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ABSTRACT 

The effectiveness of using organic matter additions to increase pH in abandoned 

water filled coal mining voids in Collie was investigated. Previous studies have 

demonstrated that passing acidic drainage through organic matter increased the 

waters pH. Laboratory trials using intact sediment cores (collected from 

Ewington, Collie, Western Australia) were used to assess the effects of additions 

of hay, manure and mulched vegetation on pH, nutrients an sulphate levels. In a 

series of experiments the effect of different quantities of organic material, 

sulphate reducing bacterial inoculations and alkalinity generation were measured. 

A subsequent field experiment was conducted to examine the impact that manure 

and mulch had on mine void water in 18 in situ ponds constructed adjacent to 

Ewington. 

It was concluded from the laboratory experiments that mulch and manure 

treatments were significantly better than hay as an organic matter addition for 

increasing the pH of acidified mine void water at Ewington. The manure produced 

the greatest increase in pH, although it contributed less to alkalinity than mulch; 

suggesting mulch has a greater ability to release carbonates than did manure. The 

manure and mulch additions increased the pH in the laboratory and field 

experiment by 0.5-1.5 pH units. This increase was sustained for most of the 21 

week field experiment. An increase in pH in the control ponds was recorded over 

the last 8 weeks of the experiment which was probably due to the inflow of more 

alkaline groundwater through the substratum as a consequence of the winter 

rainfall. pH values measured in the experimental ponds 15 months after the 

commencement of the project indicated that the ponds treated with manure 
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maintained significantly higher pH levels than either the mulch or the control 

ponds. There was no difference between the pH values for the ponds treated with 

mulch and the controls suggesting that manure not only provided a greater 

increase in pH but also over a longer period. 

The addition of organic matter also resulted in an increase in gilvin in the 

laboratory experiments. Low sulphate and sulphide levels were also recorded in 

all experiments before and after the introduction of organic materials into mine 

void water and ponds adjacent to Ewington indicating that sulphate reducing 

bacterial activity was not the cause for the increase in pH as occurred in other 

situations, but rather the addition of alkaline organic matter caused the increase in 

pH. 

The addition of manure organic material was associated with an increase in the 

ortho-phosphate levels, resulting in an increase in chlorophyll a concentrations. 

This is believed to be the first stages of succession processes leading to the 

establishment of a biologically active wetland system. During this process the 

emerging ecosystem neutralises the acidic content of the water. 
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1 .0 INTRODUCTION 

Acid mine drainage or acid water pollution of mine sites is potentially the largest 

negative environmental impact resulting from coal mining (Harries, l 998a; 

Harries, 1998b; Lowson, Reedy and Beatie, 1993; Robertson, 1987; Ryan and 

Joyce, 1991 ). Well publicised examples of the problems caused by acid mine 

drainage in coal and other mineral mines within Australia include Rum Jungle in 

the Northern Territory, Captains Flat in New South Wales, Brukunga in South 

Australia, Mount Lyell in Tasmania and Mount Morgan in Queensland (Lawton, 

1996; Zhou, 1994 ). The estimated operational cost for managing acid wastes in 

the Australian mining industry is $60 million per year (Harries, l 998a). 

Rehabilitating a mine site is a major cost for mining companies. As an example of 

the scope of the rehabilitation costs, Western Main site near Lithgow in New 

South Wales spent 30% of the mine's  profit on rehabilitation (Lawson, et al. , 

1995). The initial poor condition of the mine was the result of over 50 years of 

mining that paid little regard for the environment. In late 1 989, the pH of a drain 

at the pit top was 3 . 1 ,  significantly below the required discharge level (Lawson et 

al. , 1995). Further investigations of the colliery revealed that the acid mine 

drainage was widespread with pH levels as low as 2.4 (Lawson et al. ,  1995). The 

rehabilitation solution adopted was complex and involved a combination of 

different strategies, including constructing limestone weirs, underground 

pumping, decommissioning of surface tailings ponds, removal of surface reject 
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coal stockpiles, isolation of known acid mine drainage 'hotspots' and community 

involvement with revegetation (Lawson et al., 1995). Another example is the 

rehabilitating of the Rum Jungle Mine site in the Northern Territory. Between 

1983 and 1986 the mine was rehabilitated by covering the waste rock dumps, 

relocating the tailing and heap leach material, treating water in the open-cuts, and 

redirecting surface flows at a total cost of $18.6 million (1986 dollars; Harries, 

1996). At the Mount Lyell mine in Tasmania, the Office of the Supervising 

Scientist and the Tasmanian Department of Environment and Land Management 

jointly sponsored a $2 million remediation research and development program to 

identify cost effective remediation options to address the acid mine drainage 

problem (Needham and McBride, 1998 ; Waggitt and Jones, 1995). 

In Western Australia, there are many procedures that need to be completed before 

any mining operation is allowed to commence. The major environmental 

component of this process is the drafting of a Notice of Intent that is submitted to 

the Department of Minerals and Energy for approval. This procedure includes 

obtaining approvals from the Department of Conservation and Land Management 

(flora and fauna requirements), the Water and Rivers Commission, the 

Department of Environmental Protection, the Aboriginal Affairs Department, and 

finally the Department of Minerals and Energy. The process of obtaining a mining 

lease in Western Australia is long and detailed, and explained in the "Guidelines 

to help you get Environmental Approval for Mining Projects in Western 

Australia" (Dept. Minerals and Energy, 1998). 
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Once a mining lease is approved the company must provide an unconditional 

performance bond. This "is a contract between the Minister for Mines and a third 

party of financial standing acceptable to the Minister, providing for the third party 

to unconditionally pay the agreed sum to the Minister on his request following the 

failure of the tenement holder to meet the previously agreed environmental 

commitments" (Dept. Minerals and Energy, 1998, p. 52). The bond is intended to 

give the State recourse to funds so that rehabilitation works can be undertaken on 

a mining tenement to meet the requirements of the environmental conditions 

placed on a tenement. This bond is normally between $5 OOO and $15 OOO per 

hectare depending on the level of impact. The bond covers all land required to be 

rehabilitated including waste dumps, tailings disposal facilities, stockpile areas, 

backfilled pits, hardstand areas, plant sites, haul roads, airstrips, accommodation 

areas and the safety zone around any abandoned open pit (Dept. Minerals and 

Energy, 1998). The bond is reassessed each year and adjusted on the basis of the 

potential rehabilitation that is reasonably expected. The magnitude of the 

rehabilitation costs together with the rehabilitation bond makes mining companies 

interested in long-term, cost effective rehabilitation solutions. Acid mine drainage 

is one such problem that requires a cost effective solution. 

