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ABSTRACT 

This work is primarily aimed at determining the effect that an 

immunisation policy is likely to have on the incidence of Haemophilus 

lnfluenzae Type B ( HIB) and systematic HIB in Western Australia. There was 

a significant effort made to collect data pertinent to the estimation of 

parameter values but since HIB has only been a notifiable disease since 1992 

there was a distinct lack of relevant data available. Private communication 

with individuals such as Dr Jeffrey Hanna and Dr Beryl Wild resulted in 

practical information being obtained that was used to estimate certain 

parameters. The deterministic mathematical models within the thesis are 

extensions of existing ideas tailored to suit the needs of this thesis. 

Chapter one is a basic introduction to the pursuit of modelling 

infectious diseases with a brief description of basic epidemiology concepts. It 

also shows that even simple models may not deliver analytical results. 

Chapter two extends a model used by Angela McLean and allows some 

analytical results to be obtained by first simplifying the model and then solving 

using standard methods to give the equilibrium distributions for the 

proportions of people in each state within the model. 

Chapter three introduces a second model that is age dependent and 

determines whether the equilibrium state of the model is stable by using the 

Routh Hurwitz criteria. Finally the conditions for the Hopf Bifurcation theorem 

to hold true are examined. This theorem is applied to determine whether 

periodic orbits exist in the vicinity of the equilibrium point of the model. 

Chapter four is concerned with estimating the parameters within the model 

used in chapter three and attempts to give values applicable to the Aboriginal 

and Torres Strait population as well as the non-Aboriginal population. 

Chapter five uses an existing Fortran 77 computer algorithm to 

numerically solve the system of differential equations formed in chapter three. 

This involves using different scenarios such as before and after immunisation. 

The chapter also determines epidemiological parameters such as the average 

age of infection before and after immunisation is introduced. Finally there is a 

section covering suggestions for further study and recommendations as a 

result of this thesis. 
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CHAPTER ONE 

Introduction to the Thesis 

1.1 Background to Modelling Infectious Diseases 

Infectious diseases have been the cause of countless numbers of 

deaths. In Europe during the fourteenth century there were in the order of 

twenty five million deaths from bubonic plague ( the black death ) alone. This 

was about one quarter of the total population of Europe at that time. Individual 

communities were devastated or completely wiped out. One well known 

example is the English community of Eyam. The inhabitants were persuaded 

by the Rector, William Mompesson to isolate themselves from the outside 

world so as not to pass infection to anyone in the wider community. It was 

recorded that out of a population of about 350 at least 258 died as a result of 

infection (Anderson and May, 1991 ). 

In the years 1918-1921 there were approximately twenty five million 

cases of typhoid reported in Russia with an associated mortality rate of 

around ten per cent. During the world pandemic of influenzae in 1919 there 

were about twenty million influenzae associated deaths. The Aztec civilisation 

lost over three million people to smallpox in the early 1520's. This was more 

than the losses incurred as a result of the Spanish invasion led by Cortes in 

the same period (Anderson and May, 1991). 

In contrast, life expectancy has risen from 25-30 years in 1700 to about 

70-80 years in the contemporary age. Contributing factors have been

increased personal hygiene and improved nutrition as well as the 

advancement of medical science. In particular the twentieth century has seen 

vaccination programmes introduced on a world wide scale. An example of a 

successful initiative was the eradication of Smallpox during the 1970's 

(Anderson and May, 1991 ). Even though understanding about the spread of 

infectious diseases has increased during this period the number and size of 

epidemics also increased. One explanation is the concentration of large 

numbers of people into large urban environments. 

Development of the mathematical theory of infectious diseases is 

believed to have begun during the second half of the eighteenth century 

although all the major theoretical advancements have occurred during the 
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twentieth century. In 1760 Daniel Bernoulli gave a paper to the Academia 

Royale des Science in Paris in which he formulated the course of a smallpox 

epidemic in mathematical terms. This paper showed for the first recorded time 

how mathematics could be used to investigate the dynamics of a disease. 

Bernoulli also gave an assessment of how the risks and benefits of a 

preventative inoculation policy could be analysed using the model he had 

developed. 

It was not until the early twentieth century that the modern theoretical 

framework of infectious diseases started to emerge. Individuals such as 

Hamer (1906), Ross (1908) and Mashkovski (1905) were among the first to 

develop specific theories about the transmission of infectious diseases. In 

1906 Hamer suggested that the course of an epidemic depends on the 

contact rate between the number of susceptibles and the number of infectious 

individuals. This concept is called the "mass action principle" and has been at 

the centre of mathematical epidemiology ever since. The principle argues that 

the net rate of spread of infection is proportional to the product of the density 

of susceptible individuals times the density of infectious individuals. Soper 

(1929) further developed the theoretical framework by deducing why 

epidemics occur on a periodic basis. In basic terms his argument is as 

follows. When an epidemic occurs within a given population the people within 

the population either recover from infection and gain a degree of immunity 

from further infection or die as a result of infection. This immunity is a result of 

the body developing antibodies with which it can fight off further infection from 

the same disease. This immunity may be lifelong or it may give protection for 

a certain period of time. Once a suitable period of time has elapsed there will 

be a replenishment of susceptibles from newborns and perhaps from the 

recovered individuals losing temporary immunity from infection. The same 

infectious disease can then re-enter the population and cause another 

epidemic. 

In 1927 Kermack and Mc Kendrick introduced the threshold theorem 

which sets out necessary conditions for an epidemic to occur within a given 

population. Essentially the theorem says that if a quantity of infectious 

individuals is introduced to a previously uninfected susceptible population 

then an epidemic will not occur unless the quantity of susceptible individuals 

is above a certain critical value. This theorem will be explained in more detail 

in section 4 of this chapter. 
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Early modelling techniques were based on the concept of 

compartmental mathematical models. Such models divide the total population 

into a finite number of distinct groups which describe the different states that 

individuals might belong to during the transmission dynamics of an infectious 

disease. Examples are the susceptible, infectious and recovered states. It 

was commonly assumed by Bailey (1975) and others that the total population 

under consideration was constant. This means that the total death rate is 

equivalent to the total birth rate within a given population. Such a convenient 

assumption will simplify any compartmental mathematical model since a 

logistic function does not have to be introduced in order to describe the net 

change in the total population. 

A definitive introduction entitled "The Mathematical Theory of Infectious 

Diseases" was published by Norman T. J. Bailey in 1975. This single work 

defined the theoretical framework for modelling infectious diseases. Bailey 

outlined the rationale behind compartmental, stochastic and discrete 

modelling techniques. A discrete model is one that uses difference equations 

to describe the dynamics of a disease whereas a stochastic model is one that 

uses a probabilistic approach. Within Bailey's general theory of deterministic 

epidemics the models implied that an infectious disease would occur 

periodically but that the magnitude of the epidemics would become less 

pronounced as the epidemic repeated itself within a given constant 

population. This means that there is a type of harmonic damping predicted by 

the models. Such damping is not evident when considering common 

childhood diseases like measles. Diseases like these may result in a series of 

epidemics occurring periodically. However there is no obvious damping in the 

magnitude of an epidemic. This means that a more recent epidemic may be of 

greater magnitude than a earlier epidemic of the same disease. The theory 

did not predict future occurrences with great accuracy but Bailey's theory did 

provide a comprehensive building block for future development. Roy 

Anderson and Robert May published a textbook entitled " Infectious Diseases 

of Humans " in May 1991. This publication built on Bailey's work in advancing 

the theory and practice of mathematical epidemiology. The book is divided 

into two main areas covering microparasites and macroparasites. There is an 

obvious emphasis on the biological processes at work as well a pragmatic 

approach to the mathematical modelling process. 
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This thesis will demonstrate how mathematics can be applied to obtain 

predictions for the future incidence of Haemophilus Influenzas Type B. Models 

will be developed and we will determine the effectiveness of a vaccination 

policy in reducing the incidence of HIB in the Western Australia community. 

1.2 Introduction to Modelling Infectious Diseases 

In their paper "Epidemics and the Spread of Disease" (1990, pg 147-

180) Glynn James and Nigel Steele highlight a general approach to

mathematically modelling infectious diseases. They begin by quoting the

definition of an epidemic. " It is a disease that attacks in great numbers in one

place, at one time, and itself travels from place to place." Another dictionary

definition they state is that an epidemic " is a disease that is temporarily

prevalent in a society ". They also say that an endemic disease " is one that is

constantly or generally present in a society ". Widespread childhood diseases

such as HIB tend to be constantly within a society but sometimes reach

epidemic proportions so they are in a sense both endemic and epidemic.

James and Steele first assume that the population to be studied is 

large. This means that epidemiological processes within it can be considered 

as continuous. Therefore a deterministic methodology can be used to 

formulate in mathematical terms the dynamics of a disease. This means that 

differential equations can be introduced to model the different states an 

individual might belong to during the transmission dynamics of a disease. If a 

given population is small enough that epidemiological processes within it 

cannot be considered as continuous then it is necessary to use stochastic or 

probabilistic methods. 

Another assumption they use is that a given population mixes in an 

homogeneous manner. This means that all epidemiological and demographic 

processes within a given population are averaged out. For example every 

individual has an equal probability of meeting any other individual within the 

community regardless of factors such as whether they live in a metropolitan or 

country region. The assumption also implies that any individual has an equal 

chance of being infected by a disease i.e. everyone is equally susceptible to 

infection regardless of age or previous infection. This assumption simplifies 

the task of measuring and defining parameters within a mathematical model 

and it therefore opens up the possibility of finding analytical solutions. 

However the assumption may not accurately reflect the dynamics of a 
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disease. For instance it may not be the case that a newborn child has the 
same probability of infecting an individual of school age as an individual in a 
school environment has of infecting another individual in the same school 
environment. Also there exists the possibility that recovery from infection 
might grant lifelong or temporary immunity from further infection. 
Homogeneous mixing can be used as a convenient place at which to begin 
the modelling process and it can then be refined as an appropriate model is 
developed. 

To proceed with the development of a mathematical model it is 
necessary to define the states within the transmission dynamics of a disease. 
An individual might be susceptible to infection or infected and capable of 
passing on infection. The individual could also be recovered from infection. If 
we accept homogeneous mixing then recovered individuals would 
immediately become susceptible to further infection. However this assumption 
could be refined to say that recovered individuals have lifelong immunity from 
infection. Accepting this refinement we have a population where all members 
are considered as belonging to either the susceptible, infectious or recovered 
state. A suitable diagram is 

> > 

Susceptible Infectious Recovered 

If we initially accept that the total population is constant then a suitable 
set of equations describing the dynamics of a disease is provided by James 
and Steele, i.e. 

dx(t) = -pxy + µ
dt 

dy(t)
= f3.xy-aydt 

dz(t) 
dt=ay-µ

1.2.1 ..... Susceptibles (x(t)) 

1.2.2 ..... Infected and infectious (y(t)) 

1.2.3 ..... Recovered and immune (z(t)) 

Here we have a set of three first order non-linear differential equations 
describing the rate of change between the three stages of the disease over 
time , t . There are three parameters within this basic model. Firstly, µ 
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describes the death rate and allows the model to introduce a constant 

population by saying the birth rate is the same as the death rate. The 

parameter a represents the recovery rate from infection. This parameter can 

be viewed as representing a constant time after which the infectious individual 

would recover from the infection. The final parameter � is commonly called 

the transmission rate of the disease. It is a complicated term since it is an 

attempt to measure aspects of human behaviour such as social interaction 

and personal hygiene. The purpose of the parameter is to quantify the rate at 

which the disease infects susceptibles. In this model it is considered to be 

both dependent on the number of susceptibles and the number of infected 

individuals. This relationship could be simplified by suggesting that the 

transmission rate is only dependent on the number of susceptibles. However it 

seems reasonable to expect the transmission rate of a disease to be 

influenced by both the number of infectious individuals and the number of 

susceptibles interacting within the general population. In the case where a 

disease is severe enough to stop infected individuals circulating within the 

community there could be a reasonable case for simplifying the relationship 

since infectious individuals could be considered as being removed from 

society for the period of infection. The question then is how long would it take 

before such a person is recognised as being infected by the disease and 

hence isolated. It seems that in most cases, if not all, an infected individual 

would be free to pass on infection for a period of time before it was recognised 

that the individual was infectious. It is obvious that the transmission rate is a 

complex parameter and will be discussed further in later chapters. 

One of the main mathematical interests is the equilibrium state of the 

system of equations. In this situation everyone in the total population is 

characterised by belonging to a particular state of the disease and the 

numbers in each state do not change. When this occurs the dynamics of the 

disease can be considered as being in balance. It is possible for this to 

happen when an epidemic has settled down to a situation where any new 

infectious individual is balanced by a new susceptible ie a new birth, as well 

as a newly recovered individual and a death so that the numbers in each state 

remain the same. To determine the equilibrium values for the system of 

equations we set the rate of change between stages of the disease to be zero. 

The resulting equations should then yield appropriate values for the number of 

susceptibles and infectious individuals when the dynamics of the disease are 

in balance, we have, 



-�.xy+ µ = 0

�.xy-ay = 0

ay-u=O. 
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1.2.4 

1.2.5 

1.2.6 

One possible solution is that both x and y are zero. This particular 

solution is unrealistic since it implies there are no infectious or susceptible 

individuals. It could represent the situation where a disease has run through 

its life-span and everyone is immune to further infection or it may represent 

the time before the disease has been introduced to the population. However 

the solutions of interest are when we have at least some susceptible and 

infectious individuals. Therefore we are looking for non-zero positive values 

for the number of susceptible, infectious and recovered individuals. From 

1 .2.6 we have 

ay(t) - µ = 0, :. y(t) = 1:
a 

by substituting this value into 1.2.4 we get 
a 

x(t) = l3 

using the relationship that N = x + y + z, where N is the total population, we

can obtain a value for the number of recovered individuals at equilibrium i.e. 
a µ 

z(t)=N-
13

-
a

.

We have therefore obtained simple relationships for x(t), y(t) and z(t) 

in terms of the parameters within the model. Further to this a direct 

relationship between the susceptible and infectious individuals would be very 

useful since we could gain some insight into how one might affect the other. 

Assuming that the functions x(t) and y(t) are well behaved and that µ -t= �.xy 

we can divide 1.2.2 by 1.2.1 to give, 

dy(t) �.xy-ay 
=-'----

dx(t) µ - �.xy 
1.2.7 

This is a differential equation giving a relationship between the 

susceptibles and infected individuals but it doesn't allow a simple solution to 

be obtained. It is clear that even an apparently simple mathematical model 

may not allow analytical solutions to be obtained. Despite this we can still 
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employ methods that allow us to investigate the nature of the equilibrium point 
i.e. if the model reached its equilibrium will it stay close to its equilibrium
values if any slight change is applied or will the model predict that any slight
change to the equilibrium values would cause a significant shift away from the
equilibrium values. James and Steele show how to employ perturbation
techniques to this question by looking at what happens in the area
immediately around the equilibrium. The aim is to show whether or not the
equilibrium is stable or unstable. If a small change is applied to the equilibrium
values and the system of equations move back towards the equilibrium after a
period of time then the point is stable. However if the values move away from
the equilibrium values then the point is unstable. Suppose,

a x(t) = 13 + �(t) 

y(t) = l:.+T\(t) 
a 

1.2.8 

1.2.9 

where �(t)and T\U) are small perturbations away from the equilibrium 
values. Then by substituting 1.2.8 and 1.2.9 into 1.2.1 we have. 

d (a. +�(t))� =-�(a.+�(t))(l:.+T\(t))+u' =>
dt � a 

d�(t) =-�(1:.+ a.T\(t)+l:.�(t)+�(t)li(t)J+ µ.
dt � � a 

If we retain only linear terms in �(t) and n(t) we have 
d�(t) = _ �µ �(t)-<X.T\(t) + µ . 1.2.10 

dt a 
and similarly from 1.2.2 we get 

drJ(t) = �µ �(t)
dt a 

1.2.11 

These can be further refined by eliminating one of the variables to give 
a second order differential equation . Differentiating 1.2.11 with respect to a 
gives 
d 2T1(t) �µ d�(t) 
-�=---

dt2 a dt

Equation 1.2.11 can also be arranged to give 

1.2.12 



a drt�(t)=--
13µ dt 
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Substituting 1.2.1 O and 1.2.13 into 1 .2.11 gives 

The characteristic equation of 1.2.14 is given by 

an2 + l3µn + l3µa = 0, 

n = _l (-13µ ± �l3µ(l3µ-4a 2)
2a 

If 13µ < 4a2 then 

13µ i �P. 2 P. 
n =--±- ..,µ(4a -..,µ) 

2a 2a 

and the solution can be written in the form 

-�µ, 

1.2.13 

1.2.14 

1.2.15 

n(t)=e 2
a (c1 cost+c2 sint) 1.2.16 

-�µ, a 1 
�(a)= e 2

a (-(c2 cost-c1 sint)--(c2 sint+c1 cost)) . 1.2.17 
13µ 2 

The equation 1.2.14 is a well known standard form. If the parameters 
are real and positive as is the case when considering the transmission 
dynamics of a disease then it results in a damped harmonic oscillation about 
the equilibrium values. The period of oscillation when 

132 < 4a2 is 41t 
�(4a2 -l3µ)l3µ 

As a result the equilibrium point is, in this case, stable. Figure 1.2.1 
below illustrates how damped harmonic oscillation might occur close to the 
equilibrium point. 
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Figure 1.2.1 

Damped Harmonic Oscillation Close to 

Equilibrium Values 

Number of Infectious and 

Suceptlble Individuals 

The main shortfall of such a convenient analysis is that the results 

predict that the disease will eventually die out. This may certainly be the case 

for some infections for which an immunisation policy has been introduced and 

applied in a widespread fashion but it certainly not true for diseases such as 

the common cold. Epidemics of diseases like the common cold tend to be 

periodic. Data gathered for measles indicate that there is a "three" yearly peak 

in the incidence of disease (Anderson and May, 1991 ), as figure 1.2.2 below 

shows. 

