
Edith Cowan University Edith Cowan University 

Research Online Research Online 

Theses: Doctorates and Masters Theses 

2014 

Neuromuscular factors affecting stretch-induced torque loss Neuromuscular factors affecting stretch-induced torque loss 

Gabriel Siqueira Trajano 
Edith Cowan University 

Follow this and additional works at: https://ro.ecu.edu.au/theses 

 Part of the Exercise Physiology Commons, Musculoskeletal System Commons, and the Sports 

Sciences Commons 

Recommended Citation Recommended Citation 
Trajano, G. S. (2014). Neuromuscular factors affecting stretch-induced torque loss. Edith Cowan 
University. Retrieved from https://ro.ecu.edu.au/theses/1284 

This Thesis is posted at Research Online. 
https://ro.ecu.edu.au/theses/1284 

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses?utm_source=ro.ecu.edu.au%2Ftheses%2F1284&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/73?utm_source=ro.ecu.edu.au%2Ftheses%2F1284&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/938?utm_source=ro.ecu.edu.au%2Ftheses%2F1284&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/759?utm_source=ro.ecu.edu.au%2Ftheses%2F1284&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/759?utm_source=ro.ecu.edu.au%2Ftheses%2F1284&utm_medium=PDF&utm_campaign=PDFCoverPages


Theses

Theses: Doctorates and Masters

Edith Cowan University Year 

Neuromuscular factors affecting

stretch-induced torque loss

Gabriel Siqueira Trajano
Edith Cowan University, gtrajano@our.ecu.edu.au

This paper is posted at Research Online.

http://ro.ecu.edu.au/theses/1284



Edith Cowan University 
 

 

Copyright Warning 
 
 
 
 
 

You may print or download ONE copy of this document for the purpose 

of your own research or study. 
 

The University does not authorize you to copy, communicate or 

otherwise make available electronically to any other person any 

copyright material contained on this site. 
 

You are reminded of the following: 
 

 Copyright owners are entitled to take legal action against persons 
who infringe their copyright. 

 

 A reproduction of material that is protected by copyright may be a 

copyright infringement. Where the reproduction of such material is 

done without attribution of authorship, with false attribution of 

authorship or the authorship is treated in a derogatory manner, 

this may be a breach of the author’s moral rights contained in Part 

IX of the Copyright Act 1968 (Cth). 

 

 Courts have the power to impose a wide range of civil and criminal 

sanctions for infringement of copyright, infringement of moral 

rights and other offences under the Copyright Act 1968 (Cth). 

Higher penalties may apply, and higher damages may be awarded, 

for offences and infringements involving the conversion of material 

into digital or electronic form.



USE OF THESIS 

 

 

The Use of Thesis statement is not included in this version of the thesis. 



 

NEUROMUSCULAR FACTORS AFFECTING 

STRETCH-INDUCED TORQUE LOSS 

 

Gabriel Siqueira Trajano, M.Sc. 

 

Doctor of Philosophy 

 

Principal Supervisor: Associate Professor Anthony Blazevich 

Co-supervisor: Professor Ken Nosaka 

 

School of Exercise and Health Sciences 

Faculty of Health, Engineering and Science 

Edith Cowan University, Australia 

 

March 2014



	  
	   	  

ii	  

DECLARATION 
 

I certify that this thesis does not, to the best of my knowledge and belief: 

(1) incorporate without acknowledgement any material previously submitted for a 

degree or diploma in any institution of higher education; 

(2) contain any material previously published or written by another person except where 

due reference is made in the text; or 

(3) contain any defamatory material. I also grant permission for the Library at Edith 

Cowan University to make duplicate copies of my thesis as required. 

14/07/2014 

 



	  
	   	  

iii	  

ABSTRACT 
	  

The mechanisms underpinning the immediate torque loss induced by acute, static 

muscle stretching are still not clear. The current research was designed to examine the 

neuromuscular factors influencing this torque loss. In Study 1, the contributions of 

central versus peripheral factors to the stretch-induced torque loss were investigated. 

Measures of central drive, including the EMG amplitude normalised to the muscle 

compound action potential amplitude (EMG:M), percent voluntary activation (%VA) 

and first volitional wave amplitude (V:M), and measures of peripheral function, 

including the twitch peak torque and 20:80 Hz tetanic torque ratio were made before, 

and immediately and 15 min after a 5-min continuous plantar flexor stretch. There was a 

15.7% (p<0.05) reduction in plantar flexor torque immediately after stretch that 

recovered by 15 min post-stretch. There were strong correlations between changes in 

measures of central of drive and both the torque loss immediately (r=0.65-0.93) and 

during the torque recovery (r=0.77-0.81; 15 min) after stretch, suggesting that central 

factors were strongly related to the loss of torque. Small (11%; p<0.05) changes in 

electrical-elicited muscle torque were not associated with the voluntary torque 

reduction. 

 

Alternatively, intermittent (i.e. repeated) stretching commonly performed by athlete and 

clinical populations causes cycles of ischaemia-reperfusion, increasing the likelihood of 

contractile failure. Therefore, Study 2 was designed to determine whether intermittent 

stretch might cause greater torque loss when compared to continuous stretch, and to 

quantify the potentially greater peripheral effect. The main findings were that 
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intermittent stretch induced a greater torque loss (-23.8%; p<0.05) for longer (30 min) 

than continuous stretch (-14.3%; 15 min; p<0.05), however the torque losses were 

related to central drive depression rather than peripheral factors in both conditions. 

Additionally, whilst reductions in central drive were observed only immediately after 

intermittent stretch (EMG:M, -27.7%; %VA, -15.9%;p<0.05), a prolonged (30 min) 

torque loss of ~5% (p<0.05) found after intermittent stretch could not be explained by 

changes in central drive or contractile failure and might thus be explained by peripheral 

factors other than those measured presently. 

 

Central drive failure can clearly be of spinal origin, and it is reasonable to speculate that 

muscle stretch might affect the afferent-mediated motor neurone facilitatory system. 

Thus, in Study 3 a vibration-stimulation protocol (vib+stim) was used to elicit reflex-

mediated muscular contractions during two experiments. In Experiment 1, vib+stim was 

imposed with the ankle joint plantar flexed (+10°), neutral (0°) and dorsiflexed (-10°). 

Torque and EMG amplitudes during vibration and during the self-sustained torque 

period after vib+stim were greater in dorsiflexion, providing method validation. In 

Experiment 2, vib+stim was imposed twice before (Control) and immediately, 5, 10 and 

15 min after a 5-min intermittent stretch protocol.  Torque and EMG amplitude were 

depressed immediately after stretching during both vibration (-60% and –41%, 

respectively; p<0.05) and the self-sustained torque period (65% and 44%; p<0.05) but 

recovered within 5 min. This suggests that motor neurone disfacilitation is a possible 

mechanism affecting torque loss. Collectively, the current results point to a central drive 

depression underpinning the stretch-induced torque loss, which likely involves effects 

on the motor neurone facilitatory system. 
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CHAPTER 1 

Introduction and Overview 

 
Stretching exercises are commonly utilised in pre-exercise preparatory routines (Smith, 

1994). It is purported that stretching exercises could increase range of motion and 

decrease injury incidence, especially in sports with high-intensity stretch-shortening 

cycle, by increasing muscle-tendon unit’s compliance (Witrvouw, Mahieu, Danneels & 

McNair, 2004). Several randomised controlled studies (Ekstrand, Gillquist, & Liljedahl, 

1983; Bixler  & Jones, 1992; Amako et al., 2003) and a systematic review (Small, 

McNaughton  & Matthews, 2008) have reported a positive effect of pre-exercise stretch 

on soft tissue injury risk. Also, it has been reported that pre-exercise stretch is still a 

common practice amongst coaches, and that coaches usually recommend, on average, 

13 min of stretch prior to the exercise (Shehab et al, 2006).  Moreover, in order to 

promote a transient increase in muscle-tendon unit compliance it seems necessary that 

the stretch exercise lasts for at least 4 min (McHugh & Cosgrave, 2010).  However, the 

use of stretching exercises applied before physical activity for the purpose of enhancing 

the performance or preventing injuries has been criticised (McHugh & Cosgrave, 2010; 

Pope, Herbert, Kirwan, & Graham, 2000; Rubini, Costa, & Gomes, 2007; Shrier, 2004; 

Thacker, Gilchrist, Stroup, & Kimsey, 2004). Importantly, it has been often shown that 

acute muscle stretching lasting more than 60 s reduces maximal contractile force and 

power production (Avela, Kyrolainen, & Komi, 1999; Cramer et al., 2007; Fowles, 

Sale, & MacDougall, 2000; Kay & Blazevich, 2009a; Nelson, Guillory, Cornwell, & 

Kokkonen, 2001). For example, stretching exercise performed for 60 s or longer elicits 

an average force reduction of 7.5% (Kay & Blazevich, 2011) and longer duration (e.g. 
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29 min) stretching has been shown to reduce force for up to one hour (Fowles et al., 

2000). This decrease in contractile capacity may compromise functional performance. 

Thus, there is a need to understand the factors influencing, and mechanisms 

underpinning, this effect with a view to developing strategies that mitigate against it.  

  

An original hypothesis offered to explain force loss was that stretch could change the 

mechanical characteristics of the muscle itself, resulting in a decrease in muscle-tendon 

complex stiffness or shifting the muscle length-tension relationship to a less optimal 

point (Cramer et al., 2007; Fowles et al., 2000). For instance, an increase in tendon 

compliance after passive muscle stretching might negatively affect force transmission 

and certainly cause the muscle to operate at a shorter length, which could ultimately 

affect maximal force production.  However, it has been consistently shown that acute 

static stretching has little or no effect on tendon stiffness, especially when a warm-up is 

performed prior to the stretching (i.e. the muscle-tendon unit has been pre-conditioned) 

(Kay & Blazevich, 2009a, 2009b, 2010; Morse, Degens, Seynnes, Maganaris, & Jones, 

2008).  

 

A second hypothesis is that contractile force decrements result from a reduced efferent 

neural drive during voluntary activation, which has been typically been measured as a 

decrease in muscle activity recorded by electromyography (Behm, Button, & Butt, 

2001; Cornwell, Nelson, & Sidaway, 2002; Cramer et al., 2005; Fowles et al., 2000; 

Kay & Blazevich, 2009b). In fact, the reduction in electromyogram (EMG) amplitude 

may more broadly indicate both a decrease in efferent neural drive to the muscle or an 

inability to conduct muscle post-synaptic potentials within the muscle, which typically 

results in a reduced force production (Gandevia, 2001). Thus, mechanisms associated 
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with the transmission of potentials, ultimately influencing excitation-contraction (E-C) 

coupling, may be implicated in addition to changes in efferent neural drive based on the 

available EMG data. Furthermore, these EMG data do not provide information 

regarding the specific site at which neuromuscular activation might be compromised 

(e.g. supra-spinal, spinal or muscular). Another important consideration is that these 

post-stretch decreases in EMG amplitude are not always seen (Herda et al., 2011; 

Power, Behm, Cahill, Carroll, & Young, 2004; Ryan et al., 2008), and it is not known 

whether this results from sensitivity and reliability issues associated with EMG 

measurements, or indicates that other mechanisms must be at least as important as 

neural drive modification (Arabadzhiev, Dimitrov, Dimitrova, & Dimitrov, 2010; 

Christie, Inglis, Kamen, & Gabriel, 2009; Dimitrova & Dimitrov, 2003; Farina, 

Merletti, & Enoka, 2004). Thus, the mechanisms underpinning the stretch-induced force 

loss are not clear.  

 

Given that changes in tendon properties (and therefore muscle length during 

contraction) do not appear to explain the loss of force, two main neuromuscular 

mechanisms that might therefore explain the force loss are: 1) a reduction in the efferent 

neural drive to the muscle mediated by spinal (Avela et al., 1999) or supra-spinal 

mechanisms (Gandevia, 2001), or 2) an impairment in the muscle’s E-C coupling 

mechanism (Allen, 2004). However, there is no consensus as to the location of the 

changes leading to the force decline because no research has examined, in detail, 

neuromuscular function at different sites within the system after a period of acute 

stretching that is sufficient to lead to force loss. In the following review of literature, the 

potential for these mechanisms to influence the stretch-induced force loss is considered 

with a view to developing specific testable hypotheses for future research. 
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1.1. Voluntary muscle force  

 

Voluntary muscle contractions are elicited when excitatory postsynaptic potentials 

activate the motor neurone pool. This process is induced by activity in the motor cortex 

acting via descending pathways and can be modulated by afferent feedback, inter-

neurone activity and motor neurone intrinsic properties (Heckman, Gorassini, & 

Bennett, 2004).  Once the motor neurone is depolarised and the action potential reaches 

the neuromuscular junction, a postsynaptic action potential travels along the 

sarcolemma to the T-tubules (Gandevia, 2001). T-tubule depolarisation activates the 

voltage-sensitive dihydropyridine receptors (DHPR) and stimulates an interaction with 

the calcium-release ryanodine receptors (RyR), resulting in calcium release from the 

sarcoplasmic reticulum into the myoplasm. This process stimulates actomyosin 

interaction and causes sarcomere shortening (assuming sarcomeric force exceeds 

internal and external opposing forces) in a process known as E-C coupling (Balog, 

2010). The magnitude of the resulting muscular force depends on the number of motor 

units recruited and the motor neurone discharge rate, which shifts the Ca2+ release-Ca2+ 

uptake balance (into the sarcoplasmic reticulum) towards release and an increase in 

myoplasmic Ca2+ concentration. According to “Henneman’s size principle”, motor units 

are recruited in order of increasing peak twitch force (Henneman, 1985). This theory is 

grounded in the strong correlations found between the level of resistance of the motor 

neurone, which determines its recruitment threshold, and motor unit force (Heckman & 

Enoka, 2012). Importantly, both motor unit recruitment and firing rate are determined 

by supra-spinal and spinal facilitation/inhibition balance.  
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1.1.1 Reduction in supra-spinal drive 

 

Alterations in supra-spinal drive can noticeably affect muscular force production. 

Reductions in muscular force during continued activation (i.e. muscle fatigue) have 

been shown to result from an inability of the descending supra-spinal drive to 

maximally activate the muscle’s motor neurone pool (Gandevia, 2001). Reductions in 

supra-spinal drive have been clearly demonstrated during and after exercise leading to 

muscle fatigue, through repeated maximal contractions (Taylor & Gandevia, 2008), 

submaximal sustained contractions (Søgaard, Gandevia, Todd, Petersen, & Taylor, 

2006) and long-duration (endurance) efforts (Lepers, Maffiuletti, Rochette, Brugniaux, 

& Millet, 2002). For instance, an 18% decrease in maximal voluntary force was 

reported after running a marathon (Ross, Middleton, Shave, George, & Nowicky, 2007). 

This force loss was attributed at least in part to a reduction of motor cortical outflow, 

measured as the amplitude of the motor-evoked potential (MEP) during cortical 

transcranial magnetic stimulation (TMS) (Ross et al., 2007). Moreover, reductions in 

MEP amplitude were taken as evidence of a reduced efficiency of transmission along 

the corticospinal tract for 12 min after a 2-min maximal isometric elbow flexor 

contraction (Gandevia, Petersen, Butler, & Taylor, 1999). Taken together, these results 

suggest that acute reductions in muscular force output can occur through alterations in 

supra-spinal drive.  

 

The mechanisms underpinning this reduced input from motor cortex to the motor 

neurone are still unclear and need further investigation. However, changes in the 

behaviour of cortical neurones and/or the influence of afferent fibres inhibiting the 

descending volley should be considered as potential mechanisms (Taylor & Gandevia, 
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2008).  Although there is considerable evidence supporting the existence of a sub-

optimal supra-spinal output to motor neurones after fatiguing contractions, very little is 

known about how muscle stretch might affect supra-spinal drive to the muscle. Thus, at 

this time there is no clear evidence as to whether a supra-spinal depression might 

influence muscular force production subsequent to a bout of muscle stretching.  

 

It is well known that motor cortical outflow may be influenced by sensory inflow 

(Matthews, 1991), and it is interesting to note that changes in limb position for example 

can acutely influence the organisation of the primary motor cortex (Gellhorn & Hyde, 

1953; Scott, Sergio, & Kalaska, 1997). In 1953, Gellhorn and Hyde clearly 

demonstrated that changes in muscle length could affect the extent of the cortical area 

from which a specific muscle could be activated via surface electrical stimulation. 

Moreover, evidence from animal and human experiments provide convincing evidence 

that stretch-sensitive afferent fibres project to the cerebral cortex. Studies using animal 

(primate) models have shown that muscle spindle (i.e. stretch-activated) type I and II 

afferents fibres project to cortical areas 3a (somato-sensory cortex) and 4 (motor 

cortex), which provide evidence for the possibility that muscle stretch could influence 

cortical activity especially in those areas (Hore, Preston, & Cheney, 1976; Phillips, 

Powell, & Wiesendanger, 1971). In particular, area 3a is purported to be involved in 

somato-motor-vestibular integration (Huffman & Krubitzer, 2001). The neurones in this 

cortical region can project both mono- and poly-synaptically (via inter-neurones) to the 

spinal motor neurones of the stretched muscles (Matthews, 1991; Rathelot & Strick, 

2009),  as well as the primary motor cortex (Avendaño, Isla, & Rausell, 1992; Huerta & 

Pons, 1990; Murray & Coulter, 1981), suggesting a possible contribution to control 

motor output. Human experiments have also consistently demonstrated the possible 
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involvement of cortical structures in response to the stimulation of stretch-sensitive 

afferents. For instance, it has been demonstrated that muscle stretch could evoke cortical 

potentials in humans (Cohen, Starr, & Pratt, 1985; Starr, McKeon, Skuse, & Burke, 

1981). Additionally, prolonged muscle vibration (which preferentially activates Ia 

afferent fibres) (Marconi et al., 2008) and changes in muscle length (i.e. towards longer 

muscle length) (Coxon, Stinear, & Byblow, 2005) have been shown to reduce the 

excitability of the primary motor cortex as assessed using TMS, suggesting that input 

from stretch-sensitive afferents can modulate motor cortical excitability. In light of the 

above-mentioned evidence, it seems reasonable to speculate that passive muscle stretch 

could acutely and directly affect motor cortical outflow. Nonetheless, this assumption 

has not been explicitly examined.  

 

1.1.1.2. Limitations to previous research measuring neural (central) drive after muscle 

stretch 

  

It is commonly argued that prolonged muscle stretches (e.g. >60 s) result in a reduced 

muscle activity measured by EMG (Avela et al., 1999; Cramer et al., 2007; Kay & 

Blazevich, 2009b). Specifically, a strong correlation has been shown between the 

reduction in muscle force after acute plantar flexor muscle stretching and the reductions 

in EMG amplitude measured during maximal voluntary contraction (Kay & Blazevich, 

2009b).  However, a reduction in EMG amplitude does not unquestionably indicate a 

reduced supra-spinal (motor cortical) drive, as changes in spinal reflex loops, motor 

neurone intrinsic properties and muscle sarcolemmal action potential propagation can 

affect it (Arabadzhiev et al., 2010; Farina, Merletti, et al., 2004). Moreover, caution 

should be exercised when inferring changes in neural input (i.e. supra-spinal and spinal) 
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to the muscle through EMG measurements. This is because changes in EMG amplitude 

can occur in response to factors other than changes in neural drive, such as amplitude 

cancellation (Christie et al., 2009; Farina, Cescon, Negro, & Enoka, 2008; Keenan, 

Farina, Maluf, Merletti, & Enoka, 2005; Keenan, Farina, Merletti, & Enoka, 2006) and 

motor unit synchronisation (Farina, Merletti, et al., 2004; Yao, Fuglevand, & Enoka, 

2000), changes in muscle length (Farina, Merletti, Nazzaro, & Caruso, 2001; Frigon, 

Carroll, Jones, Zehr, & Collins, 2007; Yao et al., 2000) and alterations in intracellular 

action potential amplitude and velocity (Arabadzhiev et al., 2010; Dimitrova & 

Dimitrov, 2003). Thus, reductions in EMG amplitude per se cannot be taken as 

evidence for reductions in neural drive to the muscle. 

