Edith Cowan University
Research Online

Theses: Doctorates and Masters Theses

1-1-2003

A study of the security implications involved with the use of
executable World Wide Web content

Christopher Hu
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses

b Part of the Other Computer Engineering Commons

Recommended Citation
Hu, C. (2003). A study of the security implications involved with the use of executable World Wide Web
content. Edith Cowan University. Retrieved from https://ro.ecu.edu.au/theses/1305

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses/1305

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses?utm_source=ro.ecu.edu.au%2Ftheses%2F1305&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=ro.ecu.edu.au%2Ftheses%2F1305&utm_medium=PDF&utm_campaign=PDFCoverPages

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose
of your own research or study.

The University does not authorize you to copy, communicate or
otherwise make available electronically to any other person any
copyright material contained on this site.

You are reminded of the following:

e Copyright owners are entitled to take legal action against persons
who infringe their copyright.

e A reproduction of material that is protected by copyright may be a
copyright infringement. Where the reproduction of such material is
done without attribution of authorship, with false attribution of
authorship or the authorship is treated in a derogatory manner,
this may be a breach of the author’s moral rights contained in Part
IX of the Copyright Act 1968 (Cth).

e Courts have the power to impose a wide range of civil and criminal
sanctions for infringement of copyright, infringement of moral
rights and other offences under the Copyright Act 1968 (Cth).
Higher penalties may apply, and higher damages may be awarded,
for offences and infringements involving the conversion of material
into digital or electronic form.

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

‘A Study of the Security Implications Involved

with the use of Executable World Wide Web
Content

Christopher Hu
0920484

For the Award of:
Master of Science (Computer Science)
Edith Cowan University

Supervisor:
Assoc/Prof William Hutchinson

Abstract

Malicious executable code is nothing new. While many consider that the concept of
malicious code began in the 1980s when the first PC viruses began to emerge, the
concept does in fact date back even earlier. Throughout the history of malicious
code, methods of hostile code delivery have mirrored prevailing patterns of code
distribution. In the 1980s, file infecting and boot sector viruses weré common,
mirroring the fact that during this time, executable code was commonly transferred
via floppy disks. Since the 1990s email has been a major vector for malicious code
attacks. Again, this mirrors the fact that during this period of time email has been a

common means of sharing code and documents.

This thesis examines another model of executable code distribution. It considers the
security risks involved with the use of executable code embedded or attached to
World Wide Web pages. In particular, two technologies are examined. Sun
Microsystems’ Java Programming Language and Microsoft’s ActiveX Control
Architecture are both technologies that can be used to connect executable program
code to World Wide Web pages. This thesis examines the architectures on which
these technologies are based, as well as tlie security and trust models that they
implement. In doing so, this thesis aims to assess the level of risk posed by such
technolngies and to highiight similer risks that might occur with similar future

technologies.

Declaration

I certify that this thesis does not incorporate without acknowledgement any material
previous submitted for a degree or diploma in any institution of higher education;
and that to the best of my kﬁowledge and belief it does not contain any material
previously published or written by another person except where due réfe'rence is

made in the text.

Signature

Acknowledgements

I would like to thank Dr Helen Armstrong and Dr Timo Vuori for all of their help in

preparing this thesis.

Table of Contents

9

1. INTRODUCTION AND SCOPT*‘
1.1. Imonucrlon .10
1.2. SCOPE OF THESIS , 12
1.3. SIGNIFICANCE OF THESIS 12
2. RESEARCH METHODS AND MODELS... 14
2.1, OVERVIEW 15
2.2, RESEARCH QUESTIONS 15
2.3, SUMMARY 17
3. AIMS OF SECURITY AND THREATS POSED BY MALICIOUS CODE....ccvunemiassasmrencinn 18
3.1, OVERVIEW 19
3.2. AmMS OF SECURITY 19
3.3. THREATS POSED BY MALICIOUS CODE 20
3.4, EXECUTABLE WEB CONTENT SFECIFIC THREATS 21
3.4.1. Models of Code Distribution 22
3.4.2, User Invelvement 23
3.5, SUMMARY 24
4. THE JAVA PROGRAMMING LANGUAGE 26
4.1. OVERVIEW 27
4.2, INTRODUCING THE YAVA LANGUAGE 27
4.3, JAVA VS JAVASCRIPT 28
4.4, JAVA APPLETS AS A FORM OF EXECUTABLE WEB CONTENT 29
4.5, CHARACTERISTICS OF THE JAVA LANGUAGE 30
4.5.1. Portability... 30
4.3.2, Security 31
4.6, THE EVOLUTION OF THE JAVA SECURITY MODEL 32
4.7. KEY COMPONENTS OF THE JAVA SECURITY MODEL .35
4.8, IMPLEMENTATIONS OF JAVA TECHNOLOGY 36
4.9. RISKS AND THREATS ASSOCIATED WITH THE JAVA LANGUAGE 37
4.10, HOSTILE JAVA APPLETS,, 38
4,11, CHALLENGES FACING THE JAVA LANGUAGE 38
4,12. SUMMARY 40
5, MICROSOFT'S ACTIVEX ARCHITECTURE 41
5.1, OVERVIEW 42
5.2, ACTIVEX, COM AND OLE 42
5.3. OLE CONTROLS AND VISUAL BaASic 44
5.4. ADAPTING OLE CONTROLS TO THE WORLD WIDE WEB 44
5.5, CLASSIFYING ACTIVEX CONTROLS 46
5.6, ACTIVEX CONTROL CAPABILITIES 47
5.7. IMPLEMENTING ACTIVEX CONTROLS 47
5.7.1. Interfaces and Methods 48
5.7.2. GUIDs and UUIDs, 49
5.8, ACTIVEX AND THE WINDOWS REGISTRY 51
5.9, ACTIVEX CONTROLS AND MICROSOFT AUTHENTICODE 52
3.9.1. Gryptographic Characteristics of Authenticode 53
5.10. SECURITY CONCERNS SURROUNDING ACTIVEX 54
5.10.1, ActiveX Controls Can Be Very Powerful 4
5.10.2, ActiveX Controls Do Not Execute within a Restrictive Environmenr 54
35.10.3. Reltance on Authentication 54
5.10.4. Controls Run with User s Permissions 57
5.10.5. Malicious Controls. 57
5.10.6. Exploitation of Legitimate Controls 57
5.10.7. Lack of Auditing and Management Tools, 58

5.11, SUMMARY........ ' ' 58
4. THE ROLE OF WER BROWSER AND OPERATING SYSTEM LEVEL CONTROLS 60

6.}, OVERVIEW 61
6.2, WEB BROWSER ISSUES 61
6.2.1. Microsoft Internet Explorer ... ' é1
6.2.2. Zones : af
6.2.3. Third Party, Internet Explorer Based Browsers 43
6.2.4. Netscape/Mozilla ; 64
6.2.5. Opera 65
6.3. OPERATING SYSTEM ISSUES . 65
6.3.1. File Permissions. 66
6.3.2, Cryptographic Separation 66
6.3.3. Logging and auditing ; 67
6.3.4. Logging ActiveX Controls 67
6.4, THIRD PARTY TOOLS 68
6.4.1, Personal Firewalls 69
6.4.2. Web Content Filters 69
6.4.3. Cryptographic Tools 70
6.5. SUMMARY 70
7. COMPARISON AND EVALUATION OF SECUR[TY ARCHITECTURES. senrensestsssasaises 72
7.1. OVERVIEW w73
7.2. EVOLUTION VS REVOLUTION ' : 13
7.3, SECURITY MODELS V§ TRUST MODELS 74
7.4, IMPLEMENTATION ISSUES, BUGS AND VULNERABILITIES 76
7.5. EXECUTABLE WEB CONTENT SECURITY ; 77
7.6, SUMMARY 17
8. RESEARCH QUESTIONS - - 78
8.1. OVERVIEW ' 79
8.2. DOES EXECUTABLE WWW CONTENT POSE A SIGNIFICANT SECURITY THREAT TO CL!ENT
MACHINES? 79
8.3, DO THE SECURITY MECHAN]SMS OFFERED BY THESE TECHNOI.OGIES PROVIDE A SUITABLE LEVEL
OF PROTECTION? . 79
8.4, ARE THERE SIGNIFICANT DIFFERENCES IN THE SF.CUR]TY MECHANISMS PROVIDED BY POPULAR
WWW BROWSERS? : 80
8.5, ARE THERE SIGNIFICANT BENEFITS TO BE GAINED FROM USING SECURE DESKTOP OPERATING
SYSTEMS IN CONJUNCTION WITH Www APPLICATIONS? 81
8.6. SUMMARY 83
9, CONCLUSIONS AND FUTURE RESEARCH 84
9.1. OVERVIEW 85
9.2. CONCLUSIONS 85
9.3, FUTURE RESEARCH 88
9.3.1. World Wide Web Privacy Issues 38 .
9.3.2, Peer-to-Peer Security Issues 89
9.3.3. Microsojft's .Net Framework 89
9.4, SUMMARY 90
10, APPENDIX A: ASYMMETRIC ENCRYPTION AND DIGITAL SIGNATURESveens 91
10.1. OVERVIEW 92
10.1.1. Digital Signatures and Electronic Commerce. 92
10.2, CODE SIGNING — THE “DIGITAL SHRINK~WRAP"” CONCEPT 93
10.3. ASYMMETRIC ENCRYPTION 95
10.4. CERTIFICATES 96
10.5, CERTIFICATE AUTHORITIES : ' 97
10.6. LEGAL ISSUES AND CHALLENGES : 98
10.6.1. Legal Standing of Digital Signatures in Ausiralia 98
10.7. SUMMARY.... 99

vi

11. APPENDIX B: ACTIVEX DEVELOPMENT TOOLS : _ 101

12, APPENDIX C: INTERNET EXPLORER ZONES 105
13. APPENDIX D: WINDOWS NT/2000/XP SECURITY ARCHITECTURE SR 107
13,1, BACKGROUND : 108
13.2. CHARACTERISTICS OF WINDOWS NT/ 2000 109
13.3. THE WINDOWS NT ARCHITECTURE . ; 110
13.4. THE WINDOWS NT SECURITY ARCHITECTURE : . 111
13.5. THE LOCAL SECURITY AUTHORITY AND LOGON PRCCESS 112
13.6, THE SECURITY REFERENCE MONITOR 114
13.7. SECURING WINDOWS NT 115
13.7.1. Managing User and Group Accounts 116
13.7.2. File System Security 118
13.7.3, Registry Security i20
13.7.4. Network Security i22
13.7.5. Service Packs, Patches and Holfixes. 122
13.8. SUMMARY. 122
14, LIST OF REFERENCES 124
BIBLIOGRAPHY 130

vii

Table of Figures

Figure 1: Standalone Program Distribution Model 24

Figure 2: Executable Web Content Distribution Model,....... : 24
Figure 3: ActiveX Control Types (Li & Economopoulos, 1997, p191) 46
Figure 4; ActiveX Control Registry Information 52
Figure 5: X.509 Certificate Structure (Microseft Corporation, n.d) 97
Figure 6: Windows NT/2000 Architecture 112

Figure 7: Windows NT Security Architecture 113

viii

1. Introduction and Scope

1.1. Introduction

The idea of malicious program code is as old as modern computers themselves. In
1949, John von Neumann’ s. “A gelf reproducing program in Theory and Organization
of Complicated Automata” (cited in McMullin, 2000) proposed the idea that a

cbmputer program could reproduce itself.

When Fred Cohen began researching the idea of programs that rei:licate by inserting
code into other programs in 1983 the idea of the Computer Virus was bomn. Wle
virus-iike code such as “Elk Cloner” (Skrenta, n.d) had earlier appeared on Apple 1I
systems, Fred Cohen’s Work led to the r;oining and definition of the term Computer
Virus. Cohen defined a virus as “...a program that can ‘infect’ other ﬁrOgrams by

modifying them to include a possibly evolved copy of itself” (Cohen, 1984).

In 1988 the Morris Worm (CERT,1997) spread around the Internet with frightening
speed. While not the first code of its type, the Morris Worm demonsn'ated the

vulnerability of connected systems to a rapidly spreading attack

The Back Orifice Trojan, released by the Cult of the Dead Cow (cDc) in 1998
(CERT, 1998), received a significant amount of attehtion. Trojans such as BO2K
can grant an attacker almost total control of a victim’s machines, While other client-
server Trojans such as Netbus provided similar capabilities, Back Orifice still
remains one of the most high profile and most dangerous of Trojars. Its current

form, known as BO2K is one of the most notable of current Trojans.

Since the 1980s, malicious code has been part of the computer security landscape but
this landscape is changing. It is interesting to note that recent years have seen

somewhat of a blurring between some of these types of malicious code. In particular

10

the distinction b_etween viruses and worms has narrowed. For example, sdme articles
refer to Melissa as an example of a worm (Sophos Anti-Virus, 2002), others refer to
it a5 a virus (CERT, 1999b) while others refe to it as hybrid that extibits the
characteristics of both a virus and a worm (Nachenberg, n.d). While CERT refers to
Melissa as virus rather than ﬁ worm, due to its reliunce on human interact.ion'in ordch
to spread, it does acknowledge that the level of human interaction required is
minimal (CERT, 1999b). Likewise the Loveletter Worm is also sometimes_referred

0 as a virus (Microsoft, 2002a).

Increasingly email is becoming the major vector for such worms and viruses.
However, new technologies such as various forms of executable web content may
play an important role in this changing landscape of malicious code. Email has a
number of characteristics that makes it an attractive to writers of malicious code as
an infection vector. The ubiquitous avhilability of email allows an attacker
potentially affect vast numbers of syétems. As a form of personal communication, -
email allows an attacker opportunities to make use of social engineering techniques
to spread malicious code. Finally the lack of intrinsic, inte_grated security controls
means that there aré many avenues of attack that can be exploited by the writers of

malicious code.

This thesis examines the possibilities for malicious code being implemented using
executable web content technologies such as Java and ActiveX. Both Java and
Active allow executable code to be embedded within a web page and executed on
client machines when that page is viewed. While this can help web developers to
~create increasingly dynamic and engaging web pages, the fact that untrusted,

possibly malicious code is being executed raises a number of security concerns. The

1

architectures of Java and ActiveX will be examined along with the security

functionality that they provide.

The addition of executablé code to web pages raises several new concerns. This
code has a different model of distribution to'.other forms of software, With this new
model of distributic;n comes a range of new sécurity issues. Such code has the ability
to affect confidentiality of information, integrity of data, software and operating
systems as well as the availability of systems and sefvices. There are also a number
of issues related to the authenticity of such code and the ébiiity of people to deny

developing malicious code.

This thesis will argue that while operating system and web application levels security
mechanisms are an important layer of defence, executable web content technologies

need to implement their own trust and security architectures.

1.2. Scope of Thesis

While the risks facing users of the World Wide Web are many and varied, this thesis |
1'5 quite specific in its scope. It focuses solely on the risks to World Wide Web users
posed by malicious executable web conient. In particﬁlar it focuses on Sun
Microsystems’ Java programming language and Microsoft’s ActiveX technology.
While interpreted forms of executable web content including scripting languages do
raise certain security concerns, this thesis limits its scope to binary forms of

executable web content,

This thesis discusses the security and trust models employed by Java and ActiveX.
This thesis also considers the security mechanisms implemented by the Windows
NT/2000/XP line of Microsoft Operating Systems as well as those implemented by

common web browser applications,

12

1.3. Signiﬁcance of Thesis | |

While Java, ActiveX and the World Wide Web have now existed for several years, it
is imbqrtant to reflect upon the issues that Havc been raised by these technologies and -
to consider those issues that might be raised by the next generations of World Wide

Web oriented cede delivery mechanisms.

This thesis contends that the World Wide Web and the Internet in general will be one
of the major channels for code distribution in the near future. As such it is important
to examine the security issues raised by current forms of executable web content so

that the next generations of such code can build on this experience.

13

2. Research Methods and Models

14

2.1. Overview

This chapter outlines the research methods that will be employed in this thesis,

2.2. Research Questions

This thesis aims to answer several important questions regarding the security risks
posed by current web technologies. All of these questions revolve around client
machines and consumers of World Wide Web services, as opposed to service and

content providers.

Does executable WWW content pose a significant security threat to clieut

machines?

This thesis attempts to determine whether or not there are significant inherent
secuﬁty risks posed by the concept of executable web content. By examining two
such forms of executable web content, this thesis attempts to highlight the basic level

of risk that techhologies such as Java and ActiveX must attempt to guard against.

Do the security mechanisms offered by these technologies provide a suitable

level of protection?

This thesis also examines the concepts behind the security mechanisms implemented
by both Java and ActiveX. It pays particular attention to the question of whether or
not the security models on offer are adequate to offset any inherent security risks (if

any) posed by the use of executable web content.

Are there significant differences in the security mechanisms provided by

popular WWW browsers?

15

The security models offered by Java and ActiveX are also examined in the context of
the web browsers through which such code will operate. This thesis examines the
differences between the security features offered by current. web browser
applications and assess the role played by such browsers in reducing any risks posed
by executable web content technologies. Web browser security features will only be

discussed in terms of their relationship to executable web content technologies

Are there significant benefits to be gained from using secure desktop operating

gystems in conjunction with WWW applications?

Finally, this thesis attempts to determine whether or not there are any real security
benefits to be gained from using a desktop operating sysiem that implements various
security controls. It examines the code signing, access control and auditing features
of the Windows NT/2000/XP line of Microsoft operating systems in order to
determine the effectiveness of operating system ievel controls in guarding against
any risks that might be posed by executable web content technologies. such as Java

and ActiveX.

2.3. Research Validity

This thesis aims to address the research questions outlined in the preceding section.

In taking such a qualitative approach, it is intended that this thesis will...

These questions have been chosen in order to examine the security models employed
by executable web content _techriologies, as well as the ways in which these security
models interact with the security features offered by certain web browsers and

Operating Systems.

16

By examining the security issues associated with current forms of executable w_eb
~ content, this thesis aims to provide an insight into the types of security iSsues that
will need to be addressed by ﬁluﬁe generations of mobile code. Whiie this thesis
does not seek to define the security architectures that will or should be employed by
such generations of code, it does aim to highlighf the strengths, weaknesses and
limitations of the security models offered by current executable web content

technologies.

2.4. Summary
The research questions outlined in this chapter form the basis of this thesis. These

questions are addressed after examining the technologies in question.

17

3. Aims of Security and Threats Posed by
Malicious Code

T

3.1. Overview

“This chapter provides an overview of the types of risks poséﬂ by -irarious_ forms of
“executable code and the aims of computer sécurity that are threatenéd by these risks. -
While the security risks posed by malicious code such as viruses, worms and Trojans
have beén discussed at length in many texts over a number of years, this chapter
highlights some unique security concerﬁs raised by the use of executable web content
technologies. In particular, it highlights the different models of distribution be_tween

traditional stand-alone applications and code delivered via the quld Wide Web.

3.2. Aims of Security

Many authors including Pfleeger (2000) and Pipkin (2000) describe three major of
computer and information security, these being Confidentiality, Integrity and
Availability. Tv§o additional aims, Aut_hcnticity and Non-Repudiation are also often
discussed. Essentially, any form of attack can be categorised as a breach 6f- one or

more of these aims.
This thesis will define these aims in the following manner:

Confidentiality: This aim encompasses the idea that information or
information systems should only be available to those that are authorised to

access the resources.

Integrity: Refers to the concept that data, information or information

systems should be modified only by those that are authorised to do so.

Availability: This aim suggests that information, systems or other resources

should be available to authorised parties when required,

19

Authenticity: This aim states that peoplé or devices must be correctly

‘identified and determined to be genuine.

Non-Repudiation: The goal of non-repudiation is thét entities must be

accountable for the actions and be unable to falsely deny these actions.

This thesis takes the view that confidentiality, integrity and ava.iiability are the
primary goals of any computer or information security effort and that authenticity
and non-repudiation, while being important in their own right, support these first
three aims. For example, the principle of conﬁdentiality. requires that only
authorised people are able to read, view or make use of information. Authenticity
plays a major role in the fulfilment of this aim, as it alsb does with integrity and
availability. For this reason, this thesis refers to the three major aims of computer
and information security and confidentiality, .integrity and availability, while |

recognising the importance of authenticity and non-repudiation,

This thesis considers these aims as they relate to desktop systems. While these same
aims can apply to a range of information assets and systems, this thesis is primarily

concerned with desktop systems.

