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Supporting Component Selection with a Suite of Classifiers

Valerie Maxville, Chiou Peng Lam and Jocelyn Armarego

Abstract— Software selection involves the assimilation of in-
formation and results for each candidate to enable a comparison
for decisions to be made. The processes and tools developed
assist with software selection to enhance quality, documentation
and repeatability. The CdCE process aims to retain and
document the information used in selection to assist decisions
and to document them for reference as the system evolves.
This paper describes the CdCE process and our approach to
assist the shortlisting of candidates through a suite of classifiers.
The application of the suite is illustrated using a selection and
evaluation case study. Applying this approach helps retain the
multidimensional nature of the selection process and enhances
user awareness in the decision making process.

I. INTRODUCTION

Increasingly, component-based software development
(CBSD) is becoming an alternative approach to developing
software system: the associated benefits include reduced
development cost and effort as well as improved quality of
the software system. CBSD involves a plug and play frame-
work where commercial off-the-shelf components (COTS)
are integrated to provide the system functionalities. The
Component-Based Enterprise Software Process Model [1] for
CBSD consists of the following sequential stages: Analysis
and Component Acquisition, Component-Oriented Design,
Component Composition, Integration Test, System Test. In
recent years, various approaches have been developed for
the component acquisition phase involving COTS selection.
Amongst these are REACT [2], PECA [3], RCPEP [4],
PORE [5], OTSO [6], SCARLET [7], EPIC [8], CISD [9] and
IusWare [10]. It is widely accepted that selection of the most
appropriate COTS is a key aspect in successfully developing
the software system in CBSD.

As the use of third party software increases, the common
task in the Analysis and Component Acquisition phase of the
CBSD life cycle is the selection of software or components to
suit developer requirements. Approaches to the selection of
COTS software may consider functional and non-functional
characteristics, be based on quality models or on the dynamic
evaluation of the available software [11]. Maintenance of
component-based systems has also becomes more complex
with increased vendor reliance, leaving developers vulnerable
to their external changes including software updates and
retraction of support for old versions. A project may need one
or many pieces of third party software, and the evolution of
the system may force the acquisition of software to replace or
extend their functionality. The approaches to COTS selection
vary, with proofs and logic being applied where software
has detailed specifications [12] while others use a manual
assessment against criteria [13]. Much of the effort in the
selection processes is manual, labour-intensive and subjec-
tive, reducing repeatability and scalability. In addition, this

is an ongoing, iterative process due to internal and external
forces associated with the evolution of the components.

Component candidate selection applies to sourcing com-
ponents in a new development as well as in the evolution of
existing software packages in terms of the combinations of
components to be included in the next release. It involves
querying component brokers and repositories (external or
in-house) to seek out likely matches to requirements. With
repositories in a component market place storing tens of
thousands of software components and applications (e.g.
Freshmeat.net [14], Component Source [15]) and massive
overheads involved in any in-depth evaluation of compo-
nents, users need automated techniques and tools to manage
the selection process as well as to ensure that the compo-
nents on their short-list for further evaluation is likely to
be relevant, and that suitable items have not been missed.
Ideally, component brokers and repositories should adopt
a standardised template for documenting their components
to support the automation of component assessment. This
would allow the harvesting and processing of component
information using Internet agents. However, in reality, raw
data from these repositories have their own data model and
format. For example, Freshmeat.net has 38 attributes in a
DTD and the data is available as RDF files. SourceForge
[16] has a relational database or free text summary files. This
implies that each repository’s template has to be transformed
before subsequent processing.

The Context-driven Component Evaluation (CdCE) project
[17] has developed a process for component selection which
can also be applied to COTS and OSS (Open Source
Software) selection. One of its aims is to implement and
assess strategies to enhance and automate the component
selection process. To facilitate this, one output of CdCE is
the development of a standardised component specification
template, consisting of 37 attributes described in an XML
schema. Instances of this schema form the basis for an ideal
component specification which may be created to describe
single or multiple components. The work described in this
paper focuses on the filtering (short listing) stage of selection
(Step 2 in the CdCE process illustrated in Figure 1), involving
a specification for a desired component and the raw data
from a repository as input to output a short-list of candi-
dates. Unlike alternate approaches in this project that had
formulated component candidate selection as a classification
problem [18], the problem of short-listing potential candidate
components is recast here as a search-based problem. The
paper describes an approach which can be incorporated into
the CdCE process for short-listing components in the COTS
selection phase. The aim here is to demonstrate that the
search-based approach originally proposed by Bagnall [19]
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in selecting components for the next release problem is also
suitable for shortlisting candidate components as part of the
component acquisition phase in CBSD. This approach is
evaluated using the Freshmeat.net repository (with 41,885
entries for software components). The significance of the
approach is that it provides an automatic progression from
a specification for a desired component and the raw data
from a repository and generates a suite of classifiers, each
of which provides a short-list of candidates. The user can
make an informed decision in selecting the short-list(s), thus
providing a technique to improve recall and relevance in the
COTS selection process.

