
Edith Cowan University Edith Cowan University

Research Online Research Online

Research outputs pre 2011

2008

A Type of Variation of Hamilton Path Problem with Applications A Type of Variation of Hamilton Path Problem with Applications

Jitian Xiao
Edith Cowan University

Jun Wang
Wenzhou University, Zhejiang, China

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks

 Part of the Systems Architecture Commons

10.1109/ICYCS.2008.470
This is an Author's Accepted Manuscript of: Xiao, J. , & Wang, J. (2008). A Type of Variation of Hamilton Path
Problem with Applications. Proceedings of 9th International Conference for Young Computer Scientists, 2008.
ICYCS 2008. (pp. 88-93). Zhang Jia Jie, Hunan, China, . IEEE Press Conference Publishing Services CPS. Available
here
© 2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.
This Conference Proceeding is posted at Research Online.
https://ro.ecu.edu.au/ecuworks/1104

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworks
https://ro.ecu.edu.au/ecuworks?utm_source=ro.ecu.edu.au%2Fecuworks%2F1104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=ro.ecu.edu.au%2Fecuworks%2F1104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1109/ICYCS.2008.470
http://dx.doi.org/10.1109/ICYCS.2008.470

A Type of Variation of Hamilton Path Problem with Applications

Jitian Xiao
School of Computer and Information

Science, Edith Cowan University,
Mount Lawley, WA 6050, Australia

E-mail: j.xiao@ecu.edu.au

Jun Wang
School of Computer Science and Computer

Engineering, Wenzhou University,
Zhejiang, China

Email: jsj_wj@wzu.edu.cn

Abstract

This paper describes a type of variation of the

Hamilton Path problem that can be applied to a type of
applications. Unlike the original Hamilton Path
problem, the variation always has a solution. The
problem of finding solutions to the variation of the
Hamilton Path problem is NP-complete. A heuristic for
finding solutions to the problem is developed and
analyzed. The heuristic is then applied to a real
application scenario in the area of spatial cluster
scheduling in spatial join processing. Experiments
have demonstrated that the proposed method generates
better cluster sequence than existing algorithms.

Keywords: Hamilton path, heuristic, scheduling,
approximation.

1. Introduction

The sequencing of vertices of a graph has been
applied to many applications, such as cluster
scheduling of spatial join operations in Geographic
Information Systems (GIS) [7] and generation of
shortest test sequences for software testing [5]. A
distinct characteristic of these applications is the large
amount of data they handle. A key issue in the
performance of these applications is the use of fast
algorithms.

In this paper, we formally define a type of variation
of the Hamilton path (VHP) problem that can be
applied to a type of applications. As the problem of
finding solutions to the VHP problem is NP-complete,
we develop a heuristic for finding an approximate
solution to the VHP problem. And, a real application
case study of the VHP problem is presented, with some
initial experimental results against existing algorithms.

The rest of the paper is organized as follows:
Section 2 defines the VHP problem. Some theoretical
results of the VHP problems are also included in this
section. The heuristic is presented and analyzed in

Section 3. Section 4 describes an application scenario.
Section 5 concludes the paper.

2. A variation of Hamilton path problem

A Hamilton path (HP) of a graph is a path between
two vertices of the graph that visits each vertex exactly
once. For a weighted graph G, an HP of G is a path
between two vertices of G that visits each vertex
exactly once, and the total weight of edges along the
path is maximal (or minimal, respectively) among all
such paths. The corresponding HP is sometimes called
a longest (or shortest, respectively) HP of G. The
problem of finding a (longest or shortest, respectively)
Hamilton path in a (weighted) graph G is called the
(longest or shortest, respectively) HP problem of G. A
(longest, or shortest, respectively) HP of G is
sometimes called a solution of the (longest, or shortest,
respectively) HP problem. In this paper, we limit our
discussion to the case of finding the longest HP
problem (the shortest HP problem can be discussed
similarly).

