy with their staff adviser's advice spent 

more time on analysis and less time on coding - reflecting the advice 

given. 

Staff advisers tended to advise spending time on analysis and 

design rather than coding. This advice seems to have been taken. 

(c) Coding Time(%) vs Pl'oject Management (-0.60) 

The results showed that the students were less satisfied with the 

way their project was managed, if they spent a larger proportion of 

their time on coding. 

The role of the project leader was to oversee all the project 

related activities. However in the situation where the coder worked 

alone, even the project leader had very little influence over the coding 

Page 175 



process. This was of course reflected by the result presented above. 

However, the results further suggest" that teams who were concerned 

about the way the project was managed, made up for it by spending 

more time on coding. 

10.3.10 Importance Of Selecting The Right Development Tools 
(a) Development Software Used vs Project Management (0.64) 

Development Softwnre Used vs Team Work (0.65) 
Development Software Used vs Contribution To Project (0.57) 

These results exhibited that satisfaction with the choice of 

softwa~e led to satisfaction with the way the team operated. 

Through good project management techniques. the students 

were able to select the right development tools. The selection process 

was not performed by the project leader alone. It was a process that 

involved the whole team. Students were only able to make an objective 

selection after thorough discussion and weighing the pros and cons of a 

particular development tool (ie. biased by any sales pitches). 

When faced with a deadline, the task of selecting the right 

development tool would become very important. This was particularly 

true in a university environment. If the students were to select the 

wrong development tools, they might be required to spend more time 

understanding them. This stress and prest;ure could lead to poor team 

morale and could reduce team efficiency. 

Sommerville ( 1989, p. 33) said that the "programming ability is 

language independent and programming language knowledge is held in 

a representation-independent way", Th;s means that a programmer who 

is familiar with one programming language will find it relatively easy 

to learn a new programming language of the same type. All that is 

Page 176 



required by ihe programmer is to learn the new syntax because the 

underlying concepts are the same. However, Sommerville (1989, p. 33) 

also pointed out that this is only true if the semantic concepts are the 

same. For example, a programmer who is experienced in structured 

programming languages (eg. Pascal) may find it difficult to grasp the 

programming concepts of object-oriented programming languages ( eg. 

Small talk) or functional programming languages (eg. Prolog). 

The programming fowl(lation for most of the students was 

based mainly on structured programming languages such as Pascal. The 

development tools used for this project were all 4GL-type tools which 

represented a new paradigm to these students. Therefore~ the students 

were required to spend more time understanding this paradigm before 

they could apply it to their project. 

(b) Design Time(%) vs Development Software Used (0.71) 

The result displayed that the students who spend a larger 

proportion of their time on design, were also satisfied with the 

development software used. 

During the design phase, the students would have known what 

was required of the proposed software. They would have figured out 

what was required to develop the software. From this, the students 

would have an idea of the type of development tools that they required. 

This knowledge would most certainly assist them in selecting the right 

commercial development tools that were available on the market. 

Page 177 



I. 

10.3.11 Usefulness Of Using A M·>thodology 
(a) APT Methodology vs On Schedule (0.61) 

APT Methodology vs Project Management (0.59) 

The results showed that adherenc..; to the APT methodology led 

to the project being on schedule a11d general satisfaction with the 

project management. 

The students were taught about the importance of having a good 

development methodology. The department ensured that what was 

being taught was also being practised. _Hence the students were 

encouraged to usc the APT methodology (EXECOM, 1991). The 

project leader that followed the guidelines of the methodology was able 

to better prepare the tasks and activities that needed to be performed, 

and \vere also able to set up realistic project milestones. Projects that 

\Vere able to meet these milestones we-re more likely to be completed 

on schedule. 

10.3.12 Negative Impact Of Older Student(s) In A Group Project Environment 
(a) Average Age vs Project Management (-0.62) 

Average Age vs Team Work (-0.62) 
Average Age vs Contribution To Project (-0.53) 
Average Age vs Staff Adviser's Advice (-0.77) 
Average Age vs Testing Time(%) (-0.56) 
Av('rage Age v.~;<. Us~bility (-O,s:;) 

These results indicated that if the students were older, they 

tended to be: less satisiied with their project management, team work, 

contribution to the project and st2ff adviser's advice. !t a!so showed 

that the older students would allocate a smaller proportion of their time 

to software testing and tended to produce software with lower usability. 

Page 178 



The results presented above suggest that having older students 

working in a group project has some negative impact on the project. 