 

In addition to EMG alterations researchers have also reported decreases in voluntary 

muscle activation (%VA), as measured using the interpolated twitch technique (ITT), 

after acute passive stretch (Behm et al., 2001; Fowles et al., 2000), possibly indicating a 

reduction in neural drive to the muscle. However, these changes are not always seen 

(Power et al., 2004; Ryan et al., 2008). The principle of the ITT is to apply an electrical 

stimulus to the muscle, or its nerve, on top of a maximal voluntary contraction (MVC) 

in order to increase the firing frequency of the fibres above that obtained volitionally, 

theoretically allowing for maximal muscle contractile capacity to be achieved (Merton, 

1954). The torque produced during ‘maximal’ muscle activation is then compared to the 

torque produced by an electrical twitch immediately after the MVC, producing a ratio 

that reflects the extent of voluntary muscle activation (Shield & Zhou, 2004). However, 

this measurement has been shown to be influenced by supra-spinal, spinal and/or 

peripheral structures (De Haan, Gerrits, & de Ruiter, 2009; Millet & Lepers, 2004; 

Taylor, 2009a) and is therefore not solely a measure of neural drive. For instance, 
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measures of %VA obtained by using ITT have been reported to be affected by several 

factors such as muscle length (Arampatzis, Mademli, De Monte, & Walsh, 2007), force 

transmission by the series elastic components (Taylor, 2009b) and changes in 

intracellular calcium concentration (Place, Yamada, Bruton, & Westerblad, 2008). 

Another problem affecting the interpretation of previous data is that different muscles 

were targeted and stretch protocols used so it is not possible to reconcile the 

inconsistent findings. Thus, data obtained using EMG and ITT data have been 

inconsistent, and the use of these techniques has not allowed for accurate delineation of 

the site at which muscle activation might be modified by stretching. 

 

Alternatively, other methods have been used to assess changes in neural drive. Firstly, 

when the muscle, or its motor nerve, is electrically stimulated the excitability of the 

muscle membrane can be non-invasively assessed by measuring the amplitude of the 

compound muscle action potential (M-wave). Normalising the surface EMG (root-

mean-squared) signal to the M-wave maximal amplitude (i.e. EMG:M) eliminates the 

effect of peripheral changes in membrane excitability and indicates if there is a change 

in central drive to the muscle (Millet & Lepers, 2004). However, this measurement can 

still be affected by factors such as changes in motor unit synchronisation and amplitude 

cancellation. Secondly, the first volitional wave (V-wave), which is an 

electrophysiological variant of H-reflex elicited with a supra-maximal stimulus intensity 

during maximal voluntary contraction (Upton, McComas, & Sica, 1971), can be used to 

assess changes in neural drive. The H-reflex is a monosynaptic reflex evoked when the 

homonymous Ia afferent is electrically stimulated at a sub-maximal intensity on a mixed 

nerve (Pierrot-Deseilligny, 1997). When the nerve is stimulated, a descending action 

potential (M-wave) causes muscle contraction and the Ia afferent fibres projecting back 



	  
	   	  

10	  

on the spinal cord excite the α-motor neurone pool to create another action potential in 

the innervated skeletal muscle (H-reflex).  Its amplitude is usually utilised as a measure 

of spinal excitability, also reflecting the efficiency in Ia afferent synapses (Aagaard, 

Simonsen, Andersen, Magnusson, & Dyhre-Poulsen, 2002a; Knikou, 2008; Pierrot-

Deseilligny, 1997; Pierrot-Deseilligny & Burke, 2005). However, when supra-maximal 

nerve stimulation is applied during a maximal voluntary contraction, together with the 

direct M-wave, the H-reflex reappears (i.e. V-wave) as the antidromic impulses (i.e. 

opposite direction of normal impulse) in the motor neurones collide with the efferent 

nerve impulses caused by the voluntary contraction (Aagaard, 2003; Duclay & Martin, 

2005; Gondin, Duclay, & Martin, 2006; Pensini & Martin, 2004; Solstad, Fimland, 

Helgerud, Iversen, & Hoff, 2011).  The supra-maximal intensity used during nerve 

stimulation to evoke V-wave promotes massive excitation of all Ia afferent axons in the 

peripheral nerve, subsequently recruiting both large and small motor neurones 

(Aagaard, Simonsen, Andersen, Magnusson, & Dyhre-Poulsen, 2002b). The V-wave is 

purported to be indicative of changes in motor unit firing frequency and may be 

considered a useful measure of central drive obtained during MVC. Nonetheless, it can 

be directly affected by activity in descending pathways (e.g. pre-synaptic inhibition at 

the spinal level), so it may not be reliable under some experimental conditions. Despite 

this caveat, V-wave measurements could provide substantial evidence for/against 

central drive modifications and can be used to more clearly determine whether acute 

static stretching influences central drive. However, no researchers have measured 

changes in V-wave amplitudes after an acute bout of muscle stretching. In fact, based on 

the information presented above, the concurrent measurement of V-wave amplitude, 

EMG:M and %VA might provide the best evidence of central changes in neural drive 

after muscle stretching. A consistent change in all three tests could be taken as excellent 
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evidence for an influence of muscle stretch on efferent neural drive, and motivate more 

detailed examinations of the neuromuscular pathway to identify the site of change. 

 

1.1.2. Inhibition or disfacilitation at the spinal Level 

  

The spinal circuitry is a complex network of sensory neurones, inter-neurones and 

motor neurones that can inhibit or facilitate descending volitional signals and it is 

possible that muscle stretching might cause inhibition or disfacilitation of this circuitry. 

In order to achieve maximal discharge frequency, and thus to produce high levels of 

muscular force, spinal motor neurones rely upon a facilitatory system that increases the 

gain of synaptic input (Hultborn, Denton, Wienecke, & Nielsen, 2003). This facilitatory 

modulation is mediated by persistent inward currents (PICs), which are a voltage-

dependent characteristic of spinal motor neurones that, when activated, amplify and 

prolong synaptic inputs (Heckman et al., 2004).  PIC development changes the input-

output relationship and may produce sustained depolarisations (i.e. plateau-potentials) 

more specifically in low-threshold motor neurones (Heckmann, Gorassini, & Bennett, 

2005). PICs occur largely at the motor neurone dendrites and are controlled by the 

interaction between descending monoaminergic drive (specifically the neurotransmitters 

noradrenaline and serotonin in the spinal cord) and afferent feedback, especially 

including the length-sensitive muscle spindle Ia afferents (Heckman et al., 2004). For 

instance, changes in muscle length directly affect the level of dendritic amplification to 

the motor neurone (Hyngstrom, Johnson, Miller, & Heckman, 2007), so prolonged 

increases in muscle length caused by muscle stretch may reduce Ia afferent input onto 

α-motor neurones. Indeed, a reduction in Ia afferent efficiency (measured as a decrease 

in H-reflex amplitude) concomitant with a decrease in force has previously been 
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reported immediately after prolonged (1 hour) passive stretching (Avela et al., 1999); a 

reduction in Ia afferent input could affect the motor neurone facilitatory process,  

preventing maximal discharge rates being attained during force production. However, 

the H-reflex is a very specific measurement that when measured at a relaxed muscle 

cannot provide information regarding motor neurone facilitation and its resulting force 

modulation.  

 

PICs have been investigated more completely in decerebrate cats preparations using a 

steady synaptic input mediated by tendon vibration, which selectively activates Ia 

afferents (Frigon et al., 2011). Despite the fact that animal models offer a better 

platform to study PICs, it is possible to gain some understanding of it, and its force 

modulatory effects, by using tendon vibration reflexes (TVR) in humans. TVRs are 

purported to be reflective of PIC manifestation and have been used to investigate the 

possible influence of Ia afferent on alpha motor neurone output (McPherson, Ellis, 

Heckman, & Dewald, 2008; Mottram, Suresh, Heckman, Gorassini, & Rymer, 2009; 

Suresh, Wang, Heckman, & Rymer, 2011).  Thus, TVR methods may provide an ideal 

tool to investigate the potential effect of passive muscle stretch on the amplification (or 

lack) of steady synaptic input to the motor neurone. However, to best of the author’s 

knowledge no previous research has investigated the effects of acute muscle stretch on 

PIC development.  

 

1.1.3. Impairment of the excitation-contraction (E-C) coupling process  

	  

Information regarding E-C coupling efficiency (i.e sarcoplasmic reticulum’s ability to 

release calcium to muscle contraction) can be obtained by comparing the peak torque 
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produced during high- (e.g. 80 Hz) and low- (e.g. 20 Hz) frequency electrical nerve (or 

muscle) stimulation (Edwards, Hill, Jones, & Merton, 1977; Jones, 1996; Martin, 

Millet, Martin, Deley, & Lattier, 2004). This phenomenon, commonly referred to as 

low-frequency fatigue (LFF), is characterised by a greater force loss in response to low 

vs. high frequency stimulation (Keeton & Binder-Macleod, 2006). It has been suggested 

that LFF may be caused by a reduction in calcium release from the sarcoplasmic 

reticulum due to impairment in the interaction between voltage-sensitive 

dihydropyridine receptors (DHPR) and calcium-release ryanodine receptors (RyR) 

(Balog, 2010). One of the possible factors that could disrupt this interaction between 

receptors is an increased sarcoplasmic calcium concentration, mediated by stretch 

activated channels (SAC), which reduce the calcium release by the RyR during muscle 

contraction (Allen, 2004; Balog, 2010). Long-lasting LFF and increases in intracellular 

calcium concentration are commonly observed as a consequence of lengthening (i.e. 

eccentric) contractions (Jones, 1996; Keeton & Binder-Macleod, 2006; Martin et al., 

2004). However, this examination has not been completed after passive muscle stretch 

in humans, although it has been previously shown that SACs can be activated by 

passive muscle stretch in animal models (Armstrong et al., 1993). Additionally, an 

increase in muscle inflammatory cell (neutrophil) concentration was observed after 

passive muscle stretching, again suggesting a potential role for calcium infiltration in 

muscle cells (Pizza, Koh, McGregor, & Brooks, 2002). Thus, the possibility exists that 

acute passive muscle stretch could activate SACs, increase the sarcoplasmic calcium 

concentration, and ultimately impair calcium release and the E-C coupling process. 

Evidence for this mechanism has not been gathered, but might be observed by 

examining the torque produced by low-frequency vs. high-frequency stimulation after 

passive stretch (Martin et al., 2004).  Hence, a study of the effect of stretching on high 
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vs. low-frequency force production using electrical stimulation might indicate whether 

calcium-related E-C failure is a factor affecting force loss. 

1.1.3.1.  Muscle “catch-like” properties 

	  

Skeletal muscle tends to produce a greater contractile force and rate of force 

development (slope of the force-time curve) when two action potentials (i.e. a doublet) 

arrive at the muscle with a very short (e.g. 10 ms) delay at the onset of a voluntary 

contraction (Binder-Macleod & Kesar, 2005; Burke, Rudomin, & Zajac, 1970). This 

phenomenon is usually termed the skeletal muscle catch-like property, and it is possible 

to simulate this by delivering two rapid electrical pulses to a muscle or its nerve 

followed by a low-frequency (e.g. 20 Hz) train of pulses (Binder-Macleod & Kesar, 

2005; Burke et al., 1970). It has been hypothesised that the arrival of doublets at the 

muscle membrane could increase the myofibrillar affinity for calcium (Abbate, Bruton, 

De Haan, & Westerblad, 2002). However, more recent data obtained in isolated mouse 

fibres indicate that doublets occurring at the onset of a contraction might also increase 

sarcoplasmic reticulum calcium release via the RyR receptor (Cheng, Place, Bruton, 

Holmberg, & Westerblad, 2013). The increase in rate of force development and peak 

contractile torque are often more pronounced when the muscle is fatigued, suggesting 

that it might be an essential mechanism for counteracting the loss of contractile force 

(Bentley & Lehman, 2005; Binder-Macleod & Russ, 1999). As described previously it 

is possible that passive stretch could negatively affect sarcoplasmic calcium release 

kinetics (Armstrong et al., 1993; Pizza et al., 2002), however it is not yet known 

whether passive muscle stretching can influence the catch-like behaviour of muscle or 

whether the addition of a doublet at contraction onset could counteract the subsequent 

force loss. By comparing the peak torque elicited by a standard train of electrical pulses 
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(e.g. 20 Hz) versus a train prefixed with a doublet pulse (i.e. catch-induced train) 

(Bentley & Lehman, 2005; Binder-Macleod & Russ, 1999) it may be possible to better 

understand the effect of acute passive muscle stretching on calcium handling and the 

utilisation of muscle’s catch-like properties. 

 

1.2. Muscle ischaemia  

An adequate level of blood supply is important for muscle force production, both for 

oxygen delivery and the removal of metabolites. Thus, impairment in blood flow has 

been suggested to be an important factor influencing muscle fatigue (Kent-Braun, 2009; 

Murthy, Hargens, Lehman, & Rempel, 2001). It has also been shown that a high level 

(i.e. nearly at the level induced by cuff occlusion) of ischaemia can occur during static 

muscle stretching (McCully, 2010). Given that skeletal muscle is isovolumetric, a 

reduction in muscle oxygenation during passive stretch could result when the muscle’s 

cross-sectional area is reduced, pennation decreases and intramuscular pressure 

increases during muscle stretch, which ejects blood from the muscle and prevents 

arterial in-flow (Kagaya & Muraoka, 2005; Otsuki, Fujita, Ikegawa, & Kuno-

Mizumura, 2011). This increase in intra-muscular pressure would be influenced by 

stretch intensity (i.e. tissue strain) and the muscle’s viscoelastic properties (Magnusson, 

1998). Stretching protocols commonly utilise multiple sets of stretch separated by rest 

intervals, which results in a cycle of ischaemia and reperfusion and potentially causing 

symptoms of local muscle fatigue. Additionally, the reperfusion process may also be 

problematic. During reperfusion muscular production of xanthine oxidase, an enzyme 

with an important function in the generation of reactive oxygen species (ROS), 

increases and may result in ROS-dependent muscle fatigue (Granger, 1988; Powers & 

Jackson, 2008).  Furthermore, it has been shown in animal models that passive muscle 
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stretch itself can increase nitric oxide release (Tidball et al., 1998) and ROS production 

(Chambers, Moylan, Smith, Goodyear, & Reid, 2009; Palomero, Pye, Kabayo, & 

Jackson, 2012). ROS accumulation can reduce muscle force production by impairing 

RyR-mediated calcium release and affecting the E-C process (Powers & Jackson, 2008). 

Hence, comparing stretches of the same intensity and duration, differing only in the 

number of intervals (i.e. reperfusions), could provide information regarding the 

influence of the ischaemia-reperfusion process on the loss of force results from static 

stretch regimens.  Such examination has not been done, so it is not clear whether the 

potential influence of acute muscle stretching on perfusion-reperfusion-dependent 

muscle force loss varies between continuous vs. intermittent stretch protocols. 

 

1.3. Summary  

This review provides evidence that both central and peripheral mechanisms might 

contribute to the muscle stretch-induced force loss. Regarding central mechanisms, 

reduced spinal and supra-spinal drive and/or impaired motor neurone facilitation 

processes are potential candidates to the explain force loss. Regarding peripheral 

mechanisms, acute muscle stretch might impair the E-C coupling process due to SAC 

channel activation or increasing ROS production. However, presently no research has 

investigated these mechanisms in detail. It is therefore necessary to clarify whether 

these mechanisms contribute to stretch-induced force losses, thus strategies to mitigate 

the force loss can be developed. 

 

1.4. Aim of the thesis 

The major aims of the present thesis are to 1) determine the contribution of central vs. 

peripheral mechanisms to the force loss after a 5-min continuous muscle stretch; 2) 
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examine whether intermittent stretch might cause greater force loss when compared to 

continuous stretch, and to quantify the potentially greater peripheral effect; and 3) 

complete a third study, according to the results of studies 1 and 2, to more specifically 

determine whether spinal motor neurone facilitatory mechanisms (i.e central) or muscle 

contractile processes (i.e. peripheral) might be negatively affected by acute passive 

muscle stretching.  
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CHAPTER 2 

Study 1: Contribution of Central vs. Peripheral Factors to the 
Force Loss Induced by Passive Stretch of the Human Plantar 

Flexors 
 

2.1 Introduction 

Prolonged (≥60 s) passive muscle stretch reduces maximal force production in human 

muscles (Behm & Chaouachi, 2011; Kay & Blazevich, 2012). However the mechanisms 

underpinning this loss have not been fully elucidated and effective strategies for 

minimising the force loss have not been developed. A post-stretch decrease in central 

(efferent) drive to the muscles has been considered to affect force production, evidenced 

by the reductions in electromyogram (EMG) amplitudes that are often observed (Fowles 

et al., 2000; Kay & Blazevich, 2009b). However the EMG signal can be affected by 

peripheral factors, including changes in muscle fibre action potential amplitude and 

propagation velocity (Arabadzhiev et al., 2010; Farina, Merletti, et al., 2004), so factors 

other than central drive limitations could also explain these results.  

To better quantify changes in central drive other techniques could be used, including 

normalisation of EMG amplitudes to the maximal muscle compound action potential 

(Mmax) amplitude (Arabadzhiev et al., 2010), the use of the interpolated twitch technique 

to estimate ‘per cent voluntary activation’ (Merton, 1954; Taylor, 2009b) and the 

measurement of V-wave amplitudes during maximum voluntary contractions (Upton et 

al., 1971).  On the other hand, each of these measures is also considered potentially 

imperfect in some way (Aagaard et al., 2002b; Arabadzhiev et al., 2010; Farina, 
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Merletti, et al., 2004; Taylor, 2009b), so strong evidence for a central drive limitation 

subsequent to muscle stretch might only be indicated when a depression is observed in 

several simultaneously-obtained measures, and these depressions are related to (i.e. 

correlated with) the loss of force. As yet, such a detailed examination has not been 

completed so it is not clear whether a reduction in central drive is a key mechanism 

underpinning the force loss.  

In addition to central factors, peripheral factors might influence the loss of force after 

stretch. For example, research using animal models has shown that passive muscle 

stretch can increase intracellular calcium concentration via stretch-activated channel 

activation and disturb calcium homeostasis (Armstrong et al., 1993). Such a disturbance 

can negatively affect the synergistic interaction between the calcium-release ryanodine 

receptor and voltage-sensitive dihydropyridine receptors, impairing excitation-

contraction (E-C) coupling (Balog, 2010). In humans it is possible to estimate the 

efficiency of this process by comparing the torque produced during low- vs. high-

frequency electrical motor nerve stimulation trains (Jones, 1996; Martin et al., 2004). In 

fact, it is also reasonable to expect changes in a muscle’s response to short-interval 

double-spike stimuli when they precede a train of constant-frequency stimuli (i.e. a 

‘catch-inducing’ train) (Binder-Macleod & Kesar, 2005; Burke et al., 1970) if calcium 

homeostasis is disrupted, because this response is thought to be influenced by the Ca2+ 

binding sensitivity to troponin (Abbate et al., 2002; Nielsen, 2009). Thus, decreases in 

force production might occur even if no significant changes in central drive are 

produced and no metabolic disturbances are elicited. To date, the effect of static muscle 

stretch on muscle contractile properties remains relatively unexplored, so it is not clear 

if these are potential targets for intervention. 
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Given the above, the purpose of the present study was to establish the relative 

contribution of central vs. peripheral factors to the stretch-induced force loss after a 5-

min continuous passive plantar flexor muscle stretch. It was tested the hypothesis that 

impairments would be detected at both central and peripheral levels, and that these 

changes would be similarly correlated with changes in muscle force production. Three 

different examinations of central drive were completed (EMG:M ratio, per cent 

voluntary activation [interpolated twitch technique; ITT] and V-wave amplitude) in 

order to more robustly quantify potential central changes, whilst muscle and nerve 

stimulation procedures were used to gain information with regards to peripheral 

changes. 

 

2.2 Methods 

2.2.1 Subjects 

Thirteen healthy men (mean ± SD: age, 26.5 ± 5.0 y; height, 1.72 ± 0.9 m; body mass, 

71.1 ± 13.8 kg) with no previous neuromuscular impairment volunteered for the study. 

Sample size estimation was based on the previous data where the same neuromuscular 

tests were applied in fatigued muscle (Martin et al, 2004). The sample size of 12 gave 

an effect size of 0.79 with power of 80% at the alpha level of 0.05 (G*Power 3.0.10 

software). The subjects reported not being engaged in flexibility training for at least 6 

months prior to the study and refrained from such training during data collection period. 