The following section describes our project and the CdCE
Process for component selection. Section III gives details of
how the new approach assists the user in selecting shortlists
of candidates and some discussion on the interpretation of
the criteria graphs. We then show the process and techniques
applied to a real-world case study (Section IV) and discuss
related work in Section V. We conclude with a discussion
of the effectiveness of the approach and future work for the
project.

II. CONTEXT-DRIVEN COMPONENT EVALUATION

The CdCE Project has built on the premise of providing
a usable, repeatable process with tool support. We use a
fixed template of attributes that can be tailored via the ideal
specification - the requirements for the component in XML
and Z notation. A difficulty in this field is that there is no
standard specification for COTS or components. We have
considered the characterisations proposed by the research
community, along with what is used in commercial and Open
Source repositories and included necessary and objective
attibutes in the CdCE specification template. This has been
successfully applied in the transformation of a repository of
over 41,000 items into CdCE format, and in a number of
software selection case studies.

The ideal specification is used as a model to generate
training data for two machine learning classifiers to shortlist
and later to evaluate the available components. Each of
these classifiers may be reused in subsequent selection tasks.
The non-functional attributes (e.g. development status and
operating system) are used to shortlist the components. The
smaller set of candidates then go through a functional eval-
uation based on tests generated from the formal specification
of required behaviour. These tests, with adaptation, can be
reused to assess newly located components as the system
evolves, allowing valid comparisons with those previously
considered. The results of the tests are compiled, with the
resulting scores against metrics becoming the input to the
second classifier which evaluates the short-listed components
and provides the recommendation for selection.

A. CdCE Process

The CdCE Process comprises eight steps (Figure 1), to
provide structure and repeatability in COTS and component
selection. The process is driven by an ideal specification in
XML, which includes the contextual information required to

recognise a suitable candidate. Each of the steps is linked
through XML files to provide traceability throughout the
process.

Fig. 1. The CdCE Process for Component Selection

The ideal specification is created in Step 1 and uses XML
and Z notation to describe the functional and non-functional
characteristics of the ideal component. We consider testing,
in context, to be essential to the evaluation process and
require a Z notation specification of the key behavioural
aspects of the required software to allow automated test and
test data generation. Context testing that is included in the
CdCE process are performance (CX P), reliability (CX R),
stress (CX S), and usage (CX U). The ideal specification also
requires values to be entered for the evaluation metrics listed
in Table I on a scale of 0-10, 10 representing full success.
In addition to the context metrics, we have metrics for
functional fit (FFIT), functional excess (FEXS), adaptation
effort (AEFT), test fit (TFIT) and test results (TRES).

The ideal specification is used to generate a classifier for
shortlisting in Step 2. We use the C4.5 algorithm within the
Weka machine learning tools [20] to generate the classifiers
as it provides human-readable decision trees. The reposi-
tory data is converted to CdCE format and a selection of
transformations is provided to improve the relevance and
recall of results. The converted data is classified and if the
resultant shortlist is unsatisfactory, we iterate to Step 1 to
refine (loosen, tighten, alter) the ideal specification. The first
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TABLE I

