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“ABSTRACT

In this thesis, an intelligent fuzzy logic system using genetic algorithms for the
prediction and modelling of interest rates is developed. The proposed system uses a
Hierarchical Fuzzy Logic system in which a genetic algorithm is used as a training
method for learning the fuzzy rules knowledge bases.

A fuzzy logic system is developed to model and predict three month quarterly
interest rate fluctuations. The system is further trained to model and predict interest
rates for six month and one year periods. The proposed system is developed with
first two, three, then four and finally five hierarchical knowledge bases to model and
predict interest rates. '

A Feed Forward Fuzzy Logic system using fuzzy logic and genetic algorithms is
developed to predict interest rates for three months periods. A back-propagation
Hierarchical Neural Network system is further developed to predict interest rates for
three months, six months and one year periods. These two systems are then
compared with the Hierarchical Fuzzy Logic system results and conclusions on their
accuracy of prediction are compared.

H



ACKNOWLEDGMENTS

I would like to thank the support of my supervisors, Dr Masoud Mohammadian of
Umversny of Canberra and Dr Jim Millar of Edith Cowan University for their
ongoing support and encouragement.

I would also like to thank my friends for their support during the last few years,
~ Their friendship and encouragement helped me through this thesis.

Finally, but definitely not least, I want to thank my family. Their support and
encouragement was always there, helping me to overcome the frustration’s that are
unavoidable during any intensive work. They can always make me see the lighter
side of things and cheer me up. Without their support, none of this would have been
possible.

Mark Kingham, December 1998. ,

iii



CONTENTS

LIST OF FIGURES ....covecreveeiuieriranessscsiosasanssessssesesseissssssonescenosteon Vil
LIST OF TABLES .....ccevvvrcennrssvcarersnens certesresarne et resaeer b e b e anressesties X1
PUBLICATIONS ......... Ceteetersrere et s et et tebnrentae e st aes rareeane X111
CHAPTER 1 INTRODUCTEON covroueuvsssessrissssinsrssssososssmmsssssssssssssssssssmssssssssisson 1

L.l INTRODUCTION ..ovveueerisiervirereriseessessessssniessseasesstansans srvnsssessssssasesisnsesasanesscensons |
1.2 THESIS QUTLINE v1vevevseeeeeesernessesssessesseesesesssressasesresssssssssenetsasssssorensssessnsanssvesses &

CHAPTER 2 INTELLIGENT SYSTEM TECHNIQUES.....cciiniiineiccvesinnnes 7
2.1 INTRODUCTION ..oooviirinvereesiinsiasesestesesiseesessessassoreseassensassesonneesaiosssarsessesessesssson 1
2.2 FUZZY SYSTEMS ..ouveiirieeeecaiiiisiseresssssensnsissinnasoreserssostsssssnanssisiosassensnnssssiasass 7
221 Fuzzy Operations ................ ettt st a e r et ekt nabeaseae e et 9

2.2.2  Fuzzy Expert Systems ... cetrererinrass s snstesssasnsensseresassanesssrenss 12
2.2.3  Fuzzification and Deﬁtzz:f carron..........; ...... ereraaarirsas et ennrretgeseneres 14
2.2.4  Fuzzy Inferencing.... eereee e ereeaterar et sesaaannrransranesrosssatisnaessenessessrnes 1O
2.3 GENETIC ALGORITHM S ..coriiriiiiiiresssnmssssscsnsiesssssnsseisassoneas reressseernran 21
2.3.1  Overview of Genetic AIGOFIUNMS ....cc..cocoovveireeeieieiesiiee et issee e senens 22
2.3.2  Encoding and Genetic Operators.........cvvninrciinerecmineniivsseneens 24
2.4 ARTIFICIAL NEURAL NETWORKS ....cootiirirerrsirnesinmiessormmnssoesrinessssssssscsasases 28
2.4.1 Biological Aspects Of ANN'S. ..c..coccocovvorivirrnerirnecnns s 29
2.4.2  Artificial Neural Networks ...........cvevvneen. JRTRR eeererseresseanes 32
2.4.3  Summation Function ............ e e bt sttt et s b e s don e 34
2.4.4  ACHVAHON FURCHION.....ccoooovoiieiniiieiite e aeriiite e es s svee s s et enns s beens 35
2.4.5  Learning teChRIGUES .........ic.ovcvevioiceiriiii et e 37
2.4.6 Backpropagation...............c...cene. e e e ettt e s beata et esearrers 38
247 ReCA ...ttt e e s e 41

CHAPTER 3 HYBRID INTELLIGENT SYSTEMS . . 42
3.1 INTRODUCTION svvreeieriiritcisanrinesnreessssmsissessossssessnnnsserssssessassssnestssessessanassossias 42
3.2 HYBRID SYSTEMS c.corerrurerriniiieccscinns eeererre s eet it aaas e e resre e setabeestetsenenaterares 42
3.3 HYBRID NEURAL NETWORKS AND GENETIC ALGORITHM...cocovvrrarnirnreesrceneees 43
3.4  HyYBRID NEURAL NETWORKS AND FUZZY LOGIC ....c.ccccconnicintininnvcnmnracncannnnne 45
3.5 HyBRID Fuzzy LOGIC AND GENETIC ALGORITHM ..vvveermrnrens ceritarmneesessnnencees 48

3.5.1  Tuning Fuzzy Membership FURCHONS .............ovorvevereveereeeeeorerssnsrsenss IO
3.5.2 Finding Fuzzy Rules by Genetic Algorithms.............coccovvnvininianiinnn. 33
3.5.3  Encoding and Decoding of Fuzzy rules by GAs.....ccevevcciivivnnnninnn. 54

- CHAPTER 4 INTEREST RATE PREDICTION USING INTEGRATED FL

AIND GAS cooeievcirriceennnminionesseserersereistisssarsssnssnsassessossssontasssnanasesssassessan 56
4,1 INTRODUCTION couvveeveicisioreiirisiareeronssssrassnssesssrssesssssssussssssssssssssssssassnsssssssessnes 56
42 ECONOMIC INDICATORS ...oivierranrerreemaeerreeesieiesssieesssnsresssnsseesensseesrssssssnsssnsraesns 56

B 2T THEEESE ROIE ......ocooiieiiiiiiee sttt eveeetaearee et e es e ssesesee e s e et s s rosiens 56

iv



4.2.2  Unemployment Rate ..., 57

.23 JOD VAOQRUICE. ..ot s s 57
424 Gross DOmestic PPOGUCE .....c...cc..ovvviiiricriinine s seieeitesastesees e naaenans 58
4.2.5  Consumer Price Index.........c.c.ooviiicciniscrcesisiiiias i 38
4.2.6  Household Saving Ratio.............cc.cccoommiieriiinesecvieiseiieveseoreisiinanacsianenne 59
4.2.7 Home Loans ........ocoecveeviiiiiimniecviniiiinns b ret bt tetto e et e ey e aaatenens 59
4.2.8  Average Weekly Farnings .........covcevivvinviniiiiniiiciimis e 61}
F.2.9  CUIPCHE ACCOUI .....oooooioreiorieeenes et eeeiveeas vrsstsae s tsaet s it ass s esartras s staeesnas 60)
4.2.10 Trade Weighted INdex ...........ccocooeeereviciiinnioineirinniiienisveenns OPTURN 61
4.2.11 RBA Commodity Price INAex ................civeomivcmeriinirarieciniovesinininnans 61
4212 Al Industrial Index ... 6l
4.2.13  Company Profits .........ccooovviciirinciiiiicii i, 62
4.2.14 New Motor Vehicle RegisStrations ............c.oovvcccvevivinvevivars e e 62
43 Fuzzy LOGIC AND GENETIC ALGORITHMS FOR THE PREDICTION OF INTEREST
44 IDENTIFY THE INPUTS AND OUTPUTS .. 63
4.5  PRE-PROCESS DATA ccooocviiiiiciiieessnen e rerae s crrersstsetnes s s istss s iesien e 65
4.6 Fuzzy MEMBERSHIP FUNCTIONS... ceteeeneeessrassasesesssssessneressrasssserasaneresens GO
4.7 INITIALISE FUzZzy LogGIC KNOWLEDGE BASE ................................................. 70
4.8 GENETIC ALGORITHM PARAMETERS ...oiieiiiieeecrevsinveneeriesinncsseervivesonsns ssvassss 72
4.9 LEARNING THE FKB WITH A GENETIC ALGORITHM......o0crvcen. essssian e nseaans 75
4,10 TESTING FKB ON INTEREST RATE TEST SET...rvvvremeremrciisrererseeareosesessnssenens 82
CHAPTER 5 HIERARCHICAL FUZZY LOG]"_C SYSTEM...... 84
5.1 INTRODUCTION ...itiiiviisiiiisestcnninsieesstsesssmeionarsserossnantentssssmmessnnss sassnstis snsensnsns 84
5.2 HIERARCHICAL FUZZY LOGIC SYSTEMS ...ooivvvviriiirereemnininisisssssssnssiassesssesns 87
5.3 LEARNING A Fuzzy KNOWLEDGE BASE FOR EACH FUZZY LOGIC SYSTEM
GROUP.....iiieiisisirssinsnserrasnnomsestorterisssssssasisssssssassssssesanssssssisntesssstommessssessststsserenmnssssners 91
3.3.1  Country Knowledge Base.............cccovieviniinceccnciinininionsinereineesenconeas 91
5.3.2 Company Knowledge Base..................cccoviiviecivniininiseeecivirssn s 93
5.3.3  Employment Knowledge Base..............c.ccccconevioviinriosiivninenionnnn, 95
- 5.3.4  Savings Knowledge Base.............ccooiivoviccinioniniesseeneerieennns 98
5.3.5 Foreign Knowledge Basé...........c.o.ovnne... e renas 100
5.4 BUILDING THE HIERARCHY BY COMBINING THE FUZZY LOGIC SYSTEMS ..... 103
35.41  Two Group Hierarchy..........covioooviccnvnniinnnninannnesecenccccennennnnn, 104
342 Three Group Hterarchy 106
.43  Four Group Hierarchy.... reererirsenssesessnennsensesivssaenressnssnssseensrenios J 09
544 Final Combined H:erarchy rreeerrssiresseennens 112
5.5 CONCLUSIONS ON HIERARCHICAL Fuzz*;r LOG[C SYSTEMS .......................... 115
. CHAPTER 6 FEED FORWARD FUZZY LOGIC SYSTEM 118
S 6.1 INTRODUCTION .ot vresicsietirestressonseosessmssssnsessecssses sasomsnesmonesas sessesesesssssenns 118
6.2 FOREIGN GROUP.....cciiiierrerersssesiereiesesraatsississsssssssors sisssssassonesss s arssesessnsssnns 121
6.3 TwoO GROUP FEED FORWARD FUZZY LOGIC STRUCTURE .....convunsimnrenscnnenne 122
6.4 THREE GROUP FEED FORWARD Fuzzy Locic STRUCTURE croveveiirerrscsnscones 124
6.5 FoUR GrouP FEED FORWARD Fuzzy LOGIC STRUCTURE.......oveeimirrvenmrennas 126



6.6 FivE GROUP FEED FORWARD FUZZY LOGIC STRUCTURE vvvvverciiveerseremreeensiess 128
6.7 COMPARISON OF FEED FORWARD Fuzzy LOGIC SYSTEM WITH HIERARCHICAL

FUZZY L OGIC SYSTEMuttuiiiiitiiieimeemrieseriisssisietsomnnnresnsmresstssssstsssstsmsmsonntenasssssnrssssasisnn 131
CHAPTER 7 ARTIFICIAL NEURAL NETWORK FOR PRLDICTION OF
INTEREST RATES o ottiiitirccssssssienesssansssonsrosnsssssssisassssesssssosstossesssstsnssssanssssossssnns 134

7.1 INTRODUCTION 11vovvereeesosseesecsssssssseosssmsssssessssssssossssssosssosssssssssossssssensssrssossess 1 34
7.2 PRE-PROCESS IDATA coocriivetieeeeeeeiarevsrssremssesmssmeneseaessensasensnnessssrsssssennees | 33

7.2.1  Calculate DIFfErence ... .....ooovivuvveeeeiiinciiveneeviieeesinessesssesesssesoninn 135
7.2.2  Normalise the Dait .........c.c.ccoveeorecierecir i ssers e 136
7.23  SQUASRIRC DUI ...t et et svis s snn v 136
7.2.4  Moving DIfJErence...........oocccoooiciiniiamvmiimieeiieiise e evee e senaeesians 136
7.3 TRAINING AND RESULTS OF THE NEURAL NETWORK .....c..cocce... Y 137
7.3.1  Country GFOUD .......coccoivieeorieeesrisaee st vt e srnvrs s ese s bt s ansces v 137
7.3.2  Company Knowledge Base.................coocovcemmviiiiiiiiniiccoeaeen. .. 138
7.3.3  Employment Knowledge Base................cccccocvviciviniirincniniincce. 139
- 7.3.4  Savings Knowledge Base...........ccccoovuvveroririiiiivnirin s 140
7.3.5  Foreign Knowledge Base.............. e e S s 141
7.3.6  Four Combined Hierarchical Neural Network System..................... 142
7.3.7  Final Combined Hierarchical SYstem..........c..coceveoviivconnncniieaiiienianans 143

7.4 NEURAL NETWORK WITit ALL INDICATORS ..o ivernnmeevrrrviriscsseeeerinenrnnss 145
7.5  COMPARISON OF RESULTS ..ovieevivesvitetnrisceveseriss srtemssnesnssossssssessassosseeserssserses 145

CHAPTER 8 LONG TERM PREDICTIONS.....cc.ccctvimscccrnnmmenens sossinanmsssrirssinnen 148
B.1  INTRODUCTION tieevieiciiniirs e iin e s s saes soressbesaesism e sensrbs smesenne s srnens 148
8.2 PREDICTING SIX MONTHS AHEAD USING A HIERARCHICAL Fuzzy LoGIC

CSYSTEM treeiisiiiriseinissii s csiee e s srn et st e g s en s e s eabe s sa e et ba s e ra bt ebe s brrana 148
8.2.1 Company Group prediCtion...........oovieieveieivinnvonensiiesisserssinessesinenn. 149
8.22  Country Group prediction............u.ucoccceeveneonieeinss o cossneseessoss s 150
8.2.3  Foreign Group prediction................ e e eae st e e 151
8.2.4  Savings Group prediction ............cccovcvermecinieinnvisanninens S 152
8.2.5  Employment Group prediction................ccvoeeomeveevormeorecsiinreesen. 153
8.2.6  Two Group Hierarchy............coivicvcninccceniivsieenisscoinses e 154
8.2.7 Three Group Hierarchy................ e e e 155
8.2.8 Four Group Hierarchy.......... ST SO 156
82.9  Final Combined Hierarchy.... . 1357

8 3 12 MONTH PREDICTIONS USING HIERARCHICAL FKB ................................. 158
8.3.1  Company Group prediction................cooeevvveiveeivnens s 139
8.3.2  Country Group prediction................cceciecinmnenconcriansccrensennnn. 160
8.3.3 Foreign Groupprediction......................................................: ............. 161
8.3.4  Savings Group prediction .........cawcvviieeiiieinnecnenosconesossssn s 162
8.3.5 Employment Group prediction........ecocieceeeconsieeoiosseresnsesnnnnn, 163
8.3.6  Two Group Hierarchy.........oeeeoeeeevoesereeeeeveseessieeesessessssssssssessenns . 164
8.3.7  Three Group HIerarchy...........oceivieiciccvvivinesiseernssinseesensinns 165
8.3.8  Four Group HIrarchy.....eeieeceeeevces e, 166

.83.9  Final Combined Hierarchy

vi



8.4 1.ONGTERM PREDICTION WITH NEURAL NETWORKS ..covvvvrvnrrianiinscisssnanns 168

8.4.1 6 Month Predictions with Neural NetWorks...........ccuvvvvvieiornninn, 168
84.1.1  Four Group Hu.mr(.hylﬁﬂ
8.41.2  Final Combined HICMrChY. .cooveioromvriemene e seve s messssnsre s sessensssssrssssssisssssssnssasssnssess | 701
84.1.3  AlllIndicators System .. FOTOUDUPIROTORUROTRTOURPORIN I J |

8.4.2 12 Month Pred:clrom wuh Neura! Ne!wark.s ....................................... 172

B2 Four Group HICRrChy. oo s s cnin e cie s nrnsn s stsass s sessspssassesssmsensssasns 172
8.4.2.2 Final Combined llu.mn.hy L A73
8.4.23  AllIndicators System ... 174

8.5 COMPARISON BETWEEN HILRARCH]CAL FU?’ZY LOG]C SYSTEMS AND NEURAL
NETWORKS FOR LONG TERM PREDICTIONS v.voeeeiieesiieeivireeevsansissnsessasosssssnnssnssnasress | 18

CHAPTER 9 CONCLUSION AND F{JRTHER INVESTIGATIONS....cn...un.. 177

CHAPTER 10 REFERENCES, ccvvccooenevsinssssssniviecnn reenseenssessess 180

CHAPTER 11 APPENDIX A.......... SRR, : .................. 188

vii



LIST OF FIGURES

F1GURE 2.1 TRADITIONAL SETS FOR TEMPERATURE .....coeeeeeeveveireeverreenreseseessenersssssivneenss 8
FIGURE 2.2 SIMPLE FUZZY SETS ooiviivviierriiiiseciriressssesisnssssssseseraas veossssosssnsessnsossseseees 8
FIGURE 2.3 TEMPERATURE FUZZY SETS .vevevireeiiiriinninnnsioinnnins scnssnnsneeessesecsnnens 19
FIGURE 2.4 HUMIDITY FUZZY SETS ..cvcorrvieennrinniiieminiinreinessssssnnssssssssinssenies 17
FIGURE 2.5 FUZZY INFERENCE SYSTEM wucvvevvereerresesesesssasiossssiossmsessssessssesiioernsees 18
FIGURE 2.6 SPRINKLER QUTPUTS SETS .uocvvirerernnianinnimsescisssanin s iesiss s sssscensss 19
FIGURE 2.7 CENTROID DEFUZZIFICATION METHOD ....covnininiecreniiesecessiieeinecnns 21
FIGURE 2.8 ROULETTE WHEEL SIZED ACCORDING TO FITNESS ..ovvvvivevisseeirrrrernsmiesssnes 29
FIGURE 2.9 ONE-POINT CROSSOVER «.evneernrenrreererersaerenninnannessessecsssssmsssenssssnessisersssons 20
FIGURE 2.10 MUTATION OPERATOR ...vvvvecvrersirerereossreeessiresesssnsmssessssnnsosssresssrsnsssnessiies 21
FIGURE 2.1 1 STRUCTURE OF A NEURON...vveoivveciminrriseeessseressnnrmsesnsersrsssssssrnsssssnessesanes 30
FIGURE 2.12 SYNAPSE CONNECTION .evietviermireeraseeissresssiesessessvssesessnssssssssessssssnsssesssres 30
FIGURE 2.13 NEURON LAYERS IN THE BRAIN.....coivvremieeeieeersrerennnssssssssssarnnsnessessines 31

FIGURE 2.14 FEED FORWARD NEURAL NETWORK .evucevivrereesrisiesssissessssssssnssnsmsssaseras 33
FIGURE 2.15 ARTIFICIAL NEURON ., SR UUPPPPRPUPRU. I |
FIGURE 2.16 DIFFERENT ACT[VATION FUNCTIONS ...................................................... 36
FIGURE 3.1 HYBRID NEURAL NETWORK AND GENETIC ALGORITHM ..c.ovorveeceneernsensernn 44
FIGURE 3.2 FUZZY NEURAL SYSTEM .1tivvetieseriesieieesrsessresssssessssnsssesessesssosssssssnnsersnsanes 47
FIGURE 3.3 NEURO FUZZY CONTROLLER vveccevseereiirreriecrerseinesreseestsssnsoniorsesnrnsnnsesassees 48
FIGURE 3.4 Fuzzy LOGIC SYSTEM FOR CONTROLLING A GENETIC ALGORITHM......... 50
FIGURE 3.5 USING A GA TO IMPROVE PERFORMANCE OF A FUZZY SYSTEM...c.cocceenn.s 51
FIGURE 3.6 FUZZY MEMBERSHIP FUNCTIONS OPTIMISEDBY GA ....cocviieiiiiiirnveeeiieennnns 52
FIGURE 3.7 COMBINATION OF FL. AND GAS FOR FUZZY RULE GENERATION ..o.vvvvuvnnens 53
FIGURE 3.8 FUzzY RULES ENCODED IN GA STRING .. . ...54
FIGURE 4.1 Fuzzy LOGIC/GENETIC ALGORITHM SYSTEM TO PR "DICT INTEREST RATE64
FIGURE 4.2 FUZZY MEMBERSHIP FUNCTIONS ....ooveiiieiiieeniniesrnerrricssssssssossssseoseorsensees 67

FIGURE 4.3 MEMBERSHIP FUNCTIONS FOR INTEREST RATE ..c.vvcciuiimviiesicinnniiiisnarnnnn 68
FIGURE 4.4 CONSUMER PRICE INDEX MEMBERSHIP FUNCTIONS ....cccovvuvreireessiesiissscrns 09

FIGURE 4.5 GROSS DOMESTIC PRODUCT MEMBERSHIP FUNCTIONS ..cvviiiiiieeerreorernneees 69
FIGURE 4.6 A STRING CREATED BY GA TOENCODEAFKB ..oevviviiieiiiire e 72
FiGURE 4.7 PREDICTION OF INTEREST RATE USING INITIAL FKB.....ccoovvirveeeirieiiriraens 76
FIGURE 4.8 RESULTS AFTER 50 GENERATIONS....cocevivivirirnacens e etns 8
FIGURE 4.9 RESULTS OF BEST FKB AFTER TRAINING COMPLETED. ........... verrereernreraies 79
FIGURE 4.10 MAXIMUM FITNESS OF BEST FKB AFTER EACH GENERATION.evvcoviiiaenas 80
FIGURE 4.11 INTEREST RATE PREDICTION USING TEST AND TRAINING QUARTERS ....... 82
FIGURE 5.1 EXAMPLE OF HIERARCHICAL FUZZY LOGIC STRUCTURE.......vuvereecernernne 89
FIGURE 5.2 HIERARCHICAL FUZZY LOGIC SYSTEM FOR INTEREST RATE PRED]CTION 90
FIGURE 5.3 FITNESS AMOUNT OVER TRAINING GENERATIONS ceovvvveeveerreeerieras reerreerann 94
FIGURE 5.4 PREDICTED INTEREST RATE USING FL OF COMPANY GROUP ...evvreerrnnn, 04

" FIGURE 5.5 FITNESS AMOUNTS OVER TRAINING GENERATIONS ..evvvevvereeemivrnesinrenes e 96
FIGURE 5.6 PREDICTED INTEREST RATE USING EMPLOYMENT GROUP......cceonveeevenennns 97
FIGURE 5.7 FITNESS AMOUNTS OVER TRAINING GENERATIONS ..ccirevvmunrrrereeeesennrsisannes .99
FIGURE 5.8 PREDICTED INTEREST RATE USING SAVINGS GROUP....ccemmrrmiriessreeeeeeeenias 99

FIGURE 5.9 FITNESS AMOUNTS OVER TRAINING GENERATIONS FOR FOREIGN GroUP101

viii



FIGURE 5.10 PREDICTED INTEREST RATE USING FOREIGN GROUP......veovvereeverieseenn. 102

