Edith Cowan University
Research Online

Theses: Doctorates and Masters Theses

1-1-1994

Software metrics for monitoring software engineering projects

Edwin C. Lim
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses

b Part of the Software Engineering Commons

Recommended Citation
Lim, E. C. (1994). Software metrics for monitoring software engineering projects. Edith Cowan University.
Retrieved from https://ro.ecu.edu.au/theses/1100

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses/1100

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses?utm_source=ro.ecu.edu.au%2Ftheses%2F1100&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ro.ecu.edu.au%2Ftheses%2F1100&utm_medium=PDF&utm_campaign=PDFCoverPages

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose
of your own research or study.

The University does not authorize you to copy, communicate or
otherwise make available electronically to any other person any
copyright material contained on this site.

You are reminded of the following:

e Copyright owners are entitled to take legal action against persons
who infringe their copyright.

e A reproduction of material that is protected by copyright may be a
copyright infringement. Where the reproduction of such material is
done without attribution of authorship, with false attribution of
authorship or the authorship is treated in a derogatory manner,
this may be a breach of the author’s moral rights contained in Part
IX of the Copyright Act 1968 (Cth).

e Courts have the power to impose a wide range of civil and criminal
sanctions for infringement of copyright, infringement of moral
rights and other offences under the Copyright Act 1968 (Cth).
Higher penalties may apply, and higher damages may be awarded,
for offences and infringements involving the conversion of material
into digital or electronic form.

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

Tt B _:'.lr'

SOFTWARE METRICS FOR MONITORING SOFTWARE
ENGINEERING PROJECTS

BY
Edwin LIM Charng Yih~
A Thesis Submitted in Partial Fulfilment of the
Requirements for the Award of
Master of Applied Science (Computer Studies)

at the School of Mathematics, Information Technology, and Engineering,
Edith Cowan University

Date of Submission : 25 August 1994

TABLE OF CONTENTS

ABSTRACT .ot eeeseessasesesenessen s s eses s s st s e sesasnssessssssrersssessssssessssssesesssnen]
DECLARATION ..ot eeeveseseesees s sss s esasesesssssseesssssnesessessssssesessessesnesessssssesnsancd]
ACKNOWLEDGEMENTScoooooeoeereeeeee e eeresssesessereeesrosessesesssssssessssssemssssssesesssssnsonsons 111
LIST OF DIAGRAMS w.ooooooeeeeeeeeeeeceres oo sesoeseesse e ssrsss e srsesesessssansssesnessassessersessesensne IV
LIST OF TABLES ...t eeeeenesesesesetiss s s eensseasemresseseeasssssesseessessmssrssesesrennerans ¥
LIST OF GRAPHS ..ot ceeeetesereeeeees e sseseeessesesesssses s eesersseeesesesseeesssrassssseressenasseene M

CHAP®TER 1 : INTRODUCTION

1.1 INTRODUCTION ... s
1.1.1 Significance Ofihe Study
1.1.2 Major Questions To Be Addressed

1.2 METHOD OF INVESTIGATION ...ttt e oevetn i nerasas vt
1.2.1 Research Methods And Techniques ..o

1.3 ETHICAL ISSUES

L I

-] Ly

..

CHAPTER 2 : LITERATURE REVIEW
2.1 SOFTWARE ENGINEERING .. 3

2 1.2 Software DeveIOpme:\t Life Cycle oo ieecccncnaenisieee s 10
2.1.2.1 The Waterfall Model ..ot eeias e ere s erereaesaeneas 11
2.1.2.2 Prototyping MOocoieeceimc st e re e e s esaa e evan e e 3
2.1.2.3 The Evolutionary Mode!
2,124 The Spiral Model.........ccoooiiiiiiiiiii et 3

2.1.3 Project Management ProCeSS.........vvviiei i siereceeeee sttt s sers s 29

2.2 SOFTWARE METRICS .. et eas e ere s 3

2.2.1 Why Measure?

2.2.2 What Are SOftware MEtrics? ..ot ceeer i ettt eans 33

2.2.3 Types Of Software MEITICS.co..iievicieieiicen ettt eerans 34
2.2.3.1 Cost And Effort ESHMAtIONcocvviviiiieeiein et eseireeinie e 33

Boehm's COCOMO... .. SO USSRV OO URU ORIV AU OROOUOORR Jo
Putnam's SLIM Estlmatmg Model OOV OO OO OROURRSPOOROURR . .
Albrecht's Function Point Analy515 .. 44
Lines Of Code Method .. - SOV SO OO UURUURCPROTUPUION - &
2.2.3.2 Productivity Measures And Models .. 46
2.2.3.3 Quality Models ANt MEASUIESiiivieieeee ittt eees s srernenae s et re e s aneens 49
2.2.3. 4 Reliability MOGEIScueiiiice et etee e ettt sre st s anas 51
2.2.3.5 Performance Evaluation And Models.......c..ooivimvieenie e vvrerras e 32
2.2.3.6 Structural And Complexity MEtricscoovivivrirneie s 93
McCabe's Complexity Modelovoiieierrorio e ceneinase e e 54
Halstead's SOftWAre SCISNCEciviir oot DD

7.2 4 Data Collection... USROS OPORRRPPROOYe
2.2 5 Future Directions Of So&ware Mctncs ;
2.3 CAPABILITY MATURITY MODEL. ...t 61

2.3.1 Immature Versus Mature Software Organisations SV U P OPRUTUSSUUPRRURURPONN 1 |
2.3.1.1 Software Process... . et e e et e et nra et aeressestearenentosnasnsnnrees O
2.3.1.2 Software Process Capabllity TRV SU PR U OURTURORURUTPRIPUTRPRRORRORY o X |
2.3.1.3 Software Process Performance .. 3
2.3.1.4 Software Process Maturity.... cerereeeraenenrate ettt ee s sbesrnsisentsesesmesteseenearers O

2,3.2 Overview of the Capability M'aturlty Mode] OO UU SO UROR U -

2.3.3 Future Directions Of The CMM... 68

2.4 FUNCTION POINT ANALYSIS .. ceerrrnrsersnreseeraeranen 08

24.1 Advantages And Dlsadvantages Of F unctton Pomt Analysns 70

2.4.2 Counting Function Points .. rereeeereretesrestasreaestosnoneisnsarsaseesiossenos T

2.4.3 Function Point Analysis : An Evaluatlon ceeritserrtesaneat et esresrsssensieeosenenne 13

2.4.4 Mark 1] Function Point .. SRTUURROOROIY |

2.5 UNDERGRADUATE SOFTWARE ENGINEERING PROGRAMS 77

2.5.1 Objectives Of Software Engineernng COUSES ..o vvccrcrinninn e 78

CHAFTER 3 : 1993 SOFTWARE ENGINEERING PROJECT

3.1 OVERVIEW OF THE OQRCHARD PROJECT ..ot e, 81

3.2 GOALS OF THE ORCHARD PROJECTcive oottt sn st 81

3.3 MAIN ASPECTS OF THE MANUAL SYSTEM ... 82
3.3.1 Fruit ProQUCHION ..ot ettt et e r et eeeens b e tb et e B2
3.5, 2 MATKEHIIE oottt eee st e te e s 4o ea et e s e e bbb nearnese et ase e 82
3.3.3 Taxation.. TS OO OO T U R U U O U U U RO TS OR R UR SR UUTRURRUUPUUUROUTTRRRRTURRUTY . - I
3.3.4 Staff M'ma;,emem ... 33
I 011 = g 1 DRSO U RO U USSR DSOS 83
33,0 RESCAIT . .ottt eetb e e e e e e e e e et a et e s a et e rserrtearatbnatesenraan 84

3.4 REQUIREMENTS OF THE NEW SYSTEM ...o.ooiiiei e e 84

CHAPTER 4 : INFORMATION GATHERING
4.1 TOTAL HOURS SPENT ON THE PROJECT ... et s 83
42 DATA COLLECTED FROM THE RESEARCH QUEST]ONNAIRE 86
42,1 Effort On Each Development Phase.......cuvvevriiininirieneinecnn s 87
4.2.2 Personat Attributes OfGroup MEIMDETS cvo.eeevvevserceeinceireasceerreraets s crecnansereos 89
4.2.3 Staff Adviser.... et bt teeeo et ar bt erarraaae e rarerre st ar e ame oot anasretebserenasraneress OO
4231 Summary OO O RSSO P PO P PORUOTRUORROL o
4.2.4 Development Sofhvare Used ... beereremreranas e 97
4.2.5 Other Factors ... - 98
4.4 SCORE AWARDED TO PROJECTS U SETUSTUTUPUTIOUROPRTPOO 1| .
4.5 PEER ASSESSMENT SCORES........c..coiviminirererin et 106
4.6 GROUPS’ COURSE AVERAGEScooieeeerierenineceeeessenveennsteesssssssnsenens 107

CHAPTER 5 : MEASURING SOFTWARE INSTALLABILITY

5.1 SOFTWARE INSTALLABILITY oo eesciissersitssrtenesssrnsentsnsssesansesssennaneess 109
5.1.1 Sofiware Installation PrOCESS.. .o i et st 109

5.2 SUMMARY

CHAPTER 6 ;: MEASURING SOFTWARE S1ZE
6.1 MEASURING SOFTWARE SIZE USING ALBRECHT'S FUNCTION POINT

ANALYSIS oo s ettt b erise st ea e et ab bt et ent s 113
6.2 APPROACH USED TO MEASURE SOFTWARESIZE ..o 114
6.2.1 Rules For Counting Function Points...........c..cocveevvernnisemnniesssecsnineneeecenns 115
6.2.2 Defining The Complexlty AdJustment Values VRTINS B
6.2.3 Evaluation Report.... OO OSSOSO U OTUOTROTPURYTIUOUURPOROO 0. ¢
6.2.4 Size Of The Soﬁware . ceereearetran e enantesenesesensassnrsasaessensones 1 200
6.2.5 Scores Awarded For Solutlon Functxonahty OSSO 3. 4
6.2.6 Summary.... OO FO U Y OO PSS ROPO RO OPUOPFNOUTOROTOO 1.2
CHAPTER 7 ;: MIEASURING PRODUCTIVITY
7.1 MEASURING THE PRODUCTIVITY OF PROJECT GROUPS ..o, 131
7.2 PROJECT DELIVERY RATE ..ot vt rrevsiervrinve e esressrvmiesnsassnsenssesansonens 131
TI3PRODUCTIVITY Lottt sttt st ettt st e e cmnrene 134
7.4 STUDENT PROJECTS VS PROFESSIONAL PROJECTSooeviecteee e 137
TS SUMMARY Lot ettt bt bbb p bt 145
CHAPTER 8 : MEASURING SOFTWARE QUALITY
8.1 MEASURING SOFTWARE QUALITY ..ot me e enace et e s 147
8.2 QUALITY OF THE SOFTWARE ..ot e 148
CHAPTER 9 : MEASURING SOFTWARE USABILITY
9.1 MEASURING SOFTWARE USABILITYoooovvoooiercmrssineri s essssseessensiosees s 149
0. 1.1 Usability EXEICISE.. ..o oo e ettt en e 149
0.1.2 Usability Test PLan.....c..cco i ctre et eae e e 150
9.1.3 Deriving Usability Of The Applicationcoiviiinrinii b, 150
CHAPTER 10 : FINAL ANALYSIS AND CONCLUSION
1O L FINAL ANALYSIS et eb e b ene e 154
10.1.1 Description Of IfOrmationc.o.icoieiiiieii e 155
10.2 STATISTICAL METROD USED. ... cerresreeraresereesnesseresmsaeres 1 38
10.3 CONCLUSIONS DERIVED FROM THE ANALYSIS ceeerneerrensrasenneenees 161
10.3.1 Approach To Developing High-Quality - Low Defects Soﬁware 162
10.3.2 Coding Reflects On Software Size And Functionalityccoeoniiniinn 164
10.3.3 Results Of Unrealistic Project SCOPE ...oovii. v cr e s 165
10.3.4 Drawbacks Of Mixed Male/Female Project Groupscoccoiveeiirnecnceencnns 166
10.3.5 Quality Of Students’ Effort Reflects The Quality Of The Final Procuct......... 168
10.3.6 Students And Staff Adviser Relationship...........coooiniiiiiiicn. 169
10.3.7 How Teams Choose To Spend Their TIMEc.o.oviviiviieicie e 169
10.3.8 Effective Team Effort And Good Project Management...........ccccvenirvnnn 172
10.3.9 Drawbacks Of Working Alone In A Group Project. ... cocveieernnriesisnene 174
10.3.10 Importance OFf Selecting The Right Development Tools.........coooviieerivieees 176
10.3.11 Uscfulness Of Using A Methodology ... e, 178
10.3.12 Negative Impact Of Older Student(s) In A Group Project Environment 178

10.3.13 Productivity Of Students Reflects On Coding......ooooviiiiinin 180

10.3.14 Judging Functionality And Qual ity Of Undergraduate Software P;;djects 180

10.4 DIFFICULTIES ENCOUNTERED DURING ANALYSIS oo S 181
10.5 CONCLUSION... - ceererrererresreeens 183

10.5.1 RECOMMEDATIONS TO PROJECT CO-ORDINATOR oo 187
BIBLIOGRAPHY oo eees oo sveoe e seaee s es s s srmns e e meees e S 188

APPENDIX A : EVALUATION REPORTccocviirircc e reseetesent e nay 194

ABSTRACT

As part of the undergraduate course offered by Edith Cowan University, the
Department of Computer Science has (as part of a year's study) a software engineering
group project. The structure of this project was divided into two units, Software
Engineering 1 and Software Engineering 2. In Software Engineering 1, students were
given the group project where they had to complete and submit the Functional
Requirement and Detail System Design documentation. in Software Engineering 2,
students commenced with the implementation of the software, testing and
documentation. The software was then submitted for assessment and presented to the
client,

To aid the students with the development of the software, the department had
adopted EXECOM's APT methodology as its standard guideline. Furthermore, the
students were divided into groups of 4 to 5, each group working on the same problem.
A staff adviser was assigned to each project group.

The purpose of this research exercise was to fulfil two objectives. The fiest
objective was to ascertain whether there is a need to improve the final year software
engineering project for future students by enhancing any aspect that may be regarded
as deficient. The second objective was to ascertain the factors that have the most
impact on the quality of the delivered software.

The quality of the delivered software was measured using a variety of software
metrics. Measurement of software has mostly been ignored until recently or used
without true understanding of its purpose. A subsidiary objective was to gain an
understanding of the worth of software measurement in the sfudent environment,

One of the conclusions derived from the study suggests that teams who spent
more time on software design and testing, tended to produce better quality software
with less defects. The study alse showed that adherence to the APT methodology led
to the project being on schedule and general team satisfaction with the project
management. One of the recommendations made to the project co-ordinator was that

staff advisers should have sufficient knowledge of the software engineering process.

| DECLARATION

[certify that this thesis does not incorporate without
acknowledgment any material previously submitted for
a degree or diploma in any institution of higher

education; and that to fhe best of my knowledge and

~ belief it does not contain any material previously

published or written by another pérson excépt whe;e_ due

reference is made in the text.

Signature

i

" . ACKNOWLEDGEMENTS -

" Special thanks to my family for their support patlence and understandmg -

w:thout them [would not be here today. Special thanks also to Foong Choo for her

- constant encouragement and support.

T'would like to take this opportunity to thank my supervisors Dr Jim Millar for.
providing me with this research project, Dr Ken Mullin and Mr Stuart Hope for their
supervision and guidance. Appreciation is due to the 1993 software engineering
sludgnté for providing me with the necessary data for my ressarch. I would also like to

thank all the staftf members from the Computer Science Department for thf_:ir insights -

especially Dr Thomas O*Neilt: Appreciation is also due to Mr Geoff Barrett for

| helping me to proof read my work.

I
N
LIST OF DIAGRAMS -
- IanureZ 1.2.2.1 Diagram - Prototyping Approach..... N T
- Figure 2.1.2.4.1 Diagram - Spiral model... . OOR.L:
Figure 2,2.2.1 Diagram - Relations Of Product Memc And Process Mctnc 34
Figure 2.2.3.1.1 Diagram - Putnam's SLIM Model 42
Figure 2.2.3.2.1 Diagram - Fenton's Productivity Model .. e 4T
‘Figure 2.2.3.6.1 Diagram - Derivation of V() for m example program vinens 35

LIST OF TABLES

Figure 2.4.2.1 Table - Computing Function Point MeRICsoceeerreieeieiennnrinsineecrieeeen,
Figure 2.4.2.2 Table - Computing Function Points - Complexity Adjustments Values.............
Figure 4.1.1 Table - Total Number Of Hours Spent On The Project..........ccovvvevcnenveccrivecvicnnen.

Figure 4.2.1.1 Table - Effort On Each Phase (In Percentage)
Figure 4.2,1.2 Table - Total Hours Spent On Each Phase By Each Group

Figute 4.2.2.1 Table - Persoral Attributes Of Each Group
Figure 4.2.3.]1 Table - Staff Adviser
Figure 4.2.3.3 Table - Stati’ Adviser For Each Project Group
Fipure 4.2.4.1 Table - Development Sofiware Used
Figure 4.2.5.1 Table - Other Factors That Affect The Project
Figure 4.4.1 Table - Solution Functionality And Solution Quality
Figure 4.5.1 Table - Total Peer Assessment Scores
Figure 4.6.1 Table - Groups’ Course Averages
Figure 6.2.2.1 Table - Processing Complexity Used For Calculating Software Size
Figure 6.2.5.1 Table - Scores Awarded For Solution Functionality

Figure 6.2.6.3 Table - Size Of Each Function Types
Figure 7.2.1 Table - Project Delivery Rate...

Figure 7.2.4 Table - Breakdown Of Delivery Rate By Software Type ...cccovveniieriivrennen.
Figure 7.3.1 Table - Deriving Number Of Person-Month.........cococcriiiiiiiirecnenes

Figure 7.2.3 Table - Software Development Plarform

Figure 7.3.3 Table - Productivity Kate

Figure 7.4.2 (a) Table - Project Attributes (ASMA, 1993b)...

Figure 7.4.7 - . Table - Project Attitbutes Of Projects Dey: eloped Usmg 4GL Tools

(ASMA, 1993b)
Figure 7.4.4 Table - Project Attributes (Student Projects)

Figure 7.4.6 () Table - Professional Projects VS Student Projects
Figure 7.4.6 (b) Table - Professional Projects (Using 4GL Tools) VS Student Projects

Figure 7.4.9 Table - Productivity Data Taken From SPR (Jones, 1991}
Figure 7.4.10 Table - Productivity Data Of Student Projects ...
Figure 7.4.11 Table - Productivity Data From SPR PC Projects (Jones, 1991) ... inieeenn

Figure 7.5.1 Table - Overall Productivity Rate

Figure 4.2.1.3 Table - Average Hours Spent On Each Phase Per Student-Group

Figure 6.2.6.1 Table - Size Of Software Per Group.........cc.conniriocinececiinccnsens

Figure 7.4.1 (a) Table - New Developiment Of Projects (ASMA, 1993b)ooeinin
Figure 7.4.1 (b) Table - New Projects Developed Using 4GL Tools (ASMA, 1993bj..............

Figure 7.4.3 Table - New Development Projects (Student Projects)..........c.oovoeiinicinnn.

Fipure 7.4.5 Table - Glossary Of Terms Used By ASMA (19931) .o,

......................................

..

Figure 8.2.1 Table - Determining Software Qualitycocccevrec v nicecvnesennerevaneesnn
Figure 9.1.2.1 Table - Format Of Usability Test Planc.cccoccvirevecncinncvenienens FSU .
Figure 9.1.3.1 Table - Raw Usability Data.......c.cccormmmeiiicorcmmcis oo et
Figure 9.1.3.2 Table - Adjusted Usability Data........c.ccooiimnimimirois e et
Figure 9.1.3.3 Table - Total Usability SCOTEc.cc.ovicerircearnminimimss s s s,

........ 72
Y K

127

...... 128

130

o 131

132

133

...... 134

LIST OF GRAPHS

Figure 4.1.2 Graph - Total Hours Spent On Project By Each Group.........

Figure 4.2.3.2 Graph - Scores Awarded To Staff Adviser By STAERIS oo, voorrrssronn

Figure 4.2.4.2 Graph - Scores Awarded For Development Software Used.................
Figure 4.2.5.2 Graph - Scores Awarded For The APT Methodology ...

Figure 4.2.5.3 Graph - Scores Awarded For Communication With CHEntr.oe.

Figure 4.2.5.4 Graph - Scores Awarded For Project Management iererr e e s arin it
Figure 4.2.5.5 Graph - Scores Awarded For Team Effort .. .
Figure 4.2.5.6 Graph - Scores Awarded For Team Contnbuhon

Figro 44.2 Graph - Sfudents’ Projec ScoroSorted n Ascending o T

Figure 4.4.3 Graph - Solution Functionality....

Figure 4.4.4 Graph - Solution Quality....
Figure 4.5.2 Graph - Total Peer Assessmcm Scores
Figure 4.6.2 Graph - Groups’ Course Averages ...

Figure 6.2.5.2 Graph - Software Size Versus Solution Functionality (Sorted Accordmg To

Score)coven.
Figure 6.2.6. 2 Graph S:ze Of Soﬁware (Sorted In Ascendmg Order)

Figure 6.2.6,4 Graph - Size Of Each Function Types (In Pcrcentage) Sorted Accordmg To
vereereressiesnnees 130
veserinennens 132
ceorarereens 133
verereee 135
e 136
vesne 140

Overall Size .. -
Figure 7.2.2 Graph Pro;ect Delwexy Rate ln Ascendmg Order
Figure 7.2.5 Graph - Project Delivery Rate By Software Type ...
Figure 7.3.2 Graph - Number Of Person-Month {In Ascending Order)
Figure 7.3.4 Graph - Group-Person Productivity Rate By Group...
Figure 7.4.7 (a) Graph - Delivery Rate Of Professional & Student Projects

Figure 7.4.7 (b) Graph - Delivery Rate Of Professional (Usmg 4GL Tools) & Student

Projects... .
Figure 7.4.8 Graph De]wery Rate VS S:ze

Figure 7.4.12 Graph - Productivity Rate : Student Pro_]ects VS SPR Pro_;ects R

Figure 8.2.2 Graph - Software Quality ...
Figure ¢.1.3.4 Graph - Total Usability Score

creverssensens 141
SRRSO L. ¥.

.. 145
vreees 148
. 153

CHAPTER 1 : INTRODUCTION

1.1 INTRODUCTION

“Group projects are an important part of many software engineering
courses. Factors, such as group dynamics, egoless programming and team
organisation, that affect the way programmers work together cannot be taught
effectively in a classtoom setting” (Calliss et al., 1991, p. 25). To appreciate the
dynamics of group behaviour it is essential for students to participate in a group
project as this facilitate and enhances their understanding of the solutions to

problems experienced in a group project.

As part of the Bachelor of Applied Science (Information Science) course
offered by Edith Cowan University, the Department of Computer Science has
formulated, in the final year of that course, a software engineering group project.
This group project is divided into two units, Software Engineering 1 and Software
Engineering 2 and they are offered in semesters one and two respectively. The
purpose of the project is to design a piece of software to meet a client’s
requirements. During semester one, students are required to complete and submit
the Functional Requirement and Detail System Design documentation. During
semester two, the students undertake the implementation of the software, testing
and documentation. The maintenance phase is omitted because it is not feasible

within the current course structure,

Each group is required to present its product, whether it is completed or
not, before a judging panel that is usually made up of the project co-ordinator, the
scftware engineering unit co-ordinator, the group's staff adviser and the client.

Each group is given an hour to present the functionality of their software.

For the past two years, the software engineering project has been a group
project. There were 16 groups, and each group consisted of 4 or 5 students. For

each group, one student member was appointed project leader and their primary

Page |

were allocated roles such as programmer, documenter and tester. A staff adviser
was also assigned to each project group. The staff adviser was not to have any
active role in the project - rather he/she acted as a consultant to the members of

each group.

The Computer Science department has adopted EXECOM's APT (1991)
methodology as the standard guideline for developing software. Since 1991,
students undertaking the software engineering project have applied this

methodology. Students had to purchase the licence to use this methodology.

L1.1 Significance Of The Study

There are two main objectives to this study. The first objective is to
ascertain whether there is a need to improve the final year software
engineering project for future students by enhancing any aspects that may be

regarded as deficient. Some of these aspects are

The software development methodology

Arrangements between staff advisers and students

Quality of the project

Method(s) of conveying user requirements to project groups

DoDoOoo

The second objective is to ascertain the factors that have the greatest
impact on the quality of the delivered software. To achieve this, it is necessary
to firstly identify and measure the factors that influence software quality, and
secondly measure the software quality itself. Some of the influencing factors

are :

Q Quality of project management
- DProject scheduling
- Risk management
- Configuration management
0 Availabitity of hardware, software and meeting rooms
0 Access to client
0 Quality of team work
0 Choice of software

Page2

O Influence of staff adviser
Q Usefulness of the APT methodology
G Individual attributes

- Age

- Gender

- Experience

The key software quality measures are :

Functionality
Size
Usability
Performance

0oo0oo

Having identified and obtained a meusure of the influencing factors and
software quality, the final step will be to perform a series of statistical analyses
to determine which factors have the highest impact on quality and to what

degree.

1.1.2 Major Questions To Be Addressed

For the past three years, studenis undertaking the software engineering
project, have been developing software using the students” version of
EXECOM's (1991) APT methodology. It contains guidelines on the steps that
are required to produce a piece of software. The software that students
produced were assessed by the judging panel. Students were then awarded a
mark for their effori, The APT methodology is generally accepted by industry
in Western Australia but there is not any empirical data as to its usefulness in a
university environment, Students were instructed to use this methodology, but
were they producing quality software? The questions that will be addressed

arc.

Page 3

8 How useful was the APT methodology, from the students’ point of
view?

0 Was it applicable to the type of software and paradigm used by the
students?

Each project group was assigned a staff adviser whose role was to act
as a consultant to students. In practice, it was not mandatory that students
report regularly to their staff adviser. However, the perception was that groups
who stayed in close contact with their staff adviser improved their chances of

producing better quality software. The questions that will be addressed are -

B How did the staff members feel about being assigned to supervise a
project group(s)?

0 Did helshe have sufficient background in the arza of software
engineering that could be beneficial to the group he/she wvas
supervising?

O Was he/she familiar with the software engineering methodology
standard adopted?

Q Did he/she spend sufficient time with the pioject group to be of any
benefit to the students? -

Q Did the staff adviser have a good un'derstaliding of what \vas needed in
the proposed system?

Students had two semesters in which to complete the software
engineering project. This provided the students with sufficient time fo
implement the various phases, which included the Functional Requirement,
Deiail System Design, Coding and Testing. The Maintenance phase was not
possible within the current project structure, due to 1is time consiraints, and
therefore was not expected. The studenis were required to undertake Project
Management tasks such as risk management, configuration management and
task scheduling The project leader within each group was appointed by the

members themselves, The questions that will be addressed are .

Page 4

O

How much time did a group spend (in total) on the project?

0 How much time did individual students spend working alone versus
working in the group?

O How much time was spent on each phase of the software development

life-cycle?

[

Was there peer assessment for each group?
How well was the project managed?
Did every member of the group contribute and, if so, how well was his

[|

or her contribution received by the rest of the group?
B Were there any internal conflicts among members of a group?

The aim of the project was to provide students with the experience of
working in groups and to tackie a problem that was big enough to simulate a
"real-world” sttuation. The major component of the assessment by the judging
panel was the software demonstration. The students may be able to deliver
working software but there are many other factors involved in regard to the

quality of the software. Therefore, the following questions will be addressed

What was the size of the final product?
How functional was the final product?
How useable was the final product?

How installable was the final product?

00000

What score did the final product get from the judging panel?

1.2 METHOD OF INVESTIGATION

This whole research project, revolves around the software engineering
projects. Data will be collected from the students, staff advisers and by evaluating

the final product,

1.2.1 Research Methods And Techniques

The first method of gathering data was the use of questionnaires. In
total, three questionnaires were prepared. The first was distributed, on a

weekly basis, between the period of April 1993 to June 1993. The second

Page5

|

questionnaire was distributed, again on a weekly basis, between the period of
August 1993 to November 1993. Towards the end of the second semester, a
third questionnaire was provided; each student was required to fill in this
questionnaire after their group's project demonstration and he/she was asked to
supply an estimate of individua! eftfort. Some of the questions asked were
similar to those asked in the second set. This is to allow cross-checking of
students' responses between the second and third set of questionnaires. The
aim of these questionnaires was to gather informatton on the effort that each

student was coniributing to the project.

The second method of data gathering was by interviewing the staff
advisers. This was to ascertain the relationship between the staff adviser and
the students, the adviser's opinion about the whele exercise of supervising a
project group, etc. Each interview was structured so that every staff adviser

received the same set of questions.

The third method of data gathering was to measure the software
metrics of the software produced by each project group. The objective of this
exercise was to determine the quality of the delivered software, such as

usability, installability, functionality and size of the software.

- Page 6

L3 ETHICAL ISSUES

Since this research involves individuals, the data gathered will be kept
confidential (as required by the Committee for the Conduct of Ethical
Research). The data gathered will be made known only to the supervisors! and the
investigator?. Studeats undertaking this research will not be known by name. The
only information the investigator has is the student's group number and personal
identifier. Information on the staff advisers was restricted to their group allocation
number. The data will not be kept after the research is completed. All data
recorded in written form will he shredded and those stored on magnetic medium

(such as computer floppy diskettes) will be evased.

! Dr Ken Muilin, Mr Stuart Hope and Dr Jim Millar of the Department of Computer Science,
Mount Lawley Campus.
% Edwin LIM Charng Yih (Student Number 0899367)

Page 7

CHAPTER 2 : LITERATURE REVIEW

2.1 SOFTWARE ENGINEERING

Developing a piece of software that satisfies user requirements, on budget
and on schedule is every software developers’ dream. But in the real world, this is
often not the case. Software development projects are often late and exceed their
original projected budgets by as much as 100 to 200+%. So, whose fault is this?
The fault 15 usually due to ineffective initial estimates and to the manager's

incapacity to accurately monitor the project’s progress (Kemerer, 1993, p. 87).

Hence, one major problem that senior computer professionals in charge of
project teams face, is to keep effective control on all aspects of the project. The
Software Development Life Cycle contains a large software management
component covering a range of activities. If these activities are not properly
managed, potential errors are bound to occur, resulting in the project exceeding its
projected budget and schedule, To manage all aspects of the software
development, there must be some form of measuring mechanism. It is common
management theory that, "you are not able to manage what you cannot measure”

(Grupe et al., 1991, p. 26).

This chapter will focus on the issue of good software engineering practices
and specifically on software metrics in project management. To facilitate this, the
role of measurement and software metrics will be considered, including their
impact on project management. Additionally the various paradigms that are
currently available will be discussed. In focusing on good software engineering
practices, the role that academic institutions are playing in the area of providing
students with theoretical knowledge on not only software engineering but also

practical skills in software development, will also be examined.

Page 8

2.1.1 What is software engineering?

An early definition of software engineering, which is found in the

literature, is (Pressman, 1992, p. 23):

"The establishment and use of sound engineering principles in order to
obtain economically {sic] software that is reliable and works efficiently
on real machines."

However, developing a piece of software that is "reliable and works efficiently
on real machines" is much harder in the real world (Pressman, 1992, p. 23).
There are many problems associated with software development. Such
problems include late delivery of software, budpet over-run, unreliable
software, poor maintainability and poor performance (Sommerville, 1989, p.
3). These problems are categorised by many industry observers as a “crisis".
Hence the term software crisis or software affliction (Pressman, 1992, p. 17),
which suggests a set of problems that are encountered in the development of
software. These problems are not restricted to software that does not work
properly. Rather, the affliction includes problems associated with the

development and maintenance of software.

According to Pressman (1992, p. 23), software engineering is an
approach to a solution for software affliction that can be achieved by applying
specific tasks to “... all phases of software development, using automated tools
to aid these tasks, using more powerful building blocks for software
implementation, using better techniques for software quality assurance ...”, and
by enforcing good project coordination, control and management. Software
engineering consists of a set of three key elements - methods, tools and
procedures. These elements will enable management to "... control the process
of software development and provide the practitioner with a foundation for
building high-quality software in a productive manner” (Pressman, 1992, p.
24),

Page 9

The software engineering methods provide the technical ("how fo's")
steps for building software. The tasks include “project planning and
estimation, system and software requirement analysis, design of data structure,
program architecture and algorithm procedure, coding, testing and
maintenance” (Pressman, 1992, p. 24). It also includes a sct of criteria for
software quality. The software engineering tools provide these methods with
automated or semi-automaied support. Curently, there are tools that will
support all the methods mentioned above. All these tools can be integrated so
that information created by one tool can be shared among the other tools
through a system called CASE (computer-aided software engineering). The
software engineering procedures are what hold the methods and tools together,
and “.. enable rational and timely development of computer software”
(Pressman, 1992, p. 24). These methods, tools and procedures, as a whole, can

be viewed as a software development methodology.

A simpler definition provided by the JEEFE Standurd Glossary of
Software FEngincering Terminology (Vliet, 1993, p. 5) detines software
engineering as "the systematic approach to the development, operation,

maintenance, and retirement of software".

2.1.2 Software Development Life Cycle

There are currently a number of life-cycle paradigms namely the
classic life cycle or waterfall model, prototyping, the evolutionary model, the
spiral model and the fourth-generation techniques. Selection of one of these
paradigms is dependent on the development approach to be adopted. Each
paradigms possesses its own strengths and weakness and in ceriain instances

the strongest aspects of each are combined to benefit the software project.

