
Edith Cowan University Edith Cowan University

Research Online Research Online

Research outputs pre 2011

2008

Fast Evaluation of the Square Root and Other Nonlinear Functions Fast Evaluation of the Square Root and Other Nonlinear Functions

in FPGA in FPGA

Stefan Lachowicz
Edith Cowan University

Hans-Joerg Pfleiderer
Ulm University, Ulm, Germany

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks

 Part of the Numerical Analysis and Scientific Computing Commons

10.1109/DELTA.2008.119
This is an Author's Accepted Manuscript of: Lachowicz, S. W., & Pfleiderer, H. (2008). Fast Evaluation of the Square
Root and Other Nonlinear Functions in FPGA. Proceedings of 4th IEEE International Symposium on Electronic
Design, Test and Applications. DELTA 2008. (pp. 474-477). Hong Kong: Hong Kong University of Science and
Technology. IEEE. Available here
© 2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.
This Conference Proceeding is posted at Research Online.
https://ro.ecu.edu.au/ecuworks/1169

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworks
https://ro.ecu.edu.au/ecuworks?utm_source=ro.ecu.edu.au%2Fecuworks%2F1169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ro.ecu.edu.au%2Fecuworks%2F1169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1109/DELTA.2008.119
http://dx.doi.org/10.1109/DELTA.2008.119

Fast Evaluation of the Square Root and Other Nonlinear
Functions in FPGA

1 2

1School of Engineering and Mathematics,
Edith Cowan University, Perth, Western Australia

2Institute of Microelectronics,
Ulm University, Ulm, Germany

s.lachowicz@ecu.edu.au, hans-joerg.pfleiderer@uni-ulm.de

Abstract

The paper presents a novel method of evaluating the

square root function in FPGA. The method uses a
linear approximation subsystem with a reduced size of
a look-up table. The reduction in the size of the lookup
table is twofold. Firstly, a simple linear approximation
subsystem uses the lookup table only for the node
points. Secondly, a concept of a variable step look-up
table is introduced, where the node points are not
uniformly spaced, but the spacing is determined by
how close to the linear function the approximated
function is. The proposed method of evaluating
nonlinear function and specifically the square root
function is practical for word lengths of up to 24 bits.
The evaluation is performed in one clock cycle.

1. Introduction

Field Programmable Gate Arrays (FPGA) are
becoming widely used in Digital Signal Processing
(DSP) systems. Modern FPGAs exhibit very high
performance, very large number of IOs and high capa-
city memory on the chip. The development is rapid and
risks are low since the IP can be easily modified. For
the low to medium production volume it is not
economical to develop an ASIC and, if needed, there
are companies like Altera who offer a convenient
solution of migration from FPGA to ASIC.

The evolution of FPGAs has enabled to implement
more and more sophisticated DSP subsystems in the
form of dedicated hardware on the device. In late
1990s FPGAs usually had just a few hardware
multipliers per chip. In early 2000s, hardwired
multipliers in large numbers (up to ~500) with clock
speeds of up to 100 MHz became available. Mid 2000s

saw the DSP algorithms like full FIR filters
implemented, and currently, powerful arithmetic, such
as fast square root and divide, floating point operations
and many more are being implemented.

In DSP systems nonlinear functions, such as
trigonometric, square root or Bessel functions are often
encountered. There are several solutions to this
problem, for instance, using a CORDIC core, or look-
up tables. A lot of effort is made to reduce the size of
the look-up tables because it can become prohibitive
for high word lengths. For some functions an existing
approach is to create hierarchical lookup tables. In this
work we present a different approach to reducing the
look-up table size.

Table 1. CORDIC Functions (after DSPedia)

It is proposed to introduce a variable step of the
look-up table, so that the number of entries is higher
for more nonlinear segments of the curve and smaller
for the parts closer to a linear function. The step length
is always a power of 2, hence, 8, 16, 32, etc.