FIGURE 5.11 COMBINING Tw0 GROUPS IN THE HIERARCHY ... ereenees 104
FIGURE 5.12 FITNESS AMOUNTS DURING TRAINING FOR 2 GROUP HILRARCHY .......... 105
FIGURE 5.13 PREDICTED INTEREST RATE COMBINING 2 GROUPS ......rvvervrniesrenseconnans 105
FIGURE 5.14 COMBINING THREE GROUPS IN THE HIERARCHY vvvvieriiniriiiiieoecrennennn 107
FIGURE 5.15 FITNESS AMOUNT DURING TRAINING FOR 3 GROUP HIERARCHY ............ 107
FIGURE 5.16 PREDICTED INTEREST RATE COMBINING 3 GROUPS ....cvveniirnrreecrirnnenenns 108
FIGURE 5.17 COMBINING FOQUR GROUPS IN THE HIERARCHY ... T B L
FIGURE 5.18 FITNESS AMOUNT DURING TRAINING FOR 4 GROUP H!ERARCHY 111
FIGURE 5.19 PREDICTED INTEREST RATE COMBINING 4 GROUPS .. eveervsssnensnnnens 111
FIGURE 5.20 COMBINING ALL FIVE GROUPS IN THE HIERARCHY L 113
FIGURE 5.21 FITNESS AMOUNT DURING TRAINING FOR FINAL COMBINFD HIERARCHYI 14
FIGURE 5.22 PREDICTED INTEREST RATE FOR FINAL COMBINED HIERARCHY ............. 1 14
FIGURE 6.1 FEED FORWARD FuUzzy LOGIC STRUCTURE.. v 118
FIGURE 6.2 INTEREST RATE PREDICTION USING FEED FORWARD Fuzzv LOGIC
STRUCTURE.. veereernrinssnessnireensessninnns 120
FIGURE 6.3 PREDICTED INTEREST RATE BY FOREIGN GROUP treneressreessrsimnaneens 121
FIGURE 6.4 Two GrouP FEED FORWARD Fuzzy LoGiC SYSTEM eeveeermrnnneenns 122
FIGURE 6.5 RESULTS USING TWO GROUP FEED FORWARD Fuzzy LOGIC SYSTEM .... 123
FIGURE 6.6 THREE GROUP FEED FORWARD FUZzZY LOGIC SYSTEM............... erereneas 124
FIGURE 6.7 RESULTS USING A FEED FORWARD Fuzzy LOGIC SYSTEM FOR T:IREE
GROUPS ..cctcitrieseranstsi e st b e et b bas b e b n s b e bt ben s anns s sare ad 125
FIGURE 6.8 FOUR GROUP FEED FORWARD FUZZY LOGIC SYSTEM. cvvvviieeecervvrreenennss 126
FIGURE 6.9 RESULTS USING FOUR FEED FORWARD Fuzzy LOGIC GROUPS............... 127
. \GURE 6.10 FIvVE GroupP FEED FORWARD FUZZY LOGIC SYSTEM ..ccvvnicrrerencvinnnee. 129
FIGURE 6.11 RESULTS USING FIVE FEED FORWARD FUZzZY LOGIC GROUPS .............. 130
FIGURE 6.12 PARALLEL STRUCTURE OF HIERARCHICAL GROUPS ...cuveeeirrrvvessisersann. 133
FIGURE 7.1 NEURAL NETWORK PREDICTION FOR COUNTRY GROUP......ovevnrereirevmensns 138
FIGURE 7.2 NEURAL NETWORK PREDICTION FOR COMPANY GROUP ...uvecvvveereierearnn. 139
FIGURE 7.3 NEURAL NETWORK PREDICTION FOR EMPLOYMENT GROUP ......ccvveenn..... 140
FIGURE 7.4 NEURAL NETWORK PREDICTION FOR SAVINGS GROUP .......ovvviveeiveennas 141
FIGURE 7.5 MEURAL NETWORK PREDICTION FOR FOREIGN GROUP .vevvivnerererirareenns 142
FIGURE 7.6 NEURAL NETWORK PREDICTION FOR 4 COMBINED GROUPS ......cevreeveee.. 143
FIGURE 7.7 NEURAL NETWORK PREDICTION FOR FINAL COMBINE HIERARCHY ....... 144
FIGURE 7.8 NEURAL NETWORK RESULTS FOR ALL INDICATORS ...cvvverrmrevecreeersvossees . 145
FIGURE 8.1 SIX MONTH PREDICTED RATES USING COMPANY GROUP ......covceverersenn. . 149
FIGURE 8.2 SiX MONTH PREDICTED RATES USING COUNTRY GROUP........cvovevviererrans 150
FIGURE 8.3 S1X MONTH PREDICTED RATES USING FOREIGN GROUP ...vuvvrenrrecerereeseens 151
FIGURE 8.4 SIX MONTH PREDICTED RATES USING SAVINGS GROUP ..occvvvevereessrennns ... 152
FIGURE 8.5 S1x MONTH PREDICTED RATES USING EMPLOYMENT GROUP ....crevireeernans 153
FIGURE 8.6 SIX MONTH PREDICTED RATES COMBINING TWO GROUPS ...vcuvvvererienenns 154
FIGURE 8.7 S1X MONTH PREDICTED RATES COMBINING THREE GROUPS ....ccecvnvvsene. 155
FIGURE 8.8 SiX MONTH PREDICTED RATES COMBINING FOUR GROUPS .....coivrveeerirnns 156
FIGURE 8.9 S1X MONTH PREDICTED RATES FOR FINAL COMBINED HIERARCHY........ 157
FIGURE 8.10 ONE YEAR PREDICTED RATES USING COMPANY GROUP........vevvveennnnnns 150

FIGURE 8.11 ONE YEAR PREDICTED RATES USING COUNTRY GROUP evornoveveeeennn. 160

ix



FiGURE 8.12 ONE YEAR PREDICTED RATES USING FOREIGN GROUP c.vvrvrnsireciannns 161

FIGURE 8.13 ONE YEAR PREDICTED RATES USING SAVINGS GROUP ....cccvvecerenairnnneee. 102
FIGURE 8.i4 ONE YEAR PREDICTED RATES USING EMPLOYMENT GROUP.....corvnnecee. 163
FIGURE 8.15 ONE YEAR PREDICTED RATES COMBINING 2 GROUPS ..ccvvvvvrverenseenrnneen 104
FIGURE 8.16 ONE YEAR PREDICTED RATES COMBINING 3 GROUPS ...cvveevvrerrrerereresnne 165
FIGURE 8.17 ONE YEAR PREDICTED RATES COMBINING 4 GROUPS ....ocvceevivecenennnrs 106
FIGURE 8.18 ONE YEAR PREDICTED RATES FOR FINAL COMBINED GROUPS ........ccu. 167

FIGURE 8.19 NEURAL NETWORK S1X MONTH PREDICTION USING FOUR GROUPS...... 169
FiGURE 8.20 NEURAL NETWORK S1X MONTH PREDICTION USING FINAL COMBINED

HIERARCHY .. . 170
FIGURE 8.21 NEURAL NETWORK Slx MONTH PREDICTION USING ALL INDICATORS 171
F!GURF 8.22 NEURAL NETWORK ONE YEAR PREDICTION USING FOUR GROUPS ...... 172
FIGURE 8.23 NEURAL. NETWORK ONE YEAR PREDICTION USING FINAL COMBINED

HIERARCHY .. L1730
. FIGURE 8. 24 NBURAL NETWORK ONE YEAR PREDICTION USING ALL INDICATORS 174



LIST OF TABLES

TABLE 2.1 Fuzzy KNOWLEDGE BASE... .18
TABLE 2.2 ANALOGIES BETWEEN NATURAL I“VOLUI ION AND THE G[.NL rlc ALGORI THM
PARADIGM .. rerrreerrnnrennans 22
TABLE 3.1 COMPARISON OF Fuzzv SYSTEMS ANI) NrURm. Nm WORKS . vervreerens 45
TABLE 3.2 COMPARISON OF FUzZy SYSTEMS AND GENETIC ALGORIT HMS ................. 49
“TaBLE 4.1 FORMAT OF ECONOMIC DATA .. rerrtrrreeesenernsnsnnenann 03
TABLE 4.2 INTEREST RATE MEMBERSHIP I‘UNCTION BOUNDARIES verrveririeenoniinn 08
TABLE 4.3 CONSUMER PRICE INDEX MEMBERSHIP FUNCTION BOUNDARIES................ 69
TABLE 4.4 GrOSS DOMESTIC PRODUCT MEMBERSHIP FUNCTION BOUNDARIES........... 70
TABLE 4.5 GENERATION 0 STATISTICS «..vvsvuverrtiereeroneereessenesneseeasssssssssssasssessnsesssasraesns 75
TABLE 4.6 GENERATION 50 STATISTICS 1vrvevivveereemrneceeeiaeeeneenassnasessessssansessncssssssnosns 77
TABLE 4.7 GENERATION 5000 STATISTICS ..oocivvirerireoiiinssissnsisssrnesessossssessssessssessssenses 19
TABLE 5.1 AVERAGE ERROR FOR COUNTRY GROUP «...enviiiiieeceeccceeeeers e e vre e s savaenens 92
~ TABLE 5.2 AVERAGE ERROR FOR COMPANY GROUP.......ccvruiiiiiinrcniencssnesessississssns 99
- TABLE 5.3 AVERAGE ERROR FOR THE EMPLOYMENT GROUP .......ccvnveernrscineeennesnennen 98
TABLE 5.4 AVERAGE ERROR FOR SAVINGS GROUP.....ccuvveviiiiiecrrieeevnes e esreeersesonnene 100
TABLE 5.5 AVERAGE ERROR FOR FOREIGN GROUP....oivervienvrvvreirierirressssensesmncinsasnrens 103
TABLE 5.6 HIERARCHICAL SYSTEM GROUPS......... J TR OUUOITUUP ORI 103
TABLE 5.7 AVERAGE ERROR AMOUNTS FOR 2 GROUP HIERARCHY .or..vereevetrneeesenees 106
TABLE 5.8 AVERAGE ERROR AMOUNTS FOR 3 GROUP HIERARCHY ..1vevuieeeeneeeineiaronnns 109
TABLE 5.9 AVERAGE ERROR AMOUNTS FOR 4 GROUP HIERARCHY ..ovevveireevervrnninnens 112
“TABLE 5.10 AVERAGE ERROR AMOUNTS FOR FINAL COMBINED HIERARCHY ............ 1 15
TABLE 5.11 COMPARISON OF AVERAGE ERRORS «..viiiieeeiieisecnee s cvves s ssessanssessesaassane 116
TABLE 6.1 ECONOMIC INDICATORS SPLIT INTO GROUPS ....ocvcevrrrisrieseie s esreesressssienne 119
TABLE 6.2 AVERAGE ERROR FOR FOREIGN GROUP USING FEED FORWARD............... 122

TABLE 6.3 AVERAGE ERROR FOR TWO FEED FORWARD FUZZY LOGIC GROUPS ........ 123
- TABLE 6.4 AVERAGE ERROR FOR THREE FEED FORWARD Fuzzy LOGIC GROUPS .... 125
TABLE 6.5-AVERAGE ERROR FOR FOUR FEED FORWARD FUZZY LOGIC GROUPS ...... 128
TABLE 6.6 AVERAGE ERROR FOR FIVE FEED FORWARD Fuzzy LOGIC GROUPS ....... 131
TABLE 6.7 COMPARISON OF AVERAGE ERROR BETWEEN HIERARCHICAL AND FEED

FORWARD SYSTEMS .cocuimmmeecnmneneesasarssssssssessesesesressssssasssessisnsssrmssassssssssssosssnsess 132
TABLE 7.1 DIFFERENCE IN DATA FROM CURRENT QUARTER TO PREVIOUS QUARTER135
TABLE 7.2 AVERAGE ERROR FOR NEURAL NETWORK COUNTRY GROUP....coevververenne 138
TABLE 7.3 AVERAGE ERROR FOR NEURAL NETWORK COMPANY GROUP. .oovveeeeennes 139
TABLE 7.4 AVERAGE ERROR FOR NEURAL NETWORK EMPLOYMENT GROUP............ 140
TABLE 7.5 AVERAGE ERROR FOR NEURAL NETWORK SAVINGS GROUP .....cvcverrennn.. 141
"TABLE 7.6 AVERAGE ERROR FOR NEURAL NETWORK FOREIGN GROUP .....cccovevrunnnne 142
TABLE 7.7 AVERAGE ERROR FOR 4 COMBINED NEURAL NETWORK GROUPS ........... 143
TABLE 7.8 AVERAGE ERROR FOR FINAL COMBINED NEURAL NETWORK GROUPS.... 144
TABLE 7.9 AVERAGE ERROR FOR ALL INDICATORS NEURAL NETWORK...c..o.... v 145
TABLE 7.10 COMPAIRSON OF NEURAL NETWORK AND FLGA SYSTEMS....oveeveeeeviane 146
TABLE 8.1 Six MONTH AVERAGE ERRORS FOR COMPANY GROUP ...covvrvvirrrersee v 149

- TABLE 8.2 Six MONTH AVERAGE ERRORS FOR COUNTRY GROUP.......oovvvveeveerions 150
TABLE 8.3 S1X MONTH AVERAGE ERRORS FOR FOREIGN GROUP ...veovvevnscrenreenesnnins 151

xi



TABLE 8.4 SiX MONTH AVERAGE ERRORS FOR SAVINGS GROUP oot 152

TABLE 8.5 SiXx MONTH AVERAGE ERRORS FOR EMPLOYMENT GROUP .......ccovevinrnnnn 153
TABLE 8.6 SiXx MONTH AVERAGE ERRORS FOR 2 GROUP BIERARCHY ..oconvvvervviornnen. 154
TABLE 8.7 S1X MONTH AVERAGE ERRORS FOR 3 GROUP HIERARCHY .ccovvivvrr i 155
TABLE 8.8 81X MOMTH AVERAGE ERRORS FOR 4 GROUP HIERARCHY .ccoviviiiiieee e 156
TABLE 8.9 S1X MONTH AVERAGE ERRORS FOR FINAL COMBINED HIERARCHY ... 157
TABLE 8.10 ONE YEAR AVERAGE ERRORS FOR COMPANY GROUP .cvvviceveevcriiieranne 159
TABLE 8.1]1 ONE YEAR AVERAGE ERRORS FOR COUNTRY GROUP ...ovvieririeeecennannie 160
TABLE 8.12 ONE YEAR AVERAGE ERRORS FOR FOREIGN GROUP ...cvevvivvireeeeeerenranne 16]
TABLE 8.13 ONE YEAR AVERAGE ERRORS FOR SAVINGS GROUP ..cevivvvenervverversnren. 162
TABLE 8.14 ONE YEAR AVERAGE ERRORS FOR EMPLOYMENT GROUP......covvevreriiiens 163
TABLE 8.15 ONE YEAR AVERAGE ERRORS FOR 2 GROUP HIERARCHY ..vvvvvveevarvernnee.. 164
TABLE 8.16 ONE YEAR AVERAGE ERRORS FOR 3 GROUP HIERARCHY ..vuvvveverviienronens 165
TABLE 8.17 ONE YEAR AVERAGE ERRORS FOR 4 GROUP HIERARCHY ..cvvivvvvririvnn... 166

TABLE 8.18 ONE YEAR AVERAGE ERRORS FOR FINAL COMBINED HIERARCHY ....... 167
TABLE 8.19 S1X MONTH AVERAGE ERRORS FOR NEURAL NETWORK FOUR GROUP

HIERARCHY ... . 169
TABLE 8.20 Six MONTH AVERAGE ERRORS FOR NEURAL NETWORK FINAL. COMBINED

HIERARCHY ... .. 170
TABLE 8.21 Six MONTH AVERAGE ERRORS FOR NEURAL NETWORK USING ALL

INDICATORS... N i
TABLE 8.22 ONE YEAR AVERAGE ERRORS FOR NEURAL NETWORK FOUR GROUP

HIERARCHY ... W 173
TABLE 8.23 ONE YEAR AVERAGE ERRORS FOR NEURAL NETWORK FINAL COMBINED

HIER AR CH Y ttttiteiteirictreineereiiseessesessesasssssssssssesassssssasssnsses sossosrtasssrtmssssssssnesensnnte 173
TABLE 8.24 ONE YEAR AVERAGE ERRORS FOR NEURAL NETWORK USING ALL

DN D CATORS e ttrrecieervtirarnrersrberseseisstssosbtsasesesesstonssaersstbnas sossassisnssresssenarnesesanmnnte 174
TABLE 8.25 COMPARISON OF RESULTS FOR LONG TERM PREDICTIONS ....covvieneeerenens 175

Xii



Publications

Mohammadian, M., Kingham, M. & Bignali, B. (1998). “Hicrarchical and Feed Forward
Fuzzy L.ogic Systems for Interest Rate Prediction”, Journal of Computational Intelligence in
Finance, May-June, Vol 6, No. 3, pp 5-12.

Mohammadian, M., Kingham, M. & Stonier, R.J. (1998). “Prediction of Interest Rate using
Hierarchical Fuzzy Logic and Neurai Networks”, International Conference On Intelligent
Systems — ICIS’98, Paris, France, July 1-3, 1998

Kingham, M & Mohammadian, M. (1997). “Hierarchical and Feed Forward Fuzzy Logic
For Financial Modelling and Prediction”, Artificial intelligence 1997 (Al’97), Perth,
Australia, December 1-4, 1997,

Mohammadian, M., Kingham, M. & Hassan, M. (1997). “Adaptive Holding Policies For [P
Datagrams Over ATM Networks Using Fuzzy Logic and Genetic Algorithms”, Singapore
Int. Conf. On Intelligent Systems (SPICIS ’97), Singapore, February 24 -27, 1997.

Mohammadian, M., Nainar, 1. & Kingham, M. (1997). “Supervised and Unsupervised Fuzzy
Concept Learning”, 2nd ICSC Int. Sym. on Fuzzy Logic & Apps. Zurich, Switzerland,
February 12-14, 1997 . _ .

Kingham, M & Mohammadian, M. (1996). “Financial Modelling and Prediction of Interest
Razte using Fuzzy Logic and Genetic Algorithms”, Australian & New Zealand Conference
on Inteiligent Information Systems (ANZIIS’96), Adelaide, Australia, November 18-20,
1996

xiii




Chapter 1 Introduction

1.1 Introduction

The problem of modelling and predicting uncertain dynamic systems which are
subject to external disturbances, uncei‘tainty ahd sheer complexity is of considerable
interest. Conventional modelling and prcdjctibn methods involve the construction of
mg_t_hematical models describing the dynamic system to be controlled and the
application of analytical techniques to the model to derive prediction and control
léws (Vidyasagar, M".,197‘8’ Kosko, B 1992). These models work well provided the
sysferri doés meet tﬁe requirements and assumptions of synthesis techniques.
| Howevér, due to uncertainty or sheer complexity of the actual dynamic system, it is

very difficult to ensure that the mathematical model does not break down.

Fuzz} logic control is an active rés’earch area (Kosko, 1992, Ross, T. J. 1995, Karr
1'994). It ha§ been found useful when th‘e process is either difficult to predict or

- &ifﬁcult to model by ‘c'on‘vehtipnzil methods. Fuzzy modelling or fuzzy identification
| has numérous practical appli‘ca:ltions in“control, predicﬁon and inference (Zadeh. L.
_ 1965, Kosko, B. 1992).‘ The majority’of fuzzy logic systems to date have been static
and based upon knowledge -derivéd from imprecise heuristic knowledge of
. experienced operators, and where applicable also upon physical laws that governs the

dyn_amics of the process (Kosko, B. 1992, Ross, T. J. 1995),




Although its application to industrial problems has often produced results superior to
classical éontrol (Lee, C. C. 1990, Cox, E, 1993), the design procedures are limited
by the heuristic rules of the system. It is simply assumed that a significant process
change does not occur that 1s outside the fuzzy knowledge based systcm.. This
implicit assumption limits the application of fuzzy logic to the case of normal
workihg conditions for which the fuzzy krowledge based system is capable of
‘handling. - To accommodate abnormal working conditfons, however, adaptive
functiéf}_s should be introduced *o adjust the parameters of a fuzzy cohtrol system to
. meet the unexpected case that may exist in the real world (Cox, E. 1993, Ross, T. J.

1995).

Desi‘gne’rs \vvho' use fuzzy logic to develop sophisticated control systems are finding
| support ﬁoﬁ a felated technology. By including adaptive leaming technitlues in their
anangements, they are able to design systems that can adjust to environmental
'chang‘es - a critical factor in a wide array of applications (Karr, C. 1994, E. Cox

1993).

These adaptive systems obtain their pdwerj from, on the one hand, their ability to
- learn and on the other, from their capacity to be modified and extended. Striking such
~ a balance between learned responsiveness and explicit human knéwledge makes the

- system very robust, extensible, and suitable for sol\}ing a variety of problems. |




Time series are a special form of data where past values in the series may influence
future vatues, depending on .t:hc presence of underlying deterministic forces. These
forces may be characterised by trends, cycles and non-stationary behaviour in the
time series. Predictive models ‘attempt to recognise the recurring paltcms and
n'onlinear relationships. Whilsi linear models, such as those based on Eegression
- techniques, ‘have.been the basis of traditional statistical forecasting models, their

drawbacks have led to increased activity in nonlinear modelling.

Recently techniques from Artificial Intelligence fields such as Neural_Ngtworks
(NNs), Fuzzy Logic (FL) and Genetfc Algorithms (GA) have been successfully used
in the place of the complex mathematical systems for forecasting of time series
(Aioff, 1994, Bauer 1994). These new techn.iql.les are capable of respondiﬁg quickly |

and efficiently to the uncertainty and ambi guity of the system.

Fuzzy logic controllers (Kingham, M. and Mohammadian, M., 1996. Azoff, E,
v1994)> and.neﬁra_l networks can b.e trained in an adaptive manner to map past and
‘fvuvtur'evalues of a time series, and thereby extract hidden structure and relationships

 govemning the data (Lapedes, A and Farber, R., 1987).

Investors and governments alike are interested in the ability to predict future interest
" rate fluctuations from current economic data. Investors are trying to maximise their

gains on the capital markets, while government departments need to know tL.2 current




position of the economy and where it is likely to be in the near future for the well

being of a county’s people.

1.2 Thesis Outline

Chapters 2 is an introduction to the concepts and methodology behind Artificial
Intelligence and the Intelligent System areas of fuzzy logic, genetic algorithms and
neural networks which are used in the thesis. The concepts and thebry behind each

system is described as well as some examples of real world applications.

Chapter 3 introduces the concepts of intelligent hybrid systems. These are systems
- that combine two or more of the intelligent systems together. These may be hybrid
fuzzy logic/neural networks systems, hybrid genetic algorithm/neural networks

systems or hybrid fuzzy logic/genetic algorithm systems.

Chaptér 4 considers the development of hybrid fuzzy logic and genetic algorithm
systems to create a fuzzy logic knowledge base. A genetic algorithm is used to find
the rules used by the fuzzy logic systém. Tﬁis chapter also sl;ows_how the financial
data can be used to predict the fluctuations of intérest fates. The aﬁplibatibn of a
hybrid fuzzy logic and genetic algorithm jv'}syste»m for the predicﬁon of quarterly

interest rates in Australia is considered.

Chapter 5 introduces the Hierarchical Fuzzy Logic structure Ltsing a two layer model.

The different relationships between the models are discussed and reviewed. The




application of Hierarchical Fuzzy Logic for prediction of quarterly interest rates in
Australia is considered. Comparison of the results from the single layer fuzzy logic

system with the Hierarchical Fuzzy Logic system is made.

Chapter 6 considers a Feed Forward Fuzzy Logic System for interest rate prediction.
It compares the results achieved with those from the Hierarchical Fuzzy Logic

system for the prediction of quarterly interest rates in Australia,

Chapter 7 considers the use of neural networks instead of the hybrid fuzzy
logic/genetic algorithm system previously developed for interest rate prediction. A
Hierarchicél Neural Network system is developed that includes all the economic
indicators as used in the Hierarchical and Feed Forward Fuzzy Logic systems.
Finally, performance analysis and comparisons between the Hierarchical Fuzzy
Logic system, the Feed Forward Fuzzy Logic system and the Hierarchical Neural

‘Network system is performed.

Chapter 8 considers the long term prediction of interest rates by increasing the
forecast time to first six moﬁthly then yearly timé periods. Here again, Hierarchical
| and Feed Forward Fuzzy Logic systems are developed for prediction. The accuracy

| of these simulations is compared with those from the Hierarchical and the Feed
- Forward Fuzzy Logic systems for quarterly interest rate prediction. A Hierarchical

* Neural Network system for predicting six monthly then yearly time periods is then




constructed and its long term results are compared to the Hierarchical and Feed

Forward Fuzzy Logic systems.

Chapter 9 concludes this thesis and gives final conclusions and results about the -
rescargih.  The chapter also provides information about how this research may
pr’og_ré_ss in ﬁiture studies and what benefits this research may have on the results

 obtained by the system.




Chapter 2 Intelligent System Techniques

2.1 Introduction

 This chapter introduces fuzzy logic, gehelic algorithms and artificial neural networks.
It provides information on the concepts and methodology of each of these Al

techniques and how they relate to the task of modelling and prediction.

2.2 Fuzzy Systems

| Fuzzy set theory was d_eveloped by Lotﬁ Zadeh in the late 1960°s and e_aﬂy 1970°s
(Zédeh, .1965, 197.3_)‘in an attempt to simplify the extreme comple#ity associated
with the more traditional mathematical processes. According to T. J. Ross, (Ross,
1995), fuzzy set theory provides a meaﬁé for representing uncertainties. Fuzzy set |
theory can be used for modelling the kind o.f uncertainty associated with vagueness,
.imprécisim.l and/or lack of information. The underlying power of fuzzy logic is its

ability to represent imprecise values in an understandable form.

As an example, if we asked a number of people when a temperature changes from hot
to cold, we would find that the people all have different ideas as to hot and cold.
 Traditional, crisp computing divides the temperature range into two distinctivevparts,

hot and cold. There is no overlapping between the two sets (see Figure 2.1).




Hot

Membership Degree

-0 28 30 50
Temperature (C)

Figure 2.1 Traditional Sets for temperature

However, graphing the results would show us that there is no one place where a
temperature changes from Hot to Cold. In fact, from asking this group of people, we

find that the temperature ranges overlap each other (Figure 2.2).

Membership Degree

10 28 30 50
Temperature (C)

Figure 2.2 Simple Fuzzy Sets

While some people think 28 degrees is cold, others may think it is hot. There is no
one stage in which the temperature changes from cold to hot, instead fuzzy logic
assigns a degree of membership to each fuzzy set. From the above example, 28

degrees is seen to have a 0.5 membership to the set Cold while we have 0.25



membership to the set Hot. It is this simple idea that fuzzy logic is based on

_ (Welstead 1994).

Ross (Ross, 1995) states that fuzzy logic systems are rule based systems which are
capable of processing vague, imprecise data. Iﬁ other words, fuzzy logic systems can

be generalised as a form of rule based expert systems.

Below, we provide a mathematical framework for the impreciseness of fuzzy logic,

an extension of the traditional Boolean (also called crisp or binary) logic.