Page 10

2.1.2.1 The Waterfall Model

The waterfall model is the most commonly known paradigm.
EXECOM's APT methodology (1991), in line with other waterfall
methodologies, uses a systematic, sequential approach to software
development that begins at the system level and then progresses through
aralysis, design, coding, testing, and maintenance. This paradigm includes

the following activities (Pressman, 1992, p. 25):

(a) System Engineering and Analysis includes requirements gathering
at the system level with a small amount of top-level design and

analysis,

(b) Software Requirement Analysis intensifies the requirements
gathering processes and focuses specifically on the software. The
analyst must fully understand the information domain of the
software, as well as the required functions, performance of the
system and the user interface. The requirements for both the system
and the software are documented and are reviewed with the

customer,

(c) Design process focuses on the programs data structure, software
architecture, procedural detail and interface characterisation.
Before coding begins, this process translates the requirements info a
form that can be assessed for quality. The design then becomes a

part of the software configuration after it is documented.

(@) Coding process is where the design is translated into a machine-
readable format by the programmers. Typically, a high-level

programming language(s) 1s used to achieve this.

Page 11

p——imy

(e) Testing is a process of executing a program with the intention of

(f)

finding error(s). It is a critical element of software quality
assurance and it also represents the ultimate review of
specification, design and coding. Vliet (1993, p. 12) further
explains that testing is not a phase that is conducted after the
implementation of the system. Testing itself can be regarded as two
separate activities, namely verification and validation. Verification
is to determine whether the system meets its requirement (are we
building the system right). Validation is to determine whether the
system meets the user's requirement (are we building the right

system).

Maintenance of software is something that cannot be avoided -
software changes due to several reasons. The following are types of

maintenance process.

Corrective meaintenance is the process of removing one or more
errors found on the system. Adapsive muintenance is the process of
modifying the software to properly interface with a changing
environment. Perfective maintenance 15 the process of adding or
modifying of existing functions on a successful system. The final
type of maintenance process is known as preveantive maintenance. It
is a process of increasing the system’s future maintainability (Vliet,
1993, p. 15). Examples of preventive maintenance activities include
updating of documentation, adding of comments and/or improving

the modular structure of the system.

The waterfall model is probably the most common paradigm used

in the software industry. The main reason for its development was that, in
the past, there were not enough tools available to synthesise software

(Vliet, 1993, p. 34). However, the waterfall model is considered to have a

Page 12

number of problems for software development. Zelkowitz (cited in Vliet,
1993, p. 34) provides sufficient quantitative evidence that the model has
many shortcomings. For exaniple, the strict sequencing of phases enforced

by this model cannot always be followed.

2.1.2.2 Prototyping Model

Prototyping is a process that requires the software developer to
create a preliminary model of the software to be built. Figure 2.1.2.2.1
shows the typical prototyping approach (Alavi et al.,, 1991, p. 88). This

model can be in three different formats (Pressman, 1992, p. 27):

(a) a paper prototype or PC-based model that shows the human-
machine interaction in a form that can be easily understood by the

user,

(b) a working prototype that implements a portion of the function

required by the desired system.

(c) an existing system that perfornins part or all the necessary function
but has other features that will be improved and/or incorporated

onto it.

Page 13

Datermina initial set of
information requirements

N\

Usy 4GLs, CASE, or other quick-build
tools to develop 2 pratotype

NV

Evaluate prototyps

Is prototypa satisfactory?

Modify prototype

Figure 2.1.2.2.1 Diagram - Prototyping Appreach

Prototyping is particularly useful in a situation where the users are
unable to clearly define their requirements. Using prototyping, the user
interface can be quickly developed, providing users with an impression of

what the completed system will look like and what type of functions it will

provide.

Alavi (1984, p. 562) provided four recommendations for the
prototyping techniques. Alavi states that :

(a) both users and designers must be familiar with the prototyping

approach and recognise its pitfalls.
{b) since prototyping is a relatively new paradigm, there is a need for a

positive aftitude from those who use it in order to ge! positive

results.

Page 14

(c) prototyping is very useful in situations where user requirements are
unciear or ambiguous - 1t seems to be a good way to clarify those

requirements,

(d) prototyping also needs to be planned and controlled. There must be
an imposed limit on the number of iterations, and explicit
procedures for documenting and testing procedures must be
established. In addition, more useful aspects of the tmditioﬁal
paradigm that make the process manageable and controllable,

should also be applied.

Alavi (1984, p. 557) conducted field interviews® and found the
following advantages and disadvantages of prototyping, The advantages

are .

O It provides a user with a tangible means of understanding and
examining the proposed system and for extracting more meaningful
feedback from users in terms of their needs and requirements.

Q It provides a common ground where users and designers can
identify potential problems and opportunities early in the
development process. It also provides an effective way to extract
and clarify user requirements.

Q It serves as a practical means to encourage and achieve user
participation and commitment to a project.

O It allows users and data processing personnel to improve
communication and relationship between them, and also to enhance

their appreciation of each ot' 2.'s job.

1 Alavi (1984) conducted in-depth interviews with 12 project managers and 10 systems analysts
from six organisations that uses the prototyping approach.

Page 15

Q@ It helps to ensure that the system will perform its expected or
required tasks before spending large sums of money on the

development of the entire system.

The disadvantages are (Alavi, 1984, p. 358) °

O Prototype might have limited capabilities and capiures only the key
features of the operational systems. Sometimes, unrealistic user
expectations are created by overpraising the prototype, and these
expectations are subsequently not met.

O Prototypes are difficult to manage and control, due to lack of
knowledge in planning, budgeting, managing and controlling them.

Q It is difficult to prototype large systems because it is unclear how a
farge system should be div'ded for the purpose of prototyping or
how aspects of the system to be prototyped are distinguished and
boundaries set.

Q It can be difficult to retain user enthusiasm. In some cases, user
involvement and interest declines after the working prototype was

developed.

There are a variety of prototyping methods. Most of which aim to
be more rapid than conventional development, thus reducing prototyping
cost and risk (Tate, 1990, p. 240). The types of prototyping methods
include (Tate, 1990, p. 240} -

Q Ad hoc or guick and dirty methods
Quick and dirty methods, in the literal sense, are often a recipe for

disaster in software development. But one can assume that "quick”
refers to rapid prototyping and "dirty” for the ignorance or extreme
simplification of non-essentials. However, expenience indicates

(Tate, 1990, p. 240) that though prototypes need only be completed

Page 16

in key aspects, they must be developed to a reasonable standard,

especially if they are to be accepted in practice.

Q Executable specification
One main purpose of prototyping is the detenuining, clarifying, or

validating of user requirements. The concept of direct execution of
specifications based on these requirements is very desirable. When
compared with other prototyping methods, it has the great
advantage of being very direct. Practically, executable
specifications? are not quite as direct as was expected. The reason
for this is because the requirements that are not explicitly specified

cannot be confirmed,

If the specifications are to be executed in the normal way, they
must be clear and unambiguous. This implies the use of formal
specification languages’, which unfortunately are not very user-
friendly, Some research work has been conducted to develop
experimental systems with “.. semi-formal, graphical front-ends
that are reasonably flexible and user-friendly but are supported by a

more formal back-end” (Tate, 1990, p. 241).

Tate (1990, p. 241) pointed out that some might argue that
executable specifications are in fact not prototyping. Specifications
that can be executed are basically still specifications. Their ability
to be executed is but another aspect of their understandability.
Executable specifications are still extremely useful for validating

requirements - which is one of the main purpose of prototyping.

4 Executable specification is the proiniype that serves as a representation of requirements
{Pressman, 1992).

3 Formal specification languages are often mathematical in form (for example, in the form of
predicate calculus), It is a formal method that provides a means for specifying a system so that
consistency, completeness, and correctness can be assessed in a systematic manner (Pressman,
1992},

Page 17

Q Very High-Level Languages and Application Generators
"Very high-level languages" refers to “.. languages that are higher

level or briefer and more natural in expression, than those normally
used in conventional software development” (Tate, 1990, p. 241).
This category includes fourth-generation languages (4GLs) or
fourth-generation techniques (4GTs), various high-productivity
languages that are domain specific (in varying degrees) and

languages specifically developed for rapid prototyping.

All these languages and techniques have one common ability, and
thatis "... to specify some characteristic of software at a high level
... then automatically generate source code based on the developer's
specification" (Tate, 1990, p. 241). The direct use of this high-level
description on part of the system makes the use of high-level

Janguages appropriate for rapid prototyping.

An application generator's function is very similar to that of high-
level languages. It can produce a part or all of an ayplication from
suttable specifications. These specification might be expressed in
graphical, tabular, menu choice or language form, or a combination
of these. Some would consider application generators as a potential
prototyping tool and if the code that it generates is efficient, the
application generator can be considered as a high-productivity

application-building tool.

0 Reuse
This suggests that the prototype is assembled using a set of existing

software components. A software component may be a data base, a
program or a module. Each of these components can be designed in
a manner that enables them to be reused without a detailed

knowledge of their internal workings.

Page 18

The hypothesis proposed by Alavi et al. (1991, p. 86), was that by
adding data modelling as a preceding step to prototyping, it would give
prototyping more structure and make it more efficient. In an experiment¢
conducted by Alavi et al. (1991, p. 86), system designers combining data
modelling and prototyping, reported lower task satisfaction and more
stress, It was also felt that the task was more complex. However, the
experiment did confirm Alavi's hypothesis because these system designers
did in fact achieve superior design results, It also showed that including the
data modelling step reduces the number of prototype iterations to design

the "right" system.

2.1.2.3 The Evolutionary Model

The evolutionary model is based on three simple principles {(Gilb,
1988, p. 84) .

G Deliver something to a real end-user.
O Measwure the added-value to the user in all critical dimensions.
QO Adjust both design and objectives based on observed realities.

The basic evolutionary concepts are well-defined concepts in engineering
literature and engineering practice in other disciplines. However, in the
software community, its capability is yet to be fully recognised and

exploited (Gilb, 1988, p. 84).

& The subjects for Alavi's et al. (1991) experiment were evening graduate students (52 men and 36
woraen) from two MIS classes at a large state university. Their average age was 26,2 and 72
percent had full or part-time professional employment in MIS.

Page 19

The evolutionary model consists of a collection of many concepts.

The primary concepfts are (Gilly, 1988, p. 85) :

Q Multi-objective driven
Conventional software planning is done in terms of the functional

deliverables. According to Gilb (1988, p. 86), there is very little
emphasis in the industry on how quality and resource attributes of a
system are controlled. As a result, control over these attributes is
lost. The reason provided by Gilb (1988, p. 86), is that there is
insufficient knowledge among software engineers and teachers in

defining critical attributes such as usability and maintainability.

The evolutionary model is built on iteration that leads to “... clear
and measurable multi-dimensional objectives™ (Gilb, 1983, p. 89).
These objectives must contain all functional, quality and resource
objectives that are necessary for the long-term and short-term

survival of the system under development.

Q Early, frequent iteration
In most software engineering projects, the first useful results are

delivered one or more years after the project commences. Gilb
(1988, p. 89) found that the initial planners of such projects actually
believe in the possibility of an earlier delivery, but they lack both
motivation and method in finding early and frequent software

deliveries.

Management who desire an earlier delivery, paradoxically also
believe in the conventional wisdom that there is a long initial cycle
before the first useful phase is delivered. Gilb (1988, p. 89),
however believes that such first phases can be sub-divided into

many smaller phases, henice providing an earlier delivery.

Page 20

The evolutionary planning uses the concept of selecting the most
crucial steps with the highest user-value (which may be financial)
to development-cost ratio for earliest implementation. This user-
value might increase management goodwill and encourage their

support for the rest of the system.

Complete analysis, design, build and test in each step
Software projects tend to waste a lot of time on the detailed

requirements analysis, detailed design, coding and testing phases. It
is a very difficult task, especially for farge projects, because there
are “... too many unknowns, too many dynamic changes and too

many complex 1nterrelationships in the system” {Gilh, 1998, p. 90).

The evolutionary model is created to provide developers with early
warning signals of thre itening unpleasant realities. Unpleasantries
still exist but if they occur, they will not get a chance of becoming
too large. Gilb (1988, p. 90), suggests that one must learn to design
a more "open-ended"” system architecture. The evolutionary model
starts with an elementary design that is easy to modify, adapt, port
and change - both in the long and short terms. It provides for early
utilisation of the system to experience its usefulness and

capabilities at an early stage.

User orientation
Software projects are mostly oriented towards the machine, the

algorithm, or the deadline, but rarely towards the user. With the
evolutionary model, developers are specifically appointed to
“listen” to user reactions, early and frequently. The user can
directly participate in the development process. [n this case, neither

the budget nor deadline is overrun. The overall system 1s “open

Page 21

ended" and the developers “... are mentally, economically, and

technically prepared to listen to what the user or customer wants”
(Gilb, 1588, p. 92).

“The principle of selecting the highest available value-to-cost ratio
... 15 a dynamic one” (Gilb, 1988, p.92). The user values should
change as the user gains experience. This atlows the user to provide
new ideas that were not in the initial plans. If the idea is good, the
developers must find practical and reasonable ways of
implementing them as soon as possible. Ail developers should
realise the importance of feedback, the changes of ideas about

vatue, and the experiencing of development cost estimation.

Systems approach, not merely algorithm orientation
Many software engineering methods are eoriented towards current

computer programming languages. These methods contain few
references to Data Engineering aspects of software, documentation,

training, marketing and motivation {Gilb, 1988, p. 93).

The evolutionary model is a method that is not merely restricted to

software development. It can be used in any creative process.

Open-ended basic systems architecture
What is most desirabie from a system is one that will survive and

succeed under conditions which change according to time.
According to Gilb (1988, p. 93), a good software engineer should
constantly be making detailed study of the available design

technologies which may lead to more adaptable systems.

In terms of the evolutionary model, open architectures are vital.

Without open architectures, a lot of effort will be wasted in the

Page 22

has an open architecture, modification or enhancement can easily

be made.

O Result orientation, not software development process
orientation
In the traditional software developiient cycle. the process seems to

be more significant than the result. Gilbh (1988, p. 94) stresses that
software developers are so tangled up in the formalities of a process
that the software engineering efforts have “... extremely unclear,
unmeasurable and unstated objectives in critical quality and
resource areas” (Gilb, 1988, p. 95). It is necessary to focus on more

important issues such as usability and maintainability.

Planners can choose to ignore some of these concepts, but in doing so, the

modei will Jose some of its power.

The evolutionary model is a management perception tool. It will
help management to comprehend and control the complex tasks which they
are responsible for. It does this by using one of the oldest management
strategies - "divide and conquer". This model breaks the task intc many
smaller deliverable results. The benefit of this is that the deliverable resutts
can be used by someone trying to perform some sertous work with them
(Galb, 1988, p. 112). These results have to be further adjusted, hence it

does not imply a full-scale software release.

2.1.2.4 The Spiral Model

The spiral model is based on various refinements of the waterfall
model. This model can accommodate the models discussed in the previous
sections as special cases and also provides guidance as to which

combination of the previous models best fit a given software situation.

Page 23

Evaluate ARernatives,

N\
Curmsialye Cost [dentify, Resolve Risks |

Determine Objectives, A
r""—ﬂ

Alternatives, Constraints

Frogress Theough Sleps

Review . = |
Partiion Requiemens Plan
Ufe-cyte Plan

Design Yatickabon
At Varifeation

Plan Next Phases Develop, Verify Next-Level Product

Figure 2.1.2.4.1 Diagram - Spiral model

Figure 2.1.2.4.1 (Boehm, 1988, p. 64) represents the spiral model of
the software process. The radial dimension “... represents the cumulativs
cost incurred in accomplishing the steps to date” (Boehm, 1988, p. 65).
The angular dimension represents the progress made in completing each
cycle of the spiral. From the diagram, it can be observed that each cycle
involves a advancement that addresses the same sequence of steps. Each

cycle of the spiral begins with the identification of (Boehm, 1988, p. 65)

O the key characteristics of the software such as performance,
functionality, adaptability etc.

O the alternative methods of implementing the software {for example,
use of design A or design B etc.).

O the comstraints that are associated -with the application of the

alternatives such as cost, schedule etc.

Page 24

The next step is to weigh the method of implementation against the
key characteristics and constraints. This process usually helps to identify
the areas of uncertainty that may become a risk(s) to the project. If the
risk{s) is identified, the next step will be to formulate a cost-effective plan
to resolve the risk. This may involve prototyping, simulation,
benchmarking etc. Once the risk(s) is assessed, the next step is determined
by the type of risk(s) remaining. From the next step onwards, it can be seen
how the spiral model accommodates the good features of existing softwa.re
development paradigms. With the risk management of the spiral model, it
can avoid many of the problems that are encountered by these paradigms,

For example (Boehm, 1988, p. 65) :

O If a project has low risk in areas such as user interface or
performance, but has a high risk in budget and schedule, then the
spiral mode! will resemble the waterfall model.

O If a piece of software has a low risk in design and code breakage
but the presence of errors in the software constitutes a high risk,
then the spiral model will resemble the two-leg model of precise
specification and formal deductive program development.

Q If a project has low risk in areas such as budget, schedule or control
but has a high risk in defining the wrong user interface or user
decision supports requirement, then the spiral model will resemble
the evolutionary development model.

O If automated sofiware generation capabilities (such as 4GL tools)
are available and depending on the risk involved, the spiral model
can accommodate them as an option for rapid prototyping or for
application of the transform model.

Q Ifthe high risks found in a project involve a mix of risk iterns listed
above, then the spiral approach will also reflect an appropriate mix

of the process model.

Page 25

After each cycle is completed, the software will be reviewed by the
principal people or organisations concerned with it. The review involves
all aspects of the software developed during the previous cycle, including
ihe plans for the next cycle and the resources that are required to carry
them out. The main objective of the review is to ensure that ail parties
concerned are jointly committed to the approach for the next phase. It is
important to note that each component of the software can be divided to
form its own spiral. Therefore, the review-and-commitment step may
extent “.. from an individual walkthrough of the design of a single
programmer's component to a large scale requirements review involving

the developer, user, customer and mamtenance organisations” (Boehm,
1988, p. 65).

The spiral model has a number of additional advantages, as listed

below (Boehm, 1988, p. 69) :

Q It focuses carly aftention on the choices involving the reuse of
existing software,

O It assists in the preparation for life-cycle evolution, growth, and
changes of the software.

Q It supplies a mechanism for combining software quality objectives
into the software development.

0O It concentrates on remeving errors and unattractive alternatives at
an early stage.

O It can deduce how imuch effort and resources are needed for a
particular type of project.

Q It does not emiploy different approaches for software development
and software maintenance, |

1 It provides a practicable framework for integrated hardware-

software systemn development.

Page 26

Although the spiral model appears to be more adaptable than the
other types of development paradigms, there are some difficulties that are
associated with this model. Boehm (1988, p. 69) describes these
difficulties as three main ... challenges that involve matching to contract
software, relying on risk-assessment expertise and the need for further

elaboration of spiral model steps”.

Q Matching to contract software.
According to Boehm (1988, p. 70), the spiral model works well on

intemnal software development, but it requires more work if it is to
compete in the world of contract software acquisition. In the world
of contract software acquisition, it is harder to procure great
degrees of flexibility and freedom without losing accountability and
control. It is also harder to interpret contracts whose deliverables
are not well specified in advance. Although enhancement has been
made to support a more flexible contract mechanism, there is still a
need to ensure that the acquisition managers are comfortable in

using these procedures.

Q Relying on risk-assessment expertise.
The spiral model relies heavily on the ability of the software

developers to identify and manage sources of project risk. Not all
software developers have the necessary experience to effectivély
carty out this task. For example, if a team of inexperienced
developers were to produce a specification with a good level of
understanding on low-risk elements but poor level of understanding

on high-risk elements, the project will fail (Boehm, 1988, p. 70).

Another aspect of risk-driven specification is that they are people-

dependent. For example, a design created by an expert may be

Page 27

implemented by non-experts. This means that the expert will have
to produce very detailed documentation for the non-experts, to keep

them from making mistakes.

The need for further elaboration of spiral model steps.
Basically, a lot of work has to be done on the spiral model to ensure

more consistent use of the model. There is a “... need for morc
detailed definitions on the nature of the spiral model specifications
and milestones, the ﬁature and objectives of spiral model reviews,
the techniques for estimating and synchronising schedules, and the
nature of the spiral model status indicators and cost-versus-progress
tracking procedures” (Boehm, 1988, p. 71). There is also a need for
guidelines and checklists to identify the potential sources of project
risks and their most effective risk-resolution techniques (Boehm,
1988, p. 71).

Highly experienced people will have no problems using the spiral
model, but the majority of people have varying degrees of
experience and understanding. Accordingly, it is important to
ensure a consistent interpretation and use of the spiral approach

across the project.

Page 28

2.1.3 Project Management Process

It is too often the case that data processing managers struggle through
huge projects, working against impossible deadiineﬁ, delivering systems that
barely work and do not meet thetr users' requirements, and consequently later,
spend a lot of time and effort on maintenance (Pressman, 1992, p. 42). This is
a sign of weak project management. In order to conduct a successful software

project, it is necessary to consider the following elements :

(a) Beginning A Software Project
Before planning a project, objectives and scope must be established,

alternative soluttons must be considered, and technical and
management constraints must be identified. Lack of this informatton,
makes it impossible to define an accurate estimate of the project cost, a
realistic break-down of project activities, or a reasonable project

schedule that provides a significant insight on progress.

(b) Measures And Metrics
Measurement and metrics assist in understanding the technical process

that is used to develop a product and the product itself. The process is
measured so that it can be improved. The product itself is also

measured so that its quality can also be improved.

(c) Estimation Process
Estimation is an important element in managing a project. After a

software preiect is planned, estimation is used to project the human

effort required, the project duration and its cost.

(d) Risk Analysis
Risk analysis is another crucial element in managing a project. As

stated in Gilb (1988, p. 73), “If you don't actively atack project and

technical risks, they will actively attack you". Risk analysis is a series

Page 29

of risk management steps that are classified as risk identification, risk
assessment, risk prioritisation, risk management strategies, risk

resolution and risk monitoring.

(e) Scheduling
After a set of project activities is identified, the interdependencies (if

any) are established, the effort associated with each activity is
estimated, the people and other resources are assigned, and a fask

nerwork’ is created. Hence, a time-line schedule is developed.

(f) Tracking And Control
After the development schedule is established, tracking and control

activity begins. All activities on the schedule are tracked by the project
manager. If any of the activities should fall behind schedule, the project
manager can use project scheduling too) to ascertain the impact of the
schedule slippage on project railestones and delivery date, In doing so,
the project manager can then redirect resources, reorder activities or in

the worse case scenario, alter the delivery date.

2.2 SOFTWARE METRICS

Software metrics is a subject that has long been considered in the domain
of software engineering. The first research work carried out was conducted by
Maurice Halstead (Ince, 1990, p. 298). Halstead's study looked into the area of
product metrics (see Section 2.2.3.6) that involves program code, The idea behind
Halstead's work is that useful properiies of a system or part of a system can be
anticipated from counting tokens in source code. The second wave of metric
research started during the 1970s. The research involved the characterisation “... of
the control flow of a program or subrotine in terms of a number which, somehow,

quantified its unstructuredness” (ince, 1990, p. 298). Mc¢Cabe is renowned for his

1 A task network is a schematic on the various types of activities that are involved in the software
engineering project,

Page 50

study in this area. However, the most promising area of research involves system-
design metrics. Such metrics can be drawn from the architectural design and
measure the degree of isolation of modules in a system. It is believed that a good
system is one where its modules can be read and tested in isolation, and integrated

with minimum problems (Ince, 1990, p. 298).

Software mietrics provide quantifiable measurement of any activity
involved in software engineering. According to Fenton (1991, p. ix), such

119

activities include matters that relate to “... measuning and predicting software
project costs, measuring and improving productivity, and measuring and
predicting the quality and complexity of software products”. Clapp (1993) added
that metrics also consist of proiect size, personnel, computer use, unit progress,
schedule progress, volatility, requirements and design progress, testing progress

and incremental release content,

Fenton (1991, p. ix} stresses the importance of software metrics in software
engineering. He claims that even though there are literatures that talk about
software metrics, they barely emphasise its importance. One main reason software
engineering remains more of an ideology than a discipline is that measurement has
mostly been ignored by some of the leading authorities who have shaped its
direction (Fenton, 1991, p. ix). Even with books that describe methods on how to
achieve software quality, many still do not know how to assess their products.
Hence, it is impossible for developers to determine whether they have achieved
anything even with the available methods. Many of the measuring techniques

(metrics) are being used without really understanding their true purpose (Fenton,
1991, p. ix).

Software developers must recognise the principles of software metrics that
involve cost, schedule and quality goals, quantitative goals, comparicon of plans
vith actual performance throughout development, monitoring data trends for

indication of likely problems, metrics presentation, and investigation of data

Page 31

values (Clapp, 1993). Management must balance their primary goals when

selecting the metrics to use for their particular project.

2.2.1 Whv Measure?

The previous section mentioned the types of activities that software

metrics can be used to measure. One simple question remains : why measure?

There are several reasons why a measure is necessary. According to Kizior

(1993, p. 45), measures can assist a company determine whether it is

competitive or not; they can assist the company to determine _vhether it

requires improvement at its productivity and quality levels; measures can be

used to assess new tools and techniques; they can help to compare results after

taking some course of action and they can assist the estimating process. Ince

(1990, p. 297) summarised the uses of melrics :

Q

as a means to predict the resource requirements for later parts of a
software project. Since requirements are constantly changing, 1t is vital
for developers to have the means fo recaiculate the project resources
needed.

to be used as a quality-assurance enforcement mechanism.

to be used as a mechanism for assessing the performance of staff on a
software project.

to be used in assessing competing development methods, organisational
structures and individual ways of working,

to be used to assist development staff procure a quantitative estimate of
the quality of their work.

to be used as the foundation for intelligent and semi-intelligent

software development tools,

Pressman (1992, p. 56) also said that if "... we do not measure, there is

no real way of determimng whether we are improving. And if we are not

Page 32

prevent the problems such as schedule and budget overrun, poor productivity
etc. Measurement can provide benefits at the strategic level, at the project
level and at the technical level. By requesting and assessing productivity and
quality measures, senior management can set up important goals for

improvement of the software engineering process.

2.2.2 What Are Software Meirics?

The previous two sections discussed the types of activities that
software metrics can be used to measure and the reasons for measuring, but it
has not explain what software metrics are. This section will explain the various

categories of software metrics,

A software metric is a numerical value that is extracted from a software
project. There are two types of metrics, namely, product metrics and process
meirics (Ince, 1990, p. 297). Product metrics are numerical values extracted
from some document, or a piece of source code. Process metrics are numerical
values that depict a software process such as the amount of time require to
debug a module. Metrics can also be categorised as result metrics and
predictor metrics (Ince, 1990, p. 297). Predictor metrics are normally product
metrics that can be used to predict the value of another metric. The predicied
metric (normally a process metric) is known as a result metric (see Figure
2.2.2.1). Therefore, using features of a system specification to predict the
amount of resources required by the software project is an example of product
metrics (the system specification) being used to predict a result metrics

(project resource),

Page 33

Product Melric Predicts N Process Melric

(Predictor Metric) 7" (Result Metric)

Figure 2.2.2.1 Diagram - Relations Of Product Metric And Process
Metric

2.2.3 Types Of Software Metrics

It is now apparent that software metrics are important in software
engineering. Symons (1992, p. 16) stated that "a reliable and credible method
for measuring the software development cycle is needed that has a reasonable
theoretical basis and that produces results that practitioners can trust." Hence,
software metrics have been used to measure a wide range of software

engineering activities. These activities include (Fenton, 1991, p. 9) :

Cost and effort estimation models and measures
Productivity 1v..sures and models

Quality control and assurance

Data collection

Quality models and measures

Reliability models

Performance evaluation and models
Algorithmic / computational complexity

OO0 o0o0D000Q0OQ

Structural and complexity metrics

For the purpose of this research, not all the metrics mentioned above
will be used. For example, the cost estimation metric may not be applicable to
the project that is provided by this department. According to Baker {1991, p.
1290), in order to initiate a metrics program, the following should be

considered :

Page 34

Define the object of measurement

Identify the attributes to be measured

Determine the purpose of the measurement resuits
Collect data based on steps 1, 2 and 3

Modify the measurement based on experience

Ln e o

2.23.1 Cost And Effort Estimation

This type of metric was first created entirely for managerial
purposes. Managers wanted a method that would help them predict project
costs at an early stage in the software development life-cycle. Since then,
many models for software cost and effort estimation have been proposed
and used. The best-known models are Boehm's COCOMO (Constructive
Cost Model), Putnam's SLIM model and Albrecht's function point model
{Fenton, 1991, p. 10). In these models, the general approach to estitmating
effort is to make effort a pre-defined function of one or more variables.
These variabies can be, for example, the 'size’ of the software - defined as
lines of code in COCOMO and number of function points in Albrecht's

model.

Most cost-estimation models have adjustment factors called cost
drivers built into them. These cost drivers serve as indicators for the
various factors that are believed to have affect on the amount of effort
required to produce a piece of software of a given size (Kitchenham, 1992,
p.212)

Boehm's COCOMO
Boehm introduces a hierarchy of software estimation models

(COCOMQ) that takes three forms. They are

Q Basic COCOMO
This model is applicable to small-to-medium size systems

usually developed in an in-house environment. Other aspects of

Page 35

this model includes phase distribution of effort, schedule and
activities. It is suitable for quick, early rough estimation of
software costs, but its accuyracy is rather restricted because it
lacks in factors such as hardware constraints, personnel quality
and experience, use of modern tools and techniques, and other
factors that might have significant impact on software costs
(Boehm, 1981, p. 58).

Intermediate COCOMO
This model is a compatible extension of the Basic COCOMO

model. It has greater accuracy and is more detailed. This makes
it more suitable for cost estimation at the more detailed stages
of software product definition (Boehm, 1981, p. 114). It also
embodies an additional 15 predictor variables known as cost
drivers. These cost drivers are further explained later in this
section, However, this model has two limitations which affects
detailed cost estimates for large software projects. These

limitations are (Boehm, 1981, p. 344):

- lts estimated distribution of effort by phase may be
fnaccurate,

- It can be unmanageable to use on a product with many
components.

Advanced COCOMO
This model addresses the limitations found in Intermediate

COCOMO. It overcomes these limitations by providing
(Bochm, 1981, p. 344} :

- aset of Phase-Sensitive Effort Multipliers for each cost

driver attributes. By using these multipliers, the amount

Page 36

of effort required to complete each Iphase can be
determined.

- a Fhree-Level Product Hierarchy, where the same cost
drivers may be applied to components that are grouped

at rnodule, subsystem or system level,

This model includes capabilities such as a procedure for
adjusting the phase distribution of the development schedule.
For estimating overall development schedule and effort
distribution by activities, this model uses the same techniques

used in Intermediate and Basic COCOMO.

COCOMO can be applied to three classes of software projects, which
Boehm calls organic mode, semi-detached mode and embedded mode
(Vliet, 1993, p. 103). Organic mode refers to relatively small, simple
software projects that involve small project teams whose members
generally have lots of experience with similar projects in their
organisation. Semi-detached mode refers to intermediate software
projects whose project meinbers consist of mixed levels of experiences
(including those that have no experience at all). Embedded mode refers
to software projects that must be developed within a set of tight

hardware, software and operational constraints,

COCOMO model is associated with a set of 15 cost driver attributes
that are grouped into four categories, namely product attributes,
hardware attributes, personnel attributes and project attributes. Each of
these 15 attributes is associated with a rating of 1 to 6 points, 1 being
"very low" and 6 being "extra high". Based on these ratings, the effort
multiplier can be determined from a table published by Boehm, and the
product of all the effort multipliers will give the effort adjustment

Jactor.

‘Page 37

Product attributes include ;

0 Required software reliability
A software can be said to be reiiable if it can perform its intended

tasks satisfactonly. Quantitatively, software reliability can be
defined as a prebability. An unbiased estimator (R) can be obtained
for the probability by performing the following steps (Brown &
Lipow cited in Boehm, 1981, p. 372) :

- Choose N inputs or input sequence randomly from the
operational profile distribution

- Use the inputs to exercise the software for N runs

- Use the success criterion to determine how many runs
resulted in satisfactory outcomes (M).

- Calculate the estimator R=M /N

O Size of application database
The amount of effort required to develop a piece of software

depends on the size and complexity of the data base. It is very
difficult to characterise the specific attributes of the software data
base which influence the software's cost. Most software complexity
metrics have concentrated on program complexity and exclude data
coimplexity. The size of the data base (D/P) can be defined as a
ratio of (Boehm, 1981, p. 386)

D/P = Data base size in bytes or characters
Program size in number of delivered source instructions

where data base size refers to the amount of data to be assembied in

storage by the time of software acceptance.

Page 38

a Complexity of the product
In this case, the effort multiplier is presented as a function of the

level of complexity of the module to be developed. A rating is
given to the function operated by the module. These functions can
be control, computation, device-dependent, or data management

operations {(Boehm, 1981, p. 390).

Hardware attributes include :

Q Run-time performance constraints
The effort multiplier is presented as a function of the degree of

execution time constraints imposed on a software subsystem, “The
rating is expressed in terms of the percentage of available execution
time expected to be used by the subsystem and any other
subsystems consuming the execution time resource” (Boehm,

1981, p. 401).

O Memory constraints
The eftort multiplier is presented “... as a function of the degree of

main storage constraint imposed on a software subsystem. Main
storage refers to direct randomm access storage such as core,
integrated-circuilt etc., but excludes devices such as drums, disks,

tapes, or bubble storage” (Boehm, 1981, p. 410).

Q Volatility of the virtual machine environment
The effort multiplier is presented as a function of the level of

volatility of the virtual machine based on the subsystem to be
developed. In a given software subsystem, the underlying virtual
maching is a composite of hardware and software that the

subsystem calls upon to achieve its tasks (Boehm, 1981, p. 413).

Page 39

O Required turnaround time
The effort multiplier is presented as a function of the level of

computer response time experienced by the project team
developing the subsystem. It is defined in terms of average response

time measured in hours (Boehm, 1981, p. 415).

Personnel attributes inciude :

O Analyst capability
A different rating is given to the level of capability of the analysts

working on the software subsystem. For each rating, a set of
multipliers is to be multiplied to account for the difference in the

capability of the analysts (Boehm, 1981, p. 427).