The remainder of the paper is organised as follows.
Section 2 presents several methods of computation of

Stefan Lachowicz and Hans-Jörg Pfleiderer

4th IEEE International Symposium on Electronic Design, Test & Application

0-7695-3110-5/08 $25.00 © 2008 IEEE
DOI 10.1109/DELTA.2008.119

474

4th IEEE International Symposium on Electronic Design, Test & Applications

0-7695-3110-5/08 $25.00 © 2008 IEEE
DOI 10.1109/DELTA.2008.119

474

4th IEEE International Symposium on Electronic Design, Test & Applications

0-7695-3110-5/08 $25.00 © 2008 IEEE
DOI 10.1109/DELTA.2008.119

474

4th IEEE International Symposium on Electronic Design, Test & Applications

0-7695-3110-5/08 $25.00 © 2008 IEEE
DOI 10.1109/DELTA.2008.119

474

nonlinear functions. In section 3 the method of linear
approximation is described in more detail. Section 4
deals with the non-uniform step lookup table
generation and the associated hardware, and presents
the experimental results of square root function
implementation. It is followed by conclusions.

2. Nonlinear function computation

2.1. Look-up tables

In general the look-up tables are used for single
precision [1], [2]. For longer word lengths the size of
the table becomes prohibitively large. Sometimes the
look-up tables are used with conjunction of linear
approximation system which reduces the size of the
table considerably. When used, the look-up table
method is the fastest, and if the higher precision is
required it is used as an initial approximation for
iterative methods.

2.2. CORDIC core

COordinate Rotation DIgital Computer (CORDIC) is a
very popular IP core used for various computations
(Table 1) [3]. It is based on the iterative rotation of a
vector in Cartesian coordinate system (Givens
rotations):

()θθ tancos)1()1()2(yxx −= (1a)

()θθ tancos)1()1()2(xyy −= (1b)

CORDIC core is widely offered as an IP by the
FPGA vendors such as XILINX. Table 1 summarises
the functions which can be computed by CORDIC.

Table 2. CORDIC Accuracy (after DSPedia)

 As the CORDIC is an iterative method, it requires
many clock cycles to achieve the required accuracy.
Table 2 presents the accuracy depending on n – the
number of iterations and b – the number of bits used in
the computations.

Also, in terms of used resources the number of
slices used by the CORDIC in an FPGA chip is quite
considerable.

2.3. Series expansion

Series expansion is an attractive option of
calculating a nonlinear function [4]. Some of the more
useful functions are shown below:

...1
1

1 32 ++++=
−

xxx
x

 (2a)

...
720

1
24
1

2
11cos 642 +−+−= xxxx (2b)

...
16
1

8
1

2
111 32 −+−+=+ xxxx (2c)

The method is not iterative, therefore, in principle,
the implementation does not have to be pipelined.
However, usually the number of required multipliers is
high, especially for higher accuracy. Also,
preprocessing is generally required to make the
argument close to 1. It is worth to be noted that many
multiplications do not need to be “large”, ie. 53 × 53
for double precision. Rectangular multipliers can be
used where appropriate.

2.4. Newton-Raphson iteration

Newton-Raphson iteration is a rapid convergence
method often used for functions such as 1/x and
1/sqrt(x). The general form is:

)('
)(

1
n

n
nn qf

qf
qq −=+

 (3a)

The following formulas are applicable to 1/x and
1/sqrt(x), respectively:

)2(1 nnn xqqq −=+ (3b)

)3(
2
1 2

1 nnn xqqq −=+
 (3c)

The method is characterised by quadratic
convergence and the number of significant bits roughly
doubles with each iteration.

3. Linear approximation with look-up

tables
One method of reducing the size of the look-up

table is to use a linear approximation circuit. Every
function can be approximated by a piecewise linear
function as presented in Figure 1.

475475475475

Figure 1. Piecewise linear approximation of a

nonlinear function

Between the node points the function can be
expressed using the line equation:

)()(
1

1
i

ii

ii
i xx

xx
yy

yxf −
−
−

+=
+

+ (4)

The hardware mapping is presented in Figure 2(a).
Here the steps of the look-up table are evenly
distributed, so the input word x is split into two parts:
the more significant part is an address for the look-up
table and the less significant part is the increment of x
within the current step of the look-up table The node
values yi and yi+1 are read from the look-up table, the
increment ∆y is calculated and is subsequently
multiplied by the increment ∆x. The shift replaces the
division as the difference xi+1 – xi is always constant
and equal to the number being a power of two.

4. Minimum size look-up table generation
Nonlinear functions usually have a different degree

of nonlinearity throughout the range of interest.
Therefore, to achieve a particular accuracy while using
the linear approximation, the distance between the
node points in the look-up table can be varied. Where
the function is more “linear”, the distance between the
node points can be increased. In the case of the fixed
step table, the step corresponding to the most “non-
linear” part of the function has to be maintained
throughout the whole look-up table.

