
Edith Cowan University Edith Cowan University 

Research Online Research Online 

Theses: Doctorates and Masters Theses 

1-1-1999 

Analysis of increases in fishing power in the western rock lobster Analysis of increases in fishing power in the western rock lobster 

(Panulirus cygnus) fishery (Panulirus cygnus) fishery 

John Fernandez 
Edith Cowan University 

Follow this and additional works at: https://ro.ecu.edu.au/theses 

 Part of the Marine Biology Commons 

Recommended Citation Recommended Citation 
Fernandez, J. (1999). Analysis of increases in fishing power in the western rock lobster (Panulirus 
cygnus) fishery. Edith Cowan University. Retrieved from https://ro.ecu.edu.au/theses/1227 

This Thesis is posted at Research Online. 
https://ro.ecu.edu.au/theses/1227 

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses?utm_source=ro.ecu.edu.au%2Ftheses%2F1227&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1126?utm_source=ro.ecu.edu.au%2Ftheses%2F1227&utm_medium=PDF&utm_campaign=PDFCoverPages


Edith Cowan University 
 

 

Copyright Warning 
 
 
 
 
 

You may print or download ONE copy of this document for the purpose 

of your own research or study. 
 

The University does not authorize you to copy, communicate or 

otherwise make available electronically to any other person any 

copyright material contained on this site. 
 

You are reminded of the following: 
 

 Copyright owners are entitled to take legal action against persons 
who infringe their copyright. 

 

 A reproduction of material that is protected by copyright may be a 

copyright infringement. Where the reproduction of such material is 

done without attribution of authorship, with false attribution of 

authorship or the authorship is treated in a derogatory manner, 

this may be a breach of the author’s moral rights contained in Part 

IX of the Copyright Act 1968 (Cth). 

 

 Courts have the power to impose a wide range of civil and criminal 

sanctions for infringement of copyright, infringement of moral 

rights and other offences under the Copyright Act 1968 (Cth). 

Higher penalties may apply, and higher damages may be awarded, 

for offences and infringements involving the conversion of material 

into digital or electronic form.



USE OF THESIS 

 

 

The Use of Thesis statement is not included in this version of the thesis. 



'. '!·• 

:. '.; ' 

; ' ; ,,--, •.• '· ·. ~ t . , ·· ...... y I 
t·-~~- ··--·-~~: .. :.:~. ~-----

ANALYSIS OF INCREASES IN FISHING 

POWER IN THE WESTERN ROCK 

LOBSTER (PANULIRUS CYGNUS) FISHERY 

BY 

JOHN FERNANDEZ 

A thesis submitted in partial fulfilment of the requirements for the degree of 

Master of Science (mathematics and planning) at the School of Engineering 

and Mathematics, Edith Cowan University, Western Australia. 

Date of submission: 22nd March, 1999 



ll 

ABSTRACT 

The western rock lobster, Panulirus cygnus, fishery represents a significant commercial 

asset to Western Australia, and it is therefore important that appropriate strategies are 

developed to effectively manage it. Because the fishery has a very high level of 

exploitation, researchers and managers rely significantly on annual stock assessments 

which are based on catch and effort data. This study will identify and assess the effects 

that changes in fishing power factors (e.g. advances in fish-finding technology) have had 

on estimates of catch and effort. The fishing power increases can be used to adjust 

nominal fishing effort to produce a time series of standardised effort which can then be 

used to reassess stock abundance measures, particularly of the breeding stock. The study 

will utilise the theory and techniques of regression and generalised linear modelling. A 

comparison of the normal and gamma distributions as the specified probability 

distribution in the model will be made. 
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Chapter 1 

INTRODUCTION 

1.1 RATIONALE 
The western rock lobster (WRL) fishery is situated along the west coast of Western 

Australia from Fremantle in the south, to just north of Kalbarri (see the map in Appendix 

A). As Australia's largest single-species fishery it constitutes a significant commercial 

asset for Western Australia (valued at over $300m annually). Hence, it is necessary that 

appropriate management strategies be developed and maintained. There are essentially 

two reasons for this: (i) Economic - there is a need to maintain sustainable catch rates to 

ensure acceptable commercial yields; (ii) Biological - there is a possibility of over­

exploitation of the species, which would be both biologically and economically 

undesirable. There has been a decline in the level of the spawning stock of the WRL in 

the early 1990's, and the fishery was considered to be fully exploited with an exploitation 

rate exceeding 85% from recruitment to fishery and an annual exploitation rate exceeding 

60% (Phillips & Brown, 1989; Bowen & Hancock, 1989). The maintenance of the 

economic and environmental balance of the fishery necessitates that the analyses and 

modelling of the available data collected from the fishery are as accurate and reliable as 

possible. 

The main source of data with which analysis and modelling has been done in the WRL 

fishery is the catch and effort data collected from the commercial fishery. The catch is 

defined as the weight (in kilograms) of lobsters in the lobster traps (also called pots) that 
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are lifted from the ocean on a day, and the associated effort is taken to be the actual 

number of lobster traps lifted in order to yield that catch. These catch and effort data are 

particularly important for estimating the stock abundance, which plays a significant role 

in the management policy of the fishery. If the estimates of fishing effort are inaccurate 

then the estimates of stock abundance could be inaccurate, potentially leading to poor 

management decisions. 

A potential source of inaccuracy in these estimates is the changing fishing power of the 

fleet. Fishing power is herein taken to be the level of ability and efficiency of a vessel ( or 

the whole fleet) to catch lobsters. It can be measured by the catch per unit effort (CPUE), 

which, in this research, is calculated by dividing the weight of the daily catch by the 

number of pots lifted. CPUE can also be calculated using other denominators that are 

relevant and meaningful. Trawl-based fisheries, for example, generally use the number of 

hours trawled to obtain CPUE. Some factors that may affect the fishing power of a vessel, 

and hence of the fleet, are vessel length, the type of fishing traps used, and the presence of 

advanced, onboard technological equipment. The changes in fishing power factors have 

been telling in recent years, mainly owing, it is thought, to advances in onboard 

technology, and have lead to an obvious increase in the fishing efficiency of the fleet. It 

is anticipated that these sorts of factors will play the major role in this study, and it is the 

increase in efficiency associated with them, together with its implications, that primarily 

motivates this research. The effective fishing effort is influenced by such changes in 

efficiency and should be adjusted accordingly. This adjustment is based on the 

percentage increase in catch rates associated with each fishing power factor and the 

percentage of vessels in the fleet that make use of those factors for each season. This is 

important because not only has there been the emergence of more efficient equipment, but 

also more vessels are making use of that equipment. The incorporation of fishing power 
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into the catch and effort statistics will help to ensure that the stock abundance models are 

more accurate and reliable. 

The changes in the use of various fishing power factors are identified and the catch rates 

are modelled in order to estimate the efficiency increases associated with these factors. A 

requirement of the modelling process is that there needs to be adequate numbers of 

vessels with contrasting fishing power characteristics for the parameter estimates to be 

reliable. For example, in order to estimate the increase in efficiency associated with the 

use of an onboard global positioning system (GPS), the catch rates of vessels with a GPS 

is compared to the catch rates of vessels without a GPS, and so there needs to be adequate 

numbers of vessels with and without a GPS. This may have the effect of rendering some 

seasons unsuitable in the modelling process. Hence, the first task is to obtain the time 

series of each fishing power factor under consideration and then determine which seasons 

are most appropriate for estimating its fishing power effect. Once the fishing power for 

each factor has been estimated it can then be applied to the estimates of fishing effort in 

the fishery for each year so that the stock assessment models incorporate the increases in 

fishing power. 

The underlying probability distribution for catch and effort models has historically been 

assumed lognormal. The underlying distribution in the model affects the parameter 

estimates, and an incorrect specification of it may have serious consequences for the 

model's interpretation (Campbell, in prep.). Gulland (1956) gives empirical evidence that 

the variance increases with the mean in the fishing power of the North Sea trawlers, and 

that the corresponding logarithmically transformed data shows an approximately constant 

variance. It also asserts that the transformed data tend to be normally distributed. Kimura 

( 1981) states that Gulland' s findings are consistent with the assumption that the variance 
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is proportional to the square of the mean and is successfully stabilised by the logarithmic 

transformation. This seems to be supported by Caputi (in prep.) which states that the 

lognormal distribution is required when modelling catch rate data to reduce the extent of 

such a mean-to-variance relationship. In theory, the method of estimating the parameters 

associated with the fishing power factors in a generalised linear model, in which the 

identity link function is used and the lognormal distribution is assumed, is equivalent to 

estimating the parameters of an analogous multiplicative model, in which the log link 

function is used and the gamma distribution is assumed. There is a close connection 

between linear models with constant variance for log Y and multiplicative models with 

constant coefficient of variation for Y (See McCullagh and Nelder, 1983, pp 149-150, 

156). Hence, this study will supplement its main purpose of identifying and analysing 

increases in fishing power by validating the assumptions of normality and constant 

variance using generalised linear modelling with the gamma distribution. The variance 

function will be analysed and the normality assumption will be tested by performing 

various residual analyses and by comparing the lognormal-based estimators with 

estimators based on the gamma distribution. The gamma distribution is additionally 

appropriate because it provides for data that is non-negative only, such as catch and effort 

data. In practice, the major thrust of the work will be based on the normal distribution 

with a logarithmic transformation, constructed as per the traditional linear multiple 

regression approaches to catch and effort models; whereas the validation analyses based 

on the gamma distribution will need to draw on the theory of generalised linear models. 



1.2 RESEARCH OBJECTIVES 
This objectives of this research are to: 
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1. Identify the changes in various fishing power factors in the WRL fishery. 

2. Estimate the efficiency increases associated with the changes in fishing 

power. 

3. Compare the specification of the normal and gamma distributions as the 

underlying probability distribution. 

1.3 SIGNIFICANCE OF THE RESEARCH 
If the fishing effort estimates are inaccurate or biased ( e.g. owing to increases in fishing 

power) then the abundance estimates obtained from catch rates could be seriously flawed 

and possibly lead to poor management decisions. If there are increases in fishing power 

then a unit of fishing effort will catch a larger proportion of the stock, and if this is not 

accounted for the abundance estimates will be overestimated. Brown et al. (1995) 

showed that previous estimates of breeding stock abundance were overly optimistic, and 

clearly identified the need for further investigation of the effect of fishing power. This 

research is necessary to address the current need for a more rigorous analysis of the 

changes in fishing power, the assumption of normality, and their effect on fishing effort, 

catch rates and stock assessment. 

1.4 DATA SOURCES 
Data for the research was obtained from the Western Australian Marine Research 

Laboratories (W AMRL). In particular, the following sources at W AMRL were used: 
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Voluntary research log books. These have been completed by 20% to 30% of the fleet 

since 1964/65 and contain daily catch and fishing effort data, such as the number of traps 

lifted and soak-time (number of days the trap has been in the water), for legal-size, under­

size and spawning lobsters, by 10' latitude transects and 5 depth zones. 

Vessel, gear and equipment interviews. Interviews were held with fifty fishers throughout 

the fishery to obtain detailed information on changes that had occurred with their vessels, 

gear and technology between 197 ln2 and 1989/90. Since these fishers had also been 

completing voluntary research log books, there are time series of catch and effort data that 

are synchronous with these changes. 

Gear and equipment returns. Since 1989/90 fishers have been required to submit an 

annual form that shows any gear and technology changes made to their vessels. These 

give an indication of the presence or absence of various pieces of gear and equipment 

onboard each vessel. This database provided a larger sample of vessels than did the 

interviews database. Because this database was partially incomplete, information was 

interpolated when possible. If the forms indicated that a vessel had a piece of equipment, 

such as a GPS, in one season and again in a subsequent season, then it was assumed that 

the vessel had the equipment for all of the intervening seasons. 
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1.5 STRUCTURE OF THE THESIS 
The dissertation will begin with some background of the WRL fishery and a review of the 

literature relevant to fishing power, standardisation of fishing effort and relevant aspects 

of generalised linear modelling in Chapter 2. The next two chapters set out the theoretical 

framework within which will lie the major part of the analyses in this thesis. Chapter 3 

provides the background of the multiple linear regression techniques that are relevant to 

this study; and Chapter 4 outlines the theory of generalised linear models, its origins, 

assumptions, components, and inferential procedures. In Chapter 5 is presented the time 

series of changes in prevalence of the fishing power factors, in which we expect to see 

trends indicating, for example, increasing use of new technologies. Also in Chapter 5 is 

the application of the statistical methods of regression and generalised linear models to 

the catch and effort data, along with their parameter estimates ( and thus the estimated 

fishing power effects) for the fishing power factors under consideration. Chapter 6 

compares the two methods and their estimates and concludes the dissertation. 
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Chapter 2 

LITERATURE REVIEW 

2.1 FISHING POWER AND STANDARDISATION OF EFFORT 
The motivation for standardising catch and effort data in stock assessments has mainly 

been to account for differences between vessels pertaining to fishing efficiency. 

Frameworks and techniques for standardisation were introduced by Gulland ( 1956) and 

Beverton and Holt (1957). These early papers used a process of standardisation that 

related vessel characteristics to a "standard vessel". It compared CPUE of the "standard 

vessel" with vessels that had all fished together a number of times. The relative fishing of 

the vessels were then obtained. Gulland's paper was significant for using an analysis of 

variance (ANOVA) model for log(CPUE) in the English demersal fisheries. (CPUE was 

defined as the total catch divided by the hours fished.) These methods were further 

developed to include least squares regression analysis in Robson ( 1966). It shows that 

commercial catch statistics may be converted to catch per standard unit of effort by 

estimating and adjusting for the effects of fishing power factors such as tonnage, skipper, 

age of vessel, and location of fishing grounds. Parrish and Keir ( 1959) discussed the 

relationship between measurable vessel characteristics and fishing power through the 

techniques of correlation and ANOV A. Pope (1975) gives several examples of using 

linear regression to estimate fishing power factors that are continuous in nature, such as 

vessel length. Parsons et al. (1976) used the simple and intuitive model, 

(2.1) 
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where U1 and U2 are the catch rates of categories 1 and 2, respectively, and P is the 

fishing power of category 1 relative to category 2. The model was used for standardising 

effort based on relative fishing power for stock assessment, and is a simplification of 

Robson's (1966) methodology. Gavaris (1980) used Robson's work to develop a 

multiplicative model to estimate catch rate and effort. The model is 

U =URIJ (P;j xij) 
ij 

(2.2) 

where U is the catch rate; UR is the catch rate for the particular combination of categories 

chosen as the reference; Pij is the relative "power" of category j in category type i; and Xij 

is 1 when category j occurs, and O otherwise. 

A log-linear regression model for CPUE was used to standardise measures of relative 

abundance in two trawl-fished populations of Pacific ocean perch was developed by 

Kimura (1981). It modelled the effect that technological improvements, such as echo 

sounders, had on catch rates and efficiency, and has as a basic assumption that CPUE is 

proportional to abundance. It extended an accepted form for the catch equation, Cij = qfijNi, 

where q is the catchability coefficient and M is the average abundance during year i, so 

that it included relative efficiency. The equation for adjusted CPUE was given as 

U/ = LC;j l[Lf/e(i, j Is)]= qsNi (2.3) 
j j 

where re(i,jls) = qij I qs is the efficiency of vessel j in year i relative to some standard 

vessels. The variables influencing efficiency were then modelled into the% and multiple 

regression was used to estimate its respective coefficients. The study showed that 

technological improvements increased fishing efficiency particularly when abundance 

levels where relatively low. The model was expanded by Stocker and Fournier (1984), in 
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which forecast catch levels were improved by adjusting for vessel characteristics. Indices 

of abundance were also estimated by standardising catch and effort using a regression 

model by Allen and Punsly (1984). The model used for standardised catch rates was of 

the form 

C = M + A + B1 + ... + Fk (2.4) 

where Mis the mean and A, B1, ... , Fk are factors which influence the catch rate. The data 

were transformed by log(catch rate+ constant) and the regression model examined the 

main effects, first-order interactions and covariates. Similarly, Large (1992) used a 

multiplicative model to estimate abundance from CPUE data, and included interactions 

between the effects of year and other factors. It states that changes in fishing power can 

be included in the model and evaluated by examining the variation in CPUE explained by 

the interaction between vessel/vessel group and year. Caputi (in prep.) considers vessel 

characteristics, gear and equipment, and other factors that may affect catch rates should be 

examined when analysing catch and effort data. The impact of the global positioning 

system and associated plotter systems on the relative fishing power of the northern prawn 

fishery fleet in the tiger prawn fishery in Australia was investigated by Robins et al. 

(1996) and estimated to be about 12% when fishers had three years of experience with the 

equipment. This study highlighted the continuing gain in efficiency as a result of storing 

GPS information on a computer. 

In the WRL fishery the spatial and temporal dynamics were modelled by Walters et al. 

(1993) in which the seasonal nature of moulting, recruitment, migration, fishing seasons 

and fishing effort were taken into account. Caputi et al. ( 1995) indicated that the effect of 

increases in fishing power still needed to be assessed in the prediction of catches based on 

indices of puerulus and juvenile abundance. Nominal fishing effort (number of traps 
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lifted) was used to adjust for increases in fishing power to analyse the relationship 

between spawning stock, environment, recruitment and fishing effort in the WRL fishery 

(Caputi et al., 1993). A preliminary assessment of the increases in fishing power on stock 

assessment and fishing effort expended in the WRL fishery was undertaken by Brown et 

al. (1995). It examined the trends in the use of various components of fishing power and 

the effects on catch rates. To evaluate the impact of technology changes on catch rates, 

an ANOV A was used to account for some of the main factors thought to influence catch 

rates. The residuals of the ANOV A were then used in a regression model to test the 

effects of the fishing power factors. Results indicated that, in deeper waters during the 

sedentary period of the fishery (February to June), the increase in catch rates associated 

with using a colour echo sounder and GPS ranged from 13% to 17%. The fishing power 

increases were used to standardise nominal fishing effort and catch rates were adjusted for 

the standardised effort. The Walters et al. (1993) model was used with the adjusted catch 

rates and the results indicated that there had been a significant decline in the breeding 

stock in the previous two decades. The Brown et al. ( 1995) study is the natural precursor 

to this research and provides much of the necessary practical and theoretical background. 

2.2 GENERALISED LINEAR MODELS 
This section is included to review those aspects of generalised linear modelling 

techniques which will be relevant to this research and which have been used in previous 

fisheries research. Nelder and Wedderburn (1972) demonstrated the unity of many 

statistical methods involving linear combinations of parameters by developing a class of 

statistical models that is a natural generalisation of classical linear models. This concept 

of a generalised linear model was further outlined by McCullagh and Nelder (1983). 
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Campbell (in prep.) gives a thorough description of the use of generalised linear models in 

the analysis of catch rate data. Caputi (in prep) notes that the use of a generalised linear 

model is an extension of the regression/ ANOV A modelling in the standardisation of catch 

rates which are discussed by Gulland ( 1956) and further developed and used by Robson 

(1966), Gavaris (1980), Kimura (1981) and others. The generalisation requires that a 

linear predictor, which is a systematic component, and the distribution of the random 

component of the model be specified. It also requires a link between these systematic and 

random components (Mccullagh and Nelder, 1983). Good texts on the subject include 

McCullagh and Nelder (1983), Dobson (1990), Lindsey (1997) and Farhmeir and Tutz 

(1994). 