0 Programmer capability
The effort multiplier is presented as a function of the level of

capability of the programmers working on the software module.
The ratings are represented in terms of percentiles (Boehm, 1981,

p. 435). The major factors that are considered include :

- Programmer's ability
- Efficiency and thoroughness
- Ability to communicate and cooperate

Q Applications experience
The effort multiplier is presented as a function of the level of

applications experience of the project team. The ratings are defined
in terms of experience in a particular type of application (Boehm,
1981, p. 431).

O Virtual machine experience)
The effoit multiplier is presented as a function of the level of

virtual machine experience of the project team (Boehm, 1981, P.
439).

Page 40

Q Programming language experience
The effort multiplier is presented as a function of the level of

programming language experience of the project team. The ratings
are defined in terms of experience with the programming language

used (Boehm, 1981, p. 442).

Project atfributes includes :

Q Use of modern programming practices
The effort multiplier is presented as a function of the degree to

which modern programming practices are used (Boehm, 1981, p.

451). Such practices includes :

- Top-down requirements analysis and design
- Structured design notation

- Top-down incremental development

- Design and code walkthroughs or inspections
- Structured code

- Program Ilibrarian

O Use of software tools
The effort multiplier is presented as a function of the degree to

which software tools are used (Boehm, 1981, p. 459).

0 DPevelopment schedule constraint
The effort multiplier is presented as a function of the level of

schedule constraint imposed on the project team. The ratings are
defired in terms of the percentage of schedule stretch-outs or

acceleration (Boehm, 1981, p. 466).

Even though COCOMO is weli-known and widely used, there are still
some criticisms about it's approach, as Kitchenham (1992, p. 213}
pointed out. First, the COCOMO model has 15 cost drivers and maity

are treated as if they are independent of one another, but there is

Page 41

evidence that they are not. A report produced by Kitchenham (1992, p.
214) states that project teams with high virtual machine experience
usually have high programming-language experience, hence there is a
relationship between the two factors. Secondly, the model assumes that
the factors are applicable in all organisations and thirdly, the factors
require a subjective evaluation, This is a problem because it is very
difficult to ensure that different estimators make subjecti_ve

assessments in the way as described by the model's builder.

Putnam's SLIM Estimating Model
The SLIM estimating model was developed by Larry Putnam of

Quantitative Software Management in the late 1970s (Kemerer, 1987,
p. 417). Putnam's SLJM model "is a dynamic multivariable model that
assumes a specific distribution of effort over the life of a software
development project, The model was derived from lfabour distributions
encountered on large projects” (Pressman, 1992, p. 87). The
distribution effort is presented graphically by what is known as the

Rayleigh-Norden curve (Figure 2.2.3.1.1).

. Furetonal Besipn, P
System Definibon . .
Spacifero >< Deveiopmont } { Cperzton And Marlenance
(Customs Or (Conracior) [i {Cuslomer)
Contracke) Ci
P
L7 Teoong e
Wt Sptem Freetooa Desgn, e L
{Pooperfear) Defrvton Spacifzafion >,
2T T Irstskation
o | (omoststvnsh)
-“\“y"/ \’\ ::}:“::.i.\\"‘ \\ -
EA N : ‘i\"- \‘-... \\"\.\
f ;"‘ HM,_.‘- H"‘m-_ h“‘m.,_‘___‘
" Houficaton And Ennonceman ork = 60%
. G Thatse-Ors Erlot

Figure 2.2.3.1.1 Diagram - Putnam’s SLIM Maodel

Page 42

The Rayleigh-Norden curve can be used to derive the "software
equation” that relates the number of delivered lines of code (L) to effort
(K) and development time (). The software equation is (Pressman,
1992, p. 87):

L= K5t

where C, is a state-of-technology constant and reflects the throughput
constraints that affect the vrogress of the programmer. For example, if
C, = 2000, that suggests a poor software development environment
(such as no methodology or poor documentation). If C, = 8000 or
11000, that suggests a good or excellent software development
environment, respectively. The constant C,_ can be derived for local
conditions using historical data collected from past development

efforts.

The equation above can be rearranged to form the expression
for development effort (K). The expression for development effort is as

follows (Pressman, 1992, p. 88):

L3

e

where K is effort expended (in person-years) over the entire life cycle
for software development and maintenance, and £, is the development
time in years. This equation can be related to development cost by

including the labour rate factor ($/person-year).

In a study conducted by Kemerer (1987, p. 420), the SLIM model was
used to estimate software costs based on the data gathered from 15

large completed business data-processing projects. From the study, it is

Page 43

shown that the SLLIM model does not do well via the magnitude of
relative error® (or MRE) test. MRE is defined as :

MRE = £il i ack
MM

acl

where MM, is the estimated effort and MM, 1s the actual effort.

The average percentage error is 772 percent, with the smallest error
being 21 percent. It also shows that the errors are all biased and effort
is overestimated in all 15 cases, Kemerer (1987, p. 422) suggested that
this may be due to the fact that SLIM was onginally developed using
data from defence-related projects where productivity 1s usually lower

than those business data-processing systems.

Albrecht's Function Point Analysis
Function point analysis 1s a technique that helps programmers to

estimate efficiently the amount of time required to develop an
application, based on its complexity (Davis, 1992, p. 88). This
estimation method increases the effectiveness of project management
as developers have a better idea how to schedule programming time
and allocate resources, Davis (1992, p. 88) also added that estimation
based on this method can vary by as much as + 35 per cent during the
early stages of the development cycle and by as little as 10 per cent
during design definition stages. More of function point analysis is

discussed in Section 2.4.

& The MRE test is used to determine the errors of underestimaling and overestimating the amount of
effort put into the projects.

Page 44

Lines Of Code Methnd
One of the main criticisms concerning function points is that they are

subjective whereas lines of code are objective. Counting function
points still requires human involvement, and this implies subjectivity,
However, it 1s not entirely true that lines of code are an objective
metric (Jones, 1991, p. 49). Thére_. are three problems associatsd with

lines of code.

0 There are no national nr international standard for a line of code
that encompasses all procedural languages. Ever since the inception
of the software industry, lines of code have been used. According to
Jones (1991), it is very surprising that after all this time, the basic

concept of a line of code has never been standardised.

0 Currently, software can be produced using methods such as
application generators, spreadsheets, graphic 1cons, reusable
modules of unknown size and inheritance. For software developed
using either of these methods, entities such as lines of code are

totally inapplicable.

O The number of lines delivered will be less as the level of language
gets higher. So, the most powerful and advanced languages will

appear less productive than the more primitive low-level languages.

Software cost estimation modeis serve as an essential foundation
for software project planning and control. Only when a sofiware project
has clear definitions of its primary milestones and reasonable estimates of
the time and money it will require to accomplish them, a project manager

cannot tell whether his/her project is under control (Boehm, 1984, p. 19).

Page 45

However, according to Kusters et al. (1990, p. 190), after evaluating
a number of selected cost estimation modelsb, they concluded that these
models cannot accurately measure software cost. The models need to be
adapted into the environment in which they will be used. In Kemerer's
(1987, p. 427) paper, the conclusion that was derived was that models that
were developed on different environments do not work well uncaliberated,
hence calibration is essential. Kusters et al. {1990, p. 190) also added that,
despite the great number of publications on cost estimation models, they
were unable to find any empirical data that shows the capability of these
models to predict effort and software cost accurately. They believed that an
organisation should not completely relies on the estimates derived from a

single model.

2.2.3.2 Productivity Measures And Models

Almost everyone with experience of working in large software
projects, knows that by putting more people on to a late project will delay
the project even more (Brooks cited in Fenton, 1991, p. 260). Productivity
metrics are used to measure the productivity of personnel during different
software processes and in different environments. The model shown in
Figure 2.23.2.1 (Fenton, 1991, p. 11) identifies that productivity is a
function of valfue and cest. It endeavours fo determine the individual
components of these in measurable form. Fenton also suggested the
productivity model will project a more accurate view of productivity than

models measuring size of output divided by effort.

Fenton (1991, p. 262) pointed out that in general, people do not like
to be monitored and measured. If people know that they are being

evaluated, there is a temptation by them to manipulate the data. Hence, he

9 Kusters et al. (1990) selected Before You Leap, Estimacs, SPQRZ0 and BIS/Estimator as the cost
estimation models for their study.

Page 46

suggésts that productivity should be viewed as an attribute of the human
resource. After all, the measuring of productivity can be viewed as the
measuring of a major software resource ... people! In this context,
productivity refers to the people working on a part(s) of the development
of the software such as coding, documenting etc. Therefore, productivity

 can be viewed as an external resource attribute.

According to Horst Remus (cited in Gilb, 1988, p. 256} of IBM,
productivity improvement techniques must be focused more on
management than on software developers. Gilb (1988, p. 257) himself
added that many software developers believed that productivity can be
improved by using more sophisticated programming langvages and/or more
sophisticated software support tools. There is some truth in this viewpoint
but as Remus concluded from his observation at IBM (cited in Gilb, 1988,
p. 256), productivity will greatly improve if the productivity of

management is improved - not through technical means,

Productivity
.—/ -~ S
- T
. '/“‘ -“.‘.“'*
Valie C?os,t
U .
o { T
Quality Quantity Personnel Resources Complexily
/\ \ /'
!1/ / Y \ L '-_. ,r'! ™
, /oo i ;
/ Fi , y / ‘-.,\
Reusabilty | Size Time R Environmental %,
Defects Funcionality Money 8W Constraints Prablem
Difficutty

Figure 2.2.3.2.1 Diagram - Fenton's Productivity Model

Even though there are many problems associated with measuring
- productivity using the line-of-code (LOC) approach, many companies will

continue to use this method simply because it can be relatively easy to

Page 47

e

compute automatically (Fenton, 1991, p. 265). However, there is another
approach that may prove to be a batter productivity measure ... the function

point method.

Behrens (1983, p. 649) did a study to determine the productivity of
application development using the function point methcd, Behrens
collected data from 11 projects completed in 1980 and 14 projects
completed in 1981. The function point data were collected manually on a
specially designed form. These data went through extensive review to
ensure consistency and uniformity. Cost data were collected from an
automated project management system. Consulting and user time was
collected manually from the project records. The time data went through

extensive auditing to ensure accuracy.

From the study, by mapping the project cost against the project size
(function points), it shows that if the project size increases, their unit costs
also increases, Behrens (1983, p. 649) states that this is a significant
productivity result. The same result was derived when productivity

(hour/function point) is mapped against project size.

Behrens then examined two major attributes of these projects :
development environment and programming language. The results showed
an average unit cost of (.77 for the on-line environment and 1.52 for batch
(Behrens, 1983, p. 650). This is the second important productivity resulit
because it shows that the productivity for the on-line environment is

approximately twice that of batch.

The languages that were used include Wang Utilities, Databus,
Focus, CMS Exec, PL/1 and COBOL. From the study, it shows that Wang

Utilities is 41 per cent less costly than Focus and 67 per cent less costly

Page 48

than COBOL (Behrens, 1983, p. 651). Behrens pointed out that language is

dependent of the development environment.

The final analysis showed that project size, development
environment, and language are determinants of system development
productivity. Other project attributes such as years-of-systems-experience
and user experience {customer's people working on the project) were also
tested but found not to be significant in Behrens' study. Although the data
from Behrens' study is old, it does show that the function point method can

be used as a general measure of development productivity.

2.2.3.3 Quality Models And Measures

Most experts believe that even with metrics that can accurately
estimate software cost and measure productivity, it will not guarantee the
success of the software if quality is not considered. Total Quality
Management (TQM) was introduced to the software world from industry,
where it had proved very effective in ensuring the quality of the finished
product. Keyes (1992) stated that "... TQM focuses on the product and is a
process whereby continuous improvement is constantly stressed". It is also
added that many Inforeation Systems (IS) only use TQM in the early
stages of software development, Fewer than 5 per cent of these
organisations maintain the quality improvement process throughout the
product life cycle. Management must realise that if TQM is not enforced at

an early stage, the cost of detecting and repairing of defects, and software

maintenance will be high.

McCall's model and Boehm's COCOMO mode! are two well-
known software quality models. McCall's and Boehim's models aitempt to

identify key attributes of quality from the user view of the final product.

Page 49

These attributes are usually called quality facters (Vliet, 1993, p. 71).

McCall described these quality factors as (Pressman, 1992, p. 551);

Q

Q

Q

O

Correctness . The degree to which the program satisfies the user's
requirement. '

Reliability : The degree to which the program is expected to
perform its intended function with acceptable precision.

Efficiency : The amount of computing resources and code required
by the program to perform a task.

Integrity . The degree to which access to the software or data by
unauthorised persons can be controlled.

Usability : The effort required to learn, operate, prepare input, and
interpret the output of the program.

Maintainability . Generally, the effort required to locate and fix an
error in a program.

Flexibility : The etfort required to modify a working program.
Testability . The effort required to test a program to ensure that it is
performing its intended function.

Portability . The effort required to transfer a program from one
hardware and/or software system environment to another,
Reusability : The degree of a program or part of a program, that can
be reused in other applications.

Interoperability . The effort required to link one system to another.

These attributes are often considered oo high-level to be

meaningful and measurable directly. Hence, these high-level attributes are

decomposed into lower-level attributes called quality criteria (Fenton,

1991, p. 223). The quality criteria again require one further level of

decomposition to associate them with a set of low-level, directly

measurable attributes known as quality metrics (Fenton, 1991, p. 225).

There are two types of attributes namely, Internal and external

attributes. According to Vliet (1993, p. 71), internal attributes of a piece of

software can be measured purely in terms of the software itself. Examples

Page 50

of internal attributes are moduiarity, size, defects encountered etc. External
attributes of the software can only be measured with respect to how the
software relates to its environment., Examples of external attributes are
maintainability, usability, reliability ete. In many cases, the quality criteria
of the internal atfributes may have direct impact on the external quality
attributes. For example, the reliability (external attribute) of the software
cannot be directly measured. To measure reliability, it is necessary to
directly measure the number of defects (internal attribute) encountered on
the software so far. This direct measure can provide an insight to the

reftability of the software.

The idea of quality on a piece of software varies from person to
person. This is true in the case of software quality. The software engineers,
project management and the client may have different definitions of what
quality is. Thers might also be trade-offs between the various quality

attributes such as maintainability and timeliness (Shepperd, 1990, p. 312).

2.2.3.4 Reliability Models

Musa and his colleagues (cited in Pressman, 1987, p. 459) describe
software reltability models in the following manner : "Software reliability
models are used to characterise and predict behaviour important to
managers and engineers. In order to model software reliability one must
first consider the principle factors affecting it : fault generation, fault
renmoval and the environment. Fanlt generation depends primarily on the
characteristics of the developed code (code created or modified for the
application) such as size and development process characteristics such as
software engineering technologies and tools used, level of experience of
persontel, eic. Note that code can be developed to add features or to
remove faults. Fault removal depends on time, operational profile, and the

quality of the repair activity. The environment depends on the operational

Page 51

over time, software reliability models are generally formulated in terms of

random processes”.

There are two categories of a software reltability model. One model

predicts reliability as a function of chronological (calendar) time. The

_ other mode] predicts reliability as a function of elapsed processing time
(CPU execution time). According to Musa and his colleagues, the model
based on CPU execution time reveals the best overall results (Pressman,
1992, p. 583). There are two models, based on CPU execution time, which
are not too complicated and yet yield fairly good results, They are the basic

execution model and the logarithmic Poisson execution time model (Vliet,

1993, p. 360).

With al} these reliability models around, it is difficult to conclude
that there is one measuring technique that can consistently give accurate
results over different data sources. So in practice, what developers have
done is to use several measuring techniques in a particular case, hoping to

select one (if any) that will produce the more trustworthy results.

2.2.3.5 Performance Evaluation And Models

This involves the measurement of a specific software product
attribute ... efficienicy. Evaluation of performance includes external system
performance aspects such as response times and completion rates. It also
evaluates the performance of internal workings of a system such as the

efficiency of algorithm (Fenton, 1991, p. 13).

Systems performance evaluation has been developed mainly in
isolation with respect to other disciplines such as computer architecture,
system organisation, operating systems, and software engineering (Ferrari,

1986, p. 678). Ferrari proposed several answers for the cause of this

Page 52

compare to other scientific fields, and it is one that is still rapidly
developing. Ferrari (1986, p. 679) suggests that perhaps it is this rapid
advancement that has "... characterised this field so far, there has been little
incentive for reflection, and the quantitative evaluation of system
performance certainly requires a more reflexive attitude than the

introduction of new, more powerful functionalities".

Another likely reason for the isolation of performance evaluation is
that computers are very complex machineries. This is because, it is
extremely hard to quantify the needs and the behaviour of their human
users. The third likely reason as proposed by Ferrari (1986, p. 679),
suggests that a sizeable fraction of computer scientists view the field of
computer science as an art form, thus cannot and should not be subjected

to quantitative assessment.

2.2.3.6 Structural And Complexity Metrics

Structural complexity metrics are mainly used for measuring
specific quality attributes such as reliability and maintainability. However,
these atiributes cannot be measured until some working model of the code
is available. From the developers' point of view, it is desirable to be able to
predict which parts of the software system are likely to be less reliable or
require more maintenance than others. The type of metrics used are
McCabe's cyclomatic and Halstead's complexity metrics (Pressman, 1992,
p. 573).

Page 53

McCabe's Complexity Model
To determine the complexity of a software, McCabe supgests a

"mathematical technique that will provide a quantitative basis for
modularisation and allow us to identify software modules that will be
difficult to test or maintain" {Shepperd, 1988, p. 30). He suggested that
the number of control paths through a module would be a better
indicator, since this is distinctly related to festing effort. McCabe's
model uses classical graph theory to describe the complexity of the
software, This method counts the number of edges in the program (e),
the number of nodes (#), and the number of connected components ().
Hence, the cyclomatic number of the program can be calculated using

the formula (Shepperd, 1988, p. 31) -
NG)=e-n+1 (See Figure 2.2.3.6.1)

where V is the cyclomatic complexity and G as the program graph. In
the case, where there are more than one component, the cyclomatic

complexity can be calculated using the formula (Shepperd, 1988, p. 31)

F(§)=e-n+2p

where § is a set of connected components. Each component must

contain a single entry and a single exit node.

Page 54

o

; {) BEGIN (:‘JNODE (")

I . l EDGE (e}

; X

—————={) REPEAT

() writelnfreadin

By

I VG =12-%+1=4

-

("IF num >0

PR

= -
L . ELSEF {

.

wilteln
Al
) o

-t N
N
5 . ‘\ /

e

|
|:
|
A

_.__.____._.__....__{" "'.) END

Figure 2.2.3.6.1 Diagram - Derivation of V{(G) for an example
program

Halstead’s Software Science
Software science was introduced by Maurice H. Halstead. Its main

concern was with the implementation of algorithms as computer
programs {(Felican et al., 1989, p. 1630). Halstead's theory of software
science Is possibly the best known and most thoroughly studied
(Pressman, 1992, p. 573). Software science uses a set of primitive
measwres that may be derived after code is generated or estimated once

design is complete. These primitive measures are (Curtis et al,, 1979, p.
98)

Page 55

Q », - the number of distinct operators that appear in a program
O n,-the number of distinct operands that appear in a program
G N, - the total number of operator occurrences
O A, - the total number of operand occurrences

The operators can be regarded as the language's standard operators (for
example, "+", "-", "*" etc) and keywords (such as IF-THEN-ELSE,
BEGIN-END statement etc) and the operands can be regarded as the
variables and constants used by the programmer (Felican et al,, 1989,

p. 1630). From these primitive measures, Halstead was able to develop

expressions for :

the overall program length (N)

the potential minimum velume (V) for an algorithm

the actual volume (the number of bits required by a program)
the program level (a measure of software complexity)

the lnnguage level (a constant for a given language)
development effort (E)

development time (1)

CooCoCOoOOoO DO

the projected number of faults in the software,

Halstead shows that the length N can be gstimated using the equation

(Pressman, 1992, p. 573):

N = n log, n, + n,log, n,
and program volume V may be defined as :
V = Nlog,(n +)

However, it should be noted that ¥ may vary depending on the
programming language used and the volume of infonmation (in bits)

required to a specific program.

- Page 56

In theory, a mimmum volumt:;; must exist for a particular
algorithm, Halstead defines a volume ra.;tio L as the ratio of the volume
of the most compact form of a program to the volume of the actual
program. In actuality, L must always be less than 1. Using the primitive
measures, the volume ratio may be exbressecl as (Pressman, 1992, p.
575): '

Halstead proposed that each language be categorised by a
language level (), which varies among languages. He theorised that / is
a constant for a given language, but other work indicates that ! is a
function of both the language and the programmer (Pressman, 1992, p.
575).

The effort (E) required to develop the software can be
approximated by the equation (Mills, 1988, p. 12):

E = ny (alog,n, + mlog,m, | log,n

2n,

where n can be obtained from the relationship
N = nlog,(n/2)

The corresponding programming time (T, in seconds) can be derived
from E by dividing by the Stroud number (). The Stroud number is
usually taken as 18 for these calculations (Mills, 1988, p. 12).

E
T = =
A

However, if only the value of length () is known, then time () can be

approximated using this equation (Mills, 1988, p. 12)

Page 57

N?log,n
45

T =

Halstead's theory has generated some controversy and not
everyone agrees that the underlying theory is correct. But experimental
verification of Halstead's findings have been conducted for a number of
programming languages. In particular, Felican et al. (1989, p. 1630)
conducted an experiment by examining about 550 Pascal programs. in
the data processing centre of the University of Udine, which represent
the widest test of Halstead's theory with regard to Pascal programs.
They concluded that Halstead's formulas underestimate the number of
total operators for programs written in high level languages such as
Pascal. They suggested that the reason for this inconsistency was

derived from the nature of the language itself.

2.2.4 Data Collection

It would be ideal to be able to gain control over the software process by
accurately predicting and measuring software cost and personnel productivity.
However, this all depends on how careful and well planned the task of
collecting data is carried ow. Even with the “best" metric around, if the data
collection method is poor and inconsistent, the results derived from the metric
would be rendered meaningless. The collection of data requires human
observation and reporting. This requires managers, system analysts,

programmers, testers and users to record raw data on forms.

Manual recording of data is associated with problems such as bias,
error, omission and/or delays. Therefore, awfomatic data capture is more
desirable. However, to ensure the accuracy and completeness of data, much
human intervention is required. Hence, in most cases, the manual recording

technique is still the best.

Page 58

Basili e.t al. (1984, p. 728) suggest the use of a goal-directed data
collection method. This model starts with a set of goals that are to be satisfied.
These goals are used to generate a set of questions that are to be answered. It
then proceeds step-by-step through the design and implementation of a data
collection and validation mechanism. Analysing the data may provide answers
to the questions and it may also generate a new set of questions. This mode!
relies heavily on an interactive data validation process - the peopie who supply
the data are interviewed for validation purposes concurrently with the software
development process (Basili et al., 1984, p. 728). The model that Basili et al.
(1984, p. 72'9) proposed consists of six basic steps, with considerable feedback

and iteration occurring at several different places. These steps are :

0O Establish the Goals of the Data Collection
According to Basili et al. (1984, p. 729), the goals that are set, reflect

the type of development methodology used. A goal is to assist in the
understanding of the enviromment and to focus on the attention of
techniques that are apphicable in that environment. Without a goal, the
data collected might end up being incomplete or irrelevant. Lxample of

a goal - to add new piece of functionality to an existing systen.

0 Develop a List of Questicns of Interest
After the goal(s) has been sonceived, it can be used to develop a list of

questions that are to be answered. Without these questions, data
distributions that are needed for assessment purposes may have to be
produced in an ad hoc manner, and be incomplete or inaccurate.
Example of a question of inierest might be - "Whut is the distribution of

changes across system component(s?”

Page 59

01 Establish Data Categories
After the questions of interest have been set up, a categorisation

scheme must be created. Each categorisation scheme must be complete
and consistent. Each category can be further sub-categorised. Exampie
of main data category - Modification. Example of sub-category for
Modification can be “optimisc sysiem performance”, 'change

develogpment support environment” etc.

0O Design and Test Data Collection Form
A data collection form is used to provide a permanent copy of the data

and to reinforce the programmers’ memories. Designing forms can be a
very tricky process because they often represent a compromise among
conflicting objectives. The form must be designed so that the data

collected can be used to answer the questions of interest.

0O Collect and Validate Data
Once the forms have been filled in by the necessary people, they are

checked for correctness, consistency and completeness. During the
validation process, if the checks reveal some problems, the people who

filled in the forms will be interviewed.

O Analyse Data
The data are analysed by calculating the parameters and distributions

needed to answer the questions of interest.

2.2.5 Future Directions Of Software Metrics

The history of software metrics has been dominated by product metrics.
Furthermore, these metrics have been applied only to conventional notations
used in the development of software using procedural languages. According fo
Ince (1990, p. 300), there is a need for more research on software metrics in

other areas. For example ;

Page 60

Q There is a need for data metrics to measure the unstructuredness of the
stored data in an application.

O More study is needed on the use of mathematical notations for
specification and system design that are often used in safety-critical
systems.

0 Not much is known about metrics that can be performed on non-
procedural languages like Prolog, because there is no notion of control
flow.

DO Not much work has been conducted on netations for specification.
Most of the research 1s concentrated on resource estimation. There is a
major requirement for research into metrics for the maintenance of

such notations.

2.3 CAPABILITY MATURITY MODEL

For the past two decades, new software methodologies and technologies
have not resulted in a significant improvement in sofiware productivity and
quality. Both industry and government organisations have realised that the
problem lies in their inability to manage the software process. Even with the best
methods and tools, developers cannot possibly hope to achieve their goals when

the project is disorganised,

2.3.1 Immature Versus Mature Software Qrganisations

Organisations are require to undevstand the differences between
immature and mature software organisation before they can set any goals for
process improvement. An immature software organisation is one where the
software processes are defined by developers and management during the
duration of the project. Based on unrealistic estimates, the project schedules
and budgets are often inaccurately projected. In situation where the project is
behind schedule, product functionality and quality are often compromised, and

activities such as reviews and testing are frequently eliminated (Paulk et al.,

Page 61

1993, p. 2). There will be no means of judging the product’s quality or for
solving problems associated with the product or process objectively. This

makes it very difficult to predict the quality of the product.

A mature software organisation is an organisation that has full control
over the software development and maintenance processes. Members of the
development staff are fully aware of the software process and the work
activities are executed as planned. The roles and responsibilities for each
process are carefully defined and are made clear throughout the entire
organisation and the project. Software quality and customer satisfaction are
monitored by the managers. Unlike the immature sofiware organisation,
product quality is objectively and quantitatively measured. The problems that
are associated with product and process are carefully analysed. Project
schedules and budgets can be realistically estimated, based on historical data.
By doing so, the proposed development cost, schedule, software functionality

and quality of the software are usually realised (Paulk et al., 1993, p. 2)

It is obvious that there is a need for a software process maturity
framework. This framework serves as a evolving path from ad hoc,
undiscipline processes to mature, disciplined software processes. This
framework acts as a foundation where initial improvement programs can be
established. Having established the inittal foundation, future improvement
programs can be further applied onto the framework. The software process
maturity framework is created based on the combined concepts of software
process, software process capability, software process performance and

software process maturity (Paulk et al., 1993, p. 3).

Page 62

2.3.1.1 Software Process

According to Paulk ef al. (1993, p.3), a software process can be
defined as “... a set of activities, methods, practices and transformations ...”
that developers use in the development and maintenance of software and
other associated producis such as project plans, design documents and
code. As the organisation matures, the software process also matures and

will be more consistently implemented throughout the organisation,

2.3.1.2 Software Process Capability

Software process capubility describes the results that can be
accomplished after following a software process. It provides the
organisation with a means of predicting the expected outcome of future

projects undertaken by the organisation {Paulk et al., 1993, p. 3).

2.3.1.3 Software Process Performance

“Software process performance represents the actual results
achieved by following a software process” (Paulk et al, 1993, p. 4).
Therefore, software process performance focuses on the results achieved
and software process capability focuses on the results expected. The actual
performance of a project may not reflect the full process capability of the
organisation because the capability of the project is constrained by its
environmeni. For example, changes in technology may increase the’
learning curve of the project’s staff. This may prevent the organisation

from fully utilising its processing capability.

Page 63

2.3.1.4 Software Process Maturity

Software process maturify implies a process which has been ...
explicitly defined, managed, measured, controlled and effective” (Paulk et
al., 1993, p. 4). Maturity suggests a growth in capability. This implies that
the organisation’s software process has improved and is consistently veing
practiced 1n all projects engaged by the organisation. Software process is
generally well-understood through documentation and training. The
process is constantly being observed and refined by its users. Consistent
application of the software process will eventually help improve

productivity and quality.

2.3.2 Overview of the Capability Maturity Model

Very often, software engineers and managers are fully aware of their
problems but they may not agree on which improvements are most crucial.
Without an organised strategy for improvement, it is extremely hard to have an
idea on which improvement activities to achieve first. Paulk et al. (1993, p. 5)
suggesis designing an evolutionary path that will improve an organisation's
software process maturity in stages. The software process maturity framework
structured these stages so that improvements at cach stage will serve as the
foundation for improvements for the next. This framework acted as a road-
map for consistent process improvement. It does not serve as a "quick-fix" for
projects in trouble but rather as a guide for early detection and identifying of

deficiencies in the organisation.

The Capability Maturity Model (CMM) provides software
organisations with guidelines on how to achieve conirel over their
development and maintenance process and how to improve toward
accomplishing software engineering and management excetlence. The CMM

was designed to direct software organisations in selecting the right process

Page 64

maturity and identifying some of the most critical issues that are related to
software quality and process improvement (Paulk et al, 1993, p. 5). An
organisation can continite to improve its software process by concentrating on

this finite set of activities and working assertively to accomplishing them.

The CMM is divided into five maturity levels. Each of these levels
define an ordinal scale for determining the maturity of an organisation's
software process and for assessing its software process capability. The levels
also assist the organisation to prioritise its improvement efforts. Each maturity
level accommodates a layer that serves as the foundation for continuous
process improvement, Each level also includes a set of process goals when
achieved will improve the process capability of the organisation, The five

maturity l[evels are characterised as (Paulk et al., 1993, p. 7):

Q Level I-Inifial Level
At this level, the organisation usually does not have a stable

environnent for developing and maintaining software. The software
process capability at this level is often unpredictable because the
software process is often changed as the work progresses. Schedules,
budgets, functionality and quality are usually unpredictable too.
Performance depends on the capabilities of individuals whose skills,
knowiledge and motivations varies. Performance can only be

determined on an individual basis (Paulk et al., 1993, p. 9).

D Level 2 - Repentable Level
At this level, procedures for managing a software project, and methods

for implementing these procedures are instituted. Experience for
planning and managing of new projects is acquired from similar
projects. Its objective is to establish an effective management processes
for software projects. This will permit the organisations to apply the

successful practices that was developed on earlier projects. An

Page 65

effective process is one that has been practiced, documented, enforced,

trained, measured and able to improve (Paulk et al., 1993, p. 10).

Projects at this level are said to have basic software management
control. Realistic project commitments are derived from the results
gathered from previous projects and from requirements of the present
project. The roles of software managers are to track software costs,
schedules, and functionality. Software requirements and work produldts
developed to satisfied these requirements are baselined, and their
integrity controlled. Sofiware project standards are also defined and the
organisation ensures that they are strictly followed (Paulk et al., 1993,
p. 10).

Level 3 - Defined Level
At this level, the standard process for developing and maintaining

software is documented. This includes both software engineering and
management processes. These processes are then combined to form a
cohesive whole. Processes established at this level are used (and
changed, if required) to assist the software managers and technical staff

to perform more efficiently.

Projects tailor the organisation's standard software process to create
their own defined sofiware process. This will explain the unique
characteristics of each project. This tailored software process will
include a cohesive, integrated set of well-defined software engineering
and management processes. A well-defined process is one that includes
“.. readiness criteria, inputs, standards and procedures for performing
the work, verification mechanisms, outputs, and completion criteria”
(Paulk et al., 1993, p. 11). Since the software process are well-defined,

it provides management with an awareness of the technical progress on

all projects.

Page 66

Q Level 4 - Managed Level
At this level, the quantitative quality goals for both software products

and processes are established. Productivity and quality are measured to
determine any important software process activities. The data gathered
are stored and analysed in an software process database. Software
processes are equipped with well-defined and consistent
measurements. These measurements form the quantitative foundation
for assessing the projects’ software processes and products. Controls
over the products and processes are accomplished by reducing the
variation in their process performance so that it falls within the

favourable quantitative boundaries (Paulk et al., 1993, p. 12).

Q Level 5 - Optimising Level
At this level, the organisation concentrated mainly on improving its

software process. The organisation has the ability to recognise
weaknesses and reinforce the process pro-actively. Data on the
usefulness of the snfhware process is utilised to carry out cost benefit
analyses on new technologies and proposed modification to the
organisation’s software process. Effective software engineering
practices are identified and deployed throughout the organisation.
Defects found are analyse to determine their causes. Software
processes are assessed to prevent known defects from repeating and the
lesson learned are administered onto future projects. The main
objective of the organisation is to continue improving their process
capability, in effect, improve the process performance of their projects
(Paulk et al,, 1993, p. 13).

Page 67

The CMM is a model that describes the main attributes that would be expected
to characterise an organisation at a particular maturity level. The CMM is
described at an adequate level of abstraction so that it does not unnecessarily
constrain how the software process is implemented. The CMM must be
properly interpreted, based on informed professional conclusion. Paulk et al.
(1993, p. 14) pointed out that the CMM does not explicitly instruct an
organisation on how to mmprove. It merely describes an organisation at each
maturity level. He also added that it usually takes a couple of years (maybe

more) for an organisation to move from one level to the next.

2.3.3 Future Directions Of The CMM

The CMM is not the solution to all problems. It does not cover all the
issues that are vital to the success of a project. According to Paulk et al. (1993,
p. 51}, CMM presently does not address "expertise in particular application
domains, advocate specific software technologies, or suggest how to select,
hire, motivate, and retain competent people”. Although these issues are
important to the success of a project, some of them have been analysed in
other contexts. Unfortunately, they have not yet been incorporated into CMM.
The CMM was intentionally developed to provide an systematic, disciplined
framework so that it can address software management and engineering

process issues.

