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Abstract 

 
This paper describes a type of variation of the 

Hamilton Path problem that can be applied to a type of 
applications. Unlike the original Hamilton Path 
problem, the variation always has a solution. The 
problem of finding solutions to the variation of the 
Hamilton Path problem is NP-complete. A heuristic for 
finding solutions to the problem is developed and 
analyzed. The heuristic is then applied to a real 
application scenario in the area of spatial cluster 
scheduling in spatial join processing. Experiments 
have demonstrated that the proposed method generates 
better cluster sequence than existing algorithms.  

Keywords: Hamilton path, heuristic, scheduling, 
approximation. 
 
1. Introduction 
 

The sequencing of vertices of a graph has been 
applied to many applications, such as cluster 
scheduling of spatial join operations in Geographic 
Information Systems (GIS) [7] and generation of 
shortest test sequences for software testing [5]. A 
distinct characteristic of these applications is the large 
amount of data they handle. A key issue in the 
performance of these applications is the use of fast 
algorithms.  

In this paper, we formally define a type of variation 
of the Hamilton path (VHP) problem that can be 
applied to a type of applications. As the problem of 
finding solutions to the VHP problem is NP-complete, 
we develop a heuristic for finding an approximate 
solution to the VHP problem.  And, a real application 
case study of the VHP problem is presented, with some 
initial experimental results against existing algorithms.  

The rest of the paper is organized as follows: 
Section 2 defines the VHP problem. Some theoretical 
results of the VHP problems are also included in this 
section. The heuristic is presented and analyzed in 

Section 3. Section 4 describes an application scenario. 
Section 5 concludes the paper. 

 
2. A variation of Hamilton path problem 
 

A Hamilton path (HP) of a graph is a path between 
two vertices of the graph that visits each vertex exactly 
once. For a weighted graph G, an HP of G is a path 
between two vertices of G that visits each vertex 
exactly once, and the total weight of edges along the 
path is maximal (or minimal, respectively) among all 
such paths. The corresponding HP is sometimes called 
a longest (or shortest, respectively) HP of G. The 
problem of finding a (longest or shortest, respectively) 
Hamilton path in a (weighted) graph G is called the 
(longest or shortest, respectively) HP problem of G. A 
(longest, or shortest, respectively) HP of G is 
sometimes called a solution of the (longest, or shortest, 
respectively) HP problem. In this paper, we limit our 
discussion to the case of finding the longest HP 
problem (the shortest HP problem can be discussed 
similarly). 

While many optimization applications, such as job 
scheduling, etc., can be modeled by a graph, these 
applications are hardly converted directly to a HP 
problem due to three reasons. Firstly, a graph may not 
contain a HP thus the HP problem may have no 
solution at all.  Secondly, there is not a sufficient and 
necessary condition to determine whether or not there 
exists a solution to the HP problem of a (weighted) 
graph [6]. And, thirdly, even if a graph contains a PH 
solution, the algorithm of finding a PH solution is NP-
complete. These properties of the PH problem have 
greatly limited its application. 

We now describe a variation of the HP problem that 
applies to a type of applications and it always has a 
solution.  

Definition 1. Given a weighted graph G = (V, E, w) 
with V = {v1, v2, …, vn}, a (longest) virtual (Hamilton) 
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path of G is defined as a sequence (
niii vvv ,...,,

21
) 

such that for all 
kj ii vv , ∈V, 

kj ii vv ≠ if j ≠ k, and 

),(
1

1

1 +∑ −

= ll i
n

l iv vvw  reaches the maximum among all 

permutations of V, where  wv is defined as  
 

 wv(vi, vj)= 
⎩
⎨
⎧                                                                                          

 
wv is called virtual weight function between vertices of 
G. If (vi, vj) ∉ E (i.e., wv (vi, vj)=0), we conceptually 
say that there is a virtual edge between vi and vj. 