FIGURE 1.2.2, REPORTED CASES OF MEASLES PER ANNUM IN 

ENGLAND AND WALES 1940-1994 
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This "three yearly peak" is often called the inter-epidemic period. What 

is clear however is that the incidence of disease does not tend to dampen 

down over a period of time, unless there are special conditions such as an 

immunisation policy. In conclusion James and Steele show how simple 

mathematical techniques can be used to model infectious diseases in a 

deterministic manner. However they also highlight the fact that a set of 

apparently simple differential equations can prove difficult to obtain analytical 

solutions from. 

1.3 Background to Modelling Haemophilus lnfluenzae Type B 

Haemophilus lnfluenzae was first isolated by Pfeiffer in 1892 from the 

sputum of individuals during a flu epidemic. This disease only infects humans 

and the infection is predominantly in the upper respiratory tract ie above the 

Adam's apple. The disease is found world-wide being present in most 

societies at most times. As a result it is said to be endemic. 

There are several strains of Haemophilus lnfluenzae with Haemophilus 

lnfluenzae type B (HIB) being the strain with which this thesis is concerned. 

This particular strain is a major concern to both parents and the medical 

profession since it can be the catalyst for infection from life threatening 

diseases. Dr P McIntyre ( Australian Family Physician, Vol 22, No 10, 

October 1993, pg 1782-1789) of Westmead Hospital states. " The most 

common type of invasive HIB are meningitis, epiglottitis and soft tissue 

infection." Further to this he says. "About one in four hundred non-aboriginal 

children develop invasive HIB diseases by the age of five years, but among 

some groups of aboriginal children up to one in fifty develop invasive HIB 

disease almost all before one year of age." In the same article Dr McIntyre 

goes on to say. "Meningitis accounts for about fifty per cent of invasive HIB 

disease and HIB causes about seventy per cent of childhood meningitis in 

Australia. The peak incidence of HIB meningitis is from six months to two 

years of age, but it remains the commonest cause of meningitis until at least 

ten years of age". 

Systematic or invasive HIB cases appear to have a marked age 

relationship. (Systematic means that there is more than one part of the body 

infected, i.e. there is blood borne carriage to different sites within the body for 

example the meninges and the epiglottis.) Newborns, older children and 
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adults are not usually adversely affected by Systematic HIB. Strains of 

Haemophilus lnfluenzae can be found in up to eighty per cent of healthy 

individuals. However private communication with Dr Jeffrey Hanna of the 

Tropical Centre for Disease Control in Cairns indicated that it is not commonly 

type B that is found in older children and adults. This means that such people 

are unlikely to pass on infection of HIB to those susceptible to infection. 

Systematic Haemophilus lnfluenzae also appears to be seasonal. Within 

temperate climates it appears that invasive Haemophilus lnfluenzae diseases 

occur most frequently in late winter and early spring. 

Amongst the various strains of Haemophilus lnfluenzae, type B is the 

most common. Bacterial meningitis, epiglottitis, pneumonia and swollen joints 

are examples of invasive HIB disease with meningitis being the most 

common. There is a high mortality rate amongst those infected by invasive 

HIB disease if the individuals concerned are not treated. This is especially 

true when considering meningitis and epiglottitis. Within Australia individuals 

who display signs of invasive HIB disease are usually hospitalised quickly, 

however there may be exceptions within remote or isolated communities. It is 

apparent that there is a life threatening risk associated with invasive HIB 

disease. Therefore it should prove worthwhile to study the transmission 

dynamics of the disease in order to attempt to increase understanding about 

the expected incidence after the introduction of the immunisation program. 

1.4 Basic Epidemiology Concepts 

If an infectious disease is to maintain a presence within a community 

then it must successfully reproduce infections at a rate greater than or equal 

to unity. This so called reproductive rate, R, is defined as the expected 

number of secondary cases produced by an infectious individual in a 

population of susceptibles. If this reproductive rate is less that unity i.e. R < 1 

then the disease will die out regardless of the number of susceptible 
individuals. The basic reproductive rate, Ro, of an infection is defined as the 

average number of secondary infections produced when one infectious 

individual is introduced into a population where everyone is susceptible. This 

definition is the same as the reproductive rate, R, when there is no disease 

present in a community. The basic reproductive rate is dependent on factors 

such as the contact rate between susceptibles and infectious individuals. 
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In order to derive epidemiological implications from the basic 

reproductive rate of an infectious disease Anderson and May ( Infectious 

Diseases of Humans, 1991 ) use the assumption of " weak homogeneous 

mixing " which says that the rate of new infections is linearly proportional to 
� 

the total number of susceptibles, X ie �X where X(t) = f X(a,t)da. Here
0 

X(a,t) is defined as the number of susceptibles of age a at time t. A more 

usual assumption is "strong homogeneous mixing" which means that the rate 

of new infections is proportional to both the number of susceptibles and 
� 

infectious individuals ie �XY, where Y(t) = f Y(a,t)da. Here Y(a,t) is defined
0 

as the number of susceptibles of age a at time t. Using the assumption of 

weak homogeneous mixing Anderson and May denoted the net fraction 
X - �

susceptible as i = = , where N = f N(a,t)da. Here N(a,t) is defined as the
N 

o 

total population of age a at time t . 

Anderson and May then say that during the course of an epidemic of 

an infectious disease the number of secondary infections will decrease below 

the initial number occurring in a disease free community by a factor i. We 

therefore have a relation between the basic reproductive rate and the effective 

reproductive rate which can be expressed mathematically as, 

R = R
0 

x . 1.4.1 

If a disease is at its equilibrium or steady state position then the 

effective reproductive rate of the disease will be unity. In other words every 

infection present within the community would result in one secondary 

infection. Hence at this equilibrium value we have, 

1.4.2 

This relationship allows the estimation of the basic reproductive rate of 

an infectious disease. It can be used as an estimate regardless of the type of 

mixing assumed. 

The next concept to be introduced is the Threshold Theorem. In order 

to illustrate the threshold theorem we can consider a community of constant 

size N. Within the population every individual is either susceptible, X, infected 

and infectious, Y, or recovered and immune from further infection, z. A 
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simple system of equations describing the transmission dynamics of the 
disease is , 

dX =-�XY
dt 
dY 
-= �XY-aY 
dt 
dZ =aY
dt 

1.4.3 

which is the same system as 1.2.1-1.2.3 with birth and deaths 
removed. Here the transmission rate is � and the recovery rate is a so that in 
time Vt there will be �XYVt new infections and aYVt recoveries in time Vt. If 
we assume x(t)andy(t)are well behaved and that �.x(t),y(t)::t.Oand then 
divided the second equation by the first we get 

dY = �XY-aY =-l+�
dX -�XY �X 

which can be rearranged and integrated to give 
a Y(X) = j3LnX -X +c

1.4.4 

1.4.5 

where c is a constant dependent on the initial conditions of the model. We 
can also introduce a term p =; , and call this term the "relative removal rate". 

This term measures the recovery rate from infection divided by the 
transmission rate of the disease. As a consequence of the relative removal 
rate a description of the threshold theorem first introduced in 1927 by 
Kermack and Mc Kendrick ( Anderson and May, 1991 ) is as follows. 

If the number of susceptibles, X is greater than the relative removal 
rate p ie X > p then Y(X) is an increasing function of X so the number of 
infectious individuals will increase. However if the number of susceptibles is 
less than the relative removal rate ie X < p then Y(X) will be a decreasing 
function of X and the number of infectious individuals will decrease. This can 
be seen from equation 1.4.4 in an obvious manner. 

What this means in terms of epidemiology concepts is that an epidemic 
will not be able to occur unless the initial number of susceptibles is greater 
than the relative removal rate of the disease ie X

O 
> p . If this condition is not 

satisfied then the disease will die out. An implication of the threshold theorem 
is that if immunisation rates can artificially reduce the number of susceptibles 
to a point where the relative removal rate is always greater than the number of 
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susceptibles then incidence of the infectious disease will diminish and may 

eventually die out. The disease will not be given the opportunity to reach 

epidemic proportions. 

This chapter has introduced some of the developments in the history of 

mathematically modelling infectious diseases. A basic model was introduced 

and it was made clear that even simple models do not necessarily provide 

analytical solutions. Finally some basic epidemiological parameters were 

introduced that will be utilised in later chapters. The following chapter is 

concerned with introducing a more complex model that may more accurately 

represent the dynamics of HIB in Western Australia. 
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CHAPTER TWO 

A MATHEMATICAL MODEL TO DESCRIBE THE TRANSMISSION 

DYNAMICS OF HAEMOPHILUS INFLUENZA TYPE B 

2.1 Introduction 

When epidemics of common diseases like the common cold occur the 

majority of people affected suffer only mild personal inconvenience whilst the 

overall economic cost of the epidemic may be substantial. There are certain 

childhood diseases that can cause severe discomfort or even death in the 

worst cases. Haemophilus lnfluenzae type S (HIS) is predominantly a 

childhood disease that in itself is not particularly dangerous but it has the 

property that it can act as a catalyst for more serious infections such as 

bacterial meningitis or epiglottitis. It is therefore of practical relevance to try 

and determine why epidemics like HIS occur and investigate if it is possible to 

contain them through a public health strategy. If a disease can be transmitted 

from one person to another then the disease is said to be infectious or 

contagious. As a consequence it is possible for an epidemic of the disease to 

occur at some time. In order to minimise incidence of an infectious disease a 

common public health strategy is to implement a vaccination programme 

directly targeted at one or more infectious diseases. This thesis is an attempt 

to mirror the transmission dynamics of an infectious disease within a given 

population through the process of mathematical modelling. There are many 

issues that need to be addressed concerning the population to be studied. For 

this model the population is that of Western Australia and a selection of the 

relevant questions that need to be asked before the development of a models 

are as follows. 

1. Is it necessary to study the total population?

2. Is the population constant?

3. Can the natural death rate be treated as constant?

4. How many initial infections would be needed for an epidemic to occur?

5. What is the average age of infection?

6. What effect would an immunisation policy have on the incidence of HIS?

7. How are parameters, such as the transmission rate of the disease, to be

estimated?

8. Is it possible to obtain analytical results for the numbers of susceptible,
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infectious and immune individuals or do we need to employ numerical 

methods? 

Chapter four is dedicated to parameter estimation, the rest of the 

questions will be addressed during the development of suitable mathematical 

models in the next two chapters. 

2.2 Definition of States and Parameters 

To begin the modelling process we need to define distinct states during 

the transmission dynamics of HIB so that every individual within the given 

population will belong to only one of the states at any given age or time. Let 

M(a,t) = The number of individuals protected by maternal antibodies of age a at time t 

X ( a, t) = The number of susceptible indi victuals of age a at time t 

H(a,t) = The number of latent individuals (infected but not yet infectious) of age a at time t 

Y(a,t) = The number of infectious HIB individuals of age a at time t 

K(a,t) = The number of systematic HIB individuals of age a at time t 

Z(a, t) = The number of recovered or immune individuals of age a at time t 

N (a, t) = The total population of age a at time t. 

We now have several distinct states describing the transmission 

dynamics of HIB. It will be assumed that once an individual has recovered or 

has been successfully immunised then lifelong immunity is conferred on the 

individual. The next stage is to define the parameters associated with the 

transmission dynamics of HIB. Many of the compartmental models previously 

developed have assumed that the total population is constant i.e. the birth 

rate is equivalent to the death rate of the total population. Although this 

simplifies the resulting mathematical model, as will be seen in chapter 3, it is 

often an unrealistic assumption. Other parameters that will be introduced 

include the transmission rate, the recovery rate and the death rate associated 

with suffering systematic HIB diseases such as bacterial meningitis. A 

complete set of parameters is as follows. 
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11.(a) = The age dependent per capita force of infection 

a (a) = The age dependent immunisation rate 

µ(a)= The age specific death rate

m(a) = The number of newborns with mothers of age a

v = The recovery rate from HIB infection 

o = Rate at which individuals lose protection due to maternal antibodies

0 = Rate at which people move from being in the 

latent class to the the infectious class 

ro = Rate at which systematic HIB cases occur i. e. the rate at which 

people move from the infectious state to the systematic state. 

<I> = Recovery rate from systematic HIB 

<; = Systematic HIB death rate . 

2.3 A Mathematical Model 

With the parameters defined and the states of the model 

compartmentalised a set of partial differential equations describing the 

transmission dynamics of HIB can be constructed. Firstly, it is should noted 

that the following model is an extension of the one proposed by Angela 

McLean of Imperial College, London from a paper entitled "Dynamics of 

Childhood Infections in High Birth Rate Countries" presented at an 

international conference held at Mogilany, Poland, February 18-25, 1985. The 

following model extends A Maclean's model by adding an extra state that 

describes those individuals who suffer systematic HIB disease. The 

introduction of this additional state means that individuals who suffer HIB 

infection may acquire but do not necessarily acquire one of the systematic 

HIB diseases. Therefore such people may move either directly into the 

immune class or they may move into the systematic state. The assumptions 

that are used in the following of the model include the following. 

1 . The population is not constant. 

2. The number of individuals in any class at a given time may change with

age .

3. The number of individuals in any class at a given age may change with

time.

4. All newborn individuals are born with immunity to infection due to the

presence of maternal antibodies.

5. Once an individual has become immune to infection either as a result of
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immunisation or recovery from the disease then lifelong immunity is 

conferred on the individual. 

6. All individuals who acquire HIB infection remain in the latent state for a

period of time and are therefore not capable of passing on infection until

they move into the infectious state.

We can the write the following system of equations, 

aM(a,t) aM(a,t) (s:: ( ))M( )-a
-'-

a---'- +

a t

= - u + µ a a, t 

ax(a t) ax(a t)
aa' + a t

' =oM(a,t)-('}..(a)+cr(a)+µ(a))X(a,t)

aH(a, t) aH(a, t) ,..( )X( ) (e ( ))H( )aa + 

a t 

= I\, a a, t - + µ a a, t 

aY(a,t) aY(a,t) eH( ) ( ( ))Y( ) 2 3 1+ 
a 

= a, t -'\) + (0 + µ a a, t . . aa t
aK(a t) aK(a t)

aa' + 

a t

' =roY(a,t)-(q>+<;+µ(a))K(a,t)

az(a,t)
+ 

az
a
(a,t) =cr(a)X(a,t)+uY(a,t)+q>K(a,t)-µ(a)Z(a,t)aa t 

aN(a,t) aN(a,t)
= - ( ) N( )-rY( ) 

a 
+ µ a a,t � ... a,t .a a t 

This system of equations describes the movement or flow of individuals 

between states during the transmission dynamics of HIB. The first equation 

describes the rate of change in the number of individuals protected by 

maternal antibodies with respect to age and time. The equation shows people 

leaving the class as a result of losing maternal antibody protection and also as 

a result of the background natural death rate. There is no need to explicitly 

include a term for newborns as this is taken care of by using suitable initial 

conditions. 

The second equation describes the rate of change in the number of 

individuals in the susceptible class with respect to both age and time. 

Individuals enter the class as a result of leaving the maternal antibody class 

and they leave this class as a result of either becoming infected, dying or 

being immunised against HIB infection. In a similar fashion the third or latent 

class shows individuals entering as a result of becoming infected with HIB and 

leaving a result of becoming infectious or dying a natural death but not as a 

consequence of dying from HIB infection. 



26 

The fourth equation describes the rate of change in the number of 

individuals in the infectious state with respect to both age and time. 

Individuals enter this class when they leave the latent class and they leave 

this class as a consequence of either recovering from HIB infection, suffering 

systematic HIB infection or dying a natural death. The fifth equation shows 

the rate of change in the number of individuals in the systematic HIB class 

with respect to both age and time. Individuals enter when they suffer 

systematic HIB infection and leave as a result of either recovering from 

infection, dying a natural death or dying as a result of the systematic HI B 

disease. 

The sixth equation shows the rate of change in the number of 

individuals in the recovered class with respect to both age and time. People 

can enter this class for three reasons. Firstly as a result of immunisation they 

move directly from the susceptible class to the immune class, secondly if they 

recover from HIB infection and thirdly if they recover from systematic HIB 

infection. Individuals only leave this class if they die a natural death. The final 

equation describes the rate of change in the total population with respect to 

both age and time. The total population decreases as a consequence of 

natural deaths and also because of systematic HIB deaths. Again there is no 

need for an explicit term to describe newborns since suitable initial conditions 

can be used that incorporate the birth rate. 

We will now move on to the initial conditions. To begin, it is assumed 

that all newborn individuals are protected by maternal antibodies and 

therefore immune from infection for a certain period of time. Suitable initial 

conditions are, 

M(O,t) = f m(a)N(a,t)da 

X(O,t) = H(O,t) = Y(O,t) = K(O,t) = Z(O,t) = 0 

and 

M(a,t
0 

), X(a,t
0 

),H(a,t
0 

),Y(a,t
0 

),Z(a,t
0

) 

are all known and fixed. 