For the random component of the model, the normal distribution has traditionally been 

used in the analysis of catch and effort data. Campbell (in prep.) states that such data is 

often skewed to the right and the variance tends to increase with the mean. Beverton and 

Holt (1957) gives evidence that the distribution of the errors in their analysis of fishing 

power statistics was lognormal. Campbell (in prep.) also stresses the importance of 

checking the validity of the assumption of normality because a mis-specification can lead 

to serious errors in the parameter estimates. The usefulness of a generalised linear 

modelling approach becomes apparent here, particularly because of the right-skewed, 

non-negative nature of the data and the mean-variance relationship. The gamma 

distribution, which allows only non-negative values, will be considered in this research as 

a means of validating the assumption of normality. Campbell's paper gives detailed 

examples of situations where the assumption of normality is clearly inappropriate. It 

shows the use of the gamma and Poisson distributions when the data allow only non­

negative values, and suggests methods to employ when the variance is not constant. 
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Gulland (1956) gives some evidence that the logarithmic transformation normalises 

CPUE and stabilises the variance. Thus, the link component of a generalised linear model 

where the data are logarithmically transformed can be written as log(Y) = X'~. Robins et 

al. (1996), however, which used a generalised linear model to examine fishing power, 

states that, although the logarithmic transformation linearises the model, it does not 

guarantee stabilisation of the variance of the error component. In consideration of this 

matter, an examination of the variance function will be undertaken in order to provide an 

appropriate link component for the generalised linear model. 
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Chapter3 

MULTIPLE LINEAR REGRESSION 

3. 1 INTRODUCTION 
Among the variety of tools available to the statistical investigator, the methods of 

regression are the most widely used. Multiple regression is primarily concerned with the 

analysis of the relationships among a set of variables; in particular, between one or more 

response variables ( also known as dependent or outcome variables) and several 

explanatory variables (also known as independent or predictor variables). The response 

variables are considered random and are free to vary in response to the explanatory 

variables, which are treated as though they are non-random measurements or observations 

(Dobson, 1990, p. 1). Regression is generally used to describe the system in which those 

relationships exist in order to make decisions concerning that system and, more 

particularly, about the response variables. It is also widely used for predictive purposes. 

(The term multiple in the nomenclature refers simply to the characteristic of multiple 

predictor variables; it is also often referred to as general linear regression.) 

Regression was first developed by Sir Francis Galton in the latter part of the 19th century 

when he studied the relationship between the heights of fathers and sons. The term 

"regression" is a legacy of his observation that there existed a tendency for the heights of 

sons of both tall and short fathers to regress to the mean height of the group (Neter et al., 

1989, p.26). 
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We are herein concerned only with linear regression, in which each parameter in the 

function that describes the regression relationship is of the first-order. Consequently, 

unless otherwise specified, all references to regression pertain specifically to linear 

regression. 

3.2 THE CLASSICAL MULTIPLE LINEAR REGRESSION MODEL 
Consider a system in which a single response is thought to be related to a number of 

predictors. Define the response to be the random variable Y. Then, if we are willing to 

assume that the relationship between the predictor and response variables is linear, the 

system can be described as follows. 

(3.1) 

where: 

/Jo, /3t, ... , /3,,-1 are the p model parameters 

X1, X2, ···, Xp-I are the known values of the p - 1 predictors 

e is a random error distributed as N(O, <r). 

Taken over n observations ( or realisations), for observations Yi, i = 1, . . . , n, the system 

becomes 

(3.2) 

where: 
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Xij is the value of the /11 predictor (j = 1, ... , p-1) for observation i 

& are independent N(O, d-). 

Equivalently, 

(3.3) 

Now, since the & are N(O, d-) , E[&] = 0 and, consequently, the mean response and thus 

the response function for this regression model is 

E[Y] = Po+ P1X1 + /h.X2 + ... + [3p_1Xp-l (3.4) 

This means that the regression model with normal error terms implies that the 

observations Yi are independent normal random variables with mean E[Y] and constant 

variance d-. (Neter et al., 1989, p.229-230). This model is also called the general linear 

model (which is not to be confused with the generalised linear model, which is discussed 

in chapter 4). 

The variables in the model can be measured on a variety of scales. Variables that are 

numerically continuous are described as quantitative, and variables that are numerically or 

non-numerically discrete or categorical are described as qualitative variables. 

Quantitative explanatory variables are known as covariates, and qualitative explanatory 

variables are known as factors, which have categories called levels (Dobson, 1990, p. 2). 

For covariates, the respective parameter estimate represents the rate of change in the 

response variable corresponding to a unit change in the predictor. For qualitative 
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explanatory variables, there is a parameter estimate for each level of the factor. When a 

factor can take the values O or 1 it is called an indicator variable. (Dobson, 1990, p. 22.) 

The multiple linear regression model can be used to describe a variety of situations, which 

may or may not have linear response-predictor relationships. The presence of non­

linearity in these relationships do not necessarily imply non-linearity in the regression 

model because a linear model necessitates linearity in the parameters only. Consider, for 

example, a case where the regression function includes the term P)( / for some predictor 

Xj. The parameter /J.i is linear and so the response is linear, even though the predictor is 

quadratic. Similarly, when there is an interaction term for two predictor variables, that is 

when the relationship is different for different levels of the variables, then the parameter 

for the term X)(k is still linear. This means that the regression model is not restricted to 

linear functions. When the regression model is not linear in the parameters, then there is 

need of a transformation within the regression function in order to make it linear. 

To illustrate the point that the Y; are independent normal random variables whose means 

vary in a (linearly) systematic way, and whose variances are all equal, consider Figure 

3.1, which depicts the situation for a two-dimensional system (that is, with one response 

variable and one predictor variable). It can be seen that for every value of the predictor 

variable, X, there exists a distribution of probabilities for possible values of the response 

variable, Y. (Note that in the figure the probability distributions are shown in a third 

dimension.) A realisation of each Y; for some value of the predictor may or may not lie 

on the regression line. However, the expected value of a realisation does lie on the line. 

This is because the distribution about the mean is a direct consequence of the error term in 

the model, which has zero mean. Further, since the errors are assumed to have constant 

variance, the distributions about each of the means also have equal variances. For the 
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Po e1 

Pi 82 

~ = E= 
pxl nxl 

Pp-I en 

The X matrix, also known as the model matrix or design matrix, contains the values of the 

predictor variables for each observation Yi. Notice that there is a column of ls in the X 

matrix, which corresponds to /3o in the regression function. We can now define the 

regression model in matrix terms as 

where: 

Y = X ~+ E 
nxl nxp pxl nxl 

(3.5) 

Y is the random vector of responses 

~ is the vector of parameters 

X is the matrix of known predictor values and represents the deterministic 

part of the model 

e is the vector of independent normal random variables with expectation E[e] 

= 0 and whose variance-covariance matrix var[E] = crl. 

As a result of this last characteristic, Y has expectation E[Y] = X~ and its variance 

covariance matrix is var[Y] = crl. 
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3.3 ASSUMPTIONS OF MULTIPLE LINEAR REGRESSION 
The assumptions within the multiple regression model are now outlined. 

1. Existence For every specific combination of values of predictor variables, Y is a 

univariate random variable with a certain probability distribution and having finite mean 

and variance. 

2. Independence The observations for the response variable are independent of one 

another. This assumption is prone to violation when, for example, the observations are 

measured on the same subjects at different times. 

3. Constant Variance For any fixed combination of the predictor variables, the 

variance of the response variable is constant. That is 

(3.6) 

This property is also known as homoscedasticity. 

4. Normality For any fixed combination of the predictor variables, the response 

variable is normally distributed. That is, Y - Nl£lr,x
1
.x

2 
••••• xp-i ,0'

2 
), where N(µ, d) 

denotes the normal probability distribution. 

5. Linearity For every specific combination of values of the predictor variables, the 

expected value of the response variable is a linear combination of the predictor variables. 

That is, 

µ =R+RX+PX+···+P X YIX1.X2•···•xp-l /Jo /JJ I 2 2 p-1 p-1 (3.7) 
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Comments: The assumptions imply that the random errors in the model for each 

observation are independent and normally distributed with mean O and constant variance. 

The assumption of normality is not necessary for estimation of the parameters by the 

method least squares. It is required, however, for inference-making purposes. 

3.4 DATA COLLECTION AND EXPLORATION 
Any information gained from regression analysis will be dependent on the data used in 

the analysis. It is vital to the validity of the results of the analysis that the collected data 

are representative of the population under study, free of errors and in an appropriate form. 

Any deficiencies in these regards may or may not be overcome, or at least compensated 

for, by appropriate statistical methods, but, at the vary least, cautionary caveats can be 

given in the inferences and conclusions. Yet regardless of this, it is obviously most 

desirable to have data which is as representative and accurate as possible. All affordable 

efforts should be directed towards achieving this goal. 

Preliminary exploration of the data is a relatively easy task that could prevent the 

occurrence of costly subsequent errors. If data exploration is not effectively undertaken to 

eliminate or correct defective data, there may be undesirable consequences for the 

inferences and conclusions of the analysis. Data exploration is also useful for identifying 

basic patterns and outstanding features in the data. Some of the initial steps in the process 

of exploring the data are mentioned below. 

• Visually scan the data. Identify obvious errors, extreme values, impossible values, 

and missing data. 

• Plot the data. This will identify prima facie the errors and characteristics of the data. 

• Obtain cross-tabulations of categorical data. 
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• Obtain summary statistics for each variable. 

Other methods in data exploration involve checking the data for normality, linearity, 

homoscedasticity and independence. Graphical methods exist and are particularly useful 

for checking these assumptions prior to performing statistical analyses. Obtaining a 

histogram or a stem-and-leaf plot of the distribution of each of the variables is a good 

initial step for checking univariate normality. Histograms will also reveal the extent of 

skewness and kurtosis. (Descriptions of the above considerations are found in Jobson 

(1991) and Afifi and Clark (1984).) 

Skewness pertains to the symmetry of a distribution, with a skewed distribution having its 

mean not in the centre. It is derived from the third moment about the mean and, for 

sample distributions, an index of skewness is given by 

Skew(x) = ( X )t(x; -:XJ
3 

n-1 n-2 i=J s 
(3.8) 

In a large sample the mean of the index is O and the variance is approximately 6/n, when 

the data are from a normal distribution. Kurtosis pertains to the proportion of the data 

lying near the centre of its distribution relative to that in the tails, and indicates the 

"peakedness" of a distribution, which can be too peaked or too flat when compared to the 

normal distribution. It is derived from the fourth moment about the mean and, for sample 

distributions, an index of kurtosis is given by 

Kurt(x) = n(n+l) t(x; -xJ4 
(n-1Xn-2Xn-3) i=J s 

3(n-1)2 

(n-2Xn-3)" 
(3.9) 
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In a large sample the mean of the index is O and the variance is approximately 24/n, when 

the data are from a normal distribution (Jobson, 1991, p.48). Hence, for both indexes we 

can use a significance test to test whether the mean is significantly different from 0. This 

can be done by defining the test statistic to be the index divided by its standard error 

(Tabachnick and Fidell, 1989, p.72). 

Bivariate scatter plots are useful for checking bivariate normality. If the observations 

came from a multivariate distribution then each bivariate distribution would be normal 

and each scatterplot should display a roughly elliptical contour. This result is true also if 

the relationship between the variables is linear and homoscedastic. Thus, a scatterplot is 

also a way of assessing the assumptions of linearity and homoscedasticity (Tabachnick 

and Fidell, 1989, pp. 80,82). The relationship between variables is linear and 

homoscedastic when the assumption of joint normality is met. A truly thorough 

investigation of normality would check the scatterplots of all possible joint distributions. 

This is of course impossible above two-dimensions and Johnson and Wichern ( 1992, p. 

153) suggests that, for practical purposes, one-dimensional and two-dimensional 

investigations are ordinarily sufficient. An alternative technique for assessing the 

marginal distributions is the Q-Q plot, which plots the ordered sample quantiles versus the 

quantiles expected from a normal distribution. If the points lie in a straight line, the 

assumption of normality remains tenable. (Johnson and Wichern, 1992, p.14). 

Data that contain observations on the same subjects taken over a course of time may not 

be independent. Checking the validity of the assumption of statistical independence 

between the observations, and hence the errors, will be discussed in a later chapter. (The 

assumption of normality as mentioned in the previous paragraph will also be further 

discussed there.) It will be sufficient to say here that a plot of the observations over a 
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naturally appropriate time-scale may reveal a departure of the independence assumption if 

a regularly occurring pattern or oscillation is apparent. 

Statistical measures are available to quantify the extent of the above considerations . 

Indices of skewness and kurtosis are given in Jobson (1991) and significance tests for 

skewness and kurtosis are discussed in Tabachnick and Fidell (1989). A commonly used 

statistical measure for testing the hypothesis that a distribution is normal is the 

Kolmogorov-Smirnov (KS) D test statistic, which is obtained from a comparison of 

observed and hypothesised cumulative probability functions (See Jobson (1991), pp. 61-

64 ). To quantify the extent of bivariate normality the correlation co-efficient of the points 

in a Q-Q plot may be used (See Johnson and Wichern, pp. 157-158). It should be 

emphasised that the methods mentioned in this section are given for checking the data 

prior to any analysis being done. Nevertheless, the analyst can and should employ similar 

and other techniques to check the data and the model's assumptions by using the residuals 

resulting from the actual analyses. 

If a scatterplot suggests that the relationship between the response and a predictor variable 

is not linear, some form of transformation may be needed to induce linearity. In general, 

a transformation of the predictor variable is used in preference to a transformation of the 

response as the latter may induce non-linear relationships between the response and the 

other predictors. But sometimes a transformation of the response is the most appropriate 

action, and a range of possible transformations can be used to induce linearity in the 

model. Affifi and Clarke ( 1984) discusses a number of transformations for a range of 

situations where there is non-linearity. Among the more common transformations used 

are the logarithmic transformation, e.g., logeY, particularly where the distribution is 

positively skewed, and the power transformation, e.g., Y112
• 
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An example is now given which illustrates some of the above considerations. The 

example is not directly related to fisheries research and is chosen specifically to 

emphasise the statistical methodology used in later chapters. Table 3.1 gives measured 

values of paper density and strength. It is desirable to know how the density of a sheet of 

paper is related to its strength as measured in the direction of the manufacturing machine 

and as measured at right angles to the machine. 

A visual scan of the data in Table 3.1 in the table does not give any indication of obvious 

outliers, impossible values, e.g., negative values, or missing data. Another visual aid in 

screening data is to plot the univariate and bivariate distributions of the variables. This 

can be done with histograms and scatterplots, which are given in Figures 3.2 and 3.3, 

respectively. Q-Q plots to compare the univariate distributions to the normal distribution 

are given in Figure 3.4. 
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Table 3.1 Paper strength data 

Strength 

Specimen Density Machine direction Cross direction 

1 0.801 121.41 70.42 
2 0.824 127.70 72.47 
3 0.841 129.20 78.20 
4 0.816 131.80 74.89 
5 0.840 135.10 71.21 
6 0.842 131.50 78.39 
7 0.820 126.70 69.02 
8 0.802 115.10 73.10 
9 0.828 130.80 79.28 

10 0.819 124.60 76.48 
11 0.826 118.31 70.25 
12 0.802 114.20 72.88 
13 0.810 120.30 68.23 
14 0.802 115.70 68.12 
15 0.832 117.51 71.62 
16 0.796 109.81 53.10 
17 0.759 109.10 50.85 
18 0.770 115.10 51.68 
19 0.759 118.31 50.60 
20 0.772 112.60 53.51 
21 0.806 116.20 56.53 
22 0.803 118.00 70.70 
23 0.845 131.00 76.35 
24 0.822 125.70 68.29 
25 0.971 126.10 72.10 
26 0.816 125.80 70.64 
27 0.836 125.50 76.33 
28 0.815 127.80 76.75 
29 0.822 130.50 80.33 
30 0.822 127.90 75.68 
31 0.843 123.90 78.54 
32 0.824 124.10 71.91 

33 0.788 120.80 68.22 
34 0.782 107.40 54.42 
35 0.795 120.70 70.41 
36 0.805 121.91 73.68 
37 0.836 122.31 74.93 
38 0.788 110.60 53.52 
39 0.772 103.51 48.93 
40 0.776 110.71 53.67 
41 0.758 113.80 52.42 

Data taken from Johnson and Wichern (1992, p. 18) 
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Figure 3.2 Histograms of each variable in the paper strength example. 
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Figure 3.3 Scatterplots of the variables in the paper trength example. 
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Figure 3.4 Q-Q plots of the variables in the paper strength example. 
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We will interpret the information in these plots by looking at each variable separately; in 

particular, how each variable is distributed univariately, bivariately with other variables, 

and how the distributions compare with the normal distribution. 

It can be seen in Figure 3.2a that the histogram for Density seems to be approximately 

normal except for a skew to the right. This is confirmed in Figures 3.3b and 3.3c, which 

show the scatterplots of Density with the other two variables. It appears that one data 

point for each scatterplot is lying out of the main group of data points. Upon closer 

inspection it is found that this is owing to the value of Density for observation 25. This 

observation seems to be an outlier which may be the result of, say, a measurement or 

recording error. The Q-Q plot in Figure 3.4a confirms the presence of the outlier. Further 

analysis of this distribution can be done by looking at various summary statistics for the 

data and these are given in Table 3.2. The indexes of skewness and kurtosis can give 

some information about the shape of the distribution, which in this case is affected by the 

presence of the outlier. In Table 3.2 the values for skewness and kurtosis are 2.021 and 

9.154, respectively, and which, when divided by their standard errors, give significant test 

statistics. It may be worthwhile considering the deletion of the outlier, and then plotting 

the histogram and scatterplots involving Density without the outlier. Figures 3.5 and 3.6 

show the histogram and the two scatterplots of Density*, which is Density with the outlier 

removed. The histogram of Density* gives a very different picture to that of Density. 

The histogram is now slightly left skewed and seems somewhat flatter than what we 

would expect from the standard normal distribution. However, Table 3.2 reveals that the 

test statistics for skewness and kurtosis of Density* are not significant. Figure 3.6a now 

shows the scatterplot of Density* and Machine direction in which the points lie in a group 

that does not seem to depart from bivariate normality. Figure 3.6b shows the scatterplot 

of Density* and Cross direction in which is seen two distinct clumps of points. As it turns 
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out, this was the result of an old roll of paper being used for some of the measurement . 

The Q-Q plot of Density* in Figure 3.7 confirms the notion that the removal of the outlier 

has normali ed the distribution to an acceptable degree. 
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The distributions of Machine direction and Cross direction both seem to have a skew to 

the left. This is indicated by their negative value of the kewness index; however, the test 

tatistic are not significant. Overall, it appears as though all of the vruiables are not 

grossly departing from normality, and transformations wm not be needed in thi regard. 

As mentioned above, a very noticeable characteristic of the distribution for Cross 

direction is the appearance of two separate groups of points. Thi explanation for this 
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highlights the importance of having reliable and consistent measurement practices. It may 

even be that the data affect the analysis such that the results are not reliable. 

Table 3.2 Summary statistics for the paper strength data. 