There are three possible explanations. 

Firstly, it was very common that the older member of the team 

would get elected as project leader. The older students tended to have 

experience from another discipline, and t·;ttte or no experience in the 

art of managing the software project. Due to this lack of experience, 

such project leaders might not be able to effectively command the 

group and the project. Pressman (1992, p. 42) states that for a project to 

succeed, management must enforce good project management 

practices. He further added that it would be expected that all project 

leaders understand how to do it, unfortunately, many do not. Pressman 

was referring to a real world situation, which also holds true to a 

university environment. 

Secondly, older students tended to be more cynical about things 

and were less enthusiastic than their younger team mates. It might be 

the case that the older student had experienced similar projects before 

and found the current project less challenging or too trivial. This may 

have resulted in them being less active or uninterested in group 

activities. Older students might also be reluctant or too proud to take 

advice offered by their younger team members and staff advisers. 

Thirdly, some of the older students might be on a career change 

and were unable to cope with the paradigm shift. What they might have 

learnt from past experiences might not be applicable to the current 

situation. For example, the testing skills that they acquired from past 

experiences might be inapplicable to testing a piece of software. 

Page 179 



10.3.13 Productivity Of Students Reflects On Coding 
(a) Productivity Rate vs Coding Time (!J.82) 

Productivity Rate vs Coding Time(%) (0.71) 

The results revealed that the delivery rate of function points was 

higher for groups that spent more time on coding. 

Where teams spent more time on coding, they tended to 

produce a larger piece of software, as supported in Section 10.3.2 (a). 

If the teams were able to produce a larger piece of software within the 

allocated time, it is fair to concluded that the teams were also 

delivering function points at a faster rate. 

PRODUCTVSPRODUCT 
10.3.14 Judging Functionality And Quality Of Undergraduate Software 

Projects 
(a) Solution Functionality vs Software Size (0.53) 

Solution Quality vs Usability (0.72) 

The results showed that if the software was high in functionality 

and quality, as perceived by the judging panel, they would also have 

larger size and better usability. 

The score for solution functionality and solution quality was 

awarded by the judging panel during the demonstration of the software. 

It was very likely that big pieces of software would provide m01e 

functionality. This was one of the criteria used by the judging panel. 

The judging panel awarded the score for solution functionality based 

on their perception of the size of the software. Based on the result, it 

was fair to say that the judging panel's perception was fairly accurate. 

The solution quality was also awarded by the judging panel based on 

the perceived quality of the functions provided by the software. 

Page 180 



Usability was one of the quality criteria used by the panel, so a 

correlation with tested usability is not-surprising. 

Though the approach adopted by the judging panel appears to 

prove useful and effective, it is recommended a more objective 

approach to this matter be adopted. The size of a piece of software 

might reflect on the software's functionality but this functionality does 

not necessarily address the requirements of the client. It is proposed 

that the judging panel prepare a task list based on the client's 

requirements. The score could then be awarded based on the number of 

requirements that each piece of software met. It is considered thllt this 

would be a fairer approach. It would be ide•l if the judging panel was 

able to judge each piece of software based on the other product 

attributes such as reliability, portability, etc. Unfortunately, due to the 

time constraint, judging the software's functionality and quality would 

have to suffice. 

10.4 DIFFICULTIES ENCOUNTERED DURING ANALYSIS 

To work on a research project such as this, it i5. necessary to be extra 

careful on selecting the right rnethod(s) of collecting raw data. The achievement of 

a successful study, depends on the quality of the data collected. As Fenton (1991, 

p. 115) said, "data collection is the kernel of any measurement programme". If the 

data collected was unrealistic, incomplete or inconsistent, it would produce results 

that would be meaningless or inconclusive. 

During the course of collecting data, there were a series of obstacles. lt is 

believed, no other university in Australia has conducted such an exercise. Hence, 

there were no guidelines to follow and there was a lot of uncertainty as to the 

approach of data collecting_ 

Page 181 



I 
L 

What may be applicable in the industcy may not necessarily be applicable 

in a university environment. For instance, the .students that took part in this 

research project did it out of goodwill. They wf':e not paid for their effort and 

were not forced to participate. Unfortunatdy, the data collected during the course 

of the project were mainly incompki.e and inaccurate. To overcome this problem, 

a final set of questionnaires was prepared and given to the students after their 

project demonstration. It was made mandatory for all the students to fill in the 

questionnaire. From the final set of questionnaires, all the necessary data was 

collected from the students. Therefore, the data was more complete and consistent. 