Acid mine drainage is defined as acidic drainage that occurs as a result of 

oxidation of in sulphidic rock exposed to air and water (Lowson et al. , 1993; 

Mills, 1997a). Acid mine drainage can emanate from surface and underground 

mine workings, waste and development rock, tailing piles and ponds 

(Comarrnond, 1998 ; Mills, 1993). Acidic drainage occurs in many types of mining 

operations. The term acid mine drainage is often inappropriate since the problem 
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is more frequently pollution of ground water coming from above ground deposits 

of mine wastes such as tailings and waste rock, rather than surface drainage 

(Ritchie, 1992). Acid mine drainage is typically the acidification of watercourses, 

but can also affect lakes and abandoned mine voids. 

Acid mine drainage in Australia 

Only limited research has been conducted in Australia on treating acid mine 

drainage. Most research has been conducted in the temperate zones of the 

northern United States (Tyrrell, 1996). Australia has diverse climatic conditions, 

(ranging from arid, to mediterranean and to monsoonal) not found in temperate 

northern United States. The cyclical wetting and drying pattern that is typical of 

northern Australia provides an environment suitable for cyclic oxidation and 

reduction. The acid drainage created during the drier months is more likely to be 

moved to adjacent areas during the high precipitation months. This weather 

pattern is seen at the Pine Creek goldfields site in the Northern Territory. Pine 

Creek has a dry season from April to October followed by a wet season from 

November to March. The wet season is typified by intense storms and monsoons; 

the average annual rainfall is 1147mm (Fawcett and Sinclair, 1996). In contrast 

Mount Lyell in Western Tasmania receives between 2500 and 3000 mm of 

precipitation annually (Robertson, et al., 1997), with some precipitation on an 

annual average of 240 days (Johnston, et al. , 1997). At Mount Lyell the 

evaporation may exceed precipitation for only one or two months in each year, 

with excess water being lost to groundwater or surface water run off (Johnston, et 

al. , 1996). These high precipitation conditions create a high potential for sustained 
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sulphidic run off. Northern United States remediation techniques like wastewater 

wetlands therefore perform differently in Australia, especially in low and sporadic 

rainfall conditions (Miedecke, 1989). 

The arid to semi-arid climate and flat topography of much of Western Australia 

make it unlikely that the widespread acid drainage problems seen overseas or in 

the more temperate or tropical regions of Australia will develop here (Tyrell, 

1996). The lack of water to transport contaminants means that impacts are likely 

to be localised, affecting only the site reclamation success, surrounding native 

vegetation and groundwater supplies (Tyrell, 1996). These impacts can, however, 

be severe and persistent. The limited annual rainfall and extensive periods of 

drought coupled with rare major rainfall events also mean that problems will take 

longer to develop, with the consequence that problem sites may not be recognised 

for decades (Biggs, 1998). Drying and wetting cycles, which are likely to occur in 

low rainfall areas, hamper acid and heavy metal removal processes. The potential 

for retained elements to be remobilised during a wet season after a long dry spell 

is also currently unknown (Tyrrell, 1996). 

The variety of climatic conditions within Australia poses many potentially unique 

problems and little research has been done to develop ecologically sustainable 

solutions to acid wastewater resulting from mine site disturbances. 
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Coal mining 

Coal is formed by the accumulation, alteration and compaction of plant remains in 

an anoxic reducing environment commonly found in swamps during the 

Carboniferous period (Plummer and McGeary, 1996; Skousen, 1995). Burial by 

sediment compresses the accumulated plant material, gradually driving out any 

water and volatile compounds. The coal changes from brown to the black form as 

the proportion of carbon in it increases (Plummer and Mc Geary, 1996). 

Associated with coal formation is the mineralisation of pyrites and the 

accumulation of heavy metals. Pyrite or iron disulphide (FeS2) is created when 

hydrogen sulphide (H2S), formed by anaerobic bacterial reduction of sulphate 

anions in the water, combines with ferrous ions (Fe2+). This process is commonly 

associated with coal deposits as the anoxic conditions favouring coal formation 

also favour pyrite mineralisation (Broughton and Robertson, 1992; Leeder, 1982). 

Coal is mined by open-cut or underground shaft mining. In both types of mining 

large dumps of overburden (unwanted material), spoils and tailings, produced by 

mining processing, are removed leaving voids. Early open-cut and below ground 

coal mining operations in Australia (1850s - 60s) saw overburden dumped in areas 

surrounding the pit. This dumping tended to invert the soil profile causing the 

deeper soil strata to be placed on the surface. This deep soil that had previously 

been below the water table was then exposed to the air, exposing pyrite to oxygen, 

which, in the presence of water results in the release of sulphate ions and 

hydrogen ions (Chapman, 1994 ). It is still common practise to dump overburden 

near the mine pits. However, modern management techniques examine the acid 
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generating properties of the soil and it is relocated accordingly to minimise acid 

drainage. 

As mines increased in size, it became common practice not to backfill voids 

because of cost (Stedman, 1988). When the open-cut mining and dewatering 

operations ceased, the mining voids filled with water to the level of the water 

table, creating artificial wetlands (Stedman, 1988). 

Brief history of Collie coal mining 

Since the 1900s Collie coal has played a vital role in the economic development 

of Western Australia (Stedman, 1988). In the 7 5 years prior to 1965, gold and coal 

were the only significant minerals produced in Western Australia (Stedman, 

1988). Coal was the major energy source used in the early development of 

Western Australia. 

Early settlers realised the importance of coal and the Governor of the Swan River 

Settlement offered a reward in 1839 of 2560 acres of land for the location of "any 

considerable bed of coal" (Stedman, 1988, p. 2). Seven years later, the explorer 

A.C. Gregory claimed the reward after discovering the Irwin River coal seam 200 

miles north of Perth. Other discoveries followed but there were few purchasers for 

the low grade coal and interest waned (Stedman, 1988). It was not until the 1880s 

and 1890s when there was a revival of interest in coal due to the increasing 

number of steamships arriving at Western Australian ports and the expansion of 
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the Western Australian railroads. This led to the State Governor offering a £ 1 OOO 

reward for the discovery of a viable coal field within 50 miles of a declared port. 

It is thought that the original discovery of the Collie river coal deposits in 1883 

was by a stockman named George Marsh (Stedman, 1988). He picked up several 

dark coloured stones from the edge of a river pool and placed the stones on either 

side of his fire to support cooking utensils. Much to his surprise the 'stones' 

caught alight. 