The procedures performed during this research were approved by the Edith Cowan 

University Human Research Ethics Committee and were in agreement to the 

Declaration of Helsinki. All participants read and signed an informed consent 

document. 
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2.2.2 Study design and overview 

Subjects visited the laboratory on three occasions at the same time of day separated at 

least by 48 hours. A full familiarisation of the stretch protocol and test procedures was 

provided in the first session whilst the subsequent two visits were used for the 

completion of the following experimental conditions in a randomised order: 1) control 

(or no stretch), and 2) 1 set of 5 min passive plantar flexor stretching. The subjects were 

assessed immediately before, and immediately and 15 minutes after each intervention 

(Figure 1). During familiarisation the muscle stimulation intensities for all electrically 

evoked measurements were determined and both the maximum tolerable passive torque 

during stretch and the maximal voluntary contraction torque (MVC) were measured. In 

the experimental trials, the subjects performed a warm-up on a Monark cycle for 5 min 

by cycling at 60 rpm with a 1-kg load to produce a power output of 60 W. The subjects 

were then seated upright in the chair of an isokinetic dynamometer (Biodex System 3 

Pro, Biodex Medical System, Shirley, New York, USA) with the knee fully extended 

(0º), the ankle in the neutral position (90º) with the sole of the foot perpendicular to the 

shank, and the lateral malleolus aligned to the centre of rotation of the dynamometer. 

The knee was placed in an extended position to better assess the full plantar flexor 

torque (Cresswell, Löscher, & Thorstensson, 1995), minimise the risk of muscle cramp 

during muscle stimulation and to allow for muscles to be more completely stretched 

during the muscle dorsiflexion rotations (i.e. plantar flexor stretches). 

 

2.2.3 Muscle stretching protocol 
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All stretch procedures were performed on an isokinetic dynamometer with the muscles 

relaxed. The plantar flexors were stretched for 5 min by rotating the ankle into 

dorsiflexion at 5º·s-1 until a passive resistance equal to 90% of the maximal tolerable 

stretch torque (assessed during familiarisation) was achieved. Muscle stretch elicits a 

viscoelastic stress relaxation response, resulting in a rapid reduction in stretch intensity 

when the joint position is held constant (Magnusson, 1998). In order to avoid this 

response, the joint angle was continually adjusted (increase of dorsiflexion) so that the 

passive torque always remained within 5 Nm of the initial stretch torque level. Standard 

stretching practices are somewhat analogous to the ‘constant torque’ design so the 

present results should be of practical significance.  

 

2.2.4 Voluntary and evoked torque measurements 

Peak isometric plantar flexor torque (TPeak) was assessed during MVCs with the ankle in 

a neutral position (90º). Maximal force is usually reduced by the anticipation of 

discomfort caused by the electrical stimulation (Button & Behm, 2008). To avoid the 

effect of stimulus anticipation two MVCs were performed at each time point: the first 

MVC was used to calculate TPeak and measure muscle activity (EMG; see below), the 

second MVC included tibial nerve stimulation in order to measure muscle activation 

(ITT) and V-wave amplitude (Figure 2.1).  Participants were instructed to produce 

torque against the dynamometer by rotating the ankle as fast and as hard as possible. 

Verbal encouragement and visual feedback were provided during all MVCs.  
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Figure 2.1. A: The experimental design and time course of measurements: subjects were 
assessed before, and immediately and 15 minutes after the stretch or control (rest) period. 
B: the order of measurements (20 Hz, 20 Hz tetanic stimulation; catch, catch-inducing 
tetanic stimulation; 80 Hz, 80 Hz tetanic stimulation; MVC, maximal voluntary 
contraction; Twitch, single pulse stimulation) 

 

2.2.5 Stimulation procedures 

2.2.5.1 Muscle stimulation (20:80 ratio, constant vs. catch-inducing train stimulation) 

A constant current electrical stimulator (DS7, Digitimer Ltd, Welwyn Garden City, UK) 

was used to deliver an electrical square-wave stimulus (0.5-ms pulse width) to the 

plantar flexor muscle belly through two self-adhesive electrodes (9 × 5 cm, Dura-

Stick® II, Chattanooga Group, Hixon, USA). The cathode was placed distal to the 

popliteal crease and the anode over the distal myotendinous junction of the soleus. For 

all tetanic stimulations, the intensity necessary to reach 50% of MVC with a 0.5-s 80 Hz 

tetanic stimulation was used as suggested by previous studies (Martin et al., 2004). 
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Three tetanic stimulations with the same duration were delivered to test for E-C 

coupling efficiency: 1) 20 Hz train of 11 pulses (0.05 s interpulse interval); 2) catch-

inducing train (i.e. 2 pulses at 0.01 s plus 10 pulses at 0.05 s interpulse interval); and 3) 

80 Hz train of 36 pulses (0.0125 s interpulse interval). The peak torque produced by the 

20 Hz and 80 Hz stimulations were used to calculate the 20:80 ratio, which was used as 

a measure of E-C coupling efficiency (Martin et al., 2004).  The catch-inducing train 

was used to assess the muscle’s capacity to increase torque production under this 

specific condition, when compared to a constant-frequency train (20:catch ratio).  

 

2.2.5.2 Nerve stimulation (Twitch, ITT, V-wave)  

The same electrical stimulator was used to deliver the electrical square wave 1-ms pulse 

width stimuli to the posterior tibial nerve via a cathode electrode (Ag-AgCl, 10 mm) 

fixed to the popliteal fossa and an anode electrode of large size (9 × 5 cm, Dura-Stick® 

II, Chattanooga Group, Hixon, USA) placed on the anterior surface of the knee. ITT 

was used to estimate the percentage voluntary activation (%VA) of the muscle. The 

intensity for a single twitch was set at 120% of the intensity required to elicit Mmax, to 

ensure a supramaximal current stimulus was used. Supra-maximal twitches were 

elicited before, during and 2 s after an isometric plantar flexor MVC (Merton, 1954). 

The interpolated twitch was manually elicited when the subjects reached maximal force. 

A comparison of the interpolated twitch to the resting potentiated (i.e. post-MVC) 

twitch was completed, with %VA being calculated using the equation (Shield & Zhou, 

2004):  

%VA = [1-(superimposed twitch/potentiated twitch)] × 100. 
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The superimposed twitch was also used to capture the V-wave; decreases in amplitude 

were considered as evidence of a decrease in efferent drive to the motor neurone 

(Aagaard et al., 2002b). Although, multiple assessments are ideal to improve the 

method’s reliability, only one stimulation was provided at each time point in order to 

minimise the effects of fatigue. Thus, the balance between an optimum number of 

stimulations and the minimisation of muscle fatigue was considered. The V-wave peak-

to-peak amplitude was measured and then normalised to the M-wave amplitude 

measured prior to the MVC (V:M ratio). 

 

2.2.6 Measurement of muscle activity (EMG) 

Surface EMG was recorded from soleus and lateral gastrocnemius using a bipolar 

electrode configuration at a 4000 Hz analogue-digital conversion rate (bandwidth 10 to 

500 Hz) using the Bagnoli-8 Main Unit EMG system (DelSys, Inc., MA, USA). The 

inter-electrode distance was 1 cm and a reference electrode was placed on the lateral 

malleolus. Further, to obtain clearer M- and V-wave data, surface EMG was recorded 

from soleus in a pseudo-monopolar configuration (sample rate 4000 Hz) using the 

BioAmp EMG system (PowerLab System, ADInstruments, NSW, Australia), with one 

electrode placed on the medial aspect of soleus below the distal gastrocnemius junction 

and the other placed at the Achilles tendon-soleus muscle-tendon junction ∼3 cm 

superior to the malleolus (Blazevich, et al., 2012).  The skin under the electrodes was 

shaved, abraded and cleaned with alcohol to reduce the inter-electrode resistance below 

5 kΩ. EMG data were also recorded during the stretching maneuvers to ensure that 

muscle activation remained below 5% of the maximal value; a small activity response is 

often seen even when the subjects are asked to remain completely relaxed (Blazevich, et 

al., 2012). Muscle activity was expressed as root mean square EMG amplitude (500-ms 
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averaging window) and normalised to the M-wave amplitude measured before the 

contraction (EMG:M) to account for the possible influence of peripheral factors. The 

EMG:M quantified from SOL (EMG:MSOL) and LG (EMG:MLG) were summed and 

considered as a measure of neural efferent drive to the triceps surae (EMG:MTS). Ankle 

joint torque, joint angle and EMG data were simultaneously recorded using LabChart 

v.6.1.3 Software (PowerLab System, ADInstruments, NSW, Australia). 

 

2.2.7 Statistical analysis 

Separate two-way repeated measures ANOVAs were performed to compare changes in 

all variables between conditions (stretch vs. control) over time (before, after and 15 min 

after). Pairwise comparisons with Bonferroni corrections were performed when 

significant interaction effect was detected. Pearson’s product-moment correlation 

coefficient were computed to determine the relationships between changes in torque and 

changes in central (EMG:M; %VA; V-wave) and peripheral (20:80 ratio, 20:catch ratio, 

peak twitch torque) mechanisms. Statistical significance was set at an α level of 0.05. 

Intra-class correlations (ICC) were computed to evaluate reliability of central drive (; 

%VA; V-wave; EMG:M)  and torque (Tpeak; twitch; 20 Hz, catch-inducing and 80 Hz) 

measurements during control condition. 

 

2.3 Results 

ICC values describing the reliability of central drive and torque measurements 

during control conditions were between 0.83–0.93 and 0.98-0.99, respectively, 

suggesting that these measures were reliable. 
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There was a significant interaction (time × condition) effect for Tpeak (p<0.05). Post-hoc 

analyses revealed a significant reduction of 15.7% immediately after stretch with no 

significant difference from the baseline being found at 15 minutes, and no changes in 

the control condition (Figure 2.2). 

 

 

Figure 2.2. Torque loss immediately and 15 min after stretch. * Significantly greater 
change compared to the control condition (p˂0.05). 

 

Similarly, a significant interaction effect was found for EMG:MSOL (p<0.05) and 

EMG:MTS (p<0.05). Post-hoc analyses revealed a reduction of 13.2% for EMG:MSOL 

and 8.2% for EMG:MTS immediately after stretch but no difference at 15 min, 
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indicating that EMG:M was fully recovered by 15 min. Both %VA and V:M ratio were 

not significantly different to the control condition at any time point. .  

There were moderate-strong correlations between changes in torque and changes in 

central drive measurements, including EMG:MSOL (r=0.93, p<0.001), EMG:MLG 

(r=0.82, p=0.001), EMG:MTS (r=0.88, p<0.001), as well as %VA (r=0.76, p=0.002) and 

V:M ratio (r=0.65, p=0.017) immediately after stretch (Figure 2.3). Thus, greater 

decrements in torque were observed in subjects who had greater reductions in measures 

of central drive. Interestingly, the recovery of peak torque within 15 min of stretch 

(Figure 2.3) was also correlated strongly with EMG:MSOL (r=0.81, p=0.001), EMG:MLG 

(r=0.79, p=0.001), EMG:MTS (r=0.80 p=0.001) and %VA (r=0.77, p=0.003) recovery. 

These results indicate that a similar temporal response occurred in torque production 

and central drive.  
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Figure 2.3. Relationship between changes in torque and changes in indicators of central 
drive. A strong correlation was found between the reduction in torque and decreases in A) 
the soleus EMG:M ratio (r=0.93), B) percent voluntary activation (%VA; r=0.76), and C) 
V-wave amplitude (V:M ratio; r=0.65). Force recovery was also strongly correlated with 
recovery of D) the soleus EMG:M ratio (r=0.81) and E) %VA (r=0.77). The correlation 
between the change in torque during recovery and changes V-wave amplitude (F) was not 
statistically significant. Force loss = changes in torque from baseline to immediately after 
stretch; Force recovery = changes in torque from immediately to 15 min after stretch.  

 

There was a significant interaction effect for torque elicited by the 20 Hz, catch-

inducing train and twitch peak torque (Tpeak) (p<0.05). Post-hoc analyses revealed that 

reductions in peak torque in response to 20 Hz (11.5%), catch-inducing (10.8%) and 

twitch (9.4%) stimulations occurred only immediately after stretch, with no further 

change to 15 min. There was a trend towards a reduction in torque elicited by 80 Hz 

stimulation (p<0.1), but no significant interaction effect was found. In addition, no 

interaction effect or correlation was found for 20:80 (p>0.05) or 20:catch (p>0.05) 

ratios, suggesting that muscle force production was affected somewhat by the stretch 

protocol, but it could not be explained by changes in E-C coupling efficiency. There 

were no changes in Mmax amplitude detected, when compared to the control condition 

(p>0.05), indicating that muscle excitability was not affected by the stretch protocol. 

 

2.4 Discussion 

The present research examined the contributions of central vs. peripheral factors to the 

stretch-induced torque loss in the human plantar flexors.  The main findings were that: 

1) decreases in EMG:M, voluntary activation and V-wave amplitude (i.e. central 

factors) were strongly related to both the torque reduction after stretch and the torque 
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recovery, indicating that central drive modification influenced the loss and recovery of 

muscle force; and 2) the muscle’s contractile capacity (i.e. electrical-elicited 

contractions) was moderately reduced, but these changes were not associated with the 

loss or recovery of torque and there was no evidence of a change in E-C coupling 

efficiency after the stretch protocol utilised in the present study.  

The present data provide the clearest evidence of a reduced central drive influencing 

force production after stretch.  As shown in Figure 2.4, three different parameters 

(EMG:M, %VA and V-wave) were investigated in order to detect central changes, and 

reductions in these parameters were strongly correlated with reductions in torque after 

stretch. Moreover, recovery of EMG:M and %VA were strongly correlated with force 

recovery, suggesting that recovery of efferent drive may have been important in the 

return of muscle force to baseline. It has been suggested that the force reduction might 

be caused by a decrease in central drive because decreases in EMG amplitude have been 

reported and relationships between changes in EMG amplitudes and changes in torque 

have been demonstrated (Fowles et al., 2000; Kay & Blazevich, 2009b). However, 

EMG amplitude can be influenced by peripheral, in addition, to central, factors so some 

caution was exercised in the interpretation of these results.  Although the EMG:M ratio, 

as measured in the present study, can still be influenced by factors other than the 

absolute magnitude of central drive (e.g. motor unit synchronisation), the simultaneous 

depression of voluntary activation and V-wave amplitude is strongly suggestive of a 

central depression, and the correlations between EMG:M, voluntary activation and the 

torque recovery to 15 min provides substantial additional support for the hypothesis 

(Figure 2.3).  Thus, the findings of the present study strongly support the proposition 

that a reduced central drive is a major factor contributing to the voluntary torque loss 

caused by acute passive muscle stretch.  
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Figure 2.4. Example of data obtained from one subject before (left column), and 
immediately (middle column) and 15 min after (right column) the stretch protocol. A 
decrease in maximal voluntary contraction (MVC) torque (first row), EMG amplitude 
(second row) and V wave amplitude (last row), and an increase in the superimposed twitch 
torque (i.e. decreased voluntary activation; third row) are visible immediately after 
stretch. (ITT; interpolated twitch technique) 

 

From the current data it is not possible to determine the site/s of origin of the central 

drive limitation. Descending output from the motor cortex can exert significant 

executive control over muscle force so changes in supra-spinal command are clearly a 

potentially important factor. To the best of my knowledge there is no clear evidence that 

muscle stretching can affect supra-spinal outflow, however this possibility is 

particularly worthy of exploration because the mild pain response elicited by the stretch 
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might have been sufficient to reduce motor cortical drive to the muscle (Le Pera et al., 

2001; Schabrun & Hodges, 2012) and thus reduce motor unit firing frequency (Farina, 

Arendt-Nielsen, & Graven-Nielsen, 2005; Farina, Arendt-Nielsen, Merletti, & Graven-

Nielsen, 2004).  Studies imposing muscle stretch whilst pharmacologically blocking the 

pain response may be useful in testing this hypothesis. Spinal-level inhibition is also a 

candidate site for examination. Spinal interneurones can modulate both Ia afferent 

feedback and motor neurone excitability through inhibitory and excitatory mechanisms 

(Jankowska & Hammar, 2002). In particular, the soleus Ia inhibitory interneurone is 

thought to be excited by both agonist and synergist Ia afferents (Fetz, Jankowska, 

Johannisson, & Lipski, 1979; Schieppati, Romano, & Gritti, 1990). Thus, the stretch 

protocol used in the present experiments may have promoted an autogenic inhibition of 

soleus and a subsequent decrease in its activity level. Finally, motor neurone 

disfacilitation is a possible mechanism. Alpha motor neurones are strongly dependent 

upon facilitatory inputs to achieve maximal discharge frequency, and thus to produce 

high levels of muscular force (Hultborn et al., 2003). This facilitatory modulation 

occurs at the motor dendrites and is controlled by the interaction between descending 

monoaminergic drive and spinal circuits, especially including the Ia afferents (Heckman 

et al., 2004). For instance, changes in muscle length directly affect the level of dendritic 

amplification to the motor neurone (Hyngstrom et al., 2007), so the prolonged increase 

in muscle length during the stretch may have reduced Ia afferent input onto α-motor 

neurone. Indeed, a reduction in Ia afferent efficiency (measured as decrease in H-reflex 

amplitude) concomitant with a decrease in plantar flexor torque has previously been 

reported immediately after prolonged passive stretching (Avela et al., 1999); a reduction 

in Ia afferent input could affect the motor neurone facilitatory process preventing 

maximal discharge rates being attained during voluntary torque production.  
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Interestingly, both the H-reflex amplitude and maximal force production were shown to 

recover within 15 minutes of the stretch (Avela et al., 1999). The temporal match with 

our data is suggestive that central drive might be reduced immediately after stretch, and 

then recover relatively rapidly and simultaneously with torque. 

In the present study it was also tested, for the first time, the hypothesis that passive 

stretch could affect E-C coupling efficiency by comparing the torque produced during 

low- and high-frequency tetanic stimulation. Reductions in tetanic torque were evident 

in 20 Hz and catch-inducing tetanic stimulation conditions, suggesting that the muscle’s 

contractile capacity was compromised. However, these reductions were relatively small 

and were not correlated with the changes in voluntary peak torque. Moreover, the lack 

of changes in 20:80 and 20:catch ratios suggests that calcium homeostasis was not 

affected significantly by the present stretch protocol and that any small changes in 

muscle or tendon mechanical properties also did not specifically influence torque 

induced by the high-frequency pair of pulses during the catch-inducing train. 

Additionally, no change in Mmax amplitude was found, indicating that sarcolemmal and 

t-tubular function was not significantly compromised. One might speculate that the 

moderate changes in muscle torque could result from mechanical changes within the 

parallel elastic component. It has been proposed that parallel elastic components are 

responsible for epimuscular force transmission, which is an important factor 

contributing to maximal force production (Maas, Meijer, & Huijing, 2005; Maas & 

Sandercock, 2010), and connective tissues such as the perimysium might be affected by 

static muscle stretch (Borg & Caulfield, 1980; Purslow, 1989). Clearly, changes in the 

series elastic components, and particularly the Achilles tendon, are unlikely to have had 

a substantial influence (Kay & Blazevich, 2009a, 2009b, 2010; Morse et al., 2008). 
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Regardless, the moderate changes in muscular function did not appear to have a notable 

effect on voluntary torque production in this study. 

With respect to the current data, some limitations should be highlighted. This study was 

designed to investigate the mechanisms underpinning the torque loss, so a relatively 

long stretch duration was employed (5 min). However, short duration stretches (< 45 s), 

which are commonly performed in pre-exercise routines, are unlikely to negatively 

affect force production. Thus, it is possible that the neuromuscular changes observed in 

the present study would not be observed under shorter stretch conditions. Nonetheless, 

further research is needed to clarify the ‘dose-response’ relationship between stretch 

duration and central drive depression. Second, mechanical properties of the muscle (e.g. 

changes in parallel elastic components) could not be measured, but may have influenced 

muscle force production without affecting the E-C coupling process. Further research is 

required to clearly determine the effects of changes in the mechanical properties of, in 

particular, the parallel elastic components on neuromuscular measurements and whether 

muscle stretch might influence these. Third, using the present methodology it was not 

possible to determine the site/s of origin of the central drive limitation. Research using 

brain imaging and cortical brain stimulation techniques could provide a clearer picture 

in this regard. 