In other words, a (longest) virtual path of G is a 
permutation of vertices in G such that the sum of the 
weights of edges, if existed, between adjacent vertices 
along the virtual path reaches the maximum. The 
problem of finding a (longest) virtual path from G is 
called (longest) virtual path (VP) problem of G. The 
(longest) virtual path of G, i.e., the sequence (

niii vvv ,...,,
21

), is called a solution to the VP problem, 

and ),(
1

1

1 +∑ −

= ll i
n

l iv vvw  is called the (total) weight of 

the VP solution.  
If a graph is unweighted, we can convert it to a 

weighted graph by simply defining a weight function w 
as w(vi, vj)=1if there is an edge between vertices vi and 
vj, 1≤ i, j ≤n. Such a weighted graph is sometimes 
called trivial weighted graph.  

The following properties hold for the VP problem 
(the proof is omitted here due to space limitation): 

Property 1: For any graph G, the VP problem of G 
always has a solution.   

Property 2:  If a graph G is a trivial weighted graph 
and it has a HP, then a sequence of vertices in G is a 
HP solution if and only if it is a VP solution.  

Property 3:  The problem of finding a VP solution 
from a weighted graph is NP-complete. 

Property 4:  Let G be a graph. If each component Gi 
of G gets a VP solution 

imiii vvv ,...,,
21

 (i = 1, 2, …, p), 

then the sequence ,...,,...,,
121 111 m

vvv  
pmppp vv ,...,,

21
 is a 

VP solution of G. 
Property 2 suggests that, for a trivial graph, the VP 

problem of G is a generalization of the HP problem in 
the sense that if G has a HP solution, then the HP 
solution is also a VP solution. However, the property 
does not hold for a weighted graph. This can be 
illustrated by the graph in Figure 1. While the sequence 
(v1, v4, v3, v5, v2) is a HP solution of the graph (with a 
total weight of 4), it is not a VP solution of the graph. 
Instead, (v1, v4, v5, v2, v3) is a VP solution of the graph, 

with a total weight of 7, and there is one virtual edge 
(v2, v3) in the VP solution. 

Property 3 suggests that, although there exists a VP 
solution for each (weighted) graph, it is impossible to 
find a VP solution in polynomial time. From Property 
4, the task of finding a VP solution from G can be 
reduced to the case where G is a connected graph.  

 
Figure 1. A HP solution but not a VP solution  

 
3. A heuristic for finding a VP solution in a 
weighted graph 
 

From Definition 1, a simplest algorithm to find a 
VP solution from a graph is to check all permutations 
of V to see which one makes the max{

),(
1

1

1 +∑ −

= ll i
n

l iv vvw }. The complexity of such a method 

clearly has factorial order and is certainly not practical.  
We now describe a heuristic to find a VP solution 

from a weighted graph. Our goal in this exercise is to 
build an efficient algorithm that not only generates a 
good quality approximation of a VP (AVP) solution 
(i.e., the total weight of the AVP solution is close to 
that of the VP solution), but also has a lower 
computation complexity. 

For simplicity, we limit our discussion to connected 
graphs. From Property 4, the heuristic/algorithm and 
the related discussion can be easily extended to the 
case of unconnected graphs. 

The following terminologies [6] are frequently used 
in the rest of this paper.  

A simple path of a graph is a path in which all 
vertices are distinct. A path graph with n vertices is a 
graph in which all vertices can be listed as a sequence 
v1, v2 , v3,... vn-1, vn such that (v1, v2), (v2, v3), ... (vn-1, 
vn) are the only edges of E. A match of a graph is a set 
of edges, in which any two of them are not incident to 
the same vertex. A match is maximal if any edge in the 
graph that is not in the match has at least one of its 
endpoints matched, and the sum of the edge weights of 
the match is maximal among all matches of the graph. 
A weighted matching (WM) problem is, for a given 
weighted graph G, to find a match of G such that the 
sum of the edge weights of the match is maximal. The 
WM problem was first solved by Edmonds [4] and the 
complexity of his algorithm is O(n2m), where n and m 
denote the number of vertices and edges, respectively, 

V5 V4

1 1

1

V1    V2 

V3 1

5

 w(vi, vj)      If there is an edge  
                             between  vi and vj      (1)
0                    Otherwise 
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of the graph. Since then Edmonds’ algorithm has been 
studied by a number of researchers. The fastest 
implementation of the Edmonds’s algorithm is due to 
Cook and Role [3] with a time complexity of O(nm log 
n). For any graph, these algorithms output a maximal 
match of the graph.  