2.3.2 

2.3.3 

2.3.4 

We therefore have the dynamics of the disease described at time t
0

• 

The term m(a)N(a,t) describes the number of newborns with mothers of age

a. If the total number of births is summed over all possible ages of the mother

then the initial condition 2.3.2 is arrived at. 
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The per capita rate of infection is defined as (A. McClean, 1985) 

f �(a,a°)Y(a' ,t)da'

A(a,t) = -=-
0

-_----

f N(a' ,t)da'
0 

2.3.5 

where �(a,a') is the transmission rate of the disease from 

age a to a'. This term describes the probability that an infected person 

belonging to one age group will infect another individual belonging either to 

the same or another age group. A usual assumption is that individuals move 

from the susceptible to the infected state at a rate �XY. In this case the 

movement is at a rate proportional to the product of the number of susceptible 

and the number of infectious individuals. The term � also represents the 

combination of two epidemiological quantities. These are the degree of 

contact between the infectious and susceptible individual and the probability 

that contact between a susceptible and infected individual will result in a 

successful transmission of infection. 

By the above definition for the per capita rate of infection it is clear that 

the transmission rate is no longer a constant of proportionality but is 

dependent upon the age groups that the susceptible and infectious individuals 

belong to. The transmission rate �( a, a') does combine two factors as in the 

simple proportional case but in an age dependent manner. The first is the 

degree of contact between susceptibles of age a and infectious individuals of 

age a'. It combines this with the likelihood that an infectious individual of age 

a' will successfully transmit infection to a susceptible of age a. This definition 

is an extension of the classical interpretation of the transmission rate. 

The concept of an age structured model has been previously 

developed by Bailey, 1975 and Anderson and May, 1991. In these models we 

have a finite set of N discrete age groups or classes. Further it is usually 

assumed that for a susceptible in the i 1h age class and an infectious person in 

the /
h age class the transmission rate would be constant i.e. �(a,a') would 

be a constant, �
ii 

. As a result of this assumption it is possible to construct a 

N x N matrix which completely describes the transmission rates across all 

distinct age groups. This type of a matrix is commonly termed a Who Acquired 

Infection From Whom ( WAIFW ) matrix. However the task of finding N2 
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distinct components from only N distinct age groups remains. A common 
restriction placed upon this matrix is that it is in some form symmetrical. In the 

simplest scenario the element �;- = � 1
-; , so that there are at most N

2 

+ N
J 

2 

distinct elements to be found. Two examples of WAIFW matrices are below. 

�I �I �3 �4 �I �I �I �I 

�ij = 
�I �2 �3 �4 

�3 �3 �3 �4 
� ij = 

�2 �2 

�3 �3

�2 �2 

�3 �3

�4 �4 �4 �4 �4 �4 �4 �4 

The first matrix can be used to describe the situation where the main 
route of transmission is through one particular age group, in this case age 
group two. Individuals in other age groups have their transmission rate 
described by the other terms �"�

3
, and �

4
• This could correspond to the 

situation described earlier where infectious individuals of school age, say age 
group two, are more likely to infect susceptibles within the same age group. 
The element �2 

would reflect this by being larger than the other elements in 
the matrix. Further the elements � 1, � 

3, and � 4 reflect the other possible
transmission routes. For instance the probability that an infectious person in 
age group one infects a susceptible in age group three would be given by the 
element �

3
• The probability of the reverse situation is also given by the 

element �
3

• In this manner the elements of a WAIFW matrix can be 
manipulated to simulate the probability of a successful transmission of 
infection across the different age groups. The design of the matrix will depend 
on empirical evidence about previous incidence of an infectious disease. 

The second matrix can be used to describe the situation where the 
transmission rate depends only on the age of the susceptible and not on the 
age of the infectious individual. This can be seen by noticing that the 
probability of an infectious person in age group one successfully infecting a 
susceptible in any age group is given by the element �

1
• Since all the 

elements in any row of the matrix are identical then the same is true for 
infectious individuals that belong to any of the other age groups. Other 
possible scenarios have been discussed by Anderson and May (1991) but the 

usual approach is to reduce the matrix to at most N
2 

+ N distinct elements
2 

so that collected data can be used to estimate the elements of the matrix. As 
previously mentioned one way of achieving this simplification is by assuming 
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that an individual in age group i has the same probability of being infected by 
an infectious individual in age group j as a susceptible in age group j has of 
being infected by an infectious individual in age group i so that j3 ij = j3 ji . 

The system of equations 2.3.1 can be simplified in the following 
manner. Let the proportion of the total population in each state at a given age 

" " " " " " " M(a t) 
be denoted by M,X,H,Y,K,Z where M(a,t) = 

' and similarly for the N(a,t) 
other proportions. In the set of equations 2.3.1, if we divide each equation by 
N(a,t), then every right hand term will have a term describing the disease 

induced death rate. This is because the rate of change in the total population 
is affected by the disease induced death rate as well as the background death 
rate ie. 

MA ( ) = M(a, t) a,t , .. N(a,t) 
A A (aM(a,t) + aM(a,t))N(a,t)-(aN(a,t) + aN(a,t))M(a,t)

a M(a,t) a M(a,t) aa at aa at
��-+ =--------'--------'----------� aa at (N(a,t))2

-(o + µ(a))M(a,t)N(a,t)-( µ(a)N(a,t)-BK(a,t))M(a,t) 
=---'----'---------'---------'---(N(a,t))2

= -(o + µ(a)) M(a,t) (-µ(a)N(a,t)-oK(a,t)) M(a,t)
N(a,t) N(a,t) N(a,t) 

A BK(a t) A 

= -(o + µ(a)) M(a,t) +µ(a)+ ' M(a,t) 
A BK(a t) A =-OM(a,t)+ ' M(a,t). N(a,t) 

N(a,t) 

So every equation will have a term describing the systematic HIB death 
rate, c;K(a,t). This extra term can be removed by defining an additional state 

within the model. Let this extra state be representative of those individuals 
who have died as a result of systematic HIB infection and who would not of 
died of another cause. If this extra class is denoted by E(a,t) then the 

numbers in this class of age a at time t will be given by the partial differential 
equation. 

aE(a, t) aE(a, t) - rY( )- ( )E( )---+ -� .. a,t µ a a,t aa at

2.3.6 

The total population can then be altered to include this extra class. Let 
the new total population be given by 
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W(a, t) = N(a, t) + E(a, t). 2.3.7, 

This equation is the original total population plus those who have died 

as a result of systematic HIB disease. This new total population can then be 

derived as a partial differential equation as follows. 

oW(a, t) oW(a, t) oN(a, t) oN(a, t) oE(a, t) oN(a, t) 
---+ = + + +---

� � � � � � 

= -<;(a)K(a, t)- µ(a) N(a, t) +q((a, t)- µ(a)E(a, t) 
= -µ(a)W(a, t)

since W(a, t) = N(a, t) + E(a, t). 

This new "total population" is only dependent on the background death 

rate so we can define a new set of variables that remove the dependency on 

the systematic HIB death rate. Let 

M' ( ) = M(a, t) X' ( ) = X(a, t) H' ( ) = H(a, t)a, t , a, t , a, t 

W(a, t) W(a, t) W(a, t) 

Y' (a, t) = Y(a, t) ' K' (a, t) = K(a, t)' Z' (a, t) = Z(a, t)
W(a, t) W(a, t) W(a, t) 

which describes the proportion of the new total population that belongs to any 

particular state within the transmission dynamics of HIB. From the first of 

these proportions we have 

M'(a, t)W(a, t) = M(a, t) which can be differentiated to give

(i_+.£._)M' W = 

oM 
+ 

oM 
i.e.

oa ot ot oa 
w

(
oM' 

+ 
oM'

) + M'(
oW 

+ 
oW

) = -oM(a, t)-µ(a)M(a,t).
oa ot oa ot 

But we know 

oW(a, t) oW(a, t) ( )W( ) h ---+ =-µ a a, t , ence
oa ot 

W(a,t) -+- = -(o + µ(a))M(a) + µ(a)W(a, t) M'(a, t). 
(aM' oM'

) 
aa ot 
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. dM'(a, t) dM'(a, t) = -(s: ( )) 
M(a, t) 

( ) M'( ) . . a + a u + µ a + µ a a, t 

a t W(a, t) 

since 
M(a, t) 

= M'(a, t). 
W(a, t) 

Hence we have, 

dM'(a, t) dM(a, t) 
=-s:( )M( ) 

aa 
+ 

dt
u a a, t . 2.3.8 

If this process is applied to the original system of equations we get. 

ax (a, t) ax (a, t) 

da 
+ 

dt
=BM(a, t)-(A(a, t)+cr(a))X(a, t) 

dH (a, t) dH (a, t) 
= 'I( )"' ( )-SH ( ) 

da 
+ 

dt 

I\, a, t A a, t a, t 

dY(a, t) dY(a, t) 
=SH( )-( )Y( ) 

da 
+ 

dt
a, t v +ro a, t 

dK(a, t) dK(a, t) 
= Y( )-(.+. )vi( ) 

da 
+ 

dt

ro a, t 'i' + c; n.. a, t 

dZ (a t) dZ(a t) 

da
' + a/ =cr(a)X(a, t)+SK(a, t)+vY(a, t)

dE (a, t) d' E(a, t) _ ( ) vi ( ) 
da 

+ 

dt
- c; a n.. a, t ·

The boundary conditions become, 

M (O, t) = 1 

X (0, t) = H (O, t) = Y (O, t) = K (0, t) = Z (O, t) = E (O, t) = 0.

2.3.9 

The equations are now in a form that is independent of both the 

background and systematic HIS death rates. To examine how the system 

behaves we must first look at the system when there is no longer any change 

in the rate of flow between the different states of the disease. In order to do 

this we can drop the time dependence from the model and find the age 

distribution of each of the states in terms of the parameters within the model. 

For the following calculations it will be assumed that the age dependent 

vaccination rate is actually a constant. This means that the susceptibles are 

immunised at a rate proportional to the number of susceptibles. It should also 

be noted that both the force of infection and the systematics HIS death rates 

are to be treated as constants within age groups. The equation governing the 

proportion of the population protected by maternal antibodies can then be 

solved using standard methods. We have 



c)M' (a, t) 
+ 

c)M' (a, t) 
= -f>(a)M' (a, t)

aa dt 
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which upon removing time dependence and applying the above assumptions 

reduces to a first order linear ordinary differential equation, 

dM'(a) = --f>M'(a).
da 

:. dM'(a) =--f>da i.e., LnM'(a) =-f>a+c, . .  

dM'(a) 

M' (a)= exp(--f>a + c). 

But we have M'(O) = 1, i.e., 1 = exp(c) 

hence c = 0, So the solution is, 

M'(a) = exp(--f>a). 

Similarly the rest of the equations reduce to, 

dX (a)= f>M (a)-(A +cr)X (a)
da 

dH (a)= AX (a)-0H (a)
da 

dY'(a) 
=0H(a)-(v+ro)Y'(a) 

da 

d!C (a)= roY' (a)-(<!> +;)IC (a)
da 

dZ (a)= crX (a) +vY' (a) +<l>K (a)
da 

dE(a) =�(a).
da 

2.3.10 

These can be solved by the familiar integration factor method, for 

example the number of susceptibles is determined as follows, 

dX' (a)= f>M' (a)-(A + cr)X' (a)
da 
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dX'(a) 
:. + (A +cr)X'(a) = o exp(-oa), since we have M'(a) = exp(-oa)

da 

Applying a suitable inte grating factor, i.e exp(A +cr)a ,  we get 
X' (a)= e-(J..+a)a (f e(J..+a)loe-& dt + C) 

s.: (J..+a-li)a 

X' ( ) -(J..+a)a (
ue 

) a = e -. s.: +c . 
/\. +<J -u 

We have the initial condition X'(O) = 0, 
0 

0= +c.
11. +cr - o

Hence the general solution at equilibrium is 
X'(a) = c

1 
{e-& - e-<J..+a)a} 

0 where c
1 
= --

A +cr - o  
All of the ordinary differential equations can be solved in this manner. 

The following solutions were obtained, 

H'(a) = Ac,( e-& + e
-<J..+a)a -

c2 e
-eaJ

0- o 11.+cr-8
1 1 where c

2 
=--+

-. 0 -0 I\. +<J -0 

Y'(a) = A.0c e + e _ c2 e 

( 

-&, -(A.+a )a -
ea 

1 (0 - o )(v + co - o) (A + cr -0 )(v + co -A -0) (v + co -0) 
1 1 C2 where c

3 
= +---------

(0 - o )(v + co - o) (A + cr -0 )(v + co -A -0) (v + co -0) 

e-lia e-(J..+a)a K'(a)=A.co0c
1

( +-------------
(0 - o )(v + co - o )( <1> + <; - o) (A + cr -0 )(v + co -A -cr )( <1> + <; -A -cr) 

C e-ea C e -(V+{l))a 
2 _ 3 _ C e -<,+<;)a )

(V + CO - 0 )( q> + <; -0) ( q> + <; -V - CO)
4 

1 1 
where c

4 
= +--------------

(0 - o  )(v +co -6)(<1> +<; - o) (A +cr -0)(v +co -A -cr)(<l> +<; -11. -cr) 
C2 C3 

-----=-------�--

(v +co -0)(<1> +<; -0) (<1> +<; -v -co) 

We can also obtain an expression for the recovered or immune 

equilibrium state, i.e. 
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Finally 

E'(a) =�f K'(a)da

-e-&, e-(;\.+<J)a

E'(a) = Aro0�c1
( ---------

0(0-o)(v +ro -o)(<I> +� -o) (A +cr)(A +cr -0)(v +ro -A-cr)(<I> +� -A -cr) 

C e-8a
C e-(v+co)a C e-<+�)a

+ 2 + 3 + 4 +c )
0(v +ro -0)(<1> +� -0) (v +ro)(<I> +� -v -ro) <I>+� 

5

1 1 
wherec

6
= ( +---------------

0(0 -o)(v +ro -o)(<I> +� -o) (A +cr)(A +cr -0)(v +ro -A -cr)(<I> +� -A -cr) 

C2 C3 
_ _s_). 

0(v +ro -0)(<1> +� -0) (v +ro)(<I> +� -v -ro) <I>+� 

We can then derive the relationship between the two new sets of variables. 

That is between the proportions of the population actually in each state at any 

particular age and the "extra state" defined by the set of equations that 

removes dependence on the disease induced death rate. We have , 
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W(a) = N(a) + E(a), or alternatively

N(a) = W(a)-E(a). 
We also know that 

E(a) = W(a)E'(a). 
:. N(a) = W(a)(l-E' (a)) . 
. M(a) = 

M(a) 
= 

M'(a) 
.. W(a)(l-E'(a)) (l-E'(a)) · 
The same method can be applied to the other states to give. 

A X'(a) A H'(a) A Y'(a) A K'(a) A Z'(a) X(a) = H(a) = Y(a) = K(a) = Z(a) = ---
l - E' (a)' l-E'(a)' l-E'(a)' l-E'(a)' l-E'(a) ·

Given that seriological surveys or case notifications have been 

successful we have an estimate for X (a), the proportion of the population

susceptible at a given age. If we have estimated values for all the parameters 

in the model except for the force of infection we can use this information to 

estimate the force of infection and a simple root finding routine can be used to 

achieve this objective. From the expression for the proportion of susceptibles 

we have, after rearrangement 

O=X(a)(l-E'(a))-X'(a). 

This formula could be used to find estimates for the age specific force 

of infection. We now have an expression for determining age specific values 

for the force of infection. Classical models such as that by Bailey 1975, did not 

take into account the disease induced death rate. Since the term (l-E (a)) 
is dependent on the disease induced death rate it will have a direct effect on 

the age specific values for the force of infection. From before we have 

dE (a) 
-- = �(a)K' (a), 1.e.da 

E (a)= f �(p)K' (p)dp'. 

We now need a method for incorporating the systematic HIB age 

dependent death rate. Mathematically this can be achieved quite easily. Let 

q"q2
,q3 , . . . . . . .  qn-l'qn 

represent the proportion of age specific case fatalities in 

the age groups Oto a"a' to a
2

,a
2 

to a
3
,a

n
_, to a

n 
. The systematic HIS death

rates for the same age groups can then be found in the following manner. We 
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know that q; represents the proportion of people who leave the systematic 

state in the age group a
j
-t - a

j 
and enter the introduced state E(a).

Mathematically this can be written as 

�-
q. =

1 
, where cp is the recovery rate from systematic HI B 

J (<!>+ �) 

disease. 

This equation says that the proportion of the population in the disease 

induced state from a particular age group is determined by the age 

independent rate at which individuals move into the systematic HIB state plus 

those people from the same particular age group who enter the disease 

induced state. We can rearrange to give, 

so that we have a method through which the age dependent disease induced 

death rate can be estimated. Therefore this method could be applied to 

estimate the age specific values for the force of infection. In turn this allows 

the age specific transmission rates of the disease to be estimated. 