In summary, the present data indicate that the torque decrement elicited by passive 

plantar flexor muscle stretch was strongly associated with a reduction in central 

(efferent) drive. This conclusion is based on the significant decrease and recovery of the 

EMG:M ratio, the strong correlation between the torque loss and decreases in EMG:M, 

%VA and V:M, and the association of torque recovery with EMG:M and %VA 

recovery; further research is required to determine the specific location of the central 

drive modification. The stretch protocol may have induced a deficit at the muscular 
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level, however changes were not substantial and were not correlated with the torque loss 

or recovery. Notwithstanding the clear loss of force induced by the stretch, it is also 

important to note, from a practical perspective, that torque recovered quickly and 

certainly within 15 minutes. These changes occurred in response to 5-min muscle 

stretch and future studies should determine if shorter durations of stretch impair 

maximal force by the same mechanisms. 
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CHAPTER 3 

Study 2: Intermittent Stretch Reduces Force and Central 
Drive More Than Continuous Stretch 

 

3.1 Introduction 

The detrimental effect of passive muscle stretching on maximal force production has 

been well documented (Behm & Chaouachi, 2011; Kay & Blazevich, 2012), yet the 

mechanisms underpinning this stretch-induced torque loss are not completely 

understood and therefore strategies cannot be developed to minimise its impact. It was 

recently shown that torque depression subsequent to a single 5-min constant-torque 

plantar flexor stretch was largely explained by a reduction in central drive to the muscle, 

with a minor effect at the muscle level (Study 1). However, most studies investigating 

the torque loss caused by stretch have utilised intermittent (i.e. repeated) stretch 

protocols (Kay & Blazevich, 2012). Such protocols are commonly performed in clinical 

and sports environments and the possibility exists that intermittent protocols elicit 

different changes in central drive and muscle mechanical properties than continuous 

stretches. In particular, intermittent stretch has been reported to be more efficient in 

reducing muscle stiffness when compared to continuous stretch (McNair, Dombroski, 

Hewson, & Stanley, 2001; Nordez, McNair, Casari, & Cornu, 2007), which might be 

associated with the cyclic strain reducing muscle viscosity and/or the thixotropic 

behaviour of the musculo-articular system (McNair et al., 2001). Additionally, 

intermittent and continuous stretches potentially elicit different changes in tissue 

oxygenation kinetics.  
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A significant ischaemic response (i.e. nearly at the level induced by cuff occlusion) can 

occur during a continuous passive muscle stretch (McCully, 2010), as a result of a 

prominent increase in intramuscular pressure (Otsuki et al., 2011). Alternatively, 

intermittent stretch is characterised by repeated stretches separated by rest intervals, 

which results in a cycle of ischaemia and blood reperfusions. Ischaemia-reperfusion 

cycles have been shown to cause damage in a variety of tissues, including skeletal 

muscle, through reactive oxygen species-dependent mechanisms (Blaisdell, 2002; Gute, 

Ishida, Yarimizu, & Korthius, 1998). During the blood reperfusion phase there is the 

possibility of reactive oxygen species formation through xanthine oxidase and nitric 

oxide pathways (Powers & Jackson, 2008); indeed passive muscle stretch has been 

shown to increase nitric oxide (Tidball et al., 1998) and reactive oxygen species 

production (Chambers et al., 2009; Palomero et al., 2012) in animal models. 

Importantly, an increase in reactive oxygen species production can affect the calcium-

release ryanodine receptor and thus impair the excitation-contraction coupling process 

(Bruton et al., 2008; Powers & Jackson, 2008). It is therefore possible that intermittent 

stretch might impede functioning of the contractile apparatus more than continuous 

stretch, influence both the magnitude and the temporal profile of the torque loss 

differently to continuous stretch, and increase the torque deficit attributable to muscular 

rather than neural mechanisms. Thus, rather than the decrease in oxygenation levels 

elicited by stretch protocol alone that may be problematic, it is the independent (and 

possibly additive) effect of multiple reperfusion events and muscle stretch cycles on the 

contractile apparatus. Despite the potentially disparate effects of intermittent and 

continuous stretching, their relative effects on muscle torque depression, and the 

mechanisms that underpin it, have not been explicitly studied.  
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Given the above, the purpose of the present study was to compare the effects of 

continuous and intermittent muscle stretch protocols on the stretch-induced force loss, 

and to determine the relative contributions of central versus peripheral factors to these 

losses. It was hypothesised that 1) intermittent and continuous plantar flexor stretches 

would confer similar acute improvements in ankle joint range of motion, and that 2) 

central (neural) drive would be equally depressed after both stretch protocols. However, 

It was also hypothesised that 3) whilst continuous muscle stretch would cause a greater 

magnitude of tissue oxygenation reduction than intermittent stretch, substantial cyclic 

variations in tissue oxygenation (i.e. ischaemia-reperfusion cycles) would result from 

the intermittent stretch, and thus 4) intermittent stretch would cause a greater magnitude 

of, and more prolonged reduction in, muscle torque resulting from impairments in the 

contractile apparatus.   

 

3.2 Methods 

3.2.1 Subjects  

Eighteen healthy men (mean ± SD: age, 26.8 ± 4.5 y; height, 1.75 ± 0.1 m; body mass, 

72.7 ± 12.6 kg) with no previous neuromuscular impairment volunteered for the study. 

The subjects had not engaged in flexibility training for at least 6 months prior to the 

study and refrained from such training during data collection period. The subjects 

refrained from vigorous exercise and alcohol consumption for 24 h, and stimulant (e.g. 

caffeine) use for 6 hours, prior to testing. They read and signed an informed consent 

document, and the research was approved by the University Human Research Ethics 

Committee. 
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3.2.2 Study design and overview 

Subjects visited the laboratory on four occasions at the same time of day separated by at 

least 48 h. In the first session they were fully familiarised with the test procedures 

whilst the subsequent three visits were used for the completion of the following 

experimental conditions in a counterbalanced order: 1) control (or no stretch); 2) 1 set of 

5 min (continuous stretch); and 3) 5 sets of 1 min (intermittent stretch; 15 s rest) passive 

plantar flexor stretching. The subjects were assessed immediately before, and 

immediately, 15, and 30 minutes after each intervention. During the familiarisation 

session the intensities of all electrically evoked muscle and nerve stimulation 

measurements were determined and both the maximum tolerable passive torque during 

stretch and the maximal voluntary contraction torque (MVC) were measured. In the 

experimental sessions, performed at the same time of day as the familiarisation session, 

the subjects warmed up on a Monark cycle for 5 min by cycling at 60 rpm with a 1-kg 

load. The subjects were then seated upright in the chair of an isokinetic dynamometer 

(Biodex System 3 Pro, IPRS, Suffolk, UK) with the knee in full extension (0º), the 

ankle in the neutral position (90º; plane of foot relative to tibia) with the sole of the foot 

perpendicular to the shank, and the lateral malleolus of the fibula aligned to the centre 

of rotation of the dynamometer.  

 

3.2.3 Muscle stretching protocol 

All stretch procedures were whilst seated (0o knee angle) performed on an isokinetic 

dynamometer with the subjects instructed to keep their muscles relaxed. The plantar 

flexors were stretched by rotating the ankle into dorsiflexion at 5º·s-1 until the passive 

resistance reached 90% of the maximal tolerable stretch torque, as measured during the 

familiarisation session. Passive torque typically decreases during the stretch (i.e. stress 
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relaxation (Magnusson, 1998)), so the joint angle was continually adjusted toward 

dorsiflexion during the stretch to maintain the passive torque within 5 Nm of the initial 

stretch torque level. With this design stretches in both conditions were of the same 

intensity and volume, with the only difference being that the intermittent stretch had 15-

s resting interval after each 1-min stretch. 

 

3.2.4 Voluntary and evoked torque measurements 

Peak isometric plantar flexor torque (TPeak) was assessed during MVCs with the ankle in 

a neutral position (90º). Maximal torque is commonly reduced by the anticipation of 

discomfort caused by the supra-maximal nerve stimulation (Button & Behm, 2008). 

Thus, to avoid the effect of stimulus anticipation, two MVCs were performed at each 

time point: the first MVC was used to calculate TPeak and measure muscle activity 

(EMG; see below), and the second MVC was performed concurrently with tibial nerve 

stimulation in order to measure voluntary activation (interpolated twitch technique; 

ITT) and V-wave amplitude.  The subjects were instructed to produce a force against 

the dynamometer foot plate by rotating the ankle as fast and as hard as possible. Verbal 

encouragement and visual feedback were provided during all MVCs.  

 

3.2.5 Stimulation procedures 

3.3.5.1 Muscle stimulation (20:80 ratio, constant vs. catch-inducing train stimulations) 

A constant current electrical stimulator (DS7, Digitimer Ltd, Welwyn Garden City, UK) 

was used to deliver an electrical square-wave stimulus (0.5-ms pulse width) to the 

plantar flexor muscle belly through two self-adhesive electrodes (9×5 cm, Dura-Stick® 

II, Chattanooga Group, Hixon, USA). The cathode was placed on the medial and lateral 

gastrocnemius muscle bellies, where greatest motor response was elicited (i.e. assumed 
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motor point) and the anode was placed over the distal myotendinous junction of soleus. 

For all tetanic stimulations, the intensity necessary to reach 50% of MVC with a 0.5-s 

80 Hz tetanic stimulation was used. Three tetanic stimulations with the same duration 

(0.5 s) were delivered to test for excitation-contraction (E-C) coupling efficiency: 1) 20 

Hz train; 2) catch-inducing train (i.e. 20 Hz train with the first two pulses at 100 Hz); 

and 3) 80 Hz train. The peak torque produced by the 20 Hz and 80 Hz stimulations were 

used to calculate the 20:80 ratio, which was used as a measure of E-C coupling 

efficiency (Martin et al., 2004).  The catch-inducing train was used to assess the 

muscle’s catch-like properties, which is thought be affected by changes in calcium 

release, when compared to a constant-frequency train (20:catch ratio) (Binder-Macleod 

& Kesar, 2005; Burke et al., 1970).  

 

3.2.5.2 Nerve stimulation (Twitch, ITT, V-wave)  

The same electrical stimulator was used to deliver the electrical square wave 1-ms pulse 

width stimuli to the posterior tibial nerve via a cathode electrode (Ag-AgCl, 10 mm) 

fixed to the popliteal fossa and an anode electrode of large size (9×5 cm, Dura-Stick® 

II, Chattanooga Group, Hixon, USA) placed on the anterior surface of the knee. ITT 

was used to estimate the percentage voluntary activation (%VA) of the muscle. The 

intensity for a single twitch was set at 120% of the intensity required to elicit Mmax, to 

ensure that a supramaximal current stimulus was used. Supra-maximal twitches were 

elicited before, during and 2 s after an isometric plantar flexor MVC (Merton, 1954). A 

comparison of the interpolated twitch to the resting potentiated (i.e. post-MVC) twitch 

was completed, with %VA being calculated using the following equation (Shield & 

Zhou, 2004): %VA = [1-(superimposed twitch/potentiated twitch)] × 100. The 

superimposed twitch was also used to elicit the first volitional wave (V-wave), which is 
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an electrophysiological variant of the H-reflex (Upton et al., 1971) and has been 

extensively used and validated in the literature to determine changes in efferent drive to 

the muscle (Aagaard et al., 2002b; Duclay & Martin, 2005). Although multiple V-wave 

assessments are ideal to improve the method’s reliability (Aagaard et al., 2002b), a 

single stimulation was performed at each time point to minimise the effects of fatigue 

(Trajano et al., 2013). Thus, the balance between an optimum number of stimulations 

and the minimisation of muscle fatigue was taken into consideration. The V-wave peak-

to-peak amplitude was measured and then normalised to the M-wave amplitude 

measured prior to the MVC (V:M ratio) and reductions in the V:M ratio were 

interpreted as evidence of a reduction in central drive (Aagaard et al., 2002b). 

 

3.2.6 Measurement of muscle activity (EMG) 

	  

Surface EMG was recorded from soleus (SOL) and lateral gastrocnemius (LG) using a 

bipolar electrode configuration at a 4000 Hz analog-digital conversion rate (bandwidth 

10 to 500 Hz) using the Bagnoli-8 Main Unit EMG system (DelSys, Inc., MA, USA). 

The inter-electrode distance was 1 cm and a reference electrode was placed on the 

fibula’s lateral malleolus. Further, to obtain clearer M- and V-wave data, surface EMG 

was recorded from SOL in a pseudo-monopolar configuration (sample rate 4000 Hz) 

using the BioAmp EMG system (PowerLab System, ADInstruments, NSW, Australia), 

with one electrode placed on the medial aspect of SOL below the distal gastrocnemius 

junction and the other placed at the Achilles tendon-soleus muscle-tendon junction ∼3 

cm superior to the malleolous (Blazevich, et al., 2012).  The skin under the electrodes 

was shaved, abraded and cleaned with alcohol to reduce the inter-electrode resistance 

below 5 kΩ. During the stretch protocols EMG data were also recorded to ensure that 
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muscle activation remained below 10% of the maximal value; a small activity response 

is normally detected even when the subjects are asked to remain completely relaxed 

(Blazevich, et al., 2012). Muscle activity was expressed as root mean square (RMS) 

EMG amplitude (500-ms averaging window) and normalised to the M-wave amplitude 

measured before the contraction (EMG:M) to account for the possible influence of 

peripheral factors. The EMG:M quantified from SOL (EMG:MSOL) and LG (EMG:MLG) 

were summed and considered as a measure of central drive to the triceps surae 

(EMG:MTS) (Kay & Blazevich, 2009b; Trajano et al., 2013). Ankle joint torque, joint 

angle and EMG data were simultaneously recorded using LabChart v.6.1.3 Software 

(PowerLab System, ADInstruments, NSW, Australia). 

 
3.2.7 Measurement of muscle oxygenation  

 
Near-infrared spectroscopy (NIRS) (NIRO-200, Hamamatsu Photonics K.K., 

Hamamatsu, Japan) was used to estimate the changes in muscle oxygenation 

continuously during muscle stretching. A probe holder, consisting of 2 silicon 

photodiodes as photodetectors on one side and three light-emitting diodes on the other 

side (separated by 4 cm), was firmly attached to the skin at the mid-belly of the medial 

gastrocnemius and was covered with a dark tape to eliminate other light interference. 

Oxy-haemoglobin concentration (HbO2), was assessed in a baseline condition of 5 min 

of rest before testing. Haemoglobin oxygenation status was quantified as the change 

from the baseline value of HbO2. NIRS data were obtained from the medial 

gastrocnemius and was assumed to be indicative of the triceps surae oxygenation status 

during stretch (See example Figure 3.1). This was prompted by the space limitations 

imposed by the simultaneous placement of EMG and muscle stimulation electrodes and 
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NIRS probes on lateral gastrocnemius and, more specifically, the soleus muscle belly. 

(Hamaoka, McCully, Quaresima, Yamamoto, & Chance, 2007). 

 

 

Figure 3.1. Muscle oxygenation response in one subject during continuous stretch (A; 
prolonged ischemic response) and intermittent stretch (B; cycles of ischemia and 
reperfusion). 

 

3.2.8 Statistical analysis 

Data are presented as mean ± SD. A two-way repeated measured ANOVA was used to 

compare ROM, passive torque and oxygenation status between protocols (continuous 

and intermittent) over time (1, 2, 3, 4 and 5 min of stretch). Separate two-way repeated 

measures ANOVAs were performed to compare changes in Tpeak, and central and 

peripheral function variables between conditions (control, continuous and intermittent) 

over time (before, immediately after, and 15 and 30 min after). Pairwise comparisons 

with Bonferroni corrections were performed when a significant interaction effect was 

detected. Pearson’s product-moment correlation coefficients were computed to 

!600$

!400$

!200$

0$

200$

400$

!600$

!400$

!200$

0$

200$

400$
5 min 

1 min 

Δ
O

2H
b 

(µ
m

) 
$



	  
	  

45	  

determine the relationships between changes in torque and changes in central (EMG:M; 

%VA; V-wave) and peripheral (20:80 ratio, 20:catch ratio, peak twitch torque) 

mechanisms. Statistical significance was set at an α level of 0.05. 

 

3.3 Results 

There was a significant interaction (time × condition) effect for range of motion 

(p=0.043). Post-hoc analyses revealed an increase in range of motion at minutes 2 

(3.9%), 3 (6.1%), 4 (8.7%), and 5 (10.2%) when compared to minute 1 in the 

continuous stretch condition only (Figure 3.2). Passive torque during stretch was not 

different between protocols. There was an interaction effect for changes in muscle 

oxygenation (p=0.000), with a greater decrease in muscle oxygenation being found 

during the stretch in the continuous stretch condition from minutes 2 to 5 (Figure 3.1 

and 3.3).   

 



	  
	  

46	  

 

Figure 3.2. Range of motion achieved from minutes 1 to 5 during continuous and 
intermittent stretch protocols. The range of motion only increased during continuous 
stretching * Significantly different from the first minute (p≤0.05). Data are presented as 
mean ± SD. 
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Figure 3.3. Muscle oxygenation change from baseline during continuous and intermittent 
stretch (mean ± SD). O2Hb was reduced more during continuous than intermittent stretch 
from minute 2. Also, during the continuous stretch there was a reduction in muscle 
oxygenation at minutes 2, 3, 4 and 5 when compared to minute 1.* Significant difference 
between conditions and significant different from minute 1 for the continuous stretch 
(p≤0.05). 

 

A significant interaction effect was found for Tpeak (p=0.001). Post-hoc analysis 

revealed that Tpeak decreased more after intermittent (-23.8 ± 22.1%) than continuous 

stretch (-14.3 ± 17.2%). Tpeak reduction was fully recovered by 15 min after continuous 

stretch, but remained depressed by -5.7 ± 5.1% and -5.6 ± 5.8% at 15 and 30 min, 

respectively, after intermittent stretch (Figure 4). 
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Figure 3.4. Torque changes immediately, and 15 min and 30 min after continuous stretch, 
intermittent stretch or passive rest (control). Peak torque was reduced immediately after 
both stretch and remained reduced until 30 min after intermittent stretch. * Significantly 
greater change compared to the control condition (p˂0.05). Data are presented as mean ± 
SD. 

 

Significant interaction effects were found for EMG:MSOL (p=0.013), EMG:MLG 

(p=0.005) and EMG:MTS (p=0.000). Post-hoc analyses revealed greater reductions in 
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when compared to control and continuous stretch conditions, with no significant 

difference between conditions at 15 and 30 min post-stretch. Additionally, there was no 

significant interaction effect for V:M. 