3.3. Threats Posed by Malicious Code

The idea of malicious code is nothing new. While some forms of malicious code did
exist before the 1980s, that particular decade was pivotal in the history of malicious
code. The late 1980s saw the emergence of several notable forms of malicious code
including the Brain and Stoned viruses (White, Kephart, Chess, 1995) as well as the
Morris Worm. These and other examples of malicious code demonsh‘ated ﬂ10
vulnerability of systems to executable cbde written with malicious intent. While

many of these examples affected the integrity and availability of systems and

20

information, the potential was there for code to breach all of the aims previous

mentioned,

The. 1990s séw several new types of malicious code including macro viruses. These
-Qiruses forced many to re-think their views of viruses. These viruses propagated by
attaching themselves to documents rather than executable files or boot sectors.' of
disks. This proved to be quite a successful vector for virus propagation. Given the
number of macro-supporting documents written, stored and shared, the use of

documents as hosts for viruses led to many widespread infections (CERT, 2000a).

Since the late 1990s there have been a number of worms that have caused
widespread infections. Some of these such as the Loveletter worm (CERT, 2000b)
have blurred the lines between viruses and worms. Some have begun to refer to such

pieces of malicious code as Virus/Worm Hybrids (Nachenberg, n.d).

Many of the forms of executable code in use today are quite different tﬁ those used in
the 1980s and o_ther periods in the history of computer usage. Today executable code
may exist in tl_le form of executable program files, document macros as well as other
forms such as executable web content. One of the main aims of this thesis is to
examine the possibility of malicious code being implemented using executable web

content technologies such as Java and AvtiveX

3.4. Executable Web Content Specific Threats

This thesis tdentifies a number of risks and threats as being specific to executable
wéb content. While the threats raised by forms of malicious code such as viruses,
worms and Trojans have been clearly documented over a number of years, this thesis
will expand upen some of these threats and will contend that there are several risks

that specific to forms of executable web content such as Java and ActiveX.

21

~ 3.4.1. Models of Code Distribution

Traditional file infecting and'boot.set:tor-viruses such as Brain and Stoned achieved
widespread infections due to the fact that their method of propagation mirroréd the
prevailing model of code distribution, At the timé, sharing of executable code via

the swapping of disks was common.

In more recent years email has been a major vector for infection by malicious code.
Examples of email-bome viruses and worms such as Melissa and LoveLetter have
higlﬂighted the suitability of email as a major vector for nialicious code attacks.
Again these forms of malicious code have exploited a major mechanism for the
distribution of executable code. The transferral of executable program code and
macro capable documents is now so common that many forms of malicious code

now use this as the primary method of propagation.

Executable web content employs a significantly different model of execution when
compared with other forms of software. Such code is not distributed as a shrink-
wrapped retail product, nor is it passed around between users, nor is it transferred via
email. By definition executable web content is e?(ecutable code that is attached to
web pages and transparently downloaded and executed as part of that web page. As
a resuit malicious executable web content will have significantly different vectors for
infection than other forms of malicious code such as vin;ses and Trojan horses. As
there is little sharing of Java Applets or ActiveX Controls directly between users
(See Figures 1 & 2) the distribution models for viruses and execufable web content

are not very closely aligned.

Thg;model of distribution of executable web content is more closely aligned with the

typical distribution model of Trojan Horses. In this model of distribution, the

22

malicious code is more likely to be distributed from a single source or group or
sources than by propagation between users as is the case with a more conventional

virus.

This thesis contends that the behaviour of malicious executable. web content Iis.. more
likely to be comparable with that of Trojan Horses than viruses or worm. W_hile this
thesis does not dismiss the .possibility that a maiicious ActiveX Control or Java

Applet could be used as a delivery mechanism for a more conventional virus or
worm, it does take the view that malicious Java or ActiveX Code will be more likely

take the form of a Trojan.

3.4.2. User Involvement

Another factor that distinguishes malicious executable web content from other forms
of malicious code is the level of user involvement. As executable web content is run
when the page confa.ining it is viewed, there is often very little choice on the part of
the user as to whether or not that code is to be executed. When the user makes a
decision to go to a web page, there is no real prior indication that a page contains
Jéva Applets or ActiveX Controls. In many caseé ifa usér were to be affected by a
piece of malicious executable web content, the only conscious decision might have
been the initial decision to visit the web page. Depending of configuration of web
browsers, personal firewalls, anti-malware or content filtering software, users may be
presented with a warning prior to the execution of such code, at which point a
conscious decision can be made. However in many cases the downloading and

execution of the code happens automatically and transparently.

23

Standalone
executable
program file
Source
Users obtain Other users may
program from lso download
r .
Program User |4 Program User 14 Program User
Users may transfer Users may transfer
Figure 1: Standalone Program Distribution Moedel
Web page
containing
cxecutable code
Each user downloads Each user downloads
copy of Java Applet copy of Java Applet
Y
Java Applet Java Applet Java Applet
el SR S NN e S [BN

Very little

Figure 2: Executable Web Content Distribution Model

Very little

In this sense, executable web content is similar to executable code that might arrive -

via email. In both cases the user does not have to consciously seek out the piece of

code.

3.5. Summary

Malicious executable code has the potential to affect the aims of confidentiality,

integrity and availability. While it is not the intention of this thesis to re-examine the

_threat posed by malicious code in general, this thesis does contend that malicious
executable web content does pose some specific threats. These threats have been
described in this chapter, In particular this chapter has identified modsls of
distribution and ie’vcl of user interaction as two areas in which the possibiﬁty of

malicious executable web content raises some specific concems,

25

4. The Java Programming Language

2

4.1. Overview

When Sun Microsystems released the Java Language in 1995, it was surroundcc_l by
both genuine interest and a large degree of industry hype. Java is an object oriented
programming language that is well suited to use with networked eﬁvironments such

- as the World Wide Web.

Although Java can be used to develop stand-alone appli_cations,-. much of its
popularity stems from its networking capabilities. When used in an énvironment
such as the World Wide Web, the Java language is typically used to create
distributed applications referred to as applets. These applets can be downlq.aded and
executed on a wide range of heterogencous platfomls. Java applets and ActiveX
Controls (discussed later in this thesis) comprise two popular forms of executable

web content.

This chapter will discuss the origins of the Java language, the characteristics that

define it, its security architecture and the ways in which the language has evolv_éd.

4.2. Introducing the' Java Language

The Java programming language was develdped by Sun Microsystems. The release
-of the language in 1995 ﬁas greeted wﬂh both génuine interest and a high degres of
industry hype. In many ways, the explosioﬁ of interest in this Inew language.has
mirrored the excitement surrounding the World Wide Web itself. In the years since
its release, java has become one of the most popular and 'high profile languages

available to software developers (McGraw & Felten, 1998).

The Java language exists in several forms. While Sun distributes the language

through various versions of its Java Development Kits (JDK 1.0, 1995; JDK 1.1,

o7

| 1996, JDK 1.2, 1998), .Jﬁva Runtime Environment (JRE, 1998) and other
downloadable resoumés, Java technology has also been licensed by a number of
vendors including Microsoft and Netscape. This thesis will use the term Java to -
 describe the language as specified by Sun Micmsyﬁtems and implemented in various

versions of Sun’s JDK.

There are a number of Java related technologies that exist around the periphery of the
language itself. Some of these related technologies are produced by Sun
Microsystems while others have been developed by other parties. It is not the
intention of this thesis to examine all possible java-related technologies and APIs,

rather it will discuss the basic language itself and the seéurity issues that it raiges.

One notable example of thesé peripheral technologies is what Sun has named Java
Beans. Java Bean technology is an Application Prograrﬁming Interface (API) that
provides a software component architecture for the Java language (Hamilton, 1997).
Java Beans are small, independent Java components that can be combined to create
larger, more complex applications. Java beans have some similarities to ActiveX

Controls in that they are both software component architectures.

There are also a number of other Java APIs that can be used with the Java language
to provide database connectivity, speech capabilities, telephony features and other

functions to extend the capabilities of the language (Sun Microsystems, 2000).

4.3. Java Vs JavaScript

It is important to note that Java and J avaScript are not the same things. JavaScript is
a scripting language that can be used in conjunction with web pages to perform some
actions when a page is viewed with a JavaScﬁpt capabie browser. Unlike the Java

language, JavaScriptS are not comﬁled in any way. As stated earlier, this thesis

28

intends to focus on binary forms of executable code and as such a detai_lcd discussion
regarding security issues raised by JavaScript and other scripting languages is outside

the scope of this thesis.

Given the number of variations of the Java language, peripheral technologies such as
Java Beans, and the number of additional APIs available, the terminology
surrounding the Java language can become very confused. This thesis will use the
term Java to describe the core language as specified by Sun Microsystems and as

implemented in the various JDK releases.

4.4. Java Applets as a Form of Executable Web
Content

Like most programming languages, Java can be used to create stand-alone
applications. -However, much of its popularity arises from its ability to create

distributed applications referred to as applets.

These applets can be added to Web pages and as such, they comprise one form of
executable web content. Java applets are typically downloaded to and executed on
the client machine when the weblpage is viewed. When attached to web pages, Java
applets can be used for a wide range of purposes. At one end of this spectrum,
applets may be used to display simple eye-catching animations or perform other such
tasks. Towards the centre of the spectrum, an applet could be used to extend the
capabilities of a web page and/or browser, by adding user interface features. At the
other extreme of this spectrum, Java applets could be used to deploy complex

distributed applications.

A Java applet is added to a web page by using the APPLET tag within the HTML file

that makes up the web page. As this thesis is not intended to act as an HIML

28

reference, the syntax and semantics of the APPLET HTML tag will not be discussed
here. However, detailed explanations and examples can be found in any number of
HTML references or from organisations such as the World Wide Web Consortium

(www.w3.org).

4.5, Characteristics of the Java Language
Sun Microsystems (1996) have described the Java language as “A simple, object-
oriented, network-savvy, intetpreted, robust, secure, architecture neutral, portable,

high-performance, multithreaded, dynamic language.”

In describing the language in such a way, it seems that Sun is acknowledging the fact
that a large degree of hype surrounds the language. Regardless of this hype, this

string of buzzwords does list some important characteristics of the language.

4.5.1. Portability

Portability is one of Java’s most important characteristics (Sun, 1996; Gosling &
MecGilton, 1995). This portability has helped to make Java one of today’s most
popular languages. Given the portablé, cross-platform nature of the language, Java. is
well suited to the heterogeneous nature of the Wbrld Wide Web and has become one
of the most popular tools for developing distributed applications McGraw & Felten,

1998).

Java’s portability stems from its use of bytecodes as an intermediate level of
compilation. Rather than being a completely. compiled or completely interpreted
language, Java takes a hybrid approach. Java source code is compiled to a series of
byte codes, which are in tumn interpreted by a Java Virtual Machine (JVM) (Pistoia,
Relle, Gupta, Nagnu, Raman, 1999). The bytecodes comprise the instructions that

drive the JVM, Theoretically, a JVM can be implemented as a piece of software

30

running on almost any computer platform. Alternatively, a JVM could be
implemented in hardware. In such a case, the Java bytecodés would form the native
instructions for the Java machine. The difference wonld be largely transparent to

Java program (Edwards, 1997).

While this “Write Once, Run Anywhere” (Sun, 1999) approach makes Java a viable
alternative for many development projects, many consider that the performance
degradation resulting from the interpretation process makes the language unsuitable
for large complex applications. In many cases, JustJn—Time (JIT) compilers are
considered necessary in order to improve the performance of Java code. Rather than
interpreting Java bytecodes, JIT compilers compile the bytecodes into code native to
the particular platform. This native code is generally faster to execute than
interpreted bytecodes {(Appel, 1999). In spite of the performance improvements
offered by JIT compilers, there are still significant execution overheads compared to

the execution of purely native code.

4.5.2. Security

Security is another important characteristic of the Java language. The security
features of the language (which will be discussed later in this chapter) demonstiate
some commitment on the part of Sun Microsystems to produce a secure language.
Sun (1999) acknowledges that in a language as well suited to distributed computing,
security is an important requirement. For this reason, security has been an important
consideration since the earliest stages of the design of the language. In fact, it is
often unusual for security to rank so highly as a consideration at such early stages of

the development of the language (Pistoia et al. 1999).

3

The Java language boasts an integral security model (Pistoia et al., 1999; Gosling &
McGilton, 1995), the evolution of which will be discussed in this chapter. This
model has undergone several modifications since the release of the language in 1995.
These modifications have been widely discussed by a number of commentators
(Gong et al., 1997; Koved et al., 1998; Chess & Morar, 1998; McGraw & Felten,
1998). Each major revision of the Java language has seen significant changes to the
security mechanisms offered by the language. The evolution of the Java security
model shows an interesting progression away from an all-or-nothing approach

towards a flexible, policy driven approach.

The cornerstone of Java security is a restrictive run-time environment commonly -
referred to as the Sandbox (Gong, 1998; Pistoia at al, 1999, p70). Since the release
of the Java in 1995, the operation of this sandbox has evolved significantly with each
revision of the language. Despite this evolution, its roie has remained largely

unchanged — to restrict the actions of untrusted, possibly malicious code.

4.6. The Evolution of the Java Security Model

The initial versions of the Java Language (JDK 1.0, 1995) provided a largely all-or-
nothing approach to the issue of trust. The java sandbox provided a tight restrictive
environment in which untrusted applets could be safely executed. The decision as to
whether or rot an applet was considered to be trusted was made simply on the
grounds of its source. Under this model, code loaded from the local file system
would be considered to be trusted and would be allowed to operate without
restriction. Alternatively, code loaded from external sources such as the World Wide

Web would be subject to tight sandbox restrictions (Gong, 1998).

32

Comments were often made (Pistoia et al, 1999, p71), howevér that the tight sandbox
restrictions of this initial model prevenied reputable developers from fully expioiting
the advantages offered by the Java language. In many cases, it was difficult to write
practical software given the tight restrictions of the sandbox. Tyﬁicﬁlly, untrusted |
code (any code not loaded from the local ﬁle-sysfem) would not be allowed access to
resources such as files. Additionally, applets would only be allowed to use network
resources in order to contact the site from which the applet was downloaded. Chess
& Morar (1998) also describes several other sandbox restrictions and in doing so,
makes the point that it was inevitable that mechanisms would have to be provided to

let trusted applets step outside of the restrictive sandbox.

Simply making more privileges available ﬁtlﬁn the sandbox was not an adequate
Jong-term solution (Presotto cited in Sun, 1996). There was a distinct danger that
sandbox implementations would grow to include more and more privileges until the
sandbox allowed almost full systera access and restricted very little, Eventually this

- trend would defeat the purpose for which the sandbox was originally intended.

Sun’s second major version of the Java Language (JDK 1.1, 1996) made some
attempt to remedy this sitﬁation by allowing trusted applets to execute without the
tight restrictions imposed by the sandbox (Pistoia et al., 1999, p72; Gong, 1998).
While the sandbox remained an integral component of the JDK 1.1 security model,
applets could now be signed using digital sighature technologies. Applets with
signatures trusted by the client were treated in much the same way as code lnaded
from the local file system, in that it would not be subjected to tight sandbox
restrictions (Pistoia et al., 1999, p72). However, this was still largely an all or
nothing approach. Decisions regarding trust were made on an applet-by-applet basis

and an applet could only be considered either completely trusted or completely

33

untrusted. Under this model, there was no notion that code could be partially trusted

(McGraw & Felten, 1998).

Tﬁc next version of the language saw several major changes, Not the least of which
was a renaming of the language. With the release of JDK 1.2, Sun renamed the
language Java 2. While the name Java 2 describes the current staté of the language
itself, the term JDK 1.2 is used to describe the Sun’s implementation of this
language. This thesis will adhere to this convention and use the term Java 2 to
describe the language in general. The term JDK 1.2 will be used to describe a
specific version of Sun’s Java 2 implementation In addition to this change in name;

JDK 1.2 introduced a heavily re-designe.d security architecture.

This latest security architecture focuses around the concept of a security policy,
which can grant varying permissions to different applets in a fine-grained mannef. In
contrast to previous versions, this model does not force a yes or no decision to be
made as to whether or not an applet is executed within the sandbox. Instead, applets
can be assigned various privileges depending on .the level of trust placed in the code.
This highly flexible approach has the effect that, “the entire meaning of sandbox
becomes a bit vague” (McGraw & Felten, 1998). Instead of one clearly defined
sandbox, each applet can in effect, run in its own sandbox each of which can be

afforded different permissions.

While this approach does offer a high degree of flexibility, it relies heavily on the
creaﬁon of a sound policy. This raises the important of issue of who is responsible
for the creation and maintenance of such a policy. End users may not have the
experience or expeﬂise necessary and system administrators may see such a security

policy as a low priority in relation to other more pressing tasks (McGraw & Felten,

1998). In addition, once a policy is defined, it must be maintained. The environment
in which such.a policy operates is often very dynamic. There is a risk that origé a
policy is defined, it will be forgotten. In such a case, the old adage “out of sight, out

of mind” may be particularly relevant.

This highlights the fact that the technical security features offered by the language
are highly dependent on sound configuration. As such, management becomes avery

important issue.

4.7. Key Components of the Java Security Model

There are several components of the Java language which enforce the Java Security
model. In particular, Java makes use of what it refers to as the Bytecode veriﬁér,
Class Loader and Security Manager. Together thes_elcomponents work to enforce the

Java Security Model.

Not surprisingly, the Java Class Loader is used to invoke Java classes_ as they are
needed. A typical JVM contains a “Primordial” loader as well as. any number of
custom Class Loaders (Venners, 2002). Theée class loaders can if written
appropriately, enforce separation of ap'pléts by providing distinct namespaces .'for
different applets and applications (Venners, 2002; Oaks, 1998a). Class Loaders also
aim to guard against malicious code masquerading as trusted Java APIs (Venners,
2002; McManis, 1996). Together with the Bytecode Verifier and Security Managér,

the Class Loader comprise the major components of the Java Sandbox.

The Security Manager component enforces Sandbox restrictions by determining what
actions can be taken by loaded classes. Ouks (1998b) makes the point that many of

the restrictions enforced by the Security Manager are similar to the types of controls

35

that one would normally consider o be the responsibility of an operating system,

such as arbitrating access to files, network resources and other resources.

As the name suggests, the Bytecode Véﬁﬁer is tasked with examining .]ava dasses
to ensure that they conférm to the specifications of the Java lalngu_age. This aims to
ensure that classes are not h_lalformed either dgliberﬁtely or accidentally. The
Bytecode Verifier checks the integrity of the b.y‘tecodes to ensure that classes ﬁwe _
not been created using hostile compilers, do not contain buffer overflows as well as
performing many other tests. The eventual aim is that the once the class has been
verified, it can be executed with confidence by the JVM (Gosting & McGilton,

1996).

4.8. Implementations of Java Technology

While this chapter has mainly discussed Sun’s dcsign. of the Java language and its
implementation via Sun’s JDK releases, Java technology has been licensed by a
numbér of vendérs including_ Microsoft and Netscape. As a result, there are several

major implementations of Java technology.

Many of today’s major web browsers, including Internet Explorer and Netscape
Navigator, Mozilla and Opera all support the use of the Java language. Java enabled
web browsers ofien ship with their own implementation of the JVM. While each
vendor supplied JVM should conform to the Java speciﬁcatibns from Sun,
implementations can vary greatly, In addiﬁon, | vendor supplied JVMs may
incorporate .propriet'ary extensions. As a result, it can be confusing as to which JVM
is used to execute a particular piece of Java code. Additiohally, it is reasonable to
expect that different implementations may contain different bugé. These bugs could

possibly be exploited in order to bypass various security mechanisms. In addition to

~ the JVMs incorporated within web browsers, Sun disﬁibutes its own JVM as part of

it JDKS and JREs. Sun also distributes Java 2 JVM plug-ins for the major weﬁ_
browsers. 'When these piﬁg—_ins are instailed, oider Java code can sﬁll .be eﬁeéutéc_i by.
the browser’s inbuilt .TVM. When j_av_a 2 code is encountered, it can be diverted and

executed using Sun’s Java 2 plug-ins.

This situation can become very confused when multiple JVMs are installed on one

machine. Chess & Morar (1998) describes a hypothetical case in which;

“,..you have a JVM déveloped by Microsoft inside Irﬁemct Exlilorer, a
JVM_devcloped by Netscape inside Navigator, a VM developed by.. Sun
inside Lotus Notes, and the Java plugins from Sun inside both browsers for
a grand total of four different JVMs in five different locations using four

different signature databases and four sets of security settings.”

The replication of signature databases and security settings makes it very difficult to
implement and maintain a coherent, overall security policy. Additionally there is the
possibility that each different JVM will have its share of design and implementation
errors, which may be exploited by an attacker. Currently there are no known tools te
centralise the management of Java security across a number of separate JVMs (Chess

& Morar, 1998).

4.9. Risks and Threats Associated with the Java
'Language |

While Java is an interesting and no doubt useful technology, there are a number of
threats associated with its use. As detailed in previous chapters, there are certain

risks specific to executable code. As Java provides a means whereby executable

37

code can be run on a client machine as a result of viewing a web page, its use does

imply a certain level of risk.