Trials using the coal were undertaken leading to the Engineer in Chief for the 

State C. Y. O'Connor, being enthusiastic regarding the potential of Collie coal. 

Over 1000 tonnes of Collie coal were mined by the end of 1894 (Stedman, 1988). 

Initially all mining in the Collie basin was underground. The first open-cut coal 

mining operation was at Stockton, which was developed during World War II to 

supplement production from underground mines. There have since been 10 other 

open-cut coal mines opened in the Collie basin (Western Australian Forests 

Department, 1983; Stedman, 1988). In 1983, open-cut methods produced 80% of 

the coal in the Collie Coal Basin (Western Australian Forests Department, 1983). 

During the 1940s and 1950s, when coal production rapidly increased at Collie, 

three major companies (Griffin Coal Mining Company, Western Collieries Ltd 

and Amalgamated Collieries Ltd.) operated open-cut and underground coal mines. 

At the end of 1960, Amalgamated Collieries ceased operation due to a dispute 
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with the government (Stedman, 1988). At the time there was no requirement for 

them to undertake environmental rehabilitation of their mining areas. 

There are five areas that Amalgamated Collieries mined using the open-cut 

method. They were Stockton (1943-1957), Wallsend (1946-1948), Black 

Diamond (1948-1953), Ewington No. 1 (1952-1959) and Ewington No. 2 (1960) 

(Stedman, 1 988). The proximity of Wallsend to Collie meant the mining void 

could and was used as a rubbish dump after mining. It was later filled and 

landscaped to become a sports field (Stedman, 1988). The Black Diamond pit was 

divided into two lakes (Black Diamond A and Black Diamond B) with overburden 

from the western part of the pit (Stedman, 1988) resulting in one large and one 

small void. The smaller void is a shallow wetland while the larger void (Black 

Diamond) is a local recreation and swimming location. Stockton was allowed to 

fill and is used for water skiing. The two Ewington voids are located on private 

property. The larger of the two voids is commonly called Bluewaters (Ewington 

Open Cut No 1) and is a large lake up to 20 metres deep. The smaller void, simply 

is called Ewington (Ewington Open Cut No 2), is on average only 6 metres deep, 

with a maximum depth of approximately 11 m. 

Chemistry of acid mine drainage 

Acid mine drainage is the product of a chemical reaction between water (H20), 

oxygen (02), carbon dioxide (C02), and the relatively common iron-sulphur 

minerals, pyrite (FeS2) and pyrrhotite (FeS), in the presence of bacteria (Mills, 

l 997a). 
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The process of acidification of water in mining voids has been described by 

numerous workers (Broughton and Robertson, 1992; Durkin and Herrman, 1994; 

Mills, 1997a, b) and it is a time dependant process controlled primarily by the: 

• presence and nature of active sulphides, 

• availability of water, 

• availability of oxygen ( convection and diffusion), 

• iron oxidising bacterial action, 

• surrounding temperature and pressure, 

• pH or presence of base alkaline reactants (bacteria), 

• physical characteristics of the substrate such as particle size, waste 

permeability, etc; and, 

• surrounding biological factors. 

(Comarmond, 1998; Fague and Mostyn, 1997; Mills, 1993, l 997a; Zhou, 1994) 

The following four chemical equations demonstrate the processes: 

In Equation 1.1 ,  hydrogen ions (H+), ferrous ions (Fe2+) and sulphate ions (S04 
2-) 

are produced by oxidation of pyrite. 

2FeS2 + 702 + 2H20 7 2Fe2+ + 4S04 
2- + 4H+ (Equation 1.1)  

Ferrous ions (Equation 1 . 1 )  are then oxidised to form ferric ions (Fe3+). 

2+ 0 H+ � 3+ 0 4Fe + 2 + 4 (bacteria) -, 4Fe + 2H2 (Equation 1 .2) 

Ferric ions (Equation 1 .2) can then either be hydrolysed and form ferric hydroxide 

(Fe(OH)3) and acidity (H+; as shown in Equation 1 .3), or the ferric ions can react 

with pyrite and act as an oxidant in generating greater amounts of ferrous ions, 

sulphate and acidity ( as shown in Equation 1 .4; Skousen, 199 5). The rate limiting 
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step in the overall process is the oxidation in solution of ferrous ion to ferric ion 

(Equation 1.2), whereas, the sulphide oxidation is relatively rapid (Skousen, 

1995). However, iron oxidising bacteria greatly enhance and accelerate iron 

oxidisation which, in-tum, greatly speeds acid generation (Skousen, 1995). When 

the pH of water falls below about 4.5, sulphide dissolution becomes markedly 

faster; typically by five to one million times faster (Gray, et al., 1990). This is due 

to the action of naturally occurring, acidophilic chemolithotrophic bacteria, which 

accelerate the oxidation of sulphides, sulphur or ferrous ion (Shuttleworth and 

Unz, 1988). They provide biochemically mediated reaction paths for the oxidation 

processes, with lower activation energies than the abiotic paths. This enables the 

bacteria to utilise the energy released by the oxidation process (Gray et al., 1990). 

The most common of these bacteria are Thiobacillus ferrooxidans and T 

thiooxidans, although numerous other bacteria have been isolated from mine 

waters (Gray et al., 1990). While these bacteria are not catalysts by definition, 

they do act as accelerating agents if their habitat conditions are at, or close to, 

optimal and they are an important factor in the generation of acid mine drainage 

(Mills, 1997b). While bacteria can accelerate acid formation, the net effect of this 

oxidation of pyrites is the formation of two hydrogen ions for every mole of 

sulphate formed (King, et al. , 1974). 
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Once weathering has produced ferric ions, the ions can rapidly oxidise pyrite 

(Equation 1.4). Therefore, ferric ions cannot persist in the presence of pyritic 

minerals (Wilderman and Laudon, 1989). 

Fe3+ + 3H20 � Fe(OH)3 (sl + 3H+ (Equation 1 .3) 

1 4Fe3+ + FeS2 + 8H20 � 15Fe2+ +2SO/- + 16H+ (Equation 1 .4) 

(Gray, et al. , 1990; Skousen, 1995) 

The natural pyrite ore has three well-defined morphologies; cubic pyrite, 

orthorhombic marcasite and framboidal amorphous material. These and other 

parameters such as the surface of the pyrite crystal having a passivating surface 

film and the pyrite having a variable elemental composition from FeS2.oo to FeS1 .94 

increase the complexity of the oxidation process (Lawson et al., 1993). 