There were strong correlations between changes in torque and changes in central drive 

measurements, including EMG:MSOL (r=0.91, p=0.000), EMG:MLG (r=0.75, p=0.000), 

EMG:MTS (r=0.81, p=0.000) and %VA (r=0.78, p=0.000) immediately after continuous 

stretch. Also, moderate-strong correlations were found between changes in torque and 

changes in EMG:MSOL (r=0.88, p=0.000), EMG:MLG (r=0.84, p=0.000), EMG:MTS 

(r=0.89, p=0.000), %VA (r=0.93, p=0.000) and V/M (r=0.51; p=0.031) immediately 

after intermittent stretch. Thus, subjects who had greater reductions in measures of 

central drive also had greater reductions in peak torque. Interestingly, the full recovery 

of peak torque 15 min after continuous stretch was also strongly correlated with 

EMG:MSOL (r=0.87, p=0.000), EMG:MLG (r=0.72, p=0.001), EMG:MTS (r=0.89 

p=0.000) and %VA (r=0.72, p=0.001) (Figure 3.5). In contrast, the partial recovery of 

peak torque 15 min after intermittent stretch was moderately correlated with the 

recovery of EMG:MSOL (r=0.58, p=0.012), EMG:MLG (r=0.54, p=0.022), EMG:MTS 

(r=0.54 p=0.01) and %VA (r=0.60, p=0.009) (Figure 3.6). These results indicate that a 

similar temporal response occurred in both torque production and central drive in both 

stretch conditions, however intermittent stretch caused a small (~5%) but long-lasting 

torque reduction that could not be attributed to reductions in central drive.  
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Figure 3.5. Relationship between changes in torque and changes in indicators of central 
drive after continuous stretch. A strong correlation was found between the reduction in 
torque and decreases in: A) the triceps surae EMG:M ratio (r=0.81) and B) percent 
voluntary activation (%VA; r=0.78). Force recovery was also strongly correlated with 
recovery of C) the triceps surae EMG:M ratio (r=0.81) and D) %VA (r=0.77). Force loss = 
change in torque from baseline; Force recovery = change in torque from immediately to 
15 min after stretch. 
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Figure 3.6. Relationship between changes in torque and changes in indicators of central 
drive after intermittent stretch. A strong correlation was found between the reduction in 
torque and decreases in: A) the triceps surae EMG:M ratio (r=0.89); B) percent voluntary 
activation (%VA; r=0.93) and V-wave amplitude (V:M; r=0.51). Force recovery was also 
moderately correlated with recovery of: D) the triceps surae EMG:M ratio (r=0.54) and  
E) %VA (r=0.60), but not F) V:M. 	  
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8.1%) and 80 Hz (-6.7 ± 5.5%) stimulations immediately after continuous stretch, with 

no further change to 15 and 30 min. Likewise, the peak torque elicited by 20 Hz, catch-

inducing and 80 Hz stimulations were reduced immediately after intermittent stretching 

(-13.1 ± 8.9%, -12.8 ± 7.5% and -6.4 ± 6.4%, respectively) with no difference in the 

control condition detected at 15 and 30 min post-stretch.  In addition, no interaction 

effect or correlation was found for 20:80 (p=0.46) or 20:catch (p=0.88) ratios, 

suggesting that reductions in muscle force were not associated with changes in E-C 

coupling efficiency. There was no interaction effect detected for Mmax amplitude 

(p=0.21), indicating that muscle excitability was not affected by the different stretch 

protocols. Likewise, there was no interaction effect detected for peak twitch torque 

(p=0.09). 

 

3.4 Discussion 

In Chapter 2 it was clearly identified a major contribution of central in comparison to 

peripheral mechanisms to the stretch-induced torque loss. However, whether the relative 

importance of these mechanisms might differ between various stretch protocols was still 

unknown. The novel findings of this study were that: 1) continuous stretch improved 

range of motion more than intermittent stretch; 2) continuous stretch lowered muscle 

oxygenation levels more than intermittent stretch; 3) the post-stretch torque loss in both 

conditions was associated with decreases in central drive; 4) intermittent stretch had a 

greater effect on torque loss magnitude and duration than continuous stretch; and 5) the 

prolonged (30 min) torque loss of ~5% subsequent to intermittent stretching could not 

be explained by central factors or changes in E-C coupling efficiency and could thus be 

explicable by peripheral factors other than those measured in the present study. These 

findings support the hypotheses that intermittent stretch can cause an acute torque 
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depression through central mechanisms, and there is a (small but) longer-lasting force 

loss possibly through peripheral mechanisms. 

Surprisingly, only continuous stretch elicited a significant increase in range of motion 

during the stretch manoeuvre. This finding was unexpected since both protocols were 

performed to the same passive torque level and had the same total duration. One 

possible explanation is that the continuous stretch may have elicited a greater stress-

relaxation response, requiring a greater increase in the range of motion to keep the 

passive torque constant during the stretch (Magnusson et al., 1996). To the best of our 

knowledge the comparison of equal intensity (i.e. with a continuous adjustment of 

passive tension) intermittent versus continuous stretch to acutely improve range of 

motion has never been investigated. The present data suggest that continuous stretch 

elicits a greater creep effect, and may improve range of motion more than intermittent 

stretch. Future studies investigating the effects of controlled-intensity continuous versus 

intermittent stretches on muscle mechanical properties and the time-course of potential 

changes are necessary to clarify these responses. Additionally, the continuous protocol 

caused a greater magnitude of reduction in muscle oxygenation, from the second to the 

fifth min of stretch, when compared to the intermittent protocol (Figure 3.3). Because 

muscle remains isovolumetric during stretch and contraction, the reduction in muscle 

oxygenation during muscle stretch results from the muscle circumference reduction 

causing an increase in intramuscular pressure, which both forces the blood from the 

muscle and prevents arterial in-flow (Otsuki et al., 2011). It has been previously 

reported that high levels of ischaemia and a subsequent dramatic reperfusion occur 

during passive muscle stretch (McCully, 2010), and the present data extend these 

findings by showing that muscle ischaemia levels were 2-fold higher during continuous 

stretch than in intermittent stretch in the lateral gastrocnemius. Clearly the intervals 
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after each minute of stretch during the intermittent protocol allowed the muscle time for 

blood reperfusion in the present study, which minimised the total decrease in HbO2 

when compared to continuous stretch. Given that greater changes in muscle torque were 

elicited by the intermittent stretch protocol, it was speculated that muscular responses 

associated with the ischaemia-reperfusion cycles might have had some influence. One 

important limitation of our data is that only the medial gastrocnemius muscle 

oxygenation status was monitored and assumed to be reflective of all the triceps surae. 

Although, it was expected an increase in intra-muscular pressure in all muscles, causing 

a reduction in blood flow in the whole triceps surae. Small variations are likely to occur 

between muscles because of architectural variation and thus intramuscular pressure 

differences. However, the lack of change in the 20:80 Hz torque ratio after both stretch 

protocols does not support the original hypothesis of an impairment in the E-C coupling 

process caused by the ischaemia-reperfusion cycles. Importantly, the influence on 

muscle torque production, at least, was minor when compared to the influence of central 

(neural) drive reduction.  

Interestingly, despite the significant volume of literature reporting an acute effect of 

static stretch on muscle force production, a direct comparison between continuous and 

intermittent stretch protocols does not exist. Therefore, the finding that the force loss 

was greater and more prolonged after intermittent than continuous stretch is novel and 

has clear practical implications; constant stretch appears preferable for improving range 

of motion whilst affecting force to a lesser degree. Also of interest was that, while the 

force loss elicited by both stretch protocols was associated with significant reductions in 

measures of central drive, the reductions in central drive after intermittent stretch were 

more substantive. In fact, while the continuous stretch elicited a significant reduction in 

EMG:MSOL only, the intermittent protocol caused significant decreases in EMG:MSOL 
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(of greater magnitude than continuous stretch), EMG:MLG and EMG:MTS as well as a 

significant reduction in percent voluntary activation. These results suggest that the 

intermittent stretch protocol not only elicited a greater magnitude of reduction in central 

drive, but also influenced more muscles within the triceps surae. The association 

between torque depression and central drive limitation was further demonstrated by the 

finding that central drive recovery was strongly associated with the recovery of force 15 

min after the continuous stretch, and moderately associated with recovery after 

intermittent stretch (Figure 3.6). For intermittent stretch, factors other than the recovery 

of central drive were possibly responsible for the prolonged torque loss. These findings 

are in agreement with previous studies showing that muscle torque and central drive 

recover rapidly after acute passive muscle stretching (Avela et al., 1999; Fowles et al., 

2000; Kay & Blazevich, 2009b; Trajano et al., 2013). The results of the present study 

are similar to others who have investigated stretch-induced plantar flexor force loss 

during isometric contractions. For instance, Fowles et al (2001) reported a 28% 

(standard deviation was not reported) reduction in torque and Avela et al (1999) a 23.2 

±19.7% force loss. Indeed, using the data of Avela et al (1999), it was predicted force 

losses of up to 63% using the 2 standard deviation rule (i.e. 95% of results should fall 

within 2 standard deviations of the mean), which is substantial and in line with our data. 

However, the present study is one of the few to present individual data for the torque 

loss and therefore to clearly show the variable response of subjects. Although, from the 

present data it is not possible to determine the mechanisms that underpin the reduction 

in central drive; supra-spinal inhibition, interneurone inhibition and/or motor neurone 

disfacilitation are possibilities worthy of exploration in future studies (Trajano et al., 

2013). 
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In order to test whether the ischaemia-reperfusion cycles caused impairment in the 

muscle contractile apparatus, 20 Hz, catch-inducing and 80 Hz tetanic stimulations were 

imposed after the stretches. Reductions in torque elicited by these stimulation protocols 

were seen after both stretch protocols, however the lack of change in 20:80 and 20:catch 

ratios suggest a lack of disturbance in the myoplasmic free Ca2+ concentration (Allen, 

2004; Jones, 1996; Martin et al., 2004). In addition, the torque elicited by tetanic 

stimulations was recovered by 15 min, yet a prolonged reduction in the low-frequency 

stimulation (i.e. 20 Hz) torque would have been expected if there was impairment in the 

E-C coupling process (Jones, 1996; Martin et al., 2004). Thus, other changes within the 

muscle must have occurred after stretch. One possibility is that a viscoelastic 

deformation in the muscle may have affected lateral force transmission and ultimately 

maximal force production (Bojsen-Møller, Schwartz, Kalliokoski, Finni, & Magnusson, 

2010). Muscle parallel elastic components such as the perimysium play a crucial role in 

the lateral transmission of force (Maas et al., 2005) and, since changes in Achilles 

tendon would likely have been negligible (Kay & Blazevich, 2009b; Morse et al., 2008), 

are the most likely component to be affected by the stretch protocol (Purslow, 1989). 

Nonetheless, lateral force transmission seems to be optimised when motor units are 

activated asynchronously and at a physiological frequency range (Brown, Cheng, & 

Loeb, 1999; Rack & Westbury, 1969; Roszek & Huijing, 1997). In the present study the 

muscle’s ability to produce force using electrical stimulation, which results in 

synchronous activation of motor units, may not be ideal to detect these changes. The 

development of stimulation protocols that allow less-synchronous activation, such as 

wide pulse-width protocols or contractions evoked by tonic-vibration reflex induction 

(Bergquist, Clair, & Collins, 2011; Magalhaes & Kohn, 2010) might shed light on this 

in future studies.  Although, there was no relationship between changes in peripheral 
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measures and the force loss caused by stretch, the prolonged small (~5%) force loss 

observed after intermittent stretch could not be explained by changes in central drive 

and may therefore be of peripheral origin. It must also be considered that the methods 

utilised in the present study were not sensitive enough to detect small changes in central 

or peripheral function that may each have contributed to the force loss.    

In conclusion, the results of the present study support the hypothesis that a decrease in 

central drive is the major factor affecting maximal torque production after passive 

stretch. This was concluded based on the reduction of central parameters after 

continuous (EMG:M) and intermittent stretch (EMG:M, %VA), the correlation between 

torque loss and reductions in EMG:M, %VA and V:M, and the association of torque 

recovery with the recovery of EMG:M and %VA. Important new findings are that 

intermittent stretch caused a greater reduction in torque and central drive despite the fact 

that range of motion increased more and there was a greater level of muscle ischaemia 

during the continuous stretch. Although the decrease in central drive appeared to be 

most implicated as a factor causing the force depression, there is some evidence that the 

ischaemia-reperfusion cycles may have further affected force production. Nonetheless, 

the prolonged force loss (to at least 30 min) elicited by the intermittent protocol could 

not be explained by the central or peripheral mechanisms measured in the present 

research. Clinicians who deem increasing range of motion prior to exercise to be 

important, despite potential force losses, might consider the use of continuous rather 

than the intermittent stretching protocols in their programs, and should impose a time 

delay between stretch and exercise training. However, the relative effect of stretch at 

central vs. peripheral levels is not known in elderly and clinical populations (i.e. those 

with potential connective tissue limitations), so further research is required in order to 

make specific statements in this regard.  
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CHAPTER 4  

Study 3: Can passive Stretch Inhibit Spinal Motor Neurone 
Facilitatory Mechanisms in the Human Plantar Flexors? 

 

4.1 Introduction 

It is well established that an acute bout of passive muscle stretching can acutely 

reduce maximal force production (Kay & Blazevich, 2012). Several lines of evidence 

support that a reduction in central drive to the muscle has a considerable involvement in 

this phenomenon (Avela et al., 1999; Fowles et al., 2000; Kay & Blazevich, 2009b; 

Trajano, Nosaka, Seitz, & Blazevich, 2013; Trajano et al., 2013). However, the 

mechanisms underpinning this reduced central drive after stretching remain unclear. 

Speculatively, stretch-sensitive muscle proprioceptive structures (i.e. group Ia/II muscle 

spindle afferents and free nerve endings) might be desensitised after prolonged passive 

stretching, which could ultimately affect motor neurone facilitatory processes. 

Facilitatory modulation is mediated by the development of persistent inward currents 

(PICs), which are a voltage-dependent characteristic of spinal motor neurones. When 

activated, PICs amplify and prolong synaptic input, changing the input-output 

relationship and producing sustained depolarisation especially in low-threshold motor 

neurones (Heckman et al., 2004). This amplification allows the motor neurones to fire at 

the higher frequencies necessary to produce maximal levels of muscular force (Hultborn 

et al., 2003).  
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The amplification of motoneuronal responses to excitatory postsynaptic potentials has 

been studied primarily in animal preparations using steady synaptic input imposed by 

tendon vibration, which selectively activates muscle spindle Ia afferents (Frigon et al., 

2011). Despite the fact that animal preparations provide a more controlled environment 

to study PICs, tendon vibration reflexes (TVR) have been used in human experiments to 

improve our understanding of PICs and their influence on muscular force output 

(McPherson et al., 2008; Mottram et al., 2009; Suresh et al., 2011).  When a high-

frequency vibration is applied to the tendon it generates a train of Ia afferent impulses 

inducing progressive excitation of the homonymous motor neurones, and elicits PICs in 

these motor neurones (Heckman & Binder, 1988). The slow increase in isometric force 

during the vibration sequence and, even more, the visibly sustained force that persists 

after the vibration ceased, provide remarkable evidence for the presence of PICs 

(Heckman et al., 2004). Another marked characteristic of this amplification is its muscle 

length dependency, where PIC development has been demonstrated to be greater when 

muscles receive synaptic input at longer lengths (Hyngstrom et al., 2007).  Thus, the 

presence of a sustained muscular force after vibration cessation and its length-dependent 

characteristics can be taken as evidence for PIC development in humans.  

 

When performed in isolation the TVR typically recruits only low-threshold motor units 

resulting in small force outputs (Gorassini, Bennett, & Yang, 1998; Kamen, Sullivan, 

Rubinstein, & Christie, 2006; Kiehn & Eken, 1997). Recently, however, the imposition 

of high-frequency tendon vibration during electrically induced muscular contractions 

has elicited forces as high as 50% of maximal voluntary contractions, possibly 

providing evidence of higher-threshold units being recruited in response to the 

additional input from electrical stimulation (Magalhães & Kohn, 2010; Magalhães, de 
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Toledo, & Kohn, 2013). This stimulation-vibration technique can provide insights into 

the presence of PICs not only in low-threshold motor units but also in higher-threshold 

units, which contribute more to maximal force production according to the size 

principle of motor unit recruitment (Henneman, 1985). Thus, the utilisation of electrical 

stimulation superimposed onto high-frequency tendon vibration provides a unique 

opportunity to investigate the development of PICs in humans. 

 

Given that muscle stretching results in an acute central drive depression, a reduction in 

stretch-dependent afferent feedback after stretch might speculatively impact PIC 

development, and thus central (spinal) drive. The main aim of the present study was to 

examine the effect of muscle stretching on PIC development. The first specific aim, 

therefore, was to determine whether muscular force and electromyographic responses to 

simultaneous Achilles tendon vibration and muscle electrical stimulation would exhibit 

muscle length dependency, consistent with PIC-like properties in the human plantar 

flexors. The second purpose of the present study was to determine whether an acute 

bout of passive plantar flexor muscle stretching impairs the force and 

electromyographic responses to simultaneous tendon vibration and muscle electrical 

stimulation. It was hypothesised that: 1) vibration-induced contractions would be more 

pronounced at longer muscle lengths; and 2) passive stretch would decrease the 

reflexive plantar flexor contraction force and triceps surae muscle activity elicited by 

Achilles tendon vibration. 
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4.2 Methods 

4.2.1 Subjects 

	  

Eleven healthy subjects (9 men and 2 women; mean ± SD: age, 28.9 ± 4.7 y; height, 

1.77 ± 0.9 m; body mass, 74.8 ± 8.6 kg) without neuromuscular impairment volunteered 

for the study. The subjects reported not being engaged in flexibility training for at least 

6 months prior to the study and refrained from such training during the data collection 

period. The subjects also refrained from vigorous exercise and alcohol consumption for 

24 h, and stimulant (e.g. caffeine) use for 12 hours, prior to testing. The procedures 

performed during this research were approved by the Edith Cowan University Human 

Research Ethics Committee and were in agreement to the Declaration of Helsinki. All 

participants read and signed an informed consent document. 

 

4.2.2 Study design and overview 

	  

All data collection was performed in a single session lasting approximately 1 hour and 

30 min, during which the subjects performed two experiments. Prior to Experiment 1 

the subjects were seated upright in the chair of an isokinetic dynamometer (Biodex 

System 3 Pro, Biodex Medical System, Shirley, New York, USA) with the knee fully 

extended (0º) and ankle at neutral (0º) position. They were then instructed to practice 

four voluntary submaximal isometric plantar flexion contractions (two contractions at 

60% and two at 80% of perceived maximal effort) in order to become familiar with the 

contractions and to pre-condition the tendon for subsequent strain (Maganaris, Narici, & 

Maffulli, 2008). After practice, two maximal voluntary contractions were performed 
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with a 1-min passive rest interval and the contraction with the maximum torque 

recorded for subsequent analysis. The muscle electromyogram (EMG) was also 

recorded simultaneously from soleus (Sol), medial gastrocnemius (MG) and lateral 

gastrocnemius (LG).  

 

 4.2.2.1 Experiment 1  

Experiment 1 was designed to determine whether the torque produced by the electrical 

stimulation superimposed on tendon vibration (vib+stim) would exhibit muscle length 

dependence, which is typically found in animal models and suggested to be a marked 

PIC characteristic. Thus, the knee remained fully extended throughout Experiment 1 

and the isometric torque and EMG amplitude elicited by vib+stim were evaluated with 

the ankle in three different joint positions: neutral (0º), plantar flexion (+10º) and 

dorsiflexion (-10º).  

 

4.2.2.2 Experiment 2 

Experiment 2 was designed to investigate the effect of acute passive stretching on the 

reflexive torque and muscle activity elicited by vib+stim. Subjects were assessed with 

the ankle in a dorsiflexed position (-10º) at 5 min (control 1) and 1 min (control 2; pre-

stretch) before the stretching as well as immediately, 5 min, 10 min and 15 min after.  

 

4.2.3 Tendon vibration and superimposed muscle stimulation (Experiments 1 and 2) 
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A constant current electrical stimulator (DS7, Digitimer Ltd, Welwyn Garden City, UK) 

was used to deliver an electrical square-wave stimulus (1-ms pulse width) to the plantar 

flexor muscle belly through two self-adhesive electrodes (9 × 5 cm, Dura-Stick® II, 

Chattanooga Group, Hixon, USA). The cathode was placed distal to the popliteal crease 

and the anode over the distal myotendinous junction of soleus. For all electrical 

stimulations, the intensity necessary to reach 20% of MVC with a 0.5-s 20 Hz tetanic 

stimulation was used.  

 

The Achilles tendon was mechanically vibrated at 70 Hz (based on pilot data) and 1 mm 

of amplitude by a vibrator (LymphoGenics, Medelect, Perth, Australia). The tip of the 

vibrator was firmly attached to the tendon with a clip to maintain steady pressure at a 

fixed position on the tendon and the vibration was applied continuously for of 33 s. Ten 

seconds after vibration onset five 2-s bursts of 20-Hz electrical stimulation separated by 

2-s intervals were also applied (Figure 4.1).  
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 Figure 4.1. Schematic representation of the tendon vibration and superimposed muscle 
stimulation protocol used to elicit reflexive muscular contractions.  