Density Density* Machine direction Cross direction 
Mean 0.812 0.808 120.953 67.772 
Standard Error 0.006 0.004 1.203 1.535 
Median 0.815 0.813 121.410 70.700 
Mode 0.802 0.802 115.100 
Standard 0.036 0.025 7.702 9.829 
Sample Variance 0.001 0.001 59.321 96.617 
Skewness 2.021 -0.471 -0.268 -0.776 
s.e. of Skewness 0.383 0.387 0.383 0.383 
z(Sk) 5.283 -1.216 -0.700 -2.029 
Kurtosis 9.154 -0.692 -0.709 -0.902 
s.e. of Kurtosis 0.765 0.775 0.765 0.765 
z(Kur) 11.965 -0.893 -0.926 -1.179 
Range 0.213 0.087 31.590 31.400 
Minimum 0.758 0.758 103.510 48.930 
Maximum 0.971 0.845 135.100 80.330 
3n1 Largest 0.843 0.842 131.500 78.540 
3n1 Smallest 0.759 0.759 109.100 50.850 

Sum 33.286 32.315 4959.090 2778.650 
Count 41 40 41 41 

3.5 ESTIMATION 
For the regression model to be useful for prediction and other purposes the unknown 

parameter vector ~ must be estimated. It is also useful to have some measure of the 

accuracy with which the parameters have been estimated. The regression model will thus 

have a deterministic component by providing the coefficients for each respective predictor 

variable. By associating a numerical factor with each of the observed or predicted values 

of the predictor variables a specific value of the response variable can be determined. The 

level of confidence associated with these predictions follow from the measures of 

accuracy of the parameter estimations. 
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The procedure for estimation requires some sort of acceptable measure of the goodness of 

fit between the data and the corresponding set of values that are fitted by the model. A 

criterion for determining the estimates based on the measure of goodness of fit must be 

chosen according to the method of estimation. There are two main criteria which are 

widely used for estimating the parameters in the general linear regression model: 

• Maximum likelihood This method determines the likelihood of the parameters 

given the observed data. The criterion used for the best fit is that the likelihood 

must be maximised. 

• Least Squares This method determines the differences between the observed data 

and the values fitted by the model. The criterion used for the best fit is that the sum 

of the squares of the differences must be minimised. 

For the general linear regression models used in this research the method of least squares 

was chosen for estimation of the regression parameters. This method, as will be 

mentioned shortly, has some desirable properties under certain conditions. The procedure 

for estimation by the method of least squares will now be developed. 

Consider the difference between an observed response value for given values of the 

predictors and the value fitted by the model for the same values of the predictors. The 

value fitted by the model is, of course, dependent on the parameter estimates. The 

question initially rises: Is there a set of parameter estimates for which the total of all such 

differences is a minimum? However, because some difference will be positive and some 

will be negative, there must be some other measure of goodness of fit. This measure is 

simply obtained by taking the sum of the squared differences. 
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Let y; be the observed value of the i'h response variable Y;, .Y; be the value fitted by the 

model for the same values of the predictor variables corresponding toy;, bj be the estimate 

for the parameter /J.i, and Xij be the corresponding observed value of the lh predictor 

variable Xj. Then the method of least squares chooses the parameter estimates bj, (j = 0, 1, 

2, ... , p-1) such that 

I(Y; -y;)2 = I(Y; -b0x;o -b1xil -b2x;2 - .. ·-bP_1x;p-i)
2 

(3.10) 
i=I i=l 

is minimised. Alternatively, in matrix notation, (y - Xb)'(y - Xb) is minimised. Here y 

is an n x 1 vector of observed responses, X is an n x p matrix of values of the predictors 

corresponding to each observed response (note that x;o = 1, for all i), and b is a p x 1 

vector of least squares estimators chosen by the method of least squares. It is convenient 

here to define the difference between the observed and fitted values of the i'h response to 

be the residual, or error, denoted e;. The vector, e, of residuals is y - Xb and, thus, the 

least squares estimate of b is chosen when e' e is minimised. The vector of residuals also 

contains information about the error variance cr2. 

Now, for e'e to minimised the first derivative must be set to zero. That is, 

:b [ (y - Xb )' (y - Xb) J = 0 (3.11) 

and, performing the indicated differentiation, gives 

-2[X'y - (X'X)b] = 0. (3.12) 

This gives the system of least squares normal equations 
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(X'X)b = X'y. (3.13) 

Therefore, 

(3.14) 

which yields a unique set of parameter estimates b if the matrix X is of full column rank, 

and the square matrix X'X has an inverse. The matrix X'X has a very important role in 

the estimation of the parameters and can often be the major factor in the success or failure 

of the ordinary least squares method. Its diagonal elements are equal to the sums of the 

squares of the elements in columns of the matrix X, and its off-diagonal elements are 

equal to the sums of cross products of elements in the same columns. As a consequence it 

is a symmetric matrix. (Myers, 1990, p. 88) 

As mentioned above, the vector of residuals provides information about the unknown 

variance cr2. An estimate of cr2 is obtained when the sum of squares of the residuals is 

divided by the appropriate number of degrees of freedom. This estimate, s2, is used in 

assessing model quality and for screening variables via hypothesis testing. It expresses 

natural variation in the system being modelled, and is an unbiased estimator of cr2, 

assuming that the model postulated is correct. (Myers, 1990, pp. 88-89) 

The least squares estimators have the following properties. 

• If E[E] = 0 and Var[£] = <rl then the estimates contained in b are unbiased, that is, 

E[bj)] =~,or equivalently, E[b] = ~. They also have the minimum variance among 

all of the possible estimators that are both unbiased and linear functions of the 

elements ofy. This property is the result of the Gauss-Markoff Theorem and does not 
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assume normality. The estimators are often described as BLUE (best linear unbiased 

estimators). (Neter et al., 1989, p. 43) 

• If E[e] = 0, Var[£] = crl and the errors are normally distributed, then the estimators 

achieve uniformly minimum variance in the class of all unbiased estimators. (Myers, 

1990, p. 92) 

• In the case of normality, the least squares estimators are also the maximum likelihood 

estimators. (Neter et al., 1989, p. 238) 

• The variances of the estimators and the covariances among all possible pairs of 

estimators can be summarised in a matrix called the variance-covariance matrix. Each 

element of this matrix can be written as Cov[bj,bk] = E[(bj - E[bj])(bk - E[bk])]. The 

matrix is given by a; (X'X)"1 = a; C, where C = (X'X)"1
• The elements of C will be 

denoted by cu, where ij = 1, 2, 3, ... , p corresponding to the p parameters in b. 

(Jobson, 1991, p.226) 

• An unbiased estimator, s2, of er is provided by 

' (y-Xb) (y-Xb) 
(n- p) 

Thus, E[i] = er (Johnson and Wichern, 1992, p. 294). 

• The parameter estimate bj is independent of s2 (Johnson and Wichern, 1992, p. 295). 

3.6 THE ANALYSIS OF VARIANCE TABLE 
The overall results of a regression analysis can be summarised in a table called an analysis 

of variance (ANOVA) table. ANOVA is a statistical procedure used to describe the 
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relationship between a continuous dependent variable and one or more not necessarily 

categorical independent variables. The ANOV A table contains several estimates of 

variance, as well as other information. Regression analysis and ANOV A are closely 

related and it is not surprising that the results of both procedures can be summarised 

similarly. The information contained in the ANOV A table can be used to answer the 

following key questions of linear regression analysis: 

1. Is the model appropriate? 

2. Does the predictor variable Xj have a significant effect in the model? 

(Kleinbaum et al., 1988, p. 96.) These questions will be addressed in the next section. 

Before the ANOV A table is presented let us look at how the variability within the data 

can be partitioned according to that which is "explained" by the model and that which is 

not. The analyst, in a sense, seeks to explain the variability in the observations with a 

model. Obviously, if the fitted values, Y;, are close to the observed values, y;, then the 

model will explain much of the observed variability. This means that the variation of the 

Y; around the mean, y, will be close to the variation of they;, around y. (Myers, 1990, 

p. 22). The partitioning of the variability is achieved by considering these two sources of 

variation. The total variation in the observed data is the sum of the variation explained by 

the regression model and the remaining unexplained variation. This is the fundamental 

equation of regression analysis, which, for the general linear model, can be stated 

formally as 

(3.15) 
i=I i=I i=I 
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n L (Y; - y)2 is denoted by SST, the total sum of squares about, or corrected for, the 
i=l 

mean. 

n L (.Y; - y)2 is denoted by SSR, the total sum of squares due to, or explained by, 
i=I 

regression. SSR is sometimes called the regression sum of squares. 

n L (Y; - y )2 is denoted by SSE, the total sum of squares not due to, or not explained by, 
i=I 

regression. SSE is also sometimes called the error sum of squares or the 

residual sum of squares. 

Thus, SST= SSR + SSE (see, for example, Neter et al., 1989, pp. 87-91). SSR can be 

thought of as the variation due to the regression line and SSE can be thought of the 

variations around the regression line. Figure 3.2 depicts this relationship for a simple 

linear regression model (single predictor variable). 

Figure 3.2 Partitioning of variation in a simple linear regression model. 

y 

Y; T 
.Y; =Po+ fi1x.._____1 

I} 
y 

X 
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Having described the partitioning of variability, we now need to justify the partitioning of 

the associated degrees of freedom, which are also of importance in the ANOV A table. 

SST has n - I degrees of freedom because there are n observations with one degree of 

freedom lost owing to the estimation of the population mean. (That is, the deviations y; -

y are not all independent because they must add to zero.) SSR hasp - I degrees of 

freedom because there are p parameters with one degree of freedom lost owing, again, to 

the estimation of the population mean. (Here, again, the deviation Y; - y must sum to 

zero.) Finally, SSE has n - p degrees of freedom because there are n observations with p 

degrees of freedom lost owing to the estimation of the p parameters. 

The basic ANOVA table is now presented in Table 3.1. There are variations in the way 

an ANOV A table may be presented, with different formats being used and other statistics 

being included or omitted. Sometimes one may see the word "model" instead of the word 

"regression", and "error" instead of "residual". 

Table 3.1 The basic ANOVA table. (Adapted from Neter et al., 1989, p. 240) 

Source of 
Degrees of Sumof Mean 

Variation 
Freedom Squares Square F Statistic 

(df) (SS) (MS) 

Regression p- 1 SSR 
MSR= 

MSR/MSE SSR/(p-1) 

Residual SSE 
MSE= 

n-p 
SSE/(n-p) 

Total n - I SST 
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The mean squares are the sums of squares divided by their associated degrees of freedom. 

MSE represents s2, mentioned in the previous section. It can be shown that E[MSE] = cr2, 

and so s2 is an estimate of cr2 whether the regression model is appropriate or not. Also, 

E[MSR] is cr2 plus a non-negative quantity, and will only provide an estimate of cr2 if the 

model is not appropriate for the data. (See Neter et al. ( 1989) for further details.) 

However, if the model is appropriate, MSR will be inflated and will correspondingly 

overestimate cr2. Thus, for testing whether a regression model is appropriate, we can 

compare MSR and MSE. If these two quantities are of similar magnitude, then that the 

model is not appropriate is suggested. But, if MSR is substantially larger than MSE, then 

this suggests that the model is appropriate. (Neter et al., 1989, p. 94) The F statistic is 

the ratio MSR/MSE, and, in the light of this discussion, gives an indication of the 

appropriateness of the regression model. In general, the more closely the model fits the 

observed data the larger will be the value of the F statistic. This statistic will be discussed 

further in the next section. 

Often one may see other sources of statistical information given with the ANOV A table. 

Among these are the coefficients of multiple determination and correlation. These two 

statistics are measures of the overall utility of the regression model and can be used as 

criteria for comparing several competing models. The coefficient of multiple 

determination is the proportion of the total variation in the observed values of the 

response variable which is explained by the regression model, and is computed by 

R 2 = SSR =l- SSE 
SST SST 

(3.16) 
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R2 can be thought of as the reduction in sums of squares achieved by using the model. 

Note that O :s; R2 :s; 1. It is important to recognise that a large value for R2 does not 

necessarily imply that the model is appropriate. Also, including more independent 

variables in the model can only increase R2 and never reduce it. This is so because adding 

more independent variables can never reduce SSE, while SST will always remain 

constant for a given set of observed values. To make this statistic more useful in this 

regard, it can be adjusted to cater for the number of variables in the model. By analogy 

with (3.16) the adjusted coefficient of multiple determination is given by 

SSR/ 
R 2 = /p-1 =(n-lJSSR 

a SSYn- l p -1 SST 
(3.17) 

or, 

SSE/ 
R 2 = l- /n- p = l-( n-1 JSSE 

a SST/ n- p SST 
/n-1 

(3.18) 

(Neter et al., 1989, p. 241) 

The adjusted coefficient of multiple determination may actually become smaller when an 

extra independent variable is added to the model. Notice that, in the first of the two 

formulae given above, even though SSR may increase in the numerator, the denominator 

will increase because pis increased. (Neter et al., 1989, p. 242) 
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Another statistic closely related to R2 is the coefficient of multiple correlation, R. This is 

positive square root of R2
, and gives the correlation between the observed values and the 

fitted values of the response. As with R2
, 0 ~ R ~ I. 

3.7 INFERENCES IN MULTIPLE LINEAR REGRESSION 
The questions put forward in the previous section can be answered by making inferences 

based on the information in the ANOV A table. These are usually in the form of 

hypothesis tests. Other questions and hypotheses regarding the model, its parameter 

estimates, and other matters, can also be addressed with reference to other information. 

Let us take the previously stated questions one at a time. 

The first question asks whether the model is appropriate or not. We set up the following 

alternative hypotheses: 

Ho: Po= P1 = · · · =/Jp-1 = 0 

HA: Not all A, (i = 0, 1, ... , p - I) equals zero 

The null hypothesis, Ho, is stating that there is no overall significance in the regression 

model, and that the set of predictor variables does not collectively explain any variation in 

the observed responses. The test statistic is 

F= MSR. 
MSE 

(3.19) 

To construct a statistical decision rule for the F statistic, we need to know its sampling 

distribution. Consider firstly the case when the null hypothesis is true. Cochran's 
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theorem maintains that if all the observations Y; are -N(µ, er) and SST is decomposed 

into k sums of squares SSp, each with degrees of freedom dfp, then if the sum of the k dfp 

equals n-1, the k terms SS/ d are independent ;(' variables with dfp degrees of freedom 

(Neter et al., 1989, p. 95). In the ANOVA table presented above, SST was decomposed 

into two distinct sums of squares, namely SSR and SSE, and their degrees of freedom 

were also additive. Therefore, if the null hypothesis is true, then both SSR/ d and SSE/ d 

are independent;(' variables. Further, consider that the ratio of these two variables is 

SSR/ SSE/ 
/u2 /u2 MSR 

---+ =--. 
p-1 n-p MSE 

(3.20) 

This is a ratio of two independent ;(' variables each divided by its degrees of freedom, 

which means that it is an F random variable, and follows the Fp _ 1• n _ P distribution. 

(Neter et al., 1989, p.96) 

The decision rule follows by comparing the computed value of the F statistic with the 

critical point Fp _ 1, n _ p; 1-a in the Fp- 1, n _ P distribution, where a is the level at which the 

risk of a Type I error is set, typically 0.05 or 0.01. Note that it is an upper-tailed (one-tail) 

test. Conclude Ho if the F statistic ~ Fp _ 1, n _ p; 1-a; otherwise, reject Ho in favour of HA. 

Alternatively, we can compare the probability of obtaining the computed F statistic with 

the desired level of significance, a This probability is precisely the area under the curve 

of the Fp _ 1, n _ P distribution which is to the right of the computed F statistic. If this 

probability, or P-value, ~ a, conclude Ho; otherwise reject Ho in favour of HA. 

The F statistic for the model can also be expressed in terms of the coefficient of multiple 

determination by 
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F= R
2

/ p =(n- pJ R
2 

(1-R 2 )/(n-p) p-1 1-R 2
• 

(3.21) 

To answer questions such as the second question stated in the previous section, we need 

to make inferences about the regression parameters. This requires knowledge of the 

sampling distribution of the parameters. Of considerable importance to this are the mean 

and variance of each parameter. The sampling distribution of b is normal with mean, 

E[b] = ~' and variance-covariance matrix, Var[b] = <T(X'Xr1
. The mean of ~ is 

estimated by b since b is an unbiased estimator of ~' and so E[A] = b1. The variance­

covariance matrix of~ is estimated by MSE(X'Xr1
, and so Var[b1] = s2 ..J;;;;, where CJJ is 

the/ diagonal element of C = (X'Xr1
• 

If b1 and s2 are independent, we can say that 

bj -Pj 
~var[bj] 

- tn-p 

And so we can define the test statistic, t, as 

j = 0, 1, ... , p - 1. 

b. 
t=--1-. 

s..J;;;; 
(3.22) 

The denominator is called the standard error of the estimate. This test statistic can be 

used to choose between the following two hypotheses: 

Ho: /Ji=O 
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The decision rule for this test follows by comparing the computed value of the t statistic 

with the critical point tn _ p; 1 _ a2 of a t distribution with n - p degrees of freedom. Here a 

is again the level of significance, but notice that the test is two-tailed. Conclude Ho if I t I 

~ tn _ p; 1 _ a2 ; otherwise, reject Ho in favour of HA, Alternatively, we can compare the 

probability of obtaining the computed t statistic with the required significance level. If 

the probability ~ a, conclude Ho; otherwise, reject Ho in favour of HA, As an 

interpretation of this test, we can say that if Ho is rejected, then the predictor variable does 

not have a significant effect in the model. In effect, the inclusion of this variable did not 

significantly reduce SSE. 

The t statistic can be used similarly to find confidence intervals for the parameter 

estimates. If the inference assumptions hold, then a 100( 1 - a)% confidence interval for 

Ais 

In deciding whether or not a predictor variable should be included in the model, we can 

use a different strategy to the t tests just described. This strategy is based on the analysis 

of the sums of squares attributed to the variable's inclusion in the model through what is 

called a partial F test. The partial F test can answer the question of whether a predictor 

variable, Xp, significantly contributes to the determination of the response after the other 

p - I predictor variables have been accounted for. It is a procedure for testing a variable 

added last into the model. This method of inference for predictor variables is often shown 

in the output of statistical computer software. 
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The test proceeds firstly by computing the sums of squares, SSR and SSE, and mean 

squares, MSR and MSE, which result from adding Xp to the model. Then we obtain the 

ratio of sums of squares 

SSR( X P I X" X 2 , ... , X p-l) 

MSE( XI, X 2 , ••• , X p-1, X P) 

where SSR(Xp I Xi, X2, ••• , Xp-i) is the extra sum of squares obtained by adding Xp to the 

model, and MSE(Xi, X2, ••• , Xp-h Xp) is the mean square error for the model which 

contains all of the variables. This ratio has an Fi, n _ P distribution under H0• Hence, we 

can consider it as an F statistic and use it in a decision rule for testing the following 

hypothesis: 

H0: /3 P = 0 in the model Y = /3o + /3iX i + /Ji.X 2 + ··· + /3p-iXp-i + /3 pXp + c 

HA: /3p '# 0 in the above model 

Conclude Ho if the computed F statistic ~ Fi, n _ p; i _ a, where a is the significance level; 

otherwise, reject Ho in favour of HA. Again, this test may be evaluated by comparing P­

value of the test statistic and the significance level. 