If any of the processes represented by the equations above ( 1. 1 - 1.4) were slowed 

or stopped, the generation of acid mine drainage would also slow or cease. 

Removal of air and/or water from the process, two of the three principal reactants, 

would stop pyrite from oxidising as occurs in nature. When pyrite is found in rock 

materials beneath the water table where oxidising conditions are limited, the 

pyrite remains unreacted. Only small amounts of pyrite are oxidised through 

natural weathering, thereby generating only small amounts of acidity. These small 

amounts of acid are naturally diluted or neutralised by surrounding rocks so that 

they are not seen or noticed. Mining often accelerates this natural process by 

exposing pyrite to oxygen and water. 
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Most commonly, it is sulphuric acid that increases the hydrogen ion content in 

mining voids (Equations 1.1 and 1.4). At low pH, the bacteria also contribute to 

the release of hydrogen ions by indirect oxidation of pyritic material via ferric ion, 

as well as by direct oxidation (Gray et al., 1990). Pyritic waste generated during 

the mining of sulphide ore bodies contains other sulphide minerals, such as 

chalcopyrite (FeS.CuS) and pyrrhotite and/or sulphates [e.g. gypsum, 

(CaS04.2H20) or barite (BaS04)] . The ferric ion released by pyrite also 

accelerates the indirect bacterial oxidation of these minerals (Mills, 1997b ). 

Although these minerals do not produce acid, they release heavy metals, 

exacerbating the adverse envirorunental impact of the acid mine drainage (Gray et 

al., 1990). The kinetics of pyrite oxidation have been found to vary considerably, 

depending on the exact conditions and the source of the pyrite. This variability is 

a fundamental obstacle to developing methods or technology for preventing and 

mitigating acid mine drainage (Gray et al., 1990). 

Environmental impacts of acid mine drainage 

The impacts of acid drainage on aquatic envirorunents are manifested in changes 

in water quality and ecological functioning and integrity (Phillips, 1998). The 

envirorunental impact of acid mine drainage is dependant on the quantity of acid, 

produced and the amounts of base or alkaline material available. The 

consequences of acidic drainage depend on the pH, chemical composition and 

volume of the contaminated drainage, and the assimilative capacity of the 

receiving envirorunent (Harries, 1996). The off-site impacts of sulphide oxidation 

in mine wastes at sites in arid regions can be different from those in high rainfall 
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zones (Harries, 1996). In high rainfall zones there are often large amounts of acid 

mine drainage in stream run off and ground water. Whereas, in drier environments 

there is less flowing water, so the acid mine drainage is not transported or 

produced. This can cause intense acid problems when it does rain and large 

volumes of acidic water are created and transported in a short period of time. 

Acid mine drainage contaminated groundwater with a low pH ( 1 .9-2.3), high 

dissolved iron salts (concentration; TDS 15000 mg L-1), high redox potential, high 

concentrations of metals (such as zinc, aluminium and cadmium) and high 

chemical oxygen demand is a hazard to human health, agriculture and the 

environment (Hancock, 1 997; Whitehead, et al. , 1 995; Woodin and Skiba, 1 990). 

This particular ' toxic cocktail ' of acidic water effects aquatic flora and fauna, and 

coats the riverbed with orange ferric hydroxides and a bacterial slime (Whitehead 

et al. , 1 995). 

Effects of heavy metals 

Acid mine drainage can carry high concentrations of heavy metals leached from 

surrounding soil and rocks as the low pH increases metal solubility (Gyure et al. 

1 987; 1990; Kelly, 1988; Mills, 1997a). The types of metals leached depend on 

the soil and rock types that the acid mine drainage runs through or over. Metal 

cations commonly found in high concentrations in coal-formed acid mine 

drainage include nickel, copper, zinc, manganese, cadmium, aluminium, iron, 

vanadium, chromium and lead (Borg, 1987; Kelly, 1 988). 
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Among the important stream biota that can be adversely effected by low pH and 

high metal concentrations are algae, the major primary producers in many 

streams. Bioaccumulation of metals in algae and bryophytes can expose fish and 

other consumers to concentrations of metals that are several orders of magnitude 

greater than the water in which they would normally live (Bailey and Stokes, 1985 

cited in Engleman and McDiffett, 1996, p 67). 

Effects of low pH 

High acidity (pH < 3.0) kills plant life (Cline and Balla, 1976; Henriksen et al. , 

1988), while moderately acid conditions (pH 3.0-4.5) will kill aquatic insects 

(Andersson and Danell, 1982). When acid mine drainage is severe, contact with 

the water can cause skin irritation to people (Howard et al., l 989b ). The acidic 

water can also attack cement culverts and bridge abutments resulting in a reduced 

life span for these structures (Fague and Mostyn, 1997). 

Chemical conditions associated with acid mine drainage, such as high heavy metal 

levels and low pH are toxic to fish (Fague and Mostyn, 1997; Leivestad and 

Muniz, 1976; Woodin and Skiba, 1990). However, only a few cases of massive 

fish kills due to low pH have been documented (Leivestad and Muniz, 1976). 

Drainage across oxidised sulphidic sediments is believed to be the cause of stream 

acidification (Easton, 1989; Sammut, et al. , 1995; 1996) which has resulted in 

mass mortality of fish and other gilled organisms in some of Australia's coastal 

tributaries and estuaries when prolonged dry periods have been broken by heavy 

rainfall (Brown, 1983; Easton; 1989). Acidity disrupts the mechanisms by which 

fish maintain their ionic balance of internal fluids causing a loss of body salts, 
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especially sodium. Newly hatched and young fish are extremely sensitive to pH 

changes in water (Woodin and Skiba, 1990). Fish lay fewer eggs in acidic water 

and many of these eggs die (Woodin and Skiba, 1990). Aluminium in acidic water 

damages the gills of fish and they become covered in mucus and the fish suffocate 

(Woodin and Skiba, 1990). There is also a reduction in productivity associated 

with acid mine drainage due to a loss in nitrogen, phosphorous and carbon sources 

in the water. 

Control and prevention of acid mine drainage 

One feature of acid mine drainage is that the chemical and bacterial mechanisms 

responsible for its formation are auto catalytic; once mine waste becomes acidic 

the problem tends to worsen and is difficult to stop (Environmental Mining 

Council of British Columbia, 1998; Gray et al., 1990). Often all that can be done 

is to treat the drainage to remove acid and dissolved metals, or to isolate the 

wastewater from the environment in a zero-discharge or controlled discharging 

facility (Gray et al. , 1990). The large volumes ofwastewater involved, often being 

released over many centuries, can make any mitigative action expensive (Gray et 

al., 1990). Preventative action is preferable, especially when planning new 

facilities and management processes for pyritic wastes. 