While many optimization applications, such as job
scheduling, etc., can be modeled by a graph, these
applications are hardly converted directly to a HP
problem due to three reasons. Firstly, a graph may not
contain a HP thus the HP problem may have no
solution at all. Secondly, there is not a sufficient and
necessary condition to determine whether or not there
exists a solution to the HP problem of a (weighted)
graph [6]. And, thirdly, even if a graph contains a PH
solution, the algorithm of finding a PH solution is NP-
complete. These properties of the PH problem have
greatly limited its application.

We now describe a variation of the HP problem that
applies to a type of applications and it always has a
solution.

Definition 1. Given a weighted graph G = (V, E, w)
with V = {v1, v2, …, vn}, a (longest) virtual (Hamilton)

The 9th International Conference for Young Computer Scientists

978-0-7695-3398-8/08 $25.00 © 2008 IEEE

DOI 10.1109/ICYCS.2008.470

88

path of G is defined as a sequence (
niii vvv ,...,,

21
)

such that for all
kj ii vv , ∈V,

kj ii vv ≠ if j ≠ k, and

),(
1

1

1 +∑ −

= ll i
n

l iv vvw reaches the maximum among all

permutations of V, where wv is defined as

 wv(vi, vj)=
⎩
⎨
⎧

wv is called virtual weight function between vertices of
G. If (vi, vj) ∉ E (i.e., wv (vi, vj)=0), we conceptually
say that there is a virtual edge between vi and vj.

In other words, a (longest) virtual path of G is a
permutation of vertices in G such that the sum of the
weights of edges, if existed, between adjacent vertices
along the virtual path reaches the maximum. The
problem of finding a (longest) virtual path from G is
called (longest) virtual path (VP) problem of G. The
(longest) virtual path of G, i.e., the sequence (

niii vvv ,...,,
21

), is called a solution to the VP problem,

and),(
1

1

1 +∑ −

= ll i
n

l iv vvw is called the (total) weight of

the VP solution.
If a graph is unweighted, we can convert it to a

weighted graph by simply defining a weight function w
as w(vi, vj)=1if there is an edge between vertices vi and
vj, 1≤ i, j ≤n. Such a weighted graph is sometimes
called trivial weighted graph.

The following properties hold for the VP problem
(the proof is omitted here due to space limitation):

Property 1: For any graph G, the VP problem of G
always has a solution.

Property 2: If a graph G is a trivial weighted graph
and it has a HP, then a sequence of vertices in G is a
HP solution if and only if it is a VP solution.

Property 3: The problem of finding a VP solution
from a weighted graph is NP-complete.

Property 4: Let G be a graph. If each component Gi
of G gets a VP solution

imiii vvv ,...,,
21

 (i = 1, 2, …, p),

then the sequence ,...,,...,,
121 111 m

vvv
pmppp vv ,...,,

21
 is a

VP solution of G.
Property 2 suggests that, for a trivial graph, the VP

problem of G is a generalization of the HP problem in
the sense that if G has a HP solution, then the HP
solution is also a VP solution. However, the property
does not hold for a weighted graph. This can be
illustrated by the graph in Figure 1. While the sequence
(v1, v4, v3, v5, v2) is a HP solution of the graph (with a
total weight of 4), it is not a VP solution of the graph.
Instead, (v1, v4, v5, v2, v3) is a VP solution of the graph,

with a total weight of 7, and there is one virtual edge
(v2, v3) in the VP solution.

Property 3 suggests that, although there exists a VP
solution for each (weighted) graph, it is impossible to
find a VP solution in polynomial time. From Property
4, the task of finding a VP solution from G can be
reduced to the case where G is a connected graph.