2.2.1 Fuzzy Operations
Let X be a boolean (crisp) universe of discourse. A fuzzy subset A of X is shown by
the membership function

w, i X o [0,1], ey

where for x X the number pa(x) is interpréted as the degree of m;;:mbership of x in

the fuzzy set A, or as the truth value of the statement ‘x is an elemeﬁt of A’,

A membership value of 0 means that x does not belong to the ﬁlzzy set u, aild a
value of 1 means that x fully belongs to the fuzzy set p,. A yalué greater than 0 but

less than 1 means that x partially belongs to the fuzzy set p,. '




In classical set theory, where the output is boolean (or binary), the characteristic

function of a set M is defined as

Xy 0 X - {0,1)} (2.2)
x=0 ifxegM
x=] ifxeM

- .- In order to calculate with fuzzy sets, we must generalise the set theoretical operations

like intersection and union. These are given by
AnNnB={xeX|xeAanxeB} (2.3)

AUB={xeX|xreAvxeB} B )

In order to generalise these forms, we need triangular norms and conorms. (Terano,
Asai and Sugeno, 1994). A triangular norm (or /-norm) is a binary operation on the
unit interval

T:[0,17 - [0,1] - | (2.5)
'which_is'._ _commutaﬁve, associative, monotonic in both components and satisfies the
- boundary condition

T =x (26)

-Similarly, if T is a t-norm, then the dual triangular conorm (¢-conorm) S : [0,1] -

[0,1] is defined by

CSEy)=1-T(xly) | .7
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There are infinitely many t-norms and /-conorms, only a few of which are used in
applications (Terano, Asai and Sugeno, 1994). The four most important
representationS of -norms are

1. Minimum Ty (x, ¥)=min(x, y) ' (2.8)

' whiéh wa’s int_roducéd by L. Zadeh (Zadeh, 1965). |

2, Lukasiewicz Ty, (x,y) =max (x+y -1, 0) ' (2.9)

was introduced by J. Lukasiewicz (Terano, Asai and Sugeno, 1994).

3. Product - Texy)=xey | | (2.10)

which is used in many areas due to its smoothness.

4,  DrasticProduct Ty ()= y ifx=1 2.11)
x ify=1
0 otherwise

| which is also éalled the Weakest s-norm.

. Acco'rdin_g;to McNeill and Freiberer (McNeill and chiberer, 1993), it can be proven

" that T, is the biggest and Ty, is the smallest t-norm._' :

~Given a #-norm T, t-conorm 8, and fuzzy subsets A, B of the universe i, the

' membership functions of the intersection A m B, the union A U B, and the

~ “complement A are given by

11




RANBX)=T (A {(x), uB (x)) (2.12)
HAUB(X)=S(pA (x), uB (x)) (2.13)

1l Ax)=1- nA (x). '. (2.];6 _

These_values describe the truth values of the stalgments
‘x is an element of A AND x is an element of B’,
‘x is an eiemf.nt of A OR x is an element of B,
‘xis NOT an elenient of A’,

réspectively.

222 F uzzy Expert Systems
_.'Tr._ac.litioﬁal expcrt systems are programs that simulate the reasoning, or knd\&ledge,
-. .of é human expert or professidnal in a given domain. There are a numb¢r of reasons
.Why this kn_owledge may nee'ci té be captured: |
i. The' knoWIedge that the expert has is réré,
2. The wo'rk blace is fhazardous‘tc‘) h,u‘mans,“
; 3 The work is repetitive and boring, =

4, Many other reasons...

These traditional expert systems have usually used classical logic and set theory to

: _lﬁanipulate information. These systems use rules in the following format

: " IF condition A AND condition B OR condition C THEN action D

12




where A, B and C are classical sets defining some state and D is some form of
output. The IF clause is called the antecedent and the THEN clause is called the

_(.'()HS(.’({ML’HI .

By c'ombining many of these types of rules, a knowledge base of rules is developed.
__ There are three parts to an expert system: a knowledge base, an iﬁfcrcnce engine, and
some form of memory. The knowledge base contains all the knowledge that has
been collecte& from the expert about the domain, usually in the form of [F-THEN
rules (as abo?e). The inference engine fires the appropriate rules from the knowledge
base depending on the current problem to solve. The working memory stores the

running solution to the problem.

Expért sys:tems using fhese classical logic.a.nd set theory represented uncertainty with
many methods, including Dempster-Schaffer theory, certainty factors and Bayesian
and 'probabilistic schemes (Yager, 1983). Mamdami (Mamdami, 1993) proposed the
idea of using fuzzy l_ogic ina mle based system. The rules in a typical fuzzy expernt

5 system are usually' in the form of:

. IF speedis fast AND distance is small THEN brake is fast

- where speed and distance are linguistic input variables, brake is a linguistic output

 variable and fast and small are fuzzy sets. As can be seen, these rules are very

similar to the classical expert system rules in the knowledge base, the difference

13




being we now use fuzzy sets and fuzzy set theory instead of classical boolean logic to
infer an oulput'from these rules. Linguistic terms are used to describe the inputs and
outputs of the fuzzy logic system. These terms are designed to handle imprecise

concepts such as small, fast, old or high using language based evaluations.

2.2.3 Fuzzification and Defuzzlﬁcation

_ Input dat; to be processed by the‘fuzzy‘ system is usually in..a nurﬁcrical form. Some
é'xamplesare :. |

1. Heighf is 1.82 meters, |

2. Vehicle speed is 34 kph,

3. Unemployment Rate is 9.2%
In order for the fuzzy system to process this data using the knowledge base rules, the
. data must be converted to degrees of membership of the fuzzy set in which the input
belongs.
The following is a simple example of a fuzzy knowledge base rule:
IF temperature is hot THEN air conditioner setting is cold
The fuzzy rule above has one input (temperature)_ and one output (air conditioner

setting). The fuzzy system receives data from (in this case) the temperature sensor in

14



a numerical form. To use the above rule, this numerical information must be

fuzzified by assigning it ai.'degrcc of membership in the relevant set.

Takagi and Sugeno (1983) suggested another form of fuzzy If-Then rule where the
premise consisted of one or more fuzzy antecedents, while the consequence was

described with a non-fuzzy equation. For examplef
IF pressure is high and temperatufe is high THEN»” force =x * (prt.;ssm'c)2

W_hilc both forms of fuzzy rules have been used extensii/ely in modelling and
prediction, this thesis usés fuzzy rules that have the cbnseqﬁence based on a fuzzy

linguistic label.

In Figure 2.3, we show the fuzzy sets for the temperature input. It has been split into

three fuzzy sets, Hot, Warm and Cold, starting from 0°C t0 40°C.

1.00
0.75

0.50

0.2%

‘saibag diysioquay

N

0004 10 20 30 40
' o Temperature (C)

: _. Flgure 2.3 Temperature Fuzzy Set$
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_If the temperature was 14° C, as shown in the above figure, then it would be a
member of the fuziy set Cold by the extent (membership) of 0.‘1 and a member of the
.fu_zzy.set Warm by the extent of 0.45, :'-l‘his shows an important factor in fuzzy logic
.is that an input may belong to ﬁore than one set, even when the sets appéar to b'e’

mutually exclusive under classical set theory.

' 2.2.4 Fuzzy Inferencing

'Inférenéing is where each rule of the fuzzy knowledge base is checked to ’seé if it

 falls within the parameters required to firé, for example the rule is applicable to some
degree. We first calculate the extent to which a rule fires (the amount of consequent
of the'._r'u'le that ap;ﬁlies). There are a number of techniques that determine which rule
to fire from the fuzzy knoWle&gé ba’se; In this thesis we use the Max-Min method,

which takes the minium of the fuzzy rules fired. This is the union of the sets.

From the exa_inple in-section 2.1.3, there is only one input so there are only a few

rules for the system:

‘1. . IF temperature is hot THEN air conditioner setting is cold
2 IF temperature is warm THEN air conditioner setting is cool
3. . IF temperature is cold THEN air conditioner setting is warm

- . However most fuzzy systems have several inputs. This increases the size and
complexity of the fuzzy knowledge Base, As the number of inputs into the fuzzy

i system increases (and the number of fuzzy sets for input variables increases), the
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number of rules required increases exponentially (Raju, G.V.S. and Zhou, J. 1993).
On a system that has a large number of inputs, this can quickly become a problem.
For example,

1. IF temperature is hot AND humidity is high THEN sprinklers is high

2. IF temperature is hot AND humidity is low THEN sprinklers is high

3. IF temperature is cold AND humidity is cold THEN sprinklers is low

4. IF temperature is cold AND humidity is medium THEN sprinklers is low

Figure 2.4 shows the fuzzy membership sets for the humidity input.
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Figure 2.4 Humidity Fuzzy Sets

The figure below shows the process involved in developing a fuzzy inference system.
The main components of a fuzzy logic system are:

1. A rule base containing a number of fuzzy If-Then rules.

2. A data base defining the fuzzy sets.

3. A decision making unit performing inference operations.
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4. A fuzzification unit transforming crisp inputs into fuzzy memberships.

5. A-defuzzification unit transforming the fuzzy results into crisp outputs.

J| Decision Making
Unit
i L 4
Input Fuzzification Defuzzification| | Output
—¥ Unit Unit >
h F
Rule Base Data Base
Knowledge Base

Figure 2.5 Fuzzy Inference System

The table below shows how the fuzzy rules for the system can be stored. The fuzzy
rules are stored in a Fuzzy Knowledge Base (FKB). This FKB contains all the
lpossible rules of the system,

Temperature

Hot Warm Cold

Humidity High High High High

Medium | High Medium | Low

Low Medium | Medium | Low

- Table 2.1 Fuzzy Knowledge Base

" Table 2.1 shows the FKB rules for a fuzzy logic system which has two antecedents

(fthe temperature and humidity) and the one consequent (sprinkler). Displaying a
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table with three inputs is represented as a cube. Higher numbers of inputs means a
multi dimensional FKB, which are more difficult to show. Figure 2.6 below shows

the fuzzy membership functions for the sprinkler output.

Low Medium High

-
(o]

Membership Degree

o
o
A /

10 15 20 25 30
Sprinkler (litres/hour)

Figure 2.6 Sprinkler Outputs Sets

From the example above, if temperature falls in the fuzzy set Hot with a membership
value 0.1 and humidity has a membership value of 0.5 in the fuzzy set High, then
Rule 1 from the FKB would fire to an extent of min(0.1, 0.5) = 0.1. Rule 2 would
fire to an extent of min(0.1, 0.25) = 0.1, while Rule 3 would fire min(0,0) = 0 as the
membership of both antecedents to the rule is 0. If all the antecedents have a
membership of 0 except for one, then the max would be taken, for example in Rule 4,
temperature has a membership of 0 while humidity has a membership of 0.25, the

rule would fire by the extent of max(0.0, 0.25).
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To obtain an output from the fuzzy system, we must defuzzify the results. One
common method of doing this is the Centroid defuzzification method (Kong, S and
Kosko, B, 1990), also called centre of gravity. The output is obtained by finding the
centre of gravity of the combined fuzzy output set. The figure below shows a

representation of how this is achieved (Kosko, B. 1992).
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Figure 2.7 Centroid Defuzzification Method
Fuzzy systems have proved to be successful both in research and industry
applications. It is fairly easy to design a fuzzy logic knowledge base with few inputs

that provides adequate results most of the time, even in new or untested areas,

however it is difficult to create FKB that display optimum results all the time.
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Problems in complexity arise when the number of inputs to the fuzzy logic system is
increased. This problem and a suggested solution are discussed in detail in later

chapters.

23 Genetic Algorithm’s

According to Goldberg (1989), Genetic Algorithms (GAs) are _search' algorithms
| based on the mechanics of natural selection and natural genetics, They are just one
ofa number of techniques which fall under the “Evolutlonary Computing” paradlgm
They are inspired by the process of Darwinian evolution which uses th.e principle of

_ evolution through natural selection. -

Although the ideas behind genetic algorithms have been around since Darwin and
_Méndel, it was not until practical computing power became available that the use of
| gerietic algorithms becomes fcasible In 1975 John Holland published the book
Adapfanan in Natural and Artifi c:al Systems (Holland, 1975), still regarded as one of _
“the most important works in the genetic algonthm field. Since then, the genetic
algorithm (or the larger Evolutionary Computing) field has develﬁped Wifh a number
of z_;__mual conferences each year and-a number of research groups around the worl&
J.;?"_’i._q:volved in such diverse areas as control, prediction, modell.i_ng, leér_ning and

B 'i_"-:‘cbgnitive science (for example, IEEE International Conference on Evolutionary

_ Computing).
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2.3.1 Overview of Genetic Algorithms

Some of the characfexfistics of this evolutionary process, also called “Survival of the

Fittest” are (Davis, 1991):

1. Each individual tends to pass on its traits to ifs offspring,

2. However, individuals with different traits are prodilced by nature,

3. The fittest individuals, those with the most tavourable traits for the current
envirﬁnment, tend to have more offspring than those with unfavourable traits.
This drivgs the population as a whole towards favourable trait_s (Survival of the
.ﬁttest), _

i 4.--'0ver a long period, variation can accumulate, producing entirely new species

whose traits make them especially suited to particular environments.

Natural Evolution Genetic Algorithm

genotype coded string

phenotype uncoded point (string)

chromosome string individual

gene | string pdsition"

alIelé ' value at certain position of
a string |

.ﬁtn'ess o ij'ective function taBle |

L ‘Table 2.2 Analogies betwe_en natural evolution and the Genetic Algorithm paradigm

22




As parents that are better suited for the environment tend to have more offspring than
those that are less suited, good (raits are passed on to the next generation while poor

traits gradually disappcaf.

Simply put, genetic algorithms solve a problem by generating, changing and
evaluating a population of candidate solutions to the problem. Table 2.2 lists the
analogies between natural evolution and the genetic algbrithm paradigm (Goldberg,

1989):

The genetic algorithm cannot model the whole process of natural evolution as many
of the factors in evolution are not known or understood. For example, the “fitness”
‘of a chromosome (the DNA strand) in nature cannot be expressed by some value, it is

" more like a combination of strength, intelligence, health, etc.

The following shows the steps _in§blved in a simple genetic algorithm.

1. Initialise and encode a random population of chromosomes (individuals),_

- 2. Decode and evaluate the fitness of each chromosome in the population,

‘3. Produce a new population of strings by selecting current chromosomes as parents
éccording to their fitness to generate new children,

4. Apply genetic operators (reproduction, croésover and mutation) to new

chromosomes, |

5. Repeat steps 2-4 until an adequate solution is found or for a certain number of

generations.
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Genetic Algor.ithms differ from traditional continuous optimisation methods, like

gradiént decent, in the fﬁilowing'ways (Goldberg, 1989) |

1. Genetic Aigorithins mariipulate coded versions of the problem parameters instead

“of the parameters themselves,

- 2. Most search methods slzirt from a single point, genetic algorithms operate on a

whole population of strings (points),
3. _Genétic Algorithms use payoff (objective function) information, not derivatives or

other auxiliary knowledge,

4, Genetic 'Ai_gorifhms use probabilistic transition .Operators (genetic operators) while

traditional methods use deterministic rules.

As the standard genetic algorithm operations do not change, o'nly the encoding of the
chromosomes and the fitness operations change. Therefore, designers can
concentrate on the domain dependant parts of the problem and let the genetic

- algorithm handle the search and optimisation routines.

2.3.2 Encoding and Genetic Operators

There are many ways in which to encode and initialise the chromosomes of the iriitial
generation.  Goldberg (Goldberg, 1989) _useg simple stru_cture chromosomes
comprising of binary numbers and fixed size chromosomes. Other encoding methods
such as k-ary codes, real (floating point) codes, permutation (order) codes, Lisp qodes

and variable length chromosomes have been reported as being successful by Davis

(Davis, 1991).
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For this introduction, simple binary numbers and a fixed length chromosome will be
used. For the initial generation, the system randomly generates bits of each
chromosome and encodes all the chromosomes as a population. The fitness of each
chromosome in the population is evaluated and reproduction and selection is

performed, based on the fitness value.

There are a number of ways to achieve effective selection and reproduction,

including, ranking, tournament, and proportional schemes, but the most important

objective is to give better individuals from the population a higher preference

(Goldberg, 1989). The most common selection method of parents is the Roulette

Wheel Parent Selection scheme. This method is described below:

1. Sum the fitness of all the chromosomes in the population.

2. Generate a random number between 0 and 1, and multiply by the sum of the
fitness.

3. Return the first chromosome from the population whose fitness, accumulated from
the first fitness of the population, is greater than or equal to the random number

generated in the previous step.

29.00/; 21.0%
| - MV_/,/,‘,,.-/—» ‘
8.0%

Figure 2.8 Roulette Wheel sized according to fitness
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The Roulette Wheel parent selection method therefore returns a randomly selected
paré_nt whose chance of being selected is directly proportional to its fitness (see

“Figure 2.8).

The crossover operator is probably the most important of the genctic operators

(Goldeberg. 1994); Basically, crossover is the exchange of genes between tin:

chromosomes of two parents. There are a number of different crossover operators,

such as one-point, two-point, n-point and uniform-croésover, with the simplest being
_ __.the one-po.int érossqver ‘(Fi‘gurc 2.9). There are thrée steps to the one-point crossover

| ('Go_ldberg, 1989):
1. wa'iridiviauals are chosen from the population using a selection method,
2 A cross site aloﬁg the individual length is chosen uniformly at random,

3. Values are exchanged between the two individuals following the cross site.

Parents Children
| 0000000 0000111
| —
1111111 1111000

Figure 2.9 One-point crossover

SR _. After the crossover operation has taken"pleit:e, these individuals would be placed in

- the new populatioxi. The crossover operation takes place until ail the positions in the
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new population have been filled with offspring that have been constructed from

‘selected parents.

The next genetic operator is the Mutation operator. The mutation operator is used to
- ensure genetic diversity on chromosomes and it avoids bits in a chromosome from
becoming fixed at a certain position. It is performed by randomly selecting a

position in the individual and altering the bit value (see Figure 2.10).

MUtation is used to maintain genetic diversity within a small population of
_individﬁals. There is a small probability that any allele in an individual will be
-ﬂibp_ea frdni its present value to another value within a specific range. This prevents
‘_ certain alI_cl_és becoming fixed at a specific value due to every string in the population

having that value, often a cause of premature convergence to a non-optimal solution.

Parent Child
0000000 "= ;0000

Figure 2.10 Mutation operator

Although selection and crossover provide most of the genetic algorithms search
power, the mutation stops the genetic algorithm from becoming stuck in a local

minimum and preventing premature convergence, a very important facet of

 optimisation (Goldberg, 1989).




2.4 Artificial Neural Networks

- An Artificial Neural Network (ANN) can be considered to be a simplified
mathematical model inspired by the way biological ncrvdus syslerﬁs, such as the
brain, process information. Artificial ﬁeural networks are composed of a large
~ number of highly intercoanected processing, elémcnts (neurons) working in um'son.to
| solve specific problems. The processing ability of the network is stored in the
interconnected elements links as weights, obtained by a process of adapfétion to, or

learning from, a set of training patterns.

ANNs can learn from example in either a supervised or unsupervised rﬁanner. An
ANN is configured for a specific application, such as pattem} recognition or data
classification, through a learning proceés. Learning in biological systems in#olves
adjustments to the synaptic connections that exist between the neurones. ANNs

perform the same function by adjusting their weights.

-The. first forms of neural networks emerged in the early 1940°s after the introduction
~of simplified neurons by McCullock and Pitts (McCullock and 'P‘itts, 1943) and by
work done by Hebb in the late 1940°s (Hebb, 1949). Eatly work in the Artificial
Intelligence field was divided between two camps, firstly, those that believed that
intelligent systems could best be developed by modelling the biological
representations of the brain, and secondly, those that believed that intelligence was
fundamentally a symbol processing model, similar to the von Neumann (traditional)

computer. Minsky and Papert (1969), summed up the general feeling of frustration
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(against neural networks) at the time by showing some of the deficiencies of the
perceptron model. Funding was redirected into the symbol-process field and neural
network research almost came to a complete stop, with only a few researchers

remaining in the field.

“This continued to be the case until the mid 1980s when a nqmber of new theoretical
developments rekindled interest in the neural networks field (most notably the
| discovery of eror back?propageition algo‘rithm). Today, the Artificial Neural
| Network field has many researchers from a.numb'er of different areas, inclﬁding
computer science, biology, economics and psychology and has increased funding for
* research, and also a number cﬁ' annual conferences ﬁnd journals (for example, IEEE

International Conference on Neural Networks).

2.4._1 - Biological Aspects of ANN’s.

There are many theories about how the brain trains itself to process information. In
ﬁe human brain, a neuron collects sighals from other neurons through a host of ﬁné
structures called dendrites. The neurbn_ sénds out spikes of electrical activity
through a long, thin stand known as an axon, which splits into thousands of
branches. At the end of eaph branch, a structure called a synapse converts the
activity from the axon into electrical effects that inhibit or excite activity in the

connected neurons. Figure 2.11 below shows the structure of a typical neuron

(Chester, 1993).




Cefl body
Nucleus ﬁ

~

Dendrites

Figure 2.11 Structure of a Neuron

When a neuron receives excitatory input that is sufficiently large compared with its
inhibitory input, it sends a spike of electrical activity down its own axon. Learning
occurs by changing the effectiveness of the synapses so that the influence of one
neuron on another changes. The figure below shows the connection between

neurons via axons to synapses.

Axon
4)
- .
\ Dendritee

Figure 2.12 Synapse connection
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The human brain is suspected to contain around 10'' neurons. Each neuron is
connected to thousands of other neurons, and these are arranged in a rough layer like
structure, as shown in Figure 2.13 below. The first few layers receive input from the
senses, sight, smell, touch, taste and hearing, while the final layers produce some
form of motor response, such as moving arms or legs. The layers in between these
layers form the associative cortex. Biologists still have little understanding of how
these inner layers work, but they believe the neurons in these layers are the most
important part of the human brain, as it is these parts that are responsible for our

conscious understanding of the world.

reflexes T
— s _— A—e(f ]
| ‘ ‘
>| — _J o |
f—ﬁ i BN !4 ——— !
[ - | b |
perceptlop motor output
(sound, sight, ...) (arms, legs, mouth, ...)

Figure 2.13 Neuron layers in the brain

Biologists believe that the brain learns in three ways:
1. By growing new axons,
2. By removing (killing off) old axons,

3. By changing the strength of existing axons.

The strength of an axon means that an axon must have some way to weight the

signal passing along it. If it is larger than this weight, then the axon will pass the
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information on to the connected neuron, while if the signal is less than this weight,

then the signal is not passed on (Gallant, S. 1993).

2.4.2 Artificial Neural Networks

An ANN is a model that emulates the biological neural network (the brain).
Compared to even a simple biological brain, ANN’s are still very primitive and
limited in their power. However, they do provide an insight into how the biological
brain works, or rather how researchers believe how the brain works, and as such can
produce a number of productive and interesting systems that can be used in 2 number

of different areas.

In ANN’s, the basic processing elements are called artificial neurons, or simply
neurons or nodes. These perform a similar task to the biological neuron in that the
neurons communicate by sending signals to each other over a large number of

weighted connections.

There are a number of different models of ANN’s. Probably the most common (Rao
& Rao, 1994) is the Feed Forward Neural Network. The Feed Forward ANN has:

1. An input layer where input patterns are presented to the network,

2. An output layer which contains the response of the network to the given input,

3. Zero or more hidden layers which lay between the input and output layers.
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In Feed Forward networks, data flows from input to output neurons in a strictly
forward method. The data processing can extend over a number of hidden layers of
neurons, but there are no feed back loops. Figure 2.14 shows the structure of a Feed

Forward Neural Network.

Inputs Outputs

Input Hidden Output
Layer Layer Layer

Figure 2.14 Feed Forward Neural Network

Each neuron (or processing unit) has:

1. An activity level which represents the state of polarisation of the neuron,

2. A set of input connections which represent the biological synapses and dendrites,
3. Some form of internal resting level,

4. The current state of activation,

5. A set of outputs from the neuron which represent a neurons axons.
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Each processing unit receives input from other units and uses these to compute an
output signal, which is propagated to other units. Figure 2.15 below shows an

artificial neuron (processing unit).

X 1 1

X, _ W W K a | Activation-outpul 'y
| Function 4

X W

Figure 2.15 Artificial Neuron

2.4.3 Summation Function

The summation function finds the weighted average of all the input elements to each
' processing element. Inan ANN neuron, there are # inputs with signalsx7 , x2 ..., X,
and weights w; , w2 ..., wyp. Wi is simply the weighted sum of the separate inputs

- into the neuron.

We= D wixi | o (215)

F=0

. If W, is positive then it is considered excitatory and if it is negative it is considered

inhibitory, This is the internal activity level of the neuron. The most common
activation level method is this linear weighted sum. Other methods may use
thresholding or some form of non-linear activation, such as Boltzmann Machines

and sigmoid functions (Grossberg, 1988).
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2.4.4  Activation Function

The activation function (also called a transfer function) takes the activation level of
the neuron and calculates its output, This is the signal it will send to other neurons.
The activation function of jth node receives inputs (x;) from other nodes. Each of
these is multiplied by the (!:'prresponding' synaptic weight (wj), and the resulting
.products are smnm'ed_within the Jjth node to produce the activation, #. The activation

is then transformed to producé the nodes output signal.

U= Z WiiXi ' | (2.16)

There are a number of different activation functions (see Figure 2.16).
1. Hard limiting threshold,
2. Semi-Linear,

3. Nonlinear (such as sigmoid).

The Hard Limiting Threshold function is a simple step ﬁnction. The Hard Limiting
Threshold function is limited to output onty binary numbers (0 or 1). According to
Rumelhart and McClelland (Rumelhart and McClelland, 1986), this model has a
number of problems, especially when dealing with multi layered neural networks.
This is the type of activation function that McCullock and Pitts (Chester,_ 1993) used

in their neural network models. This is also called a step or sign function.