This partial F test can also be used to determine the extra sums of squares explained by 

the inclusion of successive predictors in the model. That is, the significance of Xj after 

accounting for the previous j - 1 predictors. These extra sums of squares are sometimes 

called Type I sums of squares, and are used for variables-added-in-order inferences. The 

sums of squares resulting from variables-added-last are sometimes called Type ill sums 

of squares. In effect, the Type I sums of squares are a sequence of Type ill sums of 
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squares - but Type I sums of squares will add to SSR, whereas Type ill sums of squares 

will not, generally. 

The paper strength data will now be used to illustrate the main ideas presented in this 

section. The method used to obtain parameters estimates will be the least squares method. 

The ANOV A table will be obtained and the parameter estimates and inferential 

information will be presented. For this example we will assume that the data has already 

been screened and validated, with the previously identified outlier deleted. 

The output below was produced by SAS using the GLM (general linear model) 

procedure. The first section gives the ANOVA table resulting from the procedure. We 

see that the F value of 57 .89 is significant at typical levels, which implies that the overall 

model is appropriate. The value of R-square means that about 75% of the variation in the 

data is explained by the model. The estimates for the model parameters are given in the 

last section of the output; specifically: 

DENSITY = 0.6028228824 + 0.0007412022(MACHINE) + 0.0017069190(CR0SS). 

Even though the overall model seems to be reasonable, it is nevertheless important to test 

whether the individual parameter estimates are significant. The last section of the output 

gives the test statistics and P-values for the parameter estimates. We see that the 

estimates for the intercept and Cross are significant but that the estimate for Machine is 

marginally not significant at 0.1 and clearly not significant at 0.05. This is confirmed by 

the values given in the Type ill sums of squares section, which gives the results of partial 

F tests wherein the significance of adding the variables last in the model is tested. We see 

that the P-values for each estimate are the same as in the last section of the output - this is 
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to be expected because the P-values in the last section are based on the inclusion of the 

parameter in the presence of the other parameters. 

It is worth highlighting that the Type I sums of squares gave significant test statistics for 

both Machine and Cross, even though the Type ill sums of squares gave Machine as not 

significant and Cross as significant at 0.05. This is because the Type I sums of squares 

are testing the significance of Machine only and then the significance of Cross in the 

presence of Machine, whereas the Type ill sums of squares are testing the significance of 

Machine in the presence of Cross and then Cross in the presence of Machine. 

Output of Paper Strength Data Analysis 

General Linear Models Procedure 

Dependent Variable: DENSITY 

Source 
Model 
Error 
Corrected Total 

A-Square 
0.757811 

Source 
MACHINE 
CROSS 

Source 
MACHINE 
CROSS 

Parameter 
INTERCEPT 
MACHINE 
CROSS 

DF Sum of Squares FValue 
2 0.01865911 57.89 
37 0.00596327 
39 0.02462238 

c.v. DENSITY Mean 
1.571437 0.80787500 

DF TypelSS FValue 
1 0.01483156 92.02 
1 0.00382755 23.75 

DF Type Ill SS FValue 
1 0.00044024 2.73 
1 0.00382755 23.75 

Tfor HO: 
Estimate 
0.6028228824 
0.0007412022 
0.0017069190 

Parameter=O 
16.01 
1.65 
4.87 

Pr> F 
0.0001 

Pr>F 
0.0001 
0.0001 

Pr> F 
0.1068 
0.0001 

Pr>ITI 

0.0001 
0.1068 
0.0001 

Std Error of 
Estimate 
0.03765404 
0.00044847 
0.00035026 



50 

3.8 RESIDUAL ANAL YS/5 
The validity of a fitted model depends greatly on the degree to which the assumptions 

upon which the model is based are satisfied. In this section, we will discuss methods for 

checking the satisfaction of these assumptions. To a large extent, this checking can be 

done by an examination of the residuals and the discussion here will give particular 

emphasis on graphical techniques for doing this. It is important to understand that, 

although a model may give a fairly good fit to the currently observed data set, there may 

still be violations of the underlying assumptions which may render the model less useful 

for a different set of observations and under different conditions. The method of least 

squares minimises the sum of the squared residuals for the observed data, but it tells us 

little about any patterns remaining in the residuals. When the residuals are plotted against 

a variety of values, for example against the predicted values or against a particular 

predictor's values, these patterns may reveal much about the validity of the model and 

problems associated it. The residuals can inform us about model mis-specification, 

violation of the constant variance assumption, existence of suspect data points, departure 

from normality and isolated high influence data points. (Myers, 1990, p.211) 

When plotted against the predicted values, the residuals would ideally have the 

appearance of Figure 3.3, in which we see no particular pattern other than a uniform 

distribution of the residuals about the zero line. 
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Figure 3.3 Uniform residual distribution 

e; 

• 
• • • 

0 -- ---~·-----~---------------------~-------_._- -
• • • 

If the fitted model is valid, each residual e; is an estimate of the error B;, which is assumed 

to be a normal random variable with mean zero and variance d. The expected value of 

the residuals e is 0, and the variance-covariance matrix is ef[l- H], 

whereH = X(X'Xr'X'; 

and thus var[ed = cf(l - h;;), 

where hu , the leverage, is the i'11 diagonal of the hat matrix H. It can be shown that the 

leverages range form O to 1 and sum to the number of parameter . A value of O for hii 

means the value of y; must be 0, and a value of 1 means that the residual is 0, and thus the 

fitted and observed values are equal. The leverage are so named because they indicate 

the amount of influence an observation has in determining the fit. They are important for 

diagnosing possible problems with a fitted model, and are particularly useful for detecting 

the presence of outlying data point which may exert enough influence on the fitting 

process to warrant further inve ligation and perhaps consideration of deletion. 
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The variances of the residuals, in general, are not uncorrelated and there may be large 

differences in the variances of the residuals at different values of the predictor variables. 

A way in which these differences can be incorporated and which ensures that the residuals 

are of the same relative magnitude is given by the studentised residual, defined as 

e;° = s ~I - h;; . (3.23) 

In this regard, the advantage of the studentised residual is that it eliminates the effect of 

the location of the data point. The studentised residual will also approximately have a 

standard normal distribution, and hence can be used to assess the assumption of 

normality. 

The most commonly useful ways of plotting the residuals to check the regression 

assumptions are now discussed. 

The Overall Plot 

A histogram or dot-diagram will indicate the distribution of the residuals. If they are 

normally distributed we can expect the familiar bell-shaped curve. Coupled with this idea 

we can construct a normal probability plot of the ordered residuals against the normal 

quantiles. If the points in the plot lie nearly in a straight line we would not reject the idea 

that the errors are normally distributed. This concept was introduced in the section on 

data collection and exploration, and many of the other techniques discussed therein are 

also applicable, for example statistics relating to normality, and there is no need to repeat 

the process here. The main thrust of the residual plot is to assess whether all the 

systematic variation in the data has been accounted for and whether any points exert 

excessive influence in the analysis. Although this method can successfully be used to 
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check the assumption of normality of error terms, it should be noted that the shape of the 

distribution may also be influenced by violations of the other assumptions. Thus, it 

should be used in conjunction with other plots. 

Plot Against Predicted Values 

This plot will often highlight problems with model mis-specification or a deviation from 

the constant variance assumption. Ideally the plot should appear as in Figure 3.3, but 

typical problems may be indicated by error distributions shown in Figure 3.4. Figure 3.4a 

show that the model may need to be modified to include another parameter, perhaps a 

quadratic term. Figure 3.4b suggests that the variance is increasing with the value of the 

response, and a transformation may be needed. This assumption violation may lead to 

biased standard error estimates. Figure 3.4c shows that tbe value of the residual is 

proportional to the value of the response, and suggests that there is an error in the 

calculations or wrongly omitting the intercept term. 

Figure 3.4 Common patterns in residuals 

a b C 
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Plot Against Predictor Values 

If a systematic pattern is noticeable in the plot of the residuals against the values of a 

predictor variable then this is an indication that the model needs to be changed, perhaps to 

include another term. If patterns show up with the appearance similar to those shown in 

Figure 3.4, then this indicates similar problems to the plot of the residuals against the 

predicted values. 

Plot Against Time 

This plot tends to reveal a violation of the assumption of independence. The plot may 

show patterns similar to those shown in Figure 3.4. If the pattern shown in Figure 3.4a is 

noticed then this indicates that a linear or quadratic term in time should have been 

included in the model. A pattern as in Figure 3.4c indicates that a linear term in time 

should have been included. (Draper and Smith, 1981, p.145). If the error terms are auto 

correlated, that is if each error is dependent on the previous errors then we can use the 

Durbin-Watson test for first-order autocorrelation. This test has the statistic 

n 

_L(e, -e,-1)2 
d = ...:...t=....;;;2 ___ _ (3.24) 

where er are the time-ordered errors, and compares d to critical values of di.a and du.a 

found in tables for the statistic, whereby we reject the hypothesis that the errors are not 

autocorrelated if d < di, a, 
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Chapter4 

GENERALISED LINEAR MODELS 

4.1 BACKGROUND 
A generalised linear model is essentially an extension, or generalisation, of traditional 

linear models, such as classical linear models, logistic and probit models for binary data, 

and log-linear models for multinomial data. These models share some common 

properties, such as linearity, and they have similar methods of computing parameter 

estimates (McCullagh and Nelder, 1983). The class of generalised linear models includes 

as special cases such widely used and accepted techniques as linear regression and 

analysis of variance. The generalisation allows the mean of a population to depend on a 

linear predictor through a non-linear link function. It also allows the response variable 

(which in this research is the catch rate) to be distributed according to a wider class of 

probability distributions called the exponential family of distributions. This is 

advantageous by the fact that the second-order properties of the parameter estimates do 

not depend on the assumed underlying distribution, but on the variance-to-mean 

relationship (McCullagh and Nelder, 1983, p. 2). The generalisation of the form of the 

underlying distribution makes for the ability to model data that is continuous or discrete, 

or in the form of counts or proportions, or where the response variable is categorical and 

not continuous. 
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4.2 THE CLASSICAL LINEAR MODEL 
Let us consider first the form of the classical linear models given in equation 3.5, which is 

y=X~ +E 

where y is an n x 1 vector of observations assumed to be a realisation of an n x 1 vector of 

random variables Y which are independently distributed with mean µ; X is an n x p model 

matrix of explanatory variables with covariates Xt, X2, ... , Xp, whose values are known; ~ 

is a p x 1 vector of unknown parameters to be estimated; and E is the vector of errors 

assumed to be independent normal random variables with mean zero and constant 

variance. The systematic part of the model is constituted by the vector of means µ = X~. 

The model assumes that the covariates which influence the systematic component are 

known and can be measured without error, and that there is independence in the error 

component, in which each error is normally distributed with constant variance. This form 

of model is used extensively in many statistical settings. It does have, however, a number 

of potential problems or limitations. 

• The assumption of normality may not be true. 

• The normal distribution may not be adequate for modelling certain types of data, for 

example, counts or proportions. 

• The linear predictor in the model allows for any value, while some data may be 

necessarily restricted to a certain range of values. 

• The assumption of constant variance may not be true. 
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4.3 THE GENERALISATION 
To place the classical linear model in terms of a generalised linear model, the linear 

combination (x/P) can be extended to include functions of linear combinations g(x/P), 

thus broadening the systematic component of the model. The random component, E, also 

can be generalised by allowing the errors to be distributed not just specifically from the 

normal distribution but from any of the distributions from the exponential family. A 

generalised linear model can be thought of as comprising three components: 

1. The random component, Y, consisting of independent response variables Y; which all 

have the same distribution from the exponential family of distributions. This implies 

that the variance of the response depends on the mean by a variance function V such 

that var(y;) = V(ft) </fOJ. , where </J is a constant and OJ. is a known weight for each 

observation. The dispersion parameter </J is either known, as in the case of the 

binomial and Poisson distributions, or must be estimated. 

2. The systematic component, T\ = x/P, which is a linear predictor. 

3. The link function, g, such that T\ = g(µ), which describes the relation between the 

random and systematic components. 

The main differences between the classical model and the generalised model are ( 1) the 

classical model for Y has N(µ,,d') while the generalised model allows any distribution 

from the exponential family, and (2) the classical model has g to be the identity function 

(hence T\ = µ ), whereas the generalised model has g to be any monotonic differentiable 

function. (McCullagh and Nelder, 1983, pp. 19-20). The assumption of independence in 

the observations is maintained in generalised linear models. Matters of scaling are greatly 

reduced in generalised linear models. Whereas in classical models a scale should be 
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chosen to combine constancy of variance and normality of errors, in generalised linear 

models these are not required, except that the way that the variance depends on the mean 

must be known. Fitted generalised linear models can be summarised through statistics 

such as parameter estimates, their standard errors, and goodness-of-fit statistics. 

Statistical inference can be made about the fitted model and its parameter estimates using 

hypothesis tests and confidence intervals. 

4.4 EXPONENTIAL FAMILY OF DISTRIBUTIONS 
Many of the commonly used distributions are members of the same family of 

distributions, which R. A. Fisher called the exponential family. As will be seen below, 

this family can be further broadened into what Jorgensen (for example, see Jorgensen, 

1987) calls the exponential dispersion family, by transformation of the mean, the link 

function, being linearly related to the explanatory variables. 

For a random variable Y whose probability function, if it is discrete, or probability density 

function, if it is continuous, depends on a single parameter, we can say that its distribution 

belongs to the ( one parameter) exponential family of distributions if it can be written in 

the form 

f(y;O) = s(y)t(O)ea(y'Jb<.8) (4.1) 

where a, b, s and t are known functions. Notice the symmetry of the observed value, y, 

and the parameter 8. 8 acts as a location parameter indicating the position within the 

range of all possible observed values where the distribution lies. Alternatively, equation 

4.1 can be rewritten in the form 

f(y;O) = exp[azy)~O) + '!A-8> + ((y)] (4.2) 
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where s(y) = exp[((y)] and t(B') = exp[lf)(B'J]. Equation 4.2 is said to be in the canonical 

form if afy) = y and ~fl)= 8. The component ~fl) is referred to as the natural parameter 

and acts as a normalising constant in the distribution. As mentioned above, many of the 

more well known and much used distributions belong to the exponential family, for 

instance, the Normal, Poisson, Binomial and Gamma distributions (Dobson, 1990, p.27). 

(Bamdorff-Nielsen (1978) has descriptions of these distributions). 

As an example, consider the following formulation of the Normal distribution in terms of 

the exponential family. The Normal probability density function is 

f (y; µ) = (z,,;, JV , exp[- i:,., (y - µ )' J (4.3) 

where µ is the parameter of interest and d is here regarded as a nuisance parameter and 

treated as part of the other functions. Equation 4.3 can be expressed in a similar form to 

equation 4.2, viz., 

[ 
y2 yµ µ2 1 ] 

f(y;µ) = exp --+-----log(21ra2) 
20'2 (}'2 20'2 2 

(4.4) 

which is in the canonical form. The natural parameter is ~) = µId and the other terms 

according to (4.2) are 

µ2 1 y2 
If/(µ)= -- --log(21ra2) and ((y) = -

2
,..2 . 

20'2 2 V 

The broadening of ( 4.2) includes a scale, or dispersion, parameter, ¢, so that 

y8-b(8) 
/(y)=exp{ +c(y,¢)} 

a(¢) 
(4.5) 
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for some functions a, b and c, and known </J. Here, B is still the canonical, or natural, 

location parameter, which is given in some form of function of the mean. Now, the 

distribution is an exponential dispersion family. For fixed </J, this reverts to a one 

parameter exponential family of distributions. It can be seen, then, that the exponential 

family is a special case of the exponential dispersion family, and so for convenience we 

shall use the former name to refer to both situations. The function a( </J) is often of the 

form a( </J) = (/iw;, where </J is a dispersion parameter and w is a prior weight for each 

observation, which is assumed known (for grouped data it is usually n;, the number of 

observations in group i, otherwise it is generally 1 ). The specific functions b and c 

correspond to the type of exponential family. 

For comparison, let us again use as an example the Normal distribution density, given in 

(4.3), by expressing it in the above form of an exponential (dispersion) family: 

Here, B= µ, b(B) = Jr/2, </J= er, a(</J) =¢/,and c(y, </J) = -fy2!¢l + ln(21tcr)]/2. 

It is necessary to obtain expressions for the mean and variance of Y if the distribution is to 

be useful for most purposes. Firstly, we put l(B,<jJ;y) = lnfy(y;B,</J) as the log-likelihood 

function considered as a function of Band </J, y being given. Then the mean and variance 

of Y can be derived easily from the relations 

(4.6) 
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and 

E(~J+E(~J
2 

=0. ae2 ae 

From (4.5) the log-likelihood function is l = [yO-b(O)]I a(</>)+ c(y,</J). Now 

and 

az b' e -=[y- ( )]/a(</J) ae 

·,)2z =-b"(O)I a(¢,). 
ae2 

Thus from ( 4.6) and ( 4.8) we have 

0 = E( ;~ J= [µ-b'(U)I a(j!), 

and so 

E(Y) = µ = b'(O). 

Similarly from (4.7), (4.8) and (4.9) we have 

0 = _ b"(O) + var(Y), 
a(</>) a 2 (</>) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 
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so that 

var(Y) =b"(B)a(</J), (4.11) 

where primes denote differentiation with respect to 8. For all members of the exponential 

family, the meanµ is a function of the canonical parameter 8, and is uniquely determined 

by the specific exponential family through the relation given by (4.10). There is also a 

special relationship for each member between the mean and the variance; specifically, the 

variance is a function of the mean, implied by ( 4.11 ). The variance is the product of two 

functions; one, b'f..8), which depends only on the canonical parameter (and hence on the 

mean) and will be called the variance function, while the other is independent of 8 and 

depends only on </J (McCullagh and Nelder, 1983, pp. 20-21). The variance function is 

therefore also uniquely identified for different members of the exponential family. Notice 

that for the Normal distribution, b 'f.. 8) = I, and so the variance function does not depend 

on the mean, as seen in the classical linear models. 

4.5 LINK FUNCTIONS 
The link function relates the linear predictor 11 to the mean of the observed value, µ. In 

classical linear models the link is the 'identity' function, that is, 11 and µ are the same. 