EVALUATION METRICS

Metric Calculation
FFIT (# interfaces matched
Functional Fit /# interfaces required)
FEXS (# interfaces matched
Functional Excess /# interfaces in component)
AEFT (# interfaces adapted
Adaptation Effort /# interfaces required)
TFIT (# tests possible
Testing Fit /# test cases)
TRES (# tests passed
Test Result /# test cases)
CX_P (# performance tests passed
Performance testing result /# performance test cases)
CX_R (# reliability tests passed
Reliability testing result /# reliability test cases)
CX_S (# stress tests passed
Stress testing result /# stress test cases)
CX_U (# usage tests passed
Usage testing result /# usage test cases)

pass of the shortlisting uses the full specification to allow
rough tuning of the selection criteria, particularly those that
may lock out all candidates. The Weka system is used to view
the statistics across the input data set to highlight issues (e.g.
missing data) and create a usable base ideal specification,
which we refer to as S10. From this ideal specification
we identify the mandatory and non-mandatory criteria, with
the flexibility in criteria made possible by non-mandatory
criteria. As the refining process has been automated, we
can now create a graph of the possible combinations of
criteria by dropping one non-mandatory criterion at a time
(Fig. 2) and the number of candidates that result from each
set. This graph can be traversed to find an optimal criteria
set to identify a shortlist of components. The search-based
approach condenses the iteration process, removes some of
the heuristics and subjectivity previously used, and provides
a better overall view of the impact of including or excluding
each criterion.

Fig. 2. Graph representing a series of sets, classifiers and subsequent
shortlists. {A, D} are mandatory and {B, C, E} are non-mandatory.

In Step 3 we generate tests from the formal specification.
We use equivalence partitioning to generate the test cases
and substitute supplied test data into the abstract test cases,
which could be enhanced in the future by including the
Classification Tree Method [21]. These abstract tests are
adapted to the candidates in Step 4, which also produces
input for calculating metrics for functional fit and adaptation
effort (FFIT, FEXS, AEFT and TFIT in Table I). The tests
are provided as abstract XML and must be ported to the local
harness/environment, then executed in Step 5.

The results of the tests are evaluated in Step 6 to calculate
the remaining five metrics where appropriate - test result
(TRES) plus the context metrics CX P, CX R, CX S, and
CX U. The developer’s preferences for these metrics are
gathered from the ideal specification and a second classifier
is generated in Step 7. As in Step 2, we can create a search
graph or iterate between: modifying the ideal specification,
regenerating the classifier and processing the data to pro-
duce a satisfactory shortlist. If issues with the functional
specification arise, it can also be adjusted, requiring Step 3
onwards to be repeated. The automation within the process,
and the ability to adapt to the available software, reduce the
additional effort required for iteration.

Step 8 collates the data from the entire process to provide
a report including the justification for the choices made (e.g.
decision trees). It is possible that no suitable component
is found, which would also need to be documented. A
description of the original CdCE process and implementation
appears in [22].

The CdCE ideal specification includes 37 attributes of
five types: numeric, date, text, longText and
ontology. Each are processed throughout the CdCE tools
to maximise information utilisation. An example is in the
ontology attributes, where we have adopted the Freshmeat
trove as the ontology. This provides an established hierarchy
to which we have added a thesaurus and distance matrix to
capture ‘close‘ values, e.g. flavours of Linux. Other attributes
are more straightforward in their implementation.

Investigation of data representation also led to a range of
transformations to allow tuning of the matching mechanism.
The transformations range from T1 - equivalent to a boolean
or SQL matching query, to T5 - utilising distance metrics
and abstraction of the ontology hierarchies. More detail on
the knowledge representation aspects of the CdCE project
are described in [23]. Case studies have indicated that the
T5 transformation to be the most effective in identifying
candidates and this is what we use in this paper’s case study.

The process allows for flexibility in its application to
suit organisational requirements. Alternatives to the C4.5
classifier can be substituted by creating corresponding output
methods in the Generator and Transformer classes (Java
classes developed for this project). The input data (Fresh-
meat), ontology and thesaurus can be substituted by changing
parameter files and adhering to the respective XML schema.
Alternative test generation techniques can also be applied
within the CdCE process.
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III. THE CLASSIFIER SUITE

When considering the shortlisting step, the CdCE process
allows for iteration between the specification of the ideal
component and the shortlisting of candidates to tune the
specification by loosening or tightening criteria. In practice,
the first iteration uses the most strict set of criteria which
are loosened iteratively to find a suitable shortlist. This leads
to an effective process but is subjective in choosing the next
criterion to loosen. As the tools for generating the classifiers
and extracting the shortlists have been automated, a more
informed approach is considered where all possible sets of
criteria are determined and the shortlists made available to
the user via a suite of classifiers.