 

4.2.4 Voluntary and evoked torque measurements (Experiments 1 and 2) 

	  

The peak isometric plantar flexor torque, assessed during MVCs (described previously), 

was used to normalise the torque and EMG (see below) elicited by the stim+vib 

protocol. ‘Reflexive torque’ was measured as the mean torque in a 1-s window at two 

time points: (1) during vibration immediately after the 5th (last) burst of electrical 

stimulation (Torque vibration; Tvib), and (2) 3 s after vibration ceased (Torque 

sustained; Tsust) (Figure 4.2). After the torque returned to baseline levels at each time 

point an extra 20 Hz tetanic stimulation (using the same parameters described above) 

was delivered. As stimulation applied to resting muscle usually does not involve 

reflexive pathways the peak torque (Tstim,rest) was used to determine if the stretch 
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protocol affected the muscle’s contractile potential, i.e. the ability to produce torque 

without central command. As plantar flexor muscles impose a small passive torque even 

when the muscle is relaxed, all the torque values were normalised and presented as 

changes from the baseline (resting) value. 

 

Figure 4.2. Example of reflexive torque elicited by the stimulation protocol and the 
respective time points at which torque was recorded over 1-s windows. Tvib, torque 
measured after the 5th (last) bout of electrical stimulation; Tsust, torque measured 3 s after 
vibration cessation (self-sustained torque). 

 

4.2.5 Measurement of muscle activity (EMG) 

	  

Surface EMG was recorded from soleus (Sol), lateral gastrocnemius (LG) and medial 

gastrocnemius (MG) using a bipolar electrode configuration at a 4000 Hz analogue-

digital conversion rate (bandwidth 10 to 500 Hz) using the Bagnoli-8 Main Unit EMG 
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system (DelSys, Inc., MA, USA). Electrodes were positioned according to SENIAM’s 

recommendations (Hermens et al., 1999). The inter-electrode distance was 1 cm and a 

reference electrode was placed on the lateral malleolus. The skin under the electrodes 

was shaved, abraded and cleaned with alcohol to reduce the inter-electrode resistance 

below 5 kΩ. EMG data were also recorded during the stretching manoeuvres to ensure 

that muscle activation remained below 5% of the maximal value; a small muscle 

activity response is often seen even when the subjects are required to remain completely 

relaxed (Blazevich, et al., 2012). Muscle activity was expressed as the root mean square 

EMG amplitude (1-s averaging window) measured for each muscle (Sol, EMGsol; LG, 

EMGLG; and MG, EMGMG) over the same time period as torque measurements (Tvib and 

Tsust). Ankle joint torque, joint angle and EMG data were simultaneously recorded using 

LabChart v.6.1.3 Software (PowerLab System, ADInstruments, NSW, Australia). 

 

4.2.6 Muscle stretching protocol 

	  

The stretch procedures were performed on an isokinetic dynamometer with the muscles 

relaxed. The plantar flexors were stretched five times separated by 10-s non-stretch 

intervals by rotating the ankle into dorsiflexion at 5º·s-1 until a maximal tolerable stretch 

was attained and then held at stretched position for 1 min. This 5-min duration stretch 

protocol was chosen because previous studies showed that a similar 5-min intermittent 

stretch can reduce maximal voluntary torque and neural drive to the muscle and (Study 

2; Chapter 3). 

 

4.2.7 Statistical analysis 
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Separate one-way repeated measures ANOVAs were performed to compare changes in 

all variables (Tvib, Tsust, EMGSOL, EMGLG, EMGMG) at different joint angles 

(Experiment 1; neutral, plantar flexion, and dorsiflexion) and over time (Experiment 2; 

before and immediately, 5, 10, and 15 min after stretch). Pairwise comparisons were 

performed as follow-up tests. Statistical significance was set at an α level of 0.05. Intra-

class correlations (ICC) were computed to evaluate reliability of Tvib and Tsust torque 

measurement between control 1 and control 2 time points.  

 

4.3 Results 

4.3.1 Experiment 1  

4.3.1.1 Torque 

There was significant effect (p<0.05) of joint angle on both Tvib and Tsust.  Post-hoc 

analyses revealed that Tvib and Tsust were higher (71 and 69%, respectively) when ankle 

joint was in dorsiflexion compared to plantar flexion and the neutral position (67 and 

60%) (Figure 4.3). 
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Figure 4.3. Panel A: Greater torque was developed after the 5th (last) stimulation during 
vibration (Tvib) when the ankle joint was held in dorsiflexion. Panel B: The same response 
was observed for self-sustained torque (Tsust). * p<0.05 . 

  

4.3.1.2 Muscle activity  

There was a significant effect (p<0.05) of joint angle on EMGSol amplitude when 

measured during Tvib and Tsust (Figure 4.4). Post-hoc analyses showed that EMGSol 

amplitude was 32% greater when measured during Tvib and 28% greater when measured 

during Tsust when the ankle was held in dorsiflexion compared to plantar flexion 

(p<0.05). Similarly, EMGLG was 27% greater when measured during Tvib when the 

muscle was held in dorsiflexion compared to plantar flexion. 
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Figure 4.4. Panel A: Soleus (Sol), medial gastrocnemius (MG) and lateral gastrocnemius 
(LG) EMG amplitudes (root mean squared) measured after the 5th (last) stimulation 
during vibration (EMGvib) with the ankle held in three different positions. Panel B: The 
same response was observed for self-sustained torque (EMGsust.) * p<0.05 

 

4.3.2 Experiment 2  

4.3.2.1 Reflexive torque 

ICC values describing the reliability of Tvib and Tsust between control 1 and control 2 

(i.e. before muscle stretch) were 0.95 and 0.96, respectively, suggesting that the 

measures were reliable. There was a significant time effect (p<0.05) for both torque 

measures, with post-hoc analyses indicating that Tvib was reduced by 60% immediately 

after stretch and remained depressed by 32% at 5 min after stretch (p<0.05; see figure 

4.5). Torque remained elevated after vibration cessation, however Tsust magnitude was 

also reduced by 65% immediately after stretch (P<0.05) and recovered at 5 min.   
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Figure 4.5. Panel A: The time course of torque changes measured after the 5th (last) 
stimulation during vibration (Tvib) immediately before and immediately and 5, 10, and 15 
min after muscle stretching. Panel B: The same response was observed for self-sustained 
torque (Tsust). * p<0.05 when compared to immediately before stretch. 

  

4.3.2.2 Muscle contractile capacity (Tstim,rest) 

There was no significant time effect for Tstim,rest, suggesting that the muscle’s contractile 

torque was not affected by the stretch protocol. 

 

4.3.2.3 Muscle activity  

A significant time effect was found for EMGMG amplitude when measured during Tvib 

and for EMGSol when measured during Tsust. Post-hoc analyses revealed that EMGMG 

amplitude during Tvib was reduced by 41% immediately after stretch (p<0.05) and 

EMGSol amplitude measured during Tsust was reduced by 44% immediately after stretch 

(p<0.05). However, they were both recovered by 5 min after stretch and were increased 

by 16% and 10%, respectively, by 15 min (p<0.05) (Figure 4.6). 
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Figure 4.6. Panel A: Soleus (Sol), medial gastrocnemius (MG) and lateral gastrocnemius 
(LG) EMG amplitude measured after the 5th (last) stimulation during vibration (EMGvib) 
immediately before and immediately, 5, 10, and 15 min after muscle stretching. Panel B: 
The same response was observed for self-sustained torque (EMGsust). * p<0.05 when 
compared to immediately before stretch. 

 

4.4 Discussion 

Little is known about the effect of acute passive muscle stretching on motor neurone 

facilitatory pathways. The novel findings of this study were that: 1) the vib+stim 

protocol showed muscle length-dependence of torque and muscle activity and self-

sustained firing was present after stimulation cessation, consistent with PIC-like 

behaviour; 2) passive muscle stretching decreased both the torque and muscle activity 

elicited by the vib+stim protocol; 3) the post-stretch inhibition lasted up to 5 min and 

was fully recovered by 10 min. These findings support the hypothesis that passive 

stretching may inhibit reflex-induced PIC development in the human plantar flexors. 

 

One important aim of the present study was to test whether the stimulation protocol 

could elicit contractions consistent with PIC development.  To test this hypothesis a 
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combined vibration-electrical stimulation (vib+stim) protocol was applied with the 

ankle joint in three different positions (plantar flexion, neutral and dorsiflexion). 

Experiments in decerebrate cats consistently reveal a muscle length-dependent 

modulation of PICs when a steady synaptic input is imposed by tendon vibration 

(Frigon et al., 2011; Hyngstrom et al., 2007).  This length-dependent modulation seems 

to be caused by an increase in disynaptic Ia reciprocal inhibition that occurs when the 

antagonist muscle (i.e. tibialis anterior) is held in a long muscle position exciting muscle 

spindle primary (Ia) afferents and increasing agonist inhibition (Hyngstrom et al., 

2007). In the present study the ankle joint angle-modulated reflexive torque and muscle 

activity were consistent with the expectation according to the results of studies in 

animal models (i.e. greater amplification when the muscle is held at a longer length). 

The increase in reflex-induced torque and muscle activity when the ankle was 

dorsiflexed, together with the apparent self-sustained firing after vibration cessation can 

be taken as indirect, yet strong, evidence of the development of PICs using the present 

protocol. Previous studies have used tendon vibration to estimate the contribution of 

PICs in human motor neurones, especially in patients with motor impairment 

(McPherson et al., 2008; Suresh et al., 2011), and self-sustained firing behaviour has 

been already reported in the literature after low-intensity contractions elicited by tendon 

vibration (Gorassini et al., 1998; Kamen et al., 2006; Kiehn & Eken, 1997). However, 

this appear to be the first study to demonstrate length-dependent modulation of reflexive 

contractions evoked by tendon vibration in humans, increasing the body of evidence 

supporting the possibility that contractions elicited by tendon vibration are mediated by 

PICs. Also, the significantly greater EMGSol amplitudes observed during Tvib and Tsust 

with the ankle in dorsiflexion suggest that sustained motor unit firing was present 

during and after vibration cessation. PIC amplification more typically produces self-
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sustained firing in slow twitch type motor neurones (Lee & Heckman, 1998), and the 

finding that soleus EMG, but not EMGLG and EMGMG, amplitude were greater in the 

dorsiflexed position during Tsust, is consistent with this given that soleus is known to 

consist predominantly of slow-twitch fibres (Gollnick, Sjödin, Karlsson, Jansson, & 

Saltin, 1974). Thus, the utilisation of this protocol as an indirect and relative measure of 

PIC development in human studies seems to be justified. 

 

The present study was the first to present evidence for the inhibitory effect of passive 

muscle stretching on spinal motor neurone facilitatory systems. In fact, the possibility 

that passive stretching could decrease Ia afferent efficiency has been demonstrated 

before by measuring H-reflexes concomitant with a decrease in force after prolonged (1 

hour) repetitive fast muscle stretches (Avela et al., 1999). However, the H-reflex is a 

specific measurement (especially when measured in relaxed muscle) that cannot provide 

information regarding motor neurone facilitation and, more importantly, its resulting 

force modulation (Aagaard et al., 2002b; Knikou, 2008; Pierrot-Deseilligny, 1997; 

Pierrot-Deseilligny & Burke, 2005). The present data expand previous findings (Avela 

et al., 1999) by showing that moderate-duration (5 min) static muscle stretching impairs 

the ability to develop PICs in the plantar flexors.  It is well known that motor neurones 

rely on a PIC-mediated facilitatory system that increases the gain of synaptic input in 

order to achieve maximal discharge frequency and thus to produce maximal levels of 

muscular force (Heckman et al., 2004; Hultborn et al., 2003). PICs have marked 

characteristics such as self-sustained firing and greater amplification when the agonist 

muscle is held at longer lengths, and both characteristics were demonstrated in the 

protocol used in the present study to elicit reflexive torque. Reductions in reflexive 

torque (Tvib) production during vibration and especially reductions in the ability to 
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sustain the torque without synaptic input (self sustained torque; Tsust) can be interpreted 

as an impairment in PIC development (see Figure 4.7). Importantly, Tsust and Tvib were 

statistically recovered by 5 and 10 min post-stretch, respectively, suggesting that the 

inhibitory effects of passive stretch did not last for longer than 10 min. This temporal 

profile is consistent with previous data showing that the reduced neural drive associated 

with force loss in response to muscle stretch should be recovered by at least 15 min 

post-stretch using a similar muscle stretching protocol (Studies 1 and 2). Unfortunately, 

force production was not measured at 5 and 10 min post-stretch in previous studies so a 

precise temporal comparison cannot be done. Additionally, the clear lack of changes in 

Trest shows that muscle’s ability to produce force through direct electrical stimulation 

was not affected, suggesting that any changes in reflexive torque production must have 

been caused by central rather than peripheral (i.e. muscle based) mechanisms. 

Moreover, post-stretch reductions in EMGMG amplitude during Tvib, as well as EMGSol 

amplitude during Tsust provide strong evidence for PIC-related reductions in motor unit 

activity after stretch. It is also interesting to note that an increase in EMGSol amplitude 

during Tvib and Tsust was found 15 min after stretch, suggesting the possibility of a 

facilitatory effect after the initial inhibitory effect. However, increases in muscle torque 

production subsequent to the post-stretch torque loss have not been previously reported 

so the functional significance of this finding is unclear. 



	  
	  

75	  

 

Figure 4.7. Example of torque data obtained during vib+stim protocol at 5 min (control 1) 
and 1 min (control 2; pre-stretch) before the stretching as well as immediately and 5 min 
after stretching. 

 

With respect to the present study, some limitations should be highlighted. From the 

present data it was not possible to determine whether pre- and/or post-synaptic 

mechanisms inhibited PIC development after stretch. Pre-synaptic mechanisms could 

result in a reduced efficiency of the Ia pathway (Avela et al., 1999), including muscle-

spindle desensitisation (Edin & Vallbo, 1988), increases in Ia afferent thresholds 

(Hayward, Nielsen, Heckman, & Hutton, 1986), prolonged pre-synaptic inhibition 

(Hultborn, Meunier, Morin, & Pierrot-Deseilligny, 1987; Hultborn, Meunier, Pierrot-

Deseilligny, & Shindo, 1987; Meunier & Morin, 1989) and even neurotransmitter 

depletion at Ia synapses (Curtis & Eccles, 1960). Alternatively, post-synaptic 

mechanisms might involve a prolonged activation of inhibitory inter-neurones (Fetz et 
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al., 1979; Schieppati et al., 1990).  Regarding inter-neuronal inhibition, another possible 

mechanism could be the activation of other proprioceptive structures during muscle 

stretching. For instance, it has been clearly shown in a series of experiments that 

stretch-sensitive free nerve endings are responsible for the homonymous-inhibitory 

clasp-knife reflex in response to large amplitude stretch of the extensor muscles in 

decerebrate cats, with the inhibitory effects persisting after stretch cessation (Cleland, 

Hayward, & Rymer, 1990; Cleland & Rymer, 1990, 1993; Cleland, Rymer, & Edwards, 

1982). Thus, it is reasonable to speculate that prolonged stretch might also activate free 

nerve endings in healthy humans, inducing a similar inhibitory mechanism within the 

spinal circuitry. Also, the contribution of supra-spinal mechanisms cannot be ruled out. 

Human experiments have consistently demonstrated the possible involvement of 

cortical structures in response to stimulation of stretch-sensitive afferents (Cohen et al., 

1985; Coxon et al., 2005; Marconi et al., 2008; Starr et al., 1981). Therefore, to better 

understand the precise mechanisms underpinning this prolonged inhibition further 

studies should examine the adaptation of spinal circuitry in animal models after passive 

stretching as well as determine the possible contribution of supra-spinal mechanisms to 

this phenomenon.  

 

In summary, the present data indicate that motoneuronal facilitation, mediated by PICs, 

is affected for up to 5 min after prolonged (5 min) passive stretching. This conclusion 

was based on the significant reduction in the torque elicited by tendon vibration as well 

as self-sustained torque with a concomitant reduction in soleus and medial 

gastrocnemius EMG amplitudes immediately after muscle stretch. The stretch protocol 

used in this study did not affect the muscle’s ability to produce contractile torque, so 

torque changes were not likely of peripheral origin.  Future studies may focus on 
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strategies to up-regulate PIC activity (e.g. increasing monoaminergic drive) in order to 

mitigate the acute force-reducing effects of passive muscle stretching. 
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CHAPTER 5 

 Overall Discussion and Conclusion 
 

The main aim of the present PhD thesis was to complete a detailed examination of the 

neuromuscular factors potentially influencing the immediate force loss that follows 

passive muscle stretching. The thesis was divided into three studies; the first two studies 

were designed to broadly determine the location of neuromuscular changes that occur 

after acute passive muscle stretching (e.g. central nervous system vs. muscular) and, 

based on the results of these two studies, a third study was completed to identify 

specific changes in neuromuscular function. 

 

5.1 The contribution of central vs. peripheral mechanisms to stretch-induced force 

loss 

The first study of the present thesis (Chapter 2) examined the contribution of central vs. 

peripheral factors to the stretch-induced torque loss in the human plantar flexors. The 

main finding was that changes in central (neural) drive after 5 min of continuous stretch 

were strongly related to both the torque reduction after stretch (Figure 2.3) and the 

torque recovery within 15 min of stretching. These findings indicate that central drive 

modifications influenced both the loss and the recovery of muscle force. Because three 

measures of central drive (EMG:M, %VA and V-wave) were obtained simultaneously, 

this study provides the clearest evidence of a reduced central drive influencing force 

production after stretch. This reduction may theoretically result from changes at cortical 

or sub-cortical (e.g. spinal) levels, however the present data provide no clear evidence 
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as to the precise location of modification in central drive. In addition to central drive 

changes, there was also a small reduction in electrical-elicited tetanic torque, indicating 

that the stretch had a small but detectable influence on muscle contractile capacity. 

However, the changes in tetanic torque were not correlated with the loss or recovery in 

voluntary torque, indicating that this minor peripheral change contributed little to the 

torque loss under the present experimental conditions. Given that these results cannot 

indicate the site/s of origin of the central drive limitation, further examination is 

required to examine whether adjustments in supra-spinal and/or spinal drive occur after 

passive muscle stretching. 

 

5.2 The effect of intermittent passive muscle stretching on the force loss pattern 

and neuromuscular adjustments 

One factor potentially influencing the magnitude, and possible location, of acute 

neuromuscular change in response to acute stretch is the use of continuous vs. 

intermittent (i.e. repeated) stretch. Theoretically, intermittent stretch might cause cycles 

of ischaemia and blood reperfusion and this would potentially increase the likelihood of 

contractile failure and increase the influence of peripheral changes on muscle force loss. 

Therefore, Chapter 3 was designed to determine whether intermittent stretch could 

cause a greater torque loss when compared to continuous stretch, and whether it had a 

different effect on peripheral mechanisms. The main findings of Chapter 3 were that: 1) 

continuous stretch improved range of motion more than intermittent stretch; 2) 

continuous stretch lowered muscle oxygenation levels more than intermittent stretch; 3) 

the torque loss that occurred after both conditions was associated with reductions in 

central drive; 4) intermittent stretch had a greater effect on torque loss magnitude and 
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duration than continuous stretch; and 5) the prolonged (30 min) force loss of ~5% found 

after intermittent stretching could not be explained by changes in central drive or E-C 

coupling efficiency and could thus be explicable by peripheral factors other than those 

measured in Chapter 3. This was the first study to directly compare between intensity-

matched (i.e. equalised passive torque during stretch) intermittent and continuous 

stretches and further studies are therefore necessary to expand these findings. The 

hypothesis that intermittent stretch would cause a greater and prolonged force loss was 

confirmed, however this did not appear to be caused by impairments in E-C coupling 

efficiency as no changes in the 20:80 Hz electrical stimulation ratio was observed. The 

intermittent protocol reduced central drive (EMG:M and %VA) more after stretch than 

the continuous protocol; although these measures recovered by 15 min post-stretch and 

could not explain the prolonged (30 min) small (~5%) torque loss. Thus, intermittent 

stretching reduced torque production more than continuous stretching, yet central drive 

failure again appeared to explain much of the torque loss. Nonetheless, the mechanisms 

underpinning the prolonged torque loss caused by intermittent stretch are still not clear 

and the involvement of peripheral mechanisms other than those examined in this study 

requires further investigation.  