This final set of data has been the backbone to this entire research. From this 

experience, it is patently obvious that to collect a more complete set of data, it 

should be made mandatory for the students to participate under a controlled 

environment. However, in doing so, the students must be infonned that the results 

of the research wouid not be used against them. 

In total, there were 15 pieces of software of which only 10 were found to 

be functioning, even though all the software appeared to be functioning during the 

demonstration. Since it was not mandatory for lhe students to submit their 

soft\vare for evaluation, it was concluded that the students failed to provide their 

current and working model. If all 15 pieces of software were found to be working, 

it would greatly improve the results that were derived. 

As part of this research, it was required to perform some software metrics 

on the software. The most notable one is Albrecht's Function Point Analysis 

method. To gather more current information on counting function points, the 

Australian Software Metrics Association (ASrv1A) were written to requesting more 

infonnation. After almost a month, the ASMA replied saying that they were 

unable to release any infonnation due to copyright reasons. Being an organisation 

that should be encouraging the measurement of sonware,· the service that they 

offered was less than encouraging. Since the organisation depends heavily on 

volunteer workers, it is only fair to say that they might not have the human 

Page 182 



resources to deal with general enquires in great length. The International Function 

Point User Group (IFPUG), in the United States·, were also written to requesting 

similar infonnation. Unfortunately, they have yet to respond. As a result, it was 

unavoidable to use an older version of n.des on counting function points base<! on 

Dr Rudolph's (1989) seminar paper. 

10.5 CONCLUSION 

After careful analysis of all the data gathered, a lot of factors that lead to a 

good software development environment become apparent. Though some may 

already have been well known, there were others that were unique to a university 

environment. To address the questions raised by this research project, the 

following conclusions have been reached. 

It is now evident that having a staff adviser assigned to supervise the 

project group has its advantages. With tighter supervision, the staff adviser would 

be more awme of the progress of the group. Opinion and supervision from the staff 

adviser could help students guide their project towards the right direction and 

promote team work. 

The research results showed that if students were to spend more time on 

the requirement, analysis and desit,.lfl phase, and conducting extensive software 

testing, they would produce better qualiiy software. It revealed that the software 

would also require less re-ceding and modification. having fewer defects and have 

better sofhvare quality. However, great team effort is required in order to deliver a 

high quality software. Every student's contribution must be considered. The results 

also indicated that the groups that were able to deliver their software on time had 

fewer defects. This implied that the !,'TOUps that were on schedule had more time to 

conduct proper software testing. In general, students that were satisfied with all 

the aspects by which their project was handled and conducted, tended to produce 

software that had better functionality, quality and usability. 

Page 183 



I 
I . 

I 
I 

Project management has always been one of the key factors in the success 

of a project. The same principle applies to a uniVersity environment. The research 

evidenced that with good project management there was better control over . . 
project and the team. The project leader was able to "glue" the team together to 

fonn an environment where everyone was able to contribute and participate in all 

the various activities. This is one of the attributes for making a winning team. 

How is a winning team defined? A winning team can be classified as one 

where the team worked well together, are actively involved in all team activities, 

have a well managed project and have strong interactions with their staff adviser. 

A winning team will also realise the importance of a methodology and adhere to it 

and, carefully and objectively select the right development tools. A winning team 

may not get the best mark, but the individual students will have gained most from 

the experience. 

However, the research also showed that the software coder(s) tended to 

work alone. Students have to realise that in the work force, there is no such thing 

as a lone coder. The coder's work would be constantly monitored by his or her 

peers. The same should be applied to students. Students should work as a team 

during the coding phase with input and assistance from the other team members. 

Though selecting the right development software may not seem to be a 

major issue. it is, especially in a university environment. Unlike the real-world, 

where a project deadline could be modified or postponed, the students were faced 

with • strkt deadline which they had to deliver. Unable to complete the project 

within the deadline might result in them being penalised academically. That is 

why selecting the right development software is important Selecting the wrong 

software might require the team to spend more time understanding it. The students 

had to be quite competent in the development scftware within the time frame of 2 

semesters in order to successfully develop the final product. 

Page 184 



One pitfall that students frequently fall into is that of defining a scope that 

is too large. Most of the students were in~xperienced in this area and they had a 

tendency to do this. Most of the time, the group realised too late in the project that 

they were unable to cover all the areas defined in the scope. This could become a 

serious problem especially if the groups were poorly supervised and the 

requirements were not clearly defined by the client or user. The research had 

shown that students that were unable to recover from this problem were generally 

Jess productive and would produce software with less functionality, poor on 

quaJjty and less usefulness. 