Figure 1. A HP solution but not a VP solution

3. A heuristic for finding a VP solution in a
weighted graph

From Definition 1, a simplest algorithm to find a
VP solution from a graph is to check all permutations
of V to see which one makes the max{

),(
1

1

1 +∑ −

= ll i
n

l iv vvw }. The complexity of such a method

clearly has factorial order and is certainly not practical.
We now describe a heuristic to find a VP solution

from a weighted graph. Our goal in this exercise is to
build an efficient algorithm that not only generates a
good quality approximation of a VP (AVP) solution
(i.e., the total weight of the AVP solution is close to
that of the VP solution), but also has a lower
computation complexity.

For simplicity, we limit our discussion to connected
graphs. From Property 4, the heuristic/algorithm and
the related discussion can be easily extended to the
case of unconnected graphs.

The following terminologies [6] are frequently used
in the rest of this paper.

A simple path of a graph is a path in which all
vertices are distinct. A path graph with n vertices is a
graph in which all vertices can be listed as a sequence
v1, v2 , v3,... vn-1, vn such that (v1, v2), (v2, v3), ... (vn-1,
vn) are the only edges of E. A match of a graph is a set
of edges, in which any two of them are not incident to
the same vertex. A match is maximal if any edge in the
graph that is not in the match has at least one of its
endpoints matched, and the sum of the edge weights of
the match is maximal among all matches of the graph.
A weighted matching (WM) problem is, for a given
weighted graph G, to find a match of G such that the
sum of the edge weights of the match is maximal. The
WM problem was first solved by Edmonds [4] and the
complexity of his algorithm is O(n2m), where n and m
denote the number of vertices and edges, respectively,

V5 V4

1 1

1

V1 V2

V3 1

5

 w(vi, vj) If there is an edge
 between vi and vj (1)
0 Otherwise

89

of the graph. Since then Edmonds’ algorithm has been
studied by a number of researchers. The fastest
implementation of the Edmonds’s algorithm is due to
Cook and Role [3] with a time complexity of O(nm log
n). For any graph, these algorithms output a maximal
match of the graph.

The basic idea of our heuristic can be expressed as
two phases: (1) to divide the graph into sets of disjoint
path graphs such that the sum of the weights of the
longest paths in the path graphs reaches the maximum;
and (2) to continually link these paths using maximal
match among the endpoints of the paths until no more
match can be found. At this point, the final VP solution
is formed by linking all longest paths of the resultant
path graphs.

The first phase of the heuristic is a recursive
algorithm component containing three main steps: In
the first step, a maximal match M of G is produced
using Cook’s maximum matching algorithm [3]. Each
edge, together with its connected vertices, in M is taken
as an initial path graph. That is, G is conceptually split
into a set of path graphs, each consisting of a pair of
matched vertices and the edge connecting them. If
more than one isolated vertices was left after matching,
they are conceptually matched by randomly putting
pairs of such (isolated) vertices together, or, matched
using virtual edges. As such, there might be remained
at most one unmatched vertex, which forms a special
path graph (i.e., one without any edge).

In the second step, the graph G is coarsened by
collapsing the matching vertices (or, endpoints of the
longest paths in path graphs). At this step, each pair of
matching vertices (or, endpoints of the path in
individual path graph) are combined to form a single
vertex of the next level coarser graph G’= (V’, E’, w’).
Vertices in V’ are all in form of either v = {vi, vj},
where vi, vj∈V are (virtually) matched in M (i.e., (vi,
vj) ∈ M), or in form of v = {vi}, where vi is a
unmatched vertex of M (note that there is at most one
such form of vertex for each level of coarsened graph).

Intuitively, each vertex v={vi, vj} ∈ V’ represents a
path graph in G where vi and vj are the endpoints of its
longest path. A vertex v of form {vi, vj}∈ V’ is referred
to as a t-vertex, and a vertex v of form {vi}∈ V’ is
referred to an s-vertex. A multinode can be either a t-
vertex or an s-vertex.

E’ and w’ are then defined such that the edge
between any pair of multinodes v’ and v” corresponds
to an edge in E whose two endpoints are in v’ and v”,
respectively, and whose weight is maximal among all
edges connecting nodes in between v’ and v” (i.e., the
endpoints of the path graph represented by {vi, vj}), if
such an edge exists.