2.4 EPIDEMIOLOGICAL PARAMETERS 

Three epidemiological parameters of real interest are the average age 

at infection, the basic reproductive rate of the disease and the critical 

vaccination proportion of the susceptibles that would eradicate or minimise 

incidence of the disease. The model in its current form can be used to 

calculate these values but any simplification would also be useful. One 

immediate choice is to remove the class of people protected by maternal 

antibodies by incorporating these newborns into initial conditions for the 

number of susceptibles. The boundary condition for this state becomes, 

X(O,t) = J m(a)N(a,t)da 

This condition allows the susceptible state to take into account the 

individuals protected by maternal antibodies. Between o - a; months of age 
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there will be no individuals contributing to the number of susceptibles but 

once these individuals become older than a
j 

months they would become 

susceptible to infection. 

For the approximation of the epidemiological parameters it will be 

assumed that the background and systematic HIB death rates are constant. 

Further it will be assumed that there is only one age group. Although this may 

simplifies the analysis it allows the parameters to be analytically 

approximated. 

Firstly the total number of susceptible and infectious individuals of all 

ages is given by, X(t),Y(t) respectively and the total population by N(t). Also

since we know that the number of births in year t is given by N(O, t), we can

then state the following definition. The average birth rate Bis defined as 

B = 

N(O, t)
. 

N(t) 

This was first introduced by Anderson and May 1985. We also know that 

-

N(O, t) = J m(a)N(a, t)da 
0 

-

= J m(a)(I-E (a))W(a, t)da 
0 

-

= J ;(a)W(a, t)da 
0 

where m = m(a)(I - E (a)). 

Further W(O, t) = N(O, t), because these are both measures of the same birth rate. 

-

:. W(O, t) = J ;(a)W(a, t)da 
0 

This is a standard result ( McClean, 1985 ), on the growth of human 

populations and implies that the population will settle down to a stable age 

distribution. The growth rate is given by g and must satisfy the Euler

condition. 

'!:_ 
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The stable age distribution is given by. 

W(a, t) = W(O, t)e-<g+µJa 
The population N(t) grows at a similar rate given by.

N(a, t) = W(a, t)-E(a, t) 
= W(a, t)(l-E (a)). 

Therefore we have 

dN(t) 
= 

IaN(a, t) da dt
O 

at

= g N(t) 
hence 

N(t) = N(O)eg'. 
Where n(O) denotes the initial condition that N(O)=n(O). 

The equilibrium value of the total number of susceptibles can be found 

by using the following equation, 

X(t) = f X(a, t)da 
W(O, t) 

= 

(g+µ+A.) 

This gives the number of susceptibles present in the population when 

the rate of change of the proportion maternal, latent, susceptible, infectious 

systematic and immune is zero. 

This chapter has shown how a set of partial differential equations can 

be used to describe the transmission dynamics of an infectious ideas, in this 

case HIS. It has also been seen that mathematical techniques can be applied 

to simplify the system of equations in order to find methods for estimating 

basic epidemiological parameters and the equilibrium distributions for the 

proportions in each class. 
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Finally the chapter has emphasised the complexity of the per capita 

force of infection and one possible way of determining the transmission rate of 

the disease across all age groups. The next chapter is concerned with using 

an alternative approach to building a suitable model and then analysing the 

model to determine whether the equilibrium points are stable. 
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CHAPTER THREE 

AN ALTERNATIVE MODEL 

3.1 An Alternative Model 

Instead of assuming that the age structured model depends on both 

age and time and then dropping the time dependence in order to find the 

equilibrium age distributions for the proportions in each state of the disease it 

is possible to define a model that is dependent on age only. In this case a set 

of first order ordinary differential equations will describe the transmission 

dynamics of HIS. The parameters from the first method can still be used but 

an explicit term describing the birth rate of the population needs to be 

included. This model is based upon existing principles such as those used by 

Bailey , 1975 and Anderson and May , 1991 but those ideas have been 

extended for the purpose of this thesis. During the period of research I have 

not found the following system of equations in any publication I have read. 

The assumptions in this model are similar to those used for the first model 

and include the following. 

1 . The population is not constant. 

2. The number of individuals in any class at a given time may change with

age .

3. All newborn individuals are born with immunity to infection due to the

presence of maternal antibodies.

4. Once an individual has become immune infection either as a result of

immunisation or recovery from the disease then lifelong immunity is

conferred on the individual.

5. All individuals who acquire HIS infection remain in the latent state for a

period of time and are therefore not capable of passing on infection until

they move into the infectious state.

In this case a system of equations that describe how the rate of change 

in the numbers in each state changes in a small age period fla is as below. 



dM(a) 
= m(a)N(a)-(0 + µ(a))M(a)

da 
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dX(a) 
= OM(a)-0 .. + cr(a) + µ(a))X (a) 

da 
dH(a) 

= AX (a)-(0 + µ(a))H(a) 
da 

dY(a) 
= 0H(a)-(v + w + µ(a))Y(a) 

da 
dK(a) 

= wY(a) -( q> +<;+µ(a ))K(a) 
da 

d
Z(a)

= cr(a) X (a)+ vY(a) + q>K(a) -µ(a)Z(a)
da 

dN(a) 
= (m(a) -µ(a)) N(a) -<;K(a) 

da 

3.1.1 

The first equation contains the explicit term for the newborns that 
needs to be included in this age dependent model. This term is m(a)N(a) and 
describes the birth rate as a fraction of the total population. In order to analyse 
how these equations behave it is convenient to allow the age dependent 
parameters to become constants so that these parameters are treated as 
being the same for the entire population. This means that the background 
death rate will be treated as being the same for the entire population. Similarly 
the birth rate will be made a constant fraction of the total population rather 
than being dependent on age. It will also be assumed that there is no 
vaccination programme in place. Further it will be assumed that there is no 
distinct maternal antibody state in the disease. This could mean that everyone 
is born susceptible or that initial conditions can be used to incorporate those 

1 protected by saying that the initial number of susceptibles of age zero is none 
r--

(i and then allowing these newborns to become susceptible after a certain 
� number of months. The state of latent individuals will also be removed and 

[ this corresponds to the situation where an individual is capable of passing on 
infection to others as soon as he/she is infected. Finally it will be assumed 
that there are no deaths as a result of systematic HIB disease. This means 
that any individual with systematic HIB receives medical attention that 
facilitates recovery from infection in all cases. The original set of equations 
reduce to. 



dX(a) 
= mN(a)-(11. + µ)X(a) 

da 

dY(a) 
=AX(a)-(v+w+µ)Y(a) 

da 

dK(a) 
= wY(a)-(<I> + µ)K(a) 

da 

dZ(a) 
= vY(a) +<j>K(a)-µZ(a) 

da 

dN(a) 
= (m-µ)N(a) 

da 

.. 
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3.1.2 

The methodology that will be used begins by determining the 

equilibrium or steady state solution of the system of equations. We need 

positive non-zero values for a realistic situation since any negative values 

would mean a negative number of either susceptible, infective, systematic or 

recovered individuals. It should then be possible to examine the nature of the 

equilibrium point by using the Jacobian and the characteristic equation to 

check the stability of the equilibrium. The Routh Hurwitz criteria will be used to 

show that periodic solutions exist around the equilibrium point at least in the 

immediate vicinity around the bifurcation point to be determined. Since the 

algebra can become complex during the analysis it is worthwhile to make one 

more convenient assumption. This is that the population is constant, in other 

words the birth rate is equal to the background death rate. With this 

simplification the equations reduce to . 

dX(a) 
= µN-(11.+µ)X(a) 

da 

dY(a) 
=AX(a)-(v+w+µ)Y(a) 

da 

dK(a) 
= wY(a)- (<I>+ µ)K(a) 

da 

dZ(a) 
= vY(a) +<j>K(a) -µZ(a) 

da 

Since X = N - Y - K - z equation 3.1.4 can be written as 

dY(a) -- = 11.(N-K-Z)-(v +ro + µ+11.)Y(a) 
da 

3.1.3 

3.1.4 

3.1.5 

3.1.6 

3.1.7 
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Equations 3.1.5 - 3.1. 7 are now independent of X and we can therefore 
look for the equilibrium values of the three equations 3.1.5 - 3.1. 7 . Once 
these have been determined it is a simple matter of subtraction to find the 
equilibrium value for the number of susceptibles. Setting 3.1.5 - 3.1.7 to zero 
we have, 

'A.(N -K - Z)-(v +ro + µ + 'A.)Y = 0 
roY -(<!> + µ)K = 0
vY + <!>K -µZ = 0

From 3.1.9 and 3.1.1 O we get, 

Y = <I>+µ 
K , and by substituting this into 3.1. 1 O we have

ro 

K = µro Z. 
(v(<p+ µ)+<pro 

Hence Y can be written in terms of z i.e. 

Y = 

µ(4>+µ) Z.
V(<p +µ)+<pro 

3.1.8 

3.1.9 

3.1.10 

Then by substituting these values into equation 3.1.8 we can obtain a 
solution for Z(a) in terms of the parameters within the model. This process 
yields 

N 
Z(a) = - , where 

c1 

C =l+ µro +µ(<p+µ)(v+ro+µ+'A.).
1 v(<!> +µ)+<pro 'A.(v(<!> +µ)+<pro) 

Since all the parameters within the simplified model are positive then 
the equilibrium values are also positive and we therefore have a realistic 
equilibrium point. In order to determine whether this equilibrium point is stable 
we first need to find the Jacobian and Characteristic equation of the model. 
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3.2 Jacobian and Characteristic Equation 

The Jacobian is given by 
o(

dY, dK, dZ
)

da da da , which yields the following. 
o(Y,K,Z) 

(
-(v + co + µ +). ), 

]= CO,

V, 

-A, -A
] -(<I>+µ), 0 

<I>, -µ 
The characteristic equation of a general cubic is given by 

a-a b c 

d e-a. f 

g h j-a.

which expands to give. 

a.3 
-(a+ e + j)a.2 

+(ae +aj +ej-bd-cg)a.-(aej +cdh-bdj-cge) = 0 , when 
J=O. 

This equation can be written in the form a.3 + p2a.2 + Pia+ Po= 0, 
whose roots we want to examine for stability. According to the Routh Hurwitz 
criterion (J.D. Murray, 1989) the equilibrium point is unstable if one or more 
roots of the characteristic equation has a positive real part. The Routh Hurwitz 
criterion states three necessary and sufficient conditions for roots of a cubic 
equation to have negative real parts. These are, 

(1) P2 > 0, (2) Po > 0, (3) P2 P i - Po > 0.

Therefore we need to substitute all the previous values found for these 
coefficients of the cubic and then determine whether these conditions are 
satisfied. 

(1) p2 
>0.
We know p

2
=-(a+e+j), and a=-(v+co+µ+A), e=-(q>+µ),

j=-µ. 
Hence p

2 = v + co + ). + <I> + 3µ .. 3.2.1 . 

Since all parameters values have real positive values the first condition is 
satisfied. 

r 
.i 
,, 
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(2) Po> 0.

We know Po = -( aej + cdh - bdj - ceg), then by back substitution 

aej=-µ(<j>+µ)(v+w+µ+A) , cdh=-AWq>, bdj=Aµw and ceg=AV(q>+µ). 

Hence, Po =µ(<j>+µ)(v+w+µ+A)+Aµw+Awq>+Av(<j>+µ) 
= (µ +<l>)(µ(v +w +µ+A)+ A(w +v)) 
=(µ+<I>)( v + w +µ)(µ+A). 3.2.2. 

Therefore since all parameters values are real and positive the second 

condition is satisfied. 

(3) P2P i - Po > 0.

If we first determine the value for Pi 
i.e. p, = ae + aj + ej - bd - cg , the

individual terms are, 

ae =(<I>+ µ)(v + w +µ+A) 

aj = µ(v + w +µ+A) 

ej=µ(<j>+µ) 
bd = -AW 
cg = -Aq> . 

Hence 
p1 = (<I>+ µ)(v + w +µ+A)+ µ(v + w +µ+A)+µ( q> +µ)+AW+ AV 

=(<I>+ 2µ)(v + w +µ+A)+ µ(<j> + µ) + A(w +v). 3.2.3 

Therefore this term is always positive. Continuing we have 

P2P i = (v + w +<I>+ 2µ)A2 + ((v + w +<I>+ 3µ)(<1> + w + v + 2µ) + (<I> +2µ)(v + w + µ) 

+µ(<j> +µ))A+ (v+ w +<I>+ 3µ)((<1> + 2µ)(v+ w + µ) + µ(<j> + µ)) 

hence 

P2P i 
- Po = (v + w +<I>+ 2µ)A2 + ((v +w +<I>+ 3µ)(<1> + w +v + 2µ) +(<I>+ 2µ)(v + w + µ)

+µ(q> + µ)- (µ +q>)(v +w +µ))A+ (v +w +<I>+ 3µ) 

((<I>+ 2µ)(v +w + µ) + µ(<j> + µ))- µ(µ +<l>)(v +w + µ). 

We then need to determine for what values of A, if any, this expression 

satisfies the third condition. The above equation can be rewritten in the form 

AA2 +BA+C, where 
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A =V +co +<I> +2µ 

B = (v +co +<I>+ 3µ)(v +co +<I>+ 2µ) + (<I> +2µ)(v +co+µ)-(µ +<l>)(co + v) 

C = (v +co +<I>+ 3µ)((<1> + 2µ)(v +co+µ)+ µ(<I>+µ))-u(<I> + µ)(v +co+µ). 

If we examine the final two terms for B we have 

(<I>+ 2µ)(v +co+ µ)-(co +v )(µ +<I>), 

: . we require that 

(<I>+ µ)(v +co+µ)+ µ(v +co+ µ)-(<I>+ µ)(v +co)> 0 

for B to be positive. But we know that 

(<1>+µ)(v+co+µ)-(<1>+µ)( v+co)>O. 

Since all parameter values are real and positive, hence B is always positive. 

Similarly by taking selective terms from C we can see that if 

( v  +co+<I>+ 3µ)µ(<1>+ µ)-u(<l>+µ)( v+co + µ) > 0, then C is always positive. By 

rearranging this expression we require that 

µ( v+ co+<l>)(<I>+ µ)-u(<I>+ µ)(v+co+ µ) + 3µ2 (<I>+µ)> 0 

which is always true, hence C is always positive. As a consequence it can be 

seen that the third condition will be satisfied for all real positive values of A. 

This means that as long as the force of infection is greater than zero then the 

equilibrium values for the numbers in each state, prior to immunisation being 

introduced, are stable. If the force of infection is negative then we have an 

unrealistic situation and there is no need to determine for what negative 

values of A, if any, the third condition is satisfied. 

3.3 Hopf Bifurcation 

The Hopf Bifurcation Theorem is concerned with the conditions 

necessary for the existence of real periodic solutions of the real system of 

ordinary differential equations 
dX 
-=F(X,v). 
dt 

Here F and X(v,t) are n-dimensional vectors and v is a real parameter. 

The bifurcation theorem is a very general tool in establishing the existence of 

periodic solutions and , in the neighbourhood of the bifurcation point , it also 
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gives their periods. However, it does not immediately provide any information 
as to the stability of the solutions , which is just as important as the existence 
of real periodic solutions. It is of practical importance in treating systems of 
dimension higher than two but can produce complex algebraic manipulation 
when applied to higher order systems. The following section is concerned with 
outlining how the method can be applied to a system of three ordinary 
differential equations. It should be noted that the three by three linear system 
that the theorem will be applied two can be solved explicitly and that the 
purpose is to simply illustrate the theorem. A more general discussion of the 
theorem can be found in either J.D. Murray's, 1989 or Sydel 1988. 

To begin the illustration of the theorem we return to the quadratic 
equation in A for the third condition to hold true i.e. 

H(A) = ( v+ ro + <j> + 2µ)A2 +(( v+ ro + <j> + 3µ)(<j> + ro + v + 2µ) + (<j>+ 2µ)( v + ro + µ) 
+µ(<j>+ µ)-(µ+ <j>)(v + ro + µ))A+ ( v+ ro + <j> + 3µ)
((<j>+ 2µ)( v+ ro+ µ) + µ(<j>+ µ))-µ(µ + <j>)(v +ro + µ)

According to the Hopf Bifurcation theorem, bifurcation will occur at a 
point A0 > O given by the solution to H(A0) = O. This quadratic has roots given 

by 

A= -B±.JB 2 -4AC
2A 

where as above 

A =V +ro +<j> +2µ 

3.3.1 

B = (v +ro +<j> + 3µ)(v +ro +<j> + 2µ) + (<j> + 2µ)(v +ro + µ)-(µ +<j>)(ro + v) 
C = (v +ro +<l> + 3µ)((<j> +2µ)(v +ro + µ) + µ(<j> + µ))-u(<j> + µ)(v +ro + µ). 

Since we have know that A, B and C are always positive then there are 
no real positive roots to equation 3.3.1 and hence the prerequisite condition 
for Hopf Bifurcation to take place is not satisfied. 

However if we assume that there is a positive root to equation 3.3.1 
and that the Hopf Bifurcation theorem is satisfied at this root then the 
characteristic equation must have a pair of complex conjugates given by 



<:x
2
(A) = g(A)+it(A) 

a 
3 
(A)= g(A)-it(A) 
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Necessary and sufficient conditions for this to be true are 

(1) 

(2) 

(3) 

g(A0) = 0 
t(A0) > 0 
dg(A) <0 atA=A0 • 

dA 

The characteristic equation at the bifurcation point is given by, 

therefore the characteristic equation becomes 

If the Hopf Bifurcation theorem holds at the bifurcation point then the 
characteristic equation can be written in the form 

By equating terms we have a
1 
(A

0
) = -p

2 
(A

0
) , which is always less than 

zero. We also have t2 (A
0

) = p
2 
(A

0
) which is always greater than zero. Hence 

if 

t(A
0

) =�Pi 
(A

0
) , a

2 
(A

0
) = it(A0) and a

3 
(A

0
) = -it(A0) , then the first two 

conditions are satisfied. 