The APT methodology (EXECOM, 1991) has been used by this 

department for the past few years. The results gathered from this study for the first 

time, has provided the department with some empirical data to support the 

usefulness of this methodology. Even though the APT methodology was not well 

received by the students, the research has shown that students who adhered to the 

APT methodology were able to have better control over the project and in doing 

so, were able to complete tht!ir project on time. These students will be future 

contributors to the arena of software engineering. If they could apply what they 

have learnt from this exercise into the work force, this would provide some hope 

to future software development projects with the likelihood of them being 

completed on schedule. This is something that every real world developer hopes to 

achieve on an their projects. 

Each group was required to demonstrate their software before a judging 

panel. 'fhe research showed that members of the judging panel where able to 

successfully and objectively award the appropriate score on the software 

functionality and quality based on the software's perceived size and usability. It is 

recommended however that an alternative approach be adopted whereby the 

students must demonstrate the key features of the software based on a task list 

provided by the judging paneL Scores could then be awarded based on the number 

Page I85 



of features that the students developed. This would seem to be a more accurate 

and objective approach to judging a piece of softWare. 

The research has also shown that having older students working in a group 

project had its disadvantages. The results showed that older students tend to upset 

activities such as project management, team work, team contribution, etc. The 

study suggested that older students from other disciplines should keep an open 

rr.ind when it comes to dt:veloping software. Older students who were elected as 

project leaders should be less cynical, mure enthusiastic and think of the team's 

welfare. In a group project, every student is atlE:cted by the performance of their 

peers. Older students should be able to take advice and criticism from their peers 

and staff adviser. 

Another result of concern was that mixing male and female students in a 

project group appears to contribute to the software having more defects. Having 

members of the opposite sex \vorking together can cause problems in 

communication. It was very common that a female student would not tell her male 

team-mate(s) that he was wrong. This was similarly evident with male students as 

\veil. Both sexes appeared to be conscious of hurting the other's person feeling or 

ego. This \o,.·as also true with overseas students. Unfortunately, reservation of one's 

opinion may jeopardise a project. 

In conclusion, no claim is made or remotely suggested that the research 

gathered is I 00 per cent accurate and without errors. If this research is published. 

errors from the study should bl! corrected by subsequent researchers. It is hoped 

that if the results concluded are later found to be incorrect, "its publication \Viii be 

at least a step tmvards new and correct data that will benefit the software industry 

(Jones, 1991, p. I J5)" and learning ins!!!!.:ttions. After all, '·the industry cannot 

proceed .~nto the twenty-first century with no quantitative data at all (Jones, 

1991, p. 125)". 

Page 186 



10.5.1 RECOMMEDA TIONS TO PROJECT CO-ORDINATOR 

Below are the recommendations as a result oft he study. 

• Collection of project data should be made mandatory. 

" Staff advisers should have a reasonable amount of knowledge 

regarding the standard softwa'e development methodology adopted by 

the Computer Science department. 

• Staff advisers should be interested and volunteer for the role. 

• Staff advisers should have sufficient knowledge of the software 

development process. 

• Staff advisers should have a clear understanding of the nature of the 

software engineering project. 

• T earn supervision should be more consistent. 

• Teams reporting to their staff adviser should be made mandatory. 

• Teams should use the same development software. 

• Teams should adhere to the development methodology when possible. 

• Procedures for gathering system requirements should be improved. 

• Software produced by each team should be assessed based on a 

representative task list which describes the client's requirements. 

• Scores from students' programming units and units where the students 

are required to work as team should also be used as criteria for team 

formation. 

All of these recommendations have been taken on board by the software 

engineering project co-ordinator for 1994. 

Page 187 



BIBLIOGRAPHY 

Adams, E. J. ( 1993A Project-Intensive software design course. SIGCSE Bulletin, 25 

(I), 112- ll6. 

Alavi, M. (1984, June). An Assessment Of The Prototyping Approach To Information 

Systems Development. Communication Of The ACM, 27 (6), 556-563. 

Alavi, M. & Wetherbe, J. C. (1991, May). Mixing Prototyping And Data Modelling 

For Information System Design. IEEE Softwa~ l! (3), 86- 91. 