After G’ is built, Cook’s maximal matching
algorithm is applied to G’ again to produce a maximal
match M’. By this point, the next level of coarser graph
G” = (V”, E”, w”) can be built following the same
procedure (as described above). The above match-and-
collapse process continues until no further matching
can be found.

In the third step, any t-vertex {vx, vy} in the last
coarser graph can be stretched to a path graph, with the
two endpoints as vx and vy, respectively. For a graph
consisting of multiple components, the AVP solution is
produced by printing vertices in all path graphs (i.e.,
the vertices in each path graph are listed in an order in
its longest path), one after another.

In summary, we conceptually take a pair of
matching vertices and the edge between them as a path
graph at the end of first round of match-and-collapse
process (i.e., each with a path of length 1 or 0), then
from the second round of match-and-collapse process
on, the longest paths in these path graphs are
concatenated pairwisely using edges of maximal
weight between the endpoints of the paths. With the
matching and collapsing process going on, paths are
linked using the maximal matching on levels of coarser
graphs until a set of disconnected path graphs is
reached. At this stage, a sequence of vertices of the
longest path for each path graph was output. Any
order of these sequences can be taken as an AVP
solution, because the produced path graphs are disjoint
with each other, and each vertex of the original graph
belongs to one and only one path graph.

The heuristic can be informally described using C-
like pseudo-code as below:

Algorithm MaxMatchAVP(G)
Input: G = (V, E, w); // A weighted graph with

 // V = {v1, v2, …, vn}.
Output:

niii VVV ,...,,
21

; // An AVP solution of G, a
 //permutation of vertices in V.
 [1] Find a maximal match M of G using Cook’s
 algorithm; // see reference [3]
 [2] for all unmatched vertices
 [3] randomly choose a pair of vertices, and put
 them in M // virtual matching
 [4] until no more virtual match can be made
 // conceptually match isolated vertices
 // using virtual edges

[5] if no matching was found
[6] {for each isolated multimode
[7] output its vertices in the order in its

 longest path;
 //output the AVP solution of one
 // path graph (connected component);
[8] return};

90

[9] Coarsen G by collapsing matching vertices of M
to produce a coarser graph G’;

[10] MaxMatchAVP(G’);
[11] return;}
}

Suppose that a weighted graph have n nodes and m’

edges. Line 1 needs O(n·m’log n) running time (refer to
[3]). Lines 2~4 would be executed no more than n/2
times and needs at most O(n) time as it scans at most
once for each unmatched vertex to virtually match to
another unmatched vertex, if existed. Lines 6~8 would
be executed once only (i.e., when no more matching
can be found) and needs at most O(n2) time as it scans
at most once for each vertex to find one of the
endpoints in each path graph, and then use constant
time to find each one linked vertex after that. Lines 9
has the complexity of O(n2) because, for each matched
vertex, it needs no more than once scanning to
combine to its matched one to form a multinode of the
next level coarser graph. For ease of analysis, let
m=max{n, m’}. Then the total complexity of lines 1~9
is limited by O(n·m·log n). Line 10 completes the
recursive execution of the algorithm. Based on this, it
is not hard to proof that the complexity of the
algorithm is O(n3log n) (detailed proof is omitted due
to space limitation).

4. An application: cluster scheduling of spatial
join operations in spatial databases

In spatial databases, spatial join queries usually
access a large number of spatial objects [1, 2]. As
spatial objects can be very large in size, they are
usually stored in secondary storage, such as disks. To
process a spatial join operation, the referred objects
need to be fetched into the main memory for
processing. The I/O cost can be very high for a single
spatial join operation.