2.4 FUNCTION POINT ANALYSIS

Allan Albrecht was looking for a method of measuring productivity in
software development. Realising that the line of code approach was not very
reliable, Albrecht wanted to develop an alternative method. Hence in 1979, he
developed the function points model (Heemstra et al., 1991, p. 230). As the name
suggests, this model counts function points, as opposed to the very popular lines of
code model. In fact, function point analysis is conducted even before coding

begins. Function points relate directly to the client's requirement in a way that is

Page 68

more eastly understoed by the client than SLOC (Albrecht et al,, 1983, p. 639).
Function points can also be used as a general measure of development

productivity, which may be used to illustrate productivily trend (See Section
2.23.2)

In addition, function point analysis does not count functions that are found
to be necessary by the programmer but were not specifically requested by the user.
Therefore, a function point is regarded as one end-user requested function (Grﬁpe
et al, 1991, p. 24). For example, if a user requests that this month’s sales figures

be retrieved from a data base, that request becomes one function point.

After it was first developed, the function points model was later revised by
Symons into what was later known as the Mark IF (see Scction 2.4.4) function
points model {O'Brien et al,, 1993, p. 3). Although many consider function point
analysis to be a relatively new concept, it has arose as an important methodology
for estimating and validating the limits and size of a software project. With this
knowledge, it is possible to measure productivity and the influence of various tools
and procedures (Kizior, 1993, p. 42). Kizior (1993, p. 42) added that function

point analysis is not used {0 measure work input, quality, or value to the user.

Though the importance of function point analysis has been recognised, it
has not been well publicised. This is found to be the case when Kizior (1993, p.
42) conducted a review on textbooks pubiished within the past eight years which
deal with software design, systems analysis and design, and general information on
system concepts. Kizior (1993, p. 42) found ihat of the 32 books reviewed, only

two made explicit mention of function point analysis.

Page 69

24.1 Advantages And Disadvantages Of Function Poinf Analysis

Function point analysis has become popular within the last several
years due to its inherent advantages. These advantages are (Kizior, 1993, p.
45):

Function point analysis measures function that is delivered to the user
It is not dependent on hardware and software

It is reliable early in the design cycle to aid the estimating process

It can be meaningful to the end user

oCDOoQO

Having listed the advantages, the accuracy of counting function points
is proportional to the knowledge of the person counting. According to Kizior
(1993, p. 46), counting function points cannot be considered as a science
because some subjective judgements had to be made. Furthermore, Ratcliffe
and Rollo (cited in O'Brien et al., 1993, p. 3) showed that the count achieved is
dependent on the notation used to describe the software requirements, In
addition, it was found that experienced analysts were more accimate in
function point count than those without a notable level of experience (Graham
et al., 1990, p. 71). It is also fair to say that it does not make anyone proficient
in counting function points simply by undertaking a function point training
course. Beginners should be assisted for a period by an experienced analyst so
that they may be able to achieve consistent resuits. Other drawbacks of

function points are that they cannot (Kizior, 1993, p. 46) :

Measure individual effort
Measure productivity (only to a certain degree)
Measure quality

oo oo

Measure value to user

Ferens et al. {1992, p. 641) state that the function points method is not
readily suited for real-time or scientific environments. They did, however,

briefly mention that authoritics such Capers Jones, Donald Reifer, and John

Page 70

Gaffney and Richard Werling are attempting to adapt the function points
concept into these environments. They also added that little independent
research has been done on real-time variations of function points. Therefore, it
is difficult to ascertain whether function points can be useful outside the data

processing environment.

2.4.2 Counting Funetion Points

The principle of function point analysis is simple. It is based on the
number of functions that are delivered in the final system. The general
assumption is that the more function points an application has, the more
complex system becomes {(Grupe et al., 1991, p. 24). The more complex the
system, the longer it will take and the more expensive it becomes to develop

the system.

Simply put, function point analysis is a weighted sum of five primary
end-user function-related attributes. The function points that are identified
during system analysis are grouped into five categories which will be adjusted

by a complexity factor (Grupe et al., 1991, p. 24), These categories are :

0O the external input type (for example : mouse input)

o

the external output type (for example : viewing items on a screen)

0 the external inquiry type (for example ; accessing a record without
update)

0 the logical internal file type (for example | master and transaction files)

O the external interface file type (for example : sharing files with other

applications and extemal files) |

Albrecht et al. (1983, p. 639) pointed out that "... these factors are the
outward manifestations of any application. They cover all the functions in an
application. Each of these categories of function types are counted individually
and then weighted by numbers reflecting the relative value of the functions to

the user/customer”. Function points is the weighted sum of these function

Page 71

types. Organisations that use function point methods often develop criteria for
determining whether a particular entry has a simple, average or complex
weighting factor (See Figure 2.4.2.1). According to Albrecht et al. (1983, p.
639), the weighting factors used were "determined by debate and trial”. And as

mentioned before, the determination of the complexity of these function types

is somewhat subjective.

Weighting Factor
Measurement Parameter - Count Simple Average Complex
Number of user in * 3 4 6 =
Number of user culputs ‘4 5 7 =
Number of user inquiries © 3 4 6 =
Number of files 7 tQ 15 =
Number of external interfaces 5 7 10 =
Cotmni-tofal =

Figure 2.4.2.1 Table - Computing Function Point Metrics

To calculate function points, the following equation is used (Pressman, 1992,
p.49):

FP = Count-total * [0.65 + (0.0 * SUM (}))]

where Count-total is the sum of all FP entries obtained from the table in Figure
2.4.2.1. F; (where i = 1 to 14) are complexity adjustment values based on the
responses to questions listed in Figure 2.4.2.2. The constant values in the

above equation and the weighting factors that are applied to information

domain counts are determined empirically.

Page 72

Rate each factor cna scale of G lo 5

0 = No infuence 1 = incidental 2 = Moderate 3 = Avernge 4 = Significant 5 = Essential
F,' H

Dees the system require: reliable backup and recovery?

Are data communications required?

Are there distributed processing functions?

Is perfformance critical?

Will the system run in an existing, hzavily ulilissu operatior al environment?
Does the system require an-line data entry?

Does the on-line data entry require the input transaction to be built over multiple screens or operations?
Are the master files updated un-line?

Are the inputs, outputs, fites, or inquiries complex?

Is the intemal processing complex?

Is the code designed to be reusable?

Are conversion and installation included in the design?

Is the system designed for multiple installations in different organisations?

Is the apgplication designed la facllitate change and ease of use by the user?

Figure 2.4.2.2 Table - Computing Function Points - Complexity
Adjustments Values

Once the function points have been calculated, they can be used as a measure

of software productivity, quality, and other attributes. For example :

Preductivity = FP/person-manth
Quality defects / FP
Cost SIFP
Documentation = pages of documentation / FP

0non

2.4.3 Fungtion Poing Analysis : An Evaluation

The function point metric, like the /ines of code metric, is
controversiai. Those that are for the function point metric, claim that function
points are programming-language independent. Hence, making it suitable for
applications using conveniional and non-procedural languages. Proponents
also claim that function points is more attractive as an estimation tool because
estimation can be made early in the life-cycle of a project (Pressman, 1992, p.
51).

On the other hand, the opponents are claiming that the function point
metric requires some "sleight of hand" because some part of the computation is
based on subjective rather than objective data (Pressman, 1992, p. 51). That is
to say, when two individuals are performing a function point count on the

same system, they may not come up with the same r.umber of function points.

Page 73

They also claim that function points have “... no direct physical meaning ...”

because they are only numbers (Pressman, 1992, p. 51).

To determine whether function point analysis Is indeed as good as it is
claimed to be, Heemstra and colleague (1991, p. 229) performed a series of
studies, The studies include an analysis based on the data from a large survey
of Dutch organisations, from an experiment regarding the use of software cost
estimation models and from a field study aimed at the adjustment factor of the
function point analysis model. The questions that Heemstra et al. (1991, p.

229) were attempting to answer are :

O Is function point analysis actually used in practice?

O How is function point analysis used in practice?

O How reliable are the estimates made with function point analysis?

0 Are models based on function points better then models based on lines
of code?

O How effective are the function point analysis adjustment

characteristics?

The report produced by Heemstra et al. (1991, p. 236) (based on their
data from the survey of Dutch organisations) confirmed that function point
analysis is indeed widely used in the Netherlands. If this model became a
standard tool, it could provide organisations with necessary information of
their previous experiences so that they could [eam from them in a methodical
way. However, Heemstra's report also showed that using this tool alone will

not resolve all the problems in this area.

From the experiment, function point analysis performed ouite well as a
tool for measuring size. [ts result superseded the lines of code method as an
estimator within the setting of Heemstra's experiment. This also proved to be
the case in a study conducted by Graham et al. (1990, p. 71). In Graham's

study, function point analysis also proved to be more consistent than the line of

Page 74

code method. Heneg, the results confirm that function point analysis is a more

acceptable metric for measuring software size.

However, the results from the field study regarding the adjustment part
of the model is less than satisfactory. Experienced users showed no confidence
at all in the adjustment characteristics. In Heemstra's (1991, p. 236)
experiment, there were many disagreements against the notion of a small set of
generally applicable cost drivers. Heemstra concluded that precaution
measures must be considered when using any model. After all, a model is not
a machine where questions are fed from one end and the correct answers

produced from the other end.

Function points have proved to be a broadly popular measure with both
practitioners and academic researchers. According to Dreger (cited in
Kemerer, 1993, p. 87), it is estimated that there are around 500 major
corporations worldwide currently using the function point analysis method.
Graham et al. (1990, p. 65) also state that function points are currently being
used by numerous farge Australian organisations to measure productivity for
project review purposes and effort estimation. And according to a survey
conducted by the Quality Assurance Institute (Kemerer, 1993, p. 87), the
function point method was found to be the best available MIS productivity
measure. In addition, Ferens et al. (1992, p. 641) pointed out that the
International Function Points User's Group (IFPUG) has been formed to
continually improve the function points theory and practice. The IFPUG is also

studying and revising some of Albrecht's equations.

Page 75

2.4.4 Mark IT Function Point

The aim of the Mark II approach was to overcome some of the
weaknesses of Albrecht's function point approach. However, Symons (1988, p.
3) pointed out that there will never be any evidence that the Mark II.approach
will give higher results to that of Albrecht. With the Mark II approach, the
methods for counting data elements has been introduced to make the
complexity classification of inputs, outputs and entities more objective. The
concept of "logical files” has replaced by "entities”. This means that instead of
having five attributes like Albrecht's method, Mark I only has three : inputs,
outputs and entities (Ferens et al., 1992, p. 641). The Mark II approach assigns
‘Unadjusted Function Point’s (UFP) to data based on its usage (create, delete,
etc.) in transactions, whereas Albrecht's approach will assign UFP's to all the

data that exist in the system (Symons, 1988, p. 8).

Symons (1988, p. 8) pointed out some of the differences or similarities

between Mark 11 and Albrecht’s function point model as :

O The Mark 1l approach requires an understanding of entity analysis and
the rules for entity counting is now available. In Albrecht's approach,
knowledge of entity analysis is desirable but it has no entity counting
conventions yet.

m '.The Mark II approach has fewer variables in the UFP component.
Hence, it has a number of advantages such as greater ease of
calibration against measurements and estimates.

O Even though this theory has not yet to be examined, according to
Symons, the Mark Il approach has the capability of improving the
measurement of the work-output in the maintenance and enhancement
activities. Albrecht's approach can only measure the total size of a
changed component, without distinguishing on how big or small these

changes are. The Mark II approach can measure the size of the changes

- Page 76

made to a component, if the number of data elements changed are
recorded and the references to these changed entities are accounted for.
Q The Mark II approach may require about 10 to 20 percent more effort
(than Albrecht’s approach) for counting each input and output data
elements. This suggests that Albrecht's approach may be applied
slightly earlier in the project life-cycle. Symons (1988, p. 9) believes
that it may still be able ... to produce reasonably accurate estimates of

the number of data elements per transaction for early sizing purposes”.

2.5 UNDERGRADUATE SOFTWARE ENGINEERING PROGRAMS

According to Grant et al. (1991, p. 106), the state of Software Engineering
practice in Australia is still generally rather primitive. It is believed that
educational institutions such as Edith Cowan University have a major role 10 play
in the transformation of this practice, What is needed by these educational
institutions are degree programs with a strong emphasis on Software Engineering.
The computing curricula in Australia tend to have an emphasis either in Computer
Science, Information Systems or Computer Systems Engineering. There is & need
to develop a curriculum with a strong Software Engineering emphasis. There must
be a fair balance of both theoretical and practical techanical foundations.
Furthermore, it is believed that with careful planning and direction, software
engineering projects can provide students with an opportunity to experience how
software is being developed in the real-world (Shaw et ai., 1991, p. 33). K is very
difficult to define a completely satisfactory curriculum, because software

engineering has yet to reach the stage of being a mature engineering discipline.

Page 77

2.5.1 Ohjsctives Of Software Engineering Courses

- The previous section pointed out the need for software engineering
programs in educational institutions. This section will discuss the main
objectives of these programs, from the students' point of view. When
undertaking such programs, the students are expected to (Grant et al,, 1991, p.
107):

Q develop adequate technical skill in analysis, design and programming
understand the primary concepts of Software Engineering

O develop and/or improve their inter/intra personal skills so that they can
participate in a software development team

0 participate in practical work that requires the understanding and use of
these concepts and skills

O appreciate (through experience) the benefits of methodological
approaches to systems development and the consequences of ad hoc

approaches

Students must understand and accept the benefits of undertaking a
practical software engineering project. Therefore, educational institutions
should provide students with a learning environment where students can
experience and learn the important role that methodology plays in the success
of the project. Hence, the final year software engineering project is technically
compiex that requires a high degree of communication and control. Tt is
believed that the project will definitely fail (or not up to standard) if it is “...
approached in an ad hoc manner” (Grant et al., 1991, p. 108). However, it is
not easy to select a one-year software engineering project. As mentioned
before, the project is technically complex but at the same time, it should not be
too complex that it cannot be completed in iwvo semesters. it must be made
clear to the students that such a project is to be trealed as a software

engineering project and not a programming assessment (Adams, 1993, p. 112),

Page 78

A well-defined project will provide adequate time to demonstrate to students
the need for software engineering disciplines and the approach to managing
complex projects, The students must put into practice the theories they have
acquired, such as group organisation and project management. (Grubb, 1991,
p-2) .

The projects that are provided by the Department of Computer Science
of Edith Cowan University require a lot of team work and communication
among students, staff advisers and the clieni(s). The students are required to
work in teams of 4 to 5 members each. Group p.rojects play an imiportant role
in many software engineering courses. As Calliss et al. (1991, p. 25) suggest,
"factors, such as group dynamics, egoless programiming and team organisation,
that affect the way programmers work together cannot be taught effectively in
a classroom settings”. The students must experience the problems of working
in a group (Briggs, 1991, p. 48) because this will serve as an important step

towards the students’ appreciation of the solutions to these problems.

The group project was designed so that it required students to
communicate with each other, their staff adviser and the client. The most
comumon form of communication is through group meetings. Although there is
no penalty for students who are absent from group meetings, it is expected that
they establish some form of group communication either written, verbally or
electronically. It is an objective of the Edith Cowan University Computer
Science department that students capn learn the benefits of effective
communication and the consequences of poor communication. According to
Grant et al. (1991, p. 108), there is sufficient “.. anecdotal evidence that
concentration on comimunication skills has provided the behavioural and social
transformations in computing graduates most appreciated by employers in

recent years.”

 Page79

The development methodology enforced by the university is the APT
(EXECOM, 19%91) methodology. The APT methodology is based on the
waterfall model. Though students working on the software engineering project
are free to select other types of methodologies, the majority of students still
use APT. However, datal® gathered from the 1993 software engineering
students showed that the APT methodology was not very suitable in many
cases. Nonetheless, this model serves as a good learning methodology from the

students' point of view.

- 10From a study conducted as part of this thesis.

Page 80 '

CHAPTER 3 : 1993 SOFTWARE ENGINEERING PROJECT

3.1 OVERVIEW OF THE ORCHARD PROJECT

The 1993 software engineering project was called the Orchard Project. The
client for this project was Mrs Vivian Campbell, who is a lecturer of Edith Cowan
University, Bunbury campus and is also an orchardist. The aim of this project was
to develop a software system which would allow orchardists and horticulturalists

to formulate an efficient farm management strategy (“Orchard", 1993),

The students undertaking this project were required to use the tools and
techniques acquired in their course to analyse requirements and data. This will
enable the students to produce a system that provides orchardists with a means to
identify and collate all the vital areas of orchard operations. These operations
include the identification of optimal fruit varieties, staff management, farm

infrastructures and create efficient marketing strategies ("Orchard”, 1993).

The students were also encouraged to develop the database so that it would
meet the orchardist's other requirements. These requirements included keeping
detailed insecticide spray and fertiliser records, irrigation schedules and
identifying which fruits are most profitable on the local and international markets
("Orchard", 1993).

3.2 GOALS OF THE ORCHARD PROJECT

According to the client, Mrs Campbell, the orchard management system
should be able to provide the orchardist with essential information such as tax and
superannuation, and should also provide information that will aid the orchardist in
making management decisions such as purchasing and hire of workers. The goals
of the system was to aid the orchardist in making a greater profit and producing

excellent fruit for the local and overseas markets.

Page 81

33 MAIN ASPECTS OF THE MANUAL SYSTEM

There are six main aspects in Mrs Campbell's orchard business. These

aspects are :
G Fruit production O Marketing
1 Taxation Q Staff management
Q Other farm 1 Research

3.3.1 Fruit Production

Fruit production deals mainly with the growing and méimaining of

trees. The activities that are associated with it, are

- ordering of new trees

- planting of trees

- pruning and training trees

- application of fertilisers and sprays
-~ fruit thinning

- fruit picking and packing

-~ irrigation

Other aspects that are also involved in fruit production includes fencing, pest

control, mowing and weed control and machinery maintenance.

3.3.2 Marketing

Marketing includes recording of sales information for both local and
overseas markets. The sales information records the quantity of the various
fruits sold as well as its price. However, in the local situation, the prices of
these fruits vary from day to day. Accordingly the orchardist has to be well
aware of the current prices, The orchardist wiil also need to maintain

- information regarding the crates and disposable trays used, for they all have

monetary values,

Page®2

3.3.3 Taxation

In taxation, the primary concern is keeping the business' accounts up to |
date. The accounts are divided into mcome and expenditure. Those that are
classified as income are fruits sold, other farm income (see Section 3.3.5) and
bank interest. The fruits sold are categorised by variety (eg. apples and peaches
etc). The other farm categories are income derived from the sale of wool arid

livestock,

The expenditure accounts are categorised as follows :

- labour - fertiliser
- pesticides - herbicides
-trees - insurance
- electricity - rates '
- bank charges - machinery repairs
- cartage - hire of machinery

- Truit packaging

3.3.4 Staff Management

Staff management includes the hiring and firing of employees,
calculating and paying of employees’ wages, and calculating and paying of
employee's superannuation. The wage of an employee is calculated based on

the employee's job type, age, mode of employment and hours worked.

3.3.5 Other Farin

Other farm aspects include stock control on items such as fertiliser,
pesticides ete, inaterials used for fencing and water storage. It also includes

livestock management, mainly related to sheep.

Page 83

3.3.6 Research

Research mainly involves the identification of new varieties of trees

and fruits, and new methods for maintaining the growth of the trees and fruits.

3.4 REQUIREMENTS OF THE NEW SYSTEM

The new sysiem should be able to perform all of the crucial tasks

mentioned in the previous section. The client has identified those tasks as being

O calculate the taxes based on information stored in the income and
expenditure accounts.

1dentify the variety of trees that are the least or most profitable

creafe a budget and to project cash flow

identify sales trends based on year to year comparison of costs

maintain records on which sprays and fertiliser are being applied

cC O 0 00 DO

irrigation scheduling

.' Page 84

CHAPTER 4 : INFORMATION GATHERING

4.1 TOTAL HOURS SPENT ON THE PROJECT

This section presents the total number of hours spent on the project by each
group. The data were initially gathered during a pilot study, which lasted for 14
weeks. The data were collected on a weekly basis in the form of questionnaires.
Students were asked to log the number of hours spent on the project for the week. |
Since it was not mandatory for the students to take part in this research project, a
méjor portion of the data gathered were inconsistent and incomplete. Therefore, a
second set of questionnaires were prepared. These questionnaires were given to
the students after their project demonstration. This was to ensure that all the
students for each group were accounted for. It was mandatory that all students
participate in this exercise. Students were requested to answer the questionnaires
to the best of their ability and they were requested not to confer with each other.

The data gathered are presented in Figure 4.1.1 and Figure 4.1.2.

Average Number Of

Group || Total Hours |} Maximum Hours Spent Per
Number Spent Team Size Student

1 2370 5 474

2 2200 5 440

3 1600 4 400

4 2380 5 476

5 1277 4 38

8 2047 5 409

7 1950 4 488

8 2000 3 667

g 2550 6 425

10 1370 5 274

Figure 4.1.1 Table - Total Number Of Hours Spent On The Project

Page 85

Total Hours Spent On The Project

3000 +
2370 2380 20

2500 - 2200 _ F‘
j950 2000 2047 1 {71 1

2000 + - — HEE
woo [[] |- 3

1500 J 1277 1370

Number Of Hours

1000 + |-

500 1 |-

8 4] 2 1 4 9
Group Number

Figure 4.1.2 Graph - Total Hours Spent On Preject By Each Group

4.2 DATA COLLECTED FROM THE RESEARCH OUESTIONNAIRE

From the second set of questionnaires (as mentioned in the previous

section), other types of data were also collected. These were :

oo

OO0 o0

The ntumber of hours spent on each phase of the development life-cycie. In
this case, the life-cycle included requirement, analysis, design, coding and
testing phases,

The personal attributes of each member of a group - age, gender and study
mode

The quality of project management.

The usefulness and effectiveness of the APT (EXECOM, 1991)
methodology.

The effectiveness of having a staff adviser.

The effectiveness and usefulness of the product(s) used to develop the
software.

The quality of user requirements obtained from the client.

The effectiveness of working as a team.

The quality of contribution made by each team member.

The ability to meeting deadlines.

Page 86

4.2.1 Effort On Each Development Phase

The effort employed in each phase of the development life-cycle was
broken down into five phases - requirement, analysis, design, coding and
testing. The details of effort collected from each student was expressed in
percentage terms. The data for each group were then totalled and averaged to
determine the effort (in percentage) for each phase. The results are presented
in Figure 4.2.1.1.

T Breakdown OF Effort Per Group (%)

Group Requirement | Analysis Design Coding Testing Total
1 16 P 24 18 100

2 23 25 19 18 14 100

3 9 12 10 54 15 100

4 14 26 25 17 19 100

5 10 21 18 38 14 100

6 16 19 15 ki 14 100

7 17 24 22 25 13 100

8 18 23 30 19 10 100

] 12 24 23 14 27 100
10 18 k]| 1B 24 11 106
Average ; 15 23 20 27 15 100

Figure 4.2.1.1 Table - Effort On Each Phase (In Percentage)

The same information in Figure 4.2.1.1 is translated into number of
hours spent on each phase. This calculation is derived using the total number
of hours obtained from Figure 4.1.1 - Total Number Of Hours Spent On
The Project. The results are presented in Figure 4.2.1.2 and Figure 4.2.1.3.

Group Breahdown Of Effort Per Group {In Hotirs)
Number || Requirement § Analysis | Design | Coding | Testing
1 387 485 543 558 418
2 506 572 418 a7 317
3 140 200 160 860 240
4 338 609 585 407 440
5 128 271 223 479 176
6 325 389 23067 738 287
7 332 483 424 438 244
8 353 467 600 iso 200
9 305 603 575 367 700
10 249 425 216 332 148
Average 306 446 405 500 317
Minimum 128 200 160 332 148
Maximum 306 609 60 860 700
Figure 4.2.1.2 Table - Total Hours Spent On Lach Phasc By Each
Group

Page 87

Group Breakdown Of Effort In Average Per Student-Z7oup {In Hours)
Number [Requirement Analysis Deslgn Coding | TYesting |
1 77 93 109 112 84
2 161 114 84 77 63
3 35 50 40 215 60
4. 68 122 17 81 88
5 32 68 58 120 44
8 55 78 &1 148 57
7 a3 116 106 122 61
B 118 156 200 127 67
§ 59 100 g6 61 117
19 50 85 43 66 30
Average 68 93 g1 113 67
Minimum 32 50 40 61 30
Maximum! 118 L 156 200 215 117
Figure 4.2.1.3 Table - Average Hours Spent On Each Phase Per Student-
Group

Judging from the tables above, the mejority of the groups spent more
time on Analysis and Coding and less time on Requirement and Testing. It was
found that most of the groups went out into the industry to conduct their own
research on methods for calculating tax, and gaining more information on the
opetations of an orchard business. This is reflected in the amount of time spent
on Analysis. As for Coding, the software used to developed the application
were relatively new (except for Objectvision Pro). This lack of previous
exposure to the software obviously contributed to an increase in the time

required to complete coding,

Ag for Requirement, students spent the least amount of time on this.
This was probably due to the fact that the client could not be reached by the
students directly and the user requirements were provided in two information-
gathering sessions (each lasted for about one hour). However, some teams did
further their research among local orchardists. Students also spent less time on
Testing. The assumption being that since the majority of the projects were
behind schedule, their software was not fully tested. However, during the
demonstration of these projects, most of the groups told the judging panel that
extensive testing was indeed conducted. Based on the information presented in

Section 6.2.3 - Evaluation Report, it shows otherwise. It would appear that

Page 88

the software testing was limited to the various modules rather than the whole

systeimns.

4.2.2 Personal Attributes Of Group Members

Figure 4.2.2.1 presents the composition of the groups based on the

students’ age, gender and study mode.

Gender . Study Mode

Group Average Male Female | Studying | Studying
Number Age_ Student Student | Fuli Time | Part Time

1 26 5 0 4 1

2 2 4 1 5 0

3 23 2 2 4 0

4 22 4 1 5 0

5 23 4] 4 0

6 27 4 1 3 2

7 28 4 1] 4 o

8 26 3] 2 i

9 22 6] & 0

10 23 5 a 4 1

Figure 4.2.2.1 Table - Personal Attributes Of Each Group

The average age of all the students was around 24 years old. Out of the
41 students, 12 per cent were female students and 12 per cent were part-time

.students.

4.2.3 Staff Adviser

Each group was assigned a staff adviser, whose role was to act as a
consultant to the group members. Figure 4.2.3.1 and Figure 4.2.3.2 presents
the rating (out of 10) that students gave for their staff adviser, and the total
number of times the students met with their staff adviser. The “meetings” that
these students had could be group or individual meetings. Student meetings

with staff advisers were not compulsory under the project gutdelines.

Page 89

' Staff Meeting
Group Adviser's | With Staff
fMumber Rating Adviser
1 4.2 15
2 66 2
3 28 0
4 82 10
5 5.0 7
6 6.0 8
7 20 6
8 33 4
9 7.0 25
10 6.2 20

Figure 4.2.3.1 Table - Staff Adviser

Scores Awarded To Staff Advisers
10
Q]I a2
8 —
7
65
@ 7 & 62 M
5 61 s — [
8 53 4.2 T
& o4l i3 '
e 2.8
w 3+ 2
2]
0 Lo eae e e P R T .—J — b,
7 3 8 1 5 6 10 2 9 4
Group Number

Figure 4.2.3.2 Graph - Scores Awarded To Staff Adviser By Students

The results in Figure 4.2.3.1, indicate that some groups have minimal

or no interaction with their staff adviser.

It is also important to point out that Group 5 and 7 had two different
staff advisers. Their first staff adviser left some time during the middle of the
first semester. These groups were then reassigned to another staff adviser
(Staff Adviser 3). It is not clear the number of meetings these groups had with
the respective staff advisers. For example, Group 5 stated that they had about
7 meetings with their staff adviser but their staff adviser (Staff Adviser 3) did

not mention any meeting he had had with the group. Of course, all these data

-Page 90

were based on the individual recollections of the event and Staff Adviser 3

was responsible for 4 groups.

In conforming with the university's Ethical policies, the name of each
staff adviser will remain anonymous. Therefore, each staff adviser was
assigned a unique number. Figure 4.2.3.3 shows which group(s) were assigned
to which staff adviser. The data represented in italics were those groups whose
software was not evaluated because they could not be made operational.
Despite the fact that all software was operational for the assessment
presentation, it was only possible to get 10 of the 16 working for subsequent
analysis. However, the data from staff advisers for these groups was taken into

consideration.

Staff Group
Adviser Number
1 b
2 2
3 3
3 5
3 7
3 10
4 4
3 6
& 8
7 9
B 17
g 12
10 13
71 14
12 75
73 16

Figure 4.2.3.3 Table - Staff Adviser For Each Project Group

To better understand the relationship between staff advisers and
students, as well as their opinion of being appointed staff adviser, the staff
advisers were interviewed on a structured basis. The results from these

interviews are as follows:

Page 91

G Staff Adviser 1 :
This staff adviser had general knowledge about the APT methodology.

According to him, he had meetings with his group once every two
weeks during the first semester. Each meeting lasted for about half an
hour, During semester two, he met with his group three times, each
lasted for about half an hour. He commented that it was a good idea to
have a staff adviser assigned to each project group. He claimed that this
would provide students with a "contact point", so that students codlci
come for help if they were having problems (that were related to the

project).

Q Staff Adviser 2:
This staff adviser knew very little about the APT methodology. He said

that he saw his group about three times during the first semester and
not al all during the second semester. He commented that having a staff
adviser for each group was essential because students "need to have

access to a staff member".

O Staff Adviser 3 :
This staff adviser was not very familiar with the APT methodology. He

said that there was no fixed time or date for meetings with his groups.
According te him, he did meet with Group 10 for about half an hour
per week (for 14 weeks), 2 meetings with Group 3 for about half an
hour each, during semester one. During semester two, he had 4
meetings with Group 15 for about an hour each. It 1s important to note
that the staff adviser for Group 15 was Staff Adviser 12. He
commented that by assigning members of the staff of the department as
staff advisers did not really emulate a real-world software development
environment. This is a cause for concern, as the aim of the software
engineering project was 1o provide students with “real-world"

experience.

Page 92

O Staff Adviser 4 :
This staff adviser was not very familiar with the APT methodology. He

met with the project leader once every two to three weeks during
semester one and two. He did meet with the whole group once, towards
the end of semester one. He commented that members of the staff
should volunteer to become a staff advicer. Since staff’ members were
being assigned to be staff adviser, the department should at least
provide some form of training so that the staff adviser would know
what to do and what to expect. That way, the staff adviser will be more

beneficial to the group.

QO Staff Adviser §:
This staff adviser was familiar with the APT methodology but had no

in-depth knowledge. He said that his group never set up any meetings
with him. All he received from the students were progress reports {(once
every 2 to 3 months). He further added that students shouid take the
initiative of setting up meetings and not the other way around. He said
that looking at the progress report was not adequate. He claimed that
personal contact was important if a staff adviser was to evaluate the
group's progress. He commented that it was important to have someone
supervise the student but it would be more effective if members of the
staff were willing and interested, instead of just assigning them to

groups,

O Staff Adviser 6
This staff adviser was not very familiar with the APT methodology.

The meetings between students and the staff adviser were very rare. He
claimed that the students worked independently. He did not offer any
advice or opinions on matters related to the project. He had no
background in software engineering and was not fully aware of the

project's requirements.

Page 93

Q Staff Adviser 7 :
This stafl adviser had about 6 meetings with the group, each lasted

between 30 minutes to an hour. The staff adviser also provided the
students with presentation skills (2 - 3 hours), lectures on entity-
relationship modelling (4 hours) and advice on designing a better user

interface (2 - 3 hours).

- 0. Staff Adviser 8 ;

This staff adviser had reasonable knowledge on the APT methodology.
He did offer his students advice and opinions at the beginning of the
project. He had about 4 meetings with the students, each lasting for
about 12 minutes. Due to the lack of meetings with the students, he was
not aware of the students’ progress. He commented that he came from a
different discipline and had no knowledge in System Analysis and
Design and because of his lack of background knowledge, he was of no

real assistance to the students.

Q Staff Adviser 9:
This staff adviser had an average knowledge on the APT methodology.

He met with his group once every tvo weeks during semester one, but

in semester two, he did not have any meetings with his group,

Q Staff Adviser 10 :
This staff adviser had a fair knowledge of the APT methodology. He

said that during the semester one, he met with the project leader about
four times, each meeting lasted from 15 to 45 minutes. During semester
two, he again had about four meetings with the project leader, but each

lasted only from 2 to 5 minutes.

Page 94

Q Staff Adviser 11:
T his staff adviser was very familiar with the APT methodology. He had

very little contact with his group. When they did meet, the students
were often poorly organised or not well prepared. He thought that
having a staff adviser for each group was a good idea because it

worked out quite well with the previous years' projects.

1 Staff Adviser 12
There is no information on how familiar this staff adviser was with the

APT methodology. The staff adviser said that 1t would help the student

greatly if the role of the staff advisers was clearly defined.

O Staff Adviser 13 ;
There is no information available from this staff adviser.

4.2.3.1 Summary

Based on the information and comments from the staff advisers, the

following can be concluded :

O The staff advisers should have a reasonable amount of knowledge
regarding the standard software development methodology adopted
by the Computer Science department. This would ensure that they
know what {0 expect from the students.

O Meetings with students on a regular basis should be made
mandatory so that staff advisers are aware of their problems and
progress.

O Staff advisers should be interested and volunteer for the role. This
way, the staff adviser will be more interested in the progress and
development of the group project.

0O Staff advisers should have sufficient knowledge of the software

development process.

. Page 95

O Staff advisers should have a clear understanding of the nature of the

software engineering project.