The basic idea of our heuristic can be expressed as 
two phases: (1) to divide the graph into sets of disjoint 
path graphs such that the sum of the weights of the 
longest paths in the path graphs reaches the maximum; 
and (2) to continually link these paths using maximal 
match among the endpoints of the paths until no more 
match can be found. At this point, the final VP solution 
is formed by linking all longest paths of the resultant 
path graphs. 

The first phase of the heuristic is a recursive 
algorithm component containing three main steps: In 
the first step, a maximal match M of G is produced 
using Cook’s maximum matching algorithm [3]. Each 
edge, together with its connected vertices, in M is taken 
as an initial path graph. That is, G is conceptually split 
into a set of path graphs, each consisting of a pair of 
matched vertices and the edge connecting them.  If 
more than one isolated vertices was left after matching, 
they are conceptually matched by randomly putting 
pairs of such (isolated) vertices together, or, matched 
using virtual edges. As such, there might be remained 
at most one unmatched vertex, which forms a special 
path graph (i.e., one without any edge).  

In the second step, the graph G is coarsened by 
collapsing the matching vertices (or, endpoints of the 
longest paths in path graphs). At this step, each pair of 
matching vertices (or, endpoints of the path in 
individual path graph) are combined to form a single 
vertex of the next level coarser graph G’= (V’, E’, w’). 
Vertices in V’ are all in form of either v = {vi, vj}, 
where vi, vj∈V  are (virtually) matched in M (i.e., (vi, 
vj) ∈ M), or in form of v = {vi}, where vi is a 
unmatched vertex of M (note that there is at most one 
such form of vertex for each level of coarsened graph). 

Intuitively, each vertex v={vi, vj} ∈ V’ represents a 
path graph in G where vi and  vj are the endpoints of its 
longest path. A vertex v of form {vi, vj}∈ V’ is referred 
to as a t-vertex, and a vertex v of form {vi}∈ V’ is 
referred to an s-vertex. A multinode can be either a t-
vertex or an s-vertex.  

E’ and w’ are then defined such that the edge 
between any pair of multinodes v’ and v” corresponds 
to an edge in E whose two endpoints are in v’ and v”, 
respectively, and whose weight is maximal among all 
edges connecting nodes in between v’ and v” (i.e., the 
endpoints of the path graph represented by {vi, vj}), if 
such an edge exists. 

After G’ is built, Cook’s maximal matching 
algorithm is applied to G’ again to produce a maximal 
match M’. By this point, the next level of coarser graph 
G” = (V”, E”, w”) can be built following the same 
procedure (as described above). The above match-and-
collapse process continues until no further matching 
can be found.  

In the third step, any t-vertex {vx, vy} in the last 
coarser graph can be stretched to a path graph, with the 
two endpoints as vx and vy, respectively. For a graph 
consisting of multiple components, the AVP solution is 
produced by printing vertices in all path graphs (i.e., 
the vertices in each path graph are listed in an order in 
its longest path), one after another. 

In summary, we conceptually take a pair of 
matching vertices and the edge between them as a path 
graph at the end of first round of match-and-collapse 
process (i.e., each with a path of length 1 or 0), then 
from the second round of match-and-collapse process 
on, the longest paths in these path graphs are 
concatenated pairwisely using edges of maximal 
weight between the endpoints of the paths. With the 
matching and collapsing process going on, paths are 
linked using the maximal matching on levels of coarser 
graphs until a set of disconnected path graphs is 
reached. At this stage, a sequence of vertices of the 
longest path for each path graph was output.  Any 
order of these sequences can be taken as an AVP 
solution, because the produced path graphs are disjoint 
with each other, and each vertex of the original graph 
belongs to one and only one path graph.  