4.10. Hostile Java Applets
Several hostile Jafa Applets have been written and for some the source code is -
available. Many of these act as Trojans with effects range from annoyances such as
displaying i images of Dancing Bears to the unauthorised use of resources such as

power time to false login prompts designed to capture passwords (LaDue, n.d).

411, Challenges Facing the Java Language

While Java undoubtedly has a great deal of potential, there a:; a number of
challenges facing the language. Concerns over the performance of the language,
reluctance to rewrite legacy applications, probiems with the “write once, run
anywhere” concept and fighting between Sun and Microsoft all threaten the long

term viability of the Java language.

The performance of the Java language has been seen by many as a majbr concern.
Given Java’s commitment to portability and its. mﬁance on bytecodes as an
intermediate level of compilation, it is inevitable that the performance of the
language wiﬂ suffer to some degree. One concern is ﬁat the Java language majf not
be able to offer the performance levels required for mission-critical appliéaﬁons.
Sun claimed that the release of Java 2 would put an end to the performance prﬁbiems

that had previously plagued the language.

Another major concem is that the Java language is becoming fragmented as mbre
and more platform specific APIs and class libraries become available. While such

additions to the Java language can be helpful' in optimising Java applications for

38

. particular platforms, they do tend to .limit the “Write once, run anywhere” potential
of the _Ianguage. To combat this trend, 'S_un has implemented the ‘_‘100%' Pure Jaﬂra” :
Program (Suh I_Vﬁcrosysteins, 1999). The aim of this program is to certify that a java -
program doe§ not rely on any platform specific code and ﬂlaﬁ it has been tested for

cross platform compatibility and portability,

Fighting betv}een Sun and Microsoft also threatens the future of the Java language.
Initially Microsoft licensed Java technology from Sun Microsystems. Sun
considered that with Microsoft supporting Java, the language would quickly become
a de facto standard; Microsoft was interested in licensing the language in order to -
compete with Netscape’s Navigator browser, which .also made use of Ja\{a (Wong,

1998).

Sinc_e its licensing of the Java language, Microsoft has been accused of trying to
“kidnap” the Java ianguage by distri_butiﬁg a JVM thﬁt Sun claimed violated
Microsoﬁ’s license agreement. Sun claimec_i that Microsoft had deliberated

attempted to undermine the cross;platfoﬁn nature of the Java language; by .addi'ng
platform spe.ciﬁc APIs and omitting certain core Java APIs. As a result, Sun began
legal action agains_t Microsoft in October 1997 (Sun Microsystems, n.di Microsoft

Corporation, 1997).

While the Java language shows a lot of potential, its future is by no means
guaranteed, While there is little doubt t_hat the Java language has been thrust into
éubh’c attention by some effective marketing, there is also a great deal of genuine
interest surrounding the language. If nothing else, the language has highlightéd_ﬂic
level of industry interest in a progra.mming. langnage suited to use with an

environment such as the World Wide Web. The Java language has several important

39

challenges ahead. How Sun handles these challenges will go a long way to deciding

the ﬁltln'e of the language. _

4.12. Summary | -

The Java language was developed with several key ob_]ectlves, mcludmg portablllty,-
robustness and security. Since the release of the language in 1995] ava has evolved _
significantly. The current version of the language is marketed under the name Java2

and implemented by Sun in the form of the JDK 1.2,

Although its- implementation and design may have changed the Java s - Sandbox
remains a central component of the language. The purpose of this Sandbox is to
restrict the actions of possibly malicious Java code, by executing this code wnhm‘ a

protective run-time environment.

The most current version of the Java language allows various perlnissions to be
granted to an applet dependmg on the level of trust placed in the code. 'I'hese |
permissions can be granted in an applet-by-app‘ et basm in accordance w1th a securlty
: policy. This provides a hlg,h level of ﬂexiblllty but raises seyeral issues regarding

configuration and management.

40

5. Microsoft's ActiveX Architecture

4

5.1. Overview
' The term ActiveX descriﬁes a pumber of technologies from Mici‘bébﬁ all of Whiqh.

are based on the company’s cdmponem Object Model (COM) andbbjéc_t Linking |
and Embedding (OLE) technologies. This thesis conf:entrates on one specific type of ..
AcﬁveX Objcct - ActiveX Controls, as these can be added to web pages and

comprise one popular form of executable web content.

ActiveX technology is tightly integrated with both the Windows fémily'of operating
systems and Microsoft Internet Explorer and as such, many of the security issue.s'
raised by the use of ActiveX will be discussed in later chapters. However, in order to
fully understand these security implications, it is necessary to examine the
architecture that underlies this technology. Some of the discussion in chapter does
riot rclaté directfy to security issucs,: although a thorough understanding of the
technology will enable a more detailed discussion of these issues in later-chaptefs.
This chapter discusses the architecture behind ActiveX and the security mechanisms
put in place by the technology itself. Sécurity inechanisnﬁs put in .place_'by operating
systems and applications that make use of ActiveX controls \ﬁll not be disbussed in

this chapter.

5.2. ActiveX, COM and OLE

ActiveX is a term used to describe a range of technologies based on Microsoft’s _
Component Object Model (COM) and Object Linking and Embedding (OLE)

technologies.

Microsoft’s Component Object Model (COM) is a specification designed to allow
reusable binary objects to intéroperate and communicate (Li & Eco_nomopo_ulos,

1997, p.11). As it is a binary specification, COM objects ean be written in any

42

programming languégc that can produce a bmary result that conforms to these

specifications. =

| Microsbﬂ’s Object Linking and Embeddihg (0LE) .:techno.logy' ‘builds on’ ﬂi’c
framework provided by COM. OLE's main role is to “enable and facilitate
component integration” (MSDN {CD-Rom], 1997). OLE techndl_ogy first appeared
in 1991 and was originally designed as method for creating rich, compound
documents that could incorporate a number of enhancements such as sound and
video. The next version of OLE went way beyond this concépt of compound
documents and prox?ided a much more comﬁrehensive architecture fpr component

integration (MSDN [CD-Rom], 1997).

Microsoft draws comparisons between the soﬁwa:e compo_nent approach of
COM/OLE and the hardware componenf approach of Integrated Circuits (ICs). Just
as electronic devices can be created by _connectin'g” pre;made and p_re-tested
integrated circuits, compt;nent architectures such as .OILE;'CIOM ailow software
developers to create complex software by éomecﬁng'existing components (MSDN
[CD-Rom], 1997). Given that these components have been well tested and
documented, softwarc developers do not need to re-implement fundamental

algorithms or even consider the implementation of the particular component.

In 1996, Microsoft coined the phrase ActiveX. This concept was intended to form
the cornerstone of the corporation’s “Activate the Internet” strategy. Microsoft drew
together a range of concepts based on OLE and COM technologies and renamed
them under the banner of ActiveX. While, the. ten'n ActiveX covers a range of

objects including Automation Server and Controllers, COM objects, Documents and

43

Containers (Anderson, 1997, p. 9), this thesis concentrates on ActiveX Controls, as

they comprise one form of executable web content. _

5.3. OLE Controls and Visual Basic

Many Visual Basic developers would be familiar with the concept of component

based software development, in particular with VBX and OLE Controls. Component

based software development with Visual Basic began with the introduction of VBXs

in Visua! Basic 3. VBXs allowed software developers to create applications

containing pre-built components and were essentially Windows Dynamic Link -
Library.(DLL) files that conformed to certain architectural specifications. These

components were usually self contained and controlled their own user interfaces.

While the original VBXs were a boon for software developers, they di& have severe
limitations. The specifications to which VBXs had to conform were limited to 16-bit
Windows/Intel platforms. In order to be of use with operating 'éystems such as
Windows NT and Windows 95, a new 32-bit control architecture would need to be

designed (Li & Economopoulos, 1997, p. 174).

This new 32-bit architecture took the form of OLE coﬁtrols. These controls were
considerably more powerful, flexible and robust than their VBX predecessors. In
addition, OLE controls could be used by a range of containers other than visual basic
(Li & Economopoulos, 1997, p. 174). OLE Controls are often referred to as OCXs

as these controls were generally given this file extension.

5.4. Adapting OLE Controls to the World Wide Web
With a surge in the popularity of the World Wide Web, Microsoft attcmptéd to

prepare many of its existing technologies for use with this new medium. In the face

of competition from technologies such as Sun’s. Java pmgramm_m_g language,
_Micrbsoﬁ_made the decision ‘to re-vamp its OLE control techlioldgiés.'in-brdér. o
make them better suited to low-bandwidth Web usage (Li & Economopoulos, 1997,

p 187).

Microsoft recognised that OLE Control-like components could be used to extend the
capabilities of web pages in much the same way as with Visual Basic programs
However, with the low bandwidth environment of the World Wide We_b the need for
lean, efficient controls was even more pronoﬁnced than was éver the case with

Visual Basic applications. This nf_:ed gave rise to ActiveX Controls. -

ActiveX Controls are effectively streamlined. OLE Controls. | While the
specifications for OLE Controls require the control to implement a large amount of
mandatory functionality, _the requirements for Acti\}eX Contr_ols are greatly relaxed. .
In order to qualify as an ActiveX Control,.-.an object needs .only to impleiﬁe':_it _6n_e
mandatory interface (discussed later in this éhapter)_. In addit_ion, it must also be able
to self-register and unregister (also describéd later in this chapter). This effectively
means that any COM Object can qualify as an ActiveX Control, without h#ving to
fulfil higher-level OLE requirements. As a result, ActiveX Controlé are free to
~ implement only the interfaces are absolutely necessary. By freeing developers of the
need to implement unnecessary features, ActiveX controls are better suited to use
with the World Wide Web than previous OLE Controls (Microsoft Corporation,

1999),

ActiveX controls comprise one form of executable web content. Like Java ai:plets,
ActiveX controls can be added to web pages in such a way that they download,

install and execute when the page is viewed with a compatible browser,

45

Microsoft’s Internet Explorer browser has in built support for ActiveX controls.
Plug-ins are available for Netscape that allow ActiveX controls to be used with

Netscape Navigator.

As a specific type of ActiveX Object, controls are always in-process. That is they
execute within the same process as their container application (Anderson, 1997,
pl0). When used as a form of executable web content, a Web Browser such as
Microsoft Internet Explorer acts as the control’s container. Hence, when a control is

added to a web page it executes within the same process as the Web Browser.

5.5. Classifying ActiveX Controls
While they comprise one form of ActiveX object, ActiveX controls can be further
divided into several categories. The main division revolves around whether a control

is classed as visual or non-visual. Several control variations can be seen in Figure 3.

ActiveX Control
(Any COM object)

ActiveX Control |
without visual

ActiveX Control Non-Visual ActiveX Custom Non-Visual
Compliant to OC96 Control ActiveX Control not
OCX Support Fully compliant and . compliant to OC96
designed to OC96 and
Internet Extension .

Figure 3: ActiveX Control Types (Li & Economopoulos, 1997, p191)

ActiveX Controls can then be broken down into two categories — those with a visual

representation and those without. Controls with visual representations are often used

46

to extend the capabilitiés of a user interface. These controls not only manage their
own data, they also maintain their own user i;ifcfface.(Li &. Ec’ohp_mdpo_hlo:s., 1997, |

p192).

Alternatively, ActiveX Controls can exist without any form of user interface. These
controls can be used to implement business logic or perform calculations behind the
scenes. When embedded within a web page, ActiveX controls do not neceséarily

need to be a highly visible element of a web page.

5.6. ActiveX Control Capabilities

ActiveX Controls can make use of a variety of different Application Programmmg
Interfaces (APIs), just as if the control were any other Windows execﬁtablé program.
As a result, ActiveX Controls can access a number of resources using -standard

Win32 functions including local file systems, network connections and the Windows

registry.

‘Unlike with Java Applets, there is nothmg built into the ActiveX Control afchitecture
to restrain the actions of an ActiveX Control once it has begun execution. ActiveX
Ceutrols are subject to operating sysfeni'sccurity mechanisins and may be restrained
using third party tools. However there is nothing in the ActiveX architecture itsclf
that limits the capabilities of a control. As such, controls have effectively the same

capabilities as standalone windows programs.

5.7. Implementing ActiveX Controls
ActiveX Controls are binary objects that conform fo certain specifications.
Historically, compiled OLE controls were given the extension .OCX, although they

are effectively implemented within a Windows Dynamic Link Library (DLL). In

47

fact, Microsoﬂ now recommends tha't the extension DLLI-be used in favour of 0cx
.' (Mlcrosoﬁ Corporatlon, 1999) Not all Wmdows DLLs 1mp1ement ActweX
Controls. Many snmply implement hbrarles of compﬂed code, However 1hose that'
do contain ActweX Controls may 1mplement one or more controls within a smgle _-
DLL ﬁle More detailed discussion of the tools cornmonly used to develop ActweX

Controls can be found in Appendix B.

5.7.1. Interfaces and Methods

ActiveX Controls expose their functionality to the containers that host them through
the methods that they impiement. Related methods are usually gronped together.to
form 'in{erfeces. Each Interface of each COM object residing on a computer system |

has a unique Interface ID (IID).

Each ActiveX Control must iniplement at least one basic interface, comrhorﬂy-kno“m'
as the IUnden-Ihte’rface This interface contams three methods that are wtally

unportant to the way in which COM Objects and ActlveX Controls operate '

The first of these three methods is called QueryInterface(). P_mgl'arn's making use of
a COM objeci can use tﬁ_is method to obtain pointers to other interfaces implernerited
by the object. Client programs should only be able to access the functionality of an

interface by first calling the QueryInterface() method (Li & Ecorlomopoulos, 1997, .

p. 28).

The other two methods of the IUnknown Interface deal with the faot that a COM
object or ActiveX Control may be used concurrently by more than one client..
program. Each interface of a control cootains a refererxce counter that determines
when it is .safe for a control to be discarded from memory. The AddRef() and

Release() methods are used to increment and decrement these counters respectively.

48

When a client obtains a reference to an interface (by calling QueryInterface()) it must
call thé AddRef() method(Li & Economopoulos, 1.99’?,- p. 31). Whgn the pragram no
longer 1"_equires. the éerviccs-of the interface, it can éall the Release() method to
decrement the reference counter. When each iliterfa(_:e is no long_er néedgd, the
control ¢an'unload itself from memory and freé any resources that it'curréntly' holds-

(Ui & Economopoulos, 1997, p. 32).

Many COM objects also support the concept of “late binding”. Early binding is

suitable if a client knows exactly what controls will be needed throughout the entire
lifespan of the client application. In many cases, this is hot practical, particularly in
the case of deyelopment environments such as Visual Basic. The Visual Basic
environment cannot reasonably be expected fo knpw the details of every COM object
it will ever host. Late binding solves this problem By allowing clients to discover the
capabilities of a COM object at run-time rather than compile-time. Late binding is
achieved through the use of a specific interface called IDispatch. Tﬁis interface
allows a client to determine the capahilitiés of an object at run-time .(Li &
Economopoulos, 1997, p. 54). So-called “Dual Interface” objects subport both early
and late binding (by providing an IDispatch interface), although there are significant

performance overheads when late binding is used.

5.7.2. GUIDs and UUIDs

COM technology (and therefore ActiveX technology) relies heavily on the use of
large, randomly generated numerical sequences. The generation process takes into
account factors including the current date and time in order to produce a unique 128-

bit identifier. The result is a randomly generated number large enough that the.

49

33).

possibility of generating the same twice is negligible (Li & Economopoulos, 1997, p.

These numbérs are used to uniquely identify 5. range of entities including COM

objects and the interfaces that they expose.

The terminology used often differs .

depending on what it is that these sequences are identifyihg. When referring to

COM/ActiveX technology several terms and abbreviations are commonly used. The

main terms are summarised in Table 1,

Term

Abbreviation Describes
GUID Globally Unique Identifier Used to describe a 128-bit identifier in
' general terms (not in any partlcular

context).

UUID Universally Unique Identifier | Used to describe a 128-b1t identifier in
" | general terms (not in any partlcular

_ context).
CLSID Class ID | Used to identify COM objects

: (Including ActiveX Controls.
IID Interface ID Uniquely identifies every interface
' implemented by every control. .

CATID Category ID Identifies a component category. Used

to state that a control implements
certain functionality.

Table 1: Identifier Types

The use of such numerical identifiers eliminates the ambiguity that woulﬂ be caused

if such entities were simply assigned names. For example, by using. unique

identifiers, a program can be sure that it is using a particular COM Object rather than

another entity that happens to have the same name.

50

5.8. ActiveX and the Windows Registry

ActiveX Controls rely heavily on the Windows Régistry in order to oper#te Li &
Economopoulos, 1997, p. 46; Axidérson, 1997, p.-35). The Windows Registry is a
hierarchicai repository containing a wi.d.c_ iange of configuration data relating to fhc
operaﬁng system itself as well as installed hardware and software an_d' infonnaﬂon '
regarding users. This registry is organised as an hiemrcﬁical collections of keys, sub-
keys, values and data. The structure of this registry differs siightly depending on the
version of Windows being used. However, at the top of the hierarchy are foui' main
keys; HKEY_CLASSES_ROOT, HKEY_CURRENT_USER, HKEY_,LOC_AL_HACHINE and

HKEY_USERS.

.Each COM object (and therefore ActiveX Control) installed on é_pérticular éﬁmp'uter
sy'stém has at least one entry in that system’s registry. It is a requirement of an
ActiveX: Control that it be able to add and remove its own i'eg_istry information
(Anderson, 1997, p22; Li & Ecénomopoulos, 1997, pp28f34j. This is éccémplished
using two functions implemented within the control’s .DLL file - titled

DLLRegisterSeNer and DLLUnregisterServer.

- ActiveX Controls register themselves under the HKEY CLASSES ROOT key. -
'I'his major key contains a sub-key labelled CLSID. The same registry information
can be found under the HKEY LOCAL_MACHINE/Software/Classes/CLSID.
These two keys are functionally equivalent and can be used interchangeably. Each
object registers its Class ID under this CLSID registry key. Each object can then add
a number of sub-keys describing various properties belonging to the object. Several
CoM objects can be seen registered undcf | the
HKEY_CLASSES_ROOTISoﬁware/CIasses/CLSID key in Figure 4. This figure

shows the 128-bit CLSIDs of several COM objects registered under the CLSID

51

registry key. The figure also shows two sub-keys belonging to one COM Object and

the values and data associated with the first of these sub-keys.

Figure 4: ActiveX Control Registry Information

The registry is vitally important to the operation of COM/ActiveX on Windows

platforms.

5.9. ActiveX Controls and Microsoft Authenticode

ActiveX Control security is heavily reliant on Microsoft’s Authenticode code signing
technology. This section will discuss the underlying technology that powers
Microsoft’s Authenticode. However, it is often programs such as Internet Explorer
that use this technology to provide security in relation to ActiveX Controls.
Consequently, issues relating to the configuration, user interface and application of
Authenticode technology will be discussed in conjunction with Microsoft’s Internet
Explorer Web Browser in later chapters. In contrast, this section will discuss the

underlying concepts behind Authenticode and its relationship with ActiveX Controls.

52

ActiveX Control security revolves around uSers making' an informed decision as to
whether or not a control should be allowed to begin execution. Once a control has
begun execution, the only restrictions placed on it are those prowded by the -

operating system or other third party secunty tools.

This approach differs signiﬁcontly with that taken by the Java 1anguagc. While Java
secks 1o provide security through restricting the actions of applets at run time,

~ ActiveX relies on preventing hostile code from being executed.

Authenticode aims to assure the authenticity of a binary objoct such as an ActiveX
Control by positively identifying the author of t.he. object. It also attempts to assure

integrity by proving that control has not been modified since its release.

Authenticode 1.0 was released in 1996, and can be uoed to si'gn various fom__:ls of |
| executable code including EXE DLL OCX and Java Class files. While
Authentwode can be used to sign a vanety of types of code, it forms the only real
- line of defence agamst mallclous ActiveX controls ano thorc_fore this' technology is

-extremely important in relation to ActiveX. |

5.9.1. Cryptographic Characteristics of Authenticode
Authenticode makes use of several existing technologies including X.509
certificates, PKCS #7 cryptographic standards and 1024-bit RSA keys for encryptlon |

and decryption (Feghhi, Feghhi & Wllllams, 1999, p. 102).

In order to sign code with Authenticode, developers must first generate a key pair
and apply for a suitable certificate from a Certificate Authority (CA). In order to
obtain a certificate, applicants must submit various personal details. Th.e' certificate,

in effect binds this personal information to the developer’s publio key. Applicants

53

must also agree to a pledge étating that they will not deliberately distribute code that

s hannﬁll or malicious in nature.