If the criteria mentioned above are satisfied, it should ensure that
all groups will have a conipetent degree of supervision from their staff
adviser. Then students can really have a taste of what the "real-world"
situation is like. It is true that in certain cases, students were experiencing
“real-world" problems (eg difficulty in meeting deadlines) with their
project. Some would argue that not all human beings are the same, hence
not all staff advisers are the same, but from the students' point of view,
they were being assessed on their project. The role of the staff adviser
should be an added advantage rather than a disadvantage to the students. In

addition, superviston should be consistent across all teams,

Staff advisers 4 and 7 scored very well from the students they
supervised. Staff adviser 4 maintained a consistent meeting schedule with
his group’s project leader. By doing so, the amount of interaction between
the staff adviser and student was high. Staff Aiviser 7 seems to have taken
a more active role with the students by providing them with more in-depth
guidance. From these, it is clear that the high level of student-staff adviser
interaction, has earned them the highest ratings. However, it is interesting
to note that Group 2 only met with their staff adviser (Staff Adviser 2)
about 2 to 3 times and yet, they awarded a score of 6.6 (the third highest)
for their staff adviser. This is important to point out that there 1s an element
of students not wanting to say anything negative about senior members of

the department, which contributes to the distortion of resuits.

Page 96

4.2.4 Development Software Used

This section presents the type of software that each group used to
develop their software. The students were also asked to provide a rating (out of
10} for the software they used. When questioned on the reason for their
selection, the majority stated that their software had received positive reviews
from computer articles and magazines, The data are presented in Figure
4.2.4.1 and Figure 4.2.4.2.

Group Development Software | Usefulness Of
Number Used The Software
1 Microsoft Access 6.0
2 Microsoft Access 5B
3 Paradox For Windows 5.0
4 Microsoft Access 8.5
5 Microsolt Access 8.8
& Paradox For Windows 5.0
7 Micrasoft Access 5.5
8 Microsoft Access 6.3
9 Microsoft Access 55
10 _Objectvision Pro 3.8

Figure?2.4.l Table - Development Software Used

Scores Awarded For Devefopment Software Used

—
| &

} a8

Score Out Of 10
O - N A th OO~ W0 @

10 3 6 7 9 2 1 8 5 4
Group Number

Figure 4.2.4.2 Graph - Scores Awarded For Development Software Used

All development software selected were relatively new in the market.

Since all these packages operated in the Windows environment, they promised

Page 97

screen design facilities, and importing of colourful graphic images. All the
software selected provided some form of 4GL-like tools to help make design
easier. The key word here is "design". When Microsoft released Access
Version 1.0 and subsequently Version 1.1, their aim was to provide end-users
with capabilities to design their own applications, The same applies to Paradox
for Windows. These packages have integrated form and report design
facilities. As for Objectvision Pro, its early counterpart Objectvision was very
similar to Microsoft Access. Boriand promised that users could devellop
applications with Objectvision without any programming. With Objectvision
Pro, Borland added a report generator and programming language { Turbo C++)
to make it more powerful. Each piece of software has its own pros and cons, as

reviews from various computer magazines suggest.

4.2.5 Other Factors

This section presents the remaining factors which may or may not have

effected the results of the software engineering project.

O Project Management :
For each group, one member was elected as project leader. His/her role

was to oversee the software development process. Every member of
each group was asked to provide a score (out of 10} on how the project

was managed.

& APT Methodology -
The students were also asked to provide a score (out of 10) for the

usefulness of the APT methodology. This was basically to gain some
information on the worth of the methodology, especially in a university

environment,

Page 98

Q Communication With Client :
The user requirements for the system were provided by the client via tele-
conferencing and written exchanges channelled through the project co-
ordinator. The students were asked to award a score (out of 10) on how
satisfied they were with the method(s) used for communicating with the

client.

QO Team Work :
The students were asked to award a score (out of 10) on how satisfied they

were with the way their group operated.

Q Contribution To Project ;
The students were also asked to award a score (out of 10) on how satisfied

they were that their contribution was being valued by the rest of the team.

O On Schedule :
The students were asked whether they felt they were able to complete their

project on schedule.

Figure 4.2.5.1 presents the results obtained. The results are all based on group
averages. Figure 4.2.5.2 to Figure 4.2.5.6 presents each of these factors in

ascending order.

Group APT Communication Project Team | Contribution On
Number | Methodology With Client Management | Work To Project | Schedule
1 42 a2 8.6 7.0 8.2 Yes
2 4.2 46 7.0 70 7.4 No
3 3.5 a3 5.0 38 6.5 Nc
4 4.9 32 9.0 8.7 8.8 Mo
5 53 3.0 8.3 7.5 8.3 Yes
6 2.8 2.8 57 56 7.4 No
7 2.8 Xt} 4.3 5.0 5.8 Nu
8 43 4.0 8.3 6.7 8.3 Yes
9 30 33 8.3 B3 9.0 Na
10 3.4 1.0 7.3 55 8.0 No
Average a.9 31 6.9 6.6 7.8
Minimum 28 1.0 4.3 38 58
Masximum 5.3 4.6 9.0 83 9.0

Figure 4.2.5.1 Table - Other Factors That Affect The Project

Page 99

Scores Awared For The APT Methodology

48 03

42 42 43]
35 38

Score Out Of 10
0 = KN W & 0 D~ a0 D Q

e B S e S T

Group Number

Figure 4.2.5.2 Graph - Scores Awarded For The APT Methodology

The APT methodology (EXECOM, 1991) is the standard development
methodology adopted by Edith Cowan University's Computer Science
Department, To use the APT methodology, students must first purchase the
licence for the methodology. Although this methodology has been used by this
department since 1991, there was not any information regarding its
effectiveness in developing software in a university environment. As a result,
1993's software engineering students were asked on h w they felt about this
methodology. From the score awarded by the students (see Figure 4.2.5.1 and
Figure 4.2.5.2), it can been seen that the APT methodology was not well
received. The average score for was 3.9, with a minimum of 2.8 and a
maximum of 5.3. As for its usefulness, almost all the students reported that the
APT methodology was either not complete (student's version) and/or not

suitable for developing software using 4GLs tools and software.

Page 100

Scores Awarded For Communication With Ciient

"y
(=]
4

46
4

- ,g 3 3 32 32 33 33
H L t -t t — l t + -~ = !
10 & 5 7 1 4 3 g 8 2

Group Number

L.

Score Qut Of 10
O = k) W B ot O~ D

Figure 4.2.5.3 Graph - Scores Awarded For Communication With Client

As previously mentioned, the user requirements were provided by the
client via tele-conferencing. In total, there were two such conferences, each
lasted for about an hour. If the students were to have any questions, they were
asked to forward them to their staff adviser or to the project coordinator.
Students had no direct access to the client. [n theory, information was to be
passed between the client and the students via the project coordinator. The
scores awarded by the students (see Figure 4.2.5.1 and Figure 4.2.5.3)
indicate that this method of communication was not very effective - with an
average of 3.1, minimum of 1 and maximum of 4.6. The students had a tight
schedule to meet and information was not obtained and provided efficiently.
As a result, all the systems that were evaluated addressed different aspects of
the orchard business. Some members of the judging panel were heard to
remark that, “if some of the various teams’ software were combined, it would
make a better application”. It 1s fair to say that the user requirements were

poorly defined from the students’ point of view.

Page 101

Scores Awarded For Project Management

9
9 83 83 83
84 7.3

, 6 | a

Score Qut OF 10

6 i 2 10 S & 9 4
Group Number

Figure 4.2.5.4 Graph - Scores Awarded For Project Management

Scores Awarded For Team Effort

[38

Score OQut OF 10
= B | A A N I B =

3 7 10 § 8 1 2 5 4 8

Graup Number

Figure 4.2.5.5 Graph - Scores Awarded For Team Effort

Page 102

Scores Awarded For Team Contribution
" 82 83 B3 68 °
9 8 .
8 74 74 —]
—
8.5) 1
g 7158
5 61 _ [
a8 8
143
:d: 4
» 3
P
1
"] — : } + - - : ,
7 3 2 6 10 i 5 8 4 0
Group Number

Figure 4.2.5.6 Graph - Scores Awarded For Team Contribution

A peer assessment was also conducted. By this, students from each
group were requested to give a score (out of 13) on how they felt the project
was being managed, how well did the students work as a group and the
contributions made by each student to the project. Based on the result from
Figure 4.2,5.1 (also see Figure 4.2.5.4 to Figure 4.2.5.6), the majority of
them managed quite well, except for Groups 3 and 7. Groué 7 has one of the
lowest scores for Project Management, Team Work and Contribution To
Project. Whereas Groups 4 and 9 scored extremely well on all counts. It is
interesting to note that although these groups had good project management
views and high team spirits, it does not automatically follow that their
productivity rate will be high (See Chapter 7 for details on individual groups'

productivity rate).

4.4 SCORE AWARDED TO PROJECTS

This section presents the score that was awarded to each project by the
judging panel. Members of the judging panel included the client, project

coordinator, unit coordinator and the group’s respective staff adviser. Each group

Page 103

questioning towards the end of the demonstration. The scores awarded were based

- on the groups’ :

Presentation

Statement of the problem -
Approach to the problem
Documentation at the presentation
Solution functionality

Solution qualitv

Quality of design for the software

e & & & b

* @

The scores for solution functionality were awarded by the judging panel based on
their perception of the solution’s functionalities. The scores for solution quality
were awarded by the judging panel based on their perception of the quality
(usability, fitness for purpose, performance) of these functionalities. These results

are presented in Figures 4.4.1 to 4.4.4.

Solution Solution Total

Group Functionality [| Guality (Out Score
Number Staff Adviser | {Out Of 25} 0QfF25) Awarded

1 i 20.2 16.4 766

2 2 14.2 102 45.0

3 3 20.0 12.0 67.0

4 4 204 17.0 826

5 3 2¢.0 15.7 67.3

6 5 19.2 142 606

7 3 207 157 65,3

8 [16.0 14.0 67.5

9 7 19.6 18.0 79.2

10 3 8.7 9.0 542

Average : 17.9 13.9 450

Maximum ! 20,7 18.0 828

Minimum ¢ 8.7 4.0 66.5

Figure 4.4.1 Table - Solution Functionality And Solution Quality

I Page 104

Score Awarded To Each Project
100.0 7
B2.6
80.0 1 766 192
g | §5.3 670 673 675 M T
8 606 o . o e !_
= 6007 54.2 ™ T M r
[+ -_
g 45.0 B
= 4001
s “004[
8 i
w o
200 4 |-
0_0 2 ‘. T) - : .) o ‘ .:;:. , . r 1 . -
2 1 6 7 3 s 8 4 o 4
Group Number

Figure 4.4.2 Graph - Students’ Project Score Sorted In Ascending Order

Solution Functionatity

25.0 -

8 f jon 196 200 200 202 204 207
[= — -
£S = a2 180 M [1 M r
88 150! ' o b
s 2 7 5
£ £ 004" ::

g s _.
O I .
R 50 -
™ 0.0 e T ! + —~ 4 : S OO A 1 O
w 2 8 & 9 3 5 1 4 7

Group Num ber

Figure 4.4.3 Graph - Sofution Functionality

Page 105

Solution Quality

250 -
200 1
150 +

100 +

{Out Of 25)

504

Scores For Solution Quality

0.0

Group Number

Figure 4.4.4 Graph - Solutien Quality

4.5 PEER ASSESSMENT SCORES

At the end of each semester, the students of each group were asked to
award a mark for their team-mates’ performance and contribution to the project.
Students were requested to award a score out of 13 and 15 for semester one and

two, respectively. These scores are presented in Figure 4.5.1 and 4.5.2.

Peeor Assessment
Group Semester 1 | Semester 2 | Total (Cut Of
Number (Out OF13) | {Out Of 15) 28y
1 11.38 11.93 23.31
2 10.15 12.23 22.38
3 10.07 12.08 2215
4 11.20 13.28 24 .58
5 9.82 11.69 21.91
6 11.95 11,29 23.24
7 11.05 13.50 24,55
8 817 9.63 18.80
] 13.00 15.00 28.00
10 8.42 9.53 17.85
Average ‘.63 12,02 22,65
Minimurn 8.42 9,53 17.95
Maximum 13.00 15.00 28,00

Figure 4.5.1 Table - Total Peer Assessment Scores

Page 106

Groups' Peer Assessment

30.00 28.00
" 2455 2458
0 1880 . — M 31 I '
Wz 2000179 ..]
BN .
L g5
Wy
£ 3 .
0~
m .
<
[R
3 B
o t — —- _,_...—.J._4

Group Number

Figure 4.5.2 Graph - Total Peer Assessment Scores

From the figures presented above, the majority of the groups did
reasonably well. Group 10 has again received the lowest score. Group 9 has the
largest group and they all scored each other very well. It is obvious that this group
worked well as a team. This is supported by the data gathered for Project
Management, Team Work and Team Contribution (For mere information, see

Section 4.2.5 - Figure 4.2.5.1),

4.6 GROUPS' COURSE AVERAGES

The formation of groups for the Software Engineering Project was based
on the students” course averages. The project coordinator!! at that time, selected
the students for each group based on their individual course averages. The
objective was to distribute the students between the groups to provide a reasonable

academic balance. The data are presented in Figures 4.6.1 and 4.6.2.

1UMr Ah Hung, former fecturer and software engineering project coordinator, who has left the
employment of this university.

Page 107

Group Course
Number Average
1 6020
2 61.18
3 60.56
4 64.57
5 65.55
6 6167
7 B56.63
8 66.61
9 B7.36
10 60.458
Average 63.48
Minimum 60.20
Maximum 67.36

Figure 4.6.1 Table - Groups® Course Averages

80.00 4
70.00 -

50.00 1
40,00 4

100.00 T
90.00 +

60.00 +

Groups' Course Average

56,51 66.6
600 60.45 60.56 6118 &6y 6457 8959

—

Course Average {100%)

20.00

0.00 4

30.00 ¢

10.00 4

—]

-

—

3 6736

-

6 4
Group Number

Figure 4.6.2 Graph - Groups’ Course Averages

Based on the data above, the course averages have a range difference of

around 7 per cent.

Page 108

CHAPTERS :

MEASURING SOFTWARE INSTALLABILITY

5.1 SOFTWARE INSTALLABILITY -

The Orchard project was to provide students with a real-life problem and

the students’ task was to develop an application that could be marketable or at

least usable by the client. It was expected that the software presented should be as

professional as possible. Before the software could be used, it must first be

installed on the client’s computer. Since not everyone was computer literate, the

software installation program (if any) should perform most of the installation

process without or with a minimum of user intervention, This section would

present the outcome of the investigation into the installability of the software

developed by each group.

5.1.1 Software Installation Process

Group 1 :

Group 2 :

It did not have any installation program. The user needed to create
a directory on the hard disk and then copy all the files from the
floppy disk over to the hard disk. To execute the software, the user
would need to start Windows and then load Microsoft Access
version 1.0. From Access, the user could then open the necessary

file to execute the application.

There was no installation program. All the associated files were
compressed so that it would fit onto one high density floppy disk.
Unfortunately, the students failed to provide the software utility for
r-irieving these compressed files. To retrieve the software, the user
would need to create a new directory on the hard disk, then
uncompress the file onto the new directory. The proccdure to

execute this application was identical to that of Group 1.

Page 109 |

Group 3 : This software came with an installation program in form of a DOS
batch file. All the necessary files were compressed into a self-
extracting!? file. All the batch file did was execute this self-
extracting file. The user had to be aware of the need to create a new
directory on the hard disk first, then to copy all the files on the
floppy disk onto this directory. Only then could the user execute the
batch file. To execute the application, the user had to first start
Windows and then load Paradox for Windows. Once in Paradox for
Windows, the uvser had to then set the Working and Private
Directory to the directory where the application’s files were
located. The user ‘could then start the application by selecting the

right form!3.
Group 4 : This was the same situation as Group 1.

Group 5 There was no installation program for this group. The situation was
the saime as Group] with the exception of a batch start-up file. By
running this start-up file, it would automaticaily load Windows and
Microsoft Access, and start the application. Unfortunately, the path
for Windows and Access were hard-coded into the batch file and if
the user had Windows, Access and the application located in
different directories, the batch file would fail in the start-up

process.

12 A self-extracting file was a file that contains all the files that are compressed. It comes in form of
an executable file. By executing this file would automatically uncompress all the files.

13 In this context, a form refers to either an input or output screen, created either by the user or an
application generator,

Page 110

Group 6 :

Group 7 :

Group 8:

Group 9:

1

It had no installation program, however all the necessary files were
compressed in a self-extracting file. The user would need to create
a directory on the hard disk, copy the self-extracting file over to the
directory and uncompress the file from there. The execution

procedure was identical to that of Group 3.

The software had its own installation program. The installation
program was created by Microsoft Access Distribution Kit version
1.1. The installation procedure Was like any standard installation
program found in ali Microsoft products, With the disk, came the
installation program and the Microsoft Access Runtime module.
This is an ideal situation for the user, especially when the software
is being distributed for use. The software couid still be executed

from Access but only in version 1.1.

It had its own installation program. Similar situation as Groeup 7

except that the software was developed under Access version 1.0,

This software also had an installation program but it was not
created {rom Microsoft Access Distribution Kit. The installation
program would install the softivare on the hard disk but it did not
come with the Runtime module. Hence, the application could only

be accessed through Microsoft Access.

Group 10 : There was no installation program. The installation process was

identical to Group 1.

Group 11 - 16 : Despite intense effort, it was not possible to get these pieces

of software working. Hence they have been left out of all

metrics gathering.

Page 111

5.2 SUMMARY

Out of the 10 pieces of software, only three had proper professional
installation programs. The remaining seven required a considerable degree of user
intervention, For a user who had experience using an operating system such as
DOS, this would not pose a problem. However for a user who was not computer
literate, it is probable they may have not been capable of installing the software.
Unfortunately, access was not provided to either of the user’s or technical manuals
which means a more detailed assessment into the installability of the proposed

software could not be undertaken.

_ The results of this assessment should take into account the fact that the
Department of Computer Science was unable to provide the students with the
necessary tools and software. For example, to create an installation program for
software developed in Microsoft Access and Paradox for Windows, the Microsoft
Access Distributed Kit and Paradox Application Distribution Kit were required. It
would appear that the groups that created their own installation program used their
own distribution kit and regrettably this resource was not available to all the
groups. Access to these resources would definitely enhance the students’ leaming
process, with particuiar regard to the development of a professional piece of
software. It was surprising to find that Group 10, which used Objectvision Pro,
did not have a good installation program. After all, Objectvision Pro comes with

its own Runtime module.

Software that comes with its own Runtime module does not require the
client to have a copy of the development software. For example, to execute Group
7’s application, the installation program will load Access’ Runtime module
together with the application, From the client’s point of view, he or she need not
purchase Microsoft Access. From a security point of view, the user will not be able

to modify the design of the application directly.

Page 112

CHAPTER 6 : MEASURING SOFTWARE SIZE

6.1 MEASURING SOFTWARE_SIZE USING _ALBRECHT'S FUNCTION
POINT ANALYSIS

As part of this research project, all the software developed by the 1993
software engineering students was measured to determine the size. The metric
used, was Albrecht's Function Points. This metric was selected because it has been
widely accepted and used. Furthermore, all the software was produced using 4GL-
type development software - Microsoft Access~, Borland Paradox= for Windo{vs,
Borland Objectvision~ Pro and Gupta SQLWindows. With 4CL-type
applications, it 1s difficult (if not impossible) to determine the size in terms of
lines of code of the software because they wsually include automated coding.
Therefore, it i1s more reasonable to calculate the size of software in terms of

functions d.ltivered rather than lines of code produced.

In total, there were 16 groups of students developing.the same application.
However, only 15 groups submitted their software for evaluation. All software
appeared to function during the project demonstrations'. Unfortunately, out of the
15 pieces of software that was submitted for evaluation, only 10 were found to be
functioning. Qut of the 10 pieces of software, one of them required some
modifications before it was capable of being executed on the computer where the
evaluation was to be conducted. Of the five pieces of software that were not
functioning, one of them was because the students failed to provide a password for
their software. With the remaining four pieces of software, it appears that the

students failed to submit their final version for evaluation.

' The project demonstration was part of the project assessment. Each group was required to
demonstrate their software before a judging panel.

Page 113

Although function points can be counted from the requirements
specification the groups' project documentation was not available for this purpose.
Furthermore, it was felt that counting function points from the software delivered
would yield a more accurate result in relation to the number of function points
delivered.

6.2 APPROACH USED TO MEASURE SOFTWARE SIZE

Even though function point analysis is widely discussed in the literature,
none provide a detailed description on the procedure involved in counting function
points. The primary reason is that the methods available for counting function
points are constantly being revised by the International Function Points User's
Group (IFPUG). The only publiched materials that provides an up-to-date
description on the procedure for counting function points are published by [FPUG
itself. Unfortunately, the latest version of the Function Points Manual was
unavailable. As a result, the method for counting function points was taken from
Dr. Eberhard Rudolph's?? (1889} seminar paper. Even though, Dr. Rudolph's paper
was slightly dated it proved to be ﬁuite useful since the 1993 software engineering

project was 2 straight database-type appiication running on a standalone cemputer,

The following sections will explain how the processing complexity was
defined, how the size of the software was determined and the problems

encountered during the evaluation,

15 Dr, Rudolph presented a three day seminar on Function Point Analysis. His methods for counting
function points are also recognised by the Australian Software Metrics Association {1993a).

Page 114

6.2.1 Rules For Counting Function Points

The first stage of counting function points is to count the raw fitnction
points. This is achieved by identifying and classifﬁng the individua! functions
provided by the software for its end-user. As mentioned in Section 2.4.2
Counting Function Points, there are five types of functions - external input,

external output, logical files, external interfaces and external inquiries.

0O External input :
Any data that enters the information system from the user should be

considered as an external input. It will be counted when the system
adds, changes or deletes data in a logical file type. Therefore, functions
that were counted include :

- data input screen

- data update screen
- data deletion screen

Q External output
An external output type does not modify the contents of the internal

fogical files. Extemal output types can reach the users directly as
reports or messages. External output types of the same format but of
different output medium shouid only be counted as one ouiput type.
However, the same information presented in different format, allowing
for the characteristics of the output device are counted as separate

external outputs. The functions that were counted include :

O Reports
O Start screen output
0 End screen output

Page 115

0O Logical files

Each major logical group of user data in the application system should
be considered as an internal logical file type. In order to be counted as
a logical file, a logical user view had to bec generated, used and
maintained by the information system. An internal logical file should
be directly used by at least one external input, external output or
external inquiry type. Internal logical files that are not accessed by an

input, output or inquiry types are not to be counted.

External interfaces
Files or contro! information that are passed or shared among different

systems should be counted within each information system as an
extenal interface type. With the 1993 software engineering project,
there were not any external interfaces. However, the client did express
interest in the ability to share data between Quicken for Windows and
the proposed system. Unfortunaizly, none of the groups were able to
achieve this functionality. Therefore, in this case the external nterface

count was set to zero (0).

External inquiries
An external inquiry type is a query facility that is offered by the

application. It is characterised by a unique input/output combination, It
triggers off an immediate response without updating the internal logical
files. It is entered to direct the search so that the desired information

can be found. The functions that were counted include ;

Help screens

O
O Menu selection screens
O Lookuptables

0

Online query

Page 116

6.2.2 Pefining The Complexity Adjustment Values

Before deriving the final function points for a piece of software a
prerequisite is the determination of the software's processing complexity. This
can be determined by adjusting the 14 general application attributes. For each
of these attributes, a value must be assigned (degree of influence - DI) which
rangés from 0 to 5 - where 0 suggests "either not present or no degree of
influence” and 5 suggests "strong influence throughout the application
development”, The following is a list of the 14 attributes with its associated
vaiue of influence. The reason for selecting the value of influence for each

attribute, is also explained.

0 Data communication
This atiribute is present when information is being sent and received

over some form of communication facility. This was set to zero (0)
because the software was developed for a standalone environment.

There was no use of communication facilities such as telephone lines.

8 Distributed functions
This attribute is present when the system's data is distributed and

processed over more than one processor. This was set to zero (0)
because there was no need for distributed processing. Since the
application was developed for a standalone environment, all data were

stored and processed locally.

0O Performance
This attribute is present when performance objectives such as response

time and throughput are stated and approved by the end user. This was
set to two (2) because the performance of the system could be met by
standard design and coding practices. The end user had not specifically

set the criteria for acceptable performance.

Page 117

Heavily used configuration
This attribute is present when the system requires special design and

implementation considerations. It is typically concerned with main
storage or disk storage limitations and processor time. This was set to
three (3) because the operational restrictions required minor attention

in the project plan.

Transaction rate
This attribute represents the flow of information within the system.

This was set to two (2) because the transaction rate was moderate,
however this transaction rate could be met with standard design and

coding techniques.

Online data entry
This attribute represents the amount of transactions that were entered

interactively. This was set to five (5) because more than 30 per cent (in

fact, all) of the transactions were entered interactively.

End user efficiency
This attribute gives credit to the emphasis in designing functions that

provide efficient user information access. This was set to five (5)
because special tools such as 4GLs were used in the design and

development phases to promote end-user efficiency.

Online update
This attribute determine the degree of online updates performed by the

system. This was set to three (3) because online updating was provided

for all the major logical internal files.

Complex processing
This attribute reflects the complexity of the programming logic. This

was set to one (1) because of its extensive logical processing.

Page 118 .

. R

0O Reusability
This attribute is present when the code of the resulting application

programs has been designed, developed, and supported to be usable in
other information systems. This was set to zero (0) because no

consideration for reusability was specified.

& Installation ease e
This attribute is present when the information system requires specific

installation considerations during its transition from the current system
to the new system. This was set to one (1) because a conversion plan

was required but no data conversion was needed.

0O Operational ease
This attribute is present when the system requires effective start-up,

back-up and recovery procedures. This was set to zero (0) because no

special operational considerations were stated by the user.

0 Multiple sites
This attribute is present when the system has been specifically

designed, developed and supported, to be installed at multiple
locations. This was set to zero (0) because there was no requirement to

consider more than one location.

O Facilitate change
This attribute is present when the system has been designed, developed,

and supported to facilitate modifications of its functions at a later
stage. This was set to two (2) because the application was to be

implemented as a series of modules.

The settings of all these attributes were applied to the ten pieces of
software that were evaluated. This was to ensure consistency in the method of

measuring function points, Below is the table (Figure 6.2.1.1) representing

Page 119

these attributes with its associated value of influence and the Total Degree of

Influence that was used to calculate the final function points.

Pracessing Complexity

ATTRIBUTES

Data Communications
Distributed Functions
Perfermance

Heavily Used Configurations
Transaction Rate
Online Data Entry
End User Efficiency
Online Update
Complex Processing
Reusability

Installation Ease
Operalicnal Ease
Mulliple Sites
Facilitate Changes

NOoOO O mnwthhoNLunoo D

Pl el N R R A Y NI

Total Degree of Influence 24

Figure 6.2.2.1 Table - Processing Complexity Used For Calculating
Software Size

6.2.3 Evaluation Report

All the software that was tested had some form of bugs or logical
errors. In some cases, the software caused the system software and Microsoft

Windows to crash. See Appendix A for the list of errors.

6.2.4 Size Of The Software

This section presents the size of the ten software projects that were
evaluated. For ethical reasons, the students' name and group number will

remain anonymous. Each group has been assigned a different group number,

The Total Unadjusted Function Points is derived by adding the totals
of the five function types. The Adjustiment Factor is calculated from the

equation;

Adjustment Factor = 0.65 + (0.01 X Total Degree Of Influence)

Page 120

where the Total Degree Of Influence is obtained from Figure 6.2.2.1. The

actual function points were calculated using the following equation :

Function Points = Total Unadjusted Function Points X Adjustment Factor

For more information, see Section 2.4.2 Counting Function Points.

Page 12]

O Groupl

External Inputs 36 __Simpls ®x 3 =_108
6 “Aveage x4 =_24
D Complex x 8 =__0
Totals 42 132
External Culputs 7 Simple x 4 = _ 28
0 Average x 5 =__ 0
0 Complex x ¥ =_0
Totals _ 7 28
e =y
Logical Fites 17 Simple ®x 7 = 119
1 Average x 10 =__ 10
0 Complex x 15 =__ 0
Totals 1§58 129
T — [———— —.
Interfages 0 Simple x 5§ = _ 0
0 Average x 7 = __ D
0 Complax x 0 =_ 0
Tokls 0O 0
e e ——— |
External Inquires 30 Simpla ® 3 5_ 90
1 Average » 4 =_ 4
0 Complex X 6 = 0
Totals 31 94
e=——wrrry. —_—rr—y
Total Upadjusted Function Pelats = 383
Adjustment Factor : 089
Function Polnts : 34t
0 Group2
External Inputs 15 Simple ® 3 = 45
0 Average x 4 = 0
0 Complex ®x G = 1]
Totals 15 45
External Outputs 22 Simple x 4 = _ 88
0 Average x 5 =_ 0
{ Complex x ¥ =_0
Totals 22 B8
Logical Files 22 Simpla % 7 = __154
3 Averaga ¥ i = [+
¢ Complex » 15 = 4]
Totals 22 154
ey —————
Interfaces 0 Simpie ¥ 5 =_ 0
0 Average x 1 =_40
0 Complex x 10 = _ 0
Tatals @ o
—T———n L ——
External Inquires 8 Simple x 3 =_ 18
0 Average x 4 =_ 0
0 Complex = 6 =_ 0
Totals__ 6 18
Tatai Unadjusted Functon Polnts = 305
Adjustment Factor : 0.83 |
Funcltion Points : 271 |

Page 122

0 Group3

External Inputs 25 Shnple X 3 = 75
12 Averags ®x 4 = 48
3 Complex x & = 18
Totals 40 141
L—— . L | L=———-.
Extemal Outputs 12 Simple X 4 = _48
1 Average x 5 = §
0 Complex x 7 = 0
Totals 13 53 |
Logical Files 29 Simple x 7 = 203
0 Averags *x 10 =__ 0
0 Complex ® 15 = _0 |
Totals 29 03
=, L —__ 1
Interfaces 0 Simple ¥ 5 = o
O Average X 7 = _0
0 Complex x 10 = 0
Tatals 0 B 1]
= ———] [——
Extornal Inguires 8 Simple ®x 2 = _2)
0 Averags X 4 = 0
O Complex x 6 = __ O
Totals 8 24
i — —
Tatal Unadjusted FuncHan Points = 421
AdJustmant Factor ;. 0.89
Function Points ; 375
O Group4
Extemal nputs 37 Simple % 3 = _11%
3 Average ¥ 4 = 12
2 Complex x & = 12
Totals 42 133
R [S|
External Quiputs .23 Simple x 4 = 92 |
2 Avarage ®» &5 = __10 |
__2 _Complex ® 7 o= _14 |
Totals _ 27 118
A e
Logical Filez 16 Simple ®x 7 = 112
0 Average X 10 = 0
O Complex w 15 = 0
Totsls 16 112
e
interfaces 0 Simple X 5 = 0
D _ Average x ¥ =__0
0 Complex * 1 o= _ 0
Tokls O 0
e
External Inguires 11 Simpls ®x 3 = 33
1 Average » 4 = 4 |
O Complex x & =_0
Totals 12 a7
) [—— . |
Totat Unadjusted Function Polats = 400
Adjustment Factor : ﬂgﬁs)#
Function Points ; 356

Page 123

Q Group s

0 Group6

External Inpirds 24 Simple Xx 3 = 72
3 Average ®x 4 =_12
15 Complex x 6 = 50 |
Totals 42 174
Extarr. | Quniputs 1 Simpla = 4 = 4
0 Average x § = 0
8 Complex x 7 =_42
Totals 7 45
Lo |
Legical Files 16 Simple x T =_112
0 Averags x 10 = Q
0 Complex ¥ 15 = 0
Tatals 16 112
Interfacas 0 Simpla Xx 5 = 0
0 Average ®x 7 = _ 0
0 Complex *x 10 =0
Totals O 4]
= = —— |
Extemal Inquires 3 Simple x 3 =_ 8
2 Averags x 4 = B
0 Compleg *x 6 = D
Totals 5 17
e b= s |
Total Unadjusted Function Polnts = 348
Adjustment Factor : 089
Function Polnts © 311
=—————— |
External Inputs 42 Simple x 3 = 126 |
6 Awverage w 4 = 24
1 Complex » 6 = [3
Totals _ 45 156
=y [
Extemal Outputs 0 Simple » 4 = 0
0 Average x 5 = _ 0
0 Complex x ¥ = _ 0
Tatals 0 0
= =TTy
Logical Files 35 Simple x T = 252
0 Avetage » 10 = D
0 Complex x 15 = 0
Totals 38 252
Erer—— vy
Interfaces 0 Simpla x 5 =__0 |
0 Avsmags x ¥ =_ 0
D Complex x 10 = D
Tolis 0 [
Extarnal Inquires 15 Simpla *'3 = 97
__G __ Average 4 =__ 0
4 Complex 5 = @
Totals 19 57
.] L
Total Unadjusked Function Points = _465]
Adustment factor @ 059
Function Peints @ 414
ey

Page 124

O Group 7

a Group$8

Exterrval Inputs 18 Simpls » 3 =_854 |
9 Average x 4 = 38
6 Cormplex x 6 = 28
Totmls 33 126
External Outputs 3 Simpla # 4 =_12
1 __Avarags x 5 =_ 5 |
4 Complex X 7 =_28
Totals 3] 45
Logical Files 20 Simpls X 7 = 140
2 Average x 10 = 20
D Complex X 16 = _ 0
Totals 22 160
Interfaces Q0 Simple x 5 = 0
0 Averags ®x 7 = 0
0 Complex x 10 =_ 0
Totals 0 [1}
=
External Inquires 4 Simple x 3 = 12
0 Average ®x 4 = 0
1 Complex ¥ 6 = _ 86
Totais 5 18
Total Unadjusted Functlon Points = 345
Adfustment Factar : 089
Funcdon Polnts @ 311
External Inputs 18 Simple Xx 3 =_54
0 Average x 4 =_ 0
0 Complex x 6§ =_ 0
Totals 18 54
Externat Cutpuls 5 Simple x 4 = _ 20
0 Average ®x 5 =_0
0 Comglex x 7 = _ 0
Totals 5 20
Logical Files 9 Simple ®» 7 =
0 Averags x 16 =__ 0
0 Comgplex X 15 =_ D
Totals 9 63
Interfaces 0 Simpla x 5 =__ 0
0 Average ®x ¥ =_10
0 Complex ®x 10 = _ 0
Totals __ 0 0
External inquites 8 Simple X 3 = _ 24
0 Averaga x 4 = __0
0 Complex x 6§ =_10
Totals 8 24
Tatal Unadjusted Functon Polnts = 163
Adjustment Factor : 0.89
Function Polnts : _ 143]

Page 125

O Group 9

External Inputs 16 Simgpla ®x 3 =_48 |
.0 Average x 4 = 0
1 Complex ¥ 8 = 6
Tetls 17 54
... CCre—TY
External Outputs 4 Simpla x 4 = 18
3 Averege x 58 = 15
0 Complex x ¥ =_ 0
Tetils 7 a1
Logical Files 14 Shnple X T =_ 88
D Averags x 10 =_ 0
D Complax ®x 15 = 0
Totals 14 98
Interfaces 0 Simple X 5 = 0
0 Average X 7 = 3]
0 Complex » 10 = 0
Tolls 0O 0
External Inquires B Simple x'3 = 24
D Average x 4 =_ D
2 Complax x & = 12
Totals 40 26
Tatal Unadjusted Function Polnts = 219
ey
Adfustment Factor ; 0.89
b = — 1
Functlon Points ; 185
r———x
0O Group 10
External Inputs 3 Simpls x 3 = _ 9
0 Average x 4 = 0
g Camplex x & =_ 49 |
Totals 3 9
Exlemal Cutputs 0 Simpie x 4 =_ 0
0 Average x § =_ 0
_ 0 Complex x 7 = _ @
Totals O 1]
Sy b
Logical Files 12 Sinpls x 7 =_ 84
D Average x 10 = _ 0
0 Complex x 15 =0 |
Totals 12 B84
[—"—— o
Interfaces 0 Simple x & =_ 0
0 Aversge x 7T =_0
0 Complex x 10 = _ D
Totmls O 1]
Extarnal Inquites 2 Simply x 3 =_9 |
O Average ®x 4 = 0
0 Complex x & =__0 |
Totals 3 9
=—anxrrrry
Total Unad]usted Fungtion Points =_ 102
Ad|ustment Factor ;. (.B9
Functien Polnts : 91

Page 126

6.2.5 Scores Awarded For Solution Functionality

This section presents the score awarded by the judging panel for the
groups' software solution functionality and presentation skills. These scores
were awarded by the judging panel based on a presentation given by each

group. The score is given out of 25 points. The results are presented in Figure

6.2.5.1 and Figure 6.2.5.2.