Much of the effort to control acid mine drainage in the past has been directed at 

treating the symptoms rather than controlling the problem at the source (Axler et 

al., 1998; Perry and Kleinmann, 1991 ). Prevention of acid generation is the most 

desirable approach with the aim to eliminate any one of the three components of 
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acid generation (Durkin and Herrmann, 1994; Silver, 1989). These three 

components are the mineral substrate, the oxidant and the biological catalyst. 

Elimination of these components may be achieved by: 

• removal of the pyrite source (Hester and Associates, 1984), 

• rendering acid generation minerals inactive by the development of 

surface coatings (Brooks, 1998; Currey, 1998 ; Flyn, 1969; Stiller, 

1982), 

• exclusion of water (Orr and Veivers, 1997 ;  Robertson, 1987), 

• control of biological oxidation, 

• controlling the temperature (Robertson, 1987, 1988 ;  Robertson and 

Barton-Bridges, 1988), 

• exclusion of oxygen (Barton-Bridges and Robertson, l 989a, b; Fawcett 

and Sinclair, 1997); or 

• addition of a base substance (Robertson, 1987, 1988). 

Where it is not possible to prevent the generation of acid mine drainage, the next 

most desirable approach is to prevent acid and acid product migration into the 

environment. Since water is the mode of transport, the approach typically relies on 

the prevention of water entry to the waste pile. Control of water exiting from the 

pile is of little value, since in the long-term all water entering the pile must exit, 

unless a strategy is put in place for its long-term storage. 
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The control requirements are as follows: 

• diversion of all surface water flowing towards the pile, 

• interception or isolation of groundwater flow towards the pile, or 

• prevention of infiltration of precipitation into the pile (Robertson, 

1988). 

If acid generation and migration from the source has taken place, the remaining 

option is to collect and treat the contaminated effluent. This control measure is the 

least attractive because of the obvious disadvantages in maintaining a treatment 

process in the long-term. The high risk of failure of any long-term treatment 

system in the long term is an additional disadvantage. This control technique is 

suitable for the short-term, particularly when used in conjunction with one or both 

of the preceding methods of control (Robertson, 1988). 

Remediation and amelioration strategies for treating acid mine 

drainage 

Many techniques have been devised for the amelioration of acid mine drainage 

problems; these include liming, filtration through biological materials or wetlands 

(Brodie et al., 1989; Henrot et al , 1989; Microbial Technologies, 1997; Reed et 

al., 1988; Robertson, 1987; Robertson and Barton-Bridges, 1988, 1990; Street and 

Titmus, 1982; Wilderman and Laudon, 1989), use of bactericides (Sobek, 1987), 

surface coatings on the sulphides (Dugan, 1987; Roberston, 1988; Silver, 1989), 

engineered covers (Dugan, 1987; Roberston, 1988; Silver, 1989), flooding 

(Robertson, 1988), development of raised bogs (Brown, 1991, cited in Shelp, 
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Chesworth and Spiers, 1996, p. 425) and an in situ electrochemical method using 

aluminium and zinc sacrificial anodes (Shelp, et al., 1996). Most of these pose 

problems with cost effectiveness and longer-term maintenance issues. 

One of the most promising developments in the treatment of acid mine drainage is 

the recognition of the role of natural processes in the removal of acidity, sulphate 

and metals from drainage waters. Biological sulphate reduction has been 

identified as one of the major contributors to the amelioration process in wetlands 

(Broughton and Robertson, 1992). Over time, the low pH of waters created by 

acid mine drainage may be neutralised by anaerobic microbial activities (Gyure et 

al., 1990; Kelly et al. 1982). 

Sulphate reducing bacteria 

Sulphate reducing bacteria remove contaminants by oxidising matter and using 

sulphate as an electron acceptor (Hedin et al., 1988). Sulphate reducing bacteria 

are strictly anaerobic and are severely inhibited by even small amounts of oxygen. 

They require an organic carbon source (Hammack and Edenbom, 1991) and the 

redox potential to be less than -100 mV (Lyew et al. 1994; Lyew and Sheppard, 

1997). 
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The sulphate reduction reactions are as follows; 

SO/- + 2CH20 (i. e. organic matter) + 2H+ 
{bacteria) 7 

H2S + 2H20 + 2C02 (pH < 7 .0) (Equation 1 .5) 

SO/- + 2CH20 (i.e. organic matter) + OH- (bacteria) 7 

HS- + H20 + HC03- (pH > 7.0) (Equation 1 .6) 

(Jones and Chapman, 1995) 

As indicated in Equations 1.5 and 1 .6, the removal of sulphate results in a 

decrease in acidity (Wendt-Potthoff and Neu, 1 998). Sulphur is released as 

hydrogen sulphide gas or it remains in the wetland as metal sulphides, 

polysulphides, elemental sulphur, iron monosulphides and pyrite (Hedin et al. 

Hammack, 1988). The released hydrogen sulphide gas reacts with heavy metal 

ions to form insoluble metal sulphides that can easily be separated from a solution 

(Kim et al., 1 999), however, the metal sulphide precipitation depends on the 

inflow concentrations and pH (Hedin et al .. 1988; 1994). This reduction process 

also produces alkalinity (HC03) that decreases acidity and raises pH (Hedin et 

al. , 1988). Bicarbonate ions produced during the sulphate reducing bacteria 

reaction buffer the solution pH to between 6 and 7 (Kim et al. , 1999). This 

buffering will also cause some metal ions to precipitate as insoluble hydroxides. 

Dvorak, et al. (1992) reported that pilot-scale reactors filled with spent mushroom 

compost and sulphate reducing bacteria lowered concentrations of the metals 

aluminium, cadmium, iron, manganese, nickel and zinc by over 95% in the waste 

water, while completely neutralising the acidity of contaminated water. Hammack 

and Edenbom ( 1992) found that the rate of sulphate reduction and metal removal 

was increased by a factor of 10 following the addition of lactate, which is a 
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preferred carbon source for many sulphate reducing bacteria. During sulphate 

reduction in acidified bacterial cultures, the pH of the medium increases by 

between one and two pH units and black iron sulphate deposits are formed (Gyure 

et al., 1987; Johnson et al., 1997). 