- 5.10. Securnty Concerns Surroundmg Actlvex

. The use of ActlveX Controls technology does gwe rise to certain secunty concems

As this chapter has lnghhghted, ActweX Controls are very powerful in. that they
executc directly on hardware and can make use of varlous llbranes and APIs |

Additionally they are not bound by any form of sandbox—hke runtlme r_eshnct;ons.

This thesis contends that there are very real security concemns surrounding the use
ActiveX controls as a form of executable web content. This section describes the

security concems identified by this thesis.

5.10.1. ActiveX Controls Can Be Very Powerful |
ActiveX Controls can be very powerful in that they caﬁ make use of any number of
libraries and APIs.

5.70.2. Actlvex Controls Do Not Execute wuthm a Restrlctlve
Environment

In contrast to Java Applets Acnch Controls are not designed to be cxecuted within
a restrictive run-tlme environment (CERT, 2000c). Once a Control has boon
allowed to begin execu_tioo, it is not restrained by ahy security measures other than

those implemented by Operating Systems or third party products,

5.10.3. Reliance on Authentication
ActiveX Controls rely heavily on users being able to make decisions as to whether or
not the control should be allowed to begin execution. Once a control has been -

allowed to begin execution_,. it can only be restrained through OS or third party

controls. As a result, it is imperative that users can make a decision concerning the
trustworthiness of the piece of code.” This chapter has discussed the role played by

M_icrosoft’s Authenticode code signing teehnology in'relation to ActiveX Controls.

ThlS rehance on aumentlca‘non does glve rise to certam concerns. Firstly, there isa

risk that users may not fully understand the consequences of allowmg untrusted code -
to execute The is often a tendency for users, when presented with a dlalog box .
l_'eques_nng pemussmn for a Control to execute_, to allow the action s1mply to dlsmlss
the dialog box and continue. Often the consequences of allowing unn-usted code to

execute are not fully considered.

Additionally', reliance on authenﬁcaﬁon is a largeljr re-ective stance. One aim of |
Microsoft’s Authentlcode technology is to allow legal action to be taken - against
individuals or orgamsatlons that 31gn mallcmus eode However given the dlﬁicultxes
and expense mvolved w1th takmg legal action .agamst such mdlwduals or
orgamsatlons, oﬂen comphcated by geographm pohtlcal and Junsdmuonal

boundanes such are- actlve approach may not always be practlcal

In an eﬁcample highligh_ting the tian'gers of Active_X’s reliance en trust, The US Dept.
of Energy sponsored Comj:_u_ter Incident Advisory Capabitiﬁ (CIAC) reports that in
2001, the ceﬁiﬁdng authority = Verisign mistakenly. jasued two “code siéning
_ certificates to an individual believing that the pe_rson in qnestion nvas an employee of
the Microsoft Corporation (CIAC, 2001). The certificates were issues the 26 and
30" January, 2001. The CIAC advisory issuing the warning was dated 22™ March,

2001.

Such certificates could have allowed the atiacker to sign code including ActiveX

Controls using the name “Microsoft Cotporation’_’. The code would not be

56

automatically trusted, but by displaying the common name “Microsoft Corporation™
the attacker could effectively be able to conduct a Social engineering attack by
convincing a user to allow the code to begin execution, As stated in the advisory |
published by CIAC (2001), “The danger...is that even a secuﬁtjr-c;onscit:-tus user -
might agree to let the co.ntent execute, and might agree to always trust the bogus

certificate”.

When the mistake was discovered, Verisign revoked the certificates by adding them
to the organisation Certificate Revocation Lists (CRLs). However the window
between the issue of the certificates and their subsequent revocation could have
given the attacker a substantial opportunity to use the certificates in a malicious
manner. Additionally, as Versigin certificates did not specify a location for the CA’s
revocation list, web browsers were not able to verify the validity of the certificates

once they had been revoked (CIAC, 2001).

Trust can be a complicated concept. While it is natural for users. to associate the
level of trust that they might have in a web page with the level of trust that they place
in executable web content embedded in that page, such assumptions could be
dangerous. For example, the author of a web page might not necessarily be the
author of the controls used on that web page. It is not uncommon for web page
authors to make use of third party controls. While the author of the web page might
trust that the controls are free of malicious code, this might not be the case.
Similarly, users of that web page may not draw a distinction between the page itself
(which they may trust) and the executable code used on that page (which may come
from a third party). Such users might not notice or be concerned about the fact that
~ the common name in a certificate might not be the same as the common name of the

site on which that code is hosted.

56

5.10.4. Controls Run with User’s Permissions

All ActiveX Controls execute in-process; that is they execute within the same
process as their parent container. When Controls are used in conjunction with web
pages, this container is often a web browser such as _Internet Exﬁldrer. As this
container applicaﬁon executes within the security context of the current user, so too
does the ActiveX Control (CERT, 2000c). As a result, if the current user has a high
level of privileges so too will any ActiveX Control invoked by that user, If a user

‘has access to various files, network resources so too will the ActiveX Control,

Additionally, if a malicious control is allowed to perform some kind of attack, any
audit logs may identify the user that invoked the control as the source of the attack.

As such, an unsuspecting user may be highlighted as the source of an attack.

5.10.5. Malicious Controls

There are definite concerns that ActiveX Controls could be used for malicious
purposes. The most pressing concern in this area is that ActiveX Controls could be a
very convenient mechanism for the delivery of a Trojan horse to a system or as a
convenient delivery mechanism for a more conventional virﬁs. As mentioned earlier,

the distribution model used by ActiveX Controls

5.10.6. Exploitation of Legitimate Controls

In some cases it might not be necessary for an attacker to implement a malicious
ActiveX Control. Attackers may be able to exploit vulnerabilities in existing
controls using data driven attacks. Controls can be marked by their authors as being
‘Safe for Scripting’. In effect, authors are claiming that their legitimate, non-

malicious controls cannot be exploited by attackers using data driven attacks.

57

However this provides little assurance for control users. Organisations such as
CERT have released a number of advisories that warn of controls that are incorrectly

labelled as ‘Safe for Scripting’ (CERT, 199%b; CERT, 2000c; CERT, 2001).

5.10.7. Lack of Auditing and Management Tools

Windows does not have a log dedicated to downloaded code such as Java Applets
aﬁd ActiveX Controls CERT (2000). Windows NT/2000/XP could be configured to
audit modiﬁcations to certain registry keys (such as
HKEY CLASSES_ROOT_CLSID), however the volume of entries in this key could

result in the generation of a large volumes log entries.

5.11. Summary

ActiveX is a term introduced by Microsoft to describe a variety of binary objects, all
based in some way on COM/OLE technology. Of all the different types of ActiveX
Components, this thesis is only concerﬁed with ActiveX Controls, as they comprise

one form of executable web content.

ActiveX Controls resulted from Microsoft’s attempt to adapt OLE Controls to use
with the World Wide Web. In a low-bandwidth environment such as the World
Wide Web, it is necessary that controls are as lean and efficient as possible in order
to reduce download times. For this reason, ActiveX Controls do not need to
implement as much mandatory code as full OLE Controls. ActiveX Control
developers need to implement very little mandatory code and are therefore free to

implement as much or as little code as is necessary to solve the problem at hand.

ActiveX Controls can be classified as either visual or non-visual, Visual controls are

often used to extend the user interface of their client Non-visual controls are Well

58

suited to implementing business rules and logic. ActiveX Controls can make use of a

variety of APIs and have essentially the same capabilities as standalone executable

programs.

Unlike Java Applets, ActiveX Controls are not restrained by any restrictive nméﬁxne :
environment. ActiveX Control security depends upoxi u_sers. making an ihfgrmed
decision as to whether or not a control should be allowed to begin execution.
Microsoft’s Authenticode code signing technology aims to prove the authenticity and
integrity of ActiveX Controls as well as .DLLs, .EXEs, .OCXs and .CAB files and

Java Applets.

ActiveX Controls and COM Components in are tightly integrated with both the
Windows family of operating systems and Microsoft’s Internet Explorer Web
Browser. As a result, many of the security issues relating to ActiveX Controls will

be discussed in relation to both Windows and Internet Explorer in later chapters.

59

6. The Role of Web Browser and Operating
System Level Controls

60

6.1. Overview

This chapter examines the role of web browsers, operating systems and third party
tools in controlling the actions of executable web content. While this thesis has
argued the importance of security mechanisms that are integrated into executable
web content technologies, this chapter highlights the importance of a layered of .

defence against the possibility of malicious web content.

6.2. Web Browser Issues

As executable web content technologies are closely integrated with web browsers it
is important to consider the role of these applications in the execution and control of
such code. While many issues make it difficult to get meaningful statistics on web
browser usage, much of the web browser market is currently dominated by
Microsoft’s Internet Explorer product (BrowserNews, 2002; NUA Internct Surveys,
2002). However, there are a nuriber of other browsers that also deserve some
attention. Browsers such as Netscape, Mozilla and Opera still have a loyal following

and it is important not to overlook these products.

6.2.1. Microsoft Internet Explorer

Microsoft’s Internet Explorer product currently dominates the web browser market
(BrowserNews, 2002). While it is acknowledged that Intemet Explorer does suffer
from a number of vulnerabilities and that such vulnerabilities continue to be found,
this thesis limits its examination of this browser to the security mechanisms that it

implements, particularly as they relate to issues involving executable web content.

6.2.2. Zones
Internet Explorer employs a concept of zones in order to classify web sites and pages

and handle various forms of content accordingly. Internet, Local Intranet, Trusted

61

and Restricted comprise the four zones provided by the browser and a set security
controls can be applied to individually to each zone. Among these settings are

options dealing with executable web content such as Java and ActiveX.

ActiveX related settings include options regarding the download and executioh of
signed and unsigned controls. One of the majér CONCerns régarding exe_cutablé web
content raised in this thesis is that such the execution of such code i; largely
transparent to users. These web browser settings can alleviate this concern to some
degree as the browser can be configured to prompt users for decisions regarding the
downloading and execution of ActiveX Controls. Such prompting can howcﬁer be
seen by users as an annoyance, particularly as some websites might contain 2 number

of ActiveX Controls, which would each prompt the user for a decision.

Zones can be configured to allow or disallow the downloading of both signed and
unsigned controls, or to prompt the user for a decision. While the presence of such a
signature can provide some degree of trust it does not completely guarantee that a

control is non-malicious and safe for execution.

Another of the ActiveX related settings implemented by Internet Explorer determines
the behaviour of the browser whén confronted with controls that are ma:ks as being
“safe for seripting”. This is intended to protect against situation in which an attacker
might use scripts to control existing ActiveX controls and use them in a hostile
manner. In this type of attack, the control itself is not malicious, although the
attacker tries to use the control in a manner that is. By being marked as safe for
scripting, the control is effectively claiming that it cannot be exploited in this

fashion. The “Safe for Scripting” security setting offered by Internet Explorer

.62

governs whether such controls are initialised automatically, prevented from

initialising or whether a user prompt is issued.

There are also a number of settings that govern the way in which Intemet Explorer
interacts with its Java Virtual Machine (JVM). A mumber of pre-defined security
levels can be invoked for Java Applets, or settings can be customised.- As the JVM
has the ability to restrict code once it has begun execution, the list of custom settings
offered by Internet Explorer are quite extensive when compared to the éettings
controlling ActiveX Controls. The browser can work in conjunction with tﬁé
underlying JVM in order to conirol capabilities of Java Applets, whereas with
.ActiveX controls the decisions revolve around deciding whether or not a control

should allowed to begin execution.

While the ability to classify web pages and sites and configure a 1ange of secuﬁty
settings is a positive attribute of the Internet Explorer browser, the effective of such
an approach does rely heavily on its configuration. An administration kit from
Microsoft is available which allows administrators to configure these settings across
a range of individual insta]lations in a cmisistént manner. More detail regarding

Internet Explorers Zone Settings can be found in Appendix C.

6.2.3. Third Party, Internet Explorer Based Browsers

There are a number of web browsers based on Microsoft’s Web browser engine that
forms the basis of Internet Explorer. The majority of such browsers offer identical
security features to Internet Explorer and will not be discussed in detail in this thesis.
- Some of these browsers do differ slightly in terms of cookie handling and other such
functionality and there is the possibility that such browsers may have design flaws,

implementation flaws and other vulnerabilities not found in Internet Explorer.

83

However it is not the intention of this thesis to examine Internet Explorer based

browsers in detail.

6.2.4. Netscape/Mozilla

Despite the early popularity of the. Nétscape ‘web browser, Mic_rosoﬁ’.s Internet
Explorer currently enjoys dominance on Windows platforms (BmwsmNgﬁs,'2002;
NUA Internet. Surveys, 2002). However browsers other than Internet Explorer are

used on Windows platforms.

It is important to note that current versions of the Netscape browser are actually
based on the Mozilla Web browser. As a result Netscape versions 6.0 and higher are
~ quite different to earlier version of thscape. This thesis will discuss Netscape and

Mozilla as being essentially one produet.

Netscape and Mozilla are available for several platforms including Windows,
Macintosh and Linux. Mozilla does support Java, although it does not natively
support ActiveX Controls. However plug-ins did exist that allowed earlier versions
of Netscape to use ActiveX Cpntrols. These plug-ins also work with Mozilla and
another project to add ActiﬁeX Support to the browser (albeit in a rather limited

fashion) is currently underway (Lock, 2002).

As a.result of Mozilla’s lack of integrated ActiveX Control support, the browser’s
executable web content security is largely limited to sandbox restrictions enforce by
the Java Virtual Machine. The browser does have an option to enable or disable
JavaScript and there are some cookie management features. While the cdncept of
Internet Explorer-likc zones is not as important in a browser like Mozilla that do_es

not support ActiveX, the lack of such features does limit the user’s contro]l of

JavaScripts. The ability to enable or disable JavaScript on a site-by-site basis would

be a welcome addition.

6.2.5. Opera |
‘Opera is another alternative to the Internet Explorer brbwéet. Like Mozilla, Opera is
. available for 2 number of platforms i:iclu.ciing.W.iﬁd_(')ws, Mﬁc_intosh aﬁd Linux. As a
result of this cross platform nature, Opera alsﬁ does not support ActiveX Controls,
Hence cxecutable web content security is largely enfofced by the Java sandbox. THe
browser provides simple options for enabling and disabling Java and JévaScript, As
with Mozilla, this approach lacks the ﬁn_e grained control of web elements such as

JavaScripts that can be achieved through the use of Internet Explorer’s Zones.

6.3. Operating System Issues

This 'secﬁon will endeavour to highlight the importance of operating sjrstem level
controls when dealing with executablé web content, This thesis presents the view
that operating system level controls are an important part of a'layered defence when
dealing with pqssibly.malicious executable web content technologies,_although they

do not provide a complete solution to the problems raised.

This thesis will demonstrate that operating system level controls alone do not address
the problems associated with malicious code, as there is not one standard set of
security functionality that is; provided by all operating systems that might encounter
such code. The controls offered by Windows NT/2000/XP are very different to those
offered by Windows 95/98/98SE/ME. These are quite different again when
compared to Unix and Linux machines and Macintosh systems. As these operating
‘systems do.not implement a standard set of security features there is most definitely a

role to be played by executable web content technologies themselves.

65

This chapter will focus on Windows NT/2000/XP and examine the security controls
that are provided by this family of operating systems. A more detailed discussion of

this family of opcmﬁng systems can be found in Appendix D.

6.3.1. File Permissions
Unlike operating systems such as Windows 95/98/ME, Windows NT!ZOOOD(P :
provides quite robust file permission functionality. Such ft'zml:t'ionality'is. avaiiable '

when the NTFS file system is used.

File permissions prevent users from interfering with files owned by other users.
Under the Windows NT/2000/XP architecture, executable web content executes with
 the security context of the current user. Therefore file permissions could be used to
prevent malicious code executed by one user form interfering ‘with the ﬁles
belonging to another user. However such controls would not prevent the malicious
code from interfering with files owned by the current usér._ As such, some benefit
may be gained may be gained from the use of file permissions when mulﬁple users
have files on the client machine or network shares accessible on the client machine.
This assumes that the NTFS file system is used and that file permissions have been
set, There is little protection to be gained from operating sy_sfem level controls on
files belonging’ to the current user as any malicious _c.ode would be executed with the

permissions and privileges associated with that user.

6.3.2. Cryptographic Separation

Windows 2000 and Windows XP offer an encrypted file system that can be used to
encrypt files. This prévents information being disclosed in the event of the theft of a
hard disk, or by the attacker booting another operating system and using tools such as

NTFSDos to gain read access to NTFS volumes. However '_such measures would be

66

incﬁ'ectivé. against malicious code such as ActiveX Controls as such code would
execute with the permissions of the current user. This user would be able to decrypt
ﬁle_frm’ﬁ the ﬁlé system. In thlS sénsé, a uanspafcnt, cncf}ﬁted file systelil such'a.s
the one offered by Windows 2060 and XP will pro.vide no more protection than that
o providz_:’d by ﬁlg permission mecha_nisms. M_alicibus ActiveX Coﬁh‘o_l_s Qmﬂd not be)
able to decrypt files beionging to other'uéers, how't.avcr'ﬁle permiss'i.ons could also be -

used to restrict such access.

6.3.3. Loggmg and audltlng
Windows NT, 2000 and XP prov1de the ablhty to log a range of different events,

* including file accesses and uses of certain pnv1leges. Three main logs are managed

by these operating systems; a system log, an appl'ication log, and a security log.

6.3.4. Loggmg ActiveX Controls

Operating Systems such as Windows NT/2000/XP pr0v1de important Ioggmg and
auditing features, These features can be used to record file accesses, successful and
u'nsucceésﬁﬂ uges of privileges as ﬁell as errors and warnings. This auditing is.
performed by Security Reference Monitor and the Local Securty Authority
components (See Section 13.6, in appendlx D) Wmdows 95/98/ME does not

include such ﬁ.mctlonallty

The addition and removal of A;:ﬁveX Controls could be logged by auditing accesses
to the HKEY_CLASSES_ROOT key or the
HKEY LOCAL MACHINE/Software/Classes/CLSID key. However, given the
large nm_nbef of keys placed under these keys, sﬁch auditing maf.;' impose a

significant performance overhead.

67

Some utllltles are avallable that allow users to view reglstered ActiveX Controls_
mcludmg the OLEView tool - from Mlcrosoft

(h_tt_p { mlerosoft com!Co gsource olev1ew g_sp#OLEVIewer) However,
- due to the extenswe use of OLE and COM technology wlthm the Wmdows famlly of '

_ operating systems, many such tools dlsplay large numbers of objeets many of Whlch .

are operating system components raﬂ1er_than installed web content.

It would be advantageous to be able to record the addition and removal of executable
web content, in particular ActiveX Controls, in an Internet specific log. While
logging and auditing are largely re-active measures, sucha log would be e. welcome

addition,

6.4. Third Party Tools

Whlle it is 1mportant to consnder controls 1mplemented by executable web content
technologxes themselves as well as operating System level controls, tlnrd party tools
can also play an nnportant role in protecting against mahel_ous e'secutable web_
content, This section will examilie the role of toole such as personal firewalls .and.

- web content filters.”

6.4.1, Anti-Malware Tools
(Of all the types of third perty_ security tools oxentioned in tlﬂs see._tion, Anti-virus -
~ tools are probably the most well known. Howeirer this thesis will.use lhe_ term Anti-
Malware software to describe sueh products in otder to reﬂect the fact that_mod’em
anti-virus soﬂ:ware protects againsl more than jusl viruses. Such products typically
provide protection against, viruses, Trojans, worms and in sorile cases malicious web

content in the form of Java applets and ActiveX Colltrols.

68

6.4. 2 Personal F|rewalls

E Personal Frrewalls are snmlar to network ﬁrewalls in that they can apply ﬁltermg to
network cornmumcatlons ‘However,- personal ﬁrewalls are sofcware products that
operate on c_llent machines. Some personal ﬁrewalls, mcludmg Norton Personal - |
Firewall and Outpost can be used to filter out Java apptets and ActweX Controls, or
at least prompt users for decisions as to tvhether or not these types of : code should be

allowed to begin execution. |

It is important to note that ActiveX _Controle in particular execute within the same
process as the web browser that is hosting it. While many personal firewalls apply :
controls on an application-by—appl.ication basie,le malicious ActiveX Control aeting
within the process of e web browser, would appear to thet personal firewali to be the
web browser itself. As such; users rnay elect to trust the web browser, yet malicious
code in the t'orm of an ActiveX Control could exploit this trust and perform

. malicious actions.

6.4, 3 Web Content Frlters

Web content ﬁltermg tools can be used to guard against malrclous exeeutable web
content as well as for a range of other purposes ~ Among other thmgs, web content
filters can be used to ﬁlter out Java applets and Active Controls Some tools
| implement lists of trusted an un-trusted sites and allow a policy to be implemented
accordingly. Such a policy might include the filtering of Java applets and ActiveX

Controls.