During the specification step, the user can flag certain
criteria as mandatory, e.g. the description or the development
language. Holding these criteria fixed, they can progressively
loosen the criteria by dropping one at a time out of the selec-
tion set. For example, working with criteria {A, B, C, D, E}
they may decide that the mandatory set is {A, D} and the
non-mandatory are {B, C, E}. The resulting possible sets of
criteria are:

{ABCDE}, {ABCD}, {ABDE}, {ACDE},
{ABD}, {ACD}, {ADE}, {AD}

This can be represented as a graph (Fig. 2) with each
node representing a selection set and each edge the removal
of one of the criteria. After the respective classifiers have
processed the repository data, the user can then view the
graph marked up with the number of items in each shortlist
and the respective criteria to help to select one or more sets
for their shortlist. The metadata for the software repository
is available for each candidate on each shortlist which can
be viewed to help the user’s decision.

In terms of the processing of the repository data, in the
past we have had many iterations to create a satisfactory
shortlist, with no awareness of the untried criteria sets. In the
new approach, we can get an overall picture of the variations,
drill down as required and still have the option of returning to
the specification to make changes before a second iteration.
The case study in section IV shows the application of the
new approach.

A. Scalability

The height of the graph is dependent on the number of
non-mandatory criteria. Each level of the tree progressively
removes one criterion from the set, starting with the full set
at the top of the graph and finishing with the mandatory set
at the bottom. The number of sets and classifiers in each
level of the graph is:

N = setofnon − mandatoryelements
Number of non − mandatory elements = n

Graph height = n + 1

Number of classifiers/sets required = 2n

Note that the number of mandatory criteria, m, does not
affect the size of the graph.

B. Interpreting the Graph

We are currently exploring ways to represent the graph
effectively for the user to be able to have a more intuitive
view of the possible shortlists. Currently we list the criteria
included in the set, represented by letters (e.g. A-E), along
with the number of items in the shortlist for that set. This
works well for a small graph. However, where the number of
non-mandatory items goes above four or five, the graph can
become difficult to interpret. One way to reduce graph size
is to split it on a well-understood criterion, e.g. date updated
- F in Fig. 3. The user can then consider which criteria are
important with, and in the absence of, the split criterion.

Another approach is to highlight nodes with criteria of
interest. In the case study, criterion A was of particular
interest as it caused dramatic changes in shortlist sizes. In
Fig. 4 we highlight the sets/nodes that include criterion A,
and the edge which links to the equivalent node without A.
The difference between the numbers returned in the shortlists
with and without A are listed below:

Differences resulting from criterion A :

{A, B, C, D, E, F} = 1 . . . {B, C, D, E, F} = 7

{A, B, C, D, E} = 1 . . . {B, C, D, E} = 6

{A, B, C, E, F} = 10 . . . {B, C, E, F} = 24

{A, B, D, E, F} = 4 . . . {B, D, E, F} = 10

{A, B, C, E} = 13 . . .{B, C, E} = 27

{A, B, D, E} = 4 . . . {B, D, E} = 14

{A, B, E, F} = 10 . . .{B, E, F} = 23

{A, B, E} = 12 . . . {B, E} = 37

Fig. 4. Graph representation of criteria sets, highlighting criterion A
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Fig. 3. Splitting the graph on criterion F

These patterns of differences are significant in the choice
of criteria. To determine if a criterion is blocking (bad) or
filtering (helpful), we need to drill down into the shortlist. An
example from our case study showed that description (B) had
this effect. As we were also using detail (detailed description
- C) it could be that the attributes were redundant or one of
them was rarely matched, that both were required, or that
we needed one and not the other. Drilling into the shortlists
we found that those that did not include ‘description‘ were
almost completely irrelevant, whereas those with description
were almost entirely relevant. This knowledge gave the added
benefit of adding another criterion to the mandatory set,
halving the graph size. Such patterns are always of value,
but would have different impacts depending on the data.

C. Advantages and Disadvantages

Advantages of using the classifier suite include increased
understanding of the options for varying the selection criteria,
the low overhead of generating the criteria sets, classifiers
and shortlists and the ability to make selection more visual
and easier for the user to explore. The alternate approach of
iterative refinement was subjective in the choice of criteria
to loosen/tighten and risked missing criteria sets of interest
unless an exhaustive iteration of all permutations was done.