Albrecht, A. J. & Gaffuey, J. E. Jr. (1983, November). Software Function, Source 

Lines of Cooe, and Development Effort Prediction : A Software Science Validation. 

IEEE Transactions On Software Engineering, SE9 (6), 639 - 648. 

Australian Software Metrics Association, The. ( 1993a, February). Project Database -

Collection Package. Release 2. Victoria: Australia. 

An·):ralian Software Metrics Association, The. (1993b, September). Project Database. 

Release 3. Victoria: Australia. 

Baker, M.D. (1991, May 20- 24). Implementing an initial software metri"s program. 

Proceedings of the IEEE 1991 National Aerosoace and Electronics Conference 

NAECON 1991, pp. !289 -1294. 

Basili, V. R. & Weiss, D. M. (1984, November). A Methodology for Collecting Valid 

Software Engineering Data. IEEE Transaction On Software Engineering, SEIO (6), 

728- 738. 

Behrens, C. A (1983, November). Measuring the Proliuctivity of Computer Systems 

Development Activities with Function Points. IEEE Transaction On Software 

Engineering, SE9 (6), 648 - 652. 

Page 188 



Boehm, B. W. (1981). Software Engineering Economics. New Jersey: Prentice-Hall, 
Inc. 

Boehm, B. W. (1984, January). Software Engineering Economics. IEF.E Transaction 

On Software Engineering.lQ (1 ), 4 - 21. 

Boehm, B. W. (1988). A Spiral Model of software development and enhancement. 

IEEE Computer,.£[ (5), 61 - 72. 

Briggs, J. (1991). Group projects in software engineering at York. SIGCSE Bulletin, 

23 (4), 48- 50. 

Calliss, F. W. & Trimtina, D. L. (1991, October 7 - 8). A controlled software 

maintenance project. Software Engineering Edl!cation SEI Conference 1991 

Proceedings, pp. 25- 32. 

Clapp, J. (1993). Getting started on software metrics. IEEE Software, 10 (1), 108-
111. 

Curtis, B., Sheppard, S. B., Milliman, P., Borst, M. A. & Love, T. (1979, March). 

Measuring the psychological complexity of software maintenance tasks with Halstead 

and McCa~ Metrics. IEEE Transaction on Software Engineering, pp. 96 ~ 104. 

Davis, D. B. (1992). Develop applications on time, every time. Datamation, 38 (22), 

85- 89. 

EXECOM ( 1991 ). Student APT Methodology. Western Australia, Australia. 

Felican, L. & Zalateu, G. (1989, December). Validating Halstead's Theory for Pascal 

Programs. IEEE Transaction On Software Engineering, ll ( 12), 1630 - 1632. 

Fenton, N. E. (1991). Software Metrics: A rigorous approach. Norwich: Page Bros 
Ltd. 

Page 189 



Ferens, D. V. & Gurner, R. B. (1992, May 18 • 22). An evaluation of three function 

point models for estimation of software effort. Proceedings of the IEEE 1992 National 

Aerospace and Electronics Conference, pp. 635 ~ 642. 

Ferrari, D. (1986, June). Considerations ::m the Insularity of Performance Evaluation. 

IEEE Transactions On Software Engineering, 12 (6), 678 • 683. 

Freund, J. E. & Simon, G. A. (1992). Modem Elementary Statistics. New Jersey: 

Prentice-Hall, Inc. 

Gilb, T. (1988). Principles of software engineering management. Avon : The Bath 

Press. 

Graham, C. L. & Jeffery, D. R. (1990, January). Function Points in the Estimation and 

Evaluation of the Software Process. IEEE Transactions On Software Engineering, 1§. 

(I), 64 "71. 

Grant, D. D. & Smith, R. (1991). Undergraduate Software Engineering · An 

Innovative Degree at Swinburne. The Australian Computer Journal, 24 (3), 106- 114. 

Grubb, P. A. ( 1991, October 22). Undergraduate Software Engineering Projects · 

Keeping the momentum going. IEE Colloquium On 'Teaching Of Software 

Engineering- Progress Reports, pp. 5/1 - 5/3. 

Grupe, F. H. & Clevenger, D. F. (1991). Using function point analysis as a software 

development tool. Joum•Jl ofSvstems Management, 42 ( 12), 23-26. 

Heemstra, F. J. & Kusters, R. J. (1991). Function Point Analysis: Evaluation Of A 

Software Cost Estimation Model. European Journal Of Information Systems, 1 (4), 

229 "237. 