The power family of links is important and can be specified by 

11=logµ, a=O. 
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The choice of link function is dependent on the particular exponential family. For each 

family there exists a natural, or canonical, link function which relates the natural 

parameter directly to the linear predictor: 8 =Uvl) = 1] = x'~. Natural links lead to 

convenient and often desirable mathematical properties, while simplifying the numerical 

methods of estimation. However, their appropriateness to the particular application 

should be carefully considered in deciding their use, and non-natural links may sometimes 

be a better choice. (Fahrmeir and Tutz, 1994, p. 20) 

Some of the above concepts are now described for the following members of the 

exponential family: 

Normal: 

Poisson: 

Gamma: 

f (y) = 1 exp[- (y - µ )2] , -oo < y < oo 
..fiia 2a2 

µYe-µ 
f(y) =--, fory=O, 1, 2, ... 

y! 

f(y)= 
1 

(yvJvexp(-yvJ,forO<y<oo 
r(v)y µ µ 

Notice that the canonical links for the described distributions are µ for the Normal 

distribution, In(µ) for the Poisson distribution and -1/ µ for the Gamma distribution. 
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Normal N(µ, <f) Poisson P(µ) Gamma G(µ, v) 

¢ (scale) (J 1 V 

a(¢) (f 1 1/v 

B(location) µ In(µ) -1/µ 

b(B) fi12 = jr/2 exp(B) = µ -ln(-8) = In(µ) 

c(y, ¢) -rltd + ln(27t<f)]/2 -ln(y!) 
l-1.n( v) + ( v-l)ln(y) -

ln[r(v)] 

E(Y) = b'(B) B=µ exp(B) = µ -118= µ 

Var fn = b"(B) 1 exp(B) = µ (-1/8)2 = Jr 

Var(Y) = b"(B) a(¢) (f exp(B) = µ (-1/ 8)2/v = )riv 

4.6 ESTIMATION 
We need to obtain estimates for the unknown parameters. This is generally done by the 

method of least squares or by the method of maximum likelihood. The latter is used here 

to maximise the log-likelihood function L(y,µ,¢). Theoretically, this is done by setting the 

first derivatives of the log-likelihood functions, called the score functions, equal to zero, 

and then solving the set of equations. The exponential family of distributions have a 

property such that they satisfy enough regularity conditions to ensure that the global 

maximum of the log-likelihood function is uniquely given by the solution of ol/op = 0. In 

general, for the /1 parameter, the equations ol/ofJJ = 0 are non-linear and need to be solved 

numerically. (Dobson, 1990, p. 40.) Practically, this will be done with an iterative 

Newton-Raphson method so that, on the /h iteration, the parameter vector Pr is updated 

by 
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Here, His the Hessian, or second derivative, matrix, such that H = [hij] = [ 
82 

L ] . It is 
gpigpj 

also the negative of what is called the observed information matrix. s is the gradient, or 

first derivative, vector of scores, such that s = [sj] = [ 8L ] . Both H and s are evaluated 
gpj 

at the current value of the parameter vector. Ifµ,;, = g-1(x//J) is an estimate of the mean of 

the t11 observation, obtained from the estimate of the parameter vector p, then we can 

write 

s = l:;w;(y; - µ,;,)x;/V(JJ,;,)g'(JJ,;,)</J and 

H=X'WoX 

where X is the design matrix, x; is the transpose of the l 1 row of X, and V is the variance 

function. The matrix W O is diagonal with l 1 diagonal element 

+ V(µ;)g"(µ;) + V'(µ;)g'(µ;) 
Woi = Wei W; (Y; - µ;) (V(µ;))2 (g'(µ;))3 </J 

where 

Wei = w;/ </JV(JJ,;,)(g t/.4) )2 

in which primes denote derivatives of g and V with respect to µ. 

The estimated variance-covariance matrix of the parameter estimator is given by 1: = -H-1 

in which H is evaluated with the parameter estimates of the last iteration. The correlation 
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matrix has non-diagonal elements as a;/ a;Oj , where a;j is an element of ~. and diagonal 

elements of 1 (SAS Inst., 1993). 

An example will now be given to illustrate the process of parameter estimation of a 

generalised linear model. Once the parameters have been estimated using the above 

methods we can check them against the least squares parameter estimates obtained from 

the classical linear regression of the last chapter. The paper strength data introduced in 

the last chapter was analysed using the SAS GENMOD procedure to assess the model 

with Density as the response variable and Machine direction and Cross direction as the 

two predictor variables. 

The partial output below shows the parameter estimates after each iteration in the 

estimation process. We see that there was only one iteration before the process stopped. 

Shown also is the last evaluation of s, the first derivative of the log-likelihood function, 

which as expected is very close to zero. Likewise, we see the last evaluation of H, the 

second derivative. The section "Criteria for Assessing Goodness of Fit" provides 

information for assessing the adequacy of the model and will be dealt with in the next 

section of the dissertation. The maximum likelihood parameter estimates are shown in 

the following section. We see that MACHINE is highly significant and CROSS is 

significant at the 0.10 level but not significant at the 0.05 level. The estimates and 

standard errors match very closely those obtained by least squares in the previous chapter 

and these will also be discussed in the next section. The model given is 

DENSITY= 0.6028 + 0.0007(MACHINE) + 0.0017(CROSS). 
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Output4.1 

The GENMOD Procedure 

Model Information 
Description 
Data Set 
Distribution 
Link Function 
Dependent Variable 
Observations Used 

Parameter Information 
Parameter 
PRM1 
PRM2 
PRM3 

Value 
WORK.PAPER 
NORMAL 
IDENTITY 
DENSITY 
40 

Effect 
INTERCEPT 
MACHINE 
CROSS 

Iteration History For Parameter Estimates 
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lter Ridge LogLikelihood PRM1 
0 0 119.462789 0.60282 
1 0 119.462789 0.60282 

PRM2 
0.0007412 
0.0007412 

PRM3 
0.001707 
0.001707 

Last Evaluation Of The Negative Of The Gradient 
PRM1 PRM2 PRM3 Scale 
-2.83E-11 -3.484E-9 -1.904E-9 7.068E-13 

Last Evaluation Of The Negative Of The Hessian 
Parameter PRM1 PRM2 PRM3 
PRM1 268309.4 32418414 18154819 
PRM2 32418414 3.93268E9 2.2099E9 
PRM3 18154819 2.2099E9 1.25422E9 
Scale 4.6321 E-9 5. 7065E-7 3.1193E-7 

Criteria For Assessing Goodness Of Fit 
Criterion DF Value 
Deviance 37 0.0060 
Scaled Deviance 37 40.0000 
Pearson Chi-Square 37 0.0060 
Scaled Pearson X2 37 40.0000 
Log Likelihood 119.4628 

Analysis Of Parameter Estimates 
Parameter DF Estimate 
INTERCEPT 1 0.6028 
MACHINE 1 0.0007 
CROSS 1 0.0017 
SCALE 1 0.0122 

Value/OF 
0.0002 
1.0811 
0.0002 
1.0811 

Std Err 
0.0362 
0.0004 
0.0003 
0.0014 

Scale 
4.6321E-9 
5.7065E-7 
3.1193E-7 
536618.8 

ChiSquare 
277.0860 
2.9530 
25.6742 

NOTE: The scale parameter was estimated by maximum likelihood. 

Estimated Covariance Matrix 

PRM1 
PRM2 
PRM3 
Scale 

PRM1 PRM2 
0.001311 -0.000015 
-0.000015 1.8604E-7 
6.5663E-6 -1.179E-7 
2.828E-19 -4.14E-21 

PRM3 
6.5663E-6 
-1.179E-7 
1.1348E-7 
2.728E-21 

Scale 
2.828E-19 
-4.14E-21 
2.728E-21 
1.8635E-6 

Pr>Chi 
0.0001 
0.0857 
0.0001 

Scale 
0.01221 
0.01221 

.( 



Estimated Correlation Matrix 

PRM1 
PRM2 
PRM3 
Scale 

PRM1 PRM2 
1.0000 -0.9283 
-0.9283 1.0000 
0.5382 -0.8114 
0.0000 -0.0000 
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PRM3 
0.5382 
-0.8114 
1.0000 
0.0000 

4.7 GOODNESS OF FIT AND INFERENCE 

Scale 
0.0000 
-0.0000 
0.0000 
1.0000 

It is desirable to obtain an indication of the adequacy of the fitted model. This can be 

done by measuring of the size of the discrepancy between the values derived from the 

fitted model and the actual observed values. Alternatively, and in order to make use of 

various statistical properties, we can compare the likelihood functions of the fitted model 

and the maximal model at their maximum likelihood estimates, b and bmax, respectively. 

(The maximal model is a model in which the number of parameters is equal to the number 

of observations.) This comparison can take the form L(bmax; y)/ L(b; y) = A, which is 

called the likelihood ratio statistic. After taking logs this has the form l(bmax; y) - l(b; y) = 

log A. If the fitted model describes the data well then (b; y) will be approximately equal 

to (bmax; y) and so log A will be small; and conversely, if the fitted model is poor then 

(b; y) will be much smaller than (bmax; y) and so log A will be relatively large. 

4. 7.1 The Deviance 
Let us define the log- likelihood ratio statistic as 

D = 2[l(bmax; y) - l(b; y)]. (4.12) 

D (= -2logA) is often called the scaled deviance, but in the literature sometimes just the 

deviance. For the exponential family of distributions 

(4.13) 

) ; 
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where the hat (") indicates the maximal model and the tilde C) indicates the fitted model. 

The numerator in (4.13) is also referred to in !he literature as the deviance. To prevent 

any confusion between the two definitions, we will always call the former the scaled 

deviance, and the latter the unscaled deviance or simply the deviance. Denoting the 

unscaled deviance by D*, it is simple to see that 

D = D*la( </J) (4.14) 

where a( </J) = </fw; is the scale component of ( 4.5). The unscaled and scaled deviances are 

described below for some exponential families. 

(Unscaled) Deviance Scaled Deviance 

Normal L;w;(Y; -A)
2 ;2 L; w;(Y; -µ;)2 

Poisson 2L; w;[Y;log(y;/ µ; )-(y; -A)] 2 L; w; [y;log(y; /A)- (y; - A)] 

Gamma 2L;wi[-Iog(y;/A)+(y; -A)/A] 2vL; w;[-log(y;/A )+(y; -A)/ A] 

For inferential purposes we need to know the distribution of the scaled deviance. It can 

be shown that 

2[Z(h; y) - t(/3; y)] - x; (4.15) 

where b is the maximum likelihood estimate vector of the p parameters in the parameter 

vector /J. (Lindsey, 1997, p. 212) Now we can use (4.15) to advantage by expressing the 

scaled deviance with components as follows: 

I' , 
1 
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D = 2{ [/(bmax; y) - /(Pmax; y)] 

- [/(b; y) - l(/3; y)] 

+ [l<fimax; y) - l(/3; y)] } . (4.16) 

The first component on the right hand side of (4.16) has the x; distribution because there 

are n parameters in the maximal model; likewise, the second term has the x; distribution 

because there are p parameters in the fitted model. If the fitted model adequately 

describes the data then the third component, which is a positive constant, will be close to 

zero. Further, if the random variables defined by the first two components are 

independent and the third component is close to zero, then 

(4.17) 

By comparing D with the value predicted by z;_P we have a measure of the adequacy of 

the fitted model. If D is larger then the model may not be adequate. Care must be taken 

here, because a large value for D does not necessarily provide proof for lack of fit, but 

merely adds support to that proposition (Fahrmeir and Tutz, 1994, p.48). 

Another method, yet somewhat crude, can also provide an indication of the adequacy of 

the fitted model. We know that the expected value of a variable distributed as x;. ism. It 

follows that if the model is adequate then (4.17) holds, and so E(D) = (n - p). If Dis 

larger than (n - p), then this suggests that the model is not adequate. In general, however, 

the sampling distribution of the scaled deviance is not approximated well by ( 4.17). 

(Dobson, 1990, pp. 57-58.) 
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The above two methods are useful, but they necessitate that the value of D can be 

identified from the data. This means that the dispersion parameter </J must be known, and 

of course this is not readily the case for some distributions. For example, for the Normal 

distribution, the variance d is generally not known. But in the case of the Poisson 

distribution, the scale parameter is 1, and so Dis D*, which is readily computable from 

the data. Fortunately, though, the scale parameter can be estimated. One strategy is to 

compute the deviance from a maximal model, or at least a model with sufficient number 

of parameters to account for most of the systematic variation, and divide by the number of 

its degrees of freedom. The quotient can then be used as an estimate, ¢ , of the scale 

parameter. This follows from (4.14) and (4.17), because¢> = D*/E(D) = D*l(n-p), if we 

are prepared to assume that the model is reasonable. Alternatively, the scale parameter 

can be regarded as an additional unknown parameter and estimated by maximum 

likelihood at each step of the fitting process. 

An assessment of the adequacy of the fitted model will benefit from the above 

considerations, but other methods, especially examination of residuals, need to be 

employed for a truly thorough analysis. 

4. 7.2 Analysis of Deviance 
In the process of finding suitable models to represent the data, we can compare two 

competing models by comparing their goodness of fit statistics; particularly, their 

likelihood ratio statistics. If the models have the same distribution, link function and 

dispersion parameter then we can compute the difference in the scaled deviances for the 

competing models, and use this difference in a test of hypothesis about the models. 

Consider the two competing hypotheses: 

I •. 
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Ho:P=Po= [Pi.f3i. ... ,,pq]' 

where q < p. Define m =Do-Di. Then 

m = 2[l(bmax; y) - l(bo; y)] - 2[l(bmax; y) - [(bi; y)] 

= 2[l(bi; y) - l(bo; y)] 

If the models fit the data well then Do - z;_q and Di - z;_P. Therefore m - .z;_q, 

provided that some conditions of independence are satisfied. The decision rule is that we 

reject Ho if m > z;-q,a, where a is the specified level of significance. If Ho were 

rejected then this suggests that Pi provides a significantly better description of the data 

than does Po. (Dobson, 1990, pp. 61-62.) Note also that E[z;_q] is p - q, so if mis 

much larger, say twice as large or more, than p - q then Ho should be viewed with 

suspicion. 

If the deviances for the competing models are assumed to be distributed as chi-squared 

random variables, then an equivalent test would be to compare a ratio of them to the value 

of Fp _ q, n _ P, a· This is particularly advantageous because it cancels out the need for the 

(usually unknown) dispersion parameter. 

Using these methods for inferences about alternative models, we can develop a sequence 

of nested models, each successive model having only one parameter more than the 

previous, to build a table of differences in deviances analogous to sums of squares in an 

ANOVA table. 
!I , 
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4. 7.3 Inference About Parameters 
The reliability of a parameter estimate of a fitted model can be judged by the magnitude 

of its standard error. Calculations of confidence intervals for the parameter estimate 

naturally follow. Firstly, though, we must identify the sampling distribution for the 

maximum likelihood estimate. 

Many important results about generalised linear models relate to the first derivative U = 

dl/d8. This is called the score, and was referred to as s in section 4.6, concerning 

estimation. It can be shown that E[U] = 0, and E[-U] = E[U2
]. Thus, Var[U] = E[U2

] = 

E[-U'], where primes denote the derivative of U. Hence, Var[U], called the information 

matrix 1, is equal to the negative of the second derivative. 

For b, an unbiased estimator of /3, the variance-covariance matrix is 

E[(b - /J)(b - /3)'] = 1"1
. Thus, for large samples, 

(b - /3)1(b - /3) - x: 

and so 

(4.18) 

The statistic (b - /J)'l(b - /3) is called the Waid statistic and is used to make inferences 

about /3. (Dobson, 1990, p. 53.) The sampling distribution for b, given in (4.18), leads to 

the standard error, defined by, 

s.e.(bj) = -..J Vjj (4.19) 
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where J1j is the / 11 term on the diagonal of the matrix r 1
• Consequently, a 100(1 - a)% 

confidence interval for bj is 

Let us again consider the paper strength example to illustrate the concepts of goodness of 

fit and inference in a generalised linear model. The data set was analysed with the SAS 

GENMOD procedure and some of the output was presented in the estimation section. 

The parts concerning goodness of fit and parameter estimates are again presented here for 

discussion, together with Type 1 and Type 3 and Wald interval statistics. We see that the 

scaled deviance is 40.0000 and the when divided by the degrees of freedom gives a value 

close to unity. This suggests that the fitted model is adequate. The value of the scaled 

deviance is also approximately equal to the degrees of freedom, again suggesting that the 

model is adequate. 

The value of the unscaled deviance is 0.0060. The relationship between the scaled and 

unscaled deviances can be confirmed using the knowledge that the scaled deviance is just 

the deviance divided by the variance as estimated by the square of the scale parameter. 

Thus, the estimate of the variance should be approximately 0.00015, which is validated by 

the SCALE parameter value of 0.0122 given previously in the full output. 

The output below shows the Type 1 and Type 3 likelihood ratio statistics for testing the 

significance of the variables in the model. The Type 1 table gives the estimates of the 

deviance and Chi-square statistics analogous to that obtained in the ANOV A table of 

multiple linear regression, except that the deviance replaces the sum of squares. Here, the 

statistics are based on the variables added-in-order method. In effect, it is comparing the 

model with only MACHINE to the model with both MACHINE and CROSS. 

·I 

i 
, I 

. I 
; 
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MACHINE is significant as the first variable in the model and CROSS is significant when 

MACHINE has already been accounted for. The Type 3 table shows the statistics for the 

variables when they are added last. In effect, it is comparing two models: one with 

MACHINE added last, and one with CROSS added last. The table shows that CROSS is 

significant (when MACHINE has already been accounted for), and MACHINE is 

significant only to about the 0.09 level (when CROSS has already been accounted for). It 

is interesting to note that CROSS is significant when it is included first or last, but 

MACHINE is only significant when added first. 

Criteria For Assessing Goodness Of Fit 
Criterion DF Value 
Deviance 37 0.0060 
Scaled Deviance 37 40.0000 
Pearson Chi-Square 37 0.0060 
Scaled Pearson X2 37 40.0000 
Log Likelihood 119.4628 

LR Statistics For Type 1 Analysis 

Value/OF 
0.0002 
1.0811 
0.0002 
1.0811 

Source Deviance DF ChiSquare Pr>Chi 
INTERCEPT 0.0246 0 
MACHINE 0.0098 1 36.8884 0.0001 
CROSS 0.0060 1 19.8331 0.0001 

LR Statistics For Type 3 Analysis 
Source DF ChiSquare Pr>Chi 
MACHINE 1 2.8491 0.0914 
CROSS 1 19.8331 0.0001 

Analysis Of Parameter Estimates 
Parameter DF Estimate Std Err ChiSquare 
INTERCEPT 1 0.6028 0.0362 277.0860 
MACHINE 1 0.0007 0.0004 2.9530 
CROSS 1 0.0017 0.0003 25.6742 
SCALE 1 0.0122 0.0014 

NOTE: The scale parameter was estimated by maximum likelihood. 

Normal Confidence Intervals For Parameters 
Two-Sided Confidence Coefficient: 0.9500 
Parameter Confidence Limits 
PRM1 Lower 0.5318 
PRM1 Upper 0.6738 
PRM2 Lower -0.000104 
PRM2 Upper 0.001587 
PRM3 Lower 0.001047 
PRM3 Upper 0.002367 
Scale Lower 0.009534 
Scale Upper 0.0149 

Pr>Chi 
0.0001 
0.0857 
0.0001 

! i 1 
'. 1 
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From the "Analysis of Parameter Estimates" section of the above output, we can make 

inferences about the parameter estimates based on the estimated standard errors. 

Confidence intervals based on the Wald statistics are computed using these standard 

errors and they are presented in the last section of the output. They show that the 

intercept and CROSS are significant different from zero, but that MACHINE is not. 

4.8 RESIDUAL ANALYSIS 
The analysis of residuals for generalised linear models is conceptually very similar to that 

under the classical linear models. The idea of plotting the residuals against predicted 

values of the response, against values of the predictor variables and over the time domain 

is central to the identification of possible violations of the assumptions underlying the 

model. Even though we may be satisfied that the goodness of fit criterion has provided us 

with a satisfactory measure for the overall adequacy of the proposed model, we still need 

to investigate the residuals in order to look at specific aspects of the model. However, we 

need a generalisation of the residuals in order to be applicable to all the distributions 

which may replace the Normal distribution, and which can be used for the same purposes 

as the residuals based on the Normal distribution. Apart from the raw residual, r; = y; - Jli, 

we will discuss three residuals for use in generalised linear models. 