Figure 6.2.5.1 Table - Scores Awarded ¥or Solution Functionality

Size Of Solution
Software In | Functionality
Group Function | (Se¢ore Out Of
Numhar Points 25)
1 I 20.2
2 2N 14.2
3 375 20
4 58 20.4
5 KED 20
5 414 19.2
7 31 20.7
8 143 16
9 195 19,6
10 o1 8.7
Average ; 2808 17.9
Minimum : 91 8.7
Maximum : 414 20.7

Software Size Versus Solution Functionality

50 11

K4

iy

450
400
5
€ as0t
s
g 300
£
s 8 2501
a3
28 2w
% 150 {
Q
° 1004
N
[47]
0

1 2 8 & g 3 5 1 4 7
Group Number

l Softw are Size —&— Scores Aw arded |

- 25
1 20

1110

15

Solution Functionality {Score

Out Of 25}

Figure 6.2.5.2 Graph - Software Size Versus Solution Functionality

(Sorted According To Score)

Page 127

Based on the results presented above, the majority of the software with
a size of 300+ function points scored around 20 points, except for Group 6.
This group had the highest function point count of 414 but only scored 19.2
points. The results did however reflect the fact that software with poor
functionality scored less. For example, Group 10 had the smallest size of 91

function points and it only scored 8.7 points (the lowest).

6.2.6 Summary

This chapter presents the size of the ten pieces of software that were
evaluated using Albrecht's Function Point method. Even though these pieces of
software were quite functional, they were in no way near "perfect” or ready to
be used by the client. For each piece of software that was tested, a brief
"evaluating report” was presented 1o indicate the functionality of the software,

- By doing so, it provides a comparison of the software's functionality against its

size.

Figure 6.2.6.1 and Figure 6.2.6.2 presents the size of software for each
group in function points. Figure 6.2.6.3 and Figure 6.2.6.4 presents the size of

each function type for each group, in terms of function points.

Size in
Group Function
Number Points
1 k]3]
2 271
3 375
4 Lt
5 N
6 414
7 m
8 143
9 195
10 91

Figure 6.2.6.1 Table - Size Of Software Per Group

Page 128

Size Of Software In Terms Of Function Peoints
450 ¢ 414

400 4 256 375 [
341 ™

350 1 31t 31t — []

300 271 [—‘

250 4
195
200 4
143
150 1

Number Of Function Points

28|
100 -

I
50 | D
o ; i

10 8 9 2 5 7 1 4 3 &

Group Number

Figure 6.2.6.2 Graph - Size Of Software (Sorted In Ascending Order)

By looking at the graph in Figure 6.2.6.2 and the data presented in the
evaluation report (Appendix A), it can be sezxn that the laryest software s not
necessarily seen as the most “functional”. Although in theory, it could be
expected that the software with higher function point count would indeed be
more “functional”. Even though Group € had the largest function count,
comments presented in their evaluation report indicate that their software was
not well developed. In fact, it was one of two that crashed not only the system
software environment, but it also crashed the operating environment
(Microsoft Windows). Group 3'% software also crashed the operating
environment when trying to access one of its modules, yet this group has the

second highest function point count.

Looking at the two extreine ends, Groups 10 and 8 rank the smallest in
size. Again, by examining the evaluation report, it can be seen that both pieces
of software lack in functionality. Group 10's software did not have reports and
most of its functions were poorly developed. Group 8's software was relatively

easy to use but it lacked in functionality.

Page 129

Group Extemal External Logical Exiermnal
Number {nput Output - .Files Inquires
1 132 28 123 54
2 45 88 154 18
3 141 53 203 24
4 135 116 112 27
5 174 46 112 17
1] 156 0 252 57
7 126 45 160 18
8 54 20 63 i 24
a 54 k| a8 36

10 9 0 84 9

Figure 6.2.6.3 Table - Size Of Each Function Types

Function Types (Excluding External Interfaces)

100%

BO% |

60% ;

40% |

20% -

Nember Of Function Points (%)

:i." . —k - a il
t0 8 9 2 5 7 1 4 3 8B

Figure 6.2.6.4 Graph - Size Of Each Function Types (In Percentage)
Sorted According To Overall Size
From Figure 6.2.6.4, both pieces of software with the smallest (Group 10)
and largest (Group 6) size had zero (0) for its external output. In Group 10's case,
report options were in the menu’s structure but they were not functioning when

tested. With Group 6, the report options had been completely omitted.

Page 130

CHAPTER 7 : MEASURING PRODUCTIVITY

7.1 MEASURING THE PRODUCTIVITY OF PROJECT GROUPS

The productivity of developers is mainlj:r concerned with software project
management. it is used to measure the software development “output” as a
function of effort applied. This chapter will present the productivity of each group
based on two methods. The first method is based on the Ausiralian Software
Metrics Association Project Databases - Release 3 (1993b). It measures
productivity as Project Delivery Rate (ie. the number of hours required to deliver

one function point) and is derived using the equation below.

Effort { Hours)
Size (Function Points)

Project Delivery Rate =

The second method is based on the productivity equation that is often used in

Function Point Analysis (Pressman, 1992).

Size (Function Points)
Person - Month

Productivity =

7.2 PROJECT DELIVERY RATE

As mentioned above, this method of measuring productivity is based on the
documentation provided by the Australian Software Metrics Association Project
Database - Release 3 (1993b). Figure 7.2.1 and 7.2.2 presents the project delivery

rate for each group.

Project
Group Maximum | Totsl Effort Delivery Rate
Number Group Size {Hrs) Size {FPs) (Hrs/FP}
i 5 237G 341 7.0
2 5 2200 271 8.4
3 4 1600 375 43
4 5 2380 356 6.7
5 4 1277 an 41
B L 2047 414 4.9
7 4 1950 319 6.3
8 k| 2000 143 14.0
g 6 2550 195 1341
10 5 1370 9 151
Average : 1974 280.8 8.3
Minimum : 1277 91.0 4.1
Maximum : 2550 414.0 151

Figure 7.2.1 Fable - Project Delivery Rate

Page 131

16.0 -
14.0 §
12.0 +
10.0 4
8.0 1

i
6.0 T 4‘1

Delivery Rate {Hrs/FP)

Project Delivery Rate

a1

6.3 8.7 70

131

140

154

43 4.9

404

0 -~

2ol [_l

J.0 5 - . — .
3 6 . 7

4 1

Group Number

10

Figure 7.2.2 Graph - Project Delivery Rate In Ascending Order

Figure 7.2.3 presents the types of software and hardware development
platform used by each group. Seventy per cent of the groups used Microsoft

Access, twenty per cent used Paradox for Windows and ten per cent used

Objectvision Pro.

Group Language | Language | Hardware
Number Type Name Platform
Micrasoft Persenal

1 4GL Access Computer
Mictosoft Personal

2 AGL Access Computer
Paradox For| Personal

3 4GL Windows | Computer
Microsoft | Perscnal

4 4GL Actess Computer
Microsoft Personal

8 4GL Access Computer
Paradox For} Personal

i} 4Gt Windows | Computer
Microsaft Personal

7 4GL Access Computer
Microsoft Personal

8 4GL Access Camputer
Microsaoft Persanal

9 4GL Access Computer
Objectvision| Personal

10 4GL Pro Computer

Figure 7.2.3 Table - Software Development Platform

Page 132

Breakdown Of Project Delivery Rata
Number Of
Groups Minimum [Maximum | Average
Microsoft

Access 7 4.1 140 B.5

Paradox For
Windows 2 43 49 4.6

Cljectvision
Pro 1 151 159.1 15.1

Figure 7.2.4 Table - Breakdown Of Delivery Rate By Software Type

Project Delivery Rate By Software Type
151

@ 16.0 T
g 10
e 1204
2 = 1004 8.5
8 & i
5@ 807
'*;s' L &0 % - 4.6
[+ N :
» 40 -
o :
g 207 |
< 0.0 - ; —

Mcrosoft Paradox For Objectvision Pro

Access Windows

Software Typa

Figure 7.2.5 Graph - Project Delivery Rate By Software Type

From the available systems software, the majority of the groups
selected Microsoft Access. Surprisingly, groups using Access seem to have a
jower delivery rate of 8.5 Hrs/FP than the groups using Paradox for Windows
which not only produced the largest software but also had a very high delivery
rate, with an average of 4.6 Hrs/FP. It is important to point out that only two
groups used Paradox for Windows - a very small sample. Objectvision Pro was
only used by one group, therefore it is very difficult to make any definite

conclusion,

Page 133

7.3 PRODUCTIVITY

This section will present the productivity rate of each project group. The
method for determining the groups' productivity is derived by dividing the size of
the software in function points with the number of person-months worked. Before
the productivity rate can be derived, it was necessary to first determine the number
of person-months spent developing the software in each group. In this particular

case, the number of person-months was defined based on the following three

assumptions.

Q Members of each group spent four hours during the weekdays, working on
the project: |

0 Members of each group spent six hours during the weekends, working on
the project.

Q@ There are four weeks in a month.

This was necessary because the data regarding the number of actual hours spent by
each student were not avatlable. It also provides a means to compare the 1993
software engineering project with future students’ projects. Based on these
assumptions, it is calculated that each student could spend 32 hours per week on
the project, bringing a total of 128 hours per month. From this value, the number
of person-months spent by each group can be derived. The data are presented in
Figure 7.3.1 and 7.3.2.

Group [Tota] Efforty Person-

Number {Hours) Month
1 2370 18.5

2 2200 172

3 1600 125

4 2380 18.6

5 1277 100

8 2047 16.0

7 1950 152

8 2000 1586

g 2530 19.9
10 1370 0.7
Average : 154

Minimurn 10.0

Maxitmum : 19.9

Figure 7.3.1 Table - Deriving Number Of Person-Month

Page 134

Number Of Persun-ifonth Per Group

199
20.0 1 185 1868

180 1 158 160 72 "]
16.0 +
140 1 125
120 1 10.0 107
100 + : '
80+
6.0 ¢
4.0 +
20| q 1
0.0 o y } : : : . L1
5 10 3 7 8 8 2 1 4 *]

Parson-Month

Group Number

Figure 7.3.2 Graph - Number Of Person-Month (In Ascending Order)

After deriving the number of person-months for each group, the
productivity rate for each group was determined. Figures 7.3.3 to 7.3.4 present the
productivity rate in terms of function points delivered by each group and by each
student (on average) of a group. These figures are derived by using the following

the equations.

Size (Function Points)

Productivity Rate Per Group - Person =

Number Of Person - Month
Productivity
Rato Por
Qreup Number Of Parson- | Greup-Porson

Number Students | Siza {FPs) | Month {PR) {FPs/PM)
-1 5 kYY) 18.5 18.4
2 5 2n 17.2 15.8
3 4 ars 12.5 0o
4 5 56 186 19.1
5 4 31 100 H2
6 5 414 16.0 259
7 4 kAR i5.2 20.4
8 3 143 15,6 92
) 8 195 19.9 8.8
10 5 81 10.7 8.5
Avarage ! 168.8
Minimum ; 8.6
Maxlmum ¢ 32

Figure 7.3.3 Table - Productivity Rate

Page 135

Group-Parson Productivity Rate By Group.

B0+

3 3099 58 7]
g :

2 250+]

g 20.0 18.4 191 23;4

« 2007 158 . = [

& 1504

S

£ 10.0 + .

€

g 504}-

0.0

Group Num ber

Figure 7.3.4 Graph - Group-Person Productivity Rate By Group

The data presented in this section (Section 7.3) will not be used in the
remaining sections of this chapter, It will be used in Chapter 10 for the final

analysis.

o Pagemde

7.4 STUDENT PROJECTS VS PROFESSIONAL PROJECTS

This section compares the project delivery rate (hours to deliver one

function point) and productivity rate (function points per person-month) of student
projects against projects developed by organisations from industry. The data
presented in Figures 7.4.1(a) and 7.4.2(a) are details of projects developed by
organisations from the industry. It is taken from the Australian Sofiware Metrics
Association (ASMA) Project Database - Release 3 (1993b). In total, there are 86
projects from 15 organisations. The data below are taken from eight projects
developed for the personal computer platform and are categorised ir order to make
a comparison of projects of a similar type. Figures 7.4.1(b) and 7.4.2(b} further
refined the data t(; present those projects that were developed using 4GL tools. The
data presented in Figures 7.4.3 and 7.4.4 are details of projects developed by the
software engineering students. The data are presented in the format used by the
Australian Software Metiics Association. This is to improve the means of
comparing the results of students and professional projects. Figure 7.4.5 presents

a glossary of the terms used on the tables below.

Defivery
ASMA Rate Size | Hardwara | Time Recording | Development
(1] (Hrs/FP} | {FP} | Plaform | Level | Method Type
4 18.5 502 PC 1 o] NDIX
8 1.7 a17 pc 3 D ND/X
i0 19 273 PC 3 B ND
1 1.3 220 PC 1 A ND
16 55 1355 PC 1 E CPIX
24 43 597 PC 1 C NDP1
49 23 1362 PC 3 B ND
82 6.9 151 PC 1 A ND/PS
Average: 53 8721
Minimum: 13 151
Maximum:j 185 1362

Figure 7.4.1 (a) Table - New Development Of Projects (ASMA, 19931)

Page 137

Balivery R
ASMA Rato Sira | Hardware | Time Reconding | Development

iD {Hrs/FP) | {FP} § Platform | Level | Mathod Type
] 1.7 917 PC 3 (3] ND/X
10 1.9 273 PC K B ND
11 13 220 PC 1 A ND
24 43 597 PC 1 C NDR/P1
49 2.3 1362 PC 3 B8 ND

Avernge:| 23 673.8
finimumn : 1.3 220
Maxbnum : 4.3 1362

Figure 7.4.1 (b) Table - New Projects Developed Using 4GL Tools (ASMA,

1993b)
Elapsed t Maximum
ASMA Year Language | Application Time Team
1D | implementsd | DEMS! Type Generator | CASE) {Monihs) Size
4 1891 Yes IGL No 14 [
9 1991 Yes 4GL No No 6
10 1981 Yes 4GL No Na 5 2
11 1931 Yes 4GL No 3 2
18 1992 Yes GL No Na
24 1552 Yes 4GL No 6 &
45 1992 Yes 4GL No " 4
82 1892 Yes 3GL No Yes 26 3
Figure 7.4.2 (a) Table - Project Attributes (ASMA, 1993b)
Elapsed | Maximum
ASMA Year Language | Application Timeg Team
1D | kmplemented | DBMS | Type | Generator | CASE | {Months) | Size
9 1991 Yes 4GL No No 6
10 1891 Yes 4G No No 5 2
13 1991 Yes 4GL No 3 2
24 592 Yes 4GL No 6]
49 1992 Yes 4GL No 11 4
Figure 7.4.2 (b) Table - Project Attributes Of Projects Developed Using 4GL
Tools (ASMA, 1993b)
Delivery
Group Rate Size | Hardware | Time Recording | Development
Number Hrs/FP) | (FP) | Platform | Level | Methed Type
1 7 4 PC 1 B ND
2 8.1 271 PC 1 8 ND
3 43 375 PC i B ND
4 6.7 356 FC 1 8 ND
5 4.1 31 PC 1 B ND
6 4.9 414 PC 1 B ND
7 6.3 an PC 1 B ND
8 1 143 PC 1 a8 ND
9 13.1 185 PC 1 B ND
10 15.1 &1 PC 1 =) ND
Average : 8.4 280.8
Minimum : 4.1 91
Maximum ;| 151 414

Figure 7.4.3 Table - New Development Projects (Student Projects)

. Pagel38

i Elapsed | Maximum
Group Year Language | Application Tima Team
Number | implemented |DBMS| Type Generator | CASE | (Months) | Size
1 1983 Yes 4GL Yes - 9 5
2 1993 Yes 4GL Yes - 9 5
3 1993 Yes 4GL Yes - 9 4
4 15493 Yes 4GL Yes - 3] 5
5 1983 Yes AGL Yes - 9 4
6 1982 Yes 4GL Yes - 2] 5
7 1993 Yes 4GL Yes - 9 4
] 1993 Yes 4GL Yes - g 3
9 1993 Yes 4GL Yes - L] §
10 1993 Yag 4GL Yes - 9 5

Figure 7.4.4 Table - Project Attributes (Student Projects)

[HARDWARE PLATFORM DESCRIPTION_ -~ . .= -
| PC Personal Computer
: TIMERECORDING LEVEL - §- -~ -~ ' DESCRIPTION - = -
) 1 Development Team
2 Levet 1 plus Developmert Team Support
3 Level 2 plus Qperating S 1t Centre _
TIME RECORDING METHOD) -~ . - =i : . DESCRIPTION -0 - =
A Stalf Hours (Recorded)
8 Staff Hours (Derived)
C “Productive” Time Only (Recorded)
+] A combination of methads
E Neither A, Bor C
DEVELOPMENTTYPE ~ - DESCRIPTION -
ND New Development
NDIX Unknown
ND/P1 New Development - Phase 1
ND/PS New Development - Packaged Software
CPX Unknown

Figure 7.4.5 Table - Glossary Of Terms Used By ASMA (1993b)

Based on the results presented in the tables above, it is clear that
professional developers are producing function points at a higher rate than
students. The data from ASMA shows that professional developers took around
5.3 hours to deliver one function point, whereas the students took around 8.4
hours. Another interesting result showed that professional developers that used
. 4GL tools took around 2.3 hours to deliver one function pont. The size of the
software produced by the students are also relatively small when compared with
the delivery rate and elapsed time. Figures 7.4.6 (a) and 7.4.7 (a) combined the
data from the ASMA and student projects. Similarly, Figures 7.4.6 (b) and 7.4.7
{b) combined the data from ASMA projects developed using 4GL tools and

student projects. The data in the table are sorted according to the projects' delivery

Page 139

rate. The Project ID with a prefix of “P” signifies a professional project and “S”, a

student project.
Elapsed
Project Delivery) Size Time] Maximum
ProjectID | Rate (Hrs/FP) | (FPs} | (Months} | Team Size
Pt 1.3 220 3 2
P9 1.7 917 6 -
P10 19 273 5 2
P4g 23 1362 1" 4
S5 4.1 an g 4
P24 43 597 6 6
S3 43 Aars 9 4
56 4.9 414 2 5
P16 55 1355 - -
57 6.3 N 9 4
S4 67 356 9 5
Pa2 5.9 151 26 3
] 7.0 L3 9 5
s2 8.1 2N] §
S9 131 1956 9 6
S8 14.0 143 9 3
s10 15.1 2l 9 5
P4 18.5 502 14)
Nole : Prefix “P" signifies Professional Project and 3" signifies Student Project

Figure 7.4.6 (a) Table - Professional Projects VS Student Projects

Professional Projects VS Student Projects

20.0 T 18.5

180 +
160+ o 151 F

14.0 - 131 7 1
T
12.0?

100 + 8.1
30_ ga 67 69 7.0

Delivery Rate {Hrs/FP)

BOT 41 43 43 49 >
40 + 23

i 1.7 18
20'13 H ”
00

P11 P9 P10 P49 85 P24 83 56 P16 57 54 Paz 51 82 89 S8 510 P4
Project ID

Note ; Prefix "P" signifies Professional Project and *&°" signifies Student Project
Figure 7.4.7 (a) Graph - Delivery Rate Of Professional & Student Projects

Based on the table above, alimost 75 per cent of the professional projects
are on the upper half of the table and the majority of the students' projects are on
the lower half. As mentioned before, it clearly shows that professional developers

are more productive. The two professional projects (P82 and P4) appear to be less

productive, However, it is important to note that P82 took 26 months to deliver
151 function peints, and P4 took 14 months to deliver 502 function points.
Furthennore, both projects were dcveloped using 3GL languages without the aid of

an application generator.

Elapsed
Project Delivery | Size Time |Maximum Yeam
Projoect 1D Rats {Hrs/FP) {FPs) | (Months) Sire
P11 1.3 220 3 2
P9 1.7 817 & -
P10 18 273 5 2
P49 23 1362 11 4
S5 41 kY| 9 4
P24 43 597 6 6
83 43 TS 9 4
s7 6.3 9 | 4
S1 7.0 kPE| 9 5
S6 49 414 g 5
58 14.0 143 9 3
510 15.1 91 9 5
52 8.1 an 9 5
S4 67 358 9 5
89 | 13.1 168 : 6

Note : Prefix “P* signifies Professional Project and “S” signfies Student Project
Flgure 7.4.6 (b) Table - Professional Projects (Using 4GL Tools) VS Student
Projects

Profesclonal Projects {Using AGL Tooig} VS Student

Projects
15.1
16 140
1 134 [
%12-- BREN:
£ 104
s 8.__ BA B? 70
E‘ 8+ a1 43 434
3 47 23 :
& l1a 1719 I I I
2+ i
o.n i,

P‘I1 P9P10F|4955P2483 58 S7 S4 31 82 S8 88810
Projact ID

_ Note : Prefor "P" siuﬂ-ﬁres Professicnal Project and “3° slgnifies Student Project
Flgure 7.4. 7 (b) Graph - Delivery Rate Of Professional (Using 4GL Tools)
& Student Pro;ects

B Page 1 41 ;) e

Delivery Rate - Student Projects VS ASMA Projects

a N
Delivery Rate (HRs/FP)

.,
[=TS B S - I]

S10 88 89 P11 S2 PO S5 S7 ST S4 S3 556 P24 P9 P49
Project iD

||:|Stze (FPs) —e— Delivery Rate (Hrs/FP) }

Note : Prefx P signifies Professional Project and “5* signifies Student Project
Figure 7.4.8 Graph - Delivery Rate VS Size
Figures 7.4.6 (b) and 7.4.7 (b) show all professional projects developed
using 4GL tools are on the upper half of the table. Figure 7.4.8 provide further

supporting evidences that professionat developers are more productive.

The table below (Figure 7.4.9) is taken from Caper Jones (1991, p. 454).
The data was collected by Caper Jones’ company Software Productivity Research
{SPR). The main objective for having this data is to enable a comparison between
the productivity rate of professional projects against the student projects. As
before, the data from the students’ projects are collected and presented in the
format used by the SPR. However, to ensure a reasonable comparison, the number
of person-months was redefined. The number of hours each student could spent

was set to 40, bringing a total of 160 hours per month. The data from the students’

projects are presented in Figure 7.4.10.

Page 142

Effort | Schedule
Size | (Person- | (Elapsed Documen- | Productivity
Code | Tecimology | Type |(FPs) | Months) | Months) | Stafi | tation {FPs/PM
A ME b 68 403 105 38 18459 14.58
B8 MF O 193 138 8.0 23 189 13.99
C MF o 145 16.0 35 4.6 166 206
O MF £ 63 %2 2.0 26 163 1242
E AF D B9 16.2 az 44 174 426
F ME O 437 1100 8.0 14.4 335 . 380
G MIF M 288 30.8 83 59 380 9,36
H MF E 604 1643 220 6.6 1000 368
Jd PC O 392 340 110 at 914 11.53
K MF E 202 122 25 az 87 16.50
L MF E 57 .} 5.0 1.5 108 9.83
M PC £ 80 0.0 113 63 1407 160
N MF D 79 T4 7.0 1.0 12t 11.06
P PK E 513 044 7.0 14.9 118¢ 491
Q MF E 671 186.9 16.0 11 ¥4 1541 359
R MF M 3162 1200 1240 10.1 2135 25.08
g MF D 158 285 3.7 48 450 554
T MF D 63 14.2 4.3 33 |- 110 444
1] PC - E 405 350 5.3 7.0 1185 10.95
- Average ! 429 52.4 7.8 6.0 716 9.30
KEY:
TYPE TECHNOLGQGY
D = Development MF = Mainframe
E = Enhancement PC = Micro Computer
M = Maintenance PK = Package

Figure 7.4.9 Table - Productivity Data Taken From SPR (Jones, 1991)

Effort Schedule
Size | (Person- | (Elapsed Documen- | Produciivity
Code | Technology | Type | (FPs}] Months) | Hanths) | Staff tation (FPsIt3 i)
i PC D kY 14.8 9.0 5.0 - 23.02
2 FC D 27t 138 9.0 5.0 - 19.71
3 PC B 375 10.0 9.0 4.0 - 3750
4 PC D 356 149 9.0 5.0 - 2393
5 PC D 311 8.0 9.0 40 - 38.97
5] rC o 414 128 9.0 5.0 - 32.36
7 PC D 3t 12.2 8.0 4.0 - 25,52
a PC o] 143 125 8.0 30 - 11.44
9 PC D 185 $5.9 8.0 6.0 - 1224
10 [D, % 3.6 9.0 5.0 - 10.63
Average : | 281 12.3 9.0 46 - 23,53
KEY:
TYPE TECHKOLOGY
D = Development PC = Migcro Computer

Figure 7.4.10 Table - Productivity Data Of Student Projects

The data from SPR is different from that obtained from the ASMA. Here,
the students appear to be more productive than those projects from the SPR. The
students were delivering around 23 function points per person-month, whereas the
SPR projects were only delivering around 9 function points. It isl important to
point out that the students’ projects were not completed. 6ut of the 19 projects

from SPR, 3 were developed for the personal computer platform. Among the

Page 143

enhancements. When this data is separated from the main table (See Figure
7.4.11), a separate set of averages were derived. Again, it shows that the SPR
projects were delivering less function points per person-month (around 8 function
points per person-month). The average software size, elapsed month and number
of staff were very similar. But the effort put in by the SPR projects were very high
(around 40 person-months) when compared to the students’ projects (around 15
person-months). Since many details about the projects from SPR were kept
confidential (Jones, 1991), it is not possible to Idetermine what causes the low
delivery rate. One possible reason could be the different method that SPR used for

deriving the project function points.

Effort Schedule
Size | (Person- | {Elapsed Docurmnen- | Productivity
Code | Technology | Type | {(FPs){ Months} | Months) | Staff tation {FPs/PM
J PG D 382 34.0 11.0 31 914 11.53
M PC E 80 500 11.3 6.3 1407 160
i) P E 405 35.0 5.3 7.0 1195 10.95
Average : 292 38.7 8.2 5.5 1112 3.03
Figure 7.4.11 Table - Productivity Data From SPR PC Projects (Jones,
1991)

The graph in Figure 7.4.12 presents the productivity of both sets of
projects together with the size of the soflware. As mentioned before, SPR projects
were producing rather large software but their productivity rate was quite low.
Though the majority of the students’ productivity rate were quite reasonable, there

were a few that were very low and had a small software size,

Page 144

Productlvity ~ Student Projects VS SPR Projects

450 ~ - 35.00
400 2 1 {71 []4 30002
350 - _ =
w0 - Pt 2500
L2201 B E"“*v-—- I\ // 11 20.303
by i . _ E
g0~ 4 x 1500
@ 450 — .y, 3
100+ . i 1o.ao§
50 = T 5.00
0 - r - . 1 . : +~ 0.00

t

M 10 8 8 2 5 7 1 4 3 J U &
Project ID

=1 Size (FPs) —o-— Productivity (FP/FM) :

Note : Project ID in 2iphabet refers to SPR projects, those in numerical value refer to student projects.

Figure 7.4.12 Graph - Productivity Rate : Student Projects VS SPR
Projects

7.5 SUMMARY

Figare 7.5.1 presents the compilation of productivity rates denved from
the sections above. Groups with high productivity rates are represented in bold

typeface and those with low productivity rates are represented in bold-italic

typeface.
Group Productivity § Productivity Project
Number [Rate Of Each | Rate Of Each | Delivery
Group Student Rate
{FPs/PM)} {FPs/PM) {HrsiFP)
1 230 4.6 7.0
2 19.7 39 8.1
3 75 9.4 4.3
4 239 4.8 67
5 39.0 9.7 4.1
6 324 6.5 49
7 255 6.4 63
8 114 2.8 14.0
9 12.2 2.0 13.1
10 10.6 2.1 15.1

Figure 7.5.1 Table - Overall Productivity Rate

Groups 8 and 10 had the lowest delivery rate, each taking 14 and 15.1
hours to deliver one function point, respectively. Groups 3 and 5 had the highest

delivery rate. They were delivering around 30 function points per person-month,

Page 145

with each student producing around 7 function points. The size of the their

software was well above the average size of 280.8 function points.

When the statistics of students’ projects were compared with the statistics
of professional projects from the ASMA, it shows that the students took a longer
time to deliver one function point, at a rate lower than the ASMA average. Yet
when the same statistics were compared with statistics of projects from SPR, the
students were delivering higher function points per person-month. Of course, witen
comparing statistics like these, there are other aspects which need to be taken into
consideration, aspects such as the type of applications being developed and the
type of software aevelopment platform used. This information was not known for
the SPR projects. ‘ |

Page 146

CHAPTER 8 : MEASURING SOFTWARE QUALITY

8.1 MEASURING SOFIWARE QUALITY

It is difficult, if not impossible, to develop software that is totally perfect.
There will always be some probiems. Some of these problems can be casily fixed
whilst others may require a considerable amount of rework. The software that was
produced by the students was certainly no different This chapter will present the
quality of the software based on the number of defects found. The equation used to
derive the quality of these software are taken from Pressman (1992, p. 47).

Defects
Function Points

Quality =

The definition of defects may vary from person to person. In this case the

defects have been classified as follows :

| Q Any operation that causes the application to “halt” (in Microsoft Access)
or terminate during processing without making any changes to the external
logical files.
0 Any operation that was reported to be successful but failed to complete or
achieve its designated task(s).
O Any defects that were detected during the evaluation process (sce

Appendix A for more information).

Functions that were presented in the software menus but not implemented
were not counted as defects because they were not counted as function points.

Defects were only counted on functions that were delivered.

Page 147

8.2 QUALITY OF THE SOFTWARE

This section presents the quality of the software evaluated. For more
information on the types of defects or bugs that were found, see Appendix A. The

results on the quality of the software are presented in Figures 8.2.1 and 8.2.2.

Group Size Defects Quality
|__Number {FP=)) {DIFPs)
1 31 3 0.0088

2 2N 21 0.06775

3 375 10 0.0267

4 356 6] 0.0169

5 n 2 0.0064
6 414 16 0.0286

7 N 4 0.0129

8 143 2 0.0140
g 185 4 0.0205
10 91 9 0.0968
Average ; 7.7 0.0321

Kinimum : 2 0.0064

Maximum : 21 0.0589

Figure 8.2.1 Table - Determining Software Quality

Software Quality 00089
0.1000 - _
0.0900 +
0.0775
0.0800 + -
& 0.0700
N
008001
& 0.0500 4
a 0.0386
E 0.0400
T 0.0300 | 0.0267
c 0.0169 O02%
0.0200 + 0.0129 0.0140
o 0.0064 0.0088 -
0100 + 1__] D D
0.0000 [el ; ; . .
[1 7 8 4 9 3 6 2 10
Group Number

Figure 8.2.2 Graph - Software Quality

Page 148

CHAPTER 9 : MEASURING SOFTWARE USABILITY

9.1 MEASURING SOFTWARE USABILITY

This chapter describes the method used for determining the usability and
leamnability of the software produced by each project group. It will also present the

results derived from the usability exercise.

9.1.1 Usability Exercise

The usability exercise was conducted by presenting a group of five
independent students with a list of tasks to be performed by each application.
The students that took part in this exercise were required to have some
background with Microsoft Windows. Students in the 1993 Software
Engineering Project were not allowed to participate. Each student was given

30 minutes to perform the tasks specified.