69

Some tools such as Naviscope (2001) and Web-washer (2002) operate as personal
proxy servers. Like their more fully fledged relatives, personal proxies operate as
intermediaries between web clients and web servers. However, personal proxy

servers reside on the same machine as the web client.

The use of such trusted and un-trusted lists is similar to the concept of zones
implemented in Internet Explorer. Effective use of such zones in Internet Explorer
would render such third party proxies redundant. However, such tools can be useful
when browsers without the functionality of Internet Explorer’s zones are used. Such
proxies can also be useful when multiple browsers are installed on the one machine.
A personal proxy server could be used to apply a consistent executable web content

policy despite a particular user’s choice of browser.

- 6.4.4. Cryptographic Tools

Third party cryptographic tools could provide some protection for sensitive files
from malicious web content. Uniike a transparent, encrypted file system, the use of
third party software to manually encrypt and decrypt sensitive files could prevent

theft of information by code such as malicious ActiveX Controls.

6.5. Summary

This chapter examines the role of web browser, operating system and third party
tools in protecting against malicious web content such as Java applets and ActiveX
Controls, While these layers of prot_eelion are significant and play an important role,
they do not diminish the need for controls to be implemented by the technologies
themselves, Technologies such as Java may be used across a range of platforms,
operating systems and web browsers. While ActiveX Controls are more Windows

oriented, they can also be used across a range of web browsers and Windows

70

Platforms. In both cases there may be a very wide range of third party security tools

in use.

This chapter highlights one of the main distinctions between Java and ActiveX.
ActiveX’s relianée on code signing and lack of sandbox-like run-time environment
increases the reliance of users on browser, OS and third party level controls.
However as such code executes within the security context of the current user, files

and other resources belong to that user may by at risk,

7

7. Comparison and Evaluation of Security
Architectures

72

7.1. Overview
| Technologies such as Java and AcﬁveX fill a similar niche. They both provide a
- mechanism whereby web developers can extend the capabilities of web pages and
'_work around limitations of HTML. While this is not the only application of these

technologies, it is one area where there is a definite overlap between the two,

1t is true that both Java and ActiveX have a very different design philosophy, security
architecture and method of implementation, however comparisons between the two -
are inevitable. The terms Java and ActiveX are often used in the sﬁmc context,
Where people refer to one, they often make mention of the other. When Antivirus
software provides functionality to verify one it usually does so for the other as well.
When a personal firewall allows the blocking of one it usually does so for the other

as well.

This chapter compares, contrasts and comments on the security architectures, models
and implementations of these two technologies. In particular, it pays attention to the
very different approaches to issues of security offered by the two technologies. It

contrasts the sandbox approach of java, with ActiveX’s reliance of code signing.

7.2. Evolution Vs Revolution

Previous chapters have made mention of the design philosophies behind Java and
ActiveX and the origins of both of these technologies. ActiveX is the result of an
evolutionary process that began with VBX controls and OLE objects. While existing
languages influenced the design of the Java language, it was the result of a specific

design process rather than an evolution from previous products.

73

This allowed the designers of the Java language to consider code security as one of
the major design goals of the language. While other issues such as portability and
robustness were aiso important design considerations, it was quite unusual for a
security model such as the one implemented by Java, to be considered at such an
early stage of development and so ﬁghtiy integrated into the language. In contrast,
ActiveX evolved from an environment in which code integrity and security was not

such an important issue.

7.3. Security Models Vs Trust Models

As mentioned in previous chapters, Java employs a hlghly integrated security model
that encompasses both authentication and authorisation. In the later versions of the
Java language, authentication can be achieved through the use of digital signannes

and authorisation can be enforced by the Java sandbox.

In contrast, ActiveX relies on verification of integrity and authenticity through code
signing. ActiveX lacks any raethod to enforce controls over what a control can do
6nce it has been allowed to begin execution. Operating system controls can offer
some protection particularly when multiple users share the same machine and
controls are enforced via file permissions. As the ActiveX control operates within
the security context of the user that launched the browser. Additionally, third party
products such as encryption tools may offer some protection against theft of
information attacks that could be performed using ActiveX controls. However the
fact that ActiveX technology does not provided any integrated mechanism to control

the activity of controls is a major concern.

It could be argued that stand-alone executables do not provide an in-built security

model and that therefore this omission is from ActiveX techﬁology is not an

74

important issue, However this thesis argues that executable web content is designed
to integrate seamlessly with web pages and is often quite transparent to users. This
removes the need for a user to consciously and explicitly, seek oﬁt, doWhload and
execute code (which.could possibly be malicious in nature). As a result, this thesis
argues that there is some responsibility for executable web content teéhnologies to
imple:ﬁent controls that can restrict the actions of a piece of code. Java makes.'a
well-intentioned, reasonable attempt fo provide such a mechanism througﬁ is

sandbox approach. ActiveX makes no such attempt.

While Java’s sandbox approach does attempt to provide a safe, restricted run-time
environment for executable web content, its developers have, in the past, struggled to
define the boundaries of this environment. As mentioned in previous chaptérs,
Java’s security model has undergone significant changes. The initial release of the
.T ava language saw a largely all-or-nothing security model under which all local Java
applications were completely trusted an allowed to operate without restriction
whereas remote applets were subject to significant sandbox restrictions. Since this
initial release there has been a distinct move away from this ail-or-nothing approach,
to a more fine-grained, policy driven arrangement. The latest versions of t_he

language allow sandbox restrictions to be tailored for specific épplets based on a

security policy.

While the developers of the Java language should be commended for firstly
designing the language with a tightly integrated security model and then for refining
this model, there are concerns that the pblicy driven approach may be self-defeating
in its complexity. Referring to the poliéy driven approach of Java 2, Schneier (2000,

p167) states “This works much better, but has proven too complicated to use”.

75

Commentators such as Bruce Schneier (2002b) have raised a number of concerns
regarding code signing as a means qf protection against malicious code. Schneier
(20025) cautions, “Remember, digital signatures provide accountability, not
profection.” and also makes thé point that “Code signing can't protect you if you can't |

figure out whom to trust™.

7.4. Implementation Issues, Bugs and Vulnerabilities

This is one area of concern, particularly with the Java language. As noted earlier,
there are a number of Java Virtual Machine implementations from many vendors.
While all of these implementations should conform to the Java specifications, it is
reasonable to expect that there will be a number of vulnerabilities that could

potentially be exploited.

Not surprisingly, since the release of the Java language in 1995, a number of
significant vuIneraﬁilities have been found. Sun Microsystems maintains a
chronological list of such bugs (Sun Micrqsystems, 2002). Examining this list tends
to emphasise the fact that different implementations will have different

vulnerabilities and flaws,

The most recent example documented on this list describes a possible attack to
escalate the privileges of a piece of Java code by exploiting a vulnerability in the
Bytecode Verifier of the Java Sandbox. However privilege escalation attacks are not |
the only type of problem documents. Attacks against confidentiality and availability

of information and systems can also be found in this list.

76

_':-7 5, Executable Web Content Secursty

s 'In a paper txtled A Companson berween Jrrva and ActweX Securzty, Hopwood' o

': (1997) asks the questlon “Would AchveX or. .Iava be secure 1f all unplementanon

| h .-bugs were ﬁxed ” Whlle the secunty archttecture of Java m parhcular has changed o

- '51gmﬁcantly smce I-Iopwood wrote thls paper, 1t remams an mterestmg questlon as lt o

L hlghhghts the drfferences between the derngn phllosophy and seeunty archltectures

of the two technologles

7.6. Summary | __
This chapter compares and contrasts the approaches taken by the developers of the N
_. Java and ActtveX technolognes It builds on prevxous chapters and argues the ments
_. and weaknesses of the approaches taken by these technologles to the dlfficult task of -

executable web content secunty

_ 'Thls the515 argues that there are mherent nsks mvolved w1th the pnncnple of -
'attaohmg exccutable code to web pages in such a way that they download and
;execute transparently on’ chent systems It 1s therefore 1mportant to address these '

_':ssues and consnder the secunty models 1mplernented by technologles such as. Java _.

“and AcuveX

' _This chapter argues that the approach taken by the Java language at least attempts to N
-address the mherent nsks assoclated wﬂh executable web content, whlle ActweX’)

rehance on. d1g1ta1 s:gnatures does httle to address these concems.

77

8, ResearchQueStiO"_lS"

78 -

_-'8 1 Overv:ew

-Tlns chapter provrdes answers to the research questrons rdentrﬁed m Chapter 2 It L
_provldes and analysrs of chapters presented m tlus thesrs and auns to provrde clear, -

o concrse answers to these quesnons

_':8 2. Does executable WWW content pose a S|gn|t' cant

- : ’setcurlty threat to client machlnes?

: Tlus thesrs argues that there are mherent nsks assocrated w1th the use of executable_
"~ web content technologles such as Java and ActlveX Secunty problems assoclated]

w1th untrusted potentrally mahcxons code have been well documented over a numher_

. of years However wrth most forms of executable code, there is a conscrous dCCISIOIl. -

: _. on the part of users to ﬁrst seek out download and then execute the code Tlus 1s not

the case w1th code embedded in web pages

' Web users w111 not necessanly be aware that a web page contams executable code o
before v1srt1ng that page Tlns eombmed w1th the fact that such code could be .
-downloaded and executcd in. a largely transparent manner, removes much of the'

. .;._- decrsxon makmg from the user Co

. 8 3 Do the seeurlty mechamsms offered by these
- _':__'technologles provude a suntable Ievel of protectlon?

' Both of the major forms of executable web content drscussed in tlus thes1s rmplement "
= some form of securlty or trust mechanlsms However there are stark dlﬂ'erences

. between the _approaches taken by Java and Acn_veX.)

Java s sandbox approach acknowledges some the concerns ralsed by the use of o

) executable web content by provxdmg a mechamsm w1th whrch to restnct the") |

79

_ _capablhty of a piece of code. This sandbox approach_ has a number of positive
. attrlbutes o '

. Java has been de51gned as an archltecture neutral language It 1s mtended that applets _::

© canbe wntten once and then executed ona number ot' vel'y drfferent platt‘orms The“; E

. 'Java Vrrtual Machme is the cornerstone of Java portabrhty As such 1t would be -

" mappropnate for the Java language to rely on operatmg system or other platform
_ speclﬁc controls The large vanatlon in securlty controls offered by varlous":
_operatmg systems necessrtates a secunty model that is mtegrated mto the language :

1tself

In contrast ActiveX :ls limited to Windows platforms Desplte thls ActtveX'
technology cannot rely on a certain set of operatmg system secunty features bemg -

present. The Wmdows 9x product lme and the Wmdows NT/2000/'XP llne prowde a :

- very drﬂ‘erent set of secunty funeuonahty As such the ActweX technology can not o

. _rely on the presence of certam OS level controls For thrs reason, thls thesrs argues".
_that ActrveX provrdes msufﬁcrent protect agamst the threats ratse by the use of such
code ' | | . |

- 8 4., Are there srgnlﬁcant dlfferences |n the securtty
-mechamsms provuded by popular WWW browsers?

| The srgmﬁcance of tlns quesuon has changed somewhat durmg the wnting of tlns:"-
-thesrs The current dommance of Mrcrosoft’s Internet Explorer web browser has' '
reduced the mportance o_f t_hl__s_q_ucsuon as .1t_ is v_mtt_en. However tlre 1ssue of web

browser security mechanisms is still an important one.

Internet E:tplorer’s concept of securi_ty Zones 1san1mportant step. ‘This featire does

allow the implementation of a security policy in that web sites can be classified and

80

| -that applrcatron level controls can be apphcd dependmg upon thls classrficatron
. _ '-:When Intemet Explorer nntrally mtroduced the Seeunty Zone functronalrty, 1ts mam '_ .

o competrtors drd not have any eqmvalent featurcs

'_-'_-'I'here are some sxgmfrcant drﬁ'erences in the execntable web content securrtylﬁ' - '_ _

- -:__'functronahty prov1ded by the current popular browsers Tlus is to be expected as :
N _-:there are some qulte fundarnental drtferences in terris of the types of exccutable webi-_-.-_

) content supported by such browsers Intemct Explorcr s support for ActweX does:.::

necessxtate the concept of zones that is supported by the browser Browser s such as_'- _

| Mozilla and Opera that do ‘not support ActiveX (natrvely) can afford to rely on the: .-
sccunty features offercd by thc Java sandbox approach for executable web content
' secunty However, Internet Explorers Zones concept spread beyond ActrveX and.-

allows users mcreased control over scnpts and cookres ;

' The use of thrrd party tools can. play an nnportant role in- enforcmg a consrstent-'_- '

- _executable web content polrcy across a number of web browsers Tools such as

_ pnvacy enhancmg proxy scrvers can be useful when mulhple web browsers arel_z_f

_ prescnt on one maclune By usmg tools such as these personal proxy servers,.users' '
- can enforce a consrstcnt polrcy regardmg exccutable web content such as Java and _'

I.ActweX and scrlpts as well as cookres and banner.advertrsements regardless of the ' |

security features provrded by wcb browsers

8.5. Are there srgmf‘ cant benefi ts to be gamed from
using secure desktop operating systems in
conjunctlon with WWW applleatlons?

Tlus thesrs argues that operating. system level controls are an uuportant factor when' '
considering executable web content technologles I-Iowever as stated earlrer, 1t is the '

posrtron of this thesrs that operatmg system level controls on. theu' own’ are not

a1

. sufﬁcrent, rather that they play an 1mportant role in terms of defence in depth As

argued earlrer, technologtes such as Java and ActtveX cannot assume that a certam

- set of operatmg system level controls wrll be present.{:._ ActtveX controls, wlnle'.

- -.'_’:__largely lrmted to the Wmdows platform could be expected to execute on Wmdf"_ws o

: -’slgx systems or Wmdows NT!ZOOO/XP systems The srtuatton 1s ore _complex.m'gi_' o

- terms of Java applets whrch could be expected to operate on Wmdows and_f._'- :

-Macmtosh systems, as well as Lmux and Umx vanants

: _ActlveX’s relrance on dlgrtai srgnatures and assurances of authentlcrty and mtegnty._. 5 .
-_result in a strong need for operatmg system levcl controls As ActlveX controls

' operate m—process w1th reSpect to the web browser used they operate wrth the same"':_'

_ ."pemnsslons as the user of the operatmg system As such, when multlple users share

s systems, operatmg system le\,'el permrssrons are necessary to separate resources

| beIOngmg to these users -Whlle a mahclous Actlvex control may be able to aﬁ‘ect _: B

i the resources to wlnch the partrcular user has access, 1t should not be able to aﬁ'ect '_ o
B '_ob_]ects belongmg to otherusers [o L
:__'__Systems such as Wmdows 9x machmes are more problemattc as far as ActweX': -
controls are concerned A lack of st:rong operatmg system level re_sourc_e penmssrons" o
B means that 1f allowed to begm executwn, a control wrll effectrvely have unresmcted_'.": ;

.'access to all of the resources avaxlable on that machme In contrast, Java applets_f:__': .

would Stlll be conﬂned by the rcstnctlve run—ttme envrronment of the Java Sandbox . _

It | is the- posrtton of tlus thesrs that operatmg system level controls are of great' -'
. 1mportance when cons1der1ng the possrblllty of mallcrous executable web content,'3. '
| _but as part ofa defence in depth approach Tlns thesxs contends that controls are a

.necessary at the level of the technology 1tself as well as thc operatmg system level :

o 'The controls unplemented by the technologles themselves are often closely

"mtegrated w1th the apphcatton level conlrols such as Intemet Explorer 8 Secunty.-:

Lo :__':Zone concept

: Thrs chapte:

xammes re-v151ts the research questlons 1dent1ﬁed m Chapter 2

. iPerhaps th.lS chapter should close w1th a statement made by Bruce Schnexer (2002a) _

R "‘Moblle code 1s very dangerous but 1t's here to stay For mobrle code to sumve, 1t' -

should be redesrgned w1th secunty as a pnmary feature » 13. '

83

9. Conclusions and Future Research

91, ()_\nervie\n_;r

' This chaﬁtet pfbvide's_- s_d'me conclﬁdihg rcm'afks"_ﬁnd suggests lp'c;_szs_ible . areas for
futurc Ircse'arch. A ﬁuinber of such areas w_e.re Jidemiﬁéd 'dﬁrir_ig the preparatlon of
_ thls ﬂiesis. - Some of these aréa_'s are quife 'clqsel_y'relate'd to iS_s_u_es dlscussedm thxs]
document, but were considered to fall'qutside-thé__scqije of thJs thems Other t0plcs
such as heer-to-peer networking have been sugges"téd .'a's areas. of ﬁ'm'.lrc'réscarch Idu.e' _
to their sudden-prorninénce and wide.spread use. Given the sudden surge in use of B
peer-to-peer technologies, it will become increasingly important'to be aware of the

security issues surrounding their use,

9.2. Conclusions

This thésis has examined issues sﬁrrounding the use of executable web content and
has examined the possibilities for malicious code to be delivered in this manner, In
particular it has focused on Sun Microéyspems’ Java Préér_am_xﬁing Language and

Microsoft’s ActiveX Control Technology.

The general 'conclu_siohs reached by this investigaﬁ_dn are _that'the_re are significant
risks inherent with the concept of attaching bili_ary, executable code to web page in
such a way that the code is 'automatically downloaded and executed when the web

page is rendered within a browser.

The dangers of ru_niu‘ng code from untrusted sources have b;:en well documented
over a number of years. Throughout the last two decades in particular, the vectors
for attack by forms of malicious code have mirrored the prevailing methods of code
distribut_i on. In the 1980s and early 1990s, file infecting and boot sector viruses were

common. This mirrored the fact that code executable code was commonly

85

dlstnbuted between users via floppy dlsks During the mid to late. 19905, emall
became a major vector for ma.llclous code’ attacks Oﬁen tlns mvolved documents_
mfected with macro vnruses Again, this mlrrored the fact that emall had become one

~ of the major waysm whl_ch_cxecutable c_:ode was dlsmbuted.

Technologies such as Java and ActiveX fe;i_res’ent an_Othér._rﬁcthqd for 'di_stribiltihg
executable code. This thesis takes the view that the distribtition of such code via web
pages represents another mode of executable code distribution and has the potential

to become a major vector for malicious code attacks.

Technologies such as Java and ActiveX increase the pdssibi_lity' that users will
execute code from untrusted sources. However, it is not entirely _ﬁracﬁéal to
advocate that such technologies are not used, Users.ten.d to expect a certain amount
of functionality from web page's_énd many services rely on embedded C6de. Internet
banking and similar services often make use 6f these sorts of technoldgies; -Simpl'_y
advising web users to tum off Java and Ac:tiv_eX.'_is jBecOniin'g less and .les_s pfactical
as more service bcgm to rely on such technologies. As a result it is important to
understand fhe feattifes and liﬁliwﬁons of the security measures offered by sﬁch _

techndlogies.

This thesis takes the view that the security model offered by the Java Programming
Language is a positive aspect of the language. The Java security model does not
make any assumptionS about the security capabilities of the underlying system and

this tends to reflect the portable nature of the language,

In contrast, this thesis also takes the view that ActiveX’s reliance on authenticity, .
integrity and non-repudiation through digita! signatures raises some concerns, Once

an ActiveX Control is allowed to begin execution it is.only really constrained by

86

operatin'g system and third party controls. - Given that the capabilities of such
operatmg system and third party controls can vary from system to system the .

effcctlveness of this approach can vary dramatlcally

This thesns contends that when considering the issue of executable web contenf, a
layered defence must be employed The ﬁrst layer in senes of defences should be -
~ available at the level of the technology itself. Java’s sandbox model is an 1mportant |
step in this direction. Conversely, this thesis has some concerns over ActiveX’s

reliance on digital signatures.

Applica_tibn level deferices comprise the next layer in this series of defencés. This
thes_is. has examined the security niechanisms of severaﬂ popular .w_eb bro.wscrs,_j
including Inten.l'et. Explorer, ﬂetscape, Mozilla and Opera. It must be poted that this
thesis has limited its examination of these brox_i*sers to the pﬁnciple;-béhind-_ﬂle
security mechanisms implqméhted'by these pi'dducts,.particularly. as"they relate to
executable web content.. It is acknowledged that maﬁy vulne_rabili_ties have been and
_Will con_finue to be di_scovered- in. '.vario'us browsers. whi_le many of | these
_ _vulnerabilitigs coulci result m si'gniﬁ(_:anf security breaches, a di_ScuSSi_oﬁ df indii'idual

vulnerabilities is well beyond the scope of this thesis.