Pearson Residuals 

The Pearson residual is the raw residual scaled by the estimated standard deviation. That 

is 

r _ Y;-A 
p- t(µ,) . 

W; 

(4.20) 



77 

Deviance Residuals 

The deviance can be used as a measure of the discrepancy of a model, and when this is 

done, each observation contributes a quantity d; to the value of the deviance, so that 'u/.; = 

D. The deviance residual is defined as 

rv = sign[y; - µ,;]'Yd; (4.21) 

The form of d; for some members of the exponential family of distributions can easily be 

taken from Table 4.2. For example, for the Gamma distribution 

rv = sign[y; - µ,;].../ { 2v Lu w; [- log(y; / µ;) + (Y; - A)/ A]}. (4.22) 

The deviance residual is preferable to the Pearson residual for model checking purposes 

because its distributional properties are closer to those of the residuals from classical 

regression models. 

Standardised Residuals 

This residual facilitates the comparisons of individual residuals because it scales the raw 

residuals by their estimated standard deviations. That is 

rstd= ~ . 
S;'\J 1-hi 

(4.23) 

Many other forms of residuals have been proposed in the literature. For examples, see 

Mccullagh and Nelder (1983) and Pierce and Schafer (1986), but these are not discussed 
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here and we will mainly use the deviance and standardised residuals for checking the 

fitted generalised linear model. 

The residuals should be plotted against the fitted values, the explanatory variables and 

against the order in time that they were measured. These plots were discussed in chapter 

3 and their usefulness is nonetheless applicable to the broader class of generalised linear 

models, but we need not illustrate them again here. For checking the variance function, 

the residuals would be plotted against the predicted responses to see if an increasing or 

decreasing pattern emerges and the model could be adjusted accordingly. For example, if 

the residuals show an increasing trend then this indicates that the variance function in the 

model is increasing too slowly and should be changed to a function which increases more 

rapidly. It is important to note that any pattern in the residuals indicates that the specified 

model is inadequate in some way. Essentially, the model is intended to account for all 

systematic variation in the data, leaving random errors. 

' ·I 
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Chapter 5 

APPLICATION TO WESTERN ROCK LOBSTER DATA 

5.1 FISHING POWER FACTORS 
In the last decade or two the changes that have occurred in the Western Rock Lobster 

fishery with regard to fishing power have been substantive. In this section we will look at 

several fishing power factors and how their prevalence and usage has changed in that 

time. We will obtain a time series for each factor which will be used to determine which 

seasons are most appropriate for estimating fishing power increases. Of particular interest 

are the technologically advanced onboard fishing power factors and the ensuing analyses 

will focus on these. These are radar and global positioning systems (GPS), which are 

used as navigational tools, and black and white echo sounders and their successor, the 

colour echo sounders, which are fish-finding tools. 

Figure 5 .1, below, shows the time series of the percentages of vessels with various pieces 

of equipment in the fishery. It shows that in the early 1970's all, or nearly all, vessels had 

a black and echo sounder (BWES) and virtually none of the other equipment listed. It 

shows the introduction of radar during the same period. We see the emergence of the 

colour echo sounder (CES) in the mid 1980's and the coincident decline in BWES. 

Notable is the rapid increase in the use of GPS in the early 1990's, together with the 

gradual decline of radar. Functionally, CES replaced BWES as an underwater scanner, 

and GPS replaced radar as a navigational tool. By the 1995/96 season almost all vessels 

had a CES and a GPS onboard. However, as shown in the figure, many vessels retained 
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expected to have changed, however, by the introduction of radar, CES and GPS. For CES 

the suitable seasons chosen are 1982/83 to 1988/89; for GPS, the appropriate seasons are 

limited to 1989/90 to 1991/92. Radar appears to be suitable for analysis in all seasons 

from the mid 1970's and after but it is best to avoid the years when GPS was emerging 

because of the similar roles they perform on a boat. It was decided that radar could be 

examined concurrently with CES because they perform different roles on a boat. The 

analysis of fishing power will proceed in the next two sections by applying the statistical 

methods to the data using these subsets of seasons. 

5.2 ESTIMATION OF FISHING POWER USING MULTIPLE LINEAR 
REGRESSION 

This section will apply the methods discussed in chapter 3 to the catch and effort data. 

Before we proceed it is well worth noting that because of the environmental nature of the 

data we should appreciate that a "perfect" model is unlikely to be found, and indeed will 

not be sought. It is not within the purpose of this research to try to model the real world 

nature from which the data have come. That purpose would require a very thorough and 

possibly complex modelling process, involving many more variables. It does, however, 

have a specific purpose to work within the guidelines of previously established catch and 

effort models, using their traditionally tested predictors, to find how certain other 

predictors (fishing power factors) are influencing the catch rates. With this in mind we 

shall not seek to find the "best" regression or use forwards, backwards or other similar 

techniques which are common in regression analysis. It is well recognised that a least 

squares estimation of data such as this will leave a large proportion of the total variation 

unexplained. In fact, it is common to expect values for R2 of less than 0.4. Also, because 

there is a very large number of observations in the dataset, we can expect the predictors in 

the models to be significant on most occasions. In this regard, if there is doubt as to a 
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predictor's significance in a model, it may be useful to look to the proportion of sums of 

squares explained by the predictor as a guide. 

5.2. 1 Preliminary Data Exploration 
The variables in the dataset that will be considered in the modelling procedure are all 

categorical except for the response variable. The variables are listed below. 

Region 

Depth 

Pull 

Month 

A geographical area of the fishery defined by latitude and longitude. 

The models will examine the coastal regions of the fishery. 

The depth of the ocean, in fathoms, where the catch was made. The 

models will examine depths of twenty or more fathoms, as it is thought 

that the effect of these fishing power factors is more easily seen ( and 

measured) at these depths. 

The number of days the pot has been in the water before it is pulled up 

and emptied. This is typically one or two days. It is thought that the 

catch increases for the first couple of days, but not much after that, so 

the models will examine pulls of three days or less. 

The fishing season runs from mid November to the end of June, but it is 

thought of as having two distinct phases: the whites period, from 

November to January, when newly moulted, highly catchable, immature 

lobsters leave the shallow reefs and move seaward to deeper waters; 

and the reds period, from February to June, when non-migratory 

lobsters are caught mainly in deeper waters. Because we are examining 

only the deeper waters, and also because the effect of echo sounders 

and navigational equipment may be more readily seen when 



Season 

Catch rate 
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catchability levels are relatively low, the models will only examine the 

reds period. 

The fishing season. For example, the 1982/83 season runs from 

November 1982 to June 1983. We have previously established which 

seasons are appropriate for the analyses. 

The total weight (in kilograms) of lobsters caught on one day divided 

by the total number of pots lifted to yield that catch. Because vessels 

have different numbers of pots, and each vessel may even pull different 

numbers of pots on different days, it may be appropriate to use the 

number of pots lifted to weight each observed catch rate. It is possible 

to have catch rates of zero, and this will need to be checked as a large 

proportion of zero rates may present difficulties for the model. 

The other variables are those for the fishing power factors of radar, CES and GPS. The 

are binary variables, taking a value of 1 if the observation came from a vessel with the 

onboard equipment, and a value of O if the observation came from a vessel without the 

equipment. 

Let us now look at the characteristics of the response variable. Output 5.1, below, shows 

the result of a SAS UNN ARIA TE procedure for data from the seasons 1982/83 to 

1991/92. The mean is 0.91 and the variance is 0.56. The data is heavily skewed to the 

right as is seen by the histogram and the quantile figures. This skewness and the apparent 

lack of normality in the distribution are not unacceptable; it is the errors from a regression 

analysis that should have a normal distribution, and not necessarily the response. 
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Output5.1 

The SAS System 

Univariate Procedure 

Variable=CATRATE 

Moments Quantiles(Def=5) 

N 50677 Sum Wgts 50677 100% Max 13.36458 
Mean 0.913817 Sum 46309.5 75% Q3 1.133333 
Std Dev 0.748417 Variance 0.560128 50% Med 0.71 
Skewness 2.962079 Kurtosis 16.19141 25% 01 0.447761 
USS 70703.42 css 28385.02 0% Min 0 
CV 81.90008 Std Mean 0.003325 
T:Mean=O 274.8661 Pr>ITI 0.0001 Range 13.36458 
Num A= o 50618 Num > o 50618 Q3-Q1 0.685572 
M(Sign) 25309 Pr>=IMI 0.0001 Mode 1 
Sgn Rank 6.4056E8 Pr>=ISI 0.0001 

Extremes 

Lowest Obs Highest Obs 
0( 50216) 9.671875( 1636) 
0( 48873) 9.973333( 13269) 
0( 48841) 10( 35899) 
0( 48298) 10.13605( 7631) 
0( 45349) 13.36458( 8272) 

Histogram # 
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The relationship between the mean and the variance is an important consideration in the 

analysis. Classical regression requires that the variance be constant over the distribution 

of the values of the variables. This can be checked visually by obtaining the mean and 

variance of the catch rate in each different combination of levels of the predictor variables 

and then plotting these pairs of data. Such a plot gives an indication of the nature of the 

probability distribution underlying the data. If the variance is constant then the plot will 

resemble a scatterplot of points with no apparent pattern or relation. Output 5.2 shows the 

plot of the variance against the mean for the catch rate. There is clearly a relationship 

between the two statistics. We see that the variance increases as the mean increases, and 

not just linearly but at an increasing rate. There is therefore a need for a transformation in 

the data. Because the plot seems to have an exponential characteristic about it, it seems 

likely that a logarithmic transformation of the catch rates may stabilise the variance. 

Output5.2 

Plot of VAR*MEAN. Legend: A= 1 obs, B = 2 obs, etc. 
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A logarithmic transformation was applied to the catch rates and the variance to mean 

relationship was re-examined. Because of the presence of zero catch rates for some 

observations, a constant was added to the catch rates to accommodate the log 

transformation. The size of the constant should be small enough not to affect the 

parameter estimates too much, and the decision should be made with consideration of the 

size of the mean of the catch rates. It is also helpful and desirable to have knowledge of 

the distribution of the smallest few observations because this will give an indication of the 

smallest values that are practically possible. The mean is 0.91 and there are only three 

observations with catch rates of less than 0.01, and they are all greater than 0.008. It was 

decided that a constant of 0.01 would be acceptable. The plot of the variance against the 

mean of the transformed catch rates are shown in Output 5.3. It shows that the previous 

variance to mean relationship is no longer apparent, and the variance has been stabilised 

considerably. This is similar to the findings of Gulland (1956) and Beverton and Holt 

( 1957) who were instrumental in proposing the log transformation for catch and effort 

data. It does seem, though, that there are some points to the left of the central group 

which lessen the randomness of the scatterplot. Upon closer examination it was 

discovered that less than 1 % of the observations of the dataset were contributing to the 

mean log catch rates of -2.3 or less, and the vast majority of observations were within the 

main group. Thus, we will accept the logarithmic transformation for the catch rates, and 

assume that the catch rates are lognormally distributed. 
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Output5.3 

Plot of VAR*MEAN. Legend: A= 1 obs, B = 2 obs, etc. 
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5.2.2 Model Proposal 

2 

It is proposed that the estimation of fishing power be undertaken for the two subsets of 

seasons with the following models. 

For the analysis of radar and CES, let model A be: 

LogYi = /Jo + P1Region + ,BiMonth + /J3Season + fi4Pull + PsDepth + 

AR.egion*Month + P,CES + ,BsRadar + e1 (5.1) 

for observations Yi, i = 1, ... , n, where & are independent N(O, <r). 

I 



88 

For the analysis of GPS, let model B be: 

LogY; = f3o + /JiRegion + /JiMonth + /JJSeason + PJ>ull + /JsDepth + 

fi,Region*Month + /J-,GPS + e,; (5.2) 

for observations Y;, i = 1, ... , n, where e,; are independent N(O, <r). 

These model specifications imply that they are multiplicative in their parameters on the 

original scale, which is widely accepted for catch and effort data. Notice that the models 

include an interaction term between region and month. This is included because the catch 

rates vary over the regions for different months of the fishing season. 

5.2.3 Estimation 
The two models proposed were analysed with the SAS GLM procedure. The results are 

shown in Outputs 5.4 and 5.5 exactly as they were produced. We see from the values of 

R2 that 25% and 29% of the variation in the data is explained by the respective models. 

This means that for each model about one quarter of the total sum of squared errors about 

the mean can be attributed to the regression model. One of the first considerations is to 

determine if the model is significant. In the ANOV A table in Output 5.4 the value for the 

F statistic is 34.98, which is significant at the 0.0001 level. Output 5.5 shows an F value 

for the model of 75.04, again significant at a very small level. One should not be too 

concerned about these statistics because of the large number of observations relative to 

the number of parameters in the model. This causes the error sums of squares to be 

divided by a large number of degrees of freedom, which results in a large F value. The 

predictor variables, as expected, are all significant (at the 0.0001 level). We can get an 

indication of the importance of these predictor variables by looking at the proportion of 

sums of squares attributed to them. For both models, the Type I sums of squares for the 
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fishing power factors contribute a significant amount. These sums of squares are 

calculated from the variables added-in-order method. Similarly, for both models, the 

factors contribute a significant proportion of the Type ill sums of squares. This means 

that even when they are entered last in the model, they are still found to be significant. 

Notice that the output contains a message saying that the unique estimates could not be 

found. The GLM procedure has given the parameter estimates for each ( categorical) 

effect relative to the last level of each factor in the analysis. For each of the fishing power 

factors we can estimate the difference in the log-transformed catch rates between vessels 

with the factor and vessels without by comparing the parameter estimates for the two 

levels of the factor, the last of which is always zero. 

Near the bottom of Output 5.4 we see that the parameter estimate for vessels without CES 

is -0.11, with a standard error of 0.024, and the parameter estimate for vessels without 

radar is -0.18, with a standard error of 0.026. From Output 5.5 we see that the parameter 

estimate for vessels without GPS is -0.17, with a standard error of 0.020. These three 

estimates are all significant and their confidence intervals do not include 0, even at the 

0.0001 level. In order to obtain the increases in catch rates associated with these 

estimates, they need to be transformed back to their original scale. These are given by: 

CES: e°.ll = 1.12 

Radar: e°.1 8 = 1.20 

GPS: e°.17 = 1.18. 
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Hence, we see that vessels with CES are catching 12% more than vessels without CES, 

vessels with radar are catching 20% more than vessels without radar, and vessels with 

GPS are catching 18% more than vessels without GPS. 

OutputS.4 

The SAS System 

General Linear Models Procedure 
Class Level Information 

Class Levels Values 

REGION 7 2 3 4 5 6 7 8 

MM 5 2 3 4 5 6 

SEASON 6 8283 8384 8485 8586 8687 8788 

PULL 3 1 2 3 

DEPTHCAT 3 2 3 4 

COLECH01 2 0 1 

RADAR1 2 0 1 

Number of observations in data set= 4021 

NOTE: Due to missing values, only 3700 observations can be used in this analysis. 
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The SAS System 

General Linear Models Procedure 

Dependent Variable: LCATRATE 
Weight: POT 

Source DF Sum of Squares Mean Square F Value Pr> F 

Model 35 33765.67163460 964.73347527 34.98 0.0001 

Error 3664 101041.11798123 27.57672434 

Corrected Total 3699 134806.78961583 

R-Square c.v. Root MSE LCATRATE Mean 

0.250475 -1433. 901 5.25135452 -0.36622840 

Source DF Type I SS Mean Square F Value Pr> F 

REGION 6 10557.35166180 1759.55861030 63.81 0.0001 
MM 4 6718.58817340 1679.64704335 60.91 0.0001 
SEASON 5 4725.06157633 945.01231527 34.27 0.0001 
PULL 2 1059.54938869 529.77469434 19. 21 0.0001 
DEPTHCAT 2 611.17905626 305.58952813 11.08 0.0001 
REGION*MM 14 5606.15311515 400.43950822 14.52 0.0001 
COLECH01 3261.76258818 3261.76258818 118. 28 0.0001 
RADAR1 1226. 02607 480 1226.02607480 44.46 0.0001 

Source DF Type III SS Mean Square F Value Pr> F 

REGION 6 1572. 13273351 262.02212225 9.50 0.0001 
MM 4 2445.52559422 611.38139855 22.17 0.0001 
SEASON 5 5745.03277827 1149.00655565 41.67 0.0001 
PULL 2 1407.60020686 703.80010343 25.52 0.0001 
DEPTHCAT 2 531 . 14282441 265.57141221 9.63 0.0001 
REGION*MM 14 5749.78005250 410.69857518 14.89 0.0001 
COLECH01 1 566.11345103 566.11345103 20.53 0.0001 
RADAR1 1226.02607480 1226.02607480 44.46 0.0001 

T for HO: Pr> ITI Std Error of 
Parameter Estimate Parameter=O Estimate 

INTERCEPT -0.074436081 B -0.93 0.3501 0.07964927 
REGION 2 0.015514820 B 0.03 0.9750 0.49486177 

3 -2.108111741 B -5.37 0.0001 0.39275568 
4 -0.485289780 B -2.71 0.0068 0 .17930907 
5 -0.284493170 B -0.62 0.5350 0.45857180 
6 -0.407859554 B -3.33 0.0009 0 .12246231 
7 0.076974772 B 0.85 0.3929 0.09008377 
8 0.000000000 B 

MM 2 0. 1041 57666 B 1. 71 0.0880 0.06103436 
3 0.182810035 B 3.11 0.0019 0.05882655 



92 

The SAS System 

General Linear Models Procedure 

Dependent Variable: LCATRATE 

T for HO: Pr> ITI Std Error of 
Parameter Estimate Parameter=O Estimate 

MM 4 0.055263581 B 0.98 0.3267 0.05633329 
5 -0.214261875 B -3.44 0.0006 0.06232127 
6 0.000000000 B 

SEASON 8283 0.113326260 B 3.72 0.0002 0.03048087 
8384 -0.057085364 B -1 . 81 0.0703 0.03153325 
8485 -0.251984468 B -8.05 0.0001 0.03131107 
8586 -0.215366898 -7.69 0.0001 0.02799944 
8687 -0 .140106530 -4 .14 0.0001 0.03382545 
8788 0.000000000 

PULL 1 -0.143822123 -5.33 0.0001 0.02698638 
2 -0.011632800 -0.45 0.6560 0.02610922 
3 0.000000000 

DEPTHCAT 2 -0.160642313 -2.98 0.0029 0.05397116 
3 -0.030496211 -0.49 0.6222 0.06189334 
4 0.000000000 

REGION*MM 2 2 -0.001459026 -0.00 0.9977 0.50515103 
2 3 0.000000000 
3 4 0.000000000 
4 2 0. 133295850 0.68 0.4992 0.19723978 
4 3 0.000000000 
5 2 0.031610413 0.07 0.9455 0.46248270 
5 3 0.531841852 1.15 0.2487 0.46098361 
5 4 0.860778151 1.87 0.0616 0.46034261 
5 5 0.940003529 1 .96 0.0496 0.47856709 
5 6 0.000000000 
6 2 0. 113255450 0.85 0.3956 0 .13331382 
6 3 0.566833490 4.42 0.0001 0 .12814060 
6 4 0.648249318 5.09 0.0001 0 .12732205 
6 5 0.604504747 4.12 0.0001 0 .14655644 
6 6 0.000000000 
7 2 -0 . 145308334 -1.43 0.1526 0.10156784 
7 3 0.025202401 0.25 0.8034 0.10121243 
7 4 -0.034605430 -0.36 0.7214 0.09702936 
7 5 -0 .139917143 -1 .23 0.2172 0.11335367 
7 6 0.000000000 
8 2 0.000000000 
8 3 0.000000000 
8 4 0.000000000 
8 5 0.000000000 
8 6 0.000000000 

COLECH01 0 -0 .109851025 B -4.53 0.0001 0.02424509 
1 0.000000000 B 

RADAR1 0 -0.176607211 B -6.67 0.0001 0.02648683 
0.000000000 B 

NOTE: The X'X matrix has been found to be singular and a generalized inverse was used 
to solve the normal equations. Estimates followed by the letter 'B' are biased, 
and are not unique estimators of the parameters. 
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The SAS System 

93 

General Linear Models Procedure 
Class Level Information 

Class Levels 

REGION 7 

MM 5 

SEASON 3 

PULL 3 

DEPTHCAT 3 

SNAVGPS1 2 

Values 

2 3 4 5 6 7 8 

2 3 4 5 6 

8990 9091 9192 

1 2 3 

2 3 4 

0 1 

Number of observations in data set 8791 

NOTE: Due to missing values, only 7653 observations can be used in this analysis. 