The reduction of sulphate to hydrogen sulphide (H2S) is brought about by 

specialised anaerobic bacteria from the genera; Desulfovibrio (five species) and 

Desulfotomaculum (three species; Broughton and Robertson, 1992). These 

bacteria are all heterotrophic organisms and have a respiratory metabolism in 

which sulphates, sulphides and/or other reducible sulphur compounds serve as the 

final electron acceptors, with the resulting production of H2S (Broughton and 

Robertson, 1992; Johnson et al. , 1997). The organic substrates for these bacteria 

are generally short chain acids such as lactic and pyruvic acid (Broughton and 

Robertson, 1992). In nature, these substrates are provided through fermentation 

activities of anaerobic bacteria on more complex organic substrates, such as 

rotting vegetation (Broughton and Robertson, 1992). Sulphate reduction by 

bacteria occurs in the epilimnetic and hypolimnetic sediments of lakes (Kelly et 

al., 1982; Rudd, et al. ,  1986a). 

Recently, sulphate reduction has been recognised as a potential acid mine 

drainage treatment process in its own right (Christensen, et al., 1996; Lyew and 

Sheppard, 1999). Natural in situ sulphate reduction has been identified in an 

underground mine in Norway (Broughton and Robertson, 1992; Herlihy and 

Mills, 1985). This presents the potential for instituting a relatively low 

maintenance biological treatment system in abandoned underground and open-cut 
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voids that not only modifies the effluent pH, but also extracts the soluble metal 

content as stable sulphide compounds (Broughton and Robertson, 1992). The 

reducing conditions under which these sulphide metal compounds are deposited, 

also provides an ideal long-term storage facility for the preservation of these 

compounds (Broughton and Robertson, 1992). Rudd et al. , (1986a) found that 

organic sulphur formation was probably the most important long-term source of 

sulphur to the sediments. 

Bacterial sulphate reductions require hypoxic conditions and an oxidisable 

organic substrate. There are other anoxic bacterial reactions that require an 

organic substrate. These are iron and manganese reduction and methanogenesis 

(Kelly and Chynoweth, 1981). All of these anoxic reactions compete for the 

available organic substrate, however, as sulphate concentrations increase, sulphate 

reduction increases to the point where bacterial sulphate reducers tend to 

dominate (Kelly et al., 1982; Lyew and Sheppard, 1999). The sulphate reduction 

out competes the methanogenesis due to a higher redox potential. 

Rudd, et al. (1986b) provided a conceptual model of the fate of the end products 

of sulphate reduction after observing the natural sulphur accumulation in four 

lakes in southern Norway (Figure 1.1 ) .  
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Figure 1 . 1 .  The formation of acid mine drainage and its natural amelioration 
in mining pit lakes. 

(Adapted from Rudd et al., 1986b; Kelly, 1988; and King et al., 1974) 
SRB = Sulphate reducing bacteria, AB = Anaerobic bacteria, MS = Metal 

sulphides. 

A key feature of this model (Figure 1.1) is the input of organic matter into the 

water creating a source of nutrients for algae. Algal formation then continues the 

production of organic matter potentially creating a self-sustaining system. 

While recognition is growing that a "walk-away" situation cannot be achieved for 

every site, the technical and financial liabilities of maintaining a chemical 

treatment plant (i. e., liming) in perpetuity have increased the interest in 
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developing effective long-term passive care options. The use of sulphate reducing 

bacteria to increase the pH represents an inexpensive biological alternative to 

chemical neutralisation of acidic lakes (Gyure et al. ,  1987; Tsukamoto and Miller, 

1999). 

Wetlands 

Sulphate reducing bacteria solutions are generally applied in two ways, as 

treatment for drainage waters or as an in-void treatment. Drainage treatment 

typically involves passing acid mine drainage water through a wetland system 

while an in-void treatment seeks to recreate natural wetland conditions within the 

void. 

Acid mine drainage remediation by passive systems was first documented by 

Huntsman, et al. ,  (1978), and Wieder and Lang (1982) in Ohio and West Virginia 

respectively. Since the 1970s a variety of passive treatment systems have been 

developed that do not require continuous chemical inputs and that take advantage 

of naturally occurring geochemical and biological processes to cleanse 

contaminated mine waters. Observations of natural Sphagnum moss wetlands 

ameliorating water quality stimulated the idea that engineered wetland systems 

might be used for the treatment of acid mine waters ( Gazea, et al. , 1996). Similar 

studies by Brooks, et al., (1985) demonstrated acid mine drainage amelioration in 

Typha wetlands. Some wetland plants show long-term adaptation to low pH and 

high metal concentrations, whereas, in other cases acid mine drainage eventually 

degrades the quality of natural wetlands (Skousen, 1997). Artificially constructed 
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wetlands for water treatment might provide a low cost and low maintenance 

treatment of acid mine drainage (Kleinmann, 199 1 ;  Skousen, 1 997). Hedin et al. 

(1994) described the goal of wetland treatment systems "to enhance the natural 

amelioration processes so that they occur within the treatment system, not in the 

receiving water body". This area of wetland remediation has been the focus of 

most passive remediation research over the past 10 years. 

Passive treatment of acid mine drainage represents an alternative to conventional 

neutralisation techniques with alkaline reagents such as lime, limestone, magnesia 

and others. Passive systems typically require less input of energy, reagents and 

manpower, and present lower operational and maintenance costs than 

conventional treatment schemes. Thus, they may be employed during the mine 

operation as well as in the post-closure period. 

The cost of anoxic lime drain treatment, field observations of the improvement of 

acid mine drainage upon passage through naturally occurring Sphagnum

dominated wetlands, and the suggestion that constructed wetlands might provide a 

'low cost, low maintenance' alternative to conventional chemical treatment, 

sparked considerable enthusiasm in the coal and consulting industries 

(Klienmann, et al., 1983; Wieder and Lang, 1 982). Although hundreds of 

wetlands were constructed in the United States between 1984 and 1988 to treat 

acid mine drainage, the treatment effectiveness continues to be variable and 

generally unpredictable (Gazea et al., 1996; Wieder, et al. , 1990; Wieder, 1994). 

Sphagnum moss proved highly sensitive to transplanting, abrupt water chemistry 

changes and increased accumulation of iron. At most sites the moss died within 
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one growing season (Gazea et al., 1996). Despite these negative results, research 

on alternative types of constructed wetlands continues (Mitsch and Wise, 1998; 

Skousen, 1997). Recent research indicates anaerobic processes are more important 

than the type of organic matter used in applied passive treatment systems for coal 

acid mine drainage (Gazea et al. , 1996). 