In order to show the third condition is satisfied we can use the 
continuation of the root a

2 
in the neighbourhood of A

0
• This root satisfies the 

characteristic equation for all values of A i.e. 
CX2 (A)

3 + p2 (A)CX2 

2 + Pi (A)CX2 + Po (A)= 0 
Therefore we require 
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d�t., = Re{ da,;,<
A)

l
,.
J, evaluated at the bifurcation point. This

differentiation yields 

da
t').,,) (3( a

2
0 . .)2 +2Pi(A)a 2

(A)+ Pi(A))

+a 2 (A) dp2 
(A)+ a (A) dp, (A)+ dp0 (A) = 0

2 a)... 2 a)... aA 3.3.1 

Since we know that a, (A)= g(A)+it(A), :. Re{ da,;,<
A

lJ = d�t 
at the point A = A.

0 
and that the root satisfies the characteristic equation for all 

A, it follows from 3.3.1 

3.3.2 

What remains to be shown is that the real part of this equation is less
than zero. From 3.2.1 we have p

2 
= v + ro +A+ <I>+ 3µ, therefore dp�A) = 1

and always positive. Similarly from 3.2.3 we know that 

P i (A)= (<1>+2µ)(v+ro+µ+A)+µ(cp+µ)+A(ro+cp) 

:. dp�A) =(<1>+2µ)+(ro+cp)=2µ+2cp+ro , which is always a positive

quantity. We also know that, 
Po

= (µ(<I>+µ)+ (ro + v)(µ + <l>))A+ µ(cp + µ)(v+ ro + µ) 
� ==(µ(cp+µ)+(ro+v)(µ+cp)) 

which once again is always positive. 

If we then rationalise and take the real part of equation 3.3.2 we get the 
following expression 

3.3.3 

I. 
,, 
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which gives 

= -p, (A)-(2<1> + 2µ +ro)p
2 
(A)+ µ(<j> + µ) + (ro +v)(µ +<1>)

2 
3.3.4 

"-o 2p1 (A)+2(p2 (A)) "-o 

Since p, and p
2 

are always positive then the denominator is always 
positive. We require the numerator to be negative for the third condition to be 
satisfied. If we equate Pi 

(A) to µ(<j>+µ)+(ro+v)(µ+<j>) then we have the 
requirement that 

-((<j>+2µ)(v+ro+µ+A)+µ(<j>+µ)+A(ro+<j>))+µ(<j>+µ)+(ro+v)(µ+<j>) <0. 

This simplifies to requiring that , 

-(<j>+2µ)(v+ro)+(ro+v)(µ+<j>) < 0 

which is always true since all parameters are real positive quantities. Hence 
the third condition is satisfied. The Hopf Bifurcation theorem then states that 
there exist periodic orbits around the equilibrium point, at least in the vicinity of 
the bifurcation point )..

0 
The theorem also gives an estimate for the inter-

epidemic period of the disease i.e. p = 2Pi .
t(A

0
) 

This chapter has shown how simplified models can prove difficult to 
obtain analytical results. It has also been seen that in this particular example 
the Hopf Bifurcation theorem does not need be applied. However the 
conditions that need to be satisfied for Hopf Bifurcation to take place are 
examined. The next stage in the development of the model is to obtain 
estimates for the parameters within the model. 
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Since HIB has only been a notifiable disease since 1992 there is a lack 

of data to which mathematical methods can be applied to estimate parameters 

within the model. However there are sources of information that can be used 

such as private communication with medical people in the field. The following 

discussion shows how various sources were used to further develop the 

mathematical model for HIS. 

Parameters such as birth or death rates can be directly obtained from 

statistics provided by the Australian Bureau of Statistics ( ABS ). Other 

parameters such as the recovery or immunisation rate require a different 

method in order to estimate them. The recovery rate may be considered as a 

suitable time lag after infection during which an infected person will recover. 

This time lag would vary according to what infection the individual had 

suffered. Immunisation rates can be based on Health Department 

publications. 

Private communication with Dr Beryl Wild from the Princess Margaret 

Hospital, Perth, has indicated how data relevant to the estimation of certain 

parameters can be collected . Dr Wild published a paper called Diagnosis and 

treatment of Meninigitis in 1993 which also contained relevant information. 

This data includes the incidence of the disease and at what age individuals 

were infected. Another possible method of data collection is a seriological 

survey which would check for the presence of antibodies to the disease within 

the body i.e. an individual may be seropositive. However since HIS has only 

recently become a notifiable disease and that an immunisation programme 

against HIB has begun then a seriological survey could give unrealistic results 

for estimates of the proportion of the population susceptible to infection at 

particular ages. 

One fundamental parameter that needs to be estimated is the per 

capita rate of infection or force of infection. This was defined by Muench 

(Comiskey, 1988) as the "instantaneous per capita rate at which susceptible 

individuals acquire infection". If this parameter is treated as a constant then it 

is a relatively simple task to estimate via either case notifications or 
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seriological surveys. However if it is treated as being dependent on age or 

time it becomes a more difficult parameter to estimate. In either case the per 

capita force of infection is dependent on the transmission rate of a disease. If 

the force of infection is age dependent then the transmission rate describes 

the probability that an infectious person of age a will infect a susceptible of 

age a'. The transmission rate is an attempt to quantify aspects of human 

behaviour such as social interaction and personal hygiene. For this reason the 

assumption of homogeneous mixing is commonly employed ( Anderson and 

May, 1991 ). This assumes that all aspects of social, epidemiological and 

demographic behaviour are averaged out. For instance the number of people 

that an individual interacts with is the same regardless of whether the person 

lives either in a metropolitan or rural area. Homogeneous mixing implies that 

the per capita rate of infection is the same for all individuals within a given 

population. This implies that the transmission rate is also the same for all 

individuals within the population regardless of age and can therefore be 

treated as a constant. Despite the generality of the assumption it permits a 

degree of simplicity to be introduced into the modelling process and may 

therefore allow analytical results to be obtained. 

If this assumption is included the transmission rate will be the same for 

the entire population. One intuitive counter example can be highlighted when 

considering the school environment. In this environment, most individuals will 

be in the 5-12 year age group and will be mixing with others predominantly in 

the same age group. This necessarily implies that these individuals would be 

spending a significant amount of time away from individuals in other age 

groups. Therefore if we ignore the demographic position and possibly the 

density of children in different schools it may be reasonable to assume that 

the transmission rate could be considered as constant within the 3-10 year 

old age group. This simply says that different age groups do not mix in a 

uniform manner but that distinct age groups mix in a heterogeneous way or in 

a manner unlike other age groups. It may therefore be unreasonable to expect 

any particular individual to have an equal probability of transmitting infection to 

another individual independent of the age group that either belongs to. The 

likelihood is that an individual would have a greater chance of transmitting the 

infection to another person within the same age group, in this case within the 

same school environment. 

Further, what if the main body of infectious individuals came from 

infants young enough not to be in a school environment. A suitable approach 

l j 

I, 

i l 

) ; 
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in this situation might be to subdivide the population into smaller groups. 

These groups could correspond to newborns, infants and those either at 

kindergarten or primary school. The age group 0-2 months could represent 

the newborns. Most of these individuals will have a degree of immunity from 

various infections even though their own immunity systems may not be fully 

developed. This immunity is due to the presence of maternal antibodies within 

the body. The majority of such antibodies would have entered the 

bloodstream via the mothers bloodstream during pregnancy. We now have 

the total population being compartmentalised into sub-populations. The 

purpose is to find similar characteristics, such as the transmission rate, within 

the sub-populations, so that different values can be applied to the distinct age 

groups. Whether or not the entire population needs to be considered depends 

on the incidence of the disease and in what age groups the incidence is 

concentrated. Since the vast majority of HIS and systematic HIS cases occur 

in young children this seems to be the age group in which the modelling 

process should be concentrated. This estimation process will study the age 

group 0-1 O years and will compartmentalise this age group into subgroups in 

an attempt to mirror the incidence of HIS. 

Figure 4.1.1 below shows that the population of Western Australia 

within the 0-10 year age group has significantly increased in the period 1983-

1992. Therefore the population cannot be reasonably considered as constant. 

As a result the mathematical model will incorporate this population increase. 

The next question to be considered is the number of initial infections 

needed to lead to an epidemic. This critical value is expressed by the well 

known "Threshold Theorem", first outlined by Kermack and McKendrick 

(Bailey, 1975). This theorem was illustrated during Chapter One. The theorem 

gives an adequate level of immunisation coverage that needs to be obtained 

for the disease to eventually die out rather than cause an epidemic or remain 

endemic. Intuitively this is because the pool of available susceptibles gets 

smaller as previously susceptible individuals are immunised. The ideal aim of 

an immunisation initiative is to eradicate the disease in question. However a 

more realistic goal is to minimise incidence levels of the disease. An example 

of a previously targeted disease is smallpox which was successfully removed 

as a significant threat to individuals within the developed world during the 

1970's. 
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FIGURE 4.1.1, TOTAL POPULATION IN THE 0-10 YEAR 

AGE GROUP 1983-1992 
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42 Parameters 

From chapter two we have the following parameters that need to be 
estimated. 

A( a) = The age dependent per capita force of infection 

cr (a) = The age dependent immunistaion rate 

µ(a)= The age specific death rate 

v = The recovery rate from HIB infection 

8 = Rate at which individuals lose protection due to maternal antibodies 

0 = Rate at which people move from being in the 

latent class to the the infectious class 

co = Rate at which systematic HIB cases occur i. e. the rate at which 

people move from the infectious state to the systematic state. 

<j> = Recovery rate from systematic HIB 

� = Systematic HIB death rate 

Private communication with Dr Jeffrey Hanna has shown how difficult it 

is to actually put a numerical value to many of these parameters. However Dr 

Hanna has suggested approximate values for some of these parameters. 

Firstly the recovery rate from systematic HIB disease depends on what 
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invasive HIB disease is suffered. If an individual is infected by Bacterial 
Meningitis then the recovery period may be of about two weeks duration once 
medical treatment begins. In chapter one it was said that bacterial meningitis 
accounts for about fifty per cent of invasive HIS disease and that invasive HIS 
meningitis accounts for about seventy per cent of the overall incidence of 
bacterial meningitis in the age group 0-10 years. Another common invasive 
HIS disease is epiglottitis from which individuals can recover in about 2-3 
days. Since these two diseases account for the majority of invasive HIB 
disease the estimated values for the model will be based upon the recovery 
periods mentioned. If we have a specific recovery rate then the mean duration 
of infection is the inverse of the recovery rate hence the recovery rate for 
systematic HIB will be of the form 

<1> 
= o.5 + o.5 = 1 + 5 = 6, measured in number of cases per month. 

0.5 0.1 
Here it is assumed that 50 % of infected individuals suffer Bacterial Meningitis 
and the rest suffer epiglottitis infection and the time scale is in months. All of 
the following estimates will also be measured in months. 

The recovery rate for individuals with only HI B infection is, according to 
Dr Hanna anywhere from a few days to a couple of months depending on the 
individual. For the purpose of this thesis we will take this value to be four 
weeks which may represent an average recovery period. During this time the 
individuals infected are at risk from invasive HIS disease. Since the purpose 
of this estimation is to numerically solve a system of equations this parameter 
as well as any other can be easily changed. We have v as the recovery rate 
and therefore l. is the mean period of infectiousness. Hence 

1 v = - = 1 is the estimate for the HIB recovery rate in one month.
1 

Next we will estimate the rate at which individuals move from the latent 
to infectious state. Since e represents this rate then _!_ is the mean period of 

e 

time spent in the latent class. Once again private communication with Dr 
Hanna has indicated this to be in the order of 3 days. Hence 

e = -1- = 10 is the estimate for the latent to infectious rate
0.1 
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The next parameter to estimate is the rate at which individuals lose
immunity from infection due to maternal antibodies. For non-Aboriginals, the
immunisation programme for a newborn starts ideally when an individual is
two months old and consists of a triple dose vaccine at 2,4,6 months followed
by a booster at 18 months. It will be assumed that every newborn is 100 per
cent protected up to the age of 2 months. Therefore individuals could be
viewed as losing maternal antibody protection over a period of 4 months at a
uniform rate. If o is the rate at which individuals lose maternal antibodies then
� is the mean period spent under the protection of maternal antibodies. In this

case we have a period of 4 months to consider. The mean period that an
individual will be covered by maternal antibodies is therefore approximately
two months . Hence,

0 - { 0 
0.5 

for O < a < 2 months 

for 2 < a < 6 months 

4.3 Immunisation 

Mass immunisation is the method used by Governments to try and
minimise the incidence of diseases such as HIB. Immunisation programs
differ in their effectiveness and methodology (Anderson and May, 1982). The
policy directed at HIB is primarily a three stage program where newborns are
immunised at three different ages during their growth. At each stage the level
of resistance against the disease rises until a level approaching total immunity
from infection is reached. For the purpose of this thesis it will be assumed that
once an individual has been put through the program then one hundred per
cent immunity is obtained. For those individuals who are beyond the age at
which the immunisation program should of ideally began then a "catch up
program" is implemented. This may mean that an individual passes through
one or two stages of immunisation. Again, once this has been achieved the
individuals concerned will be considered as totally immune. There are two
main vaccines available for HIB these are HibTitter and PedVaxHIB. The
manufacturers of the first have won the Australian contract via a federal
government tender. However indigenous people are treated with the second
because of the different effectiveness of the Vaccine at a young age. For
HibTitter the schedule is based on the following.

1. First dose at 2 months of age with 15% protection
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2. Second dose at 4 months of age with 84% protection

3. Third dose at 6 months of age with 98% protection

4. Booster at 18 months of age

For PedVaxHIB the immunisation schedule is as follows, 

1. First dose at 2 months of age with 73% protection

2. Second dose at 4 months of age with 92% protection

3. Booster at 12 months of age.

There is a third vaccine called ProHIBit which can be administered to 

children over 18 months of age. This vaccine is of very little use to younger 

infants and therefore not appropriate for Aboriginal children since almost all 

cases of invasive HIB meningitis occur before 12 months of age. It is also only 

partly protective for non Aboriginal children since the peak incidence of 

invasive HIB disease appears to be between 6 and 24 months. 

One problem associated with multiple stage vaccination programmes is 

whether an infant actually begins the programme and if so whether the infant 

receives all recommended doses. The Australian Bureau of Statistics (ABS, 

1992) published, on 9th October 1992, the results of a National Health Survey 

carried out during 1989-1990. This suggested that the immunisation status of 

children depended of family characteristics, with a lower proportion of children 

from single parent families, and of lower income families being fully 

immunised. However these characteristics are beyond the scope of this thesis 

and will not be taken into account. From the survey of 22,000 private and 

special dwellings ( hospitals and nursing homes excluded ) an adult was 

asked to provide information about children in the household. Roughly equal 

numbers of households were interviewed each fortnight with up to 55 % of 

replies coming without consultation of immunisation cards. 

Since the Diptheria, Tetanus, Polio (DTP) immunisation programme is 

implemented at 2,4,6 and 18 months then the statistics available for this could 

be applied to give likely levels of coverage for the HIB immunisation 

programme. For Western Australia the following results were published 

Diptheria and Tetanus. 

u 
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TABLE 4.3.1 IMMUNISATION STATISTICS FOR DIPTHERIA AND 

TETANUS DURING 1989-1990 

% IMMUNISED ALL ONE TWO DON'T
DOSES DOSE DOSES KNOW 

DIPTHERIA/TETANUS 85.6 5.1 3.6 5.7

In the absence of specific statistics for HIS immunisation rates these
figures will be used as a guide-line for the numerical solution of the
mathematical model. (There is at present a relevant survey being carried out
by Dr Rob Condon of the Princess Margaret Hospital Perth. However the
results of this research have yet to be published and therefore cannot be used
in this thesis.) For those fully immunised we have, cr

1 
(a), the age dependent

immunisation rate given by,

1. HibTitter

{ 0.15 X 0.856 X X(a) = 0.1284X(a) 
cr

1 
(a)= 0.69(0.85 x 0.856)X(a) = 0.5020X(a) 0.14(0.31 X 0.85 X 0.856)X(a) = 0.0316X(a) 

2<a<4 

4<a<6 

6 <a< 18
This says that 98 per cent of the 85.6 per cent of susceptibles that

began the programme at age 2 months are fully immunised at 6 months.
However after the first dose only 15 per cent of those immunised can be
considered as being immune. After the second dose another 69 per cent of
the remainder of the original number of susceptibles i.e. the number of
susceptibles at the beginning of the programme, can be considered as being
recovered giving a total effective immunisation rate of 84 per cent of the
original 85.6 per cent of susceptibles full immunised. The third dose sees
another 14 per cent of the original susceptible population gaining immunity for
a total protection of 98 per cent of those fully immunised. It will be assumed
that all of these individuals have the 18 month booster and retain complete
immunity to infection.
2. PedVaxHIB

{ 
0.73 X 0.856 X X(a) = 0.6249X(a)
0.19 x 0.27 x 0.856 x X(a) = 0.0439X(a)

2<a<4 

4 < a < 18

TOTAL

100
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Again it will be assumed that all these individuals have the 12 month 
booster. 