The I/O cost can be reduced by clustering joinable
spatial objects and then scheduling the join-operations
such that the number of times the same objects to be
fetched into memory can be minimized. One of the key
issues behind this approach is how to produce a good
sequence, known as a scheduler [7], of clusters to
guide the join-operation cluster scheduling. We now
illustrate that, the problem of finding an effective
scheduler can be converted to the problem of finding
an AVP solution over an weighted graph, thus can be
solved using the heuristic proposed in Section 3. When
comparing with the algorithm proposed in [7], our new
heuristic generates better cluster sequence than the
existing algorithm in the sense that more fetching time

used for fetching those overlapping objects of clusters
can be saved.

4.1. Preliminary of spatial join processing

A spatial join operation may involve many (large)
objects which cannot be all fetched into the main
memory at the same time to complete the join. In such
a case, the join is divided into many sub-join
operations, each joining a subset of joinable objects.
To further reduce the I/O cost, researchers also
proposed two-phase join strategy, i.e., clustering
candidate objects into clusters and then joining these
clusters pairwisely. The clustering phase tries to
cluster spatial objects such that they join as many other
objects as possible within their cluster and join as few
objects as possible across clusters [7, 8]. In the joining
phase, these clusters are scheduled in a sequence such
that a maximum number of overlapping objects
between consecutive clusters can be reused in the
memory when processing next cluster (i.e., the
overlapping objects do not need to be fetched into
memory again because they are already there). In this
way, a significant reduction on disk access has been
achieved and demonstrated through simulations [7].

4.2. Application problem definition

Suppose, for a given spatial join operation, the
spatial objects involved have been clustered in the
clustering phase. Let = {v1, v2, …, vk} be the set of
spatial objects referenced in the candidate set, and V1,
V2, …, Vn the clusters of For each i (1 ≤ i ≤ n), Vi =
{

miii vvv ,...,,
21

} (m ≥ 1), ∈
jiv (1 ≤ j ≤ m). That is,

i
n
i V1=∪ = and Vi ≠ Φ for each i (1 ≤ i ≤ n). For

convenience, we define size(Vi) as the sum of the sizes
of objects in Vi, i.e., ∑ ∈

=
iVvi vsVsize)()(where

s(v) is the size of object v.
We introduce a weighted graph G = (V, E, w), upon

, called cluster overlapping (CO) graph, to represent
the overlapping relationships between data clusters.
The node set V = {V1, V2, …, Vn} is a set of clusters,
and the edge set E is defined as: for each node pair Vi
and Vj (i ≠ j), there is an edge (Vi, Vj) if w(Vi, Vj) =
size(Vi∩Vj) ≠ 0. Here w(Vi, Vj) is the weight of the edge
(Vi, Vj). As an example, let the spatial object set
involved in a given spatial join operation be = {A1,
A2, A3, A4, A5, A6, A7, A8, B1, B2, B3, B4, B4}, the
set of join operations be F = {(A1, B1), (A2, B1), (A3,
B2), (A3, B3), (A4, B3), (A5, B1), (A6, B2), (A6, B4),
(A7, B1), (A8, B3), (A8, B4)}, and its three clusters be
V1 ={(A1, B1), (A2, B1), (A3, B2), (A3, B3)}, V2 ={

91

(A4, B3), (A5, B1), (A6, B2)} and V3={ (A6, B4),
(A7, B1), (A8, B3), (A8, B4)}. Based on the object
sizes given in Figure 2 (a), Figure 2 (b) shows the CO
graph corresponding to the above clusters.