The heuristic can be informally described using C-
like pseudo-code as below:  

 
Algorithm MaxMatchAVP(G) 
Input: G = (V, E, w);  // A weighted graph with  

                                              //  V = {v1, v2, …, vn}. 
Output: 

niii VVV ,...,,
21

;   // An AVP solution of G, a  
                                        //permutation of vertices in V. 
     [1] Find a maximal match M of G using Cook’s  
           algorithm;       // see reference [3]  
     [2] for all unmatched vertices  
     [3]       randomly choose a pair of vertices, and put  
                   them in M  // virtual matching  
     [4]      until no more virtual match can be made 
                           // conceptually match isolated vertices  
                           // using virtual edges 

[5]  if no matching was found  
[6]    {for each isolated multimode 
[7]            output its vertices in the order in its    

           longest path;    
                       //output the AVP solution of one  
                       // path graph (connected component); 
[8]     return}; 
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[9] Coarsen G by collapsing matching vertices of M 
to produce a coarser graph G’; 

[10]  MaxMatchAVP(G’);  
[11]  return;} 
}  
 
Suppose that a weighted graph have n nodes and m’ 

edges. Line 1 needs O(n·m’log n) running time (refer to 
[3]). Lines 2~4 would be executed no more than n/2 
times and needs at most O(n) time as it scans at most 
once for each unmatched vertex to virtually match to 
another unmatched vertex, if existed. Lines 6~8 would 
be executed once only (i.e., when no more matching 
can be found) and needs at most O(n2) time as it scans 
at most once for each vertex to find one of the 
endpoints in each path graph, and then use constant 
time to find each one linked vertex after that. Lines 9 
has the complexity of O(n2) because, for each matched 
vertex, it needs no more than once scanning to 
combine to its matched one to form a multinode of the 
next level coarser graph. For ease of analysis, let 
m=max{n, m’}.  Then the total complexity of lines 1~9 
is limited by O(n·m·log n). Line 10 completes the 
recursive execution of the algorithm. Based on this, it 
is not hard to proof that the complexity of the 
algorithm is O(n3log n) (detailed proof is omitted due 
to space limitation). 

 
4. An application: cluster scheduling of spatial 
join operations in spatial databases 
 

In spatial databases, spatial join queries usually 
access a large number of spatial objects [1, 2]. As 
spatial objects can be very large in size, they are 
usually stored in secondary storage, such as disks. To 
process a spatial join operation, the referred objects 
need to be fetched into the main memory for 
processing. The I/O cost can be very high for a single 
spatial join operation.  

The I/O cost can be reduced by clustering joinable 
spatial objects and then scheduling the join-operations 
such that the number of times the same objects to be 
fetched into memory can be minimized. One of the key 
issues behind this approach is how to produce a good 
sequence, known as a scheduler [7], of clusters to 
guide the join-operation cluster scheduling. We now 
illustrate that, the problem of finding an effective 
scheduler can be converted to the problem of finding 
an AVP solution over an weighted graph, thus can be 
solved using the heuristic proposed in Section 3. When 
comparing with the algorithm proposed in [7], our new 
heuristic generates better cluster sequence than the 
existing algorithm in the sense that more fetching time 

used for fetching those overlapping objects of clusters 
can be saved.  
 
4.1. Preliminary of spatial join processing 
 

A spatial join operation may involve many (large) 
objects which cannot be all fetched into the main 
memory at the same time to complete the join. In such 
a case, the join is divided into many sub-join 
operations, each joining a subset of joinable objects. 
To further reduce the I/O cost, researchers also 
proposed two-phase join strategy, i.e., clustering 
candidate objects into clusters and then joining these 
clusters pairwisely.  The clustering phase tries to 
cluster spatial objects such that they join as many other 
objects as possible within their cluster and join as few 
objects as possible across clusters [7, 8]. In the joining 
phase, these clusters are scheduled in a sequence such 
that a maximum number of overlapping objects 
between consecutive clusters can be reused in the 
memory when processing next cluster (i.e., the 
overlapping objects do not need to be fetched into 
memory again because they are already there). In this 
way, a significant reduction on disk access has been 
achieved and demonstrated through simulations [7]. 
 