For the 5.1 per cent who are partially immunised it will be assumed that 
half receive one dose and the other half receive two doses. It will also be 
assumed that the first dose is always received at two months of age. 
Therefore the level of protection for these individuals is given by 

1. HibTITER
a. One injection only

cr 
2 
(a) = 0.50 x 0.15 x 0.051X(a) = 0.0038X(a) 

b. Two injections only
{ 0.5 x 0.15 x 0.051 x X(a) = 0.0038X(a) 

cr 
3 
(a) =

0.5 x 0.69 x 0.85 x 0.051 x X(a) = 0.01496X(a) 

2 <a< 18 

2<a<4 
4 <a< 18 

The equations could be extended to say that the immunisation of these 
partially immunised individuals begins at different ages but this will not be 
done here. 

2. PedVaxHIB
Here it will be assumed that only one dose at two months is administered,
then we have,

cr 
2 
(a) = 0.50 x 0.72 x 0.051X(a) = 0.0184X(a) 

These rates can then be combined to give 
1. HibTitter

{ 
(0.1284 + 2(0.0038))X(a) = 0.136X(a) 

cr(a) = (0.5020+ 0.0150)X(a) = 0.517X(a) 
0.0316X(a) 

2. PedVaxHIB

{ (0.6249 + 0.0184)X(a) = 0.6433X(a) 
cr(a) = 0.0439X(a) 

2 <a< 18 

2<a<4 
4<a<6 
6 <a< 18 

2<a<4 
4 <a< 18 



60 

It is also possible to combine these two types of vaccine into a 

combined rate. This can be achieved in the following way. The Aboriginal and 

Torres Strait Islanders make up approximately 5% of the cohort born in 1991. 

Therefore the PedVaxHib vaccine is applied to this proportion of the 

population. We will assume that this vaccine will act upon 5 % of any given 

cohort. Therefore the overall effect of PedVaxHib will be given by 

cr(a) = { 0.05(0.6249 + 0.0184)X(a) = 0.032165X(a) 0.05(0.0439)X(a) = 0.002195X(a) 2<a<4 4 <a< 18 
Similarly the vaccine HibTitter will be concerned with 95% of the total 

population. Hence the overall effect of HibTitter is given by 

{ 0.95(0.1284 + 2(0.0038))X(a) = 0.1292X(a) cr(a) = 0.95(0.5020 + 0.0150)X(a) = 0.49115X(a) 0.95(0.0316)X(a) = 0.03002X(a) 
2<a<4 4<a<6 6 <a< 18 

If we then combine these values we have an overall expression for the 

proportion of susceptibles successfully vaccinated i.e. 

{ 0.161365X(a) cr(a) = 0.493345X(a) 0.0300X(a) 
2<a<4 4<a<6 6 <a< 18 

It has been assumed that the individuals who fall into the category of 

"Don't know" have not been immunised. We therefore have values for the 

immunisation programme which can be used in the numerical solution of 

system of differential equations. These values can easily be changed by 

simply substituting values for alternative levels of coverage into the equations 

formed. For individuals who have not begun the programme at 2 months there 

is a catch up schedule in place with the chart below describing the ideal 

programme that should follow as published by the manufacturers of HibTitter. 

'j I 
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TABLE 4.3.2, IDEAL HlbTITTER IMMUNISATION PROGRAMME 

Age at Initial Immunisation Second Dose Third Booster 

in Months Dose 

15-59 none none none 

14 none none 16 or older 

13 none none 15 or older 

12 none none 15 or older 

11 13 none 15 or older 

10 12 none 15 or older 

9 11 none 15 or older 

8 10 none 15 or older 

7 9 none 15 or older 

6 8 10 15 or older 

5 7 9 15 or older 

4 6 8 15 or older 

3 5 7 15 or older 

2 4 6 15 or older 

4.4 Births and Age Specific Death Rates 

Basic demographic statistics were obtained from the Australian Bureau 

of Statistics (ABS). These gave the total population in the 0-1 O year age group 

for the period 1983-1992, the age specific death rates and the number of 

births for each year. The charts below show the age specific death rate per 

1000 for the age group 0-10. 

;j I 

: � ! 



12 

10 

g 8 
T"" 

� 6 
a: 
.s::. 
gj 4 
Cl 

2 

0 

10 

9 

8 

� 7 
T"" 

� 6 

� 5 a: 
.s::. 4 
16 
Cl 3 

2 

0 

62 

FIGURE 4.4.1, AGE SPECIFIC DEATH RATES 1983-1984 

Age 

FIGURE 4.4.2, AGE SPECIFIC DEATH RATES 1985-1986 

Age 
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FIGURE 4.4.3, AGE SPECIFIC DEATH RATES 1987-1988 
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FIGURE 4.4.4, AGE SPECIFIC DEATH RATES 1989-1990 
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FIGURE 4.4.5, 'AGE SPECIFIC DEATH RATES 1991-1992 

Age 

It appears that the death rate is similar in the 0-1, 1-2, 2-4 and 5-10 

year age groups. Therefore the death rate for these age groups has been 

averaged over the 1 O years of available data obtained from the Australian 

Bureau of Statistics. We have 

0.693 per 1000 0 <a< 12 

0.067 per 1000 12 <a< 24 
µ(a)= 

0.038 per 1000 24 <a <48 

0.0151 per 1000 48 <a< 120. 

We also have approximate figures for the Aboriginal and Torres Strait 

age specific death rate and these are as follows 

2.675 per 1000 0 <a< 12 

0.383 per 1000 12<a<24 
µ(a)= 

0.150 per 1000 24 <a< 48 

0.006 per 1000 48 <a< 120 
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The following table describing the births in the periods 1983-1992. 

TABLE 4.4.1 BIRTH RATES in the PERIOD 1983-1992 

YEAR NUMBER OF BIRTHS POPULATION BIRTH RATE PER 1000 

1983 23046 245427 

1984 21601 245268 

1985 23066 247475 

1986 24175 252152 

1987 23271 257910 

1988 25123 264541 

1989 25019 271544 

1990 25322 277266 

1991 25349 281055 

1992 25051 281714 

The following chart illustrates the Birth Rate per Thousand 

FIGURE 4.4.6, BIRTH RATE PER 1000, 1983-1992 
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An average value could be taken for the birth rate per 1 OOO and 

therefore the parameter could be treated as a constant in the numerical 

solution of the model. The average birth rate per 1 OOO over the ten year 

period 1983-1992 is 91.882. 
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4.5 The Age Specific Force of Infection 

Private communication with Dr Jeffrey Hanna has indicated that close 

to 100 per cent of 5 year old children will test seropositive for the presence of 

HIS. The force of infection is therefore likely to be high during the first few 

years of life with the exception of the period that an individual is protected by 

maternal antibodies. The force of infection will be determined using the 

method described by Comiskey, 1988. 

If there is a constant force acting on a given population of molecules 

where every molecule is susceptible to this force then Muench (Comiskey, 

1988) says that the following differential equation describes the rate of change 

in the proportion of the original population ,H, left at time t i.e 

H(t) = 1- e-1.1 given that H(O) = 0 . 

This notion of a catalytic process can be extended to modelling an 

infection acting on a given population. Firstly the proportion susceptible to 

infection in age class a is described by, 

X(a) = e-J..a 

This can be extended to the case where the force of infection is age 

dependent i.e 

-J i..(s)tu 

X(a)=e 0 

The proportion of the total population not susceptible to infection is 

given by 

Y(a) = 1- X(a) 

which can be used to describe the proportion of a particular cohort of 

people who were susceptible at birth and who have experienced infection by 

age a. We have 

1\ 
I',; I
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Y(a) = 1-exp 0 
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This equation is known as the cumulative distribution function of age at 

infection. Maternal antibodies can be allowed for by simply setting the force of 

infection to be zero below a certain age. A polynomial equation can be used to 

approximate values for the force of infection. 

for m <a::; j 
i=O 

A(a) = O 

In the above expression m represents the age at which individuals 

begin to lose protection due to maternal antibodies. The term j represents 

the upper age limit for of the data to be used. We can now need fit a 

polynomial to a data set for the proportion susceptible to infection at certain 

ages. Since HIB was not a notifiable disease until 1993 there is a distinct lack 

of data available for this process. We do have the number of cases of HIB 

meningitis in children under five years of age at Princess Margaret Hospital 

(PMH) during the years 1984-1988 which can be used as a convenient place 

to start the calculations. The figure below illustrates this data. 

FIGURE 4.5.1, HIB MENINGITIS AT PMH 1984-1988 
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The figure below describes the number of HIB meningitis cases 

at PMH during the years 1973-1991 

FIGURE 4.5.2, HIB MENINGITIS AT PMH 1973-1991 
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Even though PMH is only one of many Western Australian hospitals it 

specialises in children and would therefore see the majority of the individuals 

who suffer from infection from within the Perth metropolitan area. Dr Beryl 

Wild has provided the following data for the whole of WA in 1992-1994. 

There were a total of 51 cases of invasive HIB disease in WA during 

1992 with 15 being Aboriginals and thirty six being non Aboriginals. During 

1993 there were 20 cases of invasive HIB with 3 being Aboriginals and 17 

being non Aboriginals. Between January and June 1994 there have been 7 

cases of invasive HIB disease with 2 Aboriginal and 5 non Aboriginal being 

infected. It should be recalled that the immunisation policy began in 1993. 

One possible way of proceeding would be to calculate the age specific 

force of infection based on the figure for PMH. Figure 4.5.3 describes the 

proportion of the population susceptible to infection at age a.

' ' 
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FIGURE 4.5.3, PROPORTION SUSCEPTIBLE AT AGE A FOR THE 

UNDER FIVE YEAR OLD AGE GROUP 
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However there are cases of invasive HIS disease in children older than 

five years of age. A paper by S. lwarson titled "Strategies for immunisation 

against invasive Haemophilus lnfluenzae type b infection" (Vaccine, vol 9, 

Supplement, June1991) shows a table describing the age distribution of 

invasive HIS meningitis in Sweden during the years 1971-80. The chart shows 

that of 147 cases, approximately 14 occurred in children between the ages of 

5 and 10 years old. Therefore this data is used for suggesting that 

approximately 90 per cent of all such cases occur before 5 years of age in the 

absence of an immunisation programme. 

We can then say that at the age of five years there are still ten per cent 

of individuals susceptible to HIS infection for non Aboriginal children. It will be 

assumed that five per cent of Aboriginal children are still susceptible to HIS 

infection at five years of age. This is because the vast majority of Aboriginal 

invasive HIS meningitis occurs at below one year of age. The five per cent 

then allows for the possibility of invasive HIS disease occurring in children 

older than five years of age. I have been unable to find any publications that 

give a breakdown of figures for the occurrence of invasive HIS disease within 

the Aboriginal and Torres Strait Islander population for the age group 5-1 O. 
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FIGURE 4.5.4, PROPORTION SUSCEPTIBLE AT AGE A 
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We can now fit suitable functions to these curves to give mathematical 

expressions for the proportion susceptible at age a. For the non Aboriginal 

data the following graph was obtained, 

FIGURE 4.5.5, CUBIC FIT FOR NON-ABORIGINAL DATA 
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The function that gave the graph was a cubic, generated using 

Mathematica for Windows, (Wolfram, 1991) given by 

., 

I 
j 
i 
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which becomes 

X(a) = l.10681-0.0488401a + 0.000893026a 2 -0.00000603229 a 3 
, for 2 �a� 60 months. 

For the aboriginal data the following graph was obtained using 

Mathematica for Windows. 

FIGURE 4.5.6, LINEAR FIT FOR ABORIGINAL DATA 
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The graph is a combination of two linear equations i.e. 

X(a) = l.15521-0.0840357a 
X(a) = 0.10333-0.00111 lla

for 2 �a< 12 
for 12 � a � 60 . 

The force of infection is thereby given by the equation 

J '}..(s)ds 

X (a) = e 
O which can be rewritten as 

A(a) = 
_ dLnX(a)

,
da 

which for the Aboriginal case becomes 

A(a) - 0.034o357 for 2 <a< 12 months -1.15521-0.0840357 a
'I 

a - 0.0011111 � 12 60 h 
/\,

( ) -
0.10333-0.00111 lla

ior <a< moot s · 
4.5.1 

I 

:1 
j!, 
f
:1 
I 
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Similarly the force of infection for the non Aboriginal case is given by 

A.( a ) = 3�3
a 

2 + ;c
2

a + c
1 

c
3

a +c
2

a +c
1

a +c
0 

where the constants are given by, 

4.5.2 

Co= 1.10681, c, = -0.0488401, C2 = 0.000893026 and C3 = -0.00000603229. 

We can apply this force of infection to both the proportion susceptible 

to HIB and the proportion susceptible to Systematic HIB. Since we now have 

estimates for all the parameters within the model we can begin the process of 

numerically solving the differential equations. 

This chapter has estimated all parameter values within the model in 

order that a numerical simulation can take place. Available data provided by 

Beryl Wild showing the incidence of HIB meningitis has been used in order to 

estimate the proportion of the population susceptible at age a. The next 

chapter is concerned with various numerical simulations using the values 

estimated in this chapter. J 
'' 



CHAPTER FIVE 

NUMERICAL RESULTS 

5.1 Introduction and Programme 
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This chapter is concerned with numerically solving the system of 

differential equations 3.1.1. We can then determine whether the equations 

predict realistic numbers of individuals in each state of the disease at different 

ages. We can also determine the effect that an immunisation policy will have 

on the incidence of HIB and systematic HIB disease. Another measurable 

quantity that can be estimated is the average age of infection and how it 

changes when an immunisation programme is introduced. 

Before an appropriate computer simulation commences it is essential 

to understand what will actually be measured. The first stage will be to run the 

simulating without any immunisation factor being used. If we use as a starting 

point the total population in a particular year then we can see how the disease 

affects this particular cohort of people. Such a cohort will be considered as all 

being two months of age when the simulation begins. This is since it was 

previously assumed that all individuals will be 100 % protected from infection 

by maternal antibodies until two months of age. We can then run the 

simulation and see how the cohort of people are affected by HIB according to 

the system of equations. If we choose 1991 as the initial cohort to study then 

we can see how many people would be infected by HIB if the immunisation 

policy which began in that year is not included in the model. The same model 

can then be run with immunisation included and the results can be compared. 

It should be noted that the simulation will initially run with aboriginal and 

non-aboriginal individuals grouped together and only be concerned with one 

type of vaccine, in this case HibTitter. These initial results may therefore not 

be truly representative of the overall immunisation policy since aboriginal 

children are given a different vaccine, PedVaxB, due to a lower average age 

of infection than non-aboriginal children. However the simulation will show 

how immunisation affects the general incidence of HIB and Systematic HIB. 

Before a suitable Fortran programme is introduced the parameters within the 

model are summarised below. 



TABLE 5.1.1 PARAMETER INTERPRETATION 

Parameter Biological Interpretation Age Dependence Type of Data Range of 
needed to measure Values 

t..(a) Per capita force of infection dependent age specific case notifications or 0.0259-

seriotoqical surveys 0.3041 

cr(a) Immunisation rate dependent health surveys 0.0434-0.65 

µ(a) Background death rate dependent demographic tables 0.000693-

0.0000038 

V Recovery rate from HIB independent clinical observations 1 

infection 

6 Rate of loss of maternal independent se.riological surveys 0.5 

antibodies 
e Rate at which infected independent clinical observations 10 

individuals become infectious 
(l) Rate at which systematic HIB independent clinical observations 0.0259-

cases occur 0.3401 

cp Recovery rate from independent clinical observations 6 

systematic HIB 

c; Systematic HIB death rate independent case fatality rates 0.00002 



TABLE 5.1.1 PARAMETER INTERPRETATION 

Parameter Biological Interpretation 

A(a) Per capita force of infection 

cr(a) Immunisation rate 

µ(a) Background death rate 

V Recovery rate from HIB 
infection 

6 Rate of loss of maternal 
antibodies 

e Rate at which infected 
individuals become infectious 

(I) Rate at which systematic HIB 
cases occur 

<I> Recovery rate from 
systematic HIB 

c; Systematic HIB death rate 

Age Dependence Type of Data 
needed to measure 

dependent age specific case notifications 
serioloQical surveys 

dependent health surveys 

dependent demographic tables 

independent clinical observations 

independent seriological surveys 

independent clinical observations 

independent clinical observations 

independent clinical observations 

independent case fatality rates 

or 

Range of 
Values 
0.0259-

0.3041 

0.0434-0.65 

0.000693-

0.0000038 

1 

0.5 

10 

0.0259-

0.3401 

6 

0.00002 

-- .. ·.·····- ... 
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The next stage was to develop a suitable Fortran programme that could 

be used to solve the system of differential equations. From the software 

package called Fortran PC50 an existing algorithm, D02CBF, was chosen and 

modified to suit the needs of this chapter. This routine uses the Adams Gear 

method to solve systems of ordinary differential equations. The modified 

routine that was used to run the simulation is documented at the end of this 

thesis. 