Two main issues exist, the number of classifiers (and
processing) required and the complexity of the data being
interpreted. The size of the suite is dependent on the number
of non-mandatory criteria, with the graph size equal to
2n. There could be many improvements to the code for
processing the data, which has been written in strict object-
oriented Java. Even so, the processing time averages 2
minutes per criteria set - 30 minutes for four non-mandatory
criteria and one hour for five criteria. The time taken to
generate classifiers and shortlists is affected by the attribute
types and the selected transformation (described in Section

II.A). The CdCE tools are currently written in Java and are
not optimised, and take an average of two minutes per set
on a 2 GHz Pentium with 767 Mb RAM. In practise, the
limitation for the size of the graph may be in the user’s
ability to interpret it than in the processing time required.

We have also shown ways to divide the graph for inter-
pretation and to isolate criteria which may be able to be
removed or shifted to ‘mandatory‘. Each reduction in the size
of the non-mandatory set halves the size of the graph (and
processing time and complexity). We see the the classifier
suite as reducing subjective choices and improving awareness
of a solution space which was already of the given size, but
previously had no tools to assist the user to make decisions.

IV. CASE STUDY

As a simple example of the use of the process and classifier
suite generation, we consider the selection of COTS software
to provide XML editor functionality. In Step 1 of the CdCE
Process, we define the requirements by creating an ideal
specification. Figure 5 gives the ideal specification used in
this case study along with the letters we use to represent
them in this paper. We are sourcing XML editor software
(Criteria A & B), produced in Java (E), to run on a Linux
platform (F). In keeping with the Open Source nature of the
particular development, we would like a GNU General Public
License (C) and the product must be Mature (D). Other
requirements are less specific, so we have set reasonable
limits on the memory and disk requirements and how recently
the software was updated (G). These ranges can be tuned
through iteration. Specification can be time-consuming, so
we note that Step 1 took approximately four hours in this
case study.

To begin the shortlisting in Step 2, we use the full, most
restrictive ideal specification and all attributes set to manda-
tory. We choose data Transformation 5 (see Section II.A)
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<?xml version="1.0"?>
<Description xmlns="http://www.scis.ecu.edu.au/swvML/1.0/"

xmlns:dc="http://purl.org/dc/elements/1.0/"
xmlns:swv="http://www.scis.ecu.edu.au/swvML/1.0/" >

A - Non-mandatory <dc:description type="mandatory">XML editor</dc:description>
B - Mandatory <dc:detail type="mandatory">XML editor</dc:detail>
C - Non-mandatory <swv:licence type="mandatory">GNU General Public License (GPL)</swv:licence>
D - Non-mandatory <swv:devStatus type="mandatory">6 - Mature</swv:devStatus>
G - Non-mandatory <dc:date type="mandatory" min="01-01-2005" max="31-12-2007">31-12-2007</dc:date>

<swv:technical>
E - Mandatory <swv:devLanguage type="mandatory">Java</swv:devLanguage>
F - Non-mandatory <swv:operatingSystem type="mandatory">Linux</swv:operatingSystem>

<swv:systemRequirements>
Missing <swv:memory type="mandatory" min="15" max="50">20</swv:memory>
Missing <swv:diskSpace type="mandatory" min="30" max="50">40</swv:diskSpace>

</swv:systemRequirements>
<swv:Zspec>... removed for space reasons ...</swv:Zspec>
<swv:Zcontext>... removed for space reasons ...</swv:Zcontext>

</swv:technical>
<swv:FFIT type="mandatory" min="8" max="10">10</swv:FFIT>
<swv:FEXS type="mandatory" min="8" max="10">10</swv:FEXS>
<swv:AEFT type="mandatory" min="6" max="10">10</swv:AEFT>
<swv:TFIT type="mandatory" min="6" max="10">10</swv:TFIT>
<swv:TRES type="mandatory" min="10" max="10">10</swv:TRES>
<swv:CX_U type="mandatory" min="8" max="10">10</swv:CX_U>

</Description>

Fig. 5. Ideal specification for XML editor case study

from our available transformations as previous investigations
have indicated it provides improved short-lists through the
use of distance measures and ontologies for abstraction of
some text attributes.