. 1 x>0 .
ﬁ(_n).={0 <0 @1




o o -

[

— e e ,,7,774) e >
step u Semi-Linear u Sigmoid u

Figure 2.16 Different Activation Functions

The semi linear activation function is similar to the Hard Limiting Threshold
function except there is a linear function between the boundaries. This allows the

semi linear function to use values other than binary numbers,
0 xi<0
fi(xiy= ) xi xi<a (2.18)
1 xXi>a
Sigmoid functions are much more complex than the other activation functions as it is
an increasing function and also continuous, that is it have a derivative at all points.
The sigmoid activation function is also monotomically increasing, asymptotic to 0

and +1, as it arguments go to -° and °°, respectively.

fi(xi) = (2.19)

1+e”

According to Chester (Chester, M. 1993), the activation functions purpose is to
modify the output level to a reasonable value (for example, between 0 and 1). This

transformation is performed before the output reaches any other neuron. The reason
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is that without this transformation, the value of the output may become very large,

especially where there are a number of hidden Jayers.

2.4.5 Learning techniques

When a neural network is presented with a set of inputs, it needs to produce the
desired output. There are a number of ways to train the network, one method is to
set the weights of the connecting links in the network explicitly, using some form of
a priori knowledge. Another method, more commonly used in ANN’s is to train the
network by showing it teaéhing patterns and letting it change its weights according

to some learning algorithm.

There are two different ways in which the neural network can learn:

1. Supervised learning, where the network is trained by providing it with input and
matching output patterns, provided by some fofm of knowledgeable teacher. The
network compares its response with the desired response and modifies its weights
in some way as to gradually output results similar to ihe desired output.

2. Unsupervised learning, where only the input patterns are shown to the network.
This is commonly called a self-organising network as it organises its internal
weights without any interaction with some form of teacher, that is no « pribri

information.

Both learning methods depend on modifying the weights of the connections between

neurons using some learning rules. Two of the most common learning rules are:




1. Hebbian Learning where if two units are active at the same time, then the

- strength'of ‘the connections between them shbuld be increased. For example if the
neuron j receives input from neuron &, Hebbian lcarning prescribes to mod.ify the
weight wjk with | |

AWk = 7YYk | (2.20)

where yis a positive constant of proportionality representing the learning rate.
2. Delta Rule Learning where the difference between the actual and desired
activation is used to adjust the weights

Awjk=yyjdi-yi) (221

- where dy is the desired activation provided by a teacher. This is often called the

Widrow-Hoff rule or the Delta rule.

: 24.6 Backpropagation

" As stated earlier, Minsky and Pap‘ert (M_insky & Papert, 1969) showed that a single
layer network has severe restrictions, They sho{ared. that a two layer feed-forward
neural network can overcome m‘any of these restrictions, however the prdblem of
~how to adjust the weights from input to hidden units could‘ not be fouhd.
Rummelhart and McCelland (1986) presented a solution to this problem, with the
main idea being that the errors of the units of the hidden layers are determined by

backpropagating the errors of the units of the output layer. Since then, the back-




propagation method has become the most widely implemented form of neural

network (Welstead, 1994).

‘The main feature of the backpmpagation model is the hidden layers of neurons. This
allows the network to overcome the problems of the perceptron (Refenes, A. 1995).
In this model, the netwo_fk is fully connected, with ‘every neuron in layer n-1
._connecte.d to evefy neuron in layer n. This was shown in the Feed Forward Neural
Network iﬁ Figure 2.7 +. The backpropagation model is a superVised learning
technquie. ' Tﬁe ba.ckpropégation method uses a gradient descent or steepest.descent
method fo leafri the connection.wei ghts, thus being a descendant of the Widrow-Hoff

or deita rule.

Using a backpfopagation algofithm,' the weights of the connections are usuaily
_ randomly set. The network inputs are then shown the training data. The neurons in
the lower layers send imbulses (output).to the next higher layer until they reach the

- output layer. The system then determines the amount of error in each ﬁgqrqn, which
- éllows the connection weights then get updated based on the amoﬁnt of er_réf at the

output layer. To do this, it uses the generalised delta rule.

The error found at the output layer is then propagated back through the hidden layers
via the connections, The weights are then upcated based on the generalised delta

rule, continuing back through all the hidden layers. This process is continued until

the system reaches some pre-determined measure of accuracy.




To determine how well the network is performing with the current weights, the error

is summed over all the neurons:

1
Ep= EZ( yi—di)? (2.22)

where y; is the activity level of the jth unit in the top (input) layer and dj is the
desired output of the jth unit. The p subscript refers to the specific pattern shown to

the input neurons.

To generalise this error over the whole training set, the average error is taken. This

becomes the global error (GE) amount:

GE=Y E, (2.23)

- For learning to take place, the error measure (GE) given above must be minimised.

. This is_ achieved by continually changing the weights' by an amount proportional to
- the derivative 9E/ 9W. This is denoted by 3;: . -

Aw(t+1) =4 83 (229

From above, the learning rate A is the amount by which the global error is to be
~ minimised during each training pass. It is kept constant for each training pass but
may change after a training pass. The objective of this learning archetype is to find
the Least Mean Square (LMS) error. This is achieved as the learning rate heads

towards zero, a set of weights will be found that give the LMS error. According to

40




Chester (Chester, M. 1993), the value of &; is computed by differentiating the

network error (equation 2.22) and the activation level of the neuron (equation 2.15):

& = (dj.c - Yj,) /* (i) (2.25)

where yj ¢ is the actual state of the output neuron j of pattern ¢ and dj ¢ is its desired

~ state.

| Like any hill climbihg technique, gradient descent has the problem of local minima
rather than a global minimum. This means that the network may not find a valid
- solution to the problem, even if one does exist as it has converged in a local

minimum.

24.7 Recall

| thé the network has beén trained to an acceptablé accuracy, the weights are frozen
This. was the training phase. When a pattern is now presented to the inputs of the
network, the response from the outputs“will be based on what the network has learnt.
It is important to recognise that th'e. weights in ihe network will not be modified

(Rao, V. and Rao, H. 1994).
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Chapter 3 Hybrid Inteiligent Systems

3.1 Introduction

In this chapter we consider hybrid intelligent systems and their importance and the
different types of Hybrid systems. We focus on a hybrid system using a combination
~ of genetic algorithm and fuzzy logic to create a Fuzzy Logic Knowledge Base. This
is then applied to the devélopmcnt of a Fuzzy Logic Knowledge Basé used in the

prediction of interest rates in Australia.

3.2 Hybrid Systems

According to Goonatilake (Goonatilake, S and Treleaven, P 1995), Intelligent
.Systems are a group of computing techniques that include neural networks, fuzzy
logic and genetic algorithm’s__. These new techniques aré capable of responding
: quickly and efficiently to the ambiguity and uncertainty that arises in many syétems
and have been used Successﬁlliy in place of .traditiona‘.'l complex mathematical

- systems {Welstead, T. 1994, Kosko, B. 1992, Karr, C. 1994).

A hybrid Intelligent system is said to combine two or more of the intelligent systems
group (Medsher, 1995). Some of the more common hybrid sy.stems are:
‘1. Neural network and genetic algorithm hybrids,

2. Neural networks and fuzzy logic hybrids, and
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3. Fuzzy logic and genetic algorithm hybrids.
An'introduction to all three types are given in the next few sections, concentrating on

the fuizy logic and genetic algorithm hybrid that is used later in this thesis.

- 3.3 Hybrid Neural Networks and Genetic Algorithm

This type of hybrid combines neural networks with genetic algorithms. This has
become a rapidly expandiﬁg_area since the late 1980’s and early 1990°’s. The ability
of géhetié algorithiﬁs to.search.large complex spaces efficiently allow them to find an
- adequate, if not optimu.fn, solutions more quickly than many other alternatives. They
can be combined with neural networks in a number Qf ways (Medsker, 1993):

1. Representing in the éhrémosomes the relevant architectural information about a

neural networks, such as hiddén nodcs and layers,

2. Tune the w.ei.ghts and parameters of the neural nétworks connections,

3. Usinga neurél networks to evaluate ﬁtﬁ"éss of a chromosome, and |
. a, Allo'Wing the neural ne_t.WQrk“s- to produce ‘ne\‘v chromosomes for the genctié ;

algorithm.

~In the first two cases, a genetic algorithm is used to learn the structure of the neural

 network. Inthe second two cases, a neural network is used to direct the search of the

| genetic algorithm,
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The most popular use of the hybrid neural network genetic algorithm is for the
genetib algorithm to éearch the data space to improve the performance of the neural
ﬁetwork. This ié performed by exploring ihe input data, tuning the neural networks
parameters (number of layers and hidden nodes) and generally explaining the
behaviour 6f the neural network, as in Figure 3.1 {Fukuda, T., Kohno, T. and Shibata,
T. 1993). | This makes easier the burden of manually training and designing of the

neural network, and it speeds up development of such systems.

Heuistc . . Genec o _ Evaluation
~ Modification: - Algorithm :
| Neural : . System |
. Network [~~~ ————-———»  Fynction
e i Apply

Figure 3.1 Hybrid Neural Network and Genetic Algorithm

Using a neural network to train and optirhise the genetic algorithm has not received
as much research attention but may offér a number of advantages in producing new
genetic chromosomes that converge to an adequate solution quicker. Neural
‘Networks may also be used to define the optimum structure of chromosomés and

fitness calculations (Medsker, L. 1995).

- Potentially more powerful is the more fully integrated hybrid system where a neural
* network and genetic algorithm work in tandem to modify both genetic and neural

‘information to dramatically speed training and development (Schaffer, 1994),
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3.4 Hybrid Neural Networks and Fuzzy Logic

This type of hybrid system combines neural networks with fuzzy logic. This has

become a very important area of research into Intelligent Hybrid Systems since the

introduction of the Soft Computing coﬁcept by Lotfi Zadeh at his Berkeley Institute

in Soft Computing (Zadeh, -1994). Zadeh sees soft computing accommodating

imprecision and uncertainty allowing reasoning and computation that is normally

~ required for complex, real world applications. According to Zadeh (Zadah, L. 1994),

soft computing involves fuzzy logic, neural networks, probabilistic reasoning,

genetic algorithms, belief networks and Chaos theory.

Properties of Intelligent system Fuzzy System Neural Network
Fuﬁction estimators v v
Trainable, dynamic v v
Improvements with use v v
Parallel implgmethioﬁs v v
Numerical v v
Tolerance for imprecision v X
Explicit knowledge representation v X
Adaptive X v
Optimising X v
Interpolative X v
Tolerance for noise X v

Table 3.1 Comparison of Fuzzy Sysiems and Neural Networks
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Table 3.1 shows the characteristics of. fuzzy systems and neural network systems
(Medsker, 1995). As the table shows, there are a number of common characteristics ,
such aé each are rﬁodel;f‘ree function estimators that can be trained to improve their
performance. They are both implicitly parallel in nature which allows paraliél
processing techniques to be used. Where they have no common characteristics is
where the neural network and fuzzy logic system hybrid gains its strengths. The
hybrid system uses the fuzzy logic imprecision and knowledge representation while
also using the neural networks adaptation and optimising features (as well as the
neural networks tolerance for noise). By combining these st;engths, a larger number

of applications can be developed.

Accbrding to Medsker (Medsker, 1995), applications that have used hybrid fuzzy
neural systems have tended to be in the engineering and physical science areas, as
well as the biological and me‘dical‘ areas. There are a number of diﬁ'erent ways in
which fuzzy logic systems can be integrated with neural network systems. One
method is the Connectionist Expert Sysfcm. These are similar to the combining
neural networks and expert systems (Gallant.,v S. _1993). They replace the cxﬁert
system components with fuzzy sets (Chapter 2 explained the relationship between

expert systems and fuzzy logic).
A neural network can use fuzzy logic to pre-process the data the system receives.

This allows the fuzzy system to process the incoming fuzzy data and output some

value that the neural network can use. Additionally, after the neural network has
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processed the data, it can be passed to a fuzzy system to be processed. By fuzzifying
the incoming data, the neural network learns to map the fuzzy inputs to either crisp or

fuzzy outputs (Figure 3.2).

*” fuzzifier - opi peural - , defuzzifior >
cisp | fuzzy Enetwork Cfuzzy ggg

Figure 3.2 Fuzzy Neural system

:_To' develop fhe fuzzy neural network application, the following steps must be taken
(Cox, E. 1994):

1. Fuzzy rulés and membership sets should be formed from application knowledge,
2. Cdnnect‘th_e fuzzy outputs to the neural network inputs,

3. Initialise neural nefwork éonnectioné and weights,

4. .'I."rain the neural network ‘on the tréining data input/output pairs for the application,

- 5. Use the fuzzy neﬁrallnetwo'rk system for operational data.

" Neural ne_tworks.can also be used to train ihe fuzzy logic system. This may be done
. i:by finding the “best” membership sets and/or the fuzzy rﬁles to govern the system
- (Hung, 1993). Figure 3.3 below shows the éteps involved when using a neural
network to find the rules for the fuzzy sjstem. A similar model is used when a

neural network is used to find the membership sets boundaries of the fuzzy system. -
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Figure 3.3 Neuro Fuzzy Controller

~ With the continuing development of the Soft .Computing environment, the use of
Hybrid _Neuro-FuZzy ‘systems will progress into more advanced fields, perhaps
providing systems that can deal with the complexity of many processes that are

difficult to develop currently.

| 35 Hybrid Fuzzy Logic and Genetic Algorithm

This type of hybrid system combines fuzzy logic and genetic algorithms (FLGA).
This is the newest of the Hybrid systems currently being developed with the first
- works only published a few years ago. One of the pioneering works on fuzzy logic
genetic algorithm hybrids was by Charles Karr in 1991 (Karr, 1991). Since then,
much research has been conducted in this field, showihg many positive approaches.
- Currently, the most promising fields using this kind of hybrid system is the use of

genetic algorithms to improve the performance of fuzzy systems.
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Characteristics : Fuzzy System Genetic Algorithm
| St.o'res'l(now.ledge- v | X
.. Leams | ' o _ _ | X - v
Cptimiseé | X ' | v
| Nonlineaf Systems : : v : v

Table 3.2 Corﬁﬁarison of Fuzzy Systems and Genetic Algorithms

| Gznetlc Algonthms and ﬁlzzy loglc have a number of charzcterlsncs in common, as
‘shown in Table 3. 2 (Medsker, 1995) Both are fairly fast and can be used when
dealmg with nonlmear systems_. Fuzzy logic is well smted to. storing experts
o knowledge in. the folm."l of .fuzzy rules. For well defined systems, constructing the
fuzzy fules are simple, but for more c.om.plex systems whérg there a:reyz large number
| of 'r'u'les,. developing the fuzzy knowledge base is difﬁcﬁlt and very time-consuming

| .task using trial and error techniques_. The t»uning and optimisation‘bf membership

a functions of fuzzy logic systems is also a difficult task (Mohaxnmadian, M and

e - Stonier, R. 1994).

- It is in these situations that genetic algorithms can be used to great effect,' The ability

1o optimise and learn allow the genetic algonthm to le._.,.n and optlmlse the fuzzy

membership functions and the fuzzy rules of the fuzzy logm system '




While most research has been in using a genetic algorithm to tune and optimise fuzzy
systems, there has been some research in using fuzzy logic to control parameter
selection for genetic algorithms. Lee and Takagi (1993), proposed a system where a
_ﬁxizy knowledge base system is used o contl-'ol genetic algorithm’s parameters. The
inputs into the fuz._zy knowledge base are the current genetic "algorithni performance
measures or settings such as population size, mutation rate, etc. The fuzzy system
then outputs new control parzimeters for the genetic algorithm such as changing the
population size (Figure 3.4).

. Fuzzy Knowledge

Base

) 4

Fuzzy inference
Engine

. Genetic Algorithm .
System !

[

application

Figure 3.4 Fuzzy Logic System fdr Cdntro!ling a Genetic Algorithm

o 3.5.1 Tuning Fuzzy Membership Functions
" There are a number of properties that make the genetic algorithm fundamentally
__'diﬂ'erént from conventional search techniques, making them more attractive for

 certain solutions. As mentioned in chapter 2, some of these properties are:
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1. Genetic Algbrithm.’s consider a whole population of points, not just the single
point, |

2. They work directly with strings that represent the parametcr set, not the
parameters themselves,

3. They use probabilistic rules to guide their search, not deterministic rules.

One method to design a robust fuzzy logic systems is to establish the rule bas.e with
'.the appropriate rules that have been obtained (say, from an expert, or trial and error)
- and use a genetic algorithm to determine the “optimal”_membership functions. When
using triangular functions, the parameters are the centres and widths for each
category. (frapezoidal shaped membership functions ._are a simple extension of this
| paréméter set) (Mohammadian, M aﬁd Stonier, R. 1994, Ng, K. C. and Li, Y. 1994) .
The 'genetic algorithm generates an initial population of possible solutions for the

membership functions (see Figure 3.5).

/; Genetic Algorlthm N

P IR N .
I select/modify \ .
@;tion | evaluate ( Fltness >

\ _ resuits
- ﬂ Fuzzy System .

_ :Fi_guré 3.5 Uéing'a GA to improve performance of a fuzzy systelﬁ
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Each chromosome of the genetic algorithm is cvaluated and assigned a fitness value.
New generations are generated by the genetic algorithm using the genetic operators.
This cycle continues until an acceptable solution has been found (Kingham, M and

Mohammadian, M. 1996). Figure 3.5 shows this cycle (Medsker, 1995).

‘The figure below shows an example of how this would work on a fuzzy systems that
c_ontains ‘three membership ' functiéns (Smali, Me.dium and Big). The genetic
algorithm créﬁtes an initial pbpulation and generates a number of possible candidates
solutions. The initial membership function is shown in Figure 3.6 (a). The genetic
 algorithm continues to generate new populations until an “optimal” (or adequate)
sélution is fdund.- .’I’he fuzzy logic system néw has the optimal membership

~ functions and can be used for its designed application (Figure 3.6 (b)). |

. sMm ME  BG
' / \ ———» 1072540305580 65 85100
. , \.‘. »

10 20 30 40 50 60 70 80 90 100
(a) Initiat Membership Functions

SM ME BG SM  ME BG
, = Py

| 1040504060 80]55 801100

10 20 30 40 50 60 70 80 90 100
- (b) Optima!l Membership Functions

Figure 3.6 Fuzzy membership functions optimised by GA
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3.5.2 Finding Fuzzy Rules by Genetic Algorithms

Finding the fuzzy rules 6fcomplex systems with large number of input parameters is
a difficult task. A genétic algorithm can be used to learn the fuzzy rules of a fuzzy

system in a similar method as performed to find the “optimal” mem'beré'nip functions.

As mentioned in Chapter 2, genetic algorithms are powerful search algorithms based
- on the mechanism of natural selection and use operat'ions of reproduction, crossover,
- and mutation on a population of strings. A set (population) of possible solutiohs, in
this case, a coding of the fuzzy rules of a FL system, represented as a string of
- numbers. Flgure 3.7 shows the combination of FL and- GAs for generating fuzzy

rules of a FL system.

e  Decision Maklng i «

| Unit _
mputs e uus
> | Fuzzification | . " | Defuzzification : — >
[ —Iﬁa_t_a_ga_a:sé 'Know!eciéé Base
U | L—-_A_-___«........_,__._____ :
|
: : 1 ?
: Genetic Algorithm <
- s

o Figu’te 3.7 Combination of FL and GAs for fuzzy rule generation
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3.5.3 Encoding and Decoding of Fuzzy rules by GAs

First the input parameters of the fuzzy logic system is divided into fuzzy sets.
Assume thet ehe FL system has two inputs o and B and a single output 8. Assume
also that the inputs and output. of the system is divided into 5 fuzzy sets. Therefore a
maximurh of twenty five fuzzy ru.les can be written for the FL system. The
consequent for each fuzz.y rule is determined by genetic evolution. In order to do So,
the oufput fuzzy sets are encoded. It is no_i_ n__t__:ée_s_.sary to encode the input fuzzy sets
because the input fuzzy sets are static and do not cﬂange. The fuzzy rules relating the
inpl_l'; variables (o and §) to fhe output variab.le' (8) have twenty five possible

combinations. The consequent of each fuzzy rule can be any one of the five output

fuzzy sets.

Assume that the parameter ) has,‘,ﬁve fuzzy sets with the following fuzzy linguietic
~ variable: NB (Negative Big), NS (Negative Smal‘l),,ZE {(Zero), PS (Positive Small),
and PB (Positive Big). The output fuzzy sets are encoded by assigning 1 = NB
(Negative Big), 2 = NS (Negative Srnal‘l), 3 = ZE (Zero), 4 = PS (Positive Small),
“and 5 = 'PEH(Pos.itive Big). GA randomlj encodes each output fuzzy set into a
nuinber ranging from 1 to 5 for all possible combinations of the input fuzzy

variables. A string encoded this way can be represented as (Figure 3.8):

41315 3| ~----- R

12 34 25

Figure 3.8 Fuzzy Rules encoded in GA string
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Each individual string is then decoded into the output linguistic terms. The set of
fuzzy rules thus developed is evaluated by the fuzzy logic system based upon a
fitness value, which is specific to the system. At the end of each generation, two
copies of the best performing string from the parent generation is included in the next
generation to ensure that the_beét performing strings are not lost. GA then performs
the process of selection, crossover and mutation on the rest of the individual strings.
Selection anci crossover are the same as a simple GAs while the mutation operation is

modified.

Crossover and._ mutation take place based on the probability of crossover and
hmtatiop respectively. The ﬁmtation operator isvchanged to suit this problem. For
'mutétibn, an allele is s_elected at random and it is replaced by a random number
ranging from 1 td 5.. The process of selection, crossover and mutation are repeated
for a number of geherations till a satisfactéry fuzzy rule base is obtained. We define
a satisfaétory rule Bése as one whose fitness value differs from the desired output of

the system by a vefy small value.
" In the fo_llowing chapter, a hybrid system that combines fuzzy logic and genetic

: '___algorithms tOgefher' w'il'l b_e.developed_ (FLGA). The FLGA system will be used to

- ’p_redict. the quarterly.interest rates in Australia.
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Chapter 4 Interest Rate Prediction using Integrated FL

and GAs

4.1 Introduction

Investors and govemlrhents alike are interested in the ability to predict future interest
rate fluctuations from current economic data. Investors are trying to maximise their
gains on the capital markets, .whilel government departments need to know the current
position of the economy and wheré it is likely to be in the near future for the well

being of a countries people.

Economists, and investors, have been unable to find all the factors that influence
interest rate fluctuations. However as mentioned in Chapter 3, there are some major
economic indicators released by the government (Madden, R. 1995) that are

commo'nly used to determine the current position of the economy.

~ 4.2 Economic Indicators

4.2.1 Interest Rate

In this thesis, we look at the prediction of Ten Year Treasury Bonds which is used by
the' government to calculate long term interest rates. Interest is the compensation

- paid to a lender for deferring the price paid by a borrower for the use of the funds.
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There a_ré different rates of interest which vary according to the amount borrowed,
the length of time of the borrowing and the f{inancial stability of the borrower.
Treasury Bonds are long term sccurities issued over a long period of time (in this

case ten years).

4.2.2 Unemployment Rate

Uneﬁlployment exists when people without a job are looking for but unable to find
employment. The labour force is made ﬁp of the civilian pbpulatioh aged 15 to 65
“who afe alread};.working and those that are actively lboking for Worl_( and are unable
to find employmeht. The_ ABS _élasses .people as_uner_nployled as those who are
activély looking for work and can start wdrk’ immédiately. Looking for work
includ;:s writi.ng, t.elephon'ing, faxing: or meeting an employgr or registering with the
Departlﬁent of Social Security and Commonwealth Employment. Service, The
Unempioyment rate'is.';_‘.the percentage of thé labour forces that are not employed but

are actively looking for e.mp_loyment.

] _4.2.-3 .J.Obi Vacd_ncies: |

A ’job Vﬁcancy is a jﬁb aﬂ?aftable for:immédiéte filling for which some form of
: __réc;'uitmént a.ctiﬁh has been_-tak;m (such as ad_vertisiﬁ_g in soﬁe form of media

'.a.v.a.il_é_ibie t.'o't_'he puBlic,' in_fﬁrmihg job cehtfés). Wheh- the demand for labour is h.igh,
_t_.hé.n.umber of j.o'b' véc_ancies ir;c_feases Whilé_ whén tﬁe demand is loxw the numbér of

a j_(_:ib Vac::'anci'es"_falls. Recessions generally have a low job vacancy rate while
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economic growth periods generally have high job vacancy rates. The job vacancy is

recorded as the'numbcr of vacancies per 1000 unemployed.

4.2.4 Gross Domestic Product -

The Gross Domestic Product (GDP) is an aggregate measurement of the flow of
goods and services producéd in an economy. Onlf goods used for final consumption
or capital goods are included io remove the possibiiity of “double counting”. This
can occur if the a good is required to make another good further down the chain.
GDP describes the domes’ﬁc product because it does not include income eamed
: 'bﬁtside the lc.ountry. There are a humber of different measures of GDP cﬁlculated by
't}ie ABS. These are GDP(P) which »is the sum of goods énd services produced at
~ each stage of the pfodu’ction less the cost of production, GDP(I) which is the sum of
incomes gengrated by production, and GDP(E) which is the sum of final expenditure
on goods and sérvices produced plus e):cports minus imports. This thesis uses the
- avérage of these three indicators and is referred to as GDP(A). According to Madden
(Madden'; 1995), analysis has shoﬁvn that cbnsran{ price GDP(A) has provided the

most satisfactory inc_licator bf short term trend gromh in GDP.