[nee, D. ( 1990, May). Software Metrics : Introduction. Infonnation Ar,d Software 

Technologx, 32 (4), 297 · 303. 

Page 190 



Jones, C. (1991). APPlied software measurement: assuring productivity and gualitv. 

New York: McGraw-Hill, Inc. 

Kemerer, C. F. (1987, May). An empirical validation of software cost estimation 

models. Communication OfThe ACM, 30 (5), 416-429. 

Kemerer, C. F. (1993). Reliability of Function Points measurements A Fietd 

Experiment. Communication Of The ACM,;)_(\ (2), 85-97. 

K.eyes, J. (1992). New metrics needed for new generation : lines of code, function 

points won't do at the dawn of the graphical, object era. Software Magaziue, 12 (6), 42 

-50. 

Kitchenham, B. A ( 1992, April). Empirical studies of assumptions that underlie 

software cost·estimation models. Information And Software Technology. 34 (4), 211-

219. 

Kizior, R. 1. (1993). Function Point Analysis : A Primer. Interface : The Computer 

Education Quarterly, .!1 (1), 42- 49. 

Kusters, R. J., Genuchten, M. J. I. M. & Heemstra, F. J. (1990, April). Are software 

cost-estimation models accurate? Information And Sofhvare Technology, 32 (3), 187-

190. 

Marciniak, 1. J. & Rei fer, D. J. (1990). Software Acquisition Management: managing 

the acquisition of custom software systems. Canada: John Wiley & Sons, Inc. 

Marshall, H. ( 1987). Sex, gender and society. Melbourne : RMIT Ltd. 

Mills, E. E. (1988, December). Software Metrics- SEl Curriculum Module SEl-CM-

12-1. I. Technical Report, Software Engineering Institute, Camegit: Mellon University, 

Pittsburgh, Pennsylvania. 

Page 191 



O'Brien, S. J. & Jones, D. A. ( 1993). Function Points In SSADM. )loftware Quality 

Journal, 2. (I), I-ll. 

Orchard project bears fruit. ( 1993, December). Edith Cowan University Digest, p.S. 

Paulk, M. C., Curtis, B., Chrissis, M. B. & Weber, C. V. (1993, February). Capability 

Maturity Model for Software CMU/SEI-93-TR-24. Technical Report, Software 

Engineering Institute, Carnegie Menon University, Pittsburgh, Pennsylvania. 

Peri is, A., Sayward, F. & Shaw, M. ( 1981 ). Software Metrics : an analysis and 

evaluation. Massachusetts :The MIT Press. 

Pressman. R. S. (1987). Software Engineering: A Practitioner's Approach. New York: 

McGraw-Hill, Inc. 

Pressman, R. S. (1992). Software Engineering: A Practitioner's Approach. New York : 

McGraw-Hill, Inc. 

Rudolph, E. Dr. (1989, April). Accounting For Software Development: An in-depth 

guide to the function point analysis. Paper presented at a three day seminar. 

Shaw, M. & Tomayko, J. E. (1991, October 7- 8). Models for undergraduate project 

courses in Software Engineering. Software Engineering Education SEI Conference 

1991 Proceeding:;, pp. 33-71. 

Shepperd, M. (1988, March). A critique of cyclomatic complexity as a software 

metric. Software Engineering Journal, pp. 30 - 36. 

Shepperd, M. ( 1990, May). Early life-cycle metrics and software quality models. 

lnfonnation And Software Technology, 32 (4), 311- 316. 

Shneiderrnan, B. ( 1980). Software Psychology : Human Factars in Computer and 

Infonnation Systems. Boston: Little, Brown and Company, Inc. 

Page 192 



Sommerville,!. (1989). Software Engineering, Avon: The Bath Press. 

Symons, C. R. (1988, January). Function Point Analysis : Difficulties and 

Improvements. IEEE Transaction On Software Engineering, 14 (I). 2 - II. 

Symons, C. (1992, July 30). Management : measure for measure's sake. Computer 

Weekly, pp. 16. 

Tate, G. (1990, May). Prototyping : helping to build the right software. Infonnation 

And Software Technology, 32 (4), 237-244. 

Vliet, J. C. van. (1993). Software Engineering: Principles And Practice. Chichester: 

John Wiley & Sons Ltd. 

Page 193 



APPENDIX A: EVALUATION REPORT 

This section presents the list of errors found during the evaluation of the software. 