4.2. Application problem definition 
 

Suppose, for a given spatial join operation, the 
spatial objects involved have been clustered in the 
clustering phase. Let  = {v1, v2, …, vk} be the set of 
spatial objects referenced in the candidate set, and V1, 
V2, …, Vn the clusters of  For each i (1 ≤ i ≤ n), Vi = 
{

miii vvv ,...,,
21

} (m ≥ 1), ∈
jiv  (1 ≤ j ≤ m). That is, 

i
n
i V1=∪ =  and Vi ≠ Φ for each i (1 ≤ i ≤ n). For 

convenience, we define size(Vi) as the sum of the sizes 
of objects in Vi, i.e., ∑ ∈

=
iVvi vsVsize )()(  where 

s(v) is the size of object v.  
We introduce a weighted graph G = (V, E, w), upon 

, called cluster overlapping (CO) graph, to represent 
the overlapping relationships between data clusters.  
The node set V = {V1, V2, …, Vn} is a set of clusters, 
and the edge set E is defined as:  for each node pair Vi 
and Vj (i ≠ j), there is an edge (Vi, Vj) if w(Vi, Vj) = 
size(Vi∩Vj) ≠ 0. Here w(Vi, Vj) is the weight of the edge 
(Vi, Vj). As an example, let the spatial object set 
involved in a given spatial join operation be  = {A1, 
A2, A3, A4, A5, A6, A7, A8, B1, B2, B3, B4, B4}, the 
set of join operations be F = {(A1, B1), (A2, B1), (A3, 
B2), (A3, B3), (A4, B3), (A5, B1), (A6, B2), (A6, B4), 
(A7, B1), (A8, B3), (A8, B4)}, and its three clusters be 
V1 ={(A1, B1), (A2, B1), (A3, B2), (A3, B3)}, V2 ={ 
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(A4, B3), (A5, B1), (A6, B2)} and V3={ (A6, B4), 
(A7, B1), (A8, B3), (A8, B4)}.  Based on the object 
sizes given in Figure 2 (a), Figure 2 (b) shows the CO 
graph corresponding to the above clusters. 

When processing cluster Vi+1, objects in Vi ∩ Vi+1 
are already in memory just after processing Vi. There is 
no need to load these objects again. Thus, if the object 
clusters are joined in the sequence of V1, V2, …, Vn 
(i.e., no scheduling), then the total I/O cost is: 

 

 
 

Figure 2. An example of CO graph 
 

)()(
1

11
/ j

n

i
i

n

i
iOI VVsizeVsizeC ∩−= ∑∑

−

==

      (2) 

 
Generally, for a schedule π which determines the 

processing sequence of V1, V2, …, Vn as 

n
VVV πππ ,...,,

21
, where VV

i
∈π  and 

ji
VV ππ ≠  for i ≠ 

j, 1 ≤i, j ≤n,  the I/O cost for schedule π is  
    )()(

1

1

11
/ +

∩−= ∑∑
−

==
iii

VVsizeVsizeC
n

i

n

i
OI πππ

π    (3) 

When the clusters are given, )(
1∑ =

n

i i
Vsize π

 is a 

constant. The goal of cluster sequencing is to find a 
schedule π such that )(

1

1

1
+

∩∑
−

=
ii

VVsize
n

i
ππ

 is 

maximized, which is the case that π
OIC /  is minimized. 

 
4.3. Maximum overlapping order and AVP 
 

The concept of maximum overlapping (MO) order 
was introduced in [7] to recognize better schedules. 
Given a CO graph G =(V,E,w) with V={V1,V2,…, Vn}, 
an MO order among sets V1, V2, …, Vn is a sequence (

niii VVV ,...,,
21

 such that )(
1

1

1 +
∩∑ −

= ll i
n

l i VVsize  

reaches the maximum among all permutations of V. In 
other words, an MO order in a CO graph G is a 
permutation of nodes in G such that the total size of 
overlapping objects between adjacent nodes reaches 

the maximum. For example, (V1, V2, V3) is an MO 
order in the CO graph in Figure 2 (a), and the total size 
of overlapping objects between adjacent nodes in the 
order is 680. 

It is evident that the problem of finding an MO 
order from a CO graph is equivalent to that of finding a 
longest VP from the same graph.  For a given spatial 
join operation, once its clusters have been generated, 
the problem of finding a best scheduler is converted to 
the problem of finding an MO order from the 
corresponding CO graph. From Property 3, there does 
not exist any polynomial time algorithm to find an MO 
order from the CO graph. A maximum spanning tree 
(MST) based heuristic was proposed in [7] to produce 
an approximation to MO (AMO) order. We propose to 
apply the AVP heuristic to find an AMO to guide the 
spatial cluster scheduling. We have conducted a series 
of experiments to compare the quality of the AMO 
order generated by MST and AVP heuristic.   
 