- 4.2.5 Consumer Price Index
" The Consurner Price Index (CPD) is 'an'indication of the rate of change in prices paid
by consumers for a fixed list of goods and _sefviées. This list of items has been

R '_'_selected to reptgasént purchases by the average household and includes items in the
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following areas: alcehol, clothing, education, food, health care, household equipment
and operation, hou:s.ing, re.crcalioh, tobacéo and transportation. Every 5 years the list
of items is revised tﬁ reflect the changing economy. The price of the CPI in the base
period 1989-90 is used as the reference point and is.set to 100.0 and lh_e.prices in

later periods are identified as a percentage of the base period. .

CpPl = total cost of goods in given period x 100 4.1)
total cost of goods in reference period

4.2.6 Household Saving Ratio

Sa_vi'ngs is oﬁeﬁ deﬁned as the income not spent on goods and services which are
| used for current consurhption (Pearce, 1983). It can be expr.es.sed as giving up
current consump.t.io'n to derive a future benefit. Savings are. used to finance
iﬁvestments which will incréase the productive capability to produce a greater
quanﬁty of goods and §ervices in the future. The household’s disposable income is
the amount :of income | fhat households have available for spending after deducting
taxes paid, interest payments andtraﬁsfe’rs to ovel;seas. The Household Savirigs

Ratio is the ratio of household income saved to household’s disposable income.

| 427 Home Loans
" Mp_st_ h.omc'-.-pu'rchases ?lré financed by a home loan from a financial institution such
' a.s.banks.' The de_mand for hﬁ:using .loans is dependent on consﬁmers perceived
.aibi_lity to fé_pa’y the home loan debt. This ability caﬁ be influenced by the interest

__:_rafe, home prices, the consumer’s_inc_:or_ne level and financial/employment stability,
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In general, when interest rates are high, the total home loan’s decline while when

interest rates fall, the demand for home loans financing increases.

4.2.8 Average Weekly Earnings

Earnings are used to describe the total payments aﬁ individual receives from his
employment. The weekly earnings are the wofkers g.ross earnings, which includes
their basic pay tbgether with aﬁy payments for shifts and overtime and any form of
~incentive scheme. The avefage weekly earnings are the average of the wages
received 'by. both men and women for an entire week. ‘When the average weekly'
earnings increases by a greater amount than the CPI, then there has been real wage

increases.

4.2.9 Current Account

| 'The curreﬁt acct;u_nt is a running account for a person, business or country. The
_inc_licator here rél__ates to the cquntries BaI_ance of Pa){ments Current Ac‘co.unt, which is
the'SLuﬁ of the balances on gdod$ and services, income and unrequited trahsfers. If

_ :the _s.ﬁm '_o'f the baianceé is p'ositij{e, then the country has a burrent account surplus,
._wl.li.le .a.'nat.ior.l thaf. hﬁs a negative sum of the balances ﬁas a current account c.l.eﬁ.cit..'

- Goods and 'serv.ices balance is the 'differenc_e between the total export value and the _
; total 'irhpbft vélﬁe of good_s and services. Net income balance is the difference
betweeﬁ the value of inébrﬁe ahd in_tefest earned by resid_ents from non-residents and

. that payable by residents to non-residents. An unrequited transfers is rcqu'ired when
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real or financial resources are provided without something of economic value being

received (for example foreign aid).

4.2.10 Trade Weighted Index

The Australian trade weighted index is an index of the average value of the
Australian dollar (8A) compared to the currencies of Australia’s rﬁajor trading
partners. The weight given to each currency is relative to the level of trade between
Australia énd the trading partner. The Reserve Bank trade weighted indeﬁc include_é

23 countries which account for more than 90 percent of Australia’s foreign trade.

4.2.11 RBA Commodity Price Index

The Reserve Bank of Australia .(RBA) Commodity .Price index consists of 19

commodities which répr'esent_s about half of .t_otal merchandise éxports and more than
_. two-thirds of Austra;lia’s commodj.tv. exports. The index was déveloped to provide . |
o an eérly_ indication in the country’s.cxport prices. The weights for each commodity

vary over time and relate to the share of the export market by volume.

" 4.2.12 All Industrial Index
" The All Industrial Index provides an indication of aggregate price moveméﬁts on the
 Australian Stock Exchange. The index is calculated from a sample of shares which

_includes about 260 companies. The index only measure the capital gain or loss
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experienced by share holders through fluctuations of the share market. Thc index

does not take into account any dividend carned.

4.2.13 Co.mpany Pfoﬁts

Company profits are taken from a wide range of industries in Australia, including,
manufacturing, mining, coni'lstruction','wholesale and retail frade to name a few.
Compﬁniés exclﬁded inélude those primarily engaged in agriculture, 'forestry,-_
bénking and insurance activities. The data relates fo companies employing rﬁore than.
30 people. Profits for a conripany is deﬁnea as net operating profits or losses before
in'com'c”._tax. 'Du.rin'g.peri.ods of economic growth, the ievel of company pfofits

generally increases, while declining economies usually see smaller company profits.

4.2.14 New Motor Vehicle Registrations

New Mdtqr Vehicle Registrations isa measuré of the. number of new cars purchased

.’_'which have been registered with the appropriate registration authority.. It gives an
- _in'(.i.i_éatic.)_n of th§ ﬁumﬁcr of new _'caré sold. One of fhe rﬁajor purchases fof any

. houséhold i.s"a' new rﬁdtor vehicle. During pgriods of economic growth, the level of

o .neﬁ. registrﬁtiohs geneli'all.y inéréésés-, WEile d'e(.:lining econémies usually see a.

- smaller number of registrations, -
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43 Fuzzy Logic and Genetic Algorithms for the Prediction of
Interest Rates

To predict fluctuations in the intcfest rate, a fuzzy logic system was created. The
- fuzzy .ruies (knowledge base) were disqovcred by the use éf a genetic algorithm.
There are a number of' sleps to perform to cfzzte the fuzzy knowledgc. base of the_
fuzzy logic system:'
1. Identify the inputs and outputs,
2. Pre-prdcess data if required, and split into training and test suites,
_. 3. Create Fuzzy sets and. Fuzzy membership functions for input and output
_ param.eters” of the system, | o
4, Set pgrametefs for genetic algorithm tfaining (mutation and crossoifer),
5; Creaté an “optimum.’.’.FKB using the genétic algorithm with training data,

6. Use the developéd FKB for fuzzy logic on test data.

4.4 Identify _the inputs and outputs

To design a fuzzy logic system, the actual inputs and oiitputs must__ﬁrst be_'
detchﬁiriéd. For this system,.'_we are using a number of ecbnomic'ind_icator's .to
: predlct the 'fp.ll:owin_g quartc_fs 'i'_ﬁtér;as_t raie. The’;é area nmﬁbef of possiblé indicators
. thzt 'cloul'.d Be used to p_re_di_ct-the interest rate. Three'éf th’ese. indicators are:
- ...'_' .Imé;"_'e.sf_t.Rate whié_h‘ is .tl.‘l.c._indicdtm being .p'redicted. Thé I.nter_eSt' Rate used here is

A : the'Au_st'r_alian Commonwealth government 10-year treasury bonds.
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o Gross Domestic Product (GDP) is an average aggregate measure of the value of
economic production in a given period.
o The Consumer Price Index (CPI) is a general indicator of the rate of change in

prices paid by consumers for goods and services.

A fuzzy logic system can be developed that uses the above indicators as its inputs
(Figure 4.1). _Appe'ndix A shows the Australian economic data for these indicators
from Quarterl, 1983 through to Quarter 4, 1997 (McLenan, W, 1997). This gives us

sixty quarters of data in which to train and test the system,

.. FuUzZy Logic/ POutput

. EPE_‘,_,__ J Geneﬁc Algorithm Output
Interest Rate System ? Predicted

Gross Domestic Product Interest Rate

Consumer Price Index

Figure 4.1 Fuzzy Logic/Genetic Algorithm system to predict Interest Rate

The current interest rate is inc]u_ded. in the input indicators to the system as }he
p:edictcd interest rate is highfy depehdent on the curfcnt rate as there is or_ﬂ_; 'iikel;to
'_ ~ be a small ﬂuctuatiéﬁs in the interest rate. The current interest rate gives the FLGA .
systt;fn an indicafion as to the expectéd _“ball. park” area of the predicted rate (in fac : :

this gives an_indiéaticjn as to what part of the fuzzy knowledge base to look at).
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4.5 Pre-Process Data

In most time series predictions, there is some pre-processing of the data so that it is
in a format that the system can use. This may be where data is normalised so it fits
within certain boundaries, formatted into an appropriate form for the FLGA system

to use. It is also where decisions on how the data is represenied is made.

. There are a number of ways in which the raw data from the above indicators could be
represented.  Firstly, the system could just use the data “as is” and make its
* predictions from tﬁat. Alternatively, the system could instead use the difference from
'the.. previous quartér to the current quarter. The system could also take into

consideration the effects of inflation on the raw data and compensate appropriately.

In this syStem, the change from one quarter to the next is used for the GDP and CPI
indicators, while the interest rate is the actual reported rate from the Australian

Bureau of Statistics. For example, the data for interest rates is stored in the following

_foﬁhat:
| i’ea.r_ Quarter . o Data
| 1983 — T - ’ 14.00
1983 _. 2 » 12.95 "
| 8% — | Hi
K —— T T
| 1985 T B RTE

‘Table 4.1 Format of Economic Data
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ane the data has been bre-progessed, it must be split into some groups for the
| _ traiﬁing and testing of the system. For this system, the first 2/3" of the data was
- assigned to the training set while the other 1/3" was assigned to the test set. The
system uses the training set to learn the FKB for the fuzzy logic system using the
ge_netic é_lgorithm. The fuzzy logic system is then tested on the test set using the

“best” FKB.

4.6 Fuzzy Membership Functions

- Now that the data has been pre-processed and assigned into a training and test set, the
fuzzy logic system can be built. The data must be split into 2 number of fuzzy sets.
For each fuz.zy s_ét a fﬁzzy memberShip function is assigned. The membership

functions used in this study are triangular membership functions,

Each .inp'ut and output pérameter is divided into five fuzzy sets. as this provided the
necessary p.recision of fhe 'indicators for the system without increasing the number of
fuzzy fules réquilfed by the FKB to a computationally expensive amount. - .Tﬁe
li.ng.uji.stic \}:zallites_ Ia_S_sig.ned for thlél input and output fuzzy sets are:
o pB_ -.Pc'n._si.tive Bilg,'- S -
B PS - Positive Small,
| iﬁ-_Zerd, :

. NS :.-'Ne'gﬁt_ive Small,

. 'NB'-Néfgét'ive Big. -
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The first step in finding the fuzzy sets and membership functions is to find the
minimum and maximum range of the data for the indicator. The minimum and the
maximum point become the mid point (centre) for the first and last membership
function respectively. The range is then divided into 4 equal parts, which become the
mid point for the membership functions in between the first and last sets. It was
decided that the membership functions have an equal overlap of 1/3™ size of the
membership function as this was found to give good results over the entire range of
data. Therefore, if we had two fuzzy sets that ranged from 3 to 7 inclusive, their

membership functions would be defined as shown in Figure 4.2.

20
3

=3

©

a

=

o

g -~ -
€0 012 3 456 7 89 10

‘c% Numeric Range

Figure 4.2 Fuzzy Membership Functions
For the interest rate indicator, the data ranged from 6.7 to 15. Using the above

method, the fuzzy membership functions for interest rates would be found as per

Figure 4.3.
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Figure 4.3 Membership functions for Interest Rate
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The boundaries for the fuzzy sets for Interest Rate are shown in Table 4.2 below.

Fuzzy Set Triangle Start Middle End
NB 5.14 6.70 8.26
NS 7.22 8.77 10.33
ZE 9.29 10.85 12.41
PS 11.37 12.92 14.48
PB 13.44 15.00 16.56

By applying the same technique to the Gross Domestic Product and Consumer Price
Index indicators, we find that CPI has a minimum of -0.30 and a maximum of 2.70
while GDP has a minimum of -1023.00 and a maximum of 2464.00. The fuzzy

membership functions for GDP and CPI are shown in Figure 4.4 and 4.5

respectively.
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Consumer Price Index
Figure 4.4 Consumer Price Index membership functions
Fuzzy Set Triangle Start Middle End
NB -0.86 -0.30 0.26
NS -0.11 0.45 1.01
ZE 0.64 1.20 1.76
PS 1.39 1.95 2.51
PB 2.14 2.70 3.26
Table 4.3 Consumer Price Index membership function boundaries

Z1 NB NS ZE PS PB
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Figure 4.5 Gross Domestic Product membership functions
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Fuzzy Sel Triangle Start Middle ~ End
NB T6T68T 71023.00 -369.19
_INS -805.06 -151.25 502.56
ZE 66.69 720.50 137431
.”PS 938.44 1592.25 2246.06
PB 1810.19 2464.00 3117.81

Table 4.4 Gross Domestic Product membership function boundaries

- The output for the fuzzy logic system is the same indicator as per the input Interest
rate, we use the same fuzzy sets and membership functions of Interest Rate for the

‘input Interest Rate parameter.

- 4.7 Initialise Fuzzy Logic Knowledge Base

In order for the fuzzy system to predict the following quarters interest rate, it must
have a knowledge base in which to extract the rules. As discussed in chapter 2,4

' fuzzy logic rule is an IF...THEN statement with linguistic terms.
.. For example, a typical fuzzy rule may be |

 IF interest rate is PB and CPI is NS and GDP is NB THEN

predicted interest rate is ZE
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The size of the FKB depends on the number of f‘uzzy set inputs paramcters of the
system. In this fuzzy logic system, we have three inputs each with five membership
functions. Therefore, the size of the FKB is

5x5x5 = 125 rule.
If we had added another input parameter for the fuzzy logic system with five fuzzy
sets then we would have

Sx5%x5%5 = 625 rules.
| This can quickly add up to a very inefficient FKB (Raju, G.V.S. and Zhou, J., 1993).
In the next chapter, we discuss how this problem can b;: ..overpome: with. the use ofa

Hierarchical Fuzzy Logic Systemn.

As the input fuzzy sets are sfatic and do not change, only the consequence for each
fuzzy rule needs fo. be_determined. To initialise the FKB, each possible output-
"r.hembership function is allocated a number. There are five fuzzy sets for output
parameter, we assigned 1...5 to the fuzzy sets (NB=1,NS=2,ZE =3,P§ =4,PB

- 5). The FKB is then randomly encod_ed. using genetic algorithm with numbers

ranging from 1 to5.

~ AFKB for the S&s_t_em_may look as follows:

Rule 1: IF interest Rate is NB and CPI is NB and GDP is NB THEN consequent

o Rule 2 IF intérest Rate is NB and CPl is NB eiild GDP is NS THEN conseqﬁem

B ._Rule 3: IF interest Rate is NB and CPI is NB and GDP is ZE THEN consequant

_'Rule 4 IF mterest Rate is NB and CPl is NB and GDP is PS THEN consequent
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Rule 5: IF interest Rate is NB and CPl is NB and GDP is PB THEN consequent

Rule 6: IF interest Rate is NB and CP1 is NS and GDP is NB THEN consequent

Rule 124: IF interest Rate is PB and CPI is PB and GDP is PS THEN consequent
Rule 125: IF interest Rate is PB and CPl is PB and GDP is PB THEN consgéluent

where the consequent is the action performed when the rule fires.

4.8 Genetic Algorithm Parameters |

As dis:c'ussed_ in the hybrid fﬁzzy logic and genetic algorithm section form Chapter 3,
3 genetic algorithm is able to learn the rules that'govern the fuzzf system. In order
fdr the genetic algorithm to learn the mapping for the FKB, it must encode its strings
to répi‘esent the rules in the FKB. Instead of using a binary string as suggested by
Goldbérg (Goldberg, 1989), the string fo; the genetic algbrithin is encoded using the
integer ﬁﬁmb.er's that represent the fli_z_zy sets. The figure below shows an éxample of
" astring usé_’d by the. geﬁe_tic algo.rithm.-_ . - |

e e e e L e s e s

| — il R T LE FE TP e .

1234 RuleNumber 125

Figure 4.6 A s_tr_i_r__lg created by GA to encode a FKB

- There are'a_numb_er of reasons Why the use of an integer string is used instead of the

_. "'__:t'r_éditiIOnal binary string for the chfﬁ_mo_Some. By using an integer number, we can
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easily extract the fuzzy sets from the string as cach integer represents a fuzzy rule in
the FKB. Instead of performing bit _nmnipulali.ons on the chromoéomc, which can be
a ﬁme consuming task, an integer rcprcscnlat'ion allows faster encoding and decoding
of the chromosomes used .by the genclic algorithm (Mohammadian, M. and Stonier,

R. 1996).

The trade off is the amount of memory required to store the fuzzy sets as integers
instead of bits strings. For a FKB consisting of 125 rules, 125 bytes would be
required to store the FKB. Using bit strings, the five fuzzy sets can be represented

- with 3 x 125 bits (47 bytes).

In order for the genetic algorithm to learn the FKB, a number of parameters must be
set for the genetic algorithm. Finding the correct combination for these parameters is

often a matter of trial and error. For this system, the genetic algorithm had the

following parameters:

population si_ze_ =150,
.c.rossover' rate =046,
.mutat.ion rate . = = 0.01.,

| Ch'r_omoébme Iength =125.

‘These figures were decided on after a number of trials and were found to give the

~ best results overall.
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The genetic algorithm was run for 5000 generations over a period of 40 quarters (10
years) using the tfainfng data. The genetic algorithm used an elitist strategy so that
the best population generated was not lost. The best__ berforming poﬁulai'...;n is saved
‘and entered into the Inexl generation of the genetic’ algqrilhm. This procedure
prevents a good string from Eeing lost bf the probabilistic nature of r'epro'ducti_on and

also speeds convergence to a good solution.

Fitness of each _chromosome was calculated as the sum of the absolute differenées
from the predicted quarter and the actual quarters interest rate. - The aim is to

minimise the difference between the predicted interest rate and actual interest rate.

The fitness was subtracted from an “optimal” fitness amount, which was decided to
‘be 40 as it is unlikely that the error amount would be higher than 40 over 40 qﬁarters
of data used for training of the system. The fitness of the system is calculated by the

following formula:

i=0

40 _
fitness = 40— abs(Pli— I +1) 4.2)
_ where PJ, is the predicted interest rate,

B iis the current quarter and |

I+ is the actual interest rate for the next quarter,



B

4.9 Learning the FKB with a Genetic Algorithm

Once the genetic algorithm pﬁrametcrs have been set, the genetic -algorithm is run to
find the FKB for the system. The genetic algorithm randomly creates an initial
population of strings that represent possible FKB’s solutions. Using the processes of
seleﬁtion, crossover and mutation, the genetic algorithm is able to find a satisfactory .

FKB. Simulation results are shown below:

After the initial generation, the following statistics were produced:

maximum fitness 3.04
average fitness 1.19
m.ini‘mum fitness 0.00
sum of fitness 178.50

Table 4.5 Generation 0 statistics

As Table 4.5 shows, the initial generation has very low fitness values. Figure 4.7

below shows the_ results of the best FKB generated after generation 0 on the training

“data. The dotted line is the predicted. i;glterest rate while the solid line is the actual

interest rate for that quarter. The Error Amount between the actual interest rate and

- the predicted interest rate is shown in the bottom part of the figure. As can be seen,

the error amount between the actual and predicted interest rate for each quarter is
very large for a number of quarters. This is what we are trying to reduce. The FKB

generated can be seen to provide only a few rules that give good results. As this
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generation has not provided an optimal FKB, and the maximum number of

generations has not been reached, a new generation is created.

Interest Rate Prediction
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Figure 4.7 Prediction of Interest Rate using Initial FKB

To obtain the next generation of chromosomes, the genetic algorithm performs the

following steps (as discussed in Chapter 2):

1.

Choose two chromosomes from the generation probabilistically according to
fitness using the Roulette wheel selection method described in Chapter 2,
Randomly choose a position (cut point) within the chromosomes and perform
crossover operation and add to next generation of chromosomes,

Evaluate the fitness of the two new chromosomes,

Repeat steps 1 - 3 until the population size maximum has been reached,

. Repeat steps 1-4 until the number of generations to perform has been reached or

an optimal (or adequate) chromosome has been found.
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After fifty generations of the population have evolved, the following fitness’ were

' obtaine.d (see Table 4.6).
maxiinum fitne.ss ' 1628
average fitness | 9.43
minimum ﬁtﬁess '. 0.00
sum of fitness 1415.04

Table 4.6 Generation 50 statistics

‘As these statistics show, the maximum fitness achieved has increased significantly.
This means that the genetic algorithm is now generating some chromosomes that

proVi_de good rules for the FKB.
By graphing the results of the training data, we can see that although some quarters

have a large discrepancy between the actual interest rate and predicted rate, there are

" a number of quarters where the difference is very small.
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Interest Rate Prediction
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Figure 4.8 Results after 50 Generations

As Figure 4.8 shows, the Error Amount has reduced over the entire learning period.
Comparing these results to those obtained with the initial FKB (Figure 4.7), we can
see that whilst the initial FKB had error amounts greater than 3 percent, the largest
error amount after 50 generations is a little over 2 percent. This shows that the
FLGA system is gradually finding a FKB that can model the fluctuations in the

interest rate from one quarter to the next.

The genetic algorithm continuous to generate new populations until it has reached the
maximum number specified earlier (5000 generations). At the end of the learning
cycle, the best population had a fitness of 26.1250. Table 4.7 below shows the final

statistics of the genetic algorithm search for the best FKB for the system.
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maximum fiiness 26.1250

average fitness 19.200
minimum fitness 8.497
| sum of fitness 3141.108

Table 4.7 Generation 5000 statistics

Figure 4.9 shows how the final FKB predicted the quarterly interest rate for the
training data. Compared to the previous FKB in generation 50, there has been a
detectable rise in performance. The error amount for the training data has been

reduced, with only a few quarters having an error amount greater than 1 percent.
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- Figure 4.9 Results of best FKB after training completed

- Figure 4.10 below shows how the systems maximum fitness progressed from the

initial generation through to the last generation. As Figure 4.10 shows, there is a
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steep rise at the start of the leaming progress which then evens out after 1000
generations. Although better chromosomes (and hence FKB’s) are found after this
generation, there is not the steep learming curve we found in the earlier generations,
in fact after generation 1725 there has been little improvement in chromosome’s
fitness found that improve the performance of the FKB.

30 _
25

15 |

Fitness

10 |

51 Fitness Amount

0

-~ -~
-~

- - - - - - - -
~N ™ < [*s) © ~ © -3
Generation (x50)

Figure 4.10 Maximum Fitness of best FKB after each generation

One of the problems identified after the genetic algorithm has found its best
chromosome (after the maximum number of generations) is that there are a number
of rules that have not been tested. Ruelle (Ruelle, 1989) makes the observation that
there are many pitfalls that can occur when using time series predictions, in particular
the time series should be of sufficient length. If the amount of data is large enough,
then all possible rules would be covered and the genetic algorithm could learn all the
correct rules for the FKB. Unfortunately, as pointed out, some rules in the FKB

cannot be tested on the training data set. As it is unlikely that the all the rules are
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correct, some method must be developed that will allow the fuzzy system to use an

unitearnt rule and still be reliable on the output the Fuzzy Logic system gencraies.

One method to achieve this is to sef ﬁnusm_:d rules to sone default value. In this thesis,
unused rules have béén assigned to the fuzzy set in which their interest rate falls. As
the interesf rate has been split into five fuzzy sets, the FKB rule can have five
possible values. Fof the fuzzy logic system', there aré 125 FKB rules. Splitting this
into five equal regions gives us 25 rules. As disqussed in earlier in this chapter, the

FKB has been structured in the following method:

Rule 1: IF interest Rate is NB and CPI is NB and GDP is NB THEN consequent
Rule 2: IF interest Rate is NB and CPI is NB and GDP is NS THEN consequent
Rule 3: IF interest Rate is NB and CPI is NB and GDP is ZE THEN consequent
Rule 4: IF.interest Rate is NB and CPI is NB and GDP is PS THEN consequent
Rule 5: IF interest Rate is NB and CPI is NB and GDP is PB THEN consequent

Rule 6: IF interest Rate is NB and CPI is NS and GDP is NB THEN consequent
Rule 125: IF interest Rate is PB and CPI is PB and GDP is PB THEN consequent

- It can be seen that the first 25 rules look at interest rate when it is NB, the next 25 is
-'Wh_ere it is NS and so on. If Rule 2 ‘was not learnt by the genetic algorithm, then as it

is in the first 25 rules, the rule would be set to NB. 1f Rule 30 had not been learnt, it

would be set to NS, As the current interest rate is the most important indicator in
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determining the following quarter’s interest rate, it seems likely that the consequence

would be the same as the current interest rates membership function.

4.10 Testing FKB on Interest Rate Test set

When the genetic algorithm has completed learning the FKB and unlearnt rules have
been set to their default values, the fuzzy logic system can be tested on all the
available data. Figure 4.11 shows the performance of the fuzzy logic system using
the FKB. The fuzzy logic system can predict each quarter’s interest rate for the

training data and the test data.
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Figure 4.11 Interest rate prediction using test and training quarters

As Figure 4.11 shows, the system is quite capable of predicting the interest rate in

most situations with a good degree of accuracy. However, as to be expected, the
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system accuracy falls away for data it has not been trained on. There are sceveral

reasons why this may occur. The two main reasons are:

1. It has not seen the data pattern before and i.s using the fuzzy rules that have not
been trained,

2. There are more economic indicators that affect the following quarters interest rate

than used in the system.