NOTE : Tenus such as application and system are used. In this context, the term 

application refers to the application developed by the students, and the term system 

refers to the language or application development tool from which the application was 

developed and consequently executed. 

0 Group I 
o The lookup table did not immediately update the logicel file after a new record 

was added. To have access to the newly created record it was necessary to exit 

that fonn first and then go back into it. 

Q When trying to create a new ~vlARKET record, an error occurs causing the 

operatil)n to halt. The system reported that a macro for FAX NUMBER could 

not be found. 

0 Unable to create a new BLOCK & ROW record. 

0 Unable to create a new SHED TICKET record. 

o Group2 
Q The application did not check for beginnint, and end-of-file error, which 

caused the system to halt. 

0 The application did not check for out-of-hound errors, \Vhich caused the 

system to halt. 

CJ The application had checking mechanisms for duplicate records. However, 

during testing, the system behaved unstahldy when duplicate records were 

found. 

Q The application was unable to create and delete records from the FRUIT 

module. 

Q The remaining modules \vere able to create and update records but were 

unable to delete records. 

Page 194 



0 In the PURCHASE module, the discount field truncates all values with 

decimal points. (For example: 0.10% is trunC"ated to 0.00%). 

0 The SAVE RECORD from the pull-down menu was redundnnt. 

0 The SUPPLY INVOICE REPORT was not available. 

0 The MOST PROFITABLE REPORT was not available. 

0 The ITEMS/ASSETS ORDERS REPORT was not available. 

o Group 3 
CJ The application did not have any help options, except those from the system. 

0 The fonn design was done poorly, ie. inconsistent fields tab and inability to 

distinguish between fields that could he edited and those that could not. 

CJ Tree Lookup Table was not available. 

1:1 The FRUIT PICKING and SALES modules were not available. 

1:1 The TREE PLANTING module was not able to create, delete or update any 

records. 

!J In tk ,v'ORK DETAIL module. before a record v;as deleted, the application 

prompts for confirmation for approximately a dt.>zen times. This module was 

also unable to create or update any records. 

l:l The SPRAY module was unable to delete any records. 

0 The STOCK SUPPLIES module was unable to delete any records. 

1:1 The PURCHASE ORDER module wa:; unable to delete any records. 
-

0 The SHIPMENT n~odule was unable w ddete any records. 

IJ It would appear that cdi modules that require cascaded-deletion were not 

functioning. 

I:J The PAYROLL sub-module causes the system to lock-up. 

P&ge 195 



a Group4 
0 The application had poor screen design, ie. inconsistent fields tab. 

Q Most of the options from the pull-down menu did not work or were not 

available. 

a BLOCK and ROW record cannot be deleted. 

a In the BLOCK and ROW module, the block number cannot be selected using 

the pop-up option provided To select a block record, it was necessary to use 

the system's 11 VCR'' control buttons. 

a Unable to create SALES ORDER form. 

0 In the view and update function of the TREATMENT module, records cannot 

be selected from the selection list provided. Records can only be selected via 

the record navigation buttons. 

0 The Treatment Effectiveness report \\'115 not functioning. 

IJ Records from the SUPPLIER module cannot be deleted although the option 

was provided. 

0 In certain modules, the create, delete and update options were provided within 

the form, yet the students had different menu optiuns for these same tasks. 

CJ Once a record was updated, it does not take effect immediately. To view or 

access the updated record. it was necessary to exit the form first and then go 

back in again. 

Cl The help file was very brief and general. It did not contain instructions on how 

to use the application. 

IJ Group 5 
0 The application did not have any help option, except those provided by the 

system. 

IJ The screen desi.blJl did not include speed bar or selection buttons. All tasks 

options bad to be selected from a pull~down menu provided by the system. 

Cl When a new type of tree recon:l was created, this record Oid not appear in the 

selection list. To select this newly created record, it was necesS!lry to use the 

record navigation buttons located on the bottom left comer. 

Page 196 



Q If the CANCEL option was selected to abor! a process, the application quits. 

IJ In the EVAPORATION module, it stored the evaporation rate for the whole 

year (12 months). However, if one of these records \vas deleted. if did not 

allow creation of a new record even though the option was provided. 

a In the IRRIGATION module, the "create new rec<.:>rd" option \\'aS not 

functioning. 

t:l Group 6 
t:l The application had no help file, although there was a HELP option. 