This thesis takes the view that flexibly policy based approaches such as that offered
by the concept of Zones in the Internet Explorer range of web browsers is a positive
step, even though this approach cannot restrain the actions of an ActiveX Control

once it has begun execution,

Aside from web browsers themselves, application level controls might also include a
number of third products such file encryption tools, personal firewalls, anti-malware

as well as auditing and logging tools.

a7

Finally, operating system level controls are alsd- of -great i’mpbftanée : 'I‘his is one

area that varies consxderably between systems For example, systems employmg the-

Wmdows 98 operatmg system, wﬂl pl‘OVldB very dlfferent flmetlonahty to those_ 2

_ employmg the Lmux, or Wmdows NT!ZOOOIXP Tius thesns eontends that whlle |
Operatmg system level conirols are an 1mportant aSpect of executable web eontent_
security, the vanatten n funenonehty offered-by chent 0p_eratmg- sy_stems_ mdnea_tes-'

that other levels of controls will also be of great importance,

Finally, while they are outside the scope of this thesis, this author acknowledges the |
importance of non-technical measures such as educeﬁon and awareness of end users
as well as a solid policy framework, in which these users make use of World Wide

Web resources.

9.3. Future Research |

During. the preparatlon of this thesis, it became clear that there are a number of
- World Wide Web and other Internet related seeurity issues that that need attentlon It
_ _waS-unfqrttlnate that many o_f_ these_ _1_ssues felt outsn_c_;le the scope of thls_thesns and
| epﬁld not be discussed, The following section suggests sd_me areas that deserve

some attention and could be grounds for future research.

9.3.1. World Wide Web Privacy Issues
. Issues such as the privacy implications raised by cookies, banner advertisements, and
other profiling mechanisms and the effectiveness of controls such as third party

filtering products could be an interesting area for exploration

88

- 93, 2 Peer-to-Peer Securlty Issues
' _' -The growmg populanty cf pecr—to-peer (PZP) netwcrlqng grves nsc to somc |
nnportant secunty conccms Notable cxamples of pcer-to-pecr network:lng mcludc _' g
- the controversnal Napster (www napster com) apphcanon and thc Gnutella prctocol.--'.' '
| and related appllcatlons (www llmcmre com, share com) Other current:.:': '.

' cxamples mclude Morpheus, Kazaa and Grokstcr

There are a. number of questtons that are raxsed by the use of such technologles.

Some of these qucstlons include:
¢ Isthe idea of large numbers of uncontrolled peer nodes shanng many fonns of data and
software ﬁmdamentally dangerous?
s Arethere weaknesses in current protoccls?
« Howcan thc protocols be unproved?
s Are there weahlesscs in current apphcauons?
» How can these appltcaucns be lmprcvcd? .
Wil peer-tc-pecr netwcrkmg be 2 major source of attacks and intrusion attaempts?

s How can peers be authenticated? Do we want pcers to be posmvely 1dent1ﬁcd or wull
peers prefer to remam anonymous? . SR

e How will peer-tc-pecr change views on 1ssues such as copynght and mtellcctual

property? . :

Ce Will technclcgtes such as watermarkmg and drgltal nghts management be cﬁ'ectwe?
. What are the lcgal challenges involved? - '

. Wlll peer-tc-pcer have adverse cffects on the performance and rchablhty of netwcrks?

9.3.3. Micfdscﬁ’s .Net Framework

_ Micrcsoft’é Net framework could also bc an irtteresting'.'area for future _resc_arch..
Microsoft touts this frantewcrk as being the next lnajor paradigrn in dietributcd _
systelris, in some cases.comparing it to the Enterprise Editions of Java 2 (Microsoft,
2002b). An examination of the security issues .raised .by _:such _tcch_nclogies_ and
appropriate security measures could an iritere'.s'_ting extcns'ior_l. to some ol' the aspects

covered in this thesis.

89

9.4. Summary

B Thls chapter has presented the conclusxons of this 111esxs as well as suggested some of
| 'lhe areas that fell out51de the scope of 1.hlS thesns as poss1ble avenues for future "

' _'re_search.'_ '

90

10. Appendix A: Asymmetric Encryption
and Digital Signatures

9N

10.1. Overview

‘Digital signature tcchnologies use aSymme_tric encryption téchniques_ in order to
provide a level of trust when dealing with digital communications. As the name
suggests, there are some distingt similarities between a digital ;igme and a

handwritten signature on a physical document.

Trust is a difficult issue when deal_ing with an electronic medium such as the World
Wide Web. It is often seen as a barrier preventing the widespread adoption of
electronic commerce. Digital signatures can alleviate some of these problems as they
can be used to auﬂwnﬁcgte various parties in a transaction and prove the integrity of
~ digital documents. Howe\.x‘er, aside ﬁom their usefulness in terms of electronic
commerce, digital signatures can also benefit other WWW users by proQiding a trust

mechanism for use with executable code.

This section will begin by highlighting the importance of trust, particularly in
relation to electronic commerce. However, as this thesis is primarily concerned with
the risks associated with executable web content, the discussion will shift to the code

signing applidations of digital signature téchnologies.

Cutrently, several digital signature technologies exist, marketed and supported by a .
variety of vendors. This section will simply discuss the basic concepts behind digital

signature technology.

10.1.1. Digital Signatures and Electronic Commerce

Security is often seen as a.signiﬁc.ant barrier restricting the widespread adoption of
electronic commerce (Margherio et al., 1998) (Electronic Commerce Expert Group,
_ 1998). Given these concerns over security, trust becomes an important issue (IBM,

1998). In an electronic environment, it can be difficult to be sure that the parties

92

mvolved in a transactxon are who thra)r “claim to be and transactions and

commumcanons have not been mtercepted or fabncated (IBM, 1998)

_Digital signaturé technologies a1m to prove th_c authenticity and integrity of méssa_’gt:
or transaction (Feghhi, Fegmﬁ & Williams, 1999, p 45). The _ﬁbilify _tb reliably
assess the origin and integrity of é.digital cbmmm;iCation goes a long way towards .
providing a level of trust suitable.for uﬁe with electronic comﬁzerce._ While decisions |
regarding the trustwofthiness of a digital message ultiinat_ely rely on .hun.mn
judgement, technologies such as digital signatures aim to imprt.:we.our abili’(},.r to make
these .decisi(.ms. ~ Digital signatﬁres are .o_n'e tool to hclp. users make informed

decisions in an electronic environment (IBM 1998).

While digital signatures have the potential to play an important role in the context of -
electronic commerce, they can also be used to indicate trust with regard to executable
program code. When used in this manner, these _signatures'can act as “digital shrink-

wrap”.

- 10.2. Code Signing — The “Digital Shrmk—Wrap”
Concept

Several commentators have used analogies comparing digitally signed program code
with shrink-wrapped software purchased through retail outlets (Microsoft, 1996a) '
- (Microsoft, 1996b) (Feghhi, Feghhi & Willia:hs, 1999, p 99) (Ga}ﬁnkel & Spafford,
1997, p169). The phrase “digital shriﬁk—wrap” su_ggests similarities between signed
program code and physically ﬁackaged soﬁ\#are. When software is pméhased
through a retailer, there are a number of factors that indicate the authcnti_city of the
product. Shﬁnk-wrapping, although hardly foolproof, provides some indication that

the product has not been tampered with since its release. The presence of authentic

93

~ manuals and anti-piracy features such as holograms also suggest that a piece of
software is authentic (Garfinkel & Spafford, 1997, p169). The aﬁpearaﬁce of the
retail outlet and the reputation of the merchant can also help consumers make a

decision as to the trustworthiness of the software.

When software is obtained.from an .electronic source such as the World .Wide Web,
indicators of trust are often not present or are not verifiable. Whereas in the _phys_ical
world, a retail outlet may consist of bricks and mortar, the digital eduivalent is often
a website, | Given the ease with which web sites can be created, Copied and modified,
itcan be very. difficult to establish a level of trust, Elecﬁonically _obtainéd software
usually lacks indicators such as physical manuals and ami-pimcy features. Thcrc.-is
often nothiné to indicate the source of the software or anytlu.ng to prove that the
software has nbt been modified since its release (Feghhi, Feghhi & Williams, 1999, p
99). The absence of physical'tmst indicators necessitates other means of cstablishing

the-authenticity and integrity of a piece of software.

-Cdde signing technologies attempf to positively identify the author of a piece of code
and to prove that the code has not been tampered with since its release (_Fe_ghhi,
Feghhi & Williams, 1999, p 99). As this provides similar indicators of authéntiﬁty as
with physically purchased software, the term “digital shrink-wrap” is particularly apt.
Additionally, if a piece of code can be shown to be malicious, positive identification
of the author may make it possible for the victim to seek legal redress. Without the
accountability offered by code signing technologies, publishers of a piece of
malicious code may deny creating the sofiware, or may claim that it had been

modified since its release (Feghhi, Feghhi & Williams, 1999, p 100).

Code signing technologies have ‘been enabled by the development of certain
technologies and infrastructure. In .order to sign code, asymmeﬁ'ic éncryption
fechniqucs are used. In order to make this signature a meamngﬂ.ll way o.f generating
" trust and accountability, certificates and certificate authorities become neceSséry.

This chapter will discuss these enabling technologies and mﬁ‘astructure '

10.3. Asymmetric Encryption

‘Digital signatures and code signing technolbgies haj.?e_ been made possible largely
because of the development of puﬁlic key cryptography. The deﬁhing charécterisﬁc
of this type on encryption is its use of two keys. Also referred to as asymm&ric’
encryption, public key ehcryption uses different keys for encryption and décrypﬁon.
Although this form of enc;yption requires both a public key and a Seﬁret private key,
it is referred to as public key enérybtion rather than secret or private key encryptioh
so as not o cause confusion with other techniqﬁes ‘(Feghhi, Feghhi & Williams,

1999, p 36).

In brder to use public ke_y cncryption,.ﬁser_s generate two keys. One_of. which must
be kept sécrét, whilé the other can be freely transmitted. When encrypting a message
such as an email or a piéce of text, a user musf perform the cncryptiqn using the
public key of the-'li_ntended recipient. Only the holder of thé corréSponding private
key can then.decrypt the message. When used to digitally sign a document or
message, the private key is used to create a signature, which can then be verified

using the corresponding public key.

Simply using public key encryption to sign a digital object does not guarantee that
the object is trustworthy, All that a digital éignature guarantees is that the object was

signed with a private key that corresponds to the public key used for verification. If -

85

the recipient of the object does not know or trust the sender, then the fact that the
object is 'signed is effectively meaningless. Anyone coulc_l'conc_eivably create a key |

 pair and sign a digital object.

One solution to this problem is though the use of certificates. Cefﬁﬁcates allowa

trusted third party to vouch for the credentials of the certificate holder.

10.4. Certificates |

Public key encryption itself doéé ziot guarantee that a digital object comes ffom a
reputable source. Anyone, regardless of hlS or her intehﬁons, cohid generate a key
pair, distribute a public key and use asymmetric encryptioﬁ techﬁidues in ordef to
_’gain. trust. For this reason, in order to be meaningful, digital signatufes usually
include a cefﬁﬁcate from a trusted third party. In éﬂ'éct, thé trusted third pérty

vouches for the identity of the certificate holder.

A digital certificate (or a digital ID or simply a éerliﬁ_caté) binds information
identifying an entity w1th a public key (Feghhi, Feghhi & Williams, 1999, p 61).
Without such a binding, digital signatures are of little use ahd “the key is just a byte

string and can be yours as Well as anyone else’é.” (Gerck, 1998).

One common certificate format is X.509. X.509 is a standard developed by the
International Telecommunication Union (ITU) (http://www.itu.inthome/) and the
International Standards Organization (ISO) (http://www.isoch). The general

structure of and X.509 certificate can be seen in Figure 5.

Certificates are issued, maintained and revoked by trusted third parties. These

usually take the form of Cestificate Authorities (CAs).

86

10.5. Certificate Authorities

Certificate Authorities (CAs) act as trusted third parties in order to vouch for the

identity of various clients. Each CA is expected to publish a document describing

the organisation’s Certification Practice Statements (CPS).

Certificate Authorities perform a range of duties. While these duties vary between

CAs there are some basic responsibilities that are common to all. Microsoft (MSDN

CDROM) describes some of the duties performed by CAs as;

They publish the criteria for granting certificates.

They grant certificates if an applicant meets the published criteria.
Managing certificates (enrolling, renewal, and revokation).
Storing root keys.

Verifying evidence submitted by applicants.

Providing tools for enrolment.

Accepting the liability associated with these responsibilities.

| Version

Serial Number

Algorithm Identifier
Algorithm
Parameters

Issuer

Period of Validity
Not Before
Date

! Subject

Subject’s Public Key
Algorithm
Parameters

Pu

Figure 5: X.509 Certificate Structure (Microsoft Corporation, n.d)

oF

10.6. Legal Issues and Challenges

While digital certificates and signatures provide a useful trust mechanism, they do
not guarantee that a message is accurate or that a piece of code is free of Imalicious
intent. Code signing technologies do however attempt to prove authorship of a
particular piece of program code. Such proof of authorship may, in the event that a
piece of program code is found to be intentionally harmful, allow victims to take
legal action against the author. However given the electronic nature of these
technologies and the global nature of the Internet, seeking legal redress based on

digital signatures gives rise to a number of issues.

Given the current level of interest in electronic commerce it is not surprising that
much has been written regarding the legal issues involved with the using digital
signatures for commercial reasons. Many of the same issues apply when considering

the use of digital signatures code signing purposes.

Ore major issue revolves around the legal standing of a digital signature compared
Wlth that of a handwritten signature on a legal document. It can be argued that
electronic signatures can fulfil the characteristics required of a traditional
handwritten signature (McCullagh, Little & Caelli, 1998) and as such, deserve a

similar legal standing.

10.6.1. Legal Standing of Digital Signatures in Australia

In April 1998, the Electronic Commerce Expert Group (ECEG) presented a report
the Commonwealth Attorney General. This report made mention of the fact that “At
present the law in Australia does not generally recognise forms of electronic
signatures which can perform the functions of a handwritten signature.” (Electronic

Commerce Expen Group, 1998). The report recommends that legislation should be

98

put in place that deals with the leg.al effect of electronic signature and that other

considerations should be left for the market to determine.

Many of the recommendations of the ECEG’s report were based on the United
Nations Commission on International Trade Law (UNCITRAL) Model Law on

Electronic Commerce of 1996 (Electronic Commerce Expert Group, 1998).

The Commonwealth Government later incorporated many of the ECEG report’s
recommendations into the Commonwealth Government’s Electronic Transactions

Bill 1999.

10.7. Summary

The authenticity of digital communications, transactions and program code is often
very difficult to judge. Digital signatures seek to alleviate this problem by providing
the electronic equivalent of a handwritien signature. Digital signatures have been
enabled largely due to the development of public key cryptography (also referred to
as asymmetric encryption). Digital signatures are an important tool in improving the

security of electronic communications and transactions.

Code signing is a variation of digital signature technology. It allows the author of a
piece of program code to prove its origin and to prove that the code has not been
modified since its release. Code signing is often described as the equivalent of
digital shrink-wrap as it aims to provide users with some means to determine the

trustworthiness of a piece of code.

A signature attached to a piece of code does not positively identify the author, it
simply proves that the code was signed with a particular private key. Certificates are

necessary to attach the identity of the author to a piece of code. These certificates are

99

issued, maintained and revoked by certificate authorities that eﬁ'ecﬁvély vouch for

the identity of the author.

100

11. Appendix B: ActiveX Development
Tools

101

Unlike Java, ActiveX is not a language. It is a binary specification and as such any
programming language or tool that can create a binary object that conforms to these
stands can be used to ¢reate an ActiveX Control. However, in reality, certain
languages and development tools are better suited to the development of Active
Controls than others. Common development tocls include Microsoft Visual C++ and

Visual Basic.

Visual C++ provides a flexible, if somewhat complicated method for creating
ActiveX Controls. When using a C++ environment such as Visual C++, developers
have several methods for creating ActiveX Controls. Controls can be created

completely by hand, or by using various class libraries or templates.

Controis can be created manually or with the help of an existing framework (Li &,
Economopoulos, 1997, p.73). While creating controls mahually can provide a high
level of flexibility, it can be very a very tedious and inefficient method of control
creation. This apptoach.requires an in depth understanding of the inner workings of
ActiveX Controls and presents a steep learning curve for developers. A much more
effective way to create controls is to use an existing framework such as the Microsoft
Foundation Classes (MFC), the Abstract Library Templates (ATL) or the BaseCil

framework.

The BaseCtl framework was developed by Microseft’s Visual Basic Group in 1995
to provide a framework for ActiveX Control (then referred to as CCX) development.
BaseCt]l was originaily developed to allow the creation of small, lean controls in
order to reduce the loading times for Visual Basic applications. The major
disadvantage to using BaseCtl is that it is difficult to use and requires developers to

implement much of the control’s functionality without a great deal of help from the

102

framework (Anderson, 1997, p. 19). BaseCtl was one of the earliest control

development frameworks and has effectively been superseded by MFC and ATL.

The Microsoft Foundation Classes (MFC) are a set of C++ classes that can be used
for a wide range of Windows software development projects including the creation
of ActiveX Controls. The use of MFC greatly simplifies the development of controls
compared with creating controls from scratch (Anderson, 1997, p. 143). The use of
MFC still requires a solid understanding of the ActiveX architecture and has a
considerable leaming curve, although this approach is much simpler than developing

controls manually or by using BaseCtl.

Given the number of developers already familiar with MFC, it seems that this would
be an ideal choice for the creation of ActiveX Controls (Li & Economopoulos, 1997,
p. 187). However, there is a significant drawback to using MFC for control creation
and that is that controls created with MFC are often quite inefficient in terms of file
size. While this may not be a significant problem in a high bandwidth intranet
environment, any increase in file size can result in significant download delays
across a low bandwidth network such as the Internet (Li & Economopoulos, 1997, p.
125; Anderson, 1997, p. 210). This increase in file size to due to (often unnecessary)

MFC runtime code that is incorporated into the resulting control.

Microsoft’s Abstract Template Libraries (ATL) provide a practical alternative to
MFC for the development of ActiveX Controls. The main strength of ATL is its
ability to create small, lightweight, efficient controls. Unlike MFC, ATL does not
incorporate large amounts of unnecessary code into the finished contrel. This makes
controls created with ATL well suited to the low bandwidth Internet/WWW

environment. In fact, ATL has been described as a method for generating “just

103

enough” code to 'implemcnt the desired control (Li & Economopoules, 1997, p. 21).
Controls developed with ATL do not rely on specific DLLs or other libraries being
included with the finished control. It seems likely that ATL will increasingly
become the framework of choice for ActiveX Contro! development (Anderson, 1997,

p. 249).

MFC enjoys a high level of integratioﬁ with Microsoft’s Visual C++ development
environment, making it a convenient choice for the rapid development of ActiveX
Controls, particularly where download times are not an important consideration
(Aaderson, 1997, p. 17; Li & Economopoulos, 1997, p. 20). ATL is also integrated
with Visual C++, although no as tightly as MFC (Anderson, 1997, p. 18; Li &
Economopoulos, 1997, p. 21). However, built-in support for ATL within Visual
C++ is increasing with each new version of the language. This reflects the
importance that Microsoft places in this library. BaseCtl does not have any real
integration with Visual C++ (Anderson, 1997, p. 18) and is not currently considered

a viable alternate for ActiveX Control development.

104

12. Appendix C: Internet Explorer Zones

105

The following table summarises the differences between the pre-defined security

levels for Microsoft’s Internet Explorer Web browser. Each of the four security

zones used by the broWser can be configured to use either the High, Medium,

Medium-Low or low security profile listed in the table below. Additionally the

browser allows users to customise these profiles.