After generating training data for the classifier, the reposi-
tory data is transformed and classified, resulting in an empty
short-list. Information provided by the Weka statistical tools
shows that there is a high level of missing data on the
memory and diskSpace attributes. We remove these from
the ideal specification and and flag two criteria as mandatory
- detail and devLanguage.

At this point we take advantage of the automation of the
CdCE Process and generate a suite of classifiers for the
combinations of sets of criteria. In the graph (Fig. 6) we
have overlayed the date criterion as a second value in each
node. The level 1 node - S10 has no items in its shortlist.
As the aim is to gain the highest relevance of results while
not having too many candidates on the shortlist, we look for
larger lists by loosening criteria. In levels 2 and 3, we have
a few results below ten, which is manageable. By level 4 the
relevance of candidates will be reduced.

As described in Section III.B, by drilling down to the
metadata we found that the description criterion should
be mandatory as lists without it have high numbers of
irrelevant items. This allows the removal of eight nodes: S23,
S32, S33, S36, S42, S43, S44 and S51 from the graph to
be considered. We find that two nodes: S21 and S34 are
identical, which also helps to reduce options. We can choose
S21 without date and have four items on the list. Previous
case studies with the Freshmeat dataset have shown that
date and devStatus are important for good projects. As
we have lost date on the choice of S21, we look for nodes
with this criterion along with as many others as possible (the
right number of the graph). S22 and S24 have 2 and 0 items
respectively, so we are left to choose from S31 and S35. As
S31 is closely related to S21, we aim for variety and choose

S35 which has four items. We accept two four item short-
lists - S21-date, S35+date, giving a total of eight candidates
with these changes.

Fig. 6. Graph representation of case study shortlists. Date (G) is overlayed
on the graph as the lower of the two shortlist counts.

Step 3 of the process takes the behavioural specification
in Z notation and generates tests. The XML editor test suite
has 12 test cases, concentrating on loading and validating
XML documents and taking in test data (XML files) from
the specification. To make the recording of results consistent,
there is an XSLT transformation which converts the XML
test cases in HTML forms for the user to record the results
for each candidate. In Step 4 each shortlisted candidate
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is downloaded and the differences between the available
and required interfaces are documented. This is currently a
manual process. During the adaptation, we derive values for
related metrics: Functional Fit (FFIT), Functional Excess
(FEXS), Adaptation Effort (AEFT) and Testing Fit (TFIT).
These are shown in columns 1-4 of Table II. Candidate
C8 was not available for download as it has become a
commercial product with no trial version.

TABLE II

COMPLETE EVALUATION FOR SHORTLISTED CANDIDATES

Candidate FFIT FEXS AEFT TFIT TRES CX U
C1 6 10 8 3 2 4
C2 8 10 10 3 0 0
C3 4 6 10 3 3 5
C4 10 6 4 10 10 10
C5 8 10 8 9 5 8
C6 10 6 4 10 10 10
C7 8 10 4 9 5 10
C8 0 0 0 0 0 0

The adaptation documentation for each candidate is com-
bined with the abstract tests and transformed into executable
tests in Step 5. In this case study the tests are manually ex-
ecuted and results recorded in HTML forms. Each candidate
is tested, and the results of the tests are collated in Step 6
(see Table III), generating metrics for TRES, TFIT and the
contextual test metrics (if applicable). In this case study we
have usage-based tests, so we generate a score for CX_U and
no value for CX_S, CX_R and CX_P (not shown in table).
This completes the metrics for the candidates and we add
them to the XML file for the candidates in Step 6. The full
results are in Table II with 10 being a perfect result.

TABLE III

TEST RESULTS FOR SHORTLISTED CANDIDATES

Candidate NumTests NumSkipped NumPassed
C1 12 9 2
C2 12 9 0
C3 12 9 3
C4 12 0 12
C5 12 3 5
C6 12 0 12
C7 12 3 6
C8 0 12 0

The ideal specification is again used for the evaluation of
the components in Step 7, this time concentrating on the nine
functional metrics. The evaluation classifier is generated in
the same way as the short-listing classifier, and the candidates
are processed. As in Step 2, we may wish to iterate and
modify the ideal specification to provide an acceptable list
or selection. The recommended action in each iteration is
to adjust the values for each of the metrics, as opposed to
the dropping of criteria that was done in Step 2. In this case,
there were no candidates who achieved the metrics as initially
listed. The final values used for the evaluation metrics in this
case study were as listed in Table IV.