4.4. Experimental evaluation  
  

The experiments were conducted to demonstrate the 
reduction of the I/O costs in spatial join processing by 
using the AMO orders to guide the scheduling of 
processing of clustered join operations. 

 
Table 1: Results of experiment with 10 clusters 

Edge MST AVP AVP over MST 
10 4721 5570 17.98% 
15 3869 4302 11.19% 
20 5596 6648 18.80% 
22 5416 6536 20.68% 
25 5624 7144 27.03% 
30 5774 6532 13.13% 
33 5575 6300 13.00% 
35 6542 7882 20.48% 
40 6686 7548 12.89% 
45 6944 7910 13.91% 

Average 5674.7 6637.2 16.91% 
 

We compare the quality of the AMO orders 
generated by two methods in term of the overlapping 
weight of the AMO order. The new cluster sequencing 
method (i.e., AVP) is simulated against MST [7]. In the 
experiments, most spatial datasets are generated while 
a small portion of datasets is from real spatial 
applications. The object sizes change from tens to 
hundreds of vertices. At each simulation point, the 
simulation runs 10 times. Since every object needs to 
be fetched into the memory for the spatial join 
operation, for simplicity, we measure the I/O cost in 

A1
A2
A3
A4
A5
A6
A7
A8
B1
B2
B3
B4

200
80
40
30
32
260
18
60
60
80
110
76

oid obj size

(a) Object size (b) cluster overlapping graph

A1, A2, A3,
B1, B2, B3V1

A6, A7, A8,
B1, B3, B4 V3

A4, A5, A6,
B1, B2, B3 V2

430170

250
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terms of the total size of the overlapping objects that 
are fetched repeatedly into the memory for processing 
(i.e., the value of the second part in formula (2)).  

Table 1 shows the experiment results with ten 
clusters/vertices in the CO graphs. There were ten 
experiments conducted with a different number of 
edges connecting the clusters. For example, for ten 
edges, the total overlapping weights produced by MST 
and AVP methods are 4721 and 5570, respectively. 
Thus, AVP outperforms MST by 17.98%. The average 
result showed that AVP method can potentially 
produce 16.91% more total overlapping weight when 
comparing to MST.  

 
Table 2: Summary of experiment results 

Number of 
cluster  MST AVP 

AVP over 
MST 

10 5674.7 6637.2 16.91% 
20 9509.8 11038.9 16.18% 
30 14068.9 15708.7 12.11% 
40 17592.4 19819 13.28% 
50 21539.5 24431.6 14.09% 
60 31011.8 34424.5 11.05% 
70 38011 42448.2 12.28% 
80 38738.5 42870.6 10.69% 
90 41586.7 45569.5 9.78% 

100 43001.9 48517.4 12.95% 
Average 12.93% 

 
Table 2 shows the summary result of the 

experiments. For each cluster number, we conducted 
ten experiments and the average results are shown in 
the table. For example, for ten clusters, the average of 
total overlapping weight produced by MST and AVP 
method are 5674.7 and 6637.2, respectively,  and the 
average percentage of performance comparison for 
each method is also shown in the table (detailed 
experiments are omitted here).  
 
5. Conclusion 
 

While many optimization applications can be 
modeled by graphs, these applications are hardly 
converted directly to a Hamilton path problem because 
a graph may not contain a Hamilton path, and there is 
not a sufficient and necessary condition to determine 
whether or not there exists a solution to the Hamilton 
path problem of a graph. In addition, the algorithm of 
finding a Hamilton path from a graph is NP-complete. 
These properties have greatly limited the application to 
the Hamilton path problem. 

We defined a type of variation of the Hamilton Path 
problem that can be applied to a type of applications, 
and it always has a solution. We demonstrated that the 
variation is also a generalization of the Hamilton Path 
problem in the trivial graph case. As the problem of 
finding a solution to the variation of the Hamilton Path 
problem is NP-completed, we developed a heuristic to 
find approximate solutions to the problem. An 
application scenario is described to showcase the 
application potentials of the variation of the Hamilton 
Path problem. Experiments have demonstrated that the 
heuristic is better than the existing algorithm that was 
used to solve the same application scenario in 
scheduling spatial join operations in spatial databases.  
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