The first reason can only be rectified by using more data in the training cycle,
‘however this option may be unavailable if there is only a small set of data. This then
falls into the.problé.m_s of time series prediction as meﬁtioned by Ruelle (Ruelle,
1989). For the predictions' used in this chapter, we used only three indicators. There
are many more economic indicators that effect the fluctuations of the interest rate.
The next chapter considers additional economic indicators for the fuzzy logic system

and uses genetic algorithm to learn the FKB of the fuzzy logic system.
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Chapter 5 Hierarchical Fuzzy Logic system

5.1 Introduction

In this chapter, we develop a number of single fuzzy logic systems. These are then
combined into a Hierarchical Fuzzy Logic system to predict interest rates.
Specifically, we look at why a Hierarchical Fuzzy Logic system is important
compared to a single fuzzy logic system and compare the results from single fuzzy

logic systems with a Hierarchical Fuzzy Logic system.

In the previous chapter, we developed a fuzzy logic system that predicts the
following quarters interest rate using the current quarters interest rate, gross domestic
product (GDP) and consumer price index (CPI), available from the Australian
Bureau of Statistics (Madden, 1995). From the results obtained, the system was able
to predict some of the fluctuations in the interest rate, but in many instances there
was a fairly large difference from the actual rate. We concluded that by adding more

indicators, we may be able to increase the performance of the system.

In fuzzy systems, there is a direct relationship between the number fuzzy sets of input
parameters of the system and the size of the FKB. Kosko and Isaka, (Kosko, B &
Isaka, S., 1993) calls this the “Curse of Dimensionallity”. The “curse” in this

instance is that there is exponential growth in the size of the FKB.

k=m" (5.1)
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where £ is the number of rules in the FKB, m is the number of fuzzy sets for each

input and 7 is the number of inputs into the fuzzy system.

As the number of fuzzy sets of input parameters increase, the number of rules

increases exponentially.

There are a number of ways that this exponeﬁtial growth in the size of the FKB can
be contained. The most obvious is to limit the number of inputs that the system is
using. However, this may reduce the accuracy of the system, and in many cases,
render the system being modelled unusable. Another approach is to reduce the
number of fuzzy sets that each input has. Again, this may reduce the accuracy of the
system (Kosko, B. 1992). The number of rules in the FKB can also be trimmed if it
is known that some rules are never used. This can be a time-consuming and tedious

task, as every rule in the FKB may need to be looked at.

Some of the main economic indicators released by the Australian Government were

discussed in Chapter Four. To reconsider, those indicators include:

o Interest Rate which is the indicator being predicted. The Interest Rate used here is
the Australian Commonwealth government 10-year treasury bonds.

e Job Vacancies is where a position is available for immediate filling or for which
recruitment action has been taken.

o The Unemployment Rate is the percentage of the labour force actively looking for

work in the country.
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Gross Domestic Product is an average aggregate measure of the value of
economic production in a given period.

The Consumer Price Index is a general indicator of the rate of change in prices
paid by consumers for goods and services.

Household Saving Ratio is the ratio of household income saved to households
disposable income.

Home Loans measure the supply of finance for home loans, not the demand for
housing.

Average Weekly Earnings is the average amount of wages that a full time worker
takes home before any taxes.

Current Account is the sum of the balances on merchandise trade, services trade,
income and unrequited transfers.

Trade Weighted Index measures changes in our currency relative to the currencies
of our main trading partners.

RBA Commodity Price Index provides an early indication of trends in Australia’s
export Prices.

All Industrial Index provides an indication of price movements on the Australian
Stock Market.

Company Profits are defined as net operating profits or losses before income tax.

New Motor Vehicles is the number of new vehicles registered in Australia.

By creating a system that contained all these indicators, we would be in a much

better position to predict the fluctuations in interest rates. Unfortunately, a fuzzy
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logic system that used every indicator and had five fuzzy sets for every indicator
would result in a large FKB consisting of over six billion rules! As can be imagined,
this would require large computing power to not only train the fuzzy logic system
with a genetic algorithm, but also large storage and run-time costs when the system is
operational. Even if a computer could adequately handle this large amount of data,
there is still the problem, as discussed by Ruelle (Ruelle, 1989), about having enough
data to properly train every possible rule. It is very unlikely that the time series
being modelled or predicted has enough data to properly train the FKB. Raju,
G.V.S., Zhou, J. and Kisner, R.A. (Raju, G.V.S., Zhou, J. and Kisner, R.A., 1991)
suggested using a Hierarchical Fuzzy Logic structure for the fuzzy logic system to
overcome this problem. By using a Hierarchical Fuzzy Logic system, the number of
fuzzy rules of the system is reduced, hence computational times are decreased

resulting in a more efficient system.

5.2 Hierarchical Fuzzy Logic Systems

The Hierarchical Fuzzy Logic structure is formed by having the most influential
inputs as the system variables in the first level of the hierarchy, the next important
inputs in the second layer, and so on. If the Hierarchical Fuzzy Logic structure
contains » system input parameters and L number of hierarchical levels with n; the
number of variables contained in the ith level, the total number of rules k is then

determined by:

k= Zm"’ (5.2)
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where m is the number of fuzzy sets.

The above equation means that by using a Hierarchical Fuzzy Logic structure, the
number of fuzzy rules for the system is reduced to a linear function of the number of
system variables », instead of an exponential function of » as is the conventional case

(Raju et al, 1991).

The first level of the hierarchy gives an approximate output, which is then modified
by the second level rule set, and so on. This is repeated for all succeeding levels of
the hierarchy. One problem occurs when it is not known which inputs to the system
have more influence than the others. This is the case when using the economic
indicators discussed earlier in the chapter. Statistical analysis could be performed on
the inputs to determine which ones have more bearing on the interest rate, however,
without the advise of a statistician, it may be difficult to decide which statistical

method to use.

The method used in this thesis is to split the inputs into a number of related groups.
These inputs in these groups are related because they have some common connection
between the inputs, such as dealing with employment, or imports and exports. This
changes the hierarchy into a two level hierarchy, with the outputs from all the groups

in the top layer giving their results as inputs into the bottom layer (Figure 5.1).
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Figure 5.1 Example of Hierarchical Fuzzy Logic Structure

Using the economic indicators already indicated we can develop five separate groups.

These groups are as follows:

1. Country Group -This group contains Gross Domestic Product and Consumer
Price Index.

2. Employment Group - This group contains the unemployment rate and the job
vacancies indicators.

3. Savings Group - This group contains House Hold Saving Ratio, Home Loans and
Average Weekly Earnings.

4. Company Group - This group contains All Industrial Index, Company Profit and
New Motor Vehicles indicators.

5. Foreign Group - This group contains Current Account, Trade Weight Index and

also the RBA Commodity Index.

These five groups each produce a predicted interest rate for the next quarter. These

are then fed into the next layer of the hierarchy where the final predicted interest rate
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is found, as shown in Figure 5.2 below. For each of these groups, the current
quarter’s interest rate is included in the indicators used, as hypothesised in chapter
four, the current interest rate has the biggest influence on the following quarters

interest rate.

| Country ’ Employment ‘ ['Savi“r‘;é‘s o i ‘ Con;pany t l Foreign |
T e i \‘\‘\ ‘ // e - B - o
o Ravaes
| Employment

|

Final Interest Rate

Figure 5.2 Hierarchical Fuzzy Logic system for interest rate prediction

The five FKB created form the top layer of the hierarchy. They are connected
together to form a final FKB. The final FKB uses the predicted interest rate from the

five above groups to produce a final interest rate prediction.

The advantage of using this Hierarchical Fuzzy Logic structure is that the number of
rules used in the FKB’s has been reduced substantially. Using the five fuzzy sets for
each indicator, the following number of rules is required for each group.

Country Group 125 fuzzy rules,

Employment Group 125 fuzzy rules,

Savings Group 625 fuzzy rules,

Company Group 625 fuzzy rules,
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Foreign Group 625 fuzzy rules.

The fuzzy logic system in the boltom layer of the hierarchy uses 3125 rules. This
results in the total number of rules being required to be 5250. This is a significant
~ reduction in the number of rules required from the 6 billion if we used a traditional

- fuzzy logic system with a single FKB.

In the following sections, we first create each of the fuzzy logic systems required for
the top layer of the hierarchy. We then ."combine first 2, then 3, 4 and finally all 5
groups together to form the final Hierarchical Fuzzy Logic system to predict the

quarterly interest rate in Australia.

5.3 Learning a Fuzzy Knowledge Base for each Fuzzy Logic system

group

In this section we develop the FKB for each group using the genetic algorithm as
described in Chapter Four. The genet';c algorithm uses the same crossover and

mutation rate as discussed in Chapter Four (section 4.7).

5.3.1 Country Knowledge Buse

The country knowledge base contains information relating to countries current
economic performance. These indicators are

- Consumer price index,
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Gross domestic product.

These are the same indicators that we used in the pfcvious chapter (see Figure 4.11).

As a measure of how well a group predicts the following quarters interest rate, we
calculate the average crror of the system for the training set and tests sets. This is
calculated using the following formula:

D abs( Pi - Ai)

i=|

E=" (5.3)
no

where E is the average error, Pi is the Predicted interest rate at time period i, 4i is the

actual interest rate for the quarter and # is the number of quarters predicted.

The table below shows the resuits for the Country group.

Training Average Test Average Overall Average

0357 0.653 0.447

Table 5.1 Average error for Country Group

Table 5.1 shows the training average error is less than the test average error as the
test set uses data that has not been used in the training of the FLGA system. The

overall average error, which includes all the available data, is 0.447.
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$8.3.2 Company Knowledge Base

The Company knowledgg base conlains information relating to the corporate scctor
of the market. This information includes :

All Industrial Index,

Company Profit,

New Motor Vehicle Registrations.

These three indicators, combined with the Interest Rate, are used to predict the
following quarters interest rate. Figure 5.3 shows the progress the GA made in

learning the “optimal” FKB.

It started with a fitness of just 3.48 and finished with a fitness value of 30.18. The
fitness of the “best” FKB found by the genetic algorithm started to even out after the
1000™ generation when the fitness was 29.02. There were a few advances in the
fitness value after this generation, however these were only small compared to the

initial learning.

TFigure 5.4 shows the predicted interest rate for both the training and test data on the

“best” FKB found By the genetic algorithm.
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Figure 5.4 Predicted Interest Rate using FL of Company group

As Figure 5.4 shows, it follows a similar pattern as to the predictions from the
Country group used in the previous chapter. Using the training data, the system is

able to learn a FKB that predicts the following quarters interest rate with only a few
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fluctuations from the actual interest rate. However, the same problems occur when
predicting the interest rate on the test data.  The performance of the FKB for
predicting the interest rate on the test data is slightly belter than that achieved by the

FKB in the Country group.

The average error of the ‘Compan'y group of indicators is shown in Tablc 52, It
shows that there was a slight decrease in the average error of the simulation when
compared to the Country group in Table 5.1. waever, the test set average error is
lafger than ihat of the Country group, suggesting that the test data uses a number of
rules that were not trained while the country group used more traine‘d rules from the

FKB.

Training Average Test Average Overall Average

0.252 : 0.691 0.385

Table 5.2 Average error for Company Group

5.3.3 Employment Knowledge Base

The Employment knowledge bas contains information relating to the employment
sector of the economy. This information includes :
' Uneniployment Rate,

Job Vacancies.
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These two indicators, combined with the Interest Rate, are used to predict the
following quarters interest rate. Figure 5.5 shows the progress the GA made in
learning the “optimal” FKB. It started with a fitness of 5.74 and finished with a
fitness value of 23.3825. The fitness of the “best” FKB found by the genetic
algorithm started to even out after only 300 generations when the fitness was found
to be 22.656. This is a lot quicker than the previous groups we have looked at.
There were a few advances in the fitness value after this generation, however these

were only small compared to the initial learning.
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Figure 5.5 Fitness amounts over training generations

Figure 5.6 shows the predicted interest rate for both the training and test data on the

“best” FKB found by the genetic algorithm.
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Figure 5.6 Predicted Interest Rate using Employment Group

As Figure 5.6 shows, the FKB generated for this group does not perform quite as
well as the previous groups. Using the training data, the system is able to learn a
FKB that predicts most of the following quarters interest rate, with some fluctuations
from the actual interest rate. The performance of the FKB for predicting the interest
rate on the test data looks slightly worse than that achieved by the FKB in the

Country or Company groups.

The average error of the Employment group of indicators is shown in Table 5.3. It
shows that there was an increase in the amount of average error of the fuzzy logic
system for both the training and test data sets. This confirms our initial conclusions
of the FKB from Figure 5.6 that the Test Average error was larger than the Training

period Average Error.
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Training Average Test Average Overall Average

0.427 0.578 0.473

Table 5.3 Average Error for the Employment Group

' 5.3.4 Savings Know!edge Base

The Savings knowledge base contains the following indicators:
Savings Ratio,
Home Loan approvals,

Average Weekly Earnings.

'}'hese three indicators, combined with the Interest Rate, are used to predict the
following quarters interest rate. Figure 5.7 shows the progress the GA made in
learning the “optimal” FKB. It started with a fitness of 2.04 and finished with a
- fitness value of 30.137. Unlike the previous groilps looked at, the Savings group had
a gradual increase in the fitness of the “optimal”:‘iFKB found by the FLGA system.
There was a rapid increase in the fitness for the first 100 generations and then a
gradual increase in the fitness until the 3205 generation where the “best” fitness was
found to be 30.137. From this geheration on there were no further increases in the

fitness amount.
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Figure 5.7 Fitness Amounts over training generations

Figure 5.8 shows the predicted interest rate for both the training and test data on the

“best” FKB found by the genetic algorithm.
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Figure 5.8 Predicted Interest Rate using Savings group
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Figure 5.8 shows the FKB generated for the Savings group has a number of error
amount peaks up as high as 2 percent, however during the training period, there is
only the two peaks with the others happening during lhé test period. This compares
well with the other groups looked at so far, as while ilicre are some fairly large error

amounts, there are a number of quarters where there is a very low amount of error.

The average error of the Savings group of indicators is shown in Table 5.4 below.
The table shows that the savings group error amount compares with that achieved
with the Company group (Table 5.2). However, the average error for the test period
is the highest found, mainly due to a few quarters in the test period with a large

difference between the actual and predicted interest rate.

Training Average Test Average Overall Average

0256 0.725 0.398

Table 5.4 Average Error for Savings Group

5.3.5 Foreign Knowledge Base

The Foreign knowledge base contains information relating to Australia’s current
economic position in relation to the rest of the world. The indicators used are :
Current Account,

Reserve Bank of Australia Commodity Price Index,

Trade Weight Index.
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These three indicators, when combined with the Interest Rate, are used to predict the
following quarters interest rate. Figure 5.9 below shows the progress the GA made in
learning the “optimal” FKB. It started with a fitness of 3.06 and finished with a
fitness value of 28.26. The fitness achieved by the Foreign group follows a similar
pattern to that of the Savings group. It has a rapid rise at the start of the training

session and then it gradually improves the fitness.
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Figure 5.9 Fitness Amounts over training generations for Foreign Group

Figure 5.10 shows the predicted interest rate for both the training and test data on the

“best” FKB found by the genetic algorithm.
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Figure 5.10 Predicted Interest Rate using Foreign group

As Figure 5.10 shows, the FKB generated for this group has a number of fluctuations
in interest rate that is not accurately predicted by the FKB. In one quarter (quarter
46), there is a difference between the actual and predicted interest rate of more than
three percent. However, the rest of the quarters perform better than this and compare

favourably with previously generated FKB for other groups.

The average error of the Foreign group of indicators is shown in Table 5.5. It shows
that the training average error amount is larger than that achieved by both the
Savings and Company groups, but the average error for the combined data of training
and test sets is the lowest achieved of any group. One of the reasons for this is that
even though there was one quarter that performed badly, the other quarters

compensated by performing well.
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Training Average

Test Average

Overall Average

0.301

0.559

0.379

Table 5.5 Average Error for Foreign Group

5.4 Building the Hierarchy by combining the Fuzzy Logic systems

After creating the above fuzzy knowledge bases for each fuzzy logic system, we must

combine them so that we can utilise the information they present and obtain better

predictions of each quarters interest rate than any of the fuzzy logic syétem

previously created.

To show the improvement in prediction using a Hierarchical Fuzzy Logic system, the

following simulations were performed. A Hierarchical Fuzzy Logic system was

randomly created by combining first two , then three, four and finally all five of the

fuzzy logic sysiems from the previous section. The way these groups were combined

to form the Hierarchical Fuzzy Logic system is shown in Table 5.6.

Combine 2 groups

Combine 3 groups

Combine 4 groups

Combine 5 groups

Company group

Country group

Company group
Country group

Employment group

Company group
Country group
Employment group

Savings group

Company group
Country group
Employment group
Savings group

Foreign group

Table 5.6 Hierarchical system groups
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54.1 Two Group Hierarchy

The two group Hierarchy combines the current quarters interest rate with the results
from _lhc Company and Country groups fuzzy logic systems (as shown in Figure
5.11). The results from these two groups are the predicted interest rate for the next
quaher. _The FLGA is run to find the “best” FKB using the same techniques as
déscri_bcd in Chapter Four. The input and output parameters of the combined group

fuzzy lopic system had five fuzzy sets each.

. Company ~ Country
- Group ~ Group
. 2 2
Combined
Group

Predicted I?;terest Rate

‘Figure 5.11 Combining Two Groups in the Hierarchy

Figure 5.12 shows the how the fitness improved over the training generations. There
was a steep rise from the initial fitness of 7.42 to the maximum fitness value of

27.64. In fact, the FLGA found a “good” FKB after just 392 generations.
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Figure 5.12 Fitness amounts during training for 2 group hierarchy

When the final FKB generated is tested on the training and test sets, the following

results were obtained (Figure 5.13).
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Figure 5.13 Predicted interest rate combining 2 groups

Figure 5.13 shows that when combining the Company and Country groups together

in the hierarchy, the combined two group fuzzy logic system is able to predict the
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results over the training period with only a few fluctuations from the actual interest
rate. During the test period, the system had a number of fluctuations between the

actual interest rate and the predicted interest rate,

The average error for the system, shown in Table 5.6. The Hierarchical Fuzzy Logic
system had a higher error amount for both the training and the testing periods when
compared to the company group alone, but had lower error amounts when compared

to the country group alone.

Training Average Test Average Overall Average

0.323 0.623 0.425

Table 5.7 Average Error Amounts for 2 group hierarchy

5.4.2 Three Group Hierarchy

The three group hierarchy is made by combining the outputs of three of the single
layer groups into one final group (Figure 5.14). The inputs used in this system are:
Country Group output,

_Company Group output, and

_ Employment Group output.
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Figure 5.14 Combining Three Groups in the Hierarchy

These :inputs. are combined with the current quarters interest rate to create a system
that predicts the fdllowing quarters interest rate. Figure 5.15 below shows the
progress the FLGA system made in finding the “best” FKB. The system started with
an initial fitness of 9.03, and rapidly increased to 28.29 by generation 264. By
.generation 1196, the maximum ﬁlness value of 28.97 had been reached. This
leamihg rate is very similar to that pf the previous hierarchy (two groups hierarchy).
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Figure 5.15 F itness amount during training for 3 group hierarchy

107



The following figure (Figure 5.16) shows the results of the final FKB learnt by the

system applied to both the training and test data.
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Figure 5.16 Predicted interest rate combining 3 groups

Figure 5.16 shows the results of the “best” FKB found in predicting the following
quarters interest rate. There are a few minor differences in the training data, with
three quarters having an error amount of greater than 1 percent. The results on the
test data shows that the fuzzy logic system is able to model most of the fluctuations,
even though it was not trained on that data. When compared to the previous
hierarchy which used only two groups, the three group Hierarchical Fuzzy Logic

system performed with more accuracy.

The average errors of the three group Hierarchical Fuzzy Logic system is shown in

Table 5.8. The table shows that the three group Hierarchical Fuzzy Logic system had
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a lower average crror over all sections of the data when compared to the two group
system. When compared to the single layer systems, we find that the average error
for the training data was similar 1o the best achieved, whilst the test average and
overall average is the best of any group we have created so far. The best test average
error previously achieved was 0.559 by the Foreign group, as compared to 0.494

shows a marked improvement in the prediction capabilities.

Training Average Test Average Overall Average

0.289 0.494 0.352

Table 5.8 Average Error Amounts for 3 group hierarchy

5.4.3 Four Group Hierarchy

The four group hierarchy is made by combining the outputs of four of the single layer

groups into one final group (Figure 5.17). The inputs used in this system are:
Count_ry Group output,

| Company Group output,

Employment Group output, and

 Savings Group output.
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Figure 5.17 Combining Four Groups in the Hierarchy

The output from fhesei groups are combined with the current quarters interest rate as
inputs to create a fuzzy logic system that predicts the following quarters interest rate.
The fuzzy logic system will be the largest one so far created as it will contain five
inputs each split into five fuzzy sets which leads to 3125 rules in the FKB. Figure
5.18 below shows the progress the FLGA system made in finding the “best” FKB.
The fouf group Hierarchical Fuzzy Logic system started with an initial fitness of
443, and increased to 31.04 by generation 394. Between this generation and
generation 2621 there was a slow increase which led to the “best” fitness of 33.045

being achieved.
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Figure 5.19 shows the results of the final FKB learnt by the system applied to both

the training and test data.
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Figure 5.19 Predicted interest rate combining 4 groups

Figure 5.19 shows the results of the “best” FKB found in predicting the following

quarters interest rate. The four group Hierarchical Fuzzy Logic system is able to
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predict the interest rate during the training period with a good accuracy. The error
amouht is fairly consistent with no large peaks, with the largest error amount being
just under 1 percent. When pré:\di‘cling the interest rate for the test set, the error
amount increases, but not by the am.o.unt previous graphs show (see Figure 5.16 and
Figure 5.13). This méans that the system is well able to predict the following
quarters interest rate, Compared to the previous best system, that of the three group
hierarchy, the graph indicates that the performance of the four group hierarchy is

better.

Table 5.9 displays the average errors of the system. The table shows that the four
group Hierarchical Fuzzy Logic system had the lowest average error for the test
period and the overall data than any preceding system looked at whilst the training

average error was the second best found, only beaten by the company group.

Training Average Test Average Overall Average

0355 0416 0304

Table 5.9 Average Error Amounts for 4 group hierarchy

5.44 Final Combined Hierarchy

_ ‘The final combined hierarchy is made by combining ail the outputs from the groups

in the single layer into one final group_(Figure 5.20). The inputs used in this system

~are:
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Country Group output,
Company Group outpﬁ;{,
Employment Group output,
Saviﬁgs Group output, and

Foreign Group output.

——————— ey e A s s o s

| Company | EEmplnyment . Foreign . Savings = County

.~ Group . ' Group . Group - Group Group
. oy Combined i
Group

Predicted Mterest Rate

Figure 5.20 Combining all Five Groups in the Hierarchy

For this sy'stem, we will not include the current quarters interest rate, due to the fact
that the size of the FKB has a!ready rapidly grown to 3125 rules. If we included the
current quarters interest rate, the size of the FKB would become over 15000 rules in

- size.

-Figure 5.21 shows the progress the FLGA system made in finding the “best” FKB.
The system started with an initial fitness of 6.77, and increased to 28.04 by
generation 225, Between this generation and generation 2822 there was a slow

~ increase which led to the “best” fitness of 32.20 being achieved. However, when
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compared to previous fitness results, this is not the best fitness result achieved on the

training data, as the earlier four group hierarchy had a better fitness of 33.05.
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Figure 5.21 Fitness amount during training for final combined hierarchy

Figure 5.22 shows the results of the final FKB learnt by the system applied to both

the training and test data.
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Figure 5.22 Predicted interest rate for final combined hierarchy
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Figure 5.22 shows the results of the “best” FKB found in predicting the following
quarters interest rate. Compared to the results from the four group hierarchy, the
results achieved by the final combined hicrarchy don't seem to be quite as good.
Although the system was still able to predict the interest rate during‘ the training
period with a good deal of accuracy, by corhparing the error amount there seems to
be a larger error in the final combined hierarchy. However, comparing the test period
brediction show that similar accuracy was found between the final combined and the

four group hierarchies.

Table 5.10 displays the average errors of the system. The table shows that this
system has a higher average error for the training period, in fact it is the second
worse of all the systems tested (the worst being the Employment group - Table 5.3).
However, the test period proved to be the second best found with only the four group
hierarchy beating the performance. As the training average error was so high, this led

to the overall average error to being higher than would otherwise be expected.

Training Average Test Average Overall Average

0.402 0.465 0.421

Table 5.10 Average Error Amounts for final combined hierarchy

- 5.5 Conclusions on Hierarchical Fuzzy Logic systems

When the separate fuzzy logic system groups are combined to form a Hierarchical

Fuzzy Logic system, there is a definite improvement in the accuracy of the results in
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Hierarchical Fuzzy Logic systems. Simulation results show that there is a gradual

improvement in predicted results as we move from combining two groups to

combining four groups in a hierarchy structure.

The final combined hierarchy had slightly worse results during the training period,

mainly due to the fact that its inputs fully relied on the predictions of the single layer

groups and didn’t include the current interest rate as an input, The other Hierarchical

Fuzzy Logic systems all combined the current interest rate with the their predicted

interest rate inputs, which led to the four group hierarchy to be the best performing

FKB, however the final combined hiérarchy FKB still had the second best average

error for the most important period - the test period. Table 5.11 displays all the

errors amounts for the single groups and the combined groups.