TABLE IV

REQUIRED VALUES FOR THE EVALUATION METRICS

Iteration FFIT FEXS AEFT TFIT TRES CX U
Initial values 8 8 6 6 10 8
Final values 8 6 5 6 8 8

After the second pass with the final values, there are two
clear recommendations - candidates C4 and C6. Next best
were C5 and C7, with the other candidates performing poorly
and not being recommended. A possible issue with the top
two is that they do not have GPL or equivalent licencing. The
software, released by the same company, have commercial
(with free trial) and academic licences respectively. Where
this is prohibitive, the next ranked candidates would be
considered. With the ranking complete, the infomation for
the whole evaluation is compiled into a report (Step 8)
including recommendations along with electronic versions
of all artifacts including specifications, classifiers and tests.

V. RELATED WORK

A key issue in Search-based Software Engineering is the
need to recast software engineering problems into search-
based problems. In structural testing, the problem of test data
generation has been recast as a problem of searching for test
inputs which will satisfy a specified test adequacy criterion.
For example, Harman et al presented a testability transform
that transform a code based program with one or more
exit statements into a structured branch-covering equivalent
program [24]. Antoniol et al [25] have reformulated the
problem of project planning in software maintenance as
one of task scheduling. Others like Xiao et al [26] have
transformed the problem of the test sequence generation
based on the Wp method into one of finding the shortest
path in the asymmetric travelling salesman problem.

Bagnall et al [19] formulated the next release problem
as a variant of the 0-1 knapsack problem where by the
objective is to find a set of customers requirements, that falls
within a specified budget, which is to be included in the next
release. In order to solve this optimisation model, Bagnall et
al applied a number of different techniques, including integer
programming, greedy algorithms and simulated annealing to
data generated from 5 randomly generated artificial projects.
Baker et al [27] incorporated concepts first presented by
Bagnall et al and described a search-based approach for
selection and prioritisation of components in the next re-
lease problem using real-world data. The problem was also
formulated as a feature subset selection problem; specifically
as an optimisation 0-1 knapsack problem with a specified
budget K, as the bounding constraint. Simulated annealing
and greedy algorithms were used in their approach and it
was evaluated using a dataset comprising of 40 candidate
components from a telecommunication company. The results
obtained from the applications of both greedy and simulated
annealing algorithms were compared to those of an expert
and was shown to be more superior.
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Maxville et al [18] have described some work for short-
listing components that involved the use of Artificial In-
telligence (AI) techniques to classify components based on
a specified component specification. This specification was
used to generate training data which was then used to train
a C4.5 classifier and neural network classifier respectively
to recognise suitable components. These classifiers were
then subsequently used to classify test data from a given
component repository in terms of their suitability in the short
listing phase of the CdCE process. If the specification of
the required component remains unchanged the classifier,
once trained, can be used repeatedly to classify new test
data as they arise or in another iteration of COTS selection
as the product evolved. Positive results from this work led
to the automation of the generation of a suite of classifiers
representing various combinations of selection criteria. By
viewing the criteria, shortlist size and drilling down in to
the metadata for candidates on the shortlists, the user can
see the impact of their choice of selection criteria and be
more confident in the resultant shortlist. This empowers the
user and gives more dimension to the data they base their
decisions on, as well as making the process less subjective.

VI. CONCLUSION

The CdCE project has focussed on process development
with tool support for the selection of COTS software and
components. The aim was for a practical, usable process
which would encourage repeatability and documentation in
the selection process. The CdCE process uses iteration in
deriving a shortlist of candidates, which has tool support for
generation of classifiers and the extraction of the metadata
shortlists. We have used these tools to modify the process
to consider all the possible sets of criteria and generate a
suite of classifiers to provide a formation of shortlists for the
user to view. As the generation is automated, the overhead is
minor but provides more information for the user to decide
which criteria (and shortlist) to use. A case study using the
process to source an XML editor was shown.

Future work will include improved visualisation of the
criteria sets and graph. We will also be providing guidelines
for interpreting the patterns and data included in the graphical
and other representations of the data. Although the approach
has been developed for software selection, it could be ap-
plied to dealing with more general multi-criteria selection
problems in other domains.
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