Most of the constructed wetlands were not installed for research purposes and 

because hydrologic conditions were generally unknown in some instances, 

apparent improvements in the water quality of mine drainage may have resulted 

from the dilution with rainwater or the influx of good quality groundwater 

(Wieder et al., 1990). Most data collected for this type of treatment were due to 

regulatory requirements and only water chemistry data from periodic sampling of 

the discharge exists. These data typically do not contain information about the 

metal accumulation in the wetland (Wieder et al., 1990). 

Even after the initial dilution is accounted for, constructed wetlands can have a 

considerable effect on the acidity of acid mine drainage and the concentrations of 

dissolved metals (Tyrrell, 1996). Wetlands for wastewater treatment use 

biological, chemical and physical features of natural wetlands to improve water 

quality (Tyrrell, 1996). Wetlands serve as sinks, sources and transformers of 

chemicals. Changes depend on the wetland type, hydrology and annual climatic 

variation (Mitsch, 1992). Wetlands can alter and trap pollutants and contaminants 

(Hammer, 1990). Some of these features include filtering of suspended material, 

metal uptake into live roots and leaves, adsorption and exchange by plants, soil 

and other biological materials; abiotic or microbially-catalysed metal oxidation 
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and hydrolysis reactions in aerobic zones, and microbially-mediated reduction 

processes in anaerobic zones (Gazea et al., 1996). Mechanisms of metal retention 

within wetlands include; formation and precipitation of metal oxides and 

hydroxides, formation of metal sulphides, organic complexation reactions, 

exchange with other cations on negatively-charged sites, and direct uptake by 

living plants (Skousen, 1997). Consequently wetlands, natural and constructed, 

are treating various wastewater types throughout the world. 

Research has been conducted on the design parameters necessary for effective 

wetland construction for acid mine drainage treatment or wastewater (Hedin and 

Nairn, 1990; Kepler, 1990). However, research into the usefulness and benefit of 

wetland plants is limited. While wetlands that do not contain vegetation and use a 

variety of substrates have been proposed or shown to be successful (Stark, et al., 

1996; Wieder, 1989), vegetation can be important in the development of 

constructed wetlands. The presence of plants can reduce channelisation and 

increase the residence time of the acid mine drainage in the wetland (Demchik 

and Garbutt, 1999). Although most acid mine drainage treatment in wetlands is by 

microbial processes, plants can take up minor amounts of heavy metals (Demchik 

and Garbutt, 1999) and stimulate microbial communities by producing a carbon 

source, adding oxygen and providing a physical site for microbial attachment to 

the roots (Skousen, et al., 1992). Plants also provide habitat for wildlife and 

aesthetic value (Skousen et al., 1992). 
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Passive treatment alternatives 

Three types of passive technologies have been developed for the treatment of acid 

mine drainage; aerobic wetlands, compost or anaerobic wetlands, and anoxic lime 

drains. In aerobic wetlands, oxidation reactions occur, and metals precipitate as 

hydroxides and oxyhydroxides that are suited to waters that have net alkalinity. 

Compost wetlands promote anaerobic bacterial activity resulting in sulphate 

reduction, the subsequent precipitation of metal sulphides and the generation of 

alkalinity. Anoxic limestone drains generate alkalinity and can be used for the 

pre-treatment of the acidic mine waters (Gazea et al., 1 996). Acid water is passed 

through a limestone bed under anoxic conditions to prevent armouring of the 

limestone. 

The applicability of each of the three passive technologies mainly depends on the 

composition of the mine waters under treatment and they are most often effective 

when used in combination (Gazea et al., 1 996; Skousen, 1 997). Based on field 

observations, it is recommended that anoxic lime drains should be a pre-treatment 

stage aiming to add alkalinity to the water, followed by an aerobic wetland to 

remove as much iron as possible through oxidation (Gazea et al., 1 996). Directing 

the partially treated water flow through a series of anaerobic cells with composted 

organic substrate will result in increasing the pH to near neutral and in reducing 

the other metal levels to values close to environmentally permissible limits (Gazea 

et al., 1 996). 
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An effective treatment system must in most cases do two things; firstly, remove 

metals from the water by precipitation, oxidation or reduction. Secondly, raise the 

pH to a level in which fish, insects and a new functional ecosystem can be 

established. 

Anaerobic organic substrate systems (or compost wetlands) 

Anaerobic systems require the mine water to flow through a body of organic 

material (normally about 1 m thick) under anaerobic conditions (Robinson and 

Robb, 1995). Anaerobic wetlands generally contain a layer of limestone in the 

bottom of the constructed wetland. The limestone is overlain by organic material 

and wetland plant species planted into the organic substrate (Figure 1 .2; Robb and 

Robinson, 1995; Skousen, 1997). These systems are used when the water has a net 

acidity. Alkalinity must be introduced into the system before dissolved metals will 

precipitate (Skousen, 1997). Compost wetlands generate alkalinity through a 

combination of bacterial activity and limestone dissolution that in tum neutralise 

the acidity contained in the influent waters. This is important for the long-term 

viability of the proposed treatment. Anaerobic wetlands are applicable to the 

treatment of mine waters containing ferric iron or aluminium, and acidity higher 

than 300 mg L" 1 CaC03. The sulphate reducing bacteria require a rich organic 

substrate in which anoxic conditions will develop (Skousen, 1 997). Typical 

substrates used in these wetlands include low cost natural products and wastes 

such as spent mushroom compost, horse and cow manure, hay, peat, wood chips 

and sawdust (Skousen, 1997) .  Spent mushroom compost containing 1 0% dry 

weight limestone is also a commonly used substrate (Skousen, 1997). Compost 
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substrates with low calcium carbonate content can be supplemented with 

limestone. 

Minewater input 

Sulphate reduction 
2CH,O + SO/ = H,S + 2HC03· 

H,S + Zn2
• = ZnS + 2H' 

Water level 
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Figure 1 .2 Design of an anaerobic wetland. 
(from Robb and Robinson, 1995) 

The propagation of plants on the surface is discouraged so as to avoid the 

penetration of the cell surface by the plant roots and the subsequent injection of 

excess oxygen into the substrate, destroying the anaerobic conditions. This would 

cause a problem with competing aerobic and anaerobic microenvironments that 

will ultimately reduce the performance of the sulphate reducing bacteria and 

therefore the treatment system (Robinson and Robb, 1995). Mine water with a 

high sulphate content infiltrates through the thick, permeable organic matter sub-

surface sediment and becomes anaerobic due to high biological oxygen demand. 