When processing cluster Vi+1, objects in Vi ∩ Vi+1
are already in memory just after processing Vi. There is
no need to load these objects again. Thus, if the object
clusters are joined in the sequence of V1, V2, …, Vn
(i.e., no scheduling), then the total I/O cost is:

Figure 2. An example of CO graph

)()(
1

11
/ j

n

i
i

n

i
iOI VVsizeVsizeC ∩−= ∑∑

−

==

 (2)

Generally, for a schedule π which determines the

processing sequence of V1, V2, …, Vn as

n
VVV πππ ,...,,

21
, where VV

i
∈π and

ji
VV ππ ≠ for i ≠

j, 1 ≤i, j ≤n, the I/O cost for schedule π is
)()(

1

1

11
/ +

∩−= ∑∑
−

==
iii

VVsizeVsizeC
n

i

n

i
OI πππ

π (3)

When the clusters are given,)(
1∑ =

n

i i
Vsize π

 is a

constant. The goal of cluster sequencing is to find a
schedule π such that)(

1

1

1
+

∩∑
−

=
ii

VVsize
n

i
ππ

 is

maximized, which is the case that π
OIC / is minimized.

4.3. Maximum overlapping order and AVP

The concept of maximum overlapping (MO) order
was introduced in [7] to recognize better schedules.
Given a CO graph G =(V,E,w) with V={V1,V2,…, Vn},
an MO order among sets V1, V2, …, Vn is a sequence (

niii VVV ,...,,
21

 such that)(
1

1

1 +
∩∑ −

= ll i
n

l i VVsize

reaches the maximum among all permutations of V. In
other words, an MO order in a CO graph G is a
permutation of nodes in G such that the total size of
overlapping objects between adjacent nodes reaches

the maximum. For example, (V1, V2, V3) is an MO
order in the CO graph in Figure 2 (a), and the total size
of overlapping objects between adjacent nodes in the
order is 680.

It is evident that the problem of finding an MO
order from a CO graph is equivalent to that of finding a
longest VP from the same graph. For a given spatial
join operation, once its clusters have been generated,
the problem of finding a best scheduler is converted to
the problem of finding an MO order from the
corresponding CO graph. From Property 3, there does
not exist any polynomial time algorithm to find an MO
order from the CO graph. A maximum spanning tree
(MST) based heuristic was proposed in [7] to produce
an approximation to MO (AMO) order. We propose to
apply the AVP heuristic to find an AMO to guide the
spatial cluster scheduling. We have conducted a series
of experiments to compare the quality of the AMO
order generated by MST and AVP heuristic.

4.4. Experimental evaluation

The experiments were conducted to demonstrate the
reduction of the I/O costs in spatial join processing by
using the AMO orders to guide the scheduling of
processing of clustered join operations.

Table 1: Results of experiment with 10 clusters

Edge MST AVP AVP over MST
10 4721 5570 17.98%
15 3869 4302 11.19%
20 5596 6648 18.80%
22 5416 6536 20.68%
25 5624 7144 27.03%
30 5774 6532 13.13%
33 5575 6300 13.00%
35 6542 7882 20.48%
40 6686 7548 12.89%
45 6944 7910 13.91%

Average 5674.7 6637.2 16.91%

We compare the quality of the AMO orders
generated by two methods in term of the overlapping
weight of the AMO order. The new cluster sequencing
method (i.e., AVP) is simulated against MST [7]. In the
experiments, most spatial datasets are generated while
a small portion of datasets is from real spatial
applications. The object sizes change from tens to
hundreds of vertices. At each simulation point, the
simulation runs 10 times. Since every object needs to
be fetched into the memory for the spatial join
operation, for simplicity, we measure the I/O cost in

A1
A2
A3
A4
A5
A6
A7
A8
B1
B2
B3
B4

200
80
40
30
32
260
18
60
60
80
110
76

oid obj size

(a) Object size (b) cluster overlapping graph

A1, A2, A3,
B1, B2, B3V1

A6, A7, A8,
B1, B3, B4 V3

A4, A5, A6,
B1, B2, B3 V2

430170

250

92

terms of the total size of the overlapping objects that
are fetched repeatedly into the memory for processing
(i.e., the value of the second part in formula (2)).