Figure 3 presents an example of a look-up table
generated for the square root function, in 11-bit
resolution and with the accuracy of ±1bit. It can be
observed that where the function exhibits higher degree
of nonlinearity, the step of the look-up table is reduced.

Figure 3. Node points of the look-up table for the

square root function

Figure 2. Hardware for a linear function approximation with fixed lookup table step (a), and
with variable look-up table step (b).

(a)

(b)

476476476476

The look-up table is generated as follows:

1. Each step in the look-up table must be of the
length equal to the power of 2.

2. The predetermined accuracy of the linear
approximation within one step range is verified for
the initial value (large) of the step.

3. If the accuracy is not met then the step is reduced
by half and the verification is repeated.

4. If the accuracy criterion is met, the algorithm
moves to the next step.

The next step can be the same length, shorter or
longer, however the longer step can only be made if the
remaining part of the range is divisible by the new
value of the step length. This ensures that the x value
can be split into the look-up table address part and the
increment part.

Square root is an important function often
encountered in DSP. Figure 3 presents the look-up
table for 11-bits resolution with ±1 bit accuracy. The
look-up table has 21 entries, and for 10-bits the linear
approximation circuit generates an exact result. Similar
table for a 16-bit accuracy has 262 entries.

The hardware implementing the variable step look-
up table linear approximation differs from the fixed-
step as it has to split the input word x into variable
length address part and the increment ∆x and the fixed
shift is replaced by programmable shift dependent on
the step of the look-up table. The hardware is shown in
Figure 2(b).

In the address decoder in Figure 2(b), an array of
comparators determines the current step of the look-up
table and splits the input word x into the address part
and the increment part. It also controls the number of
positions for the shift. The number of comparators in
the array is equal to the number of step changes in the
look-up table.

Before the input word is presented to the linear
approximation circuit the number has to be normalised.
For the square root the input number should be within
the range {1…4} for the output within the range
{1…2}. This operation could be referred to as an
internally floating-point operation.

As an example of application of the linear
approximation circuit with variable step look-up table,
a 16-bit square root 222 zyx ++ has been
implemented in Spartan 3/1000. The resources used are
242 slices (3%), 1 block RAM (4%) and 4 hardware

multipliers (16%). Three of the multipliers are used to
calculate the squares and one in the linear
approximation circuit. The on-chip hardware
multipliers are 18 × 18, and for the linear
approximation circuit a 9 × 9 multiplier would be
sufficient. Therefore, if the variable word length
multiplier was available [4], the resources could be
further reduced. The same circuit was also
implemented in Virtex 2 FPGA and the operation was
verified using ChipScope. The circuit exhibits latency
of approximately 11 ns.

5. Conclusions
A novel method of nonlinear function computation in
FPGA has been developed. The standard linear
approximation circuit has been modified in order to use
a look-up table with variable step. This allows
minimising of the size of the look-up table and
therefore the resources needed for the implementation.
The method can be used directly for word lengths up to
about 24 bits, and can also be used as an initial value
generator for Newton-Raphson iterations if a higher
accuracy is required.

5. Acknowledgments

The support of the German Academic Exchange Office
(DAAD) and Ulm University is gratefully
acknowledged.

6. References
[1] H. Hassler and N. Takagi, “Function Evaluation

by Table Look-Up and Addition”, Proc. 12th
IEEE Symp. Computer Arithmetic, S. Knowles and
W. McAllister, eds., pp. 10-16, July 1995.

[2] M.D. Ercegovac, T. Lang, J-M. Muller and A.
Tisserand, “Reciprocation, Square Root, Inverse
Square Root, and Some Elementary Functions
Using Small Multipliers”, IEEE Trans.
Computers, vol. 49, no. 7, pp. 628-637, July 2000.

[3] J. Volder, “The cordic trigonometric computing
technique”, IRE Trans. Electron. Comput., vol. 3,
pp. 330-334, 1959.

[4] O.A. Pfaender, R. Nopper, H.-J. Pfleiderer, S.
Zhou and A. Bermak, ”Comparison of
Reconfigurable Structures for Flexible Word
Length Multiplication”, Kleinheubacher Tagung,
Miltenberg, Germany, Sep 2007.

477477477477

	Fast Evaluation of the Square Root and Other Nonlinear Functions in FPGA
	tmp.1299744796.pdf.WBIlE