 

5.3 The inhibitory effect of passive stretch on motor neurone facilitatory system 

It is clear from Chapters 2 and 3 that central drive failure is a primary candidate 

mechanism underpinning the loss of muscle force shortly after acute passive muscle 

stretching. This central drive reduction may involve spinal and/or supra-spinal 

mechanisms. More specifically, at the spinal level it is reasonable to speculate that 

passive muscle stretching could affect the motor neurone afferent-mediated facilitatory 
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system. Chapter 4 of the present thesis was therefore implemented to examine the 

possible inhibitory effect of passive plantar flexor muscle stretching on the motor 

neurone facilitatory system. First, it was necessary to confirm whether a vibration-

stimulation (vib+stim) protocol would elicit reflexive muscular contraction consistent 

with PIC-like characteristics. This was confirmed in the first set of experiments 

performed in the study. The vib+stim protocol elicited greater vibration-induced and 

self-sustained torque as well as greater muscle activity (EMGsol) when the ankle joint 

was held in a plantar flexed position. These results were in line with previous findings 

in animal models reporting greater PIC development at longer muscle lengths as well as 

self sustained motor unit firing (Frigon et al., 2011; Hyngstrom et al., 2007), and they 

confirmed the validity of the technique for estimating PIC development. In the 

subsequent experiment it was found that the PIC-like characteristics elicited by the 

vib+stim protocol were depressed for 5 min after passive muscle stretch, but recovered 

completely within 10 min. These results suggest that passive muscle stretching 

negatively affects the ability of the plantar flexor motor units to develop PICs. This 

reduced PIC behaviour would likely reduce maximal muscle activity and could, at least 

partly, explain the depression in central drive observed in Chapters 2 and 3. Thus, a 

reduction in the ability to develop PICs after muscle stretch may be an important factor 

influencing the loss of muscle torque. Interventions that can minimise the loss of this 

facilitation, potentially including stimulant ingestion (e.g. caffeine) (Udina, D'Amico, 

Bergquist, & Gorassini, 2010; Walton, Kalmar, & Cafarelli, 2002), may help to 

minimise the loss of torque. Importantly, the methods used in Study 3 cannot delineate 

the specific mechanism affecting PIC development and futures studies are required to 

investigate the involvement of pre- and post-synaptic mechanisms contributing to this 

inhibitory effect. 
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5.4 Conclusion 

In summary, the results of the present research indicate that a reduction in central 

(neural) drive to the muscle is the major factor affecting the stretch-induced force loss. 

This reduction in central drive was even more pronounced when an intermittent stretch 

protocol was utilised, however intermittent stretch also caused a small (~5%) but 

prolonged force loss that could not be explained by central factors and may be of 

peripheral origin. The immediate reduction in central drive and subsequent torque loss 

are likely to be influenced by an inhibition of the motor neurone facilitatory system 

(Chapter 4). It was demonstrated that the temporal profile of this inhibitory effect 

matches the time course of central drive reduction observed in Studies 1 and 2.  

 

Neural control of skeletal muscle is clearly affected by passive stretching. The present 

study has provided novel information regarding the effect of passive muscle stretching 

on maximal muscle force production. Future studies are required to develop strategies to 

mitigate the effects of passive stretching on central drive reduction and the subsequent 

torque loss. The inhibitory effect of passive stretching on motor neurone facilitation 

described in this thesis has given a better understanding of the neural adjustments 

elicited by passive stretch and should be considered when designing training and 

rehabilitation routines.   
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Appendix 2: Information Letter to Participants (Study 1) 

 

!
1!

!

Information*Letter*to*Participants!

!

Thank! you! for! expressing! your! interest! in! this! research.! ! The! purpose! of! this!
document!is!to!explain!the!study!that!you!may!choose!to!participate!in!as!a!subject.!
Please!read!this!document!carefully,!and!do!not!hesitate!to!ask!any!questions.!

Project!Title!

Neuromuscular!Factors!Affecting!StretchAinduced!Force!Loss!

!

Researchers!

This! research! project! is! being! undertaken! as! part! of! the! requirements! of! a! PhD!
candidature!(Sport!and!Exercise!Sciences)!at!Edith!Cowan!University!(ECU).!

! PhD!Candidate:!Gabriel!Trajano!(g.trajano@ecu.edu.au)!6304!5819!
! Supervisor:!A/Prof.!Anthony!Blazevich!(a.blazevich@ecu.edu.au)!6304!5472!
! CoAsupervisor:!Prof.!Ken!Nosaka!(k.nosaka@ecu.edu.au)!6304!5655!
!
Further!details! of! supervisors! and! the!School!of!Exercise,!Biomedical! and!Health!
Sciences!are!available!at:!http://www.sebhs.ecu.edu.au!

!

Purpose!of!the!study!

! The!purpose!of!this!study!is!to examine force production, low frequency 
fatigue, voluntary activation and the propensity to utilise muscle’s catch-like properties 
after a continuous stretching protocols.!

!

Research!Outline!

! In!order!to!participate!in!this!study,!you!will!be!asked!to!complete!a!medical!
questionnaire!and!to!refrain!from!performing!sports!or!hard!exercise!training!for!
one!day!prior!to!the!experimental!day.!You!are!also!required!to!abstain!from!taking!
any!stimulants!or!depressants!(including!caffeine!or!alcohol)!for!at!least!12!hours!
prior!testing.!

! If!you!participate! in!this!study,!you!will!be!asked!to!report!to!the!Exercise!
Physiology! Lab! (Building! 19,! Room! 19.150)! on! 3! days! separated! by! one! week!
(scheduling! is! flexible)! at! the! same! time! of! the! day.! ! Each! day,! before! the!
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!
2!

!

measurements!start,!you!will!be!asked!to!do!a!5Aminute!warmAup!on!a!stationary!
bicycle.!!On!the!first!day!you!will!be!acquainted!with!all!testing!procedures!such!as:!
muscle! stretching,! maximal! voluntary! contractions! and! electrical! muscle!
stimulation!techniques;!muscle!stretching!will!be!performed!at!an!intensity!where!
you! feel! mild! discomfort.! Electrical! stimulation! procedures! require! a! small!
electrical!current!to!be!applied!to!the!calf!muscle!belly!using!selfAadhesive!surface!
electrodes.! ! The! stimulation! will! be! started! at! very! low! intensities! and!
progressively! increased! until! your! muscle! is! maximally! activated! or! you! feel!
discomfort;! at! maximal! intensities! the! electrical! stimulation! might! be!
uncomfortable.!!

On! the! second! and! third! visits! you!will! complete! the! experimental! conditions! (5!
minutes!stretching!or!5!minutes!resting)! in!a!random!order.!Force!output!during!
voluntary! muscle! contractions,! with! and! without! electrical! stimulation! being!
applied,!will! be!measured! using! different! protocols! before! and! 1,! 10,! 20! and! 30!
minutes! after! each! experimental! condition.! Small! selfAadhesive! skinAmounted!
electrodes!will!be!used!to!record!the!small!electrical!signals!emanating!from!your!
calf!muscles! during! contractions! (these! sit! passively! on! the! skin! and! there! is! no!
discomfort)!and!nearAinfrared!spectroscopy!probes!will!be!attached!to!your!skin!to!
record! muscle! tissue! oxygenation.! The! skin! under! the! electrodes! will! be! gently!
abraded!and!cleaned!with!alcohol!(the!alcohol!minimises!the!risk!of!skin!infection).!
First!day!measurements!will!take!about!1!hour!and!second!and!third!days!will!take!
about!1.5!hours.!

!

Eligibility!

You!will!be!eligible!for!this!study!if:!

$ you!are!between!18!and!35!years!old!
$ you!have!no!neuromuscular!injuries!!
$ you! have! not! performed! flexibility! training! for! the! ankle! joint! in! the! last!

three!months!!
$ you!have!not!been!engaged!in!strength!or!endurance!training!more!than!3!

times!a!week!

!!

Risks!

$ The! stretching! exercise! will! be! performed! to! your! maximum! stretch!
tolerance,!which!can!cause!some!discomfort.!

$ Electrical! stimulation!procedures! can! also!be!uncomfortable,! but! SHOULD!
NOT!be!painful;!the!researcher!will!ask!for!continuous!feedback!from!you.!
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!

$ The! light!skin!abrasion!performed! immediately!prior! to! the!attachment!of!
skinAbased! electromyogram! electrodes! can! increase! the! chance! of! skin!
infections.!To!further!reduce!this!small!risk,!alcohol!wipes!will!be!applied!to!
the!skin!after!abrasion!as!well!as!after!removal!of!the!electrodes.!

$ As!with!all!tests!of!maximal!muscle!force!production,!there!is!the!chance!for!
muscle! or! tendon! strain.! This! risk! is! low! given! that! proper!warmAup! and!
familiarisation! will! be! performed,! the! tests! will! be! conducted! by! a!
researcher! who! is! experienced! in! the! procedures,! and! isometric! muscle!
actions!carry!a!relatively!low!risk!of!injury.!

Benefits!!

$ You! will! have! a! unique! opportunity! to! learn! about! the! neuromuscular!
system!and!see!highAlevel!data!acquisition!techniques.!

$ You!will!learn!about!research!strategies!and!research!design,!and!have!the!
opportunity!to!ask!questions!about!research!or!any!aspect!of!sports!science.!

$ You!will!get!free!ankle!extension!strength!assessment.!

!

Confidentiality!of!Information!

! Your!anonymity!is!ensured!as!much!as!it!is!possible!during!the!investigation!
by! assigning! number! codes! to! your! data! by! the! investigator.! All! information!
provided! by! you! will! be! treated! with! full! confidentiality.! Your! contact!
information!will!only!be!accessible!by!the!chief!researcher!during!the!period!of!
the!study!and!only!the!researcher!and!supervisors!will!have!access!to!the!raw!
information!for!this!study.!The!information!and!data!gathered!from!you!during!
the!study!will!be!used!to!answer!the!research!question!of!this!study.!Data!will!
be! stored! in! a! passwordAprotected! computer! and! is! only! available! to! the!
researchers.! Hard! copy! data! will! only! be! kept! in! the! researcher’s! office! and!
locked!in!a!specific!drawer/filling!cabinet.!All!data!will!be!stored!according!to!
ECU!policy!and!regulations!following!the!completion!of!the!study.!

!

Results!of!the!Research!Study!

! The!results!of!this!study!are!intended!for!completion!of!a!PhD!by!research!
thesis!and!may!be!presented!at! conferences/seminars!and!published! in!peerA
reviewed! journals,!as!magazine!articles,!as!an!online!article!or!part!of!a!book!
section! or! report.! Published! results! will! not! contain! information! that! can! be!
used!to!identify!participants!unless!specific!consent!for!this!has!been!obtained.!
A!copy!of!published!results!can!be!obtained!from!the!investigator!upon!request.!

!
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!

Voluntary!Participation!

! Your!participation! in! this! study! is! voluntary.!No!monetary! reward!will! be!
provided.! No! explanation! or! justification! is! needed! if! you! choose! to! not!
participate.! Your! decision! if! you! not! want! to! participate! or! continue! to!
participate!will!not!disadvantage!you!or!involve!any!penalty.!

Withdrawing!Consent!to!Participate!

! You! are! free! to! withdraw! your! consent! to! further! involvement! in! this!
project! at! any! time.! You! also! have! the! right! to! withdraw! any! personal!
information!that!has!been!collected!during!the!research.!!

!

Questions!and/or!Further!Information!

If! you! have! any! questions! or! require! any! further! information! about! the!
research!project,!please!do!not!hesitate!to!contact:!

Gabriel!Trajano!(PhD!Student!–!Researcher)!
Office!19.384!
School!of!Exercise,!Biomedical!and!Health!Sciences,!Edith!Cowan!University!
270!Joondalup!Drive,!Joondalup,!WA!6027,!Australia!
Ph:!(+61!8)!6304!5819!
EAmail:!g.trajano@ecu.edu.au!
!

If!you!have!any!concerns!or!complaints!about!the!research!project!and!wish!
to!talk!to!an!independent!person,!you!may!contact:!!
!
Research!Ethics!Officer!!
Edith!Cowan!University!!
270!Joondalup!Drive!!
JOONDALUP!WA!6027!!
Phone:!(08)!6304!2170!!
Email:!!!research.ethics@ecu.edu.au!
!
This!project!has!been!approved!by!the!ECU!Human!Research!Ethics!Committee.!
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Appendix 3: Information Letter to Participants (Study 2) 

	  

!
1!

!

Information*Letter*to*Participants*

!

Thank! you! for! expressing! your! interest! in! this! research.! ! The! purpose! of! this!
document!is!to!explain!the!study!that!you!may!choose!to!participate!in!as!a!subject.!
Please!read!this!document!carefully,!and!do!not!hesitate!to!ask!any!questions.!

Project*Title*

Neuromuscular!Factors!Affecting!StretchAinduced!Force!Loss!

!

Researchers*

This! research! project! is! being! undertaken! as! part! of! the! requirements! of! a! PhD!
candidature!(Sport!and!Exercise!Sciences)!at!Edith!Cowan!University!(ECU).!

! PhD!Candidate:!Gabriel!Trajano!(g.trajano@ecu.edu.au)!6304!5819!
! Supervisor:!A/Prof.!Anthony!Blazevich!(a.blazevich@ecu.edu.au)!6304!5472!
! CoAsupervisor:!Prof.!Ken!Nosaka!(k.nosaka@ecu.edu.au)!6304!5655!
!
Further!details! of! supervisors! and! the!School!of!Exercise,!Biomedical! and!Health!
Sciences!are!available!at:!http://www.sebhs.ecu.edu.au!

!

Purpose*of*the*study*

! The!purpose!of!this!study!is!to examine force production, low frequency 
fatigue, voluntary activation and the propensity to utilise muscle’s catch-like properties 
after continuous and intermittent stretching protocols.!

!

Research*Outline*

! In!order!to!participate!in!this!study,!you!will!be!asked!to!complete!a!medical!
questionnaire!and!to!refrain!from!performing!sports!or!hard!exercise!training!for!
one!day!prior!to!the!experimental!day.!You!are!also!required!to!abstain!from!taking!
any!stimulants!or!depressants!(including!caffeine!or!alcohol)!for!at!least!12!hours!
prior!testing.!

! If!you!participate! in!this!study,!you!will!be!asked!to!report!to!the!Exercise!
Physiology! Lab! (Building! 19,! Room! 19.150)! on! 4! days! separated! by! one! week!
(scheduling! is! flexible)! at! the! same! time! of! the! day.! ! Each! day,! before! the!
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measurements!start,!you!will!be!asked!to!do!a!5Aminute!warmAup!on!a!stationary!
bicycle.!!On!the!first!day!you!will!be!acquainted!with!all!testing!procedures!such!as:!
muscle! stretching,! maximal! voluntary! contractions! and! electrical! muscle!
stimulation!techniques;!muscle!stretching!will!be!performed!at!an!intensity!where!
you! feel! mild! discomfort.! Electrical! stimulation! procedures! require! a! small!
electrical!current!to!be!applied!to!the!calf!muscle!belly!using!selfAadhesive!surface!
electrodes.! ! The! stimulation! will! be! started! at! very! low! intensities! and!
progressively! increased! until! your! muscle! is! maximally! activated! or! you! feel!
discomfort;! at! maximal! intensities! the! electrical! stimulation! might! be!
uncomfortable.!!

On! the! second,! third! and! fourth! visits! you! will! complete! the! experimental!
conditions! (5! sets! of! 1Aminute! stretching,! 1! set! of! 5! minutes! stretching! or! 5!
minutes! resting)! in! a! random! order.! Force! output! during! voluntary! muscle!
contractions,! with! and! without! electrical! stimulation! being! applied,! will! be!
measured!using!different!protocols!before!and!1,!10,!20!and!30!minutes!after!each!
experimental!condition.!Small!selfAadhesive!skinAmounted!electrodes!will!be!used!
to! record! the! small! electrical! signals! emanating! from! your! calf! muscles! during!
contractions!(these!sit!passively!on!the!skin!and!there!is!no!discomfort)!and!nearA
infrared!spectroscopy!probes!will!be!attached!to!your!skin!to!record!muscle!tissue!
oxygenation.! The! skin! under! the! electrodes! will! be! gently! abraded! and! cleaned!
with! alcohol! (the! alcohol! minimises! the! risk! of! skin! infection).! First! day!
measurements!will!take!about!1!hour!and!second,!third!and!fourth!days!will!take!
about!1.5!hours.!

!

Eligibility*

You!will!be!eligible!for!this!study!if:!

$ you!are!between!18!and!35!years!old!
$ you!have!no!neuromuscular!injuries!!
$ you! have! not! performed! flexibility! training! for! the! ankle! joint! in! the! last!

three!months!!
$ you!have!not!been!engaged!in!strength!or!endurance!training!more!than!3!

times!a!week!

!!

Risks*

$ The! stretching! exercise! will! be! performed! to! your! maximum! stretch!
tolerance,!which!can!cause!some!discomfort.!
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$ Electrical! stimulation!procedures! can! also!be!uncomfortable,! but! SHOULD!
NOT!be!painful;!the!researcher!will!ask!for!continuous!feedback!from!you.!

$ The! light!skin!abrasion!performed! immediately!prior! to! the!attachment!of!
skinAbased! electromyogram! electrodes! can! increase! the! chance! of! skin!
infections.!To!further!reduce!this!small!risk,!alcohol!wipes!will!be!applied!to!
the!skin!after!abrasion!as!well!as!after!removal!of!the!electrodes.!

$ As!with!all!tests!of!maximal!muscle!force!production,!there!is!the!chance!for!
muscle! or! tendon! strain.! This! risk! is! low! given! that! proper!warmAup! and!
familiarisation! will! be! performed,! the! tests! will! be! conducted! by! a!
researcher! who! is! experienced! in! the! procedures,! and! isometric! muscle!
actions!carry!a!relatively!low!risk!of!injury.!

Benefits**

$ You! will! have! a! unique! opportunity! to! learn! about! the! neuromuscular!
system!and!see!highAlevel!data!acquisition!techniques.!

$ You!will!learn!about!research!strategies!and!research!design,!and!have!the!
opportunity!to!ask!questions!about!research!or!any!aspect!of!sports!science.!

$ You!will!get!free!ankle!extension!strength!assessment.!

!

Confidentiality*of*Information*

! Your!anonymity!is!ensured!as!much!as!it!is!possible!during!the!investigation!
by! assigning! number! codes! to! your! data! by! the! investigator.! All! information!
provided! by! you! will! be! treated! with! full! confidentiality.! Your! contact!
information!will!only!be!accessible!by!the!chief!researcher!during!the!period!of!
the!study!and!only!the!researcher!and!supervisors!will!have!access!to!the!raw!
information!for!this!study.!The!information!and!data!gathered!from!you!during!
the!study!will!be!used!to!answer!the!research!question!of!this!study.!Data!will!
be! stored! in! a! passwordAprotected! computer! and! is! only! available! to! the!
researchers.! Hard! copy! data! will! only! be! kept! in! the! researcher’s! office! and!
locked!in!a!specific!drawer/filling!cabinet.!All!data!will!be!stored!according!to!
ECU!policy!and!regulations!following!the!completion!of!the!study.!

!

Results*of*the*Research*Study*

! The!results!of!this!study!are!intended!for!completion!of!a!PhD!by!research!
thesis!and!may!be!presented!at! conferences/seminars!and!published! in!peerA
reviewed! journals,!as!magazine!articles,!as!an!online!article!or!part!of!a!book!
section! or! report.! Published! results! will! not! contain! information! that! can! be!
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used!to!identify!participants!unless!specific!consent!for!this!has!been!obtained.!
A!copy!of!published!results!can!be!obtained!from!the!investigator!upon!request.!

!

Voluntary*Participation*

! Your!participation! in! this! study! is! voluntary.!No!monetary! reward!will! be!
provided.! No! explanation! or! justification! is! needed! if! you! choose! to! not!
participate.! Your! decision! if! you! not! want! to! participate! or! continue! to!
participate!will!not!disadvantage!you!or!involve!any!penalty.!

Withdrawing*Consent*to*Participate*

! You! are! free! to! withdraw! your! consent! to! further! involvement! in! this!
project! at! any! time.! You! also! have! the! right! to! withdraw! any! personal!
information!that!has!been!collected!during!the!research.!!

*

Questions*and/or*Further*Information*

If! you! have! any! questions! or! require! any! further! information! about! the!
research!project,!please!do!not!hesitate!to!contact:!

Gabriel!Trajano!(PhD!Student!–!Researcher)!
Office!19.384!
School!of!Exercise,!Biomedical!and!Health!Sciences,!Edith!Cowan!University!
270!Joondalup!Drive,!Joondalup,!WA!6027,!Australia!
Ph:!(+61!8)!6304!5819!
EAmail:!g.trajano@ecu.edu.au!
!