Since each of the applications covers different aspects of the orchard
project, it was difficult to create a generic usability test plan. Therefore for
each application, a unique set of tasks was provided. This set of tasks consists
of four main sections. Each section focused on one module of the application.
The tasks to be performed included creating, deleting and updating of records.
The students were also required to check whether an updated record was

indeed updated, and a deleted record was deleted.
The students were required to log their start and finish time for each set

of tests. At the end of the test, the students were asked to comment to their

perception of the application’s usability and leamability.

Page 149

9.1.2 Usability Test Plan

-

This section describes the format of the usability test plan and its
format on how data were collected from each student (See Figure 9.1.2.1).
The tasks specified from A to D vary from application to application, although

the objective of its operations remain the same.

SOFTWARE #1
MAME :
TIME (START}:
Pleasa Circle One Approprate Answaer
Very Very
TASK Easy’ OK Hard Comments
A 1. Creats two FRUIT records. 1 2 a 4 5
2 Upcate onwe of the FRUIT recorda, 1 2 3 4 5
3. Delote one of the FRUIT records 1 2 3 4 5
4, Find the updated record. Is the rscord updated .
propeily? . Yes No
5. Find the celated record. Is the record daleted? Yes No
B 1. Creats two EMPLOYEE records. 1 2 3 4 5
2. Updats one of tho EMPLOYEE records.
1 2 3 4]
3. Deleto one of the EMPLOYEE racords 1 2 3 4 5
4, Find the updated record. is the record updated
y? Yes Mo
5. Find tho delsted record. 18 the record delated? Yeos No
c §. Croate twe SALES records, 1 2 3 4 5
2 Update ono of the SALES records. 1 2 3 4 5
3. [elots one of the SALES records 1 2 3 4 5
4, Find the updated record. is the rocord updated
property? Yes No
5 Find the deleted record,)s the record defeted? Yes HNo
D 1. Create two BLOCK records, 1 2 3 4 5
2. Update cna of the BLOCK recards. 1 2 3 4 S
3. Delete ooe of the BLOCK records 1 2 3 4 5
4, Find the updated record. Is the record updated
propery? Yes No
5. Find the deleted recerd. |s the record deleted? Yes Ma
LEARNING :
How easy was it to gat usad to the application? 1 2 3 4 5
USAGE;
Was it easy to locate the modutes? 1 2 3 4 5
WWas the application easy to usa? 1 2 3 4 5
QVERALL FEEL: Great 0K Lousy
How did the applicatian feel to use? 1 2 3 4 5
TIME [FINISH) |

Figure 9.1.2.1 Table - Fermat Of Usability Test Plan

9.1.3 Deriving Usability Of The Application

Not ali the students were able to perform all the tasks épeciﬁed. The
results from each task varied from student to student. Some were able to

petform a task successfully whiie others encountered problems. Therefore to

Page 150

gather the score for each task, an average was derived. Averages were also
derived for the applications” LEARNABILITY, USAGE and OVERALL
FEEL. Responses with “YES” or “NO” were calculated by deriving a
percentage based on the number of “YES” responses. This is to determine the
percentage of the application’s operation success rate. The amount of time
taken was also calculated in terms of minutes. Figure 9.1.3.1 presents.the raw

data collected from the exercise.

Average Tasks Locate ! Ease Of | Overall Tasks Average
Group Score Leamnablity] Modules Use Feel Success Rate | Duration
Number § (Out Of 60) {OQut of 5) 1(0ut of 53§ (Cut of 5} {Out of 5)] {Qut Of BRO%) & (Minutes)
1 47.8 3.8 3.2 38 3.4 640 328
2 50.8 34 38 34 3.2 480 20.8
3 472 34 42 34 3.2 720 322
4 £4.0 44 42 4.4 4.4 720 186
5 51.8 4.2 48 46 46 200 19.2
6 47.7 3.8 iB 36 32 715 4
7 49.0 4.3 48 4.4 4.0 T40 2.8
8 528 3.2 6 3.0 26 600 22.4
2] 54.6 4.4 3.8 4.0 44 T47 202
10 15.8 1.3 3.5 1.3 1.0 125 22.2
Average 475 a7 4.0 3.6 3.4 629 252
Minimum 198 13 3.2 13 1.0 125 19.2
Maximumn 54.6 4.8 4.8 4.6 4.6 800 32.8

Figure 9.1.3.1 Table - Raw Usability Data

After the raw data were derived, some of the data were scaled down to

a more reasonable range, and the data were weighted as follows :

Average tasks score 10
Learnability 5
Locate modules 5
Ease of use 5
Overall feel 5
Task success rate 5

2

Average duration

e ¢ O ¢ ©° o0 ©

For the Average Duration, time ranges between 11 to 20 minutes are scored as
2 and 21 to 30+ minutes as 1. The weightings were determined by a subjective
assessment of the importance if each element. Figure 9.1.3.2 presents the

final set of data derived.

Page 151

Average Locate § EaseOff Overal Tasks Average
Group | Tasks Score §Leamabllity] Modules § Use Faal §Success Rsta | Duration
Numbar [(Out ©110) § (Ovt of 5) J(Out of 5Y3(0ut of 5)|{Out 0i 5)] (OutOF5) R{Out O12)
1 8.0 3.8 32 as kX 4.0 1
< 8.5 34 3.8 34 3.2 30 1
3 78 34 42 34 32 4.5 1
4 9.0 4.4 42 4.4 4.4 45 2
5 8.8 42 4.8 48 48 5.0 2
8 78 a8 38 18 3z 45 1
7 8.2 4.8 4.6 4.4 4.0 46 1
B 8.3 3z 36 kX 26 38 1
9 S 4.4 3.8 4.0 44 47 2
10 3.3 13 3.5 1.3 10 0.8 1
Average 7.9 3.7 4,0 as 3.4 39 1.3
Minimum 33 i3 32 13 10 0.8 10
Maximumt 9.1 48 4.5 46 46 50 20

Figure 9.1.3.2 Table - Adjusted Usability Data

After all the necessary daia were adjusted, the total usability score for
each application was derived. These scores were derived by calculating the
sum of all the data presented in Figure 9.1.3.2, of each application. The total
usability scores were presented out of 37 Figure 9.1.3.3 and 9.1.3.4 presents

the total usability score of each application,

Total
Group §Usability Score
Number §_(Out Of37)
2r1.0
28.3
27.6
329
338
7.8
36
26.0
2.4
i2.2
Average 2.7
Minimum 12.2
Maximum 338

"Figure 9.1.3.3 Table - Total Usability Scere

SOENNDNEWN -

Page 152

Software Usabllity Score

100 1
5.0 1
0.0

338
= 307 31e 324 329
5 300} 250 263 270 6 W8 i} oplop
5 20 T
g 200} |
a
& 150 122
z
3
b
-

10 8 2 1 3 & 7 9 4 5
Group Num ber

Figure 9.1.3.4 Graph - Total Usability Score

Based on the average score, the majority of the applications did very well
from the usability test, with the exception of Group 10’s application. It scored the

lowest and its well below the average score.

~ Page 153

CHAPTER 10 : FINAL ANALYSIS AND CONCLUSION

10.1 FINAL AMNALYSIS

All the data necessary for the final z;nalysis has been collected and
presented in chapters 3 to 9. Information on software size and the number of
defects found has been derived. Albrecht’s function point method has been used to
measure the size of the software. At the same time, guidelines have been
established to ensure that the software was being measured consistently. As for the
number of defects, the same approach was derived from the tests performed on
each piece of software. The usability of the software was determined by asking a
group of students to perform a series of tasks on each piece of software and
provide feedback on its usability, through the use of a questionnaire. Members of
the judging panel provided the information on team scores, solution functionality
and solution quality. The students provided the information on cross scores. The
students’ course averages were obtained from the university’s Student Services
Department. The remaining information was gathered from the software
engineering students by means of questionnaires. It has to be stated that the
accuracy of this information is dependant upon the accuracy of the data provided
by ihe students. The information gathered has been divided into 30 sub-categories
which fall under two major categories, Process!® and Product!’. These sub-

categories are listed below :

PROCESS

® Team size o Total hours spent ¢ Requirement time

¢ Analysis time e Designtime o Codingtime

e Testing time * Requirement time (%) ¢ Analysis time (%)

o Design ime (%) o Coding time (%) o Testing time (%o)

¢ Project management o Onschedule e Team work

o Contribution to project ¢ Cross scores e Averape age

e Course averages e Female students (%) e Part-time students (%)
e Staffadviser'sadvice ¢ APT methodology ¢ Development software
e Access to client » Productivity Rate

16

Process is 2 metric of numerical value that describes a software process such as the amount of

time required to code a piece of software. (For more information, refer to Section 2.2.2)

17

Product is a metric of numerical value that is extracted or derived from a piece of software.

{For more information, refer to Section 2.2.2)

Page 154

PRODUCT :]
e Solution functionality o Solution quality e Software size
s Software usability o Defects found

10.1.1 Description Of Information .

Process
O Team size
The size of each group varied from 3 to 6 students.

Q Total hours spent
The average total hours spent on the project by each group.

Q@ Requirement time
The total hours spent on the requirement phase by each group. (See
Section 2.1,2.1 for the explanation of the development phases)

O Analysis time
The total hours spent on the analysis phase by each group.

O Design time
The total hours spent on the design phase by each group.

O Coding time
The total hours spent on the coding phase by each group.

8 Testing time
The total hours spent on the testing phase by each group.

C Requirement time (%)
The percentage of time spent on the requirement phase by each group.

Q Analysis time (%)
The percentage of time spent on the analysis phase by each group.

{3 Design time (%)
The percentage of time spent on the design phase by each group.

0 Coding time (%e) . _
The percentage of time spent on the coding phase by each group.

3 Testing time (%)
The percentage of time spent on the testing phase by each group.

Page 155

Project management
The average score on how satisfied each group was with the
management of their project. The score was out of 10.

On schedule
Whether each group felt they were able to complete their project on
schedule.

Team work
The average score on how satisfied each group was with the way the
group operated. The score was out of 10.

Contribution to project

The average score on how satisfied each team member was with their
contribution being received by the rest of the team. The score was out
of 10.

Cross scores

Part of the assessment of the project involved each team member
giving a score (out of 28) for the contribution made by other team
members. The cross score is the average of all the scores given by the
members of each group. -

Average age
The average age of the students in each group.

Courses averages
The average of all the course averages of students in each group.

Female students (%)
The percentage of female students in each group.

Part-time students (%)
The percentage of part-time students in each group.

Statf adviser’s advice
The average score on how satisfied each group was with their staff
adviser’s advice. The score was out of 10.

APT methodology

The average score on how satisfied each group was with the use of the
APT methodology. The score was out of 10. ’

Page 156

Development software

Each group had to select their own sofiware platform. This is the
average score on how satisfied each group was with the development
software chosen, The score was out of 10,

Access to client
The average score on how satisfied each group was with the method(s)
used for communicating with the client, The scote was out of 10,

Productivity Rate
The delivery rate of function points per person-month, {For more
information, refer to Chapter 7)

Product

aQ

Solution functionality
The average score of each piece of software’s functionality which was
awarded by the judging panel. The score was out of 25,

Solution quality
The average score of cach piece of software’s quality which was
awarded by the judging panel. The score was out of 25.

Software size

The size of each piece of software (in function points) was derived by
the investigator using Albrecht’s Function Point Analysis. (For more
information, refer to Chapter 6)

Software usability

The average score of each piece of software’s usability which was
derived after conducting a series of usability tests. The score was out of
37. (For more in' xrmation, refer to Chapter 9)

Defects found

The nuinber of defects found on each piece of software was derived
aftér conducting a series of tests. (For more information, refer to
Chapter 8)

Page 157

10.2 STATISTICAL METHOD USED

The next phase, after all the information had been compiled, was to apply
some statistical measurement of correlation to this information. The aim of this
was to determine the relationship (if any), between the information categorised
above. For example, based on this study, questions which could be raised, are,
“Does more time spent by students on software testing affect the quality of the
software?” or “Would more time spent by students on coding produce software of

a bigger size?”. These are some of the questions that will be addressed.

In order to obtain the answers to these and other questions, four types of
statistical methods were considered. These methods were : linear regression,
Pearson’s correlation coefticient, Spearman’s rank correlation coefficient and
Kendall’s rank-order correlation coefficient. Qut of these four statistical methods,
Spearman’s rank correlation coefficient method was selected for the research. The
results obtained through the use of the lincar regresston approach and Pearson’s
correlation coefficient method were abnormally influenced by the outliers!3 in the
data. These two methods are more suitable for normally-distributed attribute
values. Some useful results were obtained using Kendall’s rank-order correlation
coefficient method. However, these were not sufficient for the purposes of arriving

at any major conclusions.

The Spearman’s rank correlation coefficient method was chosen because it
produced sufficient results that were able to address the questions proposed by the
research. The Spearman’s rank correlation coefficient is very similar to the
Pearson’s correlation coefficient method, except that the former is a robdust
meuasure, The use of a robust measure is preferred because *... most software
measurements are not normally-distributed and usually contain atypical values ...”
{Fenton, 1991, p. 102). The rank correlation coefficient method is not easily

influenced by both abnormal values and non-linearity of the wnderlying

1 Qutliers' data are those that are abnormaily high or low in a series of data.

Page 158

relationship. It is also not inclined to be influenced by very large values. The main
difference between Spearman’s and Pearson’s method is that, the former
calculates the correlation coefficient based on the rank of the attribute values
whereas the latter is based on the raw values. Spearman’s is considered better for
“behavioural” data, which best describes the data used here, where large sections

were obtained from survey material.

Spearman’s rank correlation coefficient is denoted by r.. This can be

derived at by using the formula presented below (Freund et al,, 1992, p. 511).

21 5@

S n(P -1

The rank comelation coefficient for a given set of i pairs of x’s and y’s is
calculated within several steps, where x and y are the attribute values (Freund et
al., 1992, p. 511). First the x’s and y’s are ranked among themselves from low to
bigh (or high to low). In this exercise, the values were rank in ascending order.
The rank was obtained by giving the smallest attribute value the rank value of 1,
the next rank value of 2 and so on. In the event where two or more attribute values
are the same, an average of the related rank values is derived and assigned to these
attribute values. The value for 4 is derived from the differences between the ranks
and is substituted into the formula (Freund et al, 1992, p. 511). The correlation
coefficient value varies from -1 to 1, where | indicates a perfect positive linear
- relationship, -1 indicates a perfect negative linear relationship, and 0 indicates no
relationship (Fenton, 1991, p. 102). The results from the analysis are presented in

Figure 10.2.1.

Page 159

09[advd

| Wapead UopeR.Ios JUTY Sutunesds Bujzn DIUGEIR0 SIMeaM L'Z0L 0By

: spuabiy

212001000 LopmoLoY aassg R

§5300Hd

Teamn Suze
Total How s 5 pent
Requiramen Time

Anzhysis Tima

Design Tima

Coding Tima

Tesiing Time
Rzquiremeami Time (%1
Anghmia Time {%)
Dexign Tima (%)
Ceding Time (%)
Testing Tima {%)
Projact Managamaenl
Om Schaduls

Team Work
Contribution Te Project
Crozs Scores

Arsrags Agn

Coursa Avarzga
Femaln Sludanin (%}
Part-Tirra Stydents)
Sizfl Advizer'e Advice
APT Mathodalogy
Pervetopment Softvata
Aczogs To Clienl
Presjuctivity Rate

m oE oy o R W -
=3

10 0.0
nlass
12]065
13§09
14 4045
15 § 0,51
GEOM
17 048
18 §-0.49
19 1015
0§ 006
21 {004
240718
23 [-0.26
afan
25 008
25 022

080
082
010
013
055
fukex]
c.10

058

.81

oiry

028
019
(258
0.45

oz

018
12
-0.05
055
007
Q15
0.43
031

GXd
a4
-0.0e
0.48
v6s
0.27
06z
059
008
[aXo]
0.
018
201
0.25%
o
-0.12
ao3
0.0
0.1z
017
0,47
049
042

083
-0.5%
o.70
032
0.56
Q.73
<085
o441

056

-0.1%

07,
049
0.4
022
-0.12

0.16

051

CIiIO-
047
Q45
-0.58

£33
055
0.20
0.2
13:53
077
0,19
Q50
027
0.0%
[
a ;4
008
0.49
4.3
0.10
o2
0,22
[43-3]
0.42
-0.42

oq?
-0.42
.78
0,39
0.65
01g
-0.64
0.04
O

0.3
.47
-0.27
050
0.01

£53
004

-01g
-0.12

.15
0.1
DA2
-0.E8
085
14
-0.27
853
034
o
3,35
.18
on
-0.25
a.44
£.07
0,22
037

1-0.03

i

025
035
£.50
003
0.04
-0.18
423
-0.25
014
0.19
-0.25
0.36
0405
L2
004
005
QL5

0.28
-0.58
.16
036
0
o1

0.15 |

0,02
-0.42
410
-0.25
3,24
0.50
-p.12

Q.09 -0

.02
253

0.41
.00
011

0.e9
.63
087
055
02e
0,18
0.1

£.67
004

toa7

048
[

017
027

oe3:

038
ol
0.5
~0.04
0.2=
.44
0.50
0.0
0.14

0.M
-0
027
-0.04
-0.52
030

Jo3e
K3
{oso

012
021

a37f
-0.a2
0.33
222
025

g

048
085,

0.25
-0.14

0.08
042
0.02
-0.38

0.0a
.27
05¢
Q.77
023
0.2%
-0.44
D29

0.3z
026
0.02
012
024
017
003

.17
0.15
on
-0.16
0.24
048

0.14
006
-0.22
030
-0.17

.21
019
0.05
033

Flisunr

20
022

835
0.14

£.20

WHA0D UonERLOD 0AREON

LONICUd

Salution Funclanahty
Solution Qualry
Soltwate Size
Sofwerrg Uuakility
Defacts Found

274043
e f03s
94y-ont
0 Fa02
3t ‘O_ﬂ

.21

deg |

012
003
Q12

.04
(.02
407
-0.39
oo

aaz
035
£.32
Rile)
-0.06

027
047
02
0.02
G 45

Q.25
o
0.30
a2é
0.6

045
.58
.56
065
0.19

025
o7z
£.65
024
015

oo7

043

0.16
0cs

408
ooa
£0.15
.04
-0.80

032

el

2. 0,22

T ERE

022

£ 003

-D.24

023
042
-0.22

bes

.40

4.0z
017
.66
-0.03

.41
-0.34
£.03
Q.58
004

.27
022
-0.14
-0.03
037

a.co
0.0
a.15
0.00
-0.31

0.38
0.40
o.0)
025
-0.58

Q11

004
.98 |

£21

oca |

02%

B

004

0T

S5

068
-0.33

039
0.31

103 CONCLUSIONS DERIVED FROM THE ANALYSIS

The conclusions derived from the analysis are presented in themes. In this
study therc are 14 themes. These themes were divided into three categories,
namely Process vs Product (to determine those atiributes of process that most
influence attnbutes of the product), Process vs Process (to determine the inter-
relationship between various attributes of the process) and Product vs Product (to
determine the inter-relationship between various attributes of the product). They

are .

PROCESS VS PRODUCT

o Approach to developing high-quality - low defects software
Ceding reflects on software size and functionality

Results of unrealistic project scope

Quality of students” effort reflects the quality of the final product

PROCESS VS PROCESS

Students and staff adviser relationship

How teams choose to spend their time

Effective team effort and good project management

Drawbacks of working alone in a group project

Importance of selecting the right development tools

Usefulness of using a methodology

Negative impact of older students in a group project environment
Drawbacks of mixed male/female project groups

Productivity of students reflects on coding

o & @+ ® & B & 2 »

PRODUCT VS PRODUCT
* Judging functionality and quality of undergraduvate software projects

Page 161

PROCESS VSPRODUCT .

10.3.1 Approach To Developing High-Quality - Low Defects Softwars
(a) Testing Time vs Solution Quality (0.71)
Testing Time (%) vs Solutien Quality (0.71)
Eresign Time (%) vs Defects Found (-0.59)

The results showed that the teams who spent mere time on
software design and testing, tended to produce better quality software
with less defects.

By spending more time oz design, the teams would be able to
define a better solution to the problem. Vliet suggests (1993, p. 171)
that a éood design is a major factor in developing a successful product.
Vliet (1993, p. 171) postulated that a “well-designed system is easy to
implement, is understandable and reliable, and allows for smooth
evolution”. Conversely, badly designed systems are harder to maintain,
difficult to test and are less reliable. The design phase can be regarded
as one of the most crucial phases in the software development life-

cycle.

More time spent on conducting software testing should enable
students to locate and remove major “rrors and bugs, thereby producing
a better quality software product. During the construction of software,
many errors are bound to be made. Locating and fixing these errors
through excessive testing is a very fime consuming activity and it is fair
to say that not all emors will be found (Viiet, 1993, p. 315). Viiet
suggests (1993, p. 315) that to have good testing is as difficult as

having a good design.
This has been supported by the results thal have been obtained.

However, it would be reasonable to expect the results to show that

extensive testing results in the software having fewer defects. This

Page 162

relationship was not evidenced in the analysis. This may well be due to
time constraints as testing was only conducted against the software
design and coding and not on the software’s logical constraints and

business functionality.

(b) Solution Quality vs Total Hours Spent (0.58)
Solution Quality vs Team Work (0.62)
Solution Quality vs Contribution To Preject (0.51)
The results revealed that teams which spent more time on their
project received higher marks for software quality. It also showed that
if the students were satisfied with their contribution to the project and

worked as a fcam, they also tended to produce better quality sofiware.

Students who spent more time together on group activities
should invariably exhibit high team morale. Working well together also
implied that team interaction was high. When team interaction was
high, students would have an opportunity to maximise their
contribution to the project. This tended to create an environment where
there was no dominant individual controlling the team. Allowing every
student to have his or her say in the project improved the flow of ideas
and suggestions. Having obtained a wider range of ideas and
suggestions, the students could then select those that were applicable to
their problem. Students who were able to produce a well-defined

solution invariably produced a better quality software.

(c) On Schedule vs Defects Found (-0.80)

This result showed that those projects that were on schedule

tended to have less defects.

Page 163

it L A At S e, con i 3 aeah e et ania R Rty e ai . eptes e i rmn e e

The result suggested that teams who completed their project on
time dedicated sufficient time to “proper sofiware testing. It also
implied that the students did not have to rush to complete their
software. Facing schedule pressure often results in poor product quality
(Gilb, 1988, p. 326). Sufficient testing and time to complete the project
were some of the important factors that led to the development of
soffware with fewer defects. Running behind schedule usually has
disastrous effects on the project. Jones (1991, p. 226} said that
sometimes schedule pressure can actually have some positive impact
on thie team morale. Jones (1991, p. 226) also pointed out that
excessive and unrealistic schedules are probably one of the most
“destructive influences in all of software”, Jones (1991, p. 226) stated
that unrealistic schedules not only tend to cause the projects to tai} but
they also “cause extraordinarily high voluntary tumover ameng staff

members”,

10.3.2 Ceding Reflects On Software Size And Functionality

{a) Productivity Rate vs Solution Functionality (0.57)

Productivity Rate vs Software Size (0.79)
Productivity Rate vs Software Uisability (0.66)
Coding Time vs Solution Functionality {0.52)
Coding Time vs Software Size {0.90)

The resuits showed that the teams who were more productive
and spent more time on coding, tended to produce a larger piece of
software with greater perceived functionality. It also showed that the

teams who were more prodtctive, tended to produce a piece of

software with higher usability.

It was apparent that the amount of time that was spent on
coding directly impacted on the size of the software but not necessarily
on its proposed functionalities. This implies that to produce a larger

piece of software, the productivity rate of the students wouid have to be

Page 164

high. It is fair to conclude that the productivity rate of students and the

time spent on coding are inter-related, as shown in Section 10.3.13.

10.3.3 Results Of Unrealistic Project Scope
(a) Analysis Time (%) vs Software Size (-0.66)
Analysis Time (%) vs Productivity Rate (-0.63)"°
Requirement Time (%) vs Software Size (-6.56)
Requirement Time (%) vs Productivity Rate (-0.65)
Requirement Time (%) vs Solution Quality (-0.58)
Requirement Time (%) vs Usability (-0.65)

The results reflected that the students who spent a larger
proportion of their time on analysis and requirement, would produce a
sma!lef piece of software that was lacking in quality and usability. The
supporting results also indicated that the students who spent a larger
proportion of their time on analysis and requirement were less

productive.

The results seem to be unusual. The data presented in Sections
4,2.3 and 4.2.5, implied that the teams generally were not very satisfied
with their staff adviser’s advice and their client. The information
presented in Section 4.3, indicates that the majority of the staff
advisers were inexperienced and therefore, of little benefit to the
students. Accordingly it was apparent that not all of the students were
propetly supervised and the requirements were not clearly defined by
the client. Furthermore, the majority of the students were new in the
area of software development and it was reasonable to say that these
students would not have had sufficient experience to realistically define
their scope. Bearing all this in mind, the analysis and requirement
phases were conducted during the first semester of the project. The

coding phase then commenced in second semester, It was apparent that

19 NOTE : Although Analysis Time (%) and Productivity Rate are both process metric, they are
represented here as supporting results. Al supporting results will be represented in italic.

Page 165

the students then realised that their scope was unrealistic and they were
unable to handle the situation. Confronted with fear and confusion, and
having no positive supervision, the majority of students were left to
their own devices. Hence this led to the negative effects on

productivity, software size, quality and software usability.

According to Pressman (1992, p. 68), the scope describes the
“function, performance, constraints, interfaces and reliability” of the
software. With this project, the students were more concermed with the
functions and interfaces of the software. Unfortunately, these two
requiréments were not clearly defined by the client. Hence the students
had no choice but to define their own set of functions and interfaces.

As a result, some groups fell into the trap of over-defining the scope.

It is recommended that staff members with sufficient
background in software engineering should be assigned to be staff
advisers. This would be fair to the students as they would be abie to
benefit and learn from their staff adviser’s advice. A further
recommendation is that students should have more access to the client.
That would allow the client’s requirements to be easily gathered and

verified.

10.3.4 Drawbacks Of Mixed Male/I'emale Project Groups
{a) Female Students (%6) vs Defects Found (0.76)

The result showed that the software would have more defects if

there were more female students in the group.
This result requires some interpretation, The -groups were

primarily male in make-up, When students were working in group,

some sort of a bond tended to be established between them. Also when

Page 166

working closely together, members of the opposite sex would tend to
be hesitant about voicing out the problems and errors found during the
development of the software. They might werry about hurting the other

member’s feelings or ¢go.

Generally, when a group was comprised entirely of male
students, they tended to be more frank and open toward one another.
But when dealing with a member of the opposite sex, the males tended
to be more polite and less aggressivé. Helen Marshall (1987, p. 45)
proposed that male students were more active and more confident in
debates, whereas female students were more self-conscious when
talking in public. It would seem that the mability to express one’s
opinion outrightly towards a member of the opposite sex was the cause

of this negative impact.

One other possible reason may lie with the mind set of today’s
society. We are now moving towards the twenty-first century and many
have come to believe and accept the right of equal opportunities for
both men and women. But, when it comes down to more technical
matters, men still believe that they are better at handling the situation.
As Marshall (1987, p. 111) said, “many people still feel, for example,
that males should take lead in activities and projects, and that females
shouldn’t be ‘pushy’”. Marshall (1987, p. 42) also argued that a
consideration of the enrolments of tertiary students, would show that
there was a heavy concentration of male students in engineering and
computer science courses and female students in humanities, social
science, librarianship and nursing courses. Assuming that this was the
case, women students may not be taking (or invited to take) a more
active role in contributing to the project. Women students may ended

up only doing clerical activities. If this was the case, the group would

Page 167

only be partially utilising their human resources, hence leading to this
negative outcome. Unfortunately, there were no all-female project

teams on which to further develop this hypothesis.

10.3.5 Quality Of Students’ Effort Reflects The Quality Of The Final
- Product
(a) Cross Scores vs Solution Functionality (0.66)
Cross Scores vs Solution Quality (6.81)
Cross Scores vs Usability (0.53)
Course Averages vs Usability (0.60)

The results disclosed that high cross scores were given by teams
whose sofiware was perceived by the judging panel as representing a
good product. They also indicate that teams with higher course

averages tended to produce software with better usability.

The score for peer-assessment was awarded by each student and
was based on their perception of the overall performance of each
member, It seems to suggest that students who awarded each other high
marks were also happy working as a team. This in itself implies that the
students were satisfied with all the vanious aspects of how their project
team was managed. It was fair to say that teams that feit good about
their own performance were sure that they had developed the software
well. The results above support the conclusion that there was a positive
relationship between the marks aliocated within a group and the marks
awarded by the judging panel for software functionality and quahity.
This was further supported by the usability score that was derived.
Teams having higher course averages also tended to produce software
with high usability. This implied the brighter and harder working

students did have a positive impact on the overall project.

Page 168 y

e e b o o

It is recommended that if similar research is to be conducted in
the future, the students’ scores from the programming units and units
where the students are required to work as a team should be used,
rather than just the students’ course averages. Using these proposed
scores can provide an insight into individual students’ programming

skills and team interaction.

PROCESS VS5 PROCESS

10.3.6 Students And Staff Adviser Relationship
(2) Staff Adviser’s Advice vs Team Work (0.72)
Staff Adviser’s Advice vs Contribution To Project (0.62)
Staff Adviser’s Advice vs Project Management (0.67)

The results displayed that if the students were satisfied with
their staff adviser's advice, they were alsc satisfied with their
contribution to the project, working as a team and the way the project

was managed.

Teams having valued feedback from their staff advisers seemed
to work better as a team, value each other’s contributions and were
happier with the management of the project. If students felt they were
being well-directed, they were happier with the way the team was

working.

10.3.7 How Teams Choose To Spend Their Time
{a) Team Size vs Total Hours Spent (0.66)

The result evidenced that it a team were to have more students,
they tended to spend more time on the project. The data seemed to
suggest that larger teams would have more man-hours to devote to the
vanous tasks. In smaller teams, the students did I:lOt havé the luxury of

verforming some tasks as thoroughly as they would have liked. In

Page 169

certain cases, smaller teams might have had to compromise certain

activities such as software testing.

(b) Team Size vs Hours Spent In Testing {0.66)

The result exhibited that if a team had more students, they

tended to spend more time on software testing.

The observation made was that for larger teams, the students
would have enough human resources to spare for conducting extensive
software testing. Unfortunately, in cases where thefe were only three
students in a group, each student would have to perform in the majority
of the tasks. With no one to delegate the tasks to, a team of three
students would have to work twice as hard compared to a team of six
students. By almost doubling the work load and having to meet an
inflexible schedule, the small team would choose to sacrifice the time

on testing over time allocated for coding.

According to Shneiderman (1980, p. 129), some social
psychological research suggests that members of small groups tend to
encourage each other to perform better because they feel that the group
members will “recognise good work and criticise poor performance”,
Unfortunately, small groups are also most likely to be affected by
anxiety and fear of failure. Teams should not be allowed to get down to
a small size. A group of five students is a reasonable size and is

recommended for future undergraduate software engineering projects.

Page 170

(c) Requirement Time vs Analysis Time (0.56)
- Requirement Time (%) vs Analysis Time (%6) (0.65)
The results revealed that the teams who spent more time
gatbering requirements, would #1so spend more time analysing these

requirements.

Most of the students spent a fair amount of time conducting
their research into meeting the requirements of the project. They were
able to obtain informaticn from orchardists, the Taxation Department
and the Weather Bureau, Having obtained this information, the students

also spent a large proportion of their time analysing the information,

(d) Total Hours Spent vs Design Time (%) (0.56)
Total Hours Spent vs Coding Time (%) (-0.81)
Total Howrs Spent vs Testing Time (%) (0.73)
The results indicated that if the teams had more time to spend,

they would spend it on design and testing, and not on coding.

Expending more time on the design phase would lead teams to
define a better solution to the problem. By spending more time on
software testing, the students were able to locate and remove potential
errors and bugs. I the studenis were able to define a proper solution
and perform sufficient testing, in the long run, the software would
require less re-coding and modification. However, the amount of time
spent on testing depends greatly on the amount of spare time the group
has before meeting the deadline. In cases where projects were behind
schedule, software testing was often compromised (Paulk et al. 1993, p.

2).

Page 171

{e) Coding Time (%) vs Analysis Time (-0.98)
Coding Time (%) vs Analysis Time (%) (-0.58)
Coding Time (%) vs Design Time (-0,77)
Coding Time (%) vs Design Time (%) (-0.73)

These results showed that the teams who spent more time on

analysis and design, would subsequently spend less time on coding.

The data presented here provides further support to the point
made in the previous section (Section (d)). The students could better
understand the problem through extensive analysis and derive a better
solution through extensive design. If the students were clear on what to
develop and how to develop it, they were most likely to build the right
software the first time around. If this were the case, the software would

require less re-coding and modification.

10.3.8 Effective Team Effort And Gooed Project Management
(a) Total Hours Spent vs Team Work (0.61)
Analysis Time vs Team Work (0.06)
Analysis Time vs Contribution To Project (0.57)
Design Time vs Team Work (0.55)
Design Time vs Contribution To Project (0.58)
Design Time (%) vs Contribution To Project (0.60)

The results showed that if the teams had more time to spend,
they would spend it on team activities. It also showed that the students
who spent more time on analysis and design, were also satisfied with

their contribution to the project and team work.

It was important that every student worked as part of the team,
and contributed to the project whenever possible. B:ing a team project,
every students’ opinions and suggestions should be heard. Whenever
possible, the students should function as a team. The data suggests that

teams who spend more time on team activities like analysis and design

Page 172

S T T T I R E TS S PRt ALl e i o Tes L e 2 L

were also satisfied with their individua! contribution to the project and
teani work. This implied that the students were functioning as a team

during the analysis and design phase, which was not unexpected.

(b) Testing Time vs Team Work (0.58)
Testing Time (%) vs Team Work (0.55)
Testing Time vs Cross Scores (0.85)
Testing Time (%) vs Cross Scores (0.68)
These results evidenced that the teams who spent more time on

software testing, were more satisfied with their team work and gave

each other a good score during the peer-assessment.