5.2 Simulation with HibTitter Only 

The parameter values were changed as the model moved from a 

period that required certain values for parameters to another age period that 

required a different set of parameter values. To begin with the total number of 

individuals in the age group 0-10 in 1991 was used as the number of people 

protected by maternal antibodies. It was then assumed that the rate of change 

of individuals in this state would decline at an exponential rate given by the 

rate of loss of maternal antibodies as in the table above. At age zero there are 

considered to be no susceptible, latent, infectious, systematic or recovered 

individuals. The numbers in these classes appear as the simulation runs. If 

the force of infection was taken as proportional to the number of infectious 

individuals then there would need to be at least some infectious people at age 

zero otherwise the simulating model would simply predict zero infectious 

individuals for any simulation that was run under these conditions. Once the 

simulation began then appropriate values were fed into the algorithm as then 

need arose. For instance at age four months the efficacy of the vaccine 

changes and hence the new value was applied. Similarly after twelve months 

the background death rate would change. All of the simulations to follow used 

this method to ensure that the correct parameter values were applied when 

needed. 

The following results were obtained from the simulation with around off 

error of 0.0001 for the situation where no immunisation programme was 

present. 



D02CBF PROGRAM RESULTS WITH NO VACCINE PRESENT 
CALCULATION WITH TOL= .1 D-03 

Age M(a) X(a) H(a) Y(a) K(a) Z(a) N(a) 

2.00 25051 00000 00000 00000 00000 00000 25051 
3.00 15185 9608.2 40.701 146.80 83226 52.476 25034 
4.00 9203.9 14995 65.820 407.67 2.7733 340.74 25016 
5.00 5578.2 17844 80.463 613.22 4.4484 878.41 24999 
6.00 3380.5 19173 87.497 743.49 5.5446 1591.8 24982 
7.00 2048.6 19598 89.756 813.63 6.1488 2408.4 24964 
8.00 1241.6 19492 89.468 842.36 6.4138 3274.9 24947 
9.00 752.40 19082 87.761 844.78 6.4619 4156.3 24930 

10.00 457.78 18501 85.027 831.42 6.3737 5030.4 24913 
12.00 170.35 17130 79.358 780.77 6.0133 6711.3 24878 

"' 

14.00 63.305 15716 73.236 727.70 5.6617 8292.0 24878 0) 

16.00 23.633 14363 66.972 667.61 5.1985 9750.6 24877 
18.00 8.7937 13106 60.944 610.11 4.7481 11086 24877 
20.00 3.2866 11952 55.732 556.47 4.3342 12304 24877 
22.00 1.2361 10898 50.619 507.68 3.9501 13415 24876 
24.00 . 46245 9934.8 46.303 462.67 3.6033 14428 24876 
36.00 00000 6112.1 24.975 248.77 1.6906 18487 24875 
42.00 00000 5034.3 16.373 163.71 .88881 19650 24874 
48.00 00000 4146.6 13.547 134.64 .73176 20569 24874 
54.00 00000 3112.3 14.904 149.77 1.2037 21588 24874 
60.00 00000 2336.1 11.247 112.49 .90569 22405 24874 

-\._.,.. -
"' _ ....... . _., __ --
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The simulation predicted that almost all the cohort leave the maternal 

antibody class by the age of twelve months as expected. In fact in the twenty 

fifth month the equation describing the rate of change in the numbers in the 

maternal antibody class predicted negative results and therefore the number 

in this class was set to zero for all months greater than 24. It can also be seen 

that the number of susceptibles reached a peak of 19598 individuals after 

seven months. Thereafter the number of susceptibles decreases until there 

are some 2336 individuals susceptible after 60 months. This equates to 

approximately ten per cent of the total cohort. Further the number of infectious 

HIB individuals reached a peak of 845 at nine months with 112 individuals still 

being infectious at 60 months. There is always a number of people in the 

Systematic class peaking at around 6 in the 7-12 month range, and there is 

roughly one individual in the Systemic state at 60 months. The number of 

people in the recovered class rises steadily to about 22405, or approximately 

90 %, are recovered after sixty months. Given that the vast majority of HIB 

and Systematic HIB cases occur in the first five years of life the simulation 

appears to produce reasonable results. 

The next simulation involved introducing a immunisation factor. This 

simulation assumed that only the HibTitter vaccine was used. The initial 

conditions were similar to the first simulation with the total cohort of 25051 

people considered as being protected by maternal antibodies for the first two 

months. It was assumed there were no susceptible, latent, infectious, 

systematic or recovered individuals at the start of the simulation. The 

immunisation parameter was introduced and would therefore influence the 

susceptible individuals as they moved from the maternal antibody state to the 

susceptible state. The following results were obtained. 

: I 
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D02CBF PROGRAM RESULTS WITH HIBTITIER VACCINE ONLY 
CALCULATION WITH TOL= .10-03 

Age M(a) X(a) H(a) Y(a) K(a) Z(a) N(a) 

2.00 25051 00000 00000 00000 00000 00000 25051 
3.00 15183 8940.1 37.897 140.56 .79774 731.76 25034 
4.00 9202.1 12866 57.877 365.97 2.5329 2521.9 25016 
5.00 5576.5 10027 47.008 455.12 3.4436 8890.0 24999 
6.00 3379.2 73454 34.207 407.58 3.1908 13812 24981 
7.00 2048.1 7241.8 32.965 330.15 2.5545 15219 24964 
8.00 1241.2 7470.0 34.171 325.93 2.4895 15783 24947 
9.00 752.17 7376.7 33.847 326.12 2.4925 16349 24929 

10.00 457.68 7104.5 32.744 320.64 2.4602 16905 24912 
12.00 170.15 6340.1 29.233 294.90 2.2730 17952 24878 -..J 

14.00 62.599 5528.1 25.440 260.82 2.0137 18885 24852 
CX> 

16.00 23.309 4771.4 21.728 226.81 1.7478 19692 24825 
18.00 8.7110 4100.9 18.978 195.14 1.5109 20383 24797 
20.00 3.2652 3743.0 17.356 174.86 1.3606 20765 24794 
22.00 1.2386 3413.9 15.895 159.03 1.2383 21110 24790 
24.00 .46889 3112.6 14.438 145.03 1.1280 21425 24787 
30.00 00000 2440.9 9.9192 99.458 .67495 22142 24781 
36.00 00000 1914.3 7.9550 77.764 .53099 22686 24776 
42.00 00000 1576.5 5.1825 51.205 .27883 23048 24770 
48.00 00000 1298.3 4.3340 42.050 .22994 23331 24765 
54.00 00000 974.36 4.7386 46.809 .37783 23647 24763 
60.00 00000 731.36 3.8282 34.875 .28765 23901 24761 
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These results show how the introduction of an immunisation policy has 

affected the incidence of both HIS and Systematic HIS disease. For instance 

the number of susceptibles peaks at eight months with 7470 individuals 

susceptible to HIS infection. This is considerably lower than the seven month 

peak of 19598 individuals in the simulation without any immunisation. It can 

also be seen that the number of infectious HIS individuals peaks at 407 after 

five months compared to 845 after nine months in the pre-immunisation 

simulation. The number of Systematic HIS individual peaks at about 3-4 after 

the same time compared to approximately 6 in the 7-12 month range in the 

first simulation. The number of recovered individuals reaches about 90 % of 

the cohort after 34 months as opposed to 60 months in the first simulation. 

Clearly the introduction of an immunisation strategy is having a significant 

effect on the levels of HIS and therefore Systematic HIS disease. This leads 

to a fundamental question. 

Is it possible for this immunisation campaign to eradicate all incidence 

of HIS and Systematic HIS disease? 

In order to simulate this question it will be assumed that 100% of 

individuals begin and pass through the ideal immunisation schedule. It is 

obvious that we cannot simply change the effectiveness of the vaccine used 

but must use the proportions shown earlier. With this assumption the 

simulation gave the following results. 
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D02CBF PROGRAM RESULTS WITH 100 % VACCINATION RATES 

CALCULATION WITH TOL= .1 D-03 

Age M(a) X(a) H(a) Y(a) K(a) Z(a) N(a) 

2.00 25051 00000 00000 00000 00000 00000 25051 
3.00 15183 8874.5 37.647 139.91 .79461 798.19 25034 
4.00 92021 12669 57.600 361.50 2.5158 2723.8 25016 
5.00 55768 9339.5 44.568 439.49 3.3531 9595.4 24999 
6.00 33795 6542.0 31.299 379.71 3.0065 14646 24981 
7.00 20479 7289.4 32.928 332.22 2.5634 15259 24964 
8.00 12411 7476.2 34.454 327.08 2.5044 15865 24946 
9.00 752.08 7344.6 33.512 326.48 2.4926 16470 24929 

10.00 457.11 7038.6 32.473 319.30 2.4523 17062 24912 CX> 

12.00 168.89 6219.0 28.714 290.87 2.2443 18168 24877 
0 

14.00 62.157 5366.9 24.710 254.83 1.9909 19164 24874 
16.00 23.267 4585.1 21.223 219.00 1.6964 20021 24870 
18.00 8.7408 3900.6 18.013 186.89 1.4474 20752 24867 
20.00 3.2754 3560.6 16.596 166.40 1.2969 21116 24864 
22.00 1.2209 3247.4 14.896 151.54 1.1751 21445 24861 
24.00 .45778 2960.8 13.787 137.89 1.0737 21744 24858 
30.00 .00000 2321.8 9.2888 94.775 .64040 22425 24852 
36.00 .00000 1820.9 7.4480 74.106 .50376 22943 24847 
42.00 .00000 1499.5 5.0846 48.528 .26661 23287 24841 
48.00 .00000 1234.8 4.0064 40.124 .21765 23555 24836 
54.00 .00000 926.7.0 4.5611 44.459 .36008 23856 24834 
60.00 .00000 695.5.7 3.2850 33.566 .26881 24097 24832 
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This simulation shows that even if everyone passes through the ideal 

immunisation programme there will still be some HIB and Systematic HIB 

incidence. The determining factor seems to be the effectiveness of the 

vaccine used. Since there are still some 85 % of the original cohort 

unprotected after the first dose of the immunisation programme and 16 % 

unprotected after the second dose these individuals are still susceptible to HIB 

infection and therefore Systematic HIB infection. 

However since we have run the simulation using the HibTitter vaccine 

the added effect that the PedVaxB vaccine has on the incidence of HIB has 

not be taken into account. This vaccine could have a substantial effect since it 

is directed at aboriginal children. Cases of HIB and invasive HIB disease in 

this population occur almost always before one year of age. The effect of this 

vaccine on its own will be simulated in section 5.4. 

The next simulation is still concerned with the HibTitter vaccine only but 

when the immunisation rate is not as high as the published rate for DT. If we 

assume that the coverage rate is in fact fifty percent of the population then the 

following results were obtained. 
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D02CBF PROGRAM RESULTS FOR 50 % COVERAGE 
CALCULATION WITH TOL= .1 D-03 

Age M{a} X{a} H{a} Y{a} K{a} Z{a} N{a} 

2.00 25051 00000 00000 00000 00000 00000 25051 
3.00 15182 9233.2 39.017 143.45 .81171 434.78 25034 
4.00 9202.1 13771 61.728 383.42 2.6428 1595.0 25016 
5.00 5577.1 12830 59.477 516.03 3.8430 6012.8 24999 
6.00 3379.5 10969 50.521 522.13 4.0037 10057 24981 
7.00 2048.0 11563 52.828 505.23 3.8653 10792 24964 
8.00 1241.2 11613 53.297 507.73 3.8772 11528 24946 
9.00 752.18 11354 52.219 505.38 3.8689 12263 24929 

10.00 456.27 10925 50.447 494.43 3.7985 12983 24912 
11.00 279.03 10409 48.007 477.12 3.6710 13679 24895 

CX> 

12.00 170.14 9860.0 45.496 455.88 3.5127 14343 24877 I\) 

14.00 62.674 8769.1 40.538 409.33 3.1604 15590 24874 
16.00 23.412 7748.0 35.686 363.32 2.8041 16698 24870 
18.00 8.7583 6827.4 31.462 320.69 2.4761 17677 24867 
20.00 3.2822 6228.1 29.071 290.22 2.2617 18311 24864 
22.00 1.2433 5679.1 26.518 264.43 2.0605 18888 24860 
24.00 .47094 5177.5 24.084 241.16 1.8772 19413 24857 
30.00 .00000 4060.5 16.623 165.33 1.1243 20608 24851 
36.00 .00000 3184.7 12.898 129.75 .87959 21518 24846 
42.00 .00000 2622.5 8.4413 85.378 .46221 22124 24840 
48.00 .00000 2159.7 7.0250 70.157 .38084 22598 24835 
54.00 .00000 1621.0 7.5617 78.228 .62421 23126 24833 
60.00 .00000 1216.8 5.9678 58.471 .47320 23549 24831 
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This simulation shows the incidence of HIB and Systematic peaking at 

6 months. The incidence of HIB and Systematic HIB has decreased when 

compared to the pre-immunisation simulation but does not decrease as much 

as either the published or ideal immunisation coverage rates. However it is 

clear that even a fifty per cent coverage rate is having a significant effect on 

the incidence of both HIB and Systematic HIB. The figure below shows the 

numbers susceptible with the different levels of coverage. 
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5.3 Epidemiological Estimates 

The next question to address is what happens to the average age of 

infection when an immunisation policy is introduced. Intuitively the average 

age of infection is the reciprocal of the force of infection. If we assume that the 

force of infection is a constant rather than age dependent then the average 

age of infection can be described mathematically by the equation. 

f aAX ( a )da

A= 
0

_ 
, (Anderson and May 1991 ). 5.3.1 

f ')..]( ( a )da
0 

The age specific number of susceptibles X(a) can be written as 



X (a)= N(O)l(a)e-1.a, where 
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-J µ(s)dr 

l(a)=e 0 

is the survivorship function and describes the probability of surviving to age a
and N(O) is the initial population. If we then assume that everyone survives to
some age L and then dies we have

l (a) = 1 for a < L 

l (a) = 0 for a > L 

Hence substituting these relationships into 5.1 we get

L 

f ae-i..ada
A=-o __ _L 

f e-1.ada
0 

Then the larger the term ... wrong ... e-u the closer the equation is
approximated by� . The following table describes the age specific force of

infection calculated using the equation 4.5.2 .

TABLE 5.3.1 ESTIMATES FOR THE FORCE OF INFECTION AT AGE A, IN 

MONTHS 

AGE FORCE OF AGE FORCE OF AGE FORCE OF AGE FORCE OF 

INFECTION INFECTION INFECTION INFECTION 

2 0.044774 15 0.047084 30 0.040875 45 0.030493
3 0.045080 18 0.046808 33 0.038306 48 0.031421
6 0.045909 21 0.046081 36 0.035617 51 0.034797
9 0.046562 24 0.044849 39 0.033129 54 0.041757
12 0.046977 27 0.043098 42 0.031257 57 0.054376

:. The average force of infection= 0.043098
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Since the average force of infection in the absence of an immunisation 

policy is 0.043167 then the average age of infection is approximately 23.15 

months, which is the inverse of the force of infection. 

Another important epidemiological parameter is the basic reproductive 

rate which is given by the equation, 
L 

R
0 

= A 
L 

, (Anderson and May page 69 ,1991). 

(1-e A) 

If A is much less then L, the average life expectancy, then 
L OOO 

R
0 
= - = -- = 38.876 , where we assume the average life 

A 23.15 
. L 900 

expectancy 1s of the order of 75 years. We have - = -- = 38.876 so that 
A 23.15 

L 

e A. is very small and therefore the above approximation appears to be 

reasonable. 

In order to eradicate a disease then the proportion of people 

successfully vaccinated must be great enough to exceed the effect of the 

basic reproductive rate of the disease. We know that the fraction of the 
A A 

population susceptible, x must satisfy the inequality x < l -p, so that the 

fraction susceptible is less than the total population minus those successfully 

vaccinated since there will be at least some people immune from infection due 

to natural antibody protection. We also know, from chapter one, that the 

equilibrium R
0 

x = l. Hence we can obtain a condition that needs to be 

satisfied if the disease is to be eradicated. We have, 
1 

-<l-p .
Ro 

Hence p > l - -
1

-, if the disease is to be eradicated. In our case we have a 
Ro 

required immunisation level of 97.43 % to achieve eradication. This is saying 

that at least this proportion of people must be successfully vaccinated in order 

to eradicate the disease. 

We can now determine what happens to the average age of infection 

and the effective reproductive rate of HIS after an immunisation policy has 

been introduced. The intrinsic reproductive rate after immunisation is given by 

the expression ( Comiskey, 1988) 
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. cp 
Ro= Ro(l---) ' 

c+µ
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where p is the proportion vaccinated, c is the inverse of the average age at 

immunisation, therefore 1/c is the average age at immunisation, and µ the 

background death rate. If we assume that the death rate is a constant and 

choose 3 values for both p and c then the following table emerges. 

P=0.5 

P=0.75 

P=0.95 

TABLE 5.3.2, ESTIMATES FOR REPRODUCTIVE RATE 

AFTER IMMUNISATION 

1/c=2 1/c=6 1/c=12 

Ro=22.48 Ro=26.4 Ro=29.69 

Ro=14.29 Ro=20.16 Ro=25.09 

Ro=7.74 Ro=15.17 Ro=21.42 

The table shows the intuitive result that the intrinsic reproductive rate of 

the disease will be become lower as the average age of immunisation 

decreases and the proportion immunised increases. 