Table 1 shows the experiment results with ten
clusters/vertices in the CO graphs. There were ten
experiments conducted with a different number of
edges connecting the clusters. For example, for ten
edges, the total overlapping weights produced by MST
and AVP methods are 4721 and 5570, respectively.
Thus, AVP outperforms MST by 17.98%. The average
result showed that AVP method can potentially
produce 16.91% more total overlapping weight when
comparing to MST.

Table 2: Summary of experiment results

Number of
cluster MST AVP

AVP over
MST

10 5674.7 6637.2 16.91%
20 9509.8 11038.9 16.18%
30 14068.9 15708.7 12.11%
40 17592.4 19819 13.28%
50 21539.5 24431.6 14.09%
60 31011.8 34424.5 11.05%
70 38011 42448.2 12.28%
80 38738.5 42870.6 10.69%
90 41586.7 45569.5 9.78%

100 43001.9 48517.4 12.95%
Average 12.93%

Table 2 shows the summary result of the

experiments. For each cluster number, we conducted
ten experiments and the average results are shown in
the table. For example, for ten clusters, the average of
total overlapping weight produced by MST and AVP
method are 5674.7 and 6637.2, respectively, and the
average percentage of performance comparison for
each method is also shown in the table (detailed
experiments are omitted here).

5. Conclusion

While many optimization applications can be
modeled by graphs, these applications are hardly
converted directly to a Hamilton path problem because
a graph may not contain a Hamilton path, and there is
not a sufficient and necessary condition to determine
whether or not there exists a solution to the Hamilton
path problem of a graph. In addition, the algorithm of
finding a Hamilton path from a graph is NP-complete.
These properties have greatly limited the application to
the Hamilton path problem.

We defined a type of variation of the Hamilton Path
problem that can be applied to a type of applications,
and it always has a solution. We demonstrated that the
variation is also a generalization of the Hamilton Path
problem in the trivial graph case. As the problem of
finding a solution to the variation of the Hamilton Path
problem is NP-completed, we developed a heuristic to
find approximate solutions to the problem. An
application scenario is described to showcase the
application potentials of the variation of the Hamilton
Path problem. Experiments have demonstrated that the
heuristic is better than the existing algorithm that was
used to solve the same application scenario in
scheduling spatial join operations in spatial databases.

References

[1] Abel, D. (1989). SIRO-DBMS: A Database Tool Kit for
Geographical Information Systems. International. J. of
Geographical Information Systems, Vol. 3, No. 2, pp.103-
116.

[2] Abel, D., Gaede, V., Power, R. and Zhou, X (1997),
Resequencing and Clustering to Improve the Performance of
Spatial Join. Technical Report, CSIRO Mathematical and
Information Sciences, Australia.

[3] Cook, W. J., & Rohe, A. (1999). Computing Minimum-
Weight Perfect Matchings. INFORMS journal on computing,
11(2), 138.

[4] Edmonds, J. (1965). Path, Tree, and Flower. Journal of
Math, 17, 449-467.

[5] Lam, C. P., Xiao, J. and Li, H (2007). Ant Colony
Optimisation for Generation of Conformance Testing
Sequences using Characterising Sequences, Proceedings of
The 3rd IASTED International Conference on Advances in
Computer Science and Technology (ACS2007), Phuket,
Thailand. ACTA Press. PP140-146.

[6] Lawler, E. L (1976), Combinatorial Optimization:
Networks and Matroids. Holt, Rinehart and Winston, New
York.

[7] Xiao, J., Zhang, Y. , Jia, X. and Zhou, X. (2000), A
Schedule of Join Operations to Reduce I/O Cost in Spatial
Database Systems, Data & Knowledge Engineering, Elsevier
Science B.V, Vol. 35, pp299-317.

[8] Zhou, X., Abel, D. and Truffet, D. (1998), Data
Partitioning for Parallel Spatial Join Processing.
GeoInformatica 2:2, Kluwer Academic Publisher, pp175-
204.

93

	A Type of Variation of Hamilton Path Problem with Applications
	A Type of Variation of Hamilton Path Problem with Applications