Several additional treatment mechanisms function in anaerobic wetlands 

compared to aerobic wetlands. These include metal exchange, formation and 
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precipitation of metal sulphides, microbially generated alkalinity due to reduction 

reactions and continuous formation of carbonate alkalinity due to limestone 

dissolution under anoxic conditions (Figure 1.2; Robb and Robinson, 1995; 

Skousen, 1997). 

These design parameters represent current methodologies that will be potentially 

replaced with more efficient techniques currently under development (Gazea et 

al., 1996). Research is underway testing successive alkalinity producing systems 

(Gazea et al. , 1996; Skousen, 1997). These experimental systems combine anoxic 

lime drain technologies with sulphate reduction mechanisms; they promote 

vertical water flow through rich organic substrates into limestone beds beneath the 

organic compost. The problems associated with dissolved oxygen and ferric iron 

contents on anoxic lime drains are eliminated in successive alkalinity producing 

systems; ferric iron is reduced to a ferrous form and dissolved oxygen is removed 

from the water within the organic substrate prior to its treatment through the 

limestone bed (Gazea et al., 1996). 

Successive alkalinity producing systems 

Successive alkalinity producing systems have been identified as the most 

applicable technology for the treatment of low acid mine drainage load/low flow 

point sources (Johnston, et al. , 1996). Successive alkalinity producing systems 

combine the use of anoxic lime drain technology and anaerobic compost wetland 

technology (Johnston et al., 1996; Skousen, 1997). The treatment effectiveness 

within a passive treatment system is based on the residence time of acid mine 

drainage within the system (Johnston et al., 1996). Successive alkalinity 

44 



producing systems consist of a series of alkaline producing and settlement 

components to progressively raise the pH, remove metals from solution and 

precipitate as sediments (Johnston et al., 1 996). In a successive alkalinity 

producing system, acidic water is piped into a holding tank and then pumped into 

anaerobic organic matter underlain by limestone. Below the limestone is a 

drainage pipe where the water is directed into an aerobic wetland. The compost 

layer ensures that the discharge will be anoxic upon entering the limestone 

treatment component, altering the redox state of the iron load, and acting as a 

potential metal sink for sulphide precipitates. The limestone layer provides 

alkalinity and an additional pH adjustment (Johnston et al., 1 996; Skousen, 1 997). 

Hamilton, et al. ( 1999) system comprised of five aerobic reed beds, an anaerobic 

cell and an aerobic rock-filter (Hamilton et al., 1 999). It was found that this 

system significantly reduced heavy metal levels (iron, arsenic, zinc, cadmium, 

copper and manganese) and levels of sulphate (Hamilton et al., 1 999). 

In situ void treatment 

Acidity of mining void lakes will typically decrease as a consequence of a slow 

increase in biological activity (Gyure, et al., 1 987). Based on 25 years of data, 

Cambell and Lind ( 1969) found that acidic mine lakes with a greater input of 

organic matter, such as leaves and grass, exhibited a higher pH than lakes with 

little organic matter input. Kalin and Geller ( 1 998) report that limnologists often 

presume that an autochthonous succession from young (i.e. , mining lakes) lakes to 

mature lakes exists, resulting in lakes with accumulated sediments and a well-
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developed ecosystem. The inputting of organic matter just increases the rate of 

this autochthonous accumulation. 

Organic matter might therefore be used to increase the presence of sulphate 

reducing bacteria and to treat water effected by acid mine drainage (Tuttle, et al., 

1969a). Subsequent studies by Tuttle et al., ( 1969b) found the placement of 

sawdust in acidic lakes can increase the population of sulphate reducing bacteria 

by producing a low redox potential and by providing a source of organic nutrients 

to supply energy and carbon (Tuttle, et al., 1969b ). The improved conditions for 

sulphate reducing bacteria resulted in the removal of sulphate from the water and 

producing an accompanying increase in pH. The productivity of acidic mine lakes 

with low supplies of allochthonous nutrients becomes dependent on carbon 

formed by autochthonous means (Gyure et al., 1987). 

Bechard, et al. (1994) developed a low maintenance microbial treatment system 

that used alfalfa as an organic substrate. Whereas, the use of hay, timothy hay and 

straw failed as treatment systems after about three weeks. 

Organic matter additions will supply nutrients for algal growth increasing in 

primary productivity and therefore increasing the supply of organic matter to the 

sediments, which will contribute further to the process of sulphate reduction. 

Nutrients are often limited in waters affected by acid mine drainage due to the 

high levels of cations that quickly precipitate out any available nutrients, therefore 

there is typically little available carbon, nitrogen and phosphorus in the lake 
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waters (Gyure et al., 1 987). Nutrient availability is more important than pH in 

limiting photosynthetic activity in lakes (Gyure et al., 1987). 

Organic matter additions can contribute in other ways to increasing the pH in the 

lakes. When organic matter is spread evenly over the sediment a capping effect 

can limit oxygen reaching pyrite in the sediments; creating the anaerobic 

environment necessary for the functioning of sulphate reducing bacteria. If acidic 

groundwater is entering the lakes it will have to pass through the organic matter 

layer prior to entering the water column. Any sulphate reducing bacteria in the 

sediments will probably increase the pH of the groundwater. Bacterial sulphate 

reduction can also cause the amelioration of the polluting effects of acid mine 

drainage by precipitating metals such as sulphides ( e.g., zinc sulphides and copper 

sulphides; Johnson et al., 1997). If the pH of the acid lakes is increased by the 

addition of organic matter, any metals within the water column are likely to 

precipitate out and become bound to the sediments as their solubility is reduced at 

a higher pH (Johnson et al. ,  1997). 

Establishing sulphate reducing bacteria in the sediments of acid lakes by the 

introduction of nutrients to convert sulphuric acid to hydrogen sulphide gas and 

metal sulphides has four potential benefits; 

• reducing the acidity of the water, 

• actively binding soluble heavy metals into insoluble precipitates, 

• offering a low cost, self-sustaining alternative; and 

• being effective regardless of groundwater or sediment contributions to 

acidity. 
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Sulphate reducing bacteria thrive only in anoxic conditions and the addition of a 

layer of organic matter across the sediment can create these conditions (Schindler, 

1996). 

Australian Coal Association Research Program 

A research group funded by the Australian Coal Association (Australian Coal 

Association Research Program; ACARP) is attempting to develop appropriate low 

cost, low maintenance solutions for rehabilitating acidic flooded coal mine voids 

of the Collie area (Phillips et al., 1