What will happen to the force of infection when an immunisation 

programme is introduced? Anderson and May (1991) give an approximate 

expression for the post immunisation force of infection as 

Since the exponential term contains a measure of age in months, 

L=900, we could approximate the post immunisation force of infection by 

'A.
'
= 

Ro(l- p) 

L 
'

which in the case where L=900, p=0.85 and R
0
=38.876 becomes, 

'A.
'= 38.876(0.15) = 0.0065

900 

We can use this result to calculate the post immunisation average age 

at infection which is given by Anderson and May (1991) as below, 
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This calculation yields A' = 151.25 months, which appears to be very high

since it means the average age of infection has jumped from approximately 

two years old to twelve years old. However it does highlight the fact that the 

average age at infection rises significantly when immunisation programmes 

are introduced. The determining factor is the post immunisation force of 

infection which we have taken to be a constant for all age groups in the 

previous estimation process. As has already been seen in chapter 4 this is not 

really a good interpretation of reality but it has allowed the simplified process 

above to be carried out. 

5.4 More Simulations 

The simulations so far have been based on one vaccine only and have 

grouped both Aboriginal and non-Aboriginal children together. In order to 

reflect reality it is necessary to try and incorporate these individual populations 

separately. However there is a distinct lack of data concerning population 

levels of aboriginal people in Western Australia. Demographic tables 

published by the ABS give approximate population levels for both 1986 and 

1991. The figure below shows the population for these two years. 

1400 

1200 

1000 

0 800 

0 600 
a.. 

400 

200 

0 

0 

FIGURE 5.4.1, ABORIGINAL AND TORRES STRAIT 

ISLANDER POPULATION 1986 AND 1991 

2 3 

• 1986

---0-- 1991 

4 5 

Age in Years 

6 7 8 9 10 

I 

I 
J 



88 

We have also seen that Systematic Meningitis cases amongst 

Aboriginal children account for about 50% of the total number of cases and 

that nearly all of these cases occur before one year of age. We have also 

estimated the force of infection amongst this population. Therefore we can 

introduce the vaccine PedVaxB into the simulation process by concentrating 

on this group of people. If we substitute the appropriate parameter values into 

the simulation programme then we can simulate the effect that PedVaXB has 

on the Aboriginal and Torres Strait Islander community only. The initial 

conditions assumed that the total cohort in the 0-1 O year age group in 1991 

were protected by maternal antibodies at age zero. It is also assumed that 

there are no latent, susceptible, infectious, systematic or recovered individuals 

at the start of the simulation. The following table gives the results of the 

simulation when there is no immunisation programme present. 



D02CBF PROGRAM RESULTS FOR ABORIGINAL AND TORRES STRAIT ISLANDERS WITH NO IMMUNISATION 

Age M(a) X(a) H(a) Y(a) K(a) Z(a) N(a) 

2.00 1248.0 00000 00000 00000 00000 00000 1248 
3.00 755.03 463.41 4.3908 15.772 .20064 5.8721 1244.7 
4.00 456.68 697.66 6.9757 41.903 .64526 37.489 1241.4 
5.00 276.22 797.71 8.1036 60.650 .99054 94.363 1238.0 
6.00 167.06 820.76 8.3752 70.535 1.1815 166.83 1234.7 
7.00 101.05 659.76 20.534 139.03 6.7067 304.37 1231.4 
8.00 61.121 519.23 16.184 137.22 7.0662 487.34 1228.1 
9.00 36.967 402.49 12.562 114.90 6.0247 651.95 1224.8 

10.00 22.358 308.51 9.6372 91.033 4.8063 785.28 1221.6 
11.00 13.523 234.48 7.3332 70.377 3.7286 888.93 1218.3 
12.00 8.1787 177.05 5.5345 53.704 2.8498 967.80 1215.1 
18.00 .42392 171.17 .21584 2.3009 .00488 1038.2 1212.3 
24.00 .00000 158.79 .19461 1.9994 .00416 1048.5 1209.5 
36.00 .00000 130.93 .19898 2.1019 .00552 1074.1 1207.3 
48.00 .00000 103.16 .19141 2.0547 .00666 1074.8 1187.7 
60.00 .00000 75.533 .15478 2.0113 .00823 1076.7 1186.8 

...c..___c_�--"--'--'���- -- ·· 

-



90 

The results show the incidence of HIB peaking after 7 months with 

approximately 139 individuals being infectious. The incidence of HIB rises 

from 0-139 cases in the 2-7 month period and then declines to about 54 

infected individuals after 12 months. Thereafter the number of HI B cases 

declines until there are only 2 cases after 60 months. This is in accordance 

with case notifications that were described in chapter four. The incidence of 

systematic HIB peaks in the 7-9 month range with about 6-7 seven people 

infected. The incidence then decreases until it reaches negligible levels after 

18 months. Since it is expected that almost all cases will occur before one 

year of age within this community then these appear to be reasonable results. 

If we now introduce the PedVaxB vaccine into the simulation with the 

same initial conditions we get the following results 
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D02CBF PROGRAM RESULTS FOR PEDVAXHIB 

Age M(a) X(a) H(a) Y(a) K(a) Z(a) N(a) 

2.00 1248.0 00000 00000 00000 00000 00000 1248.0 
3.00 755.00 334.57 3.2526 12.849 .16655 138.84 1244.7 
4.00 456.70 360.77 3.7529 26.557 .42623 393.14 1241.4 
5.00 276.23 476.59 4.8037 35.282 .57595 444.56 1238.1 
6.00 167.07 510.88 5.2343 42.536 .70976 508.30 1234.8 
7.00 101.05 500.80 5.1498 45.602 .77320 578.07 1231.5 
8.00 61.114 468.16 4.8261 45.228 .77500 648.06 1228.2 
9.00 36.964 425.53 4.4028 42.722 .73743 714.53 1224.9 

10.00 22.388 380.05 3.9390 39.137 .67861 775.43 1221.7 
11.00 13.561 335.59 3.4856 35.147 .61139 829.97 1218.4 co 

12.00 8.2520 294.15 3.0589 31.158 .54314 877.95 1215.2 
...... 

18.00 .44484 279.59 .35550 3.5081 .00488 900.43 1212.5 
24.00 .00000 259.14 .32550 3.2536 .00410 918.86 1209.8 
36.00 .00000 213.66 .35157 3.4003 .00552 962.04 1207.7 
48.00 .00000 168.33 .33374 3.3289 .00666 1005.3 1205.6 
60.00 .00000 123.25 .33079 3.1948 .00823 1009.0 1204.8 
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In this scenario the incidence of HIB peaks after 7 months with about 

45 cases. The incidence rise from 0-45 in the 2-7 month period and decreases 

form 45-31 after 12 months. After 18 months there are only about 3-4 cases 

predicted. The systematic HIB incidence is much lower than the pre

immunisation scenario. The simulation predicts that the incidence peaks after 

8 months with maybe one case. However the simulation also predicts that 

there may be single cases from about the 4-12 month period. 

These results predict that incidence of Systematic HIB disease 

amongst Aboriginals diminishes dramatically if the PedVaxHib vaccine is 

applied in the manner analysed in this numerical simulation. The numbers 

susceptible before and after immunisation are shown in the figure below. 
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Before these simulations are commented on in greater detail there is 

one final scenario that will be considered. That is the combined effect of the 

vaccines on the total population. In order to include this joint effect we will use 

the combined effect quantified in chapter 4. Using the appropriate proportions 

for those vaccinated we get the following results when applied to the cohort 

born in 1992. 



D02CBF PROGRAM RESULTS FOR COMBINED VACCINES 
CALCULATION WITH TOL= .1D-03 
Age M(a) X(a) 

2.00 25051 00000 
3.00 15184 8820.3 
4.00 9202.1 12512 
5.00 5576.9 10028 
6.00 3379.5 7502.0 
7.00 2048.2 8225.2 
8.00 1241.2 8392.4 
9.00 752.18 8242.5 

10.00 457.09 7918.2 
11.00 278.56 7506.4 
12.00 170.15 7058.1 
14.00 63.333 6155.4 
16.00 23.629 5319.6 
18.00 8.8191 4579.6 
20.00 3.3011 4179.8 
22.00 1.2508 3812.5 
24.00 .47284 3476.3 
30.00 .00000 2726.6 
36.00 .00000 2138.9 
42.00 .00000 1761.6 
48.00 .00000 1451.0 
54.00 .00000 1089.1 
60.00 .00000 817.56 

H(a) 

00000 
38.496 
56.320 
47.190 
35.908 
37.169 
38.466 
37.901 
36.129 
34.619 
32.695 
28.732 
24.425 
21.042 
19.352 
17.900 
16.128 
10.948 
8.7941 
5.8323 
4.4930 
5.0493 
3.8962 

Y(a) 

00000 
138.36 
359.07 
447.81 
406.47 
368.72 
366.42 
365.72 
358.89 
345.38 
328.35 
289.91 
252.46 
217.88 
195.28 
177.44 
161.97 
111.25 
86.995 
57.167 
47.389 
52.595 
39.414 

, .  ··---�- · --·�- --� ,. -�- ,-··· �- -- -.,.- --

--

K(a) Z(a) N(a) 

00000 00000 25051 
.80444 852.14 25034 
2.4882 2884.7 25016 
3.3873 8896.4 24999 
3.1953 13655 24981 
2.8333 14283. 24964 
2.7988 14906 24946 
2.7981 15529 24929 
2.7473 16140 24912 
2.6581 16728 24895 
2.5345 17287 24877 
2.2469 18305 24843 
1.9497 19188 24808 
1.6835 19946 24774 
1.5189 20375 24744 
1.3848 20764 24743 
1.2599 21118 24743 
.75250 21923 24742 
.59223 22537 24742 
.31193 22947 24741 
.25383 23268 24741 
.41899 23624 24741 
.31643 23910 24741 
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This simulation produces results that could possibly be 

considered as the most likely to reflect reality. They predict that the number of 

susceptible individuals peaks at 12512 after 4 months with 56 people in the 

latent class. This compares to 19598 susceptibles after 7 months and 90 

individuals in the latent class after 7 months in the pre-immunisation 

simulation. The infectious HIB state peaks at 359 after 5 months compared to 

845 cases after 9 months in the pre-immunisation case. Systematic HIB 

incidence peaks after 5 months with around 3 cases compared to about 6 

cases in the 7-12 months age range in the pre-immunisation simulation. The 

number of recovered individuals reaches about 90% of the total cohort after 

30 months compared with sixty months in the pre-immunisation simulation. 

After 60 months there are still some 817 individuals susceptibles to HIB 

infection and 2391 O individuals can be considered as being immune to 

infection. 

5.5 Conclusions 

This work has shown that the mass immunisation campaign now being 

implemented in Western Australia should significantly reduce the incidence of 

HIB. As a result the more serious threat to individuals from systematic HIB 

disease such as meningitis and epiglottitis will also diminish. If the coverage 

rate is actually as high as the statistics given in Table 4.3.1 then the incidence 

of HIB disease, as predicted in this model , will reduce to very low levels 

relative to the pre-immunisation incidence. It could be expected that the higher 

the immunisation coverage rate the lower the incidence of HIB will become. 

However this relationship does not appear to be linear since a series of 

incremental rises in the level of coverage will not all necessarily produce the 

same incremental reduction in the incidence of HIB. Figure 5.2.1, repeated 

below, shows how the number of susceptibles is affected by different 

coverage levels. 

When the average age of infection was calculated in chapter five it was 

assumed that the average life expectancy to be of the order of 75 years or 

900 months. If this was not so high then the reproductive rate of the disease 

would not be as high. As a result the average age of infection after 

immunisation could become lower than the figure calculated of approximately 

150 months. 
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FIGURE 5.2.1, NUMBER OF INDIVIDUALS SUSCEPTIBLE 

WITH DIFFERENT PROPORTIONS IMMUNISED 
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One area of the thesis that offers room for further study concerns the 

age dependent force of infection. The concepts described in section 2.3 could 

be applied to give numerical values for the elements within an appropriate 

Who Acquired Infection From Whom matrix. Also the simulation process could 

be applied to the system of partial differential equations 2.3.1 or 2.3.9. 

Another area for further study is the Aboriginal and Torres Strait Islander 

Community. Since this population is small relative to the total Western 

Australian population it could be worthwhile to construct a stochastic model to 

examine the effects of the immunisation policy. Further this population has 

many isolated communities so that generalisations used in this model may not 

correctly reflect the demographics of such communities. 

The simulation process in chapter five only took the population of one 

particular year as a starting point. This could be extended by performing the 

simulation for several starting values for the total population. It might also be 

worthwhile to run the simulation using several different numerical routines 

rather than the single algorithm used in this thesis. Comparison of the results 

would indicate if the routines predicted similar incidence of HIS and 

systematic HIS, and could therefore be treated as giving reliable results. 
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It might also be of benefit to test the sensitivity of the model, by using 

different initial conditions and parameter estimates. In this way we could see 

whether the model predicts very different results as different values are used 

to start the simulation process. 

A difficult area within the study is the coverage rate of the immunisation 

policy. All that can really be used are official sources of information such as 

the Australian Bureau of Statistics (ABS) or the health department of Western 

Australia. However private communication with Beryl Wild and Jeffrey Hanna 

has thrown some doubts on the levels of coverage that were published by the 

ABS and used in this thesis as a guide-line. Both individuals indicated that the 

published rates seemed very high. The research currently been undertaken by 

Rob Condon should give some more realistic results and these could be used 

in the simulation process. The collection and analysis of data relevant to the 

study is of paramount importance in trying the understand the epidemiological 

trends in incidence of the disease. Any additional information that can be 

gained by either seriological surveys or case notifications would be highly 

desirable. 

This work has shown that it is possible to apply standard mathematical 

techniques to the transmission dynamics of an infectious disease, in this case 

HIB. Providing that relevant information is available the models within this 

thesis could be used to simulate the incidence levels of other common 

childhood diseases like measles and many useful results can be obtained. 

j 
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APPENDIX 

FORTRAN 77 ALGORITHM USED IN CHAPTER FIVE 

C D02CBF PROGRAM TEXT 
C .. Parameters .. 

INTEGER NOUT 
PARAMETER (NOUT =6) 

C .. Scalars in Common .. 
DOUBLE PRECISION H, XEND 
INTEGER I 

C .. Local Scalars .. 
DOUBLE PRECISION TOL, X 
INTEGER IFAIL, IR, J, N 

C .. Local Arrays .. 
DOUBLE PRECISION W(7,36), Y(7} 

C .. External Subroutines .. 
EXTERNAL 002CBF, FCN, OUT 

C .. Common blocks .. 
COMMON XEND, H, I 

C .. Executable Statements .. 
WRITE (NOUT,FMT =99996) 
N= 7 
IR=O 
DO 20 J = 4, 5 

TOL = 10.00* *(-J} 
WRITE (NOUT,FMT =99999) TOL 
WRITE (NOUT,FMT =99998) 
X = 2.00 
XEND = 12.00 
Y(1) = 25051.000 
Y(2) = 0.000 
Y(3) = 0.000 
Y(4) = 0.000 
Y(5} = 0.000 
Y(6) = 0.000 
Y(7) = 25051.000 
H = (XEND-X)/10.00 
I= 9 
IFAIL = 1 
CALL 002CBF(X,XEND,N,Y ,TOL,IR,FCN,OUT,W,IFAIL) 
WRITE (NOUT,FMT=99997) IFAIL 
IF (TOLL T.0.00) WRITE (NOUT,FMT =99995) 

20 CONTINUE 
STOP 

C 
99999 FORMAT(/,' CALCULATION WITH TOL=',08.1) 
99998 FORMAT(' X AND SOLUTION AT EQUALLY SPACED POINTS') 
99997 FORMAT(' IFAIL=',11) 
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99996 FORMAT (/,/,/,/,' D02CBF EXAMPLE PROGRAM RESULTS',/,1X) 
99995 FORMAT (' RANGE TOO SHORT FOR TOL') 

END 
SUBROUTINE FCN(T,Y,F) 

C .. Array Arguments .. 
DOUBLE PRECISION F(7), Y(7) 

C .. Intrinsic Functions .. 
INTRINSIC COS, SIN 

C .. Executable Statements .. 

F(1) = - (0.5 + 0.000693)*Y(1) 

F(2) = 0.5*Y(1) - ( 0.04586 + 0.000693 )*Y(2) 
F(3) = ( 0.04586 )*Y(2) - ( 10 + 0.000693 )*Y(3) 
F(4) = 10*Y(3) - (1 + 0.04586 + 0.000693)*Y(4) 
F(5) = 0.04586*Y(4) - (6 + 0.000021 + 0.000693)*Y(5) 
F(6) = 1 *Y(4) + 6*Y(5) - 0.000693*Y(6) 
F(7) = F(6) + F(5) + F(4) + F(3) + F(2) + F(1) 
RETURN 
END 
SUBROUTINE OUT(X,Y) 

C .. Parameters .. 
INTEGER NOUT 
PARAMETER (NOUT =6) 

C .. Scalar Arguments .. 
DOUBLE PRECISION X 

C .. Array Arguments .. 
DOUBLE PRECISION Y(7) 

C .. Scalars in Common .. 
DOUBLE PRECISION H, XEND 
INTEGER I 

C .. Local Scalars .. 
INTEGER J 

C .. Intrinsic Functions .. 
INTRINSIC DBLE, REAL 

C .. Common blocks .. 
COMMON XEND, H, I 

C .. Executable Statements .. 
WRITE (NOUT,FMT=99999) X, (Y(J),J=1,7) 
X = XEND - DBLE(REAL(l))*H 
I =  I - 1 
RETURN 

99999 FORMAT (' ',F7.2,7D13.5) 
END 
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