- Training Error Testing Error Overall Error
Country Group 0.357 0.653 0.477
Company Group 0.252 0.691 0.385
Employment Group 0.427 ‘ 0.578 0.473
Savings Group 0.256 0.725 0.398
Foreign Group 0.301 0.559 0.379
Two Group Hierarchy 0.323 0.623 0.425
Three Group Hierarchy 0.28% 0.494 0.352
Four Group Hierarchy 0.255 0416 0.304
Five Group Hierarchy 0.402 0.465 0.421

Table 5.11 Compafisou of Average Errors
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It seems that by combining the current interest rate with the single layer groups
predicted interest rate gives the best result. If a singlé fuzzy logic system that used
all the inputs hdd been developed, the system would have had over 6 billion rules. In
the Hierarchical Fuzzy Logic system created in this chapter, we have shown that the
accuracy of the system can be increased by using more indicators in a hierarchical
structure, without the exponential growth in the nurﬁber of fuzzy rules that occurs in

a single fuzzy logic system with the same number of inputs.
In the next chapter, we look at using a new structure called the Feed Forward FLGA

system, which uses the current interest rate in every group and passes the result from

one group onto the next group in the structure,
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Chapter 6 Feed Forward Fuzzy Logic System

6.1 Introduction

In the last chapter, we developed a Hierarchical Fuzzy Logic system where the
economic indicators were split into a number of groups, and the results from each of
these groups was fed into a final fuzzy logic system. In this chapter we lopk at
another kind of hierarchical system called a Feed Forward system, where instead of
the results all being passed into one combined system, the results from each group is
_passbd on to next group in the list (hence its name of Feed Forward). Figure 6.1

below shows the structure of the Feed Forward system.

\J
Final Output

Figure 6.1 Feed Forward Fuzzy Logic structure
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The output from Group 1 is passed onto Group 2 as one of its inputs, then the output
from Group 2 is passed on to Group 3 as one of its inputs, and so on. The final

output from Group # is the actual result for the system.

Using the same economic indicators as discussed in chapter four (and chapter five),

these were split into the same groups as chapter five, as shown below.

Group Name | Indicators

Country Consumer Price Index

Group Gross Domestic Product

Company Company Profit

Group All Industrial Index
New Motor Vehicles

Employment Unemployment Rate

Group Job Vacancies
Savings Home Loans
Group Savings Ratio
Average Weekly Earnings
Foreign Current Account
Group Trade Weight Index
RBA Commodity Price Index

Table 6.1 Economic indicators split into groups
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For each group, the current quarters interest rate was also included as an indicator.
Each group is trained to find a FKB that can predict the following quarters interest
rate. This output is then used as an input for the next layer, and so on. The last
group in the Feed Forward Fuzzy Logic structure provides the final predicted interest

rate for the following quarter. The order in which the groups are processed is shown

in Figure 6.2.
" Foreign | _Foreign _Employment | Employment| Country
Mesuns Group Results Group
o Country |
Results
| ' Savings | Savingmbgﬁyi JFinal Predicted
- Group ' Results | Group - Interest Rate

Figure 6.2 Interest rate prediction using Feed Forward Fuzzy Logic structure

Figure 6.2 shows that the output from the Foreign group is fed into the Employment
group as another input, the output of the Employment group is fed into the Country
group as an input, and so on until the output from the Company group is found. This

output then represents the overall output for the system.

In the next sections, we show the results for each group in the Feed Forward Fuzzy

Logic system, and then compare the results achieved to those from chapter five when

a Hierarchical Fuzzy Logic system structure was used.
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6.2 Foreign group

The Foreign group uses the following inputs:
Current Account,

Trade Weight Index,

RBA Commodity Index,

Current Quarter’s interest rate.

These are the same indicators as used in the Foreign group in the previous chapter for
Hierarchical Fuzzy Logic systems (section 5.1.5), so the same FKB as found in that
section will be used here. For an explanation of the results of this group, refer to

section 5.1.5.
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Figure 6.3 Predicted Interest Rate by Foreign Group
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Training Average Test Average Overall Average

0.301 0.559 0.379

Table 6.2 Average Error for Foreign group using Feed Forward

6.3 Two group Feed Forward Fuzzy Logic structure

The second group in the Feed Forward Fuzzy Logic structure (Figure 6.4) consists of
the following indicators:

Unemployment Rate,

Job Vacancies,

Current Quarters Interest Rate,

Foreign Group Results.

—

Foreign

| Crouwp |

)
. Employment
| Group

|

Predicted Interest Rate

Figure 6.4 Two Group Feed Forward Fuzzy Logic System

These are the same indicators as used in the Employment group created in Chapter

Five (5.1.3) except that the results from the Foreign group is also included as an
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indicator. Figure 6.5 shows the results of the Employment group when predicting the

following quarter’s interest rate.
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Figure 6.5 Results using Two group Feed Forward Fuzzy Logic system

As Figure 6.5 shows, by including the Foreign results as an input for the
Employment group the performance has markedly improved from both the Foreign
group result and the results achieved by the Employment group in section 5.1.3.

Through both the training and also the test period, the average error is fairy small.

Training Average Test Average Overall Average

0.200 0.510 0.294

Table 6.3 Average Error for Two Feed Forward Fuzzy Logic groups

Table 6.3 shows the average error achieved by the system. As can be seen, the error
amount has been reduced compared to the results from the Employment group in

Section 5.1.3. (Table 5.3).
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6.4 Three group Feed Forward Fuzzy Logic structure

The three group Feed Forward Fuzzy Logic structure (Figure 6.6) consists of the

following indicators:
Gross Domestic Product,
Consumer Price Index,

Current Quarter’s Interest Rate,

Result from Employment Group.

S

Foreign
Group

Yy

_E;rﬁi—ployment
Group

| Group

Country

Predicted Interest Rate

Figure 6.6 Three Group Feed Forward Fuzzy Logic System

These indicators are used to build the Feed Forward Fuzzy Logic structure that can

predict the following quarter’s interest rate.

The results when using the Feed

Forward Fuzzy Logic structure is shown in Figure 6.7.
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Figure 6.7 Results using a Feed Forward Fuzzy Logic system for Three groups

Figure 6.7 shows that the Country group didn’t perform quite as well as the
Employment group when predicting the following quarter’s interest rate. During the
training period, there are a couple of small peaks, with the largest error amount being
about 1.5 percent, however, during the test period there were a number of peaks in
the error amount with errors greater than 1 percent. Compared to the results for the
previous section, there are more error peaks, but when compared with the country
group results from chapter four, the peaks are fewer and these peaks are smaller than

previously achieved.

Training Average Test Average Overall Average

0.248 0.618 0.360

Table 6.4 Average Error for Three Feed Forward Fuzzy Logic groups
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The Average error achieved for the Country group in the Feed Forward Fuzzy Logic
structure is shown in Table 6.4. When compared to the results of the Country group
from chapter four, we see that the average error amounts have fallen, representing a

better performénce of the FKB for the Country group (Table 5.1).

6.5 Four group Feed Forward Fuzzy Logic structure

_The Four group Feed‘ Forward Fuzzy Logic system (Figure 6.8) consists of ."the
following inciicators:

'.'.Savings Ratio, |

Home Loan approvals,

Average Weekly Earnings,

Current Quarter’s Interest Rate,

Result from the Country Group.

E_WFbrei-gn_ _
. Group

: Employment!
' Group }5

1

.'-——v-———-- !

Country |

. Group

v
; Savings
: Group ;

A 4
Predicted Interest Rate

Figuré 6.8 Four Group Feed Forward Fuzzy Logic System
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These are the same indicators as used in section 5.1.4 when the Savings group FKB
was created, but we now include the results from the Country group as an indicator.
The FLGA system is run to find the “best” FKB that predicts the following quarter’s

interest rate. The results are shown in Figure 6.9 below.
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Figure 6.9 Results using Four Feed Forward Fuzzy Logic groups

The results from Figure 6.9 show that the system was very successful in predicting
the following quarters interest rate for both the training period and the test period.
During the training period, there are only a couple of very small peaks in the error
amount, all these being 1 percent or lower, and during the test period, although there
are a number of peaks in the error amount, they are all under 2 percent. Compared to
the results from the two pervious groups in the Feed Forward Fuzzy Logic structure,
the Savings group appears to be the best performance found so far. When compared

to the Savings group in Chapter Five (5.1.4) the results during the test period seem to
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indicate that the Feed Forward Fuzzy Logic sysiem results are better than those

previously achieved (Figure 5.8).

Training Average Test Average Overall Average

0.120 0.472 0.227

Table 6.5 Average Error for Four Feed Forward Fuzzy Logic groups

Table 6.5 shows the averége error that was achieved by the system. The table shows
that the Training Average Error is significantly lower than that achieved so far in the
Feed Forward Fuzzy Logic system. The test and overall average error is also lower
than that previously achieved in the Feed Forward Fuzzy Logic system. When
compared to the results from the Savings group in Chapter Five, the all three
- averages (namely Training, Test and Overall average) are significantly lower when

using a Feed Forward Fuzzy Logic structure (Table 5.4).

6.6 Five group Feed Forward Fuzzy Logic structure

- The Fii}e grpup Feed Forward Fuzzy Logic system (Figure 6.10) contains the
| faiowmg indicators: |
¥ All Industrial Index,

Company Profit,

New Motor Vehicle Regi.strati'on,

Current Quarter’s Interest Rate,

Result from Savings Group.
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Figure 6.10 Five Group Feed Forward Fuzzy Logic System

These are the same indicators used as the Company group in chapter five (5.1.2) with
the results from the Savings group added to the indicators. Figure 6.11 below shows
the results when the “best” FKB that has been found during the training period is

used to predict the following quarter’s interest rate.
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Figure 6.11 Results using Five Feed Forward Fuzzy Logic groups

The above Figure shows that the Company group was able to find a “good” FKB that
was able to predict most of the fluctuations in the interest rate. During the training
period, the interest rate followed very closely the actual interest rate for the following
quarter. The test period shows that there was one main peak in the error amount, at

the 47" quarter, but other than this peak, the error amount was fairly small.

Compared to the rest of the groups in the Feed Forward Fuzzy Logic system, the
system perform better than all other groups, with the exception of the Four group
Feed Forward Fuzzy Logic system (Figure 6.9) which had a number of small peaks
in the error amount during the test period, compared to the one large peak in the
Company group. Compared to the Company group in chapter five (5.1.2) the
performance of the Feed Forward Fuzzy Logic system is superior both during the

training and testing periods.
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Training Average Test Average Overall Average

0.146 0.379 0.217

“Table 6.6 Average Error for Five Feed Forward Fuzzy Logic groups

Table 6.6 shows that the average error obtained was the best performing of the Feed

Forward Fuzzy Logic groups.

6.7 Comparison of Feed Forward Fuzzy Logic system with
Hierarchical Fuzzy Logic system

There are a number of differences between the Hierarchical Fuzzy Logic system used
in chapter five and the Feed Forward Fuzzy Logic system developed in this chapter.
The Hierarchical Fuzzy Logic system has a number of self contained groups. The
output from these groups is then combined into a final system which produces the
final, predicted interest rate. In comparison, the groups in the Feed Forward Fuzzy
Logic system rely on the output from the previous group in the system before they

can predict the following quarters interest rate.

Table 6.7 shows the Average Error for the Hierarchical Fuzzy Logic system and the

Feed Forward Fuzzy Logic system.
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Training Error Test Error Overall Error |
Two Group Hierarchy | 0.323 0.623 0.425
Three Group Hierarchy 0.289 0.494 0.352
Four Group Hierarchy 0.255 - 0416 0.304
Five Group Hierarchy 0.402 0.465 0.42]
One FFFL Group ' 0.301 0.559 0.379
Two FFFL Groups 0.200 0.510 0.294
Three FFFL Groups 0.248 0.618 0.360
Four FFFL Groups 0.120 0.472 0.227
Five FFFL Groups 0.146 0.379 0.217

Table 6.7 Comparison of Average Error Between Hierarchical and Feed Forward systems

Table 6.7 shows that the Feed Forward Fuzzy Logic results for the five group Feeci‘
Forward Fuzzy Logic system has a much lower average error for the training period
compared to the hierarchical groups. However, the test period average errors are of
similar values, resulting in the overall ave.rage error for the Feed Forward Fuzzy

Logic system to be slightly better than the Hierarchical Fuzzy Logic system.

- One reason that the Feed Forward Fuzzy Logic system seems to perform slightly
better than a Hierarchical Fuzzy Logic Systém may be that if there is a large error in
the error amount for a quarter, the qther indicatofs in the Feed Forward Fuzzy Logic
group compensate for this error and therefore reduce its significance. In the

Hierarchical Fuzzy Logic system, if there is a large error in the predicted interest rate
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for the following quarter, then the system only has other predicted interest rates with

which to work with, which may also have this large error.

One advantage that the Hierarchical Fuzzy Logic system has over the Feed Forward
Fuzzy Logic system is that each group of the Hierarchical Fuzzy Logic system can be
trained and run in parallel, reducing the amount of time necessary to train the system

to obtain a final result, Fi_éure 6.12 below shows this concept.

o : ; Runin
Group 1 | Group2 . .. f Group n Parallel
—-—"u—v-vwrvv\:“\ . T
Outputs from
above groups
processed

Figure 6.12 Parallel structure of Hierarchical groups

'I"he. top groups in the Hierarchical Fuzzy Logic system can be processed in parallel
as they do not rely on informatiﬁn between them. It is only the final combined group
that reqﬁires all the previously processed groups to be finished so it can process their
information. The Feed Forward Fuzzy Logic system on the other hand can only
operate in a sequential fashion. That is, the first group is processed, then the output
from that group is passed on the next group and so on until the final group is

processed.
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Chapter 7 Artificial Neural Network for Prediction of

Interest Rates

7.1 Introduction

Artificial Neural Networks (ANN'’s), which were introduced in chapter two, can be
compared to a simplified mathematical model of a biological nervous system such as
the brain. They are composed of a large number of highly interconnected processing
elements (neurons) working together to solve specific problems. The processing
ability of the ANN is Stored‘ as.weights for each of the interconnected links between

the neurons, usually obtained by some method of training or learning.

In this chapter, an ANN is created to predict the following quarter’s interest rate in
Australia. The system uses the same data as used by the FLGA system in the
previous chapters. Two different methods using an ANN were used to predict the
following quarter’s interest rate. The first model uses the same structure as the FLGA
where the input parameters are split into a number of smaller related groubs and their
output is fed into the ﬁﬁal group which tﬁen produces the final interest rate
prediction. This was the Hierarchical Neural Network system. The second model
used the traditional neural network system where all the input parameters were

presented to the system and an interest rate prediction was made.
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7.2 Pre-Process Data

In brder for the neural network to use the economic data for prédicting the following
‘guarter’s interest rate, a number of pre-processing steps must be performed. This
allows the data to be presented to the neural network in a format that it can easily
work with. Data presented to the neural network must fall within certain ranges
(usually 0 to +1 or -1 to +1 (Rao and Rao, {994)) due to the fact that the network

uses a Sigmoid Activation function (see Chapter 2) in its middle (or hidden) layers.

7.2.1 Calculate Difference

The neural network system formats the data for processing in a similar manner to the
FLGA system where the difference from the current quarter to the previous quarter is
used as the data for the input. The change from one quarter to the next is used by all
the indicators except the interest rate, where the actual interest rate is used. For

example the Gross Domestic Product would be formatted as:

Year Quarter Data 1 Difference
1986 1 79856.0

1986 2 | 795200 -336.0
1986 3 79619.0 99.0
1986 4 79319.0 -300.0
1987 1 80201.0 882.0

Table 7.1 Difference in Data from Current Quarter to Previous Quarter
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7.2.2 Normalise the Data

As Table 7.1 shows, there can still be a large range between the smallest and largest
values. To reduce this into a more useable range, the data is modified by the
following equation:

New Data = (current data - Mean) / standard deviation (7.1)

The new data that has been calculated represents the distance from the mean value as
a fraction of the standard deviation. This gives a good variability to the data, with

~ only a few values that are out of the 0 to +1 or -1 to +1 range.

7.2.3 Squash the Data

The next step in the pre-processing stage is to squash the data so that it falls between
the required range of 0 to +1 for this simulation. For this system, a Sigmoid
_ sqhashing function is performed. The equation for this step is:

Squash data = 1/ (1 + exp(-Norm Data)) (7.2)

~ :After performing the sigmoid squashing function on the data, all the values fall in the

range O to +1. -

7.2.4 Moving Difference

As well as using the indicators as inputs for the neural network, we also present data

~ to the system that relates to the rate of change in the data, which is the second
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derivative of the data set (Rao and Rao, 1994). This accents changes in the data set
between one quarter and the next. The equation for this is:

mov diff = (current val - previous val ) / (current val + previous val) (7.3)

The above equation is performed on the original data (before any pre-processing
steps are performed) and will give a value between -1 and 1. The result from this
equation becomes an additional input to the system. Therefore, for each input into
the system, an additional ini)ﬁt is created, doubling t_he number of input parameters to

the neural network.

7.3 Training and results of the Neural Network

The indicators are split into the same groups as used by the FLGA system. A back-
propagation neural network is used with two hidden layers, each consisting of 20
neurons. This was found to produce a quicker and more accurate result than using a
single hidden layer. Sigmoid learning is used to predict the following quarters
interest rate. Tﬁe error tolerance was set to 0.0001, the Learning Parameter (Beta)
was set to 0.6, momenfum (alpha) and Noise Factor were both set to 0. The neural

network was trained for 10000 cycles.

7.3.1 Country Group

The country knowledge base contains information relating to country’s current

economic performance. These indicators are:
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Interest Rate,
Consumer price index,

Gross domestic product.
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Figure 7.1 Neural Network Prediction for Country Group
Training Average Test Average Overall Average
0.401 1.023 0.591

Table 7.2 Average Error for Neural Network Country Group

7.3.2 Company Knowledge Base

The Company knowledge base contains information relating to the corporate sector
of the market. This information includes:

Interest Rate,

All Industrial Index,
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Company Profit,

New Motor Vehicle Registrations.
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Figure 7.2 Neural Network Prediction for Company Group
Training Average Test Average Overall Average
0.228 1.290 0.548

Table 7.3 Average Error for Neural Network Company Group.

7.3.3 Employment Knowledge Base

The Employment knowledge base contains information relating to the employment
sector of the economy. This information includes:

Interest Rate,

Unemployment Rate,

Job Vacancies.
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Figure 7.3 Neural Network Prediction for Employment Group

Training Average Test Average Overall Average

0.352 0.742 0.471

Table 7.4 Average Error for Neural Network Employment Group

7.3.4 Savings Knowledge Base

The Savings knowledge base contains the following indicators:
Interest Rate,

Savings Ratio,

Home Loan approvals,

Average Weekly Earnings.
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Figure 7.4 Neural Network Prediction for Savings Group
Training Average Test Average Overall Average
0.378 0.923 0.534

Table 7.5 Average Error for Neural Network Savings Group

7.3.5 Foreign Knowledge Base

The Foreign knowledge base contains information relating to Australia’s current
economic position in relation to the rest of the world. The indicators used are:
Interest Rate,

Current Account,

Reserve Bank of Australia Commodity Price Index,

Trade Weight Index.
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Figure 7.5 Neural Network Prediction for Foreign Group

Training Average Test Average Overall Average

0.387 0.714 0.487

Table 7.6 Average Error for Neural Network Foreign Group

7.3.6 Four Combined Hierarchical Neural Network System

The Four Combined Hierarchical Neural Network system uses the same inputs as the
4 group Hierarchical Fuzzy Logic system:

Interest Rate,

Country Group output,

Company Group output,

Employment Group output,

Savings Group output.
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These inputs were normalised for the neural network in the same manner as
previously stated in section 7.2. This gave 10 indicators to be presented to the neural

network for training and testing of the system.
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Figure 7.6 Neural Network Prediction for 4 Combined Groups

Training Average Test Average Overall Average

0.318 0.681 0.428

Table 7.7 Average Error for 4 Combined Neural Network Groups

7.3.7 Final Combined Hierarchical System

The final Hierarchical Neural Network system uses the same inputs as the Final
Hierarchical Fuzzy Logic system. As can be seen, it does not include the current
quarter’s interest rate:

Country Group output,
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Company Group output,
Employment Group output,
Savings Group output,

Foreign Group output.

These inputs were normalised for the neural network in the same manner as
previously stated. This gave 10 indicators to be presented to the neural network for

training and testing of the system.
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Figure 7.7 Neural Network Prediction for Final Combine Hierarchy

Training Average Test Average Overall Average

0.354 0.607 0.431

Table 7.8 Average Error for Final Combined Neural Network Groups
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7.4 Neural Network with All Indicators

This system includes all the indicators as inputs into the neural network. This gives a
system with 28 inputs (including the moving difference for each indicator). The
same training parameters as used previously in Section 7.2 were used in this system.

After 10000 cycles, the following results were achieved:
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Figure 7.8 Neural Network results for All Indicators

Training Average Test Average Overall Average

0.039 0.880 0.296

Table 7.9 Average Error for All Indicators Neural Network

7.5 Comparison of Results

The results from the Hierarchical Neural Network system showed disappointing

results when compared to the HFKB and Feed Forward systems. Table 7.10 shows
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the results of the neural network systems and the HFKB and Feed Forward Fuzzy

Logic systems.

Training Error | Test Error | Overall Error
Four Group Hierarchical Fuzzy 0.255 0.416 0.304
Logic System
Five Group Hierarchical Fuzzy 0.402 0.465 0.421
Logic System
Final Feed Forward Fuzzy Logic 0.146 0.379 0.217
System
Four Group Hierarchical Neural 0.318 0.681 0.428
Network
Five Group Hierarchical Neural 0.354 0.607 0431
Network
All Indicators Neural Network 0.039 0.880 0.296

Table 7.10 Compairson of Neural Network and FLGA systems

As Table 7.10 shows, the range of results for the different systems is very diverse.
The Training Average Error, which is the average error recorded during the training
period of 40 quarter’s, ranges from a high value of 0.402 for the Five Group
Hierarchical FKB down to an almost perfect 0.039 for the All Indicator Neural
Network. The All Indicator Neural Network was able to learn the training data
almost perfectly, with the Final Feed Forward FKB having the second best results of
0.146. The Hierarchical Fuzzy Logic systems did not learn the training data as well

as these two systems, but still had a quite low training error,

The Test Average Error is the average error recorded during the test period, which is

where the system is presented with inputs that it has not been trained on. The best
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result for the test average error was achieved by the Final Feed Forward Fuzzy Logic
system with a result of 0.379. The two Hierarchical Fuzzy Logic systems achieved
the next best results with 0.416 for the Four combined Fuzzf Logic system and 0.465
for the Final combined fuzzy logic system. These compare favourably with all the
Neural Network systems which, although having similar overall average error results
to the Hierarchical Fuzzy Logic systems, had disappointing test average error results.
In fact, the neural network system with fhe best training average error had the worse

test result of all the tested systems. This may be a case of overtraining the network.

These results show that the FLGA systems (both the Hierarchical and Feed Forward
Fuzzy Logic systems) produce better Test Average Errors results than the neural
network systems when trained for just 40 quarter’s. These results may change when

the system is trained for longer time periods.
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Chapter 8 Long Term Predictions

8.1 Introduction

So far we have looked at pfedicting the following quarter’s interest rate, that is three
months from the current quarter. There are a number of situations in which this time
period is too short a prediction length, such as when investors have to decide whethef
to move from the bond market into the property market before the end of the

financial year.

| In this chapter, a Hierarchinal Fuzzy Logic system for predicting interest rates six
months (half yearly) from the current quarter is developed, followed by a
Hierarchical Fuzzy Logic system that predicts the interest rate one year ahead of the
current quarter. We then compare these results to }3 Hierarchical Neural Network

system for predicting the same time periods.

8.2 Predicting Six Months Ahead using a Hierarchical Fuzzy Logic
system

~ Predicting three months ahead is sometimes not a valid length of time, especially in
government where they need to decide economic policy that will effect the country in

the next half of the financial year. To accommodate these requirements, the
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Hierarchical Fuzzy Logic system we developed over chapters four and five will be

extended to now predict two quarters ahead (six months) instead of one quarter.

The indicators used to predict two quarters ahead are the same as used previously in
chapter four, as are the groups they have been split into. The following sections
show the results of the FKB that the FLGA has produced on the separate groups in

predicting the interest rate, followed by the combined hierarchical groups.

8.2.1 Company Group prediction
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Figure 8.1 Six Month predicted rates using Company group

Training Average Test Average Overall Average

0.233 0.963 0.455

Table 8.1 Six Month Average Errors for Company Group
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8.2.2 Country Group prediction
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Figure 8.2 Six Month predicted rates using Country group
Training Average Test Average Overall Average
0.393 0.798 0.516

Table 8.2 Six Month Average Errors for Country Group

150



8.2.3 Foreign Group prediction

interest Rate Prediction
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Figure 8.3 Six Month predicted rates using Foreign group
Training Average Test Average Overall Average
0.267 0.585 0.363

Table 8.3 Six Month Average Errors for Foreign Group

151




8.2.4 Savings Group prediction
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Figure 8.4 Six Month predicted rates using Savings group

Training Average Test Average Overall Average

0.281 0.708 0.410

Table 8.4 Six Month Average Errors for Savings Group
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8.2.5 Employment Group prediction

Interest Rate
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Figure 8.5 Six Month predicted rates using Employment group

Training Average Test Average Overall Average

0.408 0.819 0.533

Table 8.5 Six Month Average Errors for Employment Group
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8.2.6 Two Group Hierarchy
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Figure 8.6 Six Month predicted rates Combining Two groups

Training Average

Test Average

Overall Average

0.408

0.819

0.533

Table 8.6 Six Month Average Errors for 2 Group Hierarchy
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8.2.7 Three Group Hierarchy
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Figure 8.7 Six Month predicted rates Combining Three groups

Training Average

Test Average

0.221 0.629 0.345

Table 8.7 Six Month Average Errors for 3 Group Hierarchy
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8.2.8 Four Group Hierarchy
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Figure 8.8 Six Month predicted rates Combining Four groups

The four group hierarchy consists of the results from the country, company,
employment and savings groups, and the results for the training and test periods is
shown in Figure 8.8. The Hierarchical Fuzzy Logic system is able to predict the
interest rate during the training period with a good accuracy with only a couple of
quarters having an error amount greater than one percent. During the test period the
system had some good predictions but the last few quarters of the test period (quarter
54 onwards) showed an increasing error amount in the range of 1.5 percent. This

follows a similar pattern as the Three Group hierarchy.