In most cases, the software coder(s) would be different from the
software tester(s). This result indicates the involvement of team effort.
Hence, it is fair to say that testing is good for team spirit. The fact that
the students score each other highly for the peer-assessment suggested
that students gave good marks to each other when they saw effort in

testing.

{c) Project Management vs Team Work (0.79)
Project Management vs Contribution To Project (0.92)
Team Work vs Contribution To Project {0.87)
Total Hours Spent vs Cross Scores (0.72)

These results indicate a positive correlation between
satisfaction with the project management, satisfaction that individual
contributions were recognised and satisfaction with the way the team
worked together. In addition, they also show that if the students had
morz time to spend on the project, they tended to award each other a

higher score for the peer-assessment.

- Page 173

Sommerville (1989, p. 24) said that the project leader must
understand the characteristics of his or her team members and
understand how these individuals worked together. A well-managed
project provided an environment where team members were well
accepted by their- peers and their contributions appreciated. A group
that worked well together implied that every student was able to
participate in the development process. Cases where the students spent
more time working on the project, suggested evidence of team
involvement thereby leading to the high peer-assessment score. It is
believed that the students awarded the peer-assessment score based on

their hours together working as a team.

10.3.9 Drawbacks Of Working Alone In A Group Project
(a) Coding Time vs Contribution To Project (-0.54)
Coding Time (%) vs Contribution To Project (-0.63)
Coding Time (%) vs Team Work (-0.69)

The results reflected that the teams who spent a larger
proportion of their time on coding, were less satisfied with their
contribution to the project and team work. It tended to suggests that too

much time spent coding is not good for team spirit.

In most cases, especially with students, the coder(s) tended to
work independently from the team. The coder(s) would develop the
software according to the design specifications without having input
from the rest of the team. This suggested that there was not much team
effort involved and not every student had a say on how the software
was to be coded. This argument is supported by the results presented
above. It suggests that the remaining team members were not very

satistfied when someone from their team worked alone.

Page 174

It would be ideal if the students were able to developed an
egoless programming environmer. to work in. Sommerville (1989, p.
37) defines egoless programming as “a style of project group working
which considers programs to be common property and responsibility of
the entire programming group irrespective of which individual group
member was responsible for their production”. Weinberg (cited in
Sommerville, 1989, p. 37) suggests that by making the production of a
program a group effort, rather than an individual effort, creates a good
working environment. To support the views expressed, Sommerviile
(1989, p. 38) pointed out that programmers who wrote the program
tended to defend that program against criticism. That defensiveness

tended to work against good team spirit.

(b) Staff Adviser’s Advice vs Coding Time (%) (-0.67)
Staff Adviser’s Advice vs Analysis Time (0.61)
Teams who were happy with their staff adviser’s advice spent
more time on analysis and less time on coding - reflecting the advice

given.

Staff advisers tended to advise spending time on analysis and

design rather than coding. This advice seems to have been taken.

(¢) Coding Time (%) vs Project Management (-0.60)

The results showed that the students were less satisfied with the
way their project was managed, if they spent a larger proportion of

their time on coding.
The role of the project leader was to oversee all the project

related activities. However in the situation where the coder worked

alone, even the project leader had very little influence over the coding

Page 175

process. This was of course reflected by the result presented above.
However, the results further suggest-that teams who were concerned
about the way the project was managed, made up for it by spending

more time on coding.

10.3.10 Importance Of Selecting The Right Development Tools
(a) Development Software Used vs Project Management (0.64)
Development Software Used vs Team Work (8.65)
Development Software Used vs Contribution To Project (0.57)

These results exhibited that satisfaction with the choice of

software led to satisfaction with the way the team operated.

Through good project management techniques, the students
were able to select the right development tools. The selection process
was not performed by the project leader alone. It was a process that
involved the whole team. Students were only able to make an objective
selection after thorough discussion and weighing the pros and cons of a

particular development tool (ie. biased by any sales pitches).

When faced with a deadline, the task of selecting the right
development too} would become very important. This was particularly
true in a university environment. If the students were to select the
wrong development tools, they might be required to spend more time
understanding them. This stress and pressure could lead to poor team

morale and could reduce team efficiency.

Sommerville (1989, p. 33) said that the “programming ability is
language independent and programming language knowledge is held in
a representation-independent way”. Ths means that 4 programmer who
is familiar with one programming language will find it relatively casy

to learn a new programming language of the same type. All that is

Page 176

required by the programmer is to learn the new syntax because the
underlying concepts are the same. However, Sommerville (1989, p. 33)
also pointed out that this is only true if the semantic concepts are the
same. For example, a programmer who is experienced in structured
programming languages (eg. Pascal) may find it difficult to grasp the
programming concepits of object-oriented programming languages (eg.
Smalltalk) or functional programming languages {eg. Prolog).

The programming. foundation ”for most of the students was.
based mainly on structured programming languages such as Pascal. The
development tools used for this project were all 4GL-type tools which
represented a new paradigm to these students, Therefore, the students
were required to spend more time understanding this paradigm before

they could apply it to their project.
(b) Design Time (%) vs Development Software Used (0.71)

The result displayed that the students who spend a larger
proportion of their time on design, were also satisfied with the

development software used.

During the design phase, the students would have known what
was required of the proposed software. They would have figured out
what was required to develop the software. From this, the students
would have an idea of the type of development tools that they required.
This knowledge would most certainly assist them in selecting the right

commercial development tools that were available on the market.

Page 177

10.3.11 Usefulness Of Using A Methodology
(a) APT Methodology vs On Schedule (0.61)
APT Methodoelogy vs Project Management (0.59)

The results showed that adherence to the APT methodology led
to the project being on schedule and general satisfaction with the

project management.

The students were taught about the importance of having a good
development methodology. The department ensured that what was
being taught was also being practised. Hence the students were
encourﬁged to use the APT methodology (EXECOM, 1991). The
project leader that followed the guidelines of the methodology was able
to better prepare the tasks and activities that needed to be performed,
and were also able to set up realistic project milestones. Projects that
were able to meet these milestones were more likely to be completed

on schedule.

10.3.12 Negative Impact Of Qlder Student(s) In A Group Project Environment
(a) Average Agevs Project Management (-0.62)
Average Age vs Team Work (-0.62)
Average Age vs Contribution To Project (-0.53)
Average Age vs Staff Adviser’s Advice (-0.77)
Average Age vs Testing Time (%) (-0.56)
Average Age vs Usability (-0.55)

These results indicated that if the students were older, they
tended to be less satisfied with their project management, team work,
contribution to the project and gtaff adviser’s advige, It also showsed
that the older students would allocate a smaller proportion of their time

w sofiware testing and ended to produce software with lower usability.

. Page 178

The results presented above suggest that having older students
working in a group project has some negative impact on the project.

There are three possible explanations.

Firstly, it was very common that the older member of the team
would get elected as project leader. The older students tended to have
experience from another discipline, and little or no experience in the
art of managing the software project. Due to this lack of experience,
such project leaders might not be able to effectively command the
group and the project. Pressman (1992, p. 42) states that for a project to
succeed, management must enforce good project management
practices. He further added that it would be expected that all project
leaders understand how to do it, unfortunately, many do not. Pressman
was referring to a real world situation, which also holds true to a

university environment.

Secondly, older students tended to be more cynical about things
and were less enthusiastic than their younger team mates. It might be
the case that the older student had experienced similar projects before
and tound the current project less challenging or too trivial. This may
have resulted in them being 'ess active or uninterested in group
activities, Older students might also be reluctant or too proud to take

advice otfered by their younger team members and staff advisers.

Thirdly, some of the older students might be on a career change
and were unable to cope with the paradigm shift. What they might have
learnt from past experiences might not be applicable to the current
situation. For example, the testing skills that they acquired from past

experiences might be inapplicable to testing a piece of software.

Page 179

10.3.13 Productivity Of Students Reflects On Coding
(a) Productivity Rate vs Coding Time (0.82)
Productivity Rate vs Coding Time (%) (0.71)

The results revealed that the delivery rate of function points was

higher for groups that spent more time on coding,

Where teams spent more time on coding, they tended to
produce a larger piece of software, as supported in Section 10.3.2 (a).
If the teams were able to produce a larger piece of software within the
allocated time, it is fair to concluded that the teams were also

delivering function points at a faster rate.

PRODUCT VS PRODUCT

10.3.14 Judging Functionality And Quality Of Undergraduate Software

Projects
(a) Solution Functionality vs Software Size (0.53)

Solution Quality vs Usability (0.72)

The resuits showed that if the software was high in functionality
and quality, as perceived by the judging panel, they would also have

larger size and better usability.

The score for solution functionality and solution quality was
awarded by the judging panel during the demonstration of the software.
It was very likely that big picces of sofiware would provide moie
functionality. This was one of the criteria used by the judging panel.
The judging pane! awarded the score for solution functionality based
on their perception of the size of the software. Based on the result, it
was fair to say that the judging panel’s perception was fairly accurate.
The solution quality was also awarded by the judging panel based on
the perceived quality of the functions provided by the software.

Page 180

Usability was one of the quality criteria used by the panel, so a

correlation with tested usability is not-surprising.

Though the approach adopted by the judging panel appears to
prove useful and effective, it is recommended a more objective
approach to this matter be adopted. The size of a piece of sofiware
might reflect on the software’s functionality but this functionality does
not necessarily address the requirements of the client. It is proposed |
that the judging panel prepare a task list based on the client’s
requirements. The score could then be awarded based on the number of
requirements that each piece of software met. It is considered that this
would be a fairer approach. It would be ideal if the judging panel was
able to judge each piece of software based on the other product
attributes such as reliability, portability, etc. Unfortunétely, due to the
time constraint, judging the software’s functionality and quality would

have to suffice.

19.4 DIFFICULTIES ENCOUNTERED DURING ANALYSIS

To work on a research project such as this, it i1s necessary to be exira
careful on selecting the right method(s) of collecting raw data. The achievement of
a successful study, depends on the quality of the data collected. As Fenton (1991,
p. 115) said, “data collection is the kernel of any measurement programme”. If the
data collected was unrealistic, incomplete or inconsistent, it would produce results

that would be meaningless or inconclusive,

During the course of collecting data, there were a series of obstacles. It 1s
believed, no other university in Australia has conducted such an exercise. Hence,
there were no guidelines to follow and there was a lot of uncertainty as to the

approach of data collecting.

Page 181

What may be applicable in the industry may not necessarily be applicable
in a university environment. For instance, the .students that took part in this
research project did it out of goodwill. They were not paid for their effort and
were not forced to participate. Unfortunately, the data collected during the course
of the project were mainly incomplcie and inaccurate. To overcome this problem,
a final set of questionnaires was prepared and given to the students after their
project demonstration. It was made mandatory for all the students to fill in the
questionnaire. From the final set of questionnaires, all the necessary data was
collected from the students. Therefore, the data was more complete and consistent.
This ﬁnal set of data has been the backbone to this entire research. From this
experience, it is patently obvious that to collect a more complete set of data, it
should be made mandatory for the students to participate under a controlled
environment, However, in doing so, the students must be informed that the results

of the research wouid not be used against them.

In total, there were 15 pieces of software of which only 10 were found to
be functioning, even though all the software appeared to be functioning during the
demonstration. Since it was not mandatory for ihe students to submit their
software for evaluation, it was concluded that the students failed to provide their
current and working model. If all 15 pieces of software were found to be working,

it would greatly improve the results that were derived.

As part of this research, it was required to perform some software metrics
on the software. The most notable one is Albrecht’s Function Point Analysis
method. To gather more current information on counting function points, the
Australian Software Metrics Association {ASMA) were written to requesting more
information. After almost a month, the ASMA replied saying that they were
unable to release any information due to copyright reasons. Being an organisation
that should be encouraging the measurement of software,- the service that they
offered was less than encouraging. Since the organisation depends heavily on

volunteer workers, it is only fair to say that they might not have the human

Page 182

resources to deal with general enquires in great length. The International Function
Point User Group (IFPUG), in the United States, were also written to requesting
similar information. Unfortunately, they have yet to respond. As a result, it was
unavoidable to use an older version of rules on counting function points based on

Dr Rudolph’s (1989) seminar paper.

10.5 CONCLUSION

After caretul analysis of all the data gathered, a lot of factors that lead to a
good software development environment becomé apparent. Though some may
already have been well known, there were others that were unique to a university
environment. To address the questions raised by this research project, the

following conclusions have been reached.

It 1s now evident that having a staff adviser assigned to supervise the
project group has its advantages. With tighter supervision, the staff adviser would
be more awaie of the progress of the group. Opinion and supervision from the staff
adviser could help students guide their project towards the right direction and

promote team work.

The research results showed that if students were to spend more time on

the requirement, analysis and design phase, and conducting extensive software

testing, they would produce better quality software. It revealed that the software

would also require less re-coding and modification, having fewer defects and have

-better software quality. However, great team effort is required in order to deliver a
high quality software. Every student’s contribution must be considered. The results

also indicated that the groups that were able to deliver their software on time had

fewer defects. This implied that the groups that were on schedule had more time to

conduct proper software testing. In general, students that were satisfied with ail

the aspects by which their project was handled and conducted, tended to produce

software that had better functionality, quality and usability.

Page 183

Project management has always been one of the key factors in the success
of a project. The same principle applies to a university environment, The research
evidenced that with good project management there was better control over
project and the team. The project leader was able to “glue” the team together to
form an environment where everyone was able to contribute and participate in all

the various activities. This is one of the attributes for making a winning team.

How is a winning team defined? A winning team can be classified as one
where the team worked well together, are actively involved in all team activities,
have a well managed project and have strong interactions with their staff adviser.
A winning team vﬁll also realise the importance of a methodology and adhere to it
and, carefully and objectively select the right development tools. A winning team
may not get the best mark, but the individual students will have gained most from

the experience.

However, the research also showed that the software coder(s) tended to
work alone. Students have to realise that in the work force, there is no such thing
as a lone coder. The coder’s work would be constantly monitored by his or her
peers. The same should be applied to students. Students should work as a team

during the coding phase with input and assistance from the other team members.

Though selecting the right development software may not seem to be a

major issue, it is, especially in a university environment. Unlike the real-world,
- where a project deadline could be modified or postponed, the students were faced
with a strict deadline which they had to deliver. Unable to complete the project
within the deadline might result in them being penalised academically. That 1s
why selecting the right development software is important. Selecting the wrong
software might require the team to spend more time understanding it. The students
had to be quite competent in the development seftware within the time frame of 2

semesters in nrder to successfully develop the final product.

Page 184

One pitfall that students frequently fall into is that of defining a scope that
is too large. Most of the students were inexperiénced in this area and they had a
tendency to do this. Most of the time, the group realised too late in the project that
they were unable to cover all the areas defined in the scope. This could become a
serious problem especially if the groups were poorly supervised and the
requirements were not clearly defined by the client or user. The research had
shown that students that were unable to recover from this problem were generally
less productive and would produce software with less functionality, poor on

quality and less usefulness.

The APT methodelogy (EXECOM, 1991) has been used by this
department for the past few years. The results gathered from this study for the first
time, has provided the department with some empirical data to support the
usefulness of this methodology. Even though the APT methodology was not weli
received by the students, the research has shown that students who adhered 1o the
APT methodology were able to have better control over the project and in doing
so, were able to complete their project on time. These students will be future
contributors to the arena of software engineering. If they could apply what they
have learnt from this exercise into the work force, this would provide some hope
to future software development projects with the likelihcod of them being
completed on schedule. This is something that every real world developer hopes to

achieve on ali their projects.

Each group was required to demonstrate their software before a judging
panel. ‘The research showed that members of the judging panel where able to
successfully and objectively award the appropriate score on the software
functionality and quality based on the software’s perceived size and usability. It is
recommended however that an alternative approach be adopted -whereby the
students must demonstrate the key features of the software based on a task list

provided by the judging panel. Scores could then be awarded based on the number

Page 185

of features that the students developed. This would seem to be a more accurate

and objective approach to judging a piece of software.

The research has also shown that having older students working ina group
project had its disadvantages. The results showed that older students tend to upset
activities such as project management, team work, teamn contribution, etc. The
study suggested that older students from other disciplines should keep an open
mind when it comes to developing software. Older students who were clected as
project leaders should be less cynical, mote enthusiastic and think of the team’s
welfare. In a group project, every student is aftfected by the performance of their
peers. Older students should be able to take advice and criticisim from their peers

and staff adviser.

Another result of concern was that mixing male and female students in a
project group appears to contribute to the software having more defects. Having
members of the opposite sex working together can cause problems in
communication. [t was very common that a female student would not tell her male
team-mate(s)} that he was wrong. This was similarly evident with male students as
well. Both sexes appeared to be conscious of hurting the other’s person feeling or
ego. This was also true with overseas students. Unfortunately, reservation of one’s

opinion may jeopardise a project.

In conclusion, no claim is made or remotely suggested that the research
pathered is 100 per cent accurate and without errors, If this research is published,
errors from the study should be corrected by subsequent researchers. It is hoped
that if the results concluded are later found to be incorrect, “its publication will be
at least a step towards new and correct data that will benefit the software industry
(Jones, 1991, p. 125" and learning institutions. After all, “the industry cannot
procesd into the twenty-first century with no quantitative data at all ... (Jones,

1991, p. 125)".

Page 186

10.5.1 RECOMMEDATIONS TO PROJECT CO-ORDINATOR

Below are the recommendations as a result of the study.

Collection of project data should be made mandatory.

Staff advisers should have a reasonable amount of knowledge
regarding the standard software development methodology adopted by
the Computer Science department.

Staff advisers should be interested and volunteer for the role.

Staff advisers should have sufficient knowledge of the software
development process.

Staff advisers should have a clear understanding of the nature of the
software engineering project.

Team supervision should be more consistent.

Teams reporting to their staff adviser should be made mandatory.
Teams should use the same development software.

Teams should adhere to the development methodology when possible.
Procedures for gathering system requirements should be improved.
Software produced by each team should be assessed based on a
representative task list which describes the client’s requirements.
Scores from students’ programming units and units where the students
are required to work as team should also be used as criteria for team

formatton.

All of these recommendations have been taken on board by the software

engineering project co-ordinator for 1994,

Page 187

BIBLIOGRAPHY

Adams, E. J. (1993A Project-Intensive software design course. SIGCSE Bulletin, 25
), 112- 116.

Alavi, M. (1984, June). An Assessment Of The Prototyping Approach To Information
Systems Development. Communication Of The ACM, 27 (6), 556 - 563.

Alavi, M. & Wetherbe, J. C. (1991, May). Mixing Prototyping And Data Modetling
For Information System Design. IEEE Software, 8 (3), 86 - 91.

Albrecht, A. J. & Gaffney, J. E. Jr. (1983, November). Software Function, Source
Lines of Code, and Development Effort Prediction : A Software Science Validation.
IEEE Transactions On Software Engineering, SE9 (6), 639 - 648,

Australian Software Metrics Association, The. (1993a, February). Project Database -
Collection Package, Release 2. Victoria : Australia.

Auvtratian Software Metrics Association, The, (1993b, September). Project Database,

Release 3. Victoria : Australia.

Baker, M. D. (1991, May 20 - 24). Implementing an initial software metrics program.
Proceedings of the IEEE 1991 National Aerospace and FElectronics Conference

NAECON 1991, pp. 1289 - 1294.

Basili, V. R. & Weiss, D. M. (1984, November), A Methodology for Collecting Valid
Software Engineering Data. JEEE Transaction On Software Engineering, SE10 (6),
728 - 738.

Behrens, C. A. (1983, November). Measuring the Productivity of Computer Systems

Development Activities with Function Points. IEEE Transaction On Software

Engineering, SE9 (6), 648 - 652,

Page 188

Boehm, B. W. (1981). Software Engineering Economics. New Jersey : Prentice-Hall,
Inc.

Boehm, B. W. {1984, Jaﬁua:y). Software Engineering Economics. IEEE Transaction
On Software Engineering, 10 (1), 4 - 21.

Bochm, B. W. (1988). A Spiral Model of software development and enhancement.
IEEE Computer, 21 (5), 61 - 72.

Briggs, J. (1991). Group projects in software engineering at York. SIGCSE Bulletin
23 (4),48-50.

Calliss, F. W. & Trantina, D. L. (1991, October 7 - 8). A controlled software

maintenance project. Software Engineering Education SEI Conference 1991

Proceedings, pp. 25 - 32,

Clapp, J. (1993). Getting started on software metrics. IEEE Software, 10 (1), 108 -
111.

Curtis, B, Sheppard, S. B., Milliman, P., Borst, M. A. & Love, T. (1979, March).
Measuring the psychological complexity of software maintenance tasks with Halstead

and McCabe Metrics. IEEE Transaction on Software Engineering, pp. 96 - 104,

Davis, D. B. (1992). Develop applications on time, every time. Datamation, 38 (22),
85 - 89,

EXECOM (1991). Student APT Methodglogy. Westem Australia, Australia,

Felican, L. & Zalateu, G. (1989, December). Validating Halstead’s Theory for Pascal
Programs. IEEE Transaction On Sofiware Engineering, 15 (12), 1630 - 1632.

Fenton, N, E. (1991). Software Metrics : A rigorous approach. Norwich : Page Bros
Ltd.

Page 189

Ferens, D. V. & Gumer, R. B. (1992, May 18 - 22). An evaluation of three function
point models for estimation of software effort. Proceedings of the IEEE 1992 National

Aerospace and Electronics Conference, pp. 635 - 642,

Ferrari, D. (1986, June). Considerations on the Insularity of Performance Evaluation.
IEEE Transactions On Software Engineering, 12 (6), 678 - 683.

Freund, J. E. & Simon, G. A. (1992). Modern Elementary Statistics. New Jersey :

Prentice-Hall, Inc.

Gilb, T. (1988). Principles of software engineering management. Avon : The Bath
Press. :

Graham, C. L. & Jeffery, D. R. (1990, January). Function Points in the Estimation and
Evaluation of the Software Process. IEEE Transactions On Software Engineerine, 16

(1), 64 -71.

Grant, D. D. & Smith, R. (1991). Undergraduate Software Engineering - An

Innovative Degree at Swinburne. The Australian Computer Journal, 24 (3), 106 - 114,

Grubb, P. A. (1991, October 22). Undergraduate Software Engineering Projects -
Keeping the momentum going. IEE Colloguium On 'Teaching Of Software

Engincering - Progress Reports, pp. 5/1 - 5/3.

Grupe, F. H. & Clevenger, D. F. (1991). Using function point analysis as a software

development tool. Journal of Systems Management, 42 (12), 23 - 26.

Heemstra, F. J. & Kusters, R. J. (1991). Function Point Analysis : Evaluation Of A
Software Cost Estimation Model. European Journal Of Information Systems, 1 (4),

229 -237.

Ince, D. (1990, May). Software Metrics : Introduction. Information Ard Software

Technology, 32 (4), 297 - 303,

Page 190

S m A=A

Jones, C. (1991). Applied software measurement : assuring productivity and quality,
New York : McGraw-Hill, Inc.

Kemerer, C. F. (1987, May). An empirical validation of software cost estimation

miodels. Communication Of The ACM, 30 (5), 416 - 429.

Kemerer, C. F. (1993). Reliability of Function Points measurements : A Field

Experiment. Communication Of The ACM, 36 (2), 85 - 97.

Keyes, J. (1992). New metrics needed for new generation : lines of code, function
points won't do at the dawn of the graphical, object era. Software Magazine, 12 (6), 42
- 50.

Kitchenham, B. A. (1992, April). Empirical studies of assumptions that underlie
software cost-estimation models. Information And Software Technology. 34 (4), 211 -
219.

Kizior, R. J. (1993). Function Point Analysis : A Primer. Interface : The Computer
Education Quarterly, 15 (1), 42 - 49,

Kusters, R. J., Genuchten, M. J. I. M. & Heemstra, F. J. (1990, April). Are software
cost-estimation models accurate? Information And Software Technology, 32 (3), 187 -

190.

Marciniak, J. J. & Reifer, D. J. (1990). Software Acquisition Management : managing

the acquisition of custom software systems. Canada : John Wiley & Sons, Inc.

Marshall, H. (1987). Sex. gender and society. Melbourne : RMIT Ltd.

Mills, E. E. (1988, December). Software Metrics - SEI Curriculum Module SE[-CM-

12-1.1. Technical Report, Software Engineering Institute, Carnegic Mellon University,

Pittsburgh, Pennsylvania,

Page 191

OBrien, S. J. & Jones, D. A. (1993). Function Points In SSADM. Software Quality
Journal, 2 (1), 1-11. i

Orchard project bears fruit. (1993, December). Edith Cowan University Digest, p.8.

Paulk, M. C., Curtis, B., Chrissis, M. B. & Weber, C. V. (1993, February). Capability
Maturity. Model for Sofiware CMU/SEI-93-TR-24. Technical Report, Software

Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania.

Perlis, A., Sayward, F. & Shaw, M. (1981). Software Metrics : an analysis and

evaluvation. Massachusetts : The MIT Press.

Pressman, R. S, (1987). Software Engineering ; A Practitioner's Approach. New York :
McGraw-Hili, Inc.

Pressman, R. S. (1992). Software Engineering : A Practitioner's Approach. New York :
McGraw-Hill, Inc.

Rudolph, E. Dr. (1989, April). Accounting For Software Development : An in-depth

guide to the function point analysis. Paper presented at a three day seminar.

Shaw, M. & Tomayko, I. E. (1991, October 7 - 8). Models for undergraduate project
courses in Software Engineering. Software Engineering Education SEI Conference

1991 Proceedings, pp- 33 - 71.

Shepperd, M. (1988, March). A critique of cyclomatic complexity as a software

metric, Software Engineering Journal, pp. 30 - 36.

Shepperd, M. (1990, May). Early life-cycle metrics and software quality models.
Information And Software Technology, 32 (4), 311 - 316.

Shneiderman, B. (1980). Software Psychology : Human Factérs in Computer and

Information Systems. Boston : Little, Brown and Company, .lnc.

Page 192

Soihmervil!e, L (1989). Software Engineering, Avon : The Bath Press.

Symons, C. R. (1988, January). Function Point Analysis : Difficulties and

" Improvements. IEEE Transaction On Software Engineering, 14 (1), 2- 11.

Symons, C. (1992, July 30). Management : measure for measure's sake. Computer
Weekly, pp. 16.

Tate, G. {1990, May). Prototyping : helping to build the right software, Information
And Software Technclogy, 32 (4), 237 - 244,

Vliet, J. C. van. (1993). Software Engineering : Principles And Practice. Chichester :
John Wiley & Sons Ltd.

Page 193

APPENDIX A : EVALUATION REPORT

This section presents the list of errors found during the evaluation of the software.

NOTE : Terms such as application and system are used. In this context, the term

application refers to the application developed by the students, and the term system

refers to the language or application development tool from which the application was

developed and consequently executed.

Q Groupl

a

The lookup table did not immediately update the logical file after a new record -

was added. To have access to the newly created record it was necessary to exit
that form first and then go back into it

When trying to create a new MARKET record, an error occurs causing the
operatinn to halt. The system reported that a macro for FAX NUMBER could
not be found.

Unable to create a new BLOCK & ROW record.

Unable to create a new SHED TICKET record.

Q Group2

Q

The application did not check for beginning and end-of-file error, which
caused the system to halit.

The application did not check for owr-of-bound errors, which caused the
system to halt.

The application had checking mechanisms for duplicate records. However,
during testing, the system behaved unstablely when duplicate records were

found.

The application was unable to create and delete records from the FRUIT
module.

The remaining modules were able to create and update records but were

unable to delete records.

Page 194

O

o0 D D

In the PURCHASE module, the discount field truncates all values with
decimal points. (For example : 0.10% is truncated to 0.00%).

The SAVE RECORD from the pull-down menu was redundant.

The SUPPLY INVOICE REPORT was not available.

The MOST PROFITABLE REPORT was not available.

The ITEMS/ASSETS ORDERS REPORT was not available.

Group 3

Q
a

o

Do oo @

The application did not have any help options, except those from the system.
The form design was done poorly, ie. inconsistent fields tab and inability to
distinguish between fields that could be edited and those that could not.

Tree Lookup Table was not availabie.

The FRUIT PICKING and SALES modules were not available.

The TREE PLANTING module was not able to create, delete or update any
records.

In tli. VORK DETAIL module, before a record was deleted, the application
prompts for confirmation for approximately a dozen times. This module was
also unable to create or update any records.

The SPRAY module was unable to delste any records.

The STOCK SUPPLIES module was unable to delete any records.

The PURCHASE ORDER module was unable to delete any records.

The SHIPMENT nm:odule was unable o delete any records.

It would appear that ail modules that require cascaded-deletion were not
functioning.

The PAYROLL sub-module causes the system to lock-up.

Page 195

a Group4
O The application had poor screen design, je. inconsistent fields tab,

@ Most of the options from the pull-down menu did not work or were not
available.

O BLOCK and ROW record cannot be deleted.

O Inthe BLOCK and ROW module, the block number cannot be selected using
the pop-up option provided. To select a dlock record, it was necessary to use
the system's "VCR" controi buttons.

Q Unable to create SALES ORDER form.

@ In the view and update function of the TREATMENT module, records cannot
be selected from the selection list provided. Records can only be selected via

" the record navigation buttons.

O The Treatment Effectiveness report was not functioning.

@ Records from the SUPPLIER module cannot be deleted although the option
was provided.

0 In certain modules, the create, delete and update options were provided within
the form, yet the students had different menu optiuns for these same tasks.

O Once a record was updated, it does not take effect immediately. To view or
access the updated record, it was necessary to exit the form first and then go
back in again,

0 The help file was very brief and general. It did not contain instructions on how

to use the application.

Q Group s :
O The application did not have any help option, except those provided by the

system.

(3 The screen design did not include speed bar or selection buttons. All tasks
options had to be selected from a pull-down menu provided by the system.

@ When a new type of tree record was created, this record did not appear in the
selection list. To select this newly created record, it was necessary to use the

record navigation buttons focated on the bottom left comner.

Page 196

If the CANCEL option was selecied to abort a process, the application quits.

In the EVAPORATION module, it stored the evaporation rate for the whole
year (12 months). However, if one of these records was deleted, if did not
allow creation of a new record even though the option was provided,

In the IRRIGATION module, the “create new record” option was not

functioning,.

Group 6

u]
Q
A |

D

cC o0 oo

0 o0

The application had no help file, although there was a HELP option.

Thne application was unable to create and delete BLOCK records.

The application had a very strange method for creating records. t was
necessary to select the NEW option first, enter the new data and then select the
UPDATE option to store the data ontc the file. To create another new record,
the form had to be first exited, otherwise the system would generate a Key
Violation emor.

The SPRAY details form appeared by itself and cannot be closed.

The EMPLOYEE form cannot be opened.

There was an error in one of the fields in the HOLIDAY LEAVE form. Once
this srror was triggered, the EXIT button fails to work resulting in the need to
close the form using the Control Menu box located on the top-left comer.

The EXIT option in the PAYROLL CONTROL module did not work.

The PAYROLL DETAIL module could not create or update any records.

The TIMESHEET module could not update any records.

There was an error in some of the fields in the EMPLOYEE DEDUCTION /
ALLOWANCE form.

Some forms kept appearing by themselves and could not be closed.

The DELIVERY moduie was not functioning.

The application was unable to delete records from SUPPLIER and FRUITS
modules. |

The FRUIT SALES DETAIL module was not functioning.

Page 197

When selecting 2 REPORT option, the SUPPLIER form came up instead.

The PRINT PAYSLIPS and CALCULATE PAYE™ 2 modules were not
available.

There was an inconsistency in the record update method. In some cases,
records could only be updated after depressing the F? function key while
othets do not need to,

The application was so badly designed that whenever errors were triggered, the
form in which the error(s) occurred could not be closed. Usually this would

result in having to warm-boot the system,

Group 7

a

o

There were no control buttons. All operations had to be selected from the
systent's puti-down ment,

The application's help file was too bref and general 1t did not prowde
instructions on how to use the application.

There was no aute-increment for the PRIMARY KEY field. It was very easy to
get into a situation of having duplicate keys - which the application does not
allow.

The records were not indexed or sorted when dispiayed onto the screen.

The BLOCK medule provides for the addition of 2 new record but it generates
an error when it tries to auto-increment the block number. This problem was
overcome by simply putting a unique block number in this ficld

The TREATMENT module did not work,

0 The application had poor screen design, ie. inconsistent fields tab.

The WAGES and HARVEST modules were very complicated to use,
especially without the aid of the help file or user manual. The option to add
WAGES record was not functioning,

The GROUP CERTIFICATE reports had no report heading.

Page 198

3 Group8

dJ
(0
a

The CALCULATE [RRIGATION RATE module was not functioning.
In the IRRIGATION moduie. the update record option was not functioning.

The application had very timited functions.

g Group¥9

%]

g o o o

0 o

The application's help file was incomplete. It did not provide instructions on
how to use the application.

Most of the options which appeared to be available on the application menuy
were not available.

The BUDGET. MAINTENANCE module was not functioning,

The CHEQUE and CASH PAYMENT reporis were riot avaitable.

Could not create new CONTAINER records if database was empty.

The CRATE HIRE moedule was not functioning and the form could not be
closed with the option provided.

The FRUIT VARIETY module was not available,

The VARIETY PERFORMANCE module was not avatlable.

The application was unabie 10 print any reports because the students had hard-
coded the printer driver onto the application, hence reducing the portabifity of
the application.

The PRINT PREVIEW option was disabled. Theretore, reports could only be
printed and not viewed on the screen.

The INVOICE, NON-INVOICE PAYMENT, ACCOUNT PAYMENT and
OTHER INCOME meduies were not avatlable.

Page 199

O Group 10
0 The links between the forms and files were somehow lost during setup. To get

the application running, it was necessary 1o go into the design and re-establish
these links. After re-establishing the links, the application still did not function
well! It was almost impossible to use!

O The application did not have any help file.

@ All the reports were not avatlable,

[The application had very limited functionality. Most of the functions were

partially developed or not working correctly.

Page 200

	Software metrics for monitoring software engineering projects
	Recommended Citation