Security Level
Propenty High Medium Medium-Low | Low
Download signed ActiveX Disable Prompt Prompt Enable
controls
Download unsigned ActiveX Disable Disable Disable Prompt
controls '
Initialise and script ActiveX Disable Disable Disable Prompt
controls not marked as safe
Run ActiveX controls and Pug- | Disable Enable Enable Enable
ins
Script ActiveX controls Enable Enable Enable Enable
marked as safe
Allow Cookies Disable Enable Enable Enzble
Allow per-session cookigs Disable Enable Enable Enable
File download Disable Enable Enable Enable
Font download Prompt Enable Enable Enable
Java Permissions High Safety High Safety Medium Low Safety
Safety :
Access data sources across Disable Disable FPiompt Enable
domains
Drag and drop or copy and Prompt Enable Enable Enable
paste files
Installation of desktop items Disable Prompt Prompt Enable
Launching programs in an Disable Prompt Prompt Enable
IFRAME
Navigate Sub frames across Disable Enable Enable Enable
different domains
Software channel permissions [High Safety Medium Medium Low Safety
Safety Safety

Submit non-encrypted form Prompt Enable Enable Enable
data
User data persistence Disable Enable Enable Enable
Active scripting Enable Enable Enable Enable
Allow paste operations via Disable * Enable Enable Enable
script
Scripting of Java Applets Disable Enable Enable Enable
Logon Prompt for Automatic Automatic Automatic

username and | logon onlyin | logononlyin | logon with

password Intranet zone | Intranet zone | current

username and
password

106

13. Appendix DB: Windows NT/2000/XP
Security Architecture

107

This appendix provides information regarding the security architecture of the
Windows NT line of operating systems. This line also includes Windowé 200 and

Windows XP. -

Common operating systems, particularly those for WWW clients and servers include
- Windows 95/98, Windows NT Server and. Wﬁrkstation, UNIX, Linux and MacQS.
In terms of security features, these operating systems vary greatly. While Unix and
Windows NT offer some important security 1r_1echanisms, the security features of

Windows 95/98 are considered minimal,

13.1. Background

Microsoft’s Windows Operating System is currently the world’s most prolific
dgsktop operating system (add reference here). However, Windows is not one single
product. Rather the name represents a family of operating systems. Currently the
Windows family contains a number of product lines, primarily Windows

3.1,Windows 95/98, Windows NT/2000 and Windows CE.

This thesis will refer to the Windows 95!98/1\«1]3 .line of Microsoft of operating
systems as Windows9X or Win9X. Architecturally, these operating systems are.
quite similar and as such, they will be discussed as if they are essentially one
product. As this thesis focuses on Windows NT and Windows 2000 in detail, it will
* refer to products individually despite the fact that there are a number of architectural

similarities.

At a superficial level, there are some distinct similarities between the different
branches of the Windows family. Windows 3.1 and Windows NT 3.5 share a similar
wser interface, as do Windows 95/98 and Windows NT 4.0. Despite these

similarities, the different Windows product lines were developed with under different

108

- circumstances and with different goals. As a result, there are many important
architectural differences between Windows NT and other merhbcr of the Windows

family.

13.2. Characteristics of Windows NT/ 2000

While ﬁiere are a number of cosmetic similarities between the Win9x and Windows
NT/2000 product lines, there a also a number of important architectural differences.
This is not surprising as both product lines are aimed at different segments of the
Operating System market. Win9x is generally a consumer level operating systems
aimed at home users. In contrast Windows NT and Windows 2000 are aimed at a
number of market segments. There are several variations of Windows NT and
‘Windows 2000. There are variations aimed at professional users, designed for
desktop workstations, as well as several variations designed for use as servers. As
this thesis focuses on secﬁrity threats faced by consumers of World Wide Web
services, it will discuss only the “Professional” ver_sions of Windows NT and
Windows 2000. Others variations of these operating systems, while architecturally

similar, fall outside the scope of this thesis.

In contrast to the Windows 9x line, Windows NT and 2000 were designed to be quite
portable, Whereas Windows 9x is limited to Intel based platforms, Windows
NT/2000 versions have been released for other platforms. However Intel remains a
popular choice of platform for this 6peré.ting system. Unlike Win9x, Windows NT
and 2000 make use of a Hardware Abstraction Layer (HAL) in order to insulate most
of the Operating System from hardware dependencies introdiced by varioﬁs

platforms. This HAL can be seen in Figure 6.

109

While much of Windows9x was written in platform dependent assembly code, NT
and 2000 were developed using higher-level languages. The use of higher-level
languages and the inclusion for the HAL makes Windows NT and 2000 much casier

to port to platforms other than those based on Intel processors.

While Windows 3.1 and Win9x were heavily dependent on the MS-DOS operating
system, Windows NT and 2000 are completely independent of this earlier operatiné
system. Unlike Windows 3.1, Windows NT and 2000 do not rely on having MS-
DOS installed and unlike the Win9x line, Windows NT and 2000 do not incorporate
large portions of MS-DOS technology. As such Windows NT and 2000 differ

greatly in terms of architecture when compared with Win9x.

Robustness, stability and security were also major design goals of Windows NT and
2000, Whereas the security features implemented by Win9x can only be described
as minimal, Windows NT and 2600 do implement some important security features
{Sheldon, 19.97,' p 76; Rutstein, 1997, p3), many of which wiil-bc discussed in this

chapter

13.3. The Windows NT Architecture
Architecturally, WinNT is very different to the Win9x line of operating systems. It
is divided into several distinct subsystems and components. The basic architecture of

the Windows NT can be seen in Figure 6.

One notable architectural feature is that Windows NT draws a clear distinction
between User Mode and Kernel Mode. All user applications execute in User mode
while various system components execute in kernel mode. The intention behind this

division is to ensure that the kemel remains intact and running even if indivi 1al

110

applications prove to be unstable. As a result, unstable applications should not affect

the stability of the whole operating system.

As shown in Figure 6, Windows NT is capable not only of running Win32 based but
also some O$/2 and POSIX applications. Each of these types of applications is
executed via the appropriate subsystem, each of which is executed in user mode.
Figure 6 also shows that some sections of the security subsystem are executed in user
mode while the Security Reference Monitor (discussed later in this chapter) executes

in kernel mode.

Figure 6 also shows the Hardware Abstraction layer (HAL) and its relationship with
other subsystems, As stated previously, this layer insulates much of the Windows

NT Operating System from hardware specific dependencies.

13.4. The Windows NT Security Architecture

Windows NT offers a range of sécm"ity feafures that are not available in many
consumer desktop operating systems such as Win9x. The Windows NT security.
architecture is based on three key components - the Local Security Authority (LSA),
Security Account Manager (SAM)} and the Security Reference Monitor (SRM).
These components are described in depth by a number of authors (Kelley, Mayson,

1997; Sheldon, 1997) and their relationship can be seen in Figure 6.

111

User Mode

Wil o POSIX
Application Application Application
0s2 POSIX
\ 4
Security Win32
Subsystem * > Subsystem
Kernel Mode
Executive Services
/0 Object Security Process Local Virtual Memory
Manager Manager Reference Manager Procedure Manager
Monitor Call Facility

Kernel

Hardware Abstraction Layer (HAL)

Hardware

Figure 6: Windows NT/2000 Architecture

13.5. The Local Security Authority and Logon Process

The heart of the Window NT Security architecture is the Local Security Authority
(LSA), as can be seen in Figure 7. The LSA is responsible for generating access
tokens, managing security policies and controlling the auditing process (Rutstein,

1997, p. 8).

The Logon Process allows both local and remote users to logon to a Windows NT
machine. Once users are successfully logged on, they are identified by a Security
Identifier (SID) and an Access Token. The LSA is responsible for generating access

tokens as users complete the logon process. This token incorporates the SID of the

112

user and the SIDs of any groups to which the users account belongs. This token is
attached to every process invoked by the user and is used to determine whether a user

should be granted access to a particular object.

The LSA is also responsible for managing audit logs. When the Security Reference
Monitor (see section 13.6) alerts the LSA that an event has occurred that should be
audited, the LSA is responsible for writing that event to the audit logs (Rutstein,

1997, p 8).

The LSA’s other area of responsibility is in managing the security policy database.

User Mode

Use
Databse

Kernel Mode

Figure 7: Windows NT Security Architecture

The Security Account Manager (SAM) controls a database of account information.

This database contains information regarding user and group accounts. During the

113

logon process, the SAM consults the User Account Database and returns the user’s

SID to the LSA (Kelley & Mayson, 1997).

The SAM contains information about user accounts including passwords. In most
cases, Windows NT stores two passwords - a native Windows NT password and a
password for backward compatibility with Micxlfosoﬁ’s LAN Manager product line.
Both passwords are encrypted twice using one-way functions before being stored in
the SAM. As one-way functions are used for the two encryption processes, it is
technically very difficult for a plaintext password to be retrieved from its encrypted
form. When passWord checking is performed, the password to be tested is encrypted
using the same one-way functions. If the resuiting encrypted password matches the
one stored in the SAM, then it can be assumed that the password that was entered

was correct.

Much of the information in the SAM is stored in the Windows NT registry
(discussed in section 13.7.3) under the key HKEY_LOCAL_MACHINE\SAM. This
registry data is in turn stored in the SAM and SAM.LOG files in the

%SYSTEM_ROOT%\SYSTEM32\CONFIG directory (Rutstein, 1997, p 144).

13.6. The Security Reference Monitor

The Security Reference Monitor (SRM) is the only component of the security
subsystem that executes in kernel mode. This module is primarily responsible for
comparing an access token (as generated by the LSA) against the permissions set for

an object and determining the level of access granted, if any.

Objects such as files, threads and registry keys all have an attached Security
Descriptor (SD). This SD includes, among other attributes, the SID of the object’s

owner, an Access Control List (ACL) and a system ACL (Sheldon, 1997, p. 86).

114

.
In most cases, the owner of an ob_]ect is the user that first created the object.

However, in some cases it is possible for other user to takc owner ship of a ﬁle

ACLs are central to Windows NT’s object seCﬁﬁty'architecture. ACLs confain zero
or more Access Control Entries (ACEs). Each ACE spéciﬁes a SID rep'resentiﬁ_g a
user or group and a set of permissions assigned to that SID. The SRM is résponsible.
for checking a user’s access foken against the entries in an ACL in order to determine
whether the level of access requested by the user should be granted. The SRM scans
through all of the entries in an ACL and sccumulates any access permissions
assigned to the user until the permissions granted match the permissions requestéd or
the SRM reaches the end of the ACL. In the former case the SRM would grant the
user the desired access while in the latter case, access would be denied (Sheldon,
1997, p. 87). It is possible that an ACE will specifically deny all access to a-
particular group or user, in which case this ACE will revoke any permissions granted
by other ACEs in the object’s ACL (Sheldon, 1997, p. 88). In éffect, acecess to. an
object is denied unless an ACE specifically grants permission. Additionally access is
denied if any ACE denies the user the requested permissions even if another ACE

specifically grants the user these permissions (Rutstein, 1997, p. 12).

When the SRM makes the decision to grant or deny access to an object, it generates
the necessary audit event notification messages and passes them to the LSA, which

in turn adds entries into various audit logs.

13.7. Securing Windows NT
Despite the security features offered by Windows NT, default installations are quite
relaxed in terms of security. Administrators must be careful to properly configure

NT to make full use of its security features,

115

When attempting to secure an installation of Wmdows NT, there are several areas
that need to be considered including users and groups, file systems, reglstry access, -

network conﬁgumtlon, services packs updates and hotfixes. -

13.7.1. Managing User and Group Accounts

Windows NT allows for the creation of user and group accounts. In -most cases,
users will have their own individual accounts. These accounts can belong to on: oc
more groups and each group can contain any numbér of user accounts. Groups can
simplify the process of assigning access rights and privileges to users. Instead of
assigning rights and privileges to each individual account, they can be assfgned to

. groups and then inherited by the members of these groups.

- Administrators can create, modify and delete aécounts and groups. In addition,
Windows NT provides several in-built groups and accounts some of which déserve
special attention as they have significant implications for the security of Windows
| NT systems. These inciude the Everyone group and the Administrator and Guest

Accounts,

The Everyone Group includes every user that accesses a Windows NT System
(Rutstein, 1997, p37). In fact it is impossible to create a user account that is not a
member of the Everyone group. By default, Windows NT assigns the Everyone
group several permissions including; full control over new file shares, the ability to
change permissions on the root directories of any NTFS partition and the ai)ility to
change the permissions of the System32 directory (Sheldon, 1997, p. 181). This is
one example of how Windows NT security relies on careful configuration by
administrators. The default security settings in this area do not lend themselves to

the creation of a secure environment straight “out of the box”. While in most cases it

116

is a simple task for administrators to take such permis'sions'away from the Everyone
group, this issue illustrates the importance of proper configuration rather than relying

on default security seftings.

There are also certain issues surrounding the use of the administrator andédest
accounts, Due to the powerful nature of the Administrator account, it is -
recommended that administrators create their own personal accounts for day-to-day
work such as word ﬁroccssing and Internet access. In contrast, the ad:ninistrator
account should only be used for administrative duties. Given the pennissibns
associated with the Administrator account, any malicious code executed by some
using the adminisirator would have largely unrestricted access to a Windows NT
system. This is not a new concept, nor is it restricted to Windows NT. It is
considered good practice when using any operating system that allows different users
to be awarded different levels of pérmissions to not use highly privileged accounts

for mundane duties.

The in-built Guest accoﬁnt also deserves special consideration. The guest account
allows users without and existing account to logon on to 2 Windows NT machine,
albeit with very minimal permissions. In most cases, users will not even need a
password in order to logon as a guest. The Guest account is a member of the Guests
group and also the Everyone system group. As the Guest account is member of the
Everyone group, by default it will have access to shared directories, unless
permissions for the Everyone group are specifically revoked. In addition, any
number of users may share one guest account and as such, audit logs will not reveal
any information about any particular guest account user (Sheldon, 1997, p. 98). In

versions prior to Windows NT 4.0, the guest account was enabled by defanlt. This

117

was changed with the release of Windows NT 4.0. The gﬁest account is now

disabled by default and if needed, must be specifically re-enabled.

13.7.2. File System Security

Windows NT variants prior to version 4.0 allowed the use of three distinct file
systems - File Allocation Table (FAT), High Performance File System (FPFS) and
New Technology File System (NTFS). Windows NT 4.0 only supports the use of

FAT and NTFS, and as such, this section will only discuss these two file systems.

FAT is the file system made popular by the MS-DOS cperating system and Windows
95/98. While it can be used with Windows NT, it offers no advantages in terms of
security and will not be discussed here in depth. NTFS is the “Native” file system of -

Windows NT and offers several security advantages over other file systems.

The advantages of using the NTFS file system include speed improvements, reduced
file fragmentation, small cluster sizes to reduce waste, file and directory compression
.(Kelley, Mayson, 1997). In addition, NTFS is the only file system that allows
administrators to make use of the file permission mechanisms offered by Windows

NT (Rutstein, 1997, p. 66).

-Having the choice of two file systems also raises several issues. As the FAT file
system can be used by both Windows 95/98 and Windows NT, there is a risk that
FAT volumes my be accessed by operating systems other than Windows NT. Even
though file permissions cannot be set on FAT volumes, in most cas.es users will still
need to log Windows NT using a defined account in order to access files. However,

- this can easily be bypassed by installing another operating system on the machine

such as Windows 95/98 or MS-DOS.

118

As NTFS cannot be used by Windows 95/98, any volumes formatted with this file
system will be invisible to users not using Windows NT. While it is true to say that
Windows 95/98 cannot access NTFS volumes natively, utilities such NTFSDOS can
give operating systems such as Windows 95/98 read-only access to any NTFS
volumes on a particular machine. This has significant implications for Windows NT
file system security as security mechanisms such as the logon process and ﬁle system
permissions can be bypassed simply by booting a machine with an operating system
such as Windows 95/98 or MS-DOS, running NTFSDos and copying sensitive files
over t.o FAT based hard disk or removable media. As Windows NT is not even
running, the Security Reference Monitor cannot prevent access to such sensitive files
and the LSA cannot audit the file access, Third party encryption tools can provide
some protection against this type of situation. Physically securing Windows NT

machines must also be an important consideration.

Unlike the FAT file system, NTFS allows files to be owned by particular users or
groups. It also allows the setting of access permissions on files and directories and

offers provisions for anditing file accesses.

File system security is quite relaxed in a default installation of Windows NT,
particularly for the Workstation version. It is the system administrator’s
responsibility to ensure that, where required, file system security features are used.
When created, files give access to the Everyone group and as a result any other user
would have access to this file. It is the responsibility of the creator of the file and
system administrators to ensure that appropriate access restrictions are placed on the

file

119

However, file system security can be a complex issue. While file ownership and
access may be quite straightforward when dealing with user’s documents such as
word processing and spreadsheet files, it can be difficult to assign permissions to
certain system files. Not specifying permissions on such files may have certain
sedurify implications, while restricting access too tightly may interfere with the
normal operation of a particular system. Some authors including S.heldon (1997)
describe some of the default permissions on key system files and make some

suggestions as to how permissions may be set safely.

13.7.3. Registry Security
Both the Windows 95/98 and Windows NT product lines make use of a centralised

database to store various users, hardware and configuration settings. Not only does it
govern the behaviour of hardware and application software, but also the operating
system itself, As a result, measures should be taken to guard against accidental or

deliberate tampering.

The Windows NT registry is a structured hierarchy of hives, keys, sub-keys, values
and data and is similar in structure, but not identical to the Windows 95/98 regisiry.
The top level of the Windows NT registry is divided into five major groupings
referred to as hives. These hives can be seen in Table 2. These hives are in turn

divided into a number of keys and sub-keys.

Hive Description

HKEY CLASSES ROOT Contains information about registered software
components including COM/OLE and ActiveX
Controls.

HKEY CURRENT USER |Contains information regarding the user that is
currently logged on.

HKEY LOCAL MACHINE | Contains information regarding the local Windows
NT machine. It includes information about drivers,
installed hardware and software, system

120

' ' configuration and security se__gLs
HKEY_USERS Contains information about all users of the local
' . machine,
HKEY CURRENT_CONFIG | Contains information about the current
configuration of the local machine. :

Table 2: Windows NT Regsitry Structure (Rutstein, 1997, p. 143)

Given the wealth of information stored in the Windows NT registry, it should be
obvious that some measures will be need to prevent accidental or | malicious
modification of registry information (Rutstein, 1997, pl44). To further complicate
| matters, users may attempt to modify registry settings remotely on any Windows NT
machine on which the user has an account. User may also try to connect {0 a
machine using a guest account in order to perform remote registry modifications

(Rutstein, 1997, pl144).

The Windows NT registry can be secured in a similar manner to an NTFS file system
volume. Permissions can be added to keys in much the same way as they can be
added to files and directories. However the same difficulties remain. As with file
system permissions, it can be very difficult to determine the level of permissions that
should be assigned to certain keys. Some keys are relied upon by the Windows NT
System and/or user application. Placing tight restrictions on these keys may prevent
the system or applications from performing properly. In contrast, lax permissions
may adversely affect the security of a system. The sheer number of keys in the
registry and the importance of this database to a Windows NT system can make the
setting of permissions a difficult task. A number of authors present guidelines
suggesting permissions that can be applied to certain registry keys (Sheldon, 1997,

p.627; Rutstein, 1997, p. 148; Jumes, Cooper, Chamoun & Feinman, 1999, p. 191).

121

in addition to sctiing registry permissions, access to registry keys can also be audited.
However given the sheer number of keys in the Windows NT registry, ;he addition of
aﬁditing information can greatly increase the overall size of the registry. In addition,
~ performance overheads involved with auditing may be significant if a large number

of keys are to be audited.

13.7.4. Network Security

As this thesis is mainly concemed with security issues that affect Windows NT
platforms as Internet and World Wide Web clients, Windows Nehnorkmg security

will not be discussed here in detail.

13.7.5. Service Packs, Patches and Hotfixes

Since the release of Windows NT 4.0 in 1996, Microsoft has released a number of
official updates in the form of service packs, patches and Hotfixes. It is important
for administrators to be aware of the latest official updates and the issues that they

address. Currently six service packs have been released for Windows NT 4.0. -

13.8. Summary

Microsoft Windows NT and 2000 are members of a larger family of Microsoft
‘operating systems. This thesis focuses on the Windows NT/2000 variants that are
designed to be used on workstations and desktop machines. These operating systems
were chosen due to the fact that they implement a number of important security

features and are commonly used on WWW client machines.

This chapter describes the security features and architecture of Windows NT/2000.

Later chapters will build on this discussion and argue the advantages and

122

disadvantages of operating system level controls in terms of reducing risks posed by

WWW usage.

123

14. List of References
Anderson, J. (1997). ActiveX Programming with Visual C++5.0. Que Corporation.

Appel, A. (1999) Protection against untrusted code: The JIT compiler security hole,
and what you can do about it. [On-line]. Available WWW: http://www-
4.ibm.com/software/developer/library/untrustsed-code. [16/11/1999]

BrowserNews. (2002). Browser News: Statistics. [Ori-line]. Available WWW:
http://www._upsdell.com/BrowserNews/stat.htm [29/10/2002]

CERT. (1997). Security of the Internet. [On-line]. Available WWW:
http:/f'www.cert.org/encyc_article/tocencye.html [13/09/2002]

CERT. (1998). CERT Vulnerability Note VN-98.07. [On-line]. Available WWW:
http:/fwww.cert.org/vul_notes/VN-98.07.backorifice.htm! [13/09/2002]

CERT (1999a). Frequently Asked Questions About the Melissa Virus. [On-line].
Available WWW: http://www.cert.org/tech_tips/Melissa_FAQ.htm] {13/09/2002]

CERT. (1999b). Vulnerability Note VU#24839. [On-line].
h_ttp:flwww.kb.cert.o;g/vuls/idfz4839 {03/06/2002)

CERT. (20005). CERT® Advisory CA-1999-04. [On-line].
http://www.cert.org/advisories/CA-1999-04 . html [28/07/2002]

CERT. (2000b). CERT® Advisory CA-2000-04 Love Letter Worm., [On-line].
http://www.cert.org/advisories/CA-2000-04.html [06/08/2002]

f(’;' .
CERT. (2000c). Results of the Security in ActiveX Workshop. [On-line].
Available WWW? http://www.cert.org/reports/activeX_report.pdf. [09/02/2001].