If!you!have!any!concerns!or!complaints!about!the!research!project!and!wish!
to!talk!to!an!independent!person,!you!may!contact:!!
!
Research!Ethics!Officer!!
Edith!Cowan!University!!
270!Joondalup!Drive!!
JOONDALUP!WA!6027!!
Phone:!(08)!6304!2170!!
Email:!!!research.ethics@ecu.edu.au!
!
This!project!has!been!approved!by!the!ECU!Human!Research!Ethics!Committee.!
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!
1!

!

Information*Letter*to*Participants!

!

Thank! you! for! expressing! your! interest! in! this! research.! ! The! purpose! of! this!
document!is!to!explain!the!study!that!you!may!choose!to!participate!in!as!a!subject.!
Please!read!this!document!carefully,!and!do!not!hesitate!to!ask!any!questions.!

Project!Title!

Neuromuscular!Factors!Affecting!StretchAinduced!Force!Loss!

!

Researchers!

This! research! project! is! being! undertaken! as! part! of! the! requirements! of! a! PhD!
candidature!(Sport!and!Exercise!Sciences)!at!Edith!Cowan!University!(ECU).!

! PhD!Candidate:!Gabriel!Trajano!(g.trajano@ecu.edu.au)!6304!5819!
! Supervisor:!A/Prof.!Anthony!Blazevich!(a.blazevich@ecu.edu.au)!6304!5472!
! CoAsupervisor:!Prof.!Ken!Nosaka!(k.nosaka@ecu.edu.au)!6304!5655!
!
Further!details! of! supervisors! and! the!School!of!Exercise,!Biomedical! and!Health!
Sciences!are!available!at:!http://www.sebhs.ecu.edu.au!

!

Purpose!of!the!study!

! The!purpose!of!this!study!is!to examine the force produced by reflex pathways 
before and after an intermittent stretch protocol.!

!

Research!Outline!

! In!order!to!participate!in!this!study,!you!will!be!asked!to!complete!a!medical!
questionnaire!and!to!refrain!from!performing!sports!or!hard!exercise!training!for!
one!day!prior!to!the!experimental!day.!You!are!also!required!to!abstain!from!taking!
any!stimulants!or!depressants!(including!caffeine!or!alcohol)!for!at!least!12!hours!
prior!testing.!

! If!you!participate! in!this!study,!you!will!be!asked!to!report!to!the!Exercise!
Physiology! Lab! (Building! 19,! Room!19.150)! on! 2! days! separated! at! least! 2! days!
(scheduling! is! flexible)! at! the! same! time! of! the! day.!On! the! first! day! you!will! be!
acquainted! with! all! testing! procedures! such! as:! muscle! stretching,! maximal!
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voluntary! contractions,! tendon! vibration! and! electrical! muscle! stimulation!
techniques;! muscle! stretching! will! be! performed! at! an! intensity! where! you! feel!
mild! discomfort.! Electrical! stimulation! procedures! require! a! small! electrical!
current! to! be! applied! to! the! calf! muscle! belly! using! selfAadhesive! surface!
electrodes.! ! The! stimulation! will! be! started! at! very! low! intensities! and!
progressively!increase.!!

On! the! second! day! you! will! complete! the! experimental! condition! (5! sets! of! 1A
minute!stretching).!Force!output!during!both!an!electrical!stimulation!protocol!and!
tendon! vibration! will! be! measured! before! and! 1,! 5! and! 15! minutes! after! the!
experimental! condition.! SelfAadhesive! skinAmounted! electrodes! will! be! used! to!
record! the! small! electrical! signals! emanating! from! your! calf! muscles! during!
contractions!(these!sit!passively!on!the!skin!and!there!is!no!discomfort).!The!skin!
under!the!electrodes!will!be!gently!abraded!and!cleaned!with!alcohol!(the!alcohol!
minimises!the!risk!of!skin! infection).!An!ultrasound!probe!will!be!attached!in!the!
junction!between!the!muscle!and!tendon!on!your!calf.!First!day!measurements!will!
take!about!1!hour!and!second!will!take!about!1.5!hours.!

!

Eligibility!

You!will!be!eligible!for!this!study!if:!

$ you!are!between!18!and!35!years!old!
$ you!have!no!neuromuscular!injuries!!
$ you! have! not! performed! flexibility! training! for! the! ankle! joint! in! the! last!

three!months!!

!!

Risks!

$ The! stretching! exercise! will! be! performed! to! your! maximum! stretch!
tolerance,!which!can!cause!some!discomfort.!

$ Electrical! stimulation!procedures! can! also!be!uncomfortable,! but! SHOULD!
NOT!be!painful;!the!researcher!will!ask!for!continuous!feedback!from!you.!

$ The! light!skin!abrasion!performed! immediately!prior! to! the!attachment!of!
skinAbased! electromyogram! electrodes! can! increase! the! chance! of! skin!
infections.!To!further!reduce!this!small!risk,!alcohol!wipes!will!be!applied!to!
the!skin!after!abrasion!as!well!as!after!removal!of!the!electrodes.!

$ As!with!all!tests!of!maximal!muscle!force!production,!there!is!the!chance!for!
muscle! or! tendon! strain.! This! risk! is! low! given! that! proper!warmAup! and!
familiarisation! will! be! performed,! the! tests! will! be! conducted! by! a!
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researcher! who! is! experienced! in! the! procedures,! and! isometric! muscle!
actions!carry!a!relatively!low!risk!of!injury.!

Benefits!!

$ You! will! have! a! unique! opportunity! to! learn! about! the! neuromuscular!
system!and!see!highAlevel!data!acquisition!techniques.!

$ You!will!learn!about!research!strategies!and!research!design,!and!have!the!
opportunity!to!ask!questions!about!research!or!any!aspect!of!sports!science.!

$ You!will!get!free!ankle!extension!strength!assessment.!

!

Confidentiality!of!Information!

! Your!anonymity!is!ensured!as!much!as!it!is!possible!during!the!investigation!
by! assigning! number! codes! to! your! data! by! the! investigator.! All! information!
provided! by! you! will! be! treated! with! full! confidentiality.! Your! contact!
information!will!only!be!accessible!by!the!chief!researcher!during!the!period!of!
the!study!and!only!the!researcher!and!supervisors!will!have!access!to!the!raw!
information!for!this!study.!The!information!and!data!gathered!from!you!during!
the!study!will!be!used!to!answer!the!research!question!of!this!study.!Data!will!
be! stored! in! a! passwordAprotected! computer! and! is! only! available! to! the!
researchers.! Hard! copy! data! will! only! be! kept! in! the! researcher’s! office! and!
locked!in!a!specific!drawer/filling!cabinet.!All!data!will!be!stored!according!to!
ECU!policy!and!regulations!following!the!completion!of!the!study.!

!

Results!of!the!Research!Study!

! The!results!of!this!study!are!intended!for!completion!of!a!PhD!by!research!
thesis!and!may!be!presented!at! conferences/seminars!and!published! in!peerA
reviewed! journals,!as!magazine!articles,!as!an!online!article!or!part!of!a!book!
section! or! report.! Published! results! will! not! contain! information! that! can! be!
used!to!identify!participants!unless!specific!consent!for!this!has!been!obtained.!
A!copy!of!published!results!can!be!obtained!from!the!investigator!upon!request.!

!

Voluntary!Participation!

! Your!participation! in! this! study! is! voluntary.!No!monetary! reward!will! be!
provided.! No! explanation! or! justification! is! needed! if! you! choose! to! not!
participate.! Your! decision! if! you! not! want! to! participate! or! continue! to!
participate!will!not!disadvantage!you!or!involve!any!penalty.!
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Withdrawing!Consent!to!Participate!

! You! are! free! to! withdraw! your! consent! to! further! involvement! in! this!
project! at! any! time.! You! also! have! the! right! to! withdraw! any! personal!
information!that!has!been!collected!during!the!research.!!

!

Questions!and/or!Further!Information!

If! you! have! any! questions! or! require! any! further! information! about! the!
research!project,!please!do!not!hesitate!to!contact:!

Gabriel!Trajano!(PhD!Student!–!Researcher)!
Office!21.501!
School!of!Exercise,!Biomedical!and!Health!Sciences,!Edith!Cowan!University!
270!Joondalup!Drive,!Joondalup,!WA!6027,!Australia!
Ph:!(+61!8)!6304!3780!
EAmail:!g.trajano@ecu.edu.au!
!

If!you!have!any!concerns!or!complaints!about!the!research!project!and!wish!
to!talk!to!an!independent!person,!you!may!contact:!!
!
Research!Ethics!Officer!!
Edith!Cowan!University!!
270!Joondalup!Drive!!
JOONDALUP!WA!6027!!
Phone:!(08)!6304!2170!!
Email:!!!research.ethics@ecu.edu.au!
!
This!project!has!been!approved!by!the!ECU!Human!Research!Ethics!Committee.!
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!

!

DECLARATION!

!

!

I" [PRINT" NAME]" ________________________________________________" have" read" the"
information"provided"and"any"questions" I"have"asked"have"been"answered" to"
my" satisfaction." I" agree" to" participate" in" this" activity," realising" that" I" may"
withdraw"at"any"time"without"reason"without"prejudice."

I"understand"that"all"information"provided"is"treated"as"strictly"confidential"and"
will"not"be"released"by"the"investigator"unless"required"to"by"law."I"have"been"
advised"as"to"what"data"is"being"collected,"what"the"purpose"is,"and"what"will"be"
done"with"the"data"upon"completion"of"the"research."I"agree"that"research"data"
gathered" for" the" study" may" be" published" provided" my" name" or" other"
identifying"information"is"not"used."

"

_____________________________________""""""""""""""""""""""""""""___________________"
""""""""""""""""""Signature""""""""""""""""""""""""""""""""""""""""""""""""""""""""Date"

!
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Pre-exercise Medical Questionnaire 
 
The following questionnaire is designed to establish a background of your medical 
history, and identify any injury and/ or illness that may influence your testing and 
performance.  If you are under 18 then a parent or guardian should complete the 
questionnaire on your behalf or check your answers and then sign in the appropriate 
section to verify that they are satisfied the answers to all questions are correct to the best 
of their knowledge. 
 
Please answer all questions as accurately as possible, and if you are unsure about 
anything please ask for clarification.  All information provided is strictly confidential.   
 
 
 
Personal Details 
 
Name:______________________________________________ 
 
Date of Birth (DD/MM/YYYY):__________________ Gender: Female/ Male 
 
 
 
PART A 
 
1.  Are you a male over 45 yr, or female over 55 yr or who has had a hysterectomy or 
are postmenopausal?  
         Yes No 

      If YES, please provide details 
 
2.  Are you a regular smoker or have you Y     N       _______________ 
quit in the last 6 months? 
   
3.  Did a close family member have heart Y     N     Unsure _______________ 
disease or surgery, or stroke before the age  
of 60 years? 
      
4.  Do you have, or have you ever been Y     N     Unsure _______________ 
told you have blood pressure above  
140/90 mmHg, or do you current take  
blood pressure medication?  
 
5.  Do you have, or have you ever been Y     N     Unsure _______________ 
told you have, a total cholesterol level  
above 5.2 mmol/L (200 mg/dL)?  
 
6.  Is your BMI (weight/height2) greater  Y     N     Unsure _______________ 
than 30 kg/m2?   
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PART B 
 
1.  Have you ever had a serious asthma  Y N _____________________ 
attack during exercise? 
 
2.  Do you have asthma that requires  Y N _____________________ 
medication? 
 
3.  Have you had an epileptic seizure in  Y N _____________________ 
the last 5 years? 
 
4.  Do you have any moderate or severe Y N _____________________  
allergies? 
 
5.  Do you, or could you reasonably, have  Y N _____________________ 
an infectious disease? 
 
6.  Do you, or could you reasonably, have  Y N _____________________ 
an infection or disease that might be  
aggravated by exercise? 
 
7.  Are you, or could you reasonably be,  Y N _____________________ 
pregnant? 
      
 
 
PART C 
 
1.  Are you currently taking any prescribed or non-prescribed medications? 
 
      Y N _____________________ 
 
2.  Have you had, or do you currently have, any of the following? 
 
             If YES, please provide details 
 
Rheumatic fever    Y N _____________________ 
 
Heart abnormalities    Y N _____________________ 
 
Diabetes     Y N _____________________ 
 
Epilepsy     Y N _____________________ 
 
Recurring back pain that would make Y N _____________________ 
exercise problematic, or where exercise  
may aggravate the pain    
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PART C cont’d 
 
Recurring neck pain that would make Y N _____________________ 
exercise problematic, or where exercise  
may aggravate the pain 
 
Any neurological disorders that would  Y N _____________________ 
make exercise problematic, or where  
exercise may aggravate the condition 
 
Any neuromuscular disorders that would  Y N _____________________ 
make exercise problematic, or where  
exercise may aggravate the condition 
 
Recurring muscle or joint injuries that Y N _____________________ 
would make exercise problematic, or  
where exercise may aggravate the condition  
 
A burning or cramping sensation in your Y N _____________________ 
legs when walking short distances 
 
Chest discomfort, unreasonable  Y N _____________________ 
breathlessness, dizziness or fainting, 
or blackouts during exercise 
 
PART D 
 
Have you had flu in the last week?  Y N _____________________ 
 
Do you currently have an injury that might  Y N _____________________ 
affect, or be affected by, exercise?   
 

*Is there any other condition not previously mentioned that may affect your ability to 
participate in this study? 

 
Y N _________________________________________________________ 
 
Have you ever been told by a medical practitioner or health care professional 
that you have a nerve or muscle disorder?a 

 

Yes          No 
 
 
Do you have a heart pacemaker?c 

 

Yes            No 
 
Do you have any metallic implants (e.g. bone pins)?a 

 

Yes           No 
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Declaration (to be signed in the presence of the researcher) 
 
I acknowledge that the information provided on this form, is to the best of my 
knowledge, a true and accurate indication of my current state of health. 
 
 
Participant 
 
Name:________________________ Date (DD/MM/YYYY):_______________ 
 
Signature:____________________________ 
 
 
Researcher: 
 
Signature:_____________________________ 
  
Date (DD/MM/YYYY):_________________ 
 

_________________________________________ 
 
Parent/ Guardian (only if applicable) 
 
I, ______________________________________________, as parent / guardian of Mr/ 

Miss _____________________________________________, acknowledge that I have 

checked the answers provided to all questions in the medical questionnaire and verify 

that they are correct to the best of my knowledge. 

 
Signature: ____________________________________ 
 
Date (DD/MM/YYYY): _________________________ 
 
 
 
Practitioner (only if applicable) 
 
I, Dr _______________________________________ have read the medical 

questionnaire and information/ consent form provided to my patient Mr/Miss/ 

Ms____________________________________, and clear him/ her medically for 

involvement in exercise testing. 

 
Signature:____________________________________ 
 
Date (DD/MM/YYYY):_________________________ 
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Appendix 7: Study 1 (Publication) 

	  

	  

	  

Contribution of central vs. peripheral factors to the force loss induced by
passive stretch of the human plantar flexors

Gabriel S. Trajano, Laurent Seitz, Kasunori Nosaka, and Anthony J. Blazevich
Centre for Exercise and Sports Science Research, School of Exercise and Health Sciences, Edith Cowan University,
Joondalup, Western Australia, Australia
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Trajano GS, Seitz L, Nosaka K, Blazevich AJ. Contribution of
central vs. peripheral factors to the force loss induced by passive stretch
of the human plantar flexors. J Appl Physiol 115: 212–218, 2013. First
published May 9, 2013; doi:10.1152/japplphysiol.00333.2013.—The
purpose of the present research was to identify the contribution of
central vs. peripheral factors to the force loss after passive muscle
stretching. Thirteen men randomly performed both a 5-min constant-
torque stretch of the plantar flexors on an isokinetic dynamometer and
a resting condition on 2 separate days. The triceps surae electromyo-
gram (EMG) was recorded simultaneously with plantar flexor isomet-
ric torque. Measures of central drive, including the EMG amplitude
normalized to the muscle compound action potential amplitude
(EMG/M), percent voluntary activation and first volitional wave
amplitude, and measures of peripheral function, including the twitch
peak torque, 20-to-80-Hz tetanic torque ratio and torque during 20-Hz
stimulation preceded by a doublet, were taken before and immediately
and 15 min after each condition. Peak torque (!15.7%), EMG/M
(!8.2%), and both twitch (!9.4%) and 20-Hz peak torques (!11.5%)
were reduced immediately after stretch but recovered by 15 min.
There were strong correlations between the torque loss and the
reductions in central drive parameters (r " 0.65–0.93). Torque
recovery was also strongly correlated with the recovery in EMG/M
and percent voluntary activation (r " 0.77–0.81). The moderate
decreases in measures of peripheral function were not related to the
torque loss or recovery. These results suggest that 1) central factors
were strongly related to the torque reduction immediately after stretch
and during torque recovery; and 2) the muscle’s contractile capacity
was moderately reduced, although these changes were not associated
with the torque reduction, and changes in excitation-contraction cou-
pling efficiency were not observed.

muscle stretch; muscle activity; excitation-contraction coupling

PROLONGED (!60 S) PASSIVE muscle stretch reduces maximal
force production in human muscles (25). However, the mech-
anisms underpinning this loss have not been fully elucidated
and effective strategies for minimizing the force loss have not
been developed. A poststretch decrease in central (efferent)
drive to the muscles has been considered to affect force
production, evidenced by the reductions in electromyogram
(EMG) amplitudes that are often observed (18, 27). However,
the EMG signal can be affected by peripheral factors, including
changes in muscle fiber action potential amplitude and propa-
gation velocity (3, 16), so factors other than central drive
limitations could also explain these results.

To better quantify changes in central drive, other techniques
could be used, including normalization of EMG amplitudes to
the maximal muscle compound action potential (Mmax) ampli-

tude (EMG/M) (3), the use of the interpolated twitch technique
to estimate “percent voluntary activation” (%VA) (33, 40), and
the measurement of V-wave amplitudes during maximum
voluntary contractions (MVCs) (41). On the other hand, each
of these measures is also considered potentially imperfect in
some way (1, 3, 16, 40), so strong evidence for a central drive
limitation subsequent to muscle stretch might only be indicated
when a depression is observed in several simultaneously ob-
tained measures, and these depressions are related to (i.e.,
correlated with) the loss of force. As yet, such a detailed
examination has not been completed, so it is not clear whether
a reduction in central drive is a key mechanism underpinning
the force loss.

In addition to central factors, peripheral factors might influ-
ence the loss of force after stretch. For example, research using
animal models has shown that passive muscle stretch can
increase intracellular calcium concentration via stretch-acti-
vated channel activation and disturb calcium homeostasis (4).
Such a disturbance can negatively affect the synergistic inter-
action between the calcium-release ryanodine receptor and
voltage-sensitive dihydropyridine receptors, impairing excita-
tion-contraction (E-C) coupling (6). In humans, it is possible to
estimate the efficiency of this process by comparing the torque
produced during low- vs. high-frequency electrical motor
nerve stimulation trains (23, 32). In fact, it is also reasonable to
expect changes in a muscle’s response to short-interval double-
spike stimuli when they precede a train of constant-frequency
stimuli (i.e., a “catch-inducing” train) (7, 11) if calcium ho-
meostasis is disrupted, because this response is thought to be
influenced by the Ca2# binding sensitivity to troponin (2, 35).
Thus decreases in force production might occur even if no
significant changes in central drive are produced and no met-
abolic disturbances are elicited. To date, the effect of static
muscle stretch on muscle contractile properties remains rela-
tively unexplored, so it is not clear if these are potential targets
for intervention.

Given the above, the purpose of the present study was to
establish the relative contribution of central vs. peripheral
factors to the stretch-induced force loss after a 5-min contin-
uous passive plantar flexor muscle stretch. We tested the
hypothesis that impairments would be detected at both central
and peripheral levels, and that these changes would be
similarly correlated with changes in muscle force produc-
tion. Three different examinations of central drive were
completed {EMG/M, %VA [interpolated twitch technique
(ITT)], and V-wave amplitude} to more robustly quantify
potential central changes, while muscle and nerve stimula-
tion procedures were used to gain information with regards
to peripheral changes.
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