Training Average Test Average Overall Average

0.184 0.502 0.280

Table 8.8 Six Month Average Errors for 4 Group Hierarchy
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8.2.9 Final Combined Hierarchy

Interast Rate Prediction

16 .
14 .
12
10
8:

6 m—A ctual Inlerest Rate

------- Predicled Interesl Rate

Interest Rate

4 = = — —Error Amount

2.

} - 'y v
0 > T -.lv‘\'\.’..\/.‘.,\.ﬁ.d!..f,‘d'.w_'_‘_,._...}l...\c&ﬁ\.’___

W O M N T W @ M
- v o 0 2 &8 28 8 5 3T 2 78

Quarter

Figure 8.9 Six Month predictéd rates for Final Combined Hieraréhy

Figure 8.9 above shows the results when combining all the groups into the final
hierarchical system. The results in the training period show an great ability to predict
the six monthly interest rate with almost a zero error amountvfor the whole training
period. The results during the test period however do not reflect this accuracy with a
.number of quarters having an error amount greater than 1 percent. The training
average etror is the one of the lowest so far encountered, where the test average is

still quite high.

Training Average Test Average Overall Average

0.152 0.565 0.277

Table 8.9 Six Month Average Errors for Final Combined Hierarchy
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8.3 12 Month predictions using Hierarchical FKB

E::tending the prediction time for interest rates allows financial institutions to make
decis.ions with the knowledge that aﬁ interest rate will move to a certain value in the
future. So far we have looked at three and six month predictions. In this section the
Hierarchical Fuzzy Logic system is trained to predict interest rates one year (twelve

months) from the current quarter.

The indicators used to predict one year ahead are the same as used previously .
(section 4.1), as are the groups they have been split into. The following sections |
show the results of the fuzzy logic system that the FLGA has produced on the
separate groups in predicting the interest rate, followed by the combined hierarchical

groups.
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8.3.1 Company Group prediction
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Figure 8.10 One Year predicted rates using Company group
Training Average Test Average Overall Average

0.284 0.649 0.395

Table 8.10 One Year Average Errors for Company Group
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8.3.2 Country Group prediction
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Figure 8.11 One Year predicted rates using Country group
Training Average Test Average Overall Average
0.384 0.771 0.501

Table 8.11 One Year Average Errors for Country Group
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8.3.3 Foreign Group prediction
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Figure 8.12 One Year predicted rates using Foreign group

Training Average

Test Average

Overall Average

0.357

0.517

0.405

Table 8.12 One Year Average Errors for Foreign Group

161




8.3.4 Savings Group prediction

Interest Rate
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Figure 8.13 One Year predicted rates using Savings group

Training Average Test Average Overall Average

0.243 0.901 0.443

Table 8.13 One Year Average Errors for Savings Group
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8.3.5 Employment Group prediction
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Figure 8.14 One Year predicted rates using Employment group

Training Average Test Average Overall Average

0.381 0.919 0.544

Table 8.14 One Year Average Errors for Employment Group
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8.3.6 Two Group Hierarchy
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Figure 8.15 One Year predicted rates Combining 2 groups

Training Average

Test Average Overall Average

0.269

0.741 0.412

Table 8.15 One Year Average Errors for 2 group Hierarchy
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8.3.7 Three Group Hierarchy
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Figure 8.16 One Year predicted rates Combining 3 groups

Training Average Test Average Overall Average

0.262 0.701 0.395

Table 8.16 One Year Average Errors for 3 group Hierarchy

165



8.3.8 Four Group Hierarchy

Interest Rate

Figure 8.17 shows the results of the Four Group Hierarchical Fuzzy Logic system.

The system is

good degree of accuracy with only a two quarters having an error amount greater
than one percent. During the test period the system was not able to predict the yearly
interest rate with the same degree of accuracy. There were a number of quarters with

an error amount greater than one percent. This is reflected in the Average Error
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Figure 8.17 One Year predicted rates Combining 4 groups

able to predict the interest rate during the training period with a fairly

amount in Table 8.17 below.

Training Average Test Average Overall Average

0.158 0.593 0.291

Table 8.17 One Year Average Errors for 4 Group Hierarchy
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8.3.9 Final Combined Hierarchy
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Figure 8.18 One Year predicted rates for Final Combined groups

Training Average Test Average Overall Average

0.177 0.424 0.252

Table 8.18 One Year Average Errors for Final Combined Hierarchy

From the above Figures and Tables, we can see that the system was able to predict
some of the fluctuations in interest rates one year in the future. The single groups
faced the same problems as they did in the shorter time periods in that they had a
number of quarters in the test period where there was a large error amount between
the actual and predicted interest rate. However, the Four Combined Hierarchy
(Figure 8.17) and the Final Combined Hierarchy (Figure 8.18) shows that the system
produces similar results for the twelve month predictions when compared to the three

month and six month predictions. In fact, the Final Combined Hierarchy produced
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slightly better results than the Four Combined Hierarchy, where in the 3 and 6 month

systems the Four Combined Hierarchy produced belter results.

8.4 Long Term Prediction with Neural Networks

A Hierarchical Neural Network system is used with the same indicators (and
groupings) as previously looked at. Six month interest rate prediction is looked at
first with the results of the Four Combined system and tiie Final Combined system
éhown. A neural network system is also created that includes all the indicators in the
one system and its results are shown. We then show the same results for the

prediction of interest rates one year in the future.

8.4.1 6 Month Predictions with Neural Networks

A neural network was used to predict the interest rate 6 months from the current
quarter. - The economic indicators were split into the same groups as used previously,
The results when combining four groups, all five groups and finally all the indicators

in the single neural network are shown below.
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8.4.1.1 Four Group Hierarchy

Interest Rate Prediction

o
L3
L]
[
3
e
E 6 . w— A ctual Interest Rate \\-,"
E | seeee.. P redicted Interest Rate

4 = = = =Eror Amount

~
2 e\
! ¢
0 e P e ! va N

- 0N O M N - N N~
- = &N N N M0 O - «w T v

Quarter

Figure 8.19 Neural Network Six month Prediction using Four Groups

Training Average Test Average Overall Average

0.196 0.794 0.378

Table 8.19 Six Month Average Errors for Neural Network Four group Hierarchy

169



8.4.1.2 Final Combined Hierarchy
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Figure 8.20 Neural Network Six month Prediction using Final Combined Hierarchy

Training Average Test Average Overall Average

0.197 0.813 0.383

Table 8.20 Six Month Average Errors for Neural Network Final Combined Hierarchy
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8.4.1.3 All Indicators System
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Figure 8.21 Neural Network Six month Prediction using All Indicators

Training Average

Test Average

Overall Average

0.079

1.421

0.480

Table 8.21 Six Month Average Errors for Neural Network using All Indicators
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The prediction accuracy of the neural network for predicting Six month interest rates
show a similar pattern to the neural network results for predicting interest rates one
quarter on the future. The Four Group Hierarchical Neural Network shows that it is
able to predict the fluctuations of the interest rate for some quarter’s, but seems to be
slightly behind in predictions for other quarters. This is also the case for the Final
Combined Hierarchical Neural Network where its six month predictions show it does
follow the fluctuations of the interest rate, but seems to be one to two quarters behind

the actual change. The All Indicators System Neural Network has the best training




average error of all the Six month neural networks, but its test average error is
extremely disappointing. The neural network does not seem to be able to predict the

interest rate with any degree of accuracy, leading to a test average error of 1.421.

8.4.2 12 Month Predictions with Neural Networks

A neural network was used to predict the interest rate one year from the current
quarter. The economic indicators were split into the same groups as used previously.
The results when combining four groups, all five groups and finally all the indicators

in the single neural network are shown below.

8.4.2.1 Four Group Hierarchy
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Figure 8.22 Neural Network One Year Prediction using Four Groups
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Training Average Test Average Overall Average

0.110 1.248 0.456

Table 8.22 One Year Average Errors for Neural Network Four group Hierarchy

8.4.2.2 Final Combined Hierarchy
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Figure 8.23 Neural Network One Year Prediction using Final Combined Hierarchy

Training Average Test Average Overall Average

0.139 1.114 0.435

Table 8.23 One Year Average Errors for Neural Network Final Combined Hierarchy
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8.4.2.3 All Indicators System

Interest Rate Prediction
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Figure 8.24 Neural Network One Year Prediction using All Indicators

Training Average Test Average Overall Average

0.054 1.320 0.439

Table 8.24 One Year Average Errors for Neural Network using All Indicators

8.5 Comparison between Hierarchical Fuzzy Logic systems and

Neural Networks for Long Term Predictions
From the above Figures and Tables, it can be seen that the results for long term
predictions produce similar results to the predictions for the following quarter. Table

8.25 below shows a comparison between the Hierarchical Fuzzy Logic system

predictions and the neural network predictions for six months and one year.
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6 Month Predictions Training Error Test Error Overall Error

Four Group HKB 0.184 0.502 0.280
Five Group HFKB » 0 152 0.565 0.277
Four Gfoup HNN 0.196 0.794 0378
Five Group HNN 0.197 0.813 0.383

All Indicators NN 0.079 1.421 0480

One Yea_r Predictions

Four Group HKB 0.158 T 0.593 0.391
Five Group HFKB 0177 0.424 0252
Four Group HNN 0.110 ’ 1248 5%
Five Group FINN 0.139 1.114 Y

Al Indicators NN ~0.054 T 1320 —54%

Table 8.25 Comparison of Results for Long Term Predictions

From these results, it can be seen that the Hierarchical Fuzzy Logic systems have a
* much better Test AverageErr‘or when comparéd to the neural network systems. The
Trgiﬁing average error results were siﬁilm for most of the prediction systems, with
. only-. the All Indicatbr_Neural Network system, for both six month and one year
| predictidns; \ﬁhich had very low training results. However, the test error amounts for

the All Ihdicator systems were the highest of all the syStems.

. '__From these results, we can conclude that using 14 economic indicators and training

* the system for 40 quarters, the Hierarchical Fuzzy Logic systems provide much better
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prediction results than the neural network systems. These results are similar to the
comparisons found in the previous chapter (section 7.5) where the Interest Rate
predictions for one quarter by the Hierarchical Fuzzy Logic system provided better

prediction results than the neural network system,
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Chapter 9 Conclusion and Further Investigations

This thesis has presented a method in which a Hybrid Fuzzy Logic and Genetic
Algorithm system can be used to model and predict the fluctuations of the 10-year

Australian treasury bond using Australian economic data.

.The research showed that, using a Hierarchical Fuzzy Logic system, the number of
fuzzy rules in the Fuzzy Knowledge Base could be reduced to a linear equation as
opposed to an exponential equation. This meant the number of fuzzy rules of the
system is reduced significantly, hence computational times are decreased resulting in

a more efficient system.

The application of the proposed method to modelling and prediction of interest rate
using Australian economic indicators is considered. Genetic Algorithms are used to
obtain the fuzzy rules for each FL system as well as the mapping between different
FL systems. Untrained rules (those rules never used during thé training period) were

set to a default value depending upon their position within the FKB.

From simulation results it was found that thé Hierarchical Fuzzy Logic system is
capable of making accurate predictions of the following quarter’s interest rate. These
results were compared to a Feed Forward Fuzzy Logic system which produced
slightly better results for a similar number of rules. One advantage of the

o _-_Hiefa_rchical Fuzzy _Logic systems over the Feed Forward Fuzzy Logic systems is
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that they can operate in parallel while the Feed Forward Fuzzy Logic system must
operate in a sequential manner. This results in a speed increase during the training

_period.

The results from the Hierarchical Fuzzy Logic systems and the Feed Forward Fuzzy

Logic system were compared to a Hierarchical Neural Network, which split the

economic indicators into the same groupings, and also a single Neural Network that =

used all the indicators as inputs. The resuits from the neural network systems were
disappointing when compared to the Hierarchical Fuzzy Logic systems as they

produced far larger error amounts when tested on different (non-training) data.

Long term predictions for six months and one year from the current quarter were then
undertaken, with the Hierarchical Fuzzy Logic systems proving to be more accurate
in their predictions than the Neural Network systems. These results were found to be

similar to those obtained when quarterly interest rates were predicted in chapter 7.

An advantage that the Fuzzy Logic Genetic Algorithm systems have over the Neural
_Net.wor_k.s.ystgms is thaf, in many cases, the reasoning behind a prediction wust be
explained (e_ither to the customer or senior management), As the Hierarchical Fuzzy
Logic systems used a FKB which contains all the rules of the system, this allows the
.rules. used in the prediction to be shown and allows an expert to make any
modiﬁcatiOns if necessary. - This‘ca'n be a very difficult task with a neural network

_system.
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Further research in this area may look at training the prediction systems up to the last
available data. Currently, the system is trained for 40 quarters and then tested with
the remaining quarters. An alternative to this approach would be to train the
Hie;archical Fuzzy Logic system with all the available data. This would allow
indicators that become more important over time to gradually become more
dominanf within the FKB’s, while indicators that have less relevance slowly become

less influential.

Having a time lag for some economic indicators» may also increase prediction
accuracy. There are some indicators whose effect is not felt on the interest rate for a
' ﬁumber of quarters, such as Consumer Price Index (Larrain, M. 1991). Delaying the
indicator results in the system using the indicator when it has more effect on the
interest rate. The accuracy may also be increased if an indicator that fluctuates
éreatly-between quarters is smoothed out using some form of moving average (such
as two quarter (six month) moving average). This would then remove any sudden
_pcaké (or valleys) that the indicator may exhibit which could greatly effect the

prediction accuracy.
Finally, some combination of Hierarchical and Feed Forward Fuzzy Logic systems

* may provide better results by adding more indicators without the exponential growth

in the fuzzy rule base.
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Chapter 11 Appendix A

Time Series Data,

The following table shows the raw data from the Australian Bureau of Statistics
(REF) as of June, 1997. The data is shown as quarterly data starting from the first

quarter of 1983.

Year/ Interest All Company Consumer | Current
Quarter Rate Industrial Profit Price Index | Account
1983 - 1 14.00 631.7 1830.0 58.6 -1793.0
1983 -2 12.95 610.7 1850.0 60.3 -1690.0
1983 -3 15.00 650.1 1890.0 61.6 -1498.0
1983 - 4 14.85 744.9 1900.0 62.9 -1834.0
1984 - 1 14.15 875.1 1993.0 64.0 -1800.0
1984 -2 13.50 974.0 2168.0 65.5 -1439.0
1984 -3 14.15 960.0 2639.0 65.2 -2004.0
1984 - 4 13.85 915.5 2668.0 65.4 -2100.0
1985 -1 13.15 1032.8 2309.0 66.2 -2497.0
1985 - 2 13.50 1072.5 2312.0 67.2 -2794.0
1985 -3 13.80 1172.8 2696.0 68.1 -2837.0
1985-4 13.50 1228.9 3186.0 69.7 -2783.0
1986 - 1 13.80 1401.5 3327.0 713 -3026.0
1986 - 2 14.85 1459.9 2675.0 72.7 -3640.0
1986 - 3 12.60 1739.2 2526.0 74.4 -3710.0
1986 - 4 12.95 1936.2 1960.0 75.6 -3698.0
1987 - 1 13.85 1936.4 2522.0 77.6 -3182.0
1987 -2 13.40 2294.1 2774.0 79.8 -3143.0
1987 -3 13.45 2584.6 2931.0 81.4 -2741.0
1987 - 4 12.80 2599.3 3041.0 82.6 -2618.0
1988 - 1 12.50 3302.7 3256.0 84.0 -2342.0
1988 - 2 12.85 1919.8 3565.0 85.5 -2629.0
1988 -3 11.90 2210.2 3865.0 87.0 -2333.0
1988 - 4 11.95 2506.0 4022.0 88.5 -2989.0
1989 - 1 11.95 2554 .4 4050.0 90.2 -3032.0
1989 -2 12.95 2447.5 4177.0 92.2 -4279.0
1989 -3 13.65 2458.1 4350.0 92.9 -4829.0
1989 -4 13.50 2498.3 4713.0 95.2 -5349.0
1990 - 1 13.65 2756.3 4551.0 974 -5720.0
1990 - 2 12.90 2575.4 4278.0 99.2 -5792.0
1990 - 3 13.45 2412.8 4006.0 100.9 -5947.0
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1990 - 4
1991 -1
1991 - 2
1991 -3
1991 - 4
1992 - 1
1992 -2
1992 -3
1992 - 4
1993 -1
1993 -2
1993 -3
1993 - 4
1994 - 1
1994 -2
1994 -3
1994 - 4
1995 -1
1995 -2
1995 -3
1995 - 4
1996 - 1
1996 - 2
1996 - 3
1996 - 4
1997 -1
1997 -2
1997 -3
1997 - 4

13.40
13.65
12.05
11.40
11.15
10.30
9.40
9.90
8.90
8.95
8.95
7.80
7.37
6.85
6.68
7.95
9.63
10.33
10.04
9.83
9.21
8.57
8.18
8.88
8.88
1.79
7.37

2367.9
2167.5
1979.4
2202.8
2330.7
2402.4
2511.5
2449.5
2550.0
2334.0
2373.4
2598.6
2665.7
3037.8
3191.6
3275.9
2984.7
2926.1
2741.0
2850.0
3012.1
3169.3
3276.0
3365.1
3305.8
3459.2
3660.8

3811.0
3514.0
3093.0
2709.0
2567.0
2700.0
2979.0
3169.0
3394.0
3694.0
4047.0
4397.0
4630.0
4854.0
5312.0
5729.0
6214.0
6475.0
6435.0
6180.0
6103.0
6293.0
6152.0
5823.0
5478.0
5183.0

102.5
103.3
106.0
105.8
106.0
106.6
107.6
107.6
107.3
107.4
107.9
108.9
109.3
109.8
110.0
110.4
111.2
111.9
112.8
114.7
116.2
117.6
118.5
119.0
119.8
120.1

-3902.0
-4071.0
-4721.0
-3721.0
-2994.0
-2817.0
-2736.0
-2838.0
-3297.0
-3987.0
-3771.0
-3412.0
-3845.0
-3801.0
-3724.0
-3631.0
-5443.0
-7023.0
-6875.0
-7535.0
-6608.0
-5567.0
-6342.0
-4824.0
-4450.0
-4744.0
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Year/ GDP (A) Home Job New Motor | RBA
Quarter Loans Vacancies | Vehicles Commodity
1983 -1 69714.0 18100 46.7 39100 68.79
1983 -2 68691.0 18600 28.1 46400 68.43
1983 -3 68473.0 25100 23.1 39500 75.21
1983 -4 68291.0 21900 24.0 35900 76.85
1984 - 1 70755.0 22700 24.6 37100 75.71
1984 -2 71814.0 25200 473 38400 72.61
1984 -3 73467.0 30300 60.3 40700 70.91
1984 -4 74114.0 26700 54.4 40900 72.55
1985 -1 74814.0 25400 62.5 40700 73.41
1985 -2 75431.0 23500 68.2 41300 73.10
1985-3 76904.0 27600 81.6 46800 84.58
1985 -4 78455.0 23900 93.0 41900 86.35
1986 - 1 79856.0 24700 91.3 44800 83.36
1986 - 2 79520.0 21300 92.7 41400 84.59
1986 - 3 79619.0 18900 89.0 35400 79.91
1986 - 4 79319.0 20500 92.0 33900 80.18
1987 - 1 80201.0 23200 80.3 33100 85.12
1987 -2 80799.0 23424 85.4 30500 83.83
1987 -3 81068.0 22919 91.0 29700 88.31
1987 -4 82541.0 24699 87.4 30600 86.06
1988 - 1 83822.0 28142 90.4 33979 89.56
1988 -2 85357.0 29841 88.2 36986 96.76
1988 -3 86079.0 34452 97.5 35060 105.08
1988 - 4 86150.0 39774 102.3 36796 103.71
1989 -1 87287.0 32184 116.5 40515 98.14
1989 - 2 88887.0 32228 129.8 39406 94.15
1989 -3 89391.0 26910 125.2 41460 97.07
1989 -4 91007.0 22934 148.0 41799 101.35
1990 - 1 91775.0 22608 128.7 42996 99.60
1990 - 2 91736.0 22128 133.0 37271 99.61
1990 - 3 92831.0 26451 108.0 49754 101.25
1990 - 4 92768.0 23823 95.6 40858 95.22
1991 -1 92109.0 24313 76.6 40401 95.89
1991 -2 91828.0 22722 51.2 35070 95.71
1991 -3 91483.0 23746 383 33584 89.81
1991 -4 90834.0 28689 32.6 34203 91.60
1992 -1 91426.0 29683 29.9 34304 85.80
1992 -2 91647.0 30838 29.1 35268 88.37
1992 -3 92751.0 33304 29.9 43002 89.70
1992 -4 92772.0 35547 27.9 43930 88.71
1993 -1 93729.0 35708 28.8 40034 92.18
1993 -2 94749.0 36279 313 41021 92.17
1993 -3 95412.0 39384 30.7 42975 89.72
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1993 - 4
1994 - 1
1994 - 2
1994 -3
1994 - 4
1995 -1
1995 -2
1995 -3
1995 - 4
1996 - 1
1996 - 2
1996 - 3
1996 - 4
1997 - 1
1997 -2
1997 -3
1997 - 4

96320.0

96863.0

98146.0

100271.0
101195.0
102200.0
103285.0
103382.0
104105.0
105845.0
106719.0
108924.0
109004.0
109852.0

41048
43340
47593
48730
45676
40576
39756
33867
36044
37058
37717
38665
35727
41699

35.1
38.2
40.8
49.7
62.7
76.3
82.6
70.8
71.5
75.6
72.7
81.8
76.6
72.1
81.0

42570
35681
40746
43715
45241
42373
43948
47264
47511
41305
42944
45564
52082
42893

93.29
94.25
93.53
92.65
90.62
93.65
92.48
97.14
101.73
95.58
97.28
94.80
93.40
91.60
89.70
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Year/ Savings Trade Unemploy | Avg Week
Quarter Ratio Weight Ind | ment Earnings
1983 -1 8.65 83.8 7.5 329.90
1983 -2 8.26 834 9.4 337.60
1983-3 7.30 76.1 10.0 341.00
1983 -4 6.02 77.7 10.3 343.30
1984 - 1 10.16 80.4 10.4 349.70
1984 -2 9.10 81.1 94 362.00
1984 - 3 9.36 82.9 9.3 370.60
1984 - 4 9.47 79.2 9.3 383.80
1985 - 1 9.92 80.3 8.8 386.20
1985 -2 8.88 81.3 8.5 389.00
1985-3 8.27 69.2 8.3 393.00
1985 - 4 7.71 65.0 7.9 397.20
1986 - 1 7.79 64.8 7.9 403.10
1986 - 2 7.00 60.7 7.7 413.90
1986 - 3 8.37 61.1 7.8 422.70
1986 - 4 6.89 56.3 7.6 425.50
1987 - 1 6.75 51.9 8.3 437.20
1987 -2 7.17 55.0 8.4 446.30
1987 -3 4.87 55.4 8.4 444.50
1987 - 4 6.04 56.6 8.0 450.90
1988 - 1 7.71 56.2 7.8 457.00
1988 - 2 3.82 52.0 7.7 470.00
1988 - 3 5.39 53.8 7.6 474.90
1988 - 4 6.52 59.8 7.4 481.70
1989 - 1 6.10 60.0 7.0 486.20
1989 -2 6.87 63.2 6.8 505.20
1989 -3 6.12 62.2 6.3 511.60
1989 - 4 6.75 594 6.1 519.10
1990 - 1 6.55 59.8 6.1 527.10
1990 - 2 7.36 61.1 5.9 540.00
1990 - 3 8.17 59.8 6.2 546.30
1990 - 4 6.93 61.6 6.7 555.80
1991 -1 7.19 61.6 7.4 562.70
1991 -2 6.29 57.3 8.1 578.20
1991 -3 6.83 59.7 9.2 585.60
1991 -4 2.87 59.7 9.3 569.90
1992 - 1 5.85 60.6 10.1 575.40
1992 -2 5.32 55.9 10.4 589.70
1992 -3 5.54 58.6 10.5 598.90
1992 - 4 3.10 55.2 11.0 597.40
1993 -1 4.72 51.7 10.8 597.70
1993 - 2 3.93 524 11.2 599.50
1993 -3 3.82 52.9 10.9 611.20
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1993 - 4
1994 - 1
1994 -2
1994 - 3
1994 - 4
1995 - 1
1995 -2
1995 -3
1995 - 4
1996 - 1
1996 - 2
1996 - 3
1996 - 4
1997 -1
1997 -2
1997-3
1997 - 4

3.97
3.18
2.54
3.32
4.67
2.24
3.17
2.60
1.50
3.06
2.40
2.28
2.99
2.87

49.5
473
50.8
52.1
53.0
53.4
56.2
50.7
48.4
53.8
53.9
56.8
58.1
585
59.4

11.0
10.8
10.6
10.3
9.9
9.4
8.9
8.7
8.3
8.5
83
8.5
8.3
8.7
8.6

612.50
618.10
619.00
625.60
625.10
634.50
643.10
650.10
652.70
654.80
662.70
668.10
671.50
673.50
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