CERT. (2001). Vulnerability Note VU#320944. [On-line].
http://www.kb.cert.org/vuls/id/3209441 [03/06/2002]

Chess, D., Morar, J. (1998). Is Java Still Secure. [On-line]. Available WWW:
http: f/www research.ibm. comfant:mrusmePapers/Morar/JavaSecure html,
[12/1 1/2002]

CIAC. (2001). L-062: Erroneous Verisign-Issued Digital Certificates for Microsoft.
[On-line]. http://fwww.ciac.org/ciac/bulletins/i-062.shtm! [06/08/2002]

Cohen, F. (1984). Computer Viruses - Theory and Experiments. [On-line].
Available WWW: http://www.all.net/books/virus/ [13/09/2002]

124

Edwards, M. (1997). Lets, talk about Java Portability. [On-line]. Available WWW:
http:// http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnwebtool/html/msdn_javaport.asp [02/04/2003] :

Electronic Commerce Expert Group. (1998). Electronic Commerce: Building The
Legal Framework. [On-line]. Available WWW:
http://www.law.gov.auw/aghome/advisory/eceg/ecegreporthtml. [11/1 1/2002]

Feghhi, J., Feghhi, J., Williams, P. (1999). Digital Certificates. Applied Internet
Security. Addison Wesley Longman.

Garfinkel, 8., Spafford, G. (1997). Web Security & Commerce. O’Reilly and
Associates

Gerck, E. (1998). Overview of Certification Systems. [On-line]. Available WWW:
http:/fwww.mcg.org.br/cert.htm. {11/11/2002]

Gong, L., Mueller, M., Prafulichandra, H., Schemers, R. (1997). Going Beyond the
Sandbox: An Overview of the New Security Architecture in the Java Development
Kit 1.2. [On-line]. Available WWW:

http://java.sun. couﬂpeoplc/gong/papersf dk12arch.ps.gz [10/09f2002]

Gong, L. (1998). Java Security Architecturc (JDK1.2). [On-line]. Available
WWW: fip://fip.javasoft.com/docs/jdk1.2/security-spec.pdf. [7/12/1999]

Gosling, J., McGilton, H. (1996) The Java Language Environment A White Paper.
[On-line]. http://java.sun.com/docs/white/langenv/index.html [12/11/2002]

Hamilton, G. (2001). Java Beans Component APIs for Java, [On-line]. Available
WWW: http://java.sun.com/iavaone/javaone96/pres/Platind. pdf [13/09/2002]

Henry, D.,Cook, S., Buckley, P., Dumagan, J., Gurmukh, G.., Pastore, D., LaPorte S.
(1999). The Emerging Digital Economy II. {On-line]. Available WWW:

hitp://www.esa.doc.gov/508/esa/TheEmergingDigital Economyll.htm [11/11/2002]

Hopwood. (1997). 4 Comparison between Java and ActiveX Security. . [On-
line]. http://www.users.zetnet.co.uk/hopwood/papers/compsec97.html [20/08/2002]

IBM. (1998). Securing IBM Applications with Publick Key Infrastructure. [On-
line]. Available WWW: http:/www-3.ibm. comfsecuntxfhb@g{ 'wp_pki0730.shtml
[11/11/2002]

JDK 1.0 [Computer Software]. (1995) [on-line]. Available WWW:
http://java.sun.com/products/jdk/1.0.2/

1256

JDK 1.1 [Computer Software]. (1996) [on-line]. Available WWW:
http: /!Java.sun com/productsljdk/ L1/

JDK 1.2 [Computer Software]. (1998) [on-line]. Available WWW:
http://java.sun.com/products/jdk/1.2/

JRE [Computer Software]. (1998) [on-lme] AvallableWWW
Http://www.javasoft.com

Jumes, J., Cooper, N., Chamoun, P., Feinman, T. (1999). Microsoft Windows NT
4.0 Security, Audit and Control. Microsoft Press.

Koved, L., Nadalin, A., Neal, Don., Lawson, T. (1998) The Evolution of Java
Security. [On-line]. AvallableWWW
http://www.research.ibm.com/journal/sj/373/koved.html. [11/11/2002]

LaDue, M. (n.d). A Collection of Increasingly Hostile Applets. [on-line].
Available WWW: http://www.cigital.com/hostile-applets/ [24/09/2002].

Li, S., Economopoulos, P. (1997). ActiveX / COM Contro} Programming.
Birmingham: Wrox Press Ltd.

Lock, A. (2002). Mozilla ActiveX Project. [on-line]. Available WWW:
http://www.iol.ie/~locka/mt¥illa/mozilla.htm [24/09/2002]

-Marghcn'o, L., Henry, D., Cooke, 8., Montes, S., Hughes, K. (1998). The Emerging
Digital Economy. [On-line]. Available WWW:
http://www.esa.doc.gov/508/esa/pdf/EmergingDig.pdf [02/10/2002}

McCullagh, A, Little, P., Caelli, W. (1998). Electronic Signatures: Understand the
Past to Develop the Future. University of NSW Law Journal. 21(2). 452-466.

MeGraw, G., Felten, E. (1998). New Issues in Java Security: How the sandbox
simultaneously evolved into JDK 1.2 and devolved into Card Java. [On-line].
Available WWW: http://www.rstcorp.com/javasecurity/compstrat.html

McManis, C. (1996). The basics of Java class loaders . [On-line]. Available
WWW: http://www javaworld.com/javaworld/jw-10-1996/jw-10-indepth-p2.html
[12/11/2002]

McMullin, B. (2000). John von Neumant and the Evolutionary Growth of
Complexity: Looking Backward, Looking Forward.... [On-line]. Available WWW:
http://www.eeng.dcu.ie/~alife/talks/alife7/vn-complexity/html-single/ [13/09/2002]

126

Microsoft Corporation. (n.d). Authenticode Appendixes. [On-line]. Available
WwWWwW: http://msdn.micros_.oft.com/workshop/security!auﬂlcodefappendixes.asp
[12/11/2002] _ o

Microsoft Corporation. (1997). Microsoﬁ, Sun and Java. [On-line]. Available
WWW: http://www.microsoft.com/presspass/java/default.asp [12/11/2002]

Microsoft Corporation, (1999a). Chapter 6 — Digital Certificates. [MS TechNet
CD). _ .

Microsoft Corporation, (1999b). Chapter 7 — Security Zones and Permission-Based
Security for MS Virtual Machine. {MS TechNet CD].

Microsoft Corporation, (1999). Info; Difference Between OLE Controls and
ActiveX, [On-line]. Available WWW:
http://support.microsoft.com/support/kb/articles/Q159/6/21.asp. [10/11/1999]

Microsoft (2002a). Information on the VBSfLovelctter Virus, [On-line). Available
WWW:
htip:/fwww.microsoft.com/technet/treeview/default.asp?url=/TechNet/security/virus/
vbslvitr.asp [13/09/2002]

Microsoft (2002b). Microsoft NET Pet Shop 2.0. [On-line]. Available WWW:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnbda/html/bdasamppet.asp [13/11/2002]

* Nachenberg, C. (n.d). Computer Parasitology. [On-line]. Available
http://enterprisesecurity.symantec.com/pdf/computerparasitology.pdf?PID=na&EID
=2 [29/07/2002]

Naviscope [Computer Software]. (2001) [on-line]. Available WWW:
http://www.naviscope.com/

NUA Internet Surveys. (2002). OneStat: New browsers take on Internet Explorer.
[On-line]. Available WWW:

http://www.nua.ie/surveys/index.cgi?f=VS&art id=905358103&rel=true
[25/09/2002]

Oaks, S. (1998a). Java Security: Chapter 3. Java Class Loaders. [On-line].
Available WWW: http://octopus.cdut.edu.cn/~yfl 7/javaent/security/ch03_01.htm
[12/11/2002]

Oaks, S. (1998b). Java Security: Chapter 4. The Security Manager Class. [On-line].
Available WWW: http://octopus.cdut.edu.cr/~yfl 7/javaent/security/ch04_01.htm
[12/11/2002]

Pfleeger, C (2000). Security in Computing. New Jersey: Prentice Hall, Inc.

127

Pipkin, D. (2000), Information Security. . New Jersey: Prentice Hall, Inc.

Pistoia, M., Relle, D., Gupta D., Nagnu, M. Raman, A. (1999). Java 2 Network
Security. [On-lme] Avallable WWW.
http://www.redbooks.ibm.com/abstracts/sg242109.html [10/09/2002)

Rutstein, C. (1997). National Computer Security Association Guide to Windows NT
Security. McGraw-Hill

Schneier, B. (2000). Secrets and Lies. John Wiley & Sons, Inc: New York.

Schneier, B. (2002a). Cryptogram Newsletter. [On-line]. Available
http://www.counterpane.com/crypto-gram-0202.html#1 [13/05/2002]

Schneier, B. (2002b). Cryptogram Newsletter. [On-line]. Available
http://www.counterpane.com/crypto-gram-0101.html#10 [13/05/2002]

Schneier, B. (2002b). Cryptogram Newsletter. [On-line]. Available
http://www.counterpane.com/crypto-gram-0101.htmi#10 [13/05/2002]

Skrenta, R. (n.d). Elk Cloner (circa 1982). [On-line]. Available WWW:
http://www.skrenta.com/cloner/ [13/09/2002]

Sheldon,. T. (1997). Windows NT Security Handbook. McGraw-Hill,

Sophos Anti-Virus (2002). Melissa worm author sentenced to 20 months. [On-line].
Available WWW: _
http:/fwww.sophos.com/pressoffice/pressrel/uk/20020501smith.html [13/09/2002]

Sun Micrososystems. (1996). The Java Language -~ An Overview. [On-line].

Available WWW: http://fjava.sun.com/docs/overviews/java/java-overview-1.html
[13/09/2002)

Sun Micrososystems. (1999). 100% Pure Java Certification Program. [On-line].
Available WWW: http://java.sun.com/100percent/ [04/02/2000].

Sun Micrososystems. (2000). Products & APIs. [On-line]. Available WWW:
http://www.javasoft.com/products/

Sun Microsystems. (2002) Chronology of security-related bugs and issues, 3/19/02,
[On-line]. Available http://java.sun.com/sfag/chronology.html {20/08/02}

Sun Microsystems, (n.d). Sun Microsystems Takes Legal Action Against Microsoft.
[On-line]. Available http://www.sun.com/announcement/letter.html [12/11/2002]

128

Venners, W. (2002) Security and the Class Loader Architecture, [On-line].
Available: http://www.artima.com/underthehood/classloaders.html [12/11/2002]

WebWasher {Computer Software]. (2002) [on-lmc] Available WWW:
hitp://www.webwasher.com

White, S., Kephart, J., Chess, D. (1995). Computer Viruses: A Global Perspective.
[On-line]. Available WWW:
hitp://researchweb.watson.ibm.com/antivirus/SciPapers/White/VB95/vb95.distrib.ht
ml [13/09/2002]

Wong, W. (1998). Sun vs. Microsoft: Political Battle Over Java, [On-line].
Available WWW: http://www.techweb.com/wire/story/TWB19981106S0002.
- [04/02/2000]

129

Bibliography

Austalian Bureau of Statistics. (2000). Communication and Information
Technology. Use of Inormation Technology. [On-line]. Available WWW:
http://www.abs.gov.au/websitedbs/c311215.NSF /Australia+Now+-
+A+Statistical+Profile /09C60548FF693D4FCA256863001 C1FFD[16/11/1999].

Black, U. (1994). TCP/IP and Related Protocols. McGraw-Hill.

Berners-Lee, T. (1999). About The World Wide Web Consortium. [On-line].
Available WWW: http://www.w3.org/Consortium/ [08/02/2000]

Caelli, W., Longley, D., Shain, M. (1994). Information Security Handbook.
Macmillan Press Ltd.

Cheswick, W.R., Bellovin S.M. (1994). Firewalls and Internet Security. Addison-
Wesley Publishing Company.

Cohen, F.B. (1995). Protection and Security on the Information Superhighway. New
York: John Wiley & Sons, Inc.

Dean, D., Felton, E.W., Wallach, D.S, (1996). Java Security: From HotJava to
Netscape and Beyond. [On-lme] Available WWW:
http://www.cs.princeton,edu/sip/pub/secure96.html

Dietl, J. (1998). World Wide Web Consortium [WBC] Backgrounder. [On-line].
Available WWW: http://www.w3.org/Press/Backgrounder.html. [08/02/2000].

Electronic Frontiers Australia. (1999). Campaign against Australian Internet
Censorship Legislation. [On-line]. Available WWW:
http://www.efa.org.aw/Campaigns/stop.html

Electronic Frontiers Australia. (2000). On-Line P}ivacy Issues. {On-line].
Available WWW: http://www.efa.org. aulIssuesanvacnyclcome html#bill.
[08/12/2000].

Felten, E. (1999). SIP: News. [On-line]. Available WWW:
hitp://www.cs.princeton.edu/sip/history/index.php3. [11/11/2002]

Gibson, S. (2001a). OptOut — Aureate Spyware. [On-line]. Available WWW:
http://grc.com/oo/aureate.htm. Downloaded 11/04/2001.

Gibson, S. (2001b). The Anatomy of File Download Spyware . [On-line).
Available WWW: http:/gre.com/downloaders.htm. Downloaded 11/04/2001.

130

Fites, P., Kratz, M.P.J (1993). Information Systems Security A Practmoners
Approach Van Nostrand Rheinhold.

Gordon, S., Chess, D. (1998). Where There’s Smoke There’s Mirrors: The Truth
About Trojan Horses on the Internet. [On-line]. Available WWW:
http:/fwww.av.ibm.com/InsideTheLab/ScientificPapers/ Gordon/Trojan/html

Hamilton, G. (1997). JavaBeans. [On-line]. Available WWW:
http:/fwww.javasoft.com/beans/docs/ spec.html[07/06/1999)

Howard, J. (1997). An Analysis Of Security Incidents On The Internet 1989 — 1995.
[On-line]. Available WWW: http://www.cert. orglresearcthH’Ihcms/Worde
Downloaded 10/02/2000.

Kindel, C. (1997). ActiveX and The Web - Architecture & Technical 0verv1ew
[On-line). Available WWW:
htip://www.microsoft.com/com/presentations/default.asp

Lalonde, G, (2001). The Spyware Infested Software List. [On-line]. Available
WWW: http://www.infoforce.qe.ca/spyware/. [11/04/2601).

Kabay, M. (1998). ICSA White Paper on Computer Crime Statistics. [On-line].
Available WWW: hitp://www.icsa.net/library/research/#info

Martin, D., Rajagopalan, S., Rubin, A. (1997). Blocking Java Applets at the
Firewall. [On-line]. Available WWW:

Microsoft Corporation, (1996a). Internet Component Download. [On-line].
Available WWW: http://www.microsoft.com

Microsoft Corporation, (1996b). Microsoft Autehnticode Technology. [On-line).
Available WWW: http://www.microsoft.com

Microsoft Corporation, (1996¢). Microsoft Internet Security Framework. [On-line}.
Available WWW: http://www.microsoft.com

Microsoft Corporation, (1996d). OLE Controls 96. [On-line). Available WWW:
http://www.microsoft.com

Microsoft Corporation, (1996e). OLE Controls/COM Objects for the Internet - Draft
4. [On-line]. Available WWW: http://www.microsoft.com

Microsoft Corporation, (1996£). What Is the Exploder Control and How Does It
Relate to Authenticode? [On-line]. Available WWW: http://www.microsoft.com

121

Miller, M.A (1994). Troubleshooting TCP/IP Analyzing the Protocols of the Internet.
San Mateo: M&T Books.

Morar, J., Chess, D. (1998). Web Browsers — Threat or Menace? [On-line].
Available WWW: _
http://www.av.ibm.com/InsideTheLab/Bookshelf/ScientificPapers/Chess/Threate/Thr
eat,html ' '

Murhammer, M., Atakan, O., Bretz, L., Suzuki, K., Wood, D. (1998). TCP/IP
Tutorial and Technical Overview. [On-line]. Available WWW: http://www.ibm.com

Nachenberg, C., Chien, E., Trilling, S. (1998). JavaApp.Strange Brew. [On-line].
Available WWW:
http://www.symantec.com/avcenter/venc/data/javaapp.strangebrew. html.

Nachenberg, C. (1999). JavaApp.BeanHive, [On-line]. Available WWW:
http://www.symantec.com/avcenter/venc/data/javaapp.beanhive.html.

Network Working Group (1999). Hypertext Transfer Protocol -- HTTP/1.1. [On-
line]. Available WWW: http://www.w3c.org

NCompass Labs Inc, (1999). Authoring ActiveX Controls for the ScriptActive Plug-
in. [On-line]. Available WWW: http://www.ncompasslabs.com/Plug-
Ins/Documentation/Authoring+ ActiveX-+Controls.htm

Oaks, S. (1998). Java Security. O’Reilly & Associates.

Office of the Federal Privacy Commissioner. (2000a). Privacy in Australia. [On-
line]. Available WWW: hitp://www.privacy.gov.au/publications/pia.pdf.
Downloaded: 8/12/2000.

Office of the Federal Privacy Commissioner. (2000b). Fact Sheet 2 —National
Privacy Principles (Npps). [On-line]. Available WWW:
http://www.privacy.gov.auw/publications/fs2.pdf [8/12/2000.]

Office of the Federal Privacy Commissioner. (2000c). Fact Sheet 1 - Overview.
[On-line]. Available WWW: http://www.privacy.gov.aw/publications/fs1.pdf,
[8/12/2000.]

Office of the Federal Privacy Commissioner. (2000d). Fact Sheet 3 - Codes. [On-
line). Available WWW: http://www.privacy.gov.aw/publications/fs1.pdf,
[8/12/2000].

Office of the Federal Privacy Commissioner, (2000¢). Fact Sheet 4 - Powers. [On-
line]. Available WWW: http://www.privacy.gov.au/publications/fsd.pdf,
[8/12/2000).

132

Office of the Federal Privacy Commissioner. (2001f). Information Privacy
Principles under the Privacy Act 1988. [On-line]. Available WWW
http://www.privacy.gov.aw/publications/ipps.html. [12/04/2001].

Office of the Federal Privacy Commissioner. (2001g). Privacy & the Public Sector.
[On-line]. Available WWW hitp://www.privacy.gov.aw/public/index.html.
[12/04/20011.

Ogilvie, E. (2000). Cyberstalking., fOn-ling]. Available WWW
http://www.privacy.gov.au/public/index.html. [11/0520/01].

Reynolds, J. (1989). RFC:1135 The Helminthiasis of the Internet. [On-line}.
Available WWW: http://sunsite.hr/rfe/index_fr.html. [10/02/2000].

Somar Organisation. (1996). Windows NT Security Issues [On-line]. Available
WWW: http://www.somar.com/security.html

Sun Micrososystems. (1999a). 100% Pure Java™ Certification Program. [On-line].
Available WWW: http://java.sun.com/100percent/ [04/02/2000].

Sun Micrososystems, Java Security Story. [On-line]. ‘Available WWW:
http://www.sun.com

Sun Micrososystems. The Java Language - An Overview. [On-line]. Available
WWW: http://www.sun.com

Sun Micrososystems. (2000a). Chronology of security-related bugs and issues,
02/26/00. [On-line]. Available WWW: http://java.sun.com/sfag/chronology.html

Sun Micrososystems. (2000b). Products & APIs. [On-line]. Available WWW:
http://www javasoft.com/products/

United States Justice Department. (1999). Cyberstalking: A New Challenge for Law
Enforcement and Industry. [On-line]. Available _
hitp://www.usdoj.gov/criminal/cybercrime/cyberstalking htm [11/05/2001)].

Venners, B. (1997). Security and the Class Verifier. [On-line]. Available WWW:
http://www javaworld.com/javaworld/jw-10-1997/jw-10-hood. html. [25/05/1999]

World Wide Web Consortium. (1999). HTTP - Hypertext Transfer Protocol
Overview. [On-line]. Available WWW: http://www.w3.org/Protocols/.
[10/02/2000] _ '

Yellin, F. (1996). Low Level Security in Java. [On-line]. Available WWW:
http://www.sun.com

133

	A study of the security implications involved with the use of executable World Wide Web content
	Recommended Citation