94 

The SAS System 

General Linear Models Procedure 

Dependent variable: LCATRATE 
Weight: POT 

Source OF Sum of Squares Mean Square F Value Pr> F 

Model 41 93764.74378123 2286.94497027 75.04 0.0001 

Error 7611 231943.52712383 30.47477692 

Corrected Total 7652 325708.27090506 

A-Square c.v. Root MSE LCATRATE Mean 

0.287880 -2959.371 5.52039645 -0 . 1 8653954 

source OF Type I SS Mean Square F Value Pr> F 

REGION 6 40176.84141451 6696.14023575 219.73 0.0001 
MM 4 27470.34944210 6867.58736052 225.35 0.0001 
SEASON 2 8197.22723920 4098.61361960 134.49 0.0001 
PULL 2 1419.53882236 709.76941118 23.29 0.0001 
DEPTHCAT 2 3557.87681401 1778. 93840701 58.37 0.0001 
REGION*MM 24 10622.43642320 442.60151763 14.52 0.0001 
SNAVGPS1 2320.47362586 2320.47362586 76.14 0.0001 

Source OF Type III SS Mean Square F Value Pr> F 

REGION 6 6908. 19878283 1151 . 36646381 37.78 0.0001 
MM 4 14663.73732162 3665.93433040 120.29 0.0001 
SEASON 2 7945.93773358 3972.96886679 130.37 0.0001 
PULL 2 2673.69309077 1336.84654538 43.87 0.0001 
DEPTHCAT 2 2097.11574758 1048.55787379 34.41 0.0001 
REGION*MM 24 11017.27251140 459.05302131 15.06 0.0001 
SNAVGPS1 2320.47362586 2320.47362586 76.14 0.0001 

T for HO: Pr> ITI Std Error of 
Parameter Estimate Parameter=O Estimate 

INTERCEPT 0.031269917 B 0.43 0.6696 0.07327740 
REGION 2 0.636060723 B 2.29 0.0219 0.27738702 

3 -1.054778041 B -4.01 0.0001 0.26312559 
4 0.119568607 B 1.34 0. 1812 0.08941895 
5 0.016068370 B 0.17 0.8646 0.09420456 
6 -0.284675490 B -3.59 0.0003 0.07924358 
7 -0 . 186641204 B -2.59 0.0096 0.07206402 
8 0.000000000 B 

MM 2 0.207336093 B 2.97 0.0030 0.06975822 
3 0.236226126 B 3.52 0.0004 0.06717407 
4 0.181176843 B 2.87 0.0041 0.06315056 
5 -0 . 1881 96635 B -2.73 0.0063 0.06885323 
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Dependent Variable: LCATRATE 

T for HO: Pr> ITI Std Error of 
Parameter Estimate Parameter=O Estimate 

MM 6 0.000000000 B 
SEASON 8990 -0.066589411 B -3.26 0.0011 0.02045194 

9091 -0.279558639 B -15 .42 0.0001 0.01812953 
9192 0.000000000 B 

I PULL 1 -0.181986272 B -7.78 0.0001 0.02340174 
2 -0.060488236 B -2.51 0.0120 0.02406278 

I 3 0.000000000 B 

I DEPTHCAT 2 -0.191800785 B -4.24 0.0001 0.04527876 

I 
3 -0.002518804 B -0.05 0.9577 0.04750806 
4 0.000000000 

[ 
REGION*MM 2 2 -0. 164298891 -0.58 0.5637 0.28453991 

2 3 -0.162626241 -0.52 0.6003 0.31039788 

' 
2 4 -0 .106077474 -0.37 0.7108 0.28606405 

I 2 5 -0.091789953 -0.32 0.7481 0.28577038 

I 2 6 0.000000000 
3 2 0.090601931 0.33 0.7447 0.27819192 
3 3 0.775725987 2.86 0.0043 0.27126170 
3 4 1 . 483834921 5.30 0.0001 0.27978462 
3 5 0.574450228 1. 76 0.0782 0.32612115 
3 6 0.000000000 
4 2 -0.462114459 -4.36 0.0001 0.10608492 
4 3 -0.040684290 -0.39 0.6955 0 .10392638 
4 4 0.113728000 0.87 0.3828 0 .13028898 
4 5 0.059463602 0.36 0.7189 0 .16522196 
4 6 0.000000000 
5 2 -0.348972907 -3.13 0.0018 0. 11164129 
5 3 0.315175240 3.05 0.0023 0.10349315 
5 4 0.432465961 4.23 0.0001 0.10219906 
5 5 0.474867830 4.15 0.0001 0. 11440192 
5 6 0.000000000 
6 2 -0.326642637 -3.24 0.0012 0.10083953 
6 3 0.484046870 5.36 0.0001 0.09027303 
6 4 0.425132423 4.85 0.0001 0.08771217 
6 5 0.267717931 2.75 0.0060 0.09730871 
6 6 0.000000000 
7 2 -0.058511376 -0.64 0.5195 0.09083314 
7 3 0.308450976 3.60 0.0003 0.08563349 
7 4 0.231431400 2.84 0.0046 0.08154568 
7 5 0.208159534 2.35 0.0187 0.08847373 
7 6 0.000000000 
8 2 0.000000000 
8 3 0.000000000 
8 4 0.000000000 
8 5 0.000000000 
8 6 0.000000000 

SNAVGPS1 0 -0.170921697 -8.73 0.0001 0.01958751 
0.000000000 

NOTE: The X'X matrix has been found to be singular and a generalized inverse was used 
to solve the normal equations. Estimates followed by the letter 'B' are biased, 
and are not unique estimators of the parameters. 
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5.2.4 Residual Analysis 
In this section we examine the residuals of the models in order to validate their 

assumptions. The reliability of the percentage increases in catch rates obtained from the 

parameter estimates in the previous section are to a large extent dependent on the 

assumptions of model specification, homoscedacity, normality, and independence. The 

accuracy of those estimates may also be greatly affected by influential observations. It is 

to these matters that we will now tum. 

Consider first the residuals plotted against the predicted values of the model. Output 5.6a 

shows this plot for model A, involving CBS and radar, and Output 5.6b show the plot for 

model B, involving GPS. Both plots show a broad scatter of points with no apparent 

trend or relationship between the residuals and the predicted values. Perhaps of concern 

are the few points in the first plot which lie to the left of the main group and which may 

be exerting too much influence in the model. These points are actually having the visual 

effect of compressing the main group laterally so that the horizontal axis can 

accommodate them, and thus misleadingly causing the plot to look stretched vertically. 

We will accept that both plots display enough randomness not to warrant further 

investigation. 

The plots of the residuals against the predictor variables are considered next. Since the 

predictor variables are all categorical, we need to plot the residuals for the range of 

different levels they can take. By doing this we are actually checking if the variance of 

the underlying probability distribution is varying systematically with the predictors. All of 

the individual residuals are not plotted here, but an indication of their marginal 

distributions by plotting their mean, the first and third quantiles, and the lower and upper 

95% limits of the residuals for each level of a predictor. We present, in Output 5.7a, the 
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plot of the distribution of the residuals over the levels of the predictor, season, in model 

A. It is seen that the variability of the residuals is stable across the different seasons in the 

analysis. Output 5.7b shows the plot of the residuals over the levels of the predictor, 

depth, in model B. It is seen that the variability of the residuals is also stable for different 

ocean depths in the analysis. 

The last check performed with the residuals is to see if they resemble a normal 

distribution. Since the models assumed that the errors are normally distributed, the 

standardised residuals should have a standard normal distribution if the probability 

distribution has been correctly specified. Outputs 5.8a and 5.8b, below, show the 

distributions of the standardised residuals resulting models A and B, respectively. It 

seems that both models have residuals that resemble a normal distribution. It should be 

noted, however, that both distributions appear slightly left skewed, with positive kurtosis. 

The assessment of normality is now undertaken via a Q-Q plot, which compares how the 

distribution of the empirical errors compares with the theoretically assumed normal 

distribution. Outputs 5.9a and 5.9b show the Q-Q plots of the standardised residuals for 

models A and B, respectively. Both plots show that the residuals do not depart to any 

great extent from the line of normality. There is, however, a movement away from the 

line of normality near the extremes of the distribution; but not enough to warrant concern. 

It is likely that this feature is caused in part by the negative values of log catch rate 

resulting from the small constant added to zero catches. We will accept that the errors in 

model A and model B are normally distributed. 
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Output5.6a 

Residuals vs Predicted 

Plot of RESID*PREDICT. Legend: A= 1 obs, B = 2 obs, etc. 
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Output5.6b 

Residuals vs Predicted 

Plot of RESID*PREDICT. Legend: A= 1 obs, B = 2 obs, etc. 
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Output5.7a 

Residuals vs. Season 
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Residuals vs. Depth 
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Outputs.Sa 

RESSTU Cum. Cum. 
Midpoint Freq Freq Percent Percent 

-4.0000000000 * 7 7 0.19 0 .19 
-3.8000000000 * 6 13 0.16 0.35 
-3.6000000000 2 15 0.05 0.41 
-3.4000000000 1 16 0.03 0.43 
-3.2000000000 * 5 21 0.14 0.57 
-3.0000000000 * 8 29 0.22 0.78 
-2.8000000000 * 9 38 0.24 1.03 
-2.6000000000 * 9 47 0.24 1.27 
-2.4000000000 ** 18 65 0.49 1. 76 
-2.2000000000 *** 32 97 0.87 2.62 
-2.0000000000 **** 41 138 1. 11 3.73 
-1.8000000000 ***** 46 184 1.24 4.97 
-1 .6000000000 ****** 63 247 1. 70 6.68 
-1.4000000000 ********** 102 349 2.76 9.43 
-1 .2000000000 ************ 118 467 3.19 12.63 
-1 .0000000000 **************** 164 631 4.43 17.06 
-0.8000000000 ****************** 182 813 4.92 21.98 
-0.6000000000 ************************ 235 1048 6.35 28.33 
-0.4000000000 *************************** 266 1314 7 .19 35.52 
-0.2000000000 **************************** 283 1597 7.65 43.17 
0.0000000000 ******************************* 312 1909 8.43 51.61 
0.2000000000 ******************************** 320 2229 8.65 60.26 
0.4000000000 ***************************** 292 2521 7.89 68.15 
0.6000000000 *************************** 270 2791 7.30 75.45 
0.8000000000 ************************* 251 3042 6.79 82.24 
1.0000000000 ******************* 193 3235 5.22 87.46 
1 . 2000000000 *************** 153 3388 4.14 91.59 
1 . 4000000000 *********** 112 3500 3.03 94.62 
1 . 6000000000 ******* 74 3574 2.00 96.62 
1 .8000000000 ****** 60 3634 1.62 98.24 
2.0000000000 *** 31 3665 0.84 99,08 
2.2000000000 ** 15 3680 0.41 99.49 
2.4000000000 * 9 3689 0.24 99.73 
2.6000000000 * 5 3694 0.14 99.86 
2.8000000000 4 3698 0. 11 99.97 
3.0000000000 0 3698 o.oo 99.97 
3.2000000000 1 3699 0.03 100.00 
3.4000000000 0 3699 o.oo 100.00 
3.6000000000 0 3699 o.oo 100 .oo 
3.8000000000 0 3699 0.00 100.00 
4.0000000000 0 3699 0.00 100.00 

50 100 150 200 250 300 

Frequency 
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Output5.8b 

RESSTU 
Midpoint 
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Cum. Cum. 
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14 90 
21 111 
26 137 
37 174 
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85 370 

129 499 
152 651 
227 878 
318 1196 
363 1559 
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547 2554 
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734 4605 
672 5277 
645 5922 
534 6456 
382 6838 
266 7104 
224 7328 
121 7449 

86 7535 
46 7581 
28 7609 
20 7629 
8 7637 
7 7644 
4 7648 
2 7650 
0 7650 
0 7650 

7651 
2 7653 

0.37 
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11.47 
15.63 
20.37 
26.23 
33.37 
41.60 
50.58 
60.17 
68.95 
77.38 
84.36 
89.35 
92.83 
95.75 
97.33 
98.46 
99.06 
99.43 
99.69 
99.79 
99.88 
99.93 
99.96 
99.96 
99.96 
99.97 

100.00 



Output5.9a 

RESSTU 

2 

0 

-2 

-4 

-4 

104 

111 

AAAA 
111 
DCA 

1111 

EHF 
111 
QOF 

111 

ZZYB 
111 

ZZZA 
1111 

PZZZ 
111 

zzz 
111 

ZZZQ 
1111 

zzz 
111 

zzzz 
111 

zzz 
111 

zzz 
1111 

zzz 
111 

ZZE 
111 

ZZD 
1111 

xzc 
111 

HZP 
111 

RQ 

111 

OA 
1111 

CK 
111 

CE 
111 

D 

AC 
A 

C 

-2 0 2 

RANK FOR VARIABLE RESSTU 

NOTE: 644 obs had missing values. 6103 obs hidden. 

4 



Output5.9b 

RESSTU 

4 

2 

0 

-2 

-4 

-6 

-4 

105 

A 

A 
A 

1 1 
BB 

1111 
FEA 

1111 

CPMH 
1111 

GZZT 
11111 

zzzz 
1111 

zzzzz 
1111 

zzzzz 
1111 

zzzzz 
1111 

zzzzz 
11111 

zzzz 
1111 

zzzz 
1111 

TZZZ 
1111 

xzz 
1111 

EZZ 
11111 
wz 

1111 

ZQ 
1111 

WA 
1111 

GP 

EF 
cc 

cc 
BB 
A 

A 
AA 

-2 0 

RANK FOR VARIABLE RESSTU 

2 

NOTE: 2276 obs had missing values. 13858 obs hidden. 

4 



106 

5.3 ESTIMATION OF FISHING POWER USING GENERALISED LINEAR 
MODELS 

5.3. 1 Motivation 
This section will provide an alternative approach to the modelling of the catch and effort 

data. It will apply generalised linear models whose parameter estimates can be compared 

to the estimates obtained earlier from the classical regression models. The data exhibit 

the characteristic of an increasing variance as the mean increases. It was shown in the 

previous section that the log transformation sufficiently stabilised this relationship so that 

the assumption of constant variance in the classical linear regression model was not 

violated. Since the variance in the data varies in proportion to the square of the mean, and 

the catch rates take only non-negative values, the gamma distribution is appropriate. 

Further, instead of transforming the response variable, the original scale is retained and a 

log link function specified between the response and the systematic component of the 

model. The models will include the same predictor variables as in the previous sections, 

and the fishing power factors will be analysed over the same seasons as before. 

5.3.2 Estimation 
The catch and effort data were analysed with the SAS GENMOD procedure. Output 5.10 

shows the results for the model with CES and radar and Output 5.11 shows the results for 

the model with GPS. A criterion for assessing if the models are adequate is the scaled 

deviance, which when close to unity, suggests that the model provides a good fit. We see 

that from the results below, the scaled deviances are 1.05 and 1.06 and we can tentatively 

assume that the models are adequate. 

The analysis of residuals, however, will provide more surety about the models' 

appropriateness. The parameter estimates for the fishing power factors are 0.18 for CES, 

0.14 for radar and 0.08 for GPS. In order to obtain the increases in catch rates associated 
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with these estimates, they need to be transformed back from the log link. These are given 

by: 

CES: e°.1 8 = 1.20 

Radar: e°.14 = 1.15 

GPS: e0
·
08 = 1.08. 

Hence, these results suggest that vessels with CES are catching 20% more than vessels 

without CES, vessels with radar are catching 15% more than vessels without radar, and 

vessels with GPS are catching 8% more than vessels without GPS. 