0 Tne application was unable to create and delete BLOCK records. 

Q The application had a very strange .method for creating records. It '\.vas 

neces.sary to select the NEW option first, enter the new data and then select the 

UPDATE option to store the data on!c the file. To create another new record, 

the form had to be first exited, otherwise the system would generate a Key 

Violation error. 

t:l The SPRAY details fonn appeared by itself and cannot be closed. 

t:l The EMPLOYEE form cannot be opened. 

t:l There was an error in one of the fields in the HOLIDAY LEAVE form. Once 

this error Vl''llS triggered, the EXIT button fails to work resulting in the need to 

close the fonn using the Control Menu box Jocated on the top-left comer. 

t:l The EXIT option in the PAYROLL CONTROL module did not work. 

0 The PAYROLL DETAIL module could not create or update any records. 

t:l The TIMESHEET module could not update any records. 

Q There was an error in some of the fields in the EMPLOYEE DEDUCTION I 

ALLOWANCE limn. 

t:l Some fonns kept appearing by themselves and could not be closed. 

t:l The DELfVER Y module was not functioning. 

t:l The application was unable to delete records from SUPPLIER and FRUITS 

modules. 

IJ The FRUIT SALES DETAIL module was not functioning. 

Page 197 



1:1 When selecting a REPORT option, the SUPPLIER fonn c•.m• up instead. 

1:1 The PRINT PA YSLIPS and CALCULATE PAy~- > modules were not 

available. 

a There was a'J inconsistency in the record update method. In some cases. 

reCords could only be updated after depressing the F9 function key while 

oth.et> do not need to. 

0 The application was so badly designed that whenever errors were triggered, the 

form in which the error(s) occurred could not be closed. Usually this would 

result in having to wamt-boot the S}'Stcm. 

1:1 Group 7 
Q There were no control buttons. All operations had to be selected from the 

sysrem's pull-down menu. 

0 The application's help file was too brief and general. It did not provide 

instructions on hO\\' to use the application. 

0 There was no auto-increment for the PRiivt<\RY KEY fidti. It \vas vecy easy to 

get into a situation of having duplicate keys - which the application does not 

allow. 

0 The records \Vt:re not indexed or sorted when dispiayed onto the scrt:en. 

!J The BLOCK module provides for the addition of a new record but it generates 

an error when it tries to auto-increment th-e block number. This problem was 

overcome by simply putting a unique block number in this field 

IJ The TREATMENT module did not work. 

Cl The application had poor screen design, ie. inconsistent fi.dds tab. 

U The WAGES and HARVEST modules wt:re very complicated to ust:, 

especially v.ithout the aid of the help file or user manual. The option to add 

WAGES record v·.:as not functioning. 

1J The GROUP CERTI.FICATE reports had no report heading 

Page 198 



Q Group 8 
U The CALCULATE IRRlGA T!ON RATE module was not functioning. 

0 In the IRRIGATION module. the update record option was not functioning. 

::1 The application had very hmited functions. 

Q Group9 
Q 1l1e application's help tile was incomplete. lt did not pro~r·ide instructions on 

how to use the applic-ation. 

U Most of the options which appeared to be available vn the application menu 

were not available. 

a The BUDGET fvl<\.fNTENAl'l"CE module \'1-1\S not functioning. 

u The CHEQUE and CASH PAYMENT reports were not available. 

0 Coultl not create ntw CONTA1NER records if databa~e v•as t:mpty. 

U Tht:- CRATE HIRE module \vas not functioning and the form could not be 

closed with the option provided. 

iJ The FR\.HT VARIETY module was not available. 

\J The V ARrETY PERFORMANCE module was not available. 

U The application '~as unabk to print any repons because the swdents had hard

coded the printer driver onto the application, hence reducing the portability of 

the application. 

Cl Th!;! PRiNT PF.EVIEW option was disabled. TheretOre, reports could only !x: 

printed and not Yiewed on the screen. 

a The INVOICE, NON-INVOICE P.". Y!viF.NT, ACCOUNT PAYMENT and 

OTHER INCOME mc.."'<.iuies were not a,·aibbie. 

Page 199 



0 Group 10 
CJ The links between the forms and files were somehow lost during setup. To get 

the application numing, it was necessary to go into the design and re-establish 

these links. After re-establishing the links, the application still did not function 

well! It was almost impossible to use! 

0 The application did not have any help file. 

0 All the reports were not available. 

IJ The appJication had very limited functionality. Most of the functions \vere 

partially developed or not working correctly. 

Page 200 


	Software metrics for monitoring software engineering projects
	Recommended Citation