OutputS.10 

The SAS System 

The GENMOD Procedure 

Model Information 

Description 

Data Set 
Distribution 
Link Function 
Dependent variable 
Scale Weight Variable 
Observations Used 
Invalid Response Values 
Missing Values 

Value 

RLDAT. LBGE7195 
GAMMA 
LOG 
CATRATE 
POT 
3697 
3 
321 

Class Level Information 

Class Levels Values 

REGION 7 2 3 4 5 6 7 8 
MM 5 2 3 4 5 6 
SEASON 6 8283 8384 8485 8586 8687 8788 
PULL 3 1 2 3 
DEPTHCAT 3 2 3 4 
COLECH01 2 0 1 
RADAR1 2 0 1 
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Criteria For Assessing Goodness Of Fit 

Criterion DF Value Value/OF 

Deviance 3661 96291 .1523 26.3019 
scaled Deviance 3661 3871.8940 1 .0576 
Pearson Chi-Square 3661 99844.5600 27.2725 
Scaled Pearson X2 3661 4014.7775 1 .0966 
Log Likelihood -1486.2476 

Analysis Of Parameter Estimates 

Parameter DF Estimate Std Err ChiSquare Pr>Chi 

INTERCEPT 0 .1519 0.0747 4.1397 0.0419 
REGION 2 -0.0837 0.4700 0.0317 0.8587 
REGION 3 -1.2435 0.4562 7.4286 0.0064 
REGION 4 -0.4089 0.1702 5.7679 0.0163 
REGION 5 -0.0081 0.4357 0.0003 0.9851 
REGION 6 -0.5477 0. 1161 22.2589 0.0001 
REGION 7 1 -0.0094 0.0853 0.0121 0.9123 
REGION 8 0 0.0000 0.0000 
MM 2 -0.0527 0.0581 0.8218 0.3646 
MM 3 0.0322 0.0562 0.3291 0.5662 
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The SAS System 

Analysis Of Parameter Estimates 

Parameter OF Estimate Std Err ChiSquare Pr>Chi 

MM 4 -0.1027 0.0537 3.6617 0.0557 
MM 5 1 -0.3257 0.0592 30.2375 0.0001 
MM 6 0 0.0000 0.0000 
SEASON 8283 0.1283 0.0293 19.1723 0.0001 
SEASON 8384 -0.0652 0.0298 4.7745 0.0289 
SEASON 8485 -0.2222 0.0297 55.9617 0.0001 
SEASON 8586 -0.2274 0.0268 72.1368 0.0001 
SEASON 8687 1 -0.1269 0.0322 15.5682 0.0001 
SEASON 8788 0 0.0000 0.0000 
PULL 1 -0.1743 0.0259 45.2135 0.0001 
PULL 2 1 -0.0401 0.0249 2.5960 0 .1071 
PULL 3 0 0.0000 0.0000 
DEPTHCAT 2 -0.1239 0.0500 6.1385 0.0132 
DEPTHCAT 3 1 -0.0250 0.0579 0.1868 0.6656 
DEPTHCAT 4 0 0.0000 0.0000 
REGION*MM 2 2 0.1638 0.4800 0 .1165 0.7329 
REGION*MM 2 3 0 0.0000 0.0000 
REGION*MM 3 4 0 0.0000 0.0000 
REGION*MM 4 2 1 0.1355 0.1872 0.5233 0.4694 
REGION*MM 4 3 0 0.0000 0.0000 
REGION*MM 5 2 -0.2006 0.4393 0.2085 0.6480 
REGION*MM 5 3 0.3158 0.4380 0.5198 0.4709 
REGION*MM 5 4 0.6496 0.4375 2.2044 0.1376 
REGION*MM 5 5 1 0.7764 0.4550 2.9117 0.0879 
REGION*MM 5 6 0 0.0000 0.0000 
REGION*MM 6 2 0.2945 0.1264 5.4320 0.0198 
REGION*MM 6 3 0.7293 0. 1216 35.9533 0.0001 
REGION*MM 6 4 0.8360 0.1208 47.8849 0.0001 
REGION*MM 6 5 1 0.7884 0. 1391 32.1026 0.0001 
REGION*MM 6 6 0 0.0000 0.0000 
REGION*MM 7 2 -0.0486 0.0963 0.2550 0.6136 
REGION*MM 7 3 0 .1251 0.0962 1 .6905 0.1935 
REGION*MM 7 4 0.0672 0.0921 0.5327 0.4655 
REGION*MM 7 5 1 -0.0471 0.1076 0.1920 0.6613 
REGION*MM 7 6 0 0.0000 0.0000 
REGION*MM 8 2 0 0.0000 0.0000 
REGION*MM 8 3 0 0.0000 0.0000 
REGION*MM 8 4 0 0.0000 0.0000 
REGION*MM 8 5 0 0.0000 0.0000 
REGION*MM 8 6 0 0.0000 0.0000 
COLECH01 0 1 -0.1389 0.0235 35.0055 0.0001 
COLECH01 1 0 0.0000 0.0000 
RADAR1 0 1 -0.1648 0.0257 41 .1395 0.0001 
RADAR1 0 0.0000 0.0000 
SCALE 0.0402 0.0009 

NOTE: The scale parameter was estimated by maximum likelihood. 
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The SAS System 

LR Statistics For Type 1 Analysis 

Source Deviance DF Chi Square Pr>Chi 

INTERCEPT 130831.085 0 
REGION 118685.443 6 381.7194 0.0001 
MM 113404.203 4 177. 7086 0.0001 
SEASON 108780.145 5 162.1950 0.0001 
PULL 107591.682 2 42.7495 0.0001 
DEPTHCAT 107237.705 2 12.8199 0.0016 
REGION*MM 101500.604 14 213.6193 0.0001 
COLECH01 97308.3980 1 163.5309 0.0001 
RADAR1 96291 .1523 40.6980 0.0001 

LR Statistics For Type 3 Analysis 

Source DF ChiSquare Pr>Chi 

REGION 6 35.3109 0.0001 
MM 4 81.3989 0.0001 
SEASON 5 219.6821 0.0001 
PULL 2 65.1093 0.0001 
DEPTHCAT 2 12.5908 0.0018 
REGION*MM 14 236.8838 0.0001 
COLECH01 34.8870 0.0001 
RADAR1 40.6980 0.0001 
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The GENMOD Procedure 

Model Information 

Description Value 

Data Set 
Distribution 

RLDAT.LBGE7195 
GAMMA 

Link Function 
Dependent variable 
Scale Weight Variable 
Observations used 
Invalid Response Values 
Missing Values 

LOG 
CATRATE 
POT 
7636 
17 
1138 

Class Level Information 

Class Levels Values 

REGION 7 2 3 4 5 6 7 8 
MM 5 2 3 4 5 6 
SEASON 3 8990 9091 9192 
PULL 3 1 2 3 
DEPTHCAT 3 2 3 4 
SNAVGPS1 2 0 1 

Criteria For Assessing Goodness Of Fit 

Criterion DF Value 

Deviance 7594 205579.3364 
Scaled Deviance 7594 8093.0381 
Pearson Chi-Square 7594 200634.2722 
Scaled Pearson X2 7594 7898.3658 
Log Likelihood -5342.3651 

Analysis Of Parameter Estimates 

Value/OF 

27.0713 
1.0657 

26.4201 
1 . 0401 

Parameter DF Estimate Std Err ChiSquare 

INTERCEPT 0.1985 0.0682 8.4589 
REGION 2 0.6947 0.2533 7.5241 
REGION 3 -0.4553 0.2553 3. 1810 
REGION 4 0. 1381 0.0817 2.8552 
REGION 5 0.1267 0.0860 2. 1671 
REGION 6 -0.2273 0.0728 9.7557 
REGION 7 -0.0899 0.0659 1.8636 
REGION 8 0 0.0000 0.0000 
MM 2 0.1585 0.0638 6.1647 
MM 3 0.1827 0.0614 8.8458 
MM 4 0.1166 0.0577 4.0803 

Pr>Chi 

0.0036 
0.0061 
0.0745 
0.0911 
0.1410 
0.0018 
0.1722 

0.0130 
0.0029 
0.0434 
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Analysis Of Parameter Estimates 

Parameter OF Estimate Std Err ChiSquare Pr>Chi 

MM 5 1 -0.1791 0.0629 8.1063 0.0044 
MM 6 0 0.0000 0.0000 
SEASON 8990 -0.0743 0.0191 15 .1260 0.0001 
SEASON 9091 1 -0.2733 0.0167 266.6342 0.0001 
SEASON 9192 0 0.0000 0.0000 
PULL 1 -0.2296 0.0214 114.6479 0.0001 
PULL 2 1 -0 .1029 0.0220 21.8341 0.0001 
PULL 3 0 0.0000 0.0000 
DEPTHCAT 2 1 -0.1976 0.0438 20.3393 0.0001 
DEPTHCAT 3 1 -0.0173 0.0461 0.1402 0.7081 
DEPTHCAT 4 0 0.0000 0.0000 
REGION*MM 2 2 0.0716 0.2608 0.0753 0.7838 
REGION*MM 2 3 -0.2010 0.2835 0.5026 0.4784 
REGION*MM 2 4 -0.0746 0.2611 0.0817 0.7750 
REGION*MM 2 5 1 -0.1443 0.2611 0.3056 0.5804 
REGION*MM 2 6 0 0.0000 0.0000 
REGION*MM 3 2 -0 .1964 0.2686 0.5350 0.4645 
REGION*MM 3 3 0.3346 0.2622 1.6289 0.2019 
REGION*MM 3 4 0.9419 0.2695 12.2143 0.0005 
REGION*MM 3 5 1 0.6516 0.3162 4.2461 0.0393 
REGION*MM 3 6 0 0.0000 0.0000 
REGION*MM 4 2 -0.3839 0.0970 15.6622 0.0001 
REGION*MM 4 3 0.0280 0.0950 0.0869 0.7681 
REGION*MM 4 4 0.2266 0. 1191 3.6198 0.0571 
REGION*MM 4 5 1 0.0046 0.1509 0.0009 0.9754 
REGION*MM 4 6 0 0.0000 0.0000 
REGION*MM 5 2 -0.3080 0 .1019 9.1346 0.0025 
REGION*MM 5 3 0.2550 0.0945 7.2778 0.0070 
REGION*MM 5 4 1 0.3747 0.0934 16.1062 0.0001 
REGION*MM 5 5 1 0.4721 0.1044 20.4354 0.0001 
REGION*MM 5 6 0 0.0000 0.0000 
REGION*MM 6 2 -0.3287 0.0924 12.6568 0.0004 
REGION*MM 6 3 0.4682 0.0828 31.9394 0.0001 
REGION*MM 6 4 0.4060 0.0804 25.4766 0.0001 
REGION*MM 6 5 1 0.2075 0.0892 5.4062 0.0201 
REGION*MM 6 6 0 0.0000 0.0000 
REGION*MM 7 2 -0.1393 0.0830 2.8157 0.0933 
REGION*MM 7 3 0.2129 0.0782 7.4035 0.0065 
REGION*MM 7 4 0.1539 0.0745 4.2713 0.0388 
REGION*MM 7 5 1 0 .1180 0.0808 2.1320 0.1443 
REGION*MM 7 6 0 0.0000 0.0000 
REGION*MM 8 2 0 0.0000 0.0000 
REGION*MM 8 3 0 0.0000 0.0000 
REGION*MM 8 4 0 0.0000 0.0000 
REGION*MM 8 5 0 0.0000 0.0000 
REGION*MM 8 6 0 0.0000 0.0000 
SNAVGPS1 0 1 -0 .1572 0.0181 75.0934 0.0001 
SNAVGPS1 0 0.0000 0.0000 
SCALE 0.0394 0.0006 
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NOTE: The scale parameter was estimated by maximum likelihood. 

LR Statistics For Type 1 Analysis 

Source Deviance OF ChiSquare Pr>Chi 

INTERCEPT 303742.323 0 
REGION 247963.563 6 1668.4214 0.0001 
MM 232078.109 4 540.1741 0.0001 
SEASON 224774.419 2 260.1944 0.0001 
PULL 222200.529 2 93.6063 0.0001 
DEPTHCAT 217985.224 2 155.5435 0.0001 
REGION*MM 207479.655 24 400.4296 0.0001 
SNAVGPS1 205579.336 74.4832 0.0001 

LR Statistics For Type 3 Analysis 

Source OF ChiSquare Pr>Chi 

REGION 6 336.7056 0.0001 
MM 4 351.7367 0.0001 
SEASON 2 275.0356 0.0001 
PULL 2 144.1641 0.0001 
DEPTHCAT 2 79.4025 0.0001 
REGION*MM 24 422.6742 0.0001 
SNAVGPS1 74.4832 0.0001 

5.3.3 Residual Analysis 
The generalised linear models that were estimated are further investigated by examining 

their residuals. Output 5.12 shows the residual analysis for the first model. Shown first is 

the output is the plot of the deviance residuals against the predicted values of the model. 

It shows no cause for concern about its randomness. Next is the output from the SAS 

UNIV ARIA TE procedure, which has given various statistics about the distribution of the 

standardised residuals, along with a histogram, boxplot and normal probability plot. The 

statistics show some departure from normality. For example the D statistic, which tests 

the hypothesis that the distribution is normal, has rejected such a hypothesis at the 0.03 

level. The plots also show some non-normal features, such as mild skewness and kurtosis 

in the histogram, while the probability plot has problems at the extremes. However, these 

departures are not gross. 



114 

Output 5.13 shows the residual analysis for the second model. First is the plot of the 

deviance residuals against the predicted values of the model. It also shows no cause for 

concern about its randomness. Next is the output from the SAS UNIVARIATE 

procedure, which as in the first model, show some departure from normality. The 

probability plot again seems reasonable except at the extremes. These sorts of problems 

are virtually inevitable with this kind of data, and if we are willing to accept this then we 

can also accept the models with some degree of caution. 
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Output5.12 

Plot of RESDEV*PRED. Legend: A= 1 obs, B = 2 obs, etc. 
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NOTE: 324 obs had missing values. 41 obs hidden. 



116 

Univariate Procedure 
Variable=STDDEV 

Moments Quantiles(Def=5) 

N 3696 Sum Wgts 3696 100% Max 4.007469 
Mean -0.15302 Sum -565.571 75% Q3 0.511196 
Std Dev 1.018463 variance 1.037267 50% Med -0.16966 
Skewness 0.058513 Kurtosis 0.400482 25% Q1 -0.81882 
USS 3919.245 css 3832.7 0% Min -4.22759 
CV -665.565 Std Mean 0.016752 
T:Mean=O -9.13431 Pr>ITI 0.0001 Range 8.235058 
Num A= 0 3696 Num > 0 1588 Q3-Q1 1 .330016 
M(Sign) -260 Pr>=IMI 0.0001 Mode 0.214464 
Sgn Rank -612104 Pr>=ISI 0.0001 
D:Normal 0.015489 Pr>D 0.0305 

Extremes 

Lowest Obs Highest Obs 
-4.22759( 1485) 3.275488( 3850) 
-4.11667( 1216) 3.286267( 1970) 
-4.09153( 1867) 3.448541( 1734) 
-3.66978( 3378) 3.555491( 2696) 
-3.52825( 906) 4.007469( 1234) 

Missing Value 
Count 325 
% Count/Nobs 8.08 

Univariate Procedure 

Variable=STDDEV 

Histogram 
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Normal Probability Plot 
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OutputS.13 

Plot of RESDEV*PRED. Legend: A= 1 obs, B = 2 obs, etc. 
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Univariate Procedure 
Variable=STDDEV 

Moments Quantiles(Def=5) 

N 7636 
Mean -0.16656 
Std Dev 1.019323 
Skewness -0.14579 
USS 8144.748 
CV -612 
T:Mean=O -14.2785 
Num A= 0 7636 
M(Sign) -510 
Sgn Rank -2652307 
D:Normal 0.022428 

Sum Wgts 7636 100% Max 6.060338 
Sum -1271 . 82 75% Q3 0.480152 
Variance 1 .03902 50% Med -0.14743 
Kurtosis 1.272961 25% Q1 -0.79637 
css 7932.918 0% Min -6.7659 
Std Mean 0.011665 
Pr>ITI 0.0001 Range 12.82623 
Num > 0 3308 Q3-Q1 1 .276521 
Pr>=IMI 0.0001 Mode -0.77006 
Pr>=ISI 0.0001 
Pr>D <.01 

Extremes 

Lowest Obs Highest Obs 
-6.7659( 2523) 3.361867( 

-5.10934( 380) 3.734845( 
-4.44466( 3223) 4.715648( 
-4.44122( 6464) 4.950618( 

-4.4112( 5669) 6.060338( 

Missing Value 
Count 1155 

13.14 % Count/Nobs 

Univariate Procedure 
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Normal Probability Plot 
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Chapter6 

CONCLUSION 

6.1 DISCUSSION OF ESTIMATES OF FISHING POWER FACTORS 
Having fitted both general linear regression and generalised linear models to the catch and 

effort data, it is time to make a comparison of the two methods, their parameter estimates 

and their usefulness for modelling this kind of data. The regression followed standard 

procedures for modelling catch and effort data, using the well-established log 

transformation. It assumed normality in the error structure after the log transformation. 

The generalised linear model assumed a gamma structure in the model but also made use 

of the log link function between the response and the systematic part of the model. The 

variance function in the gamma model proved to have a similar effect to the log 

transformation. The results indicated that the method of linear regression with the log 

transformation yielded results and residual characteristics which were, in general, similar 

to those obtained by the generalised linear models method. The residual analyses for both 

methods yielded reasonably acceptable results. We saw that after the models were fit 

there were still some mild non-normal characteristics, but, in the main, these were 

acceptable. 

It was likely that, with data of a biological and environmental nature as these, our models 

were not going to be very successful at accounting for much of the variation in the data. 

This does not, however preclude their usefulness in estimating the effects of certain 

variables of interest. Taken over many observations and seasons, the effect of 
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environmental factors on the model need not be of much concern because all vessels have 

to operate within the context of the same conditions. It would, however, be worthwhile to 

investigate the possibility that fishing power factors have differential effects under 

different environmental conditions. For example, a GPS may be more effective when the 

windspeed is greater. The models in this research, nevertheless, were intended not to 

explain all of the variation in the system but to obtain measures of how vessels are fairing 

relative to one another within the same environmental conditions of that system. With 

only a few variables and a large number of observations, we saw that the models and their 

parameter estimates were significant. 

The parameter estimates obtained from both methods were all negative for vessels 

without the fishing power factors and showed that the fishing power factors were having a 

positive effect for vessels equipped with them. The regression models yielded estimates 

of fishing efficiency increases of 12%, 20% and 18% for CES, radar and GPS, 

respectively. The generalised linear models yielded corresponding efficiency increases of 

20%, 15% and 8%. What can we say about the differences in these estimates? We know 

that they indicate positive fishing power effects, but we are not sure as to the extent of 

those effects. If we take the nature of the data and methodology into account, it may be 

prudent not to try to quantify these effects to a definite level. It would be acceptable to 

say that these particular pieces of equipment yield catch rates which are approximately 

15% greater. On the other hand, in order to incorporate fishing power into the stock 

assessment models, the results need to be quantified at some level so that fishing effort 

can be standardised for each season. 

The results in this study compare similarly to findings of previous research. The 

stabilisation of the variance using the log transformation confirmed the findings of 
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Gulland ( 1956) and Beverton and Holt ( 1957) that such a transformation was appropriate 

for catch and effort data. The use of least squares regression methods found in Allen and 

Punsley (1984) and Large (1992), which modelled the catch rate as a function of several 

variables, including fishing power factors, is supported by this research, which also 

validates their use for this kind of analyses. The estimated impact of GPS on the catch 

rates was similar to that estimated by Robins et al. ( 1996) for the northern prawn fishery 

fleet. The overall results for the impact of fishing power factors is also supportive of the 

preliminary analysis of the fishing power increases in the,western rock lobster fishery 

(Brown et al., 1995). 

In this dissertation it was necessary to limit to scope of the fishing power analysis. These 

limitations included the number of fishing power factors and other variables in the 

models, and the number of observations were restricted to certain geographical regions, 

months of the year and seasons. However, in order to incorporate fishing power into the 

abundance models it may be necessary to perform a thorough analysis of all fishing power 

factors, over a comprehensive range of spatial and temporal dimensions, and it is 

acknowledged that more research into this area is necessary. However, from the results in 

this research, we can be satisfied that there are increases in efficiency associated with the 

factors used in this study, and that these can be applied to the current effort estimates of 

the fishery at least on an experimental basis. 

6.2 IMPLICATIONS FOR THE FISHERY 
The findings of this research are useful for assessing the relative fishing power of the fleet 

in the western rock lobster fishery. The fishing efficiency increases can be applied to the 

models which estimate the overall effort being applied in the fishery. The model by 

Phillips and Brown ( 1989) which takes into account the spatial and temporal variation in 
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fishing effort could incorporate the estimated increases in fishing power in its effective 

effort calculations. Further, the abundance models which use those effort figures, for 

example, Walters et al. (1993), will be better able to describe and predict the fishery's 

course, and hence be better equipped to serve its management. 
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APPENDIX A 

West coast of Western Australia showing western rock lobster fishing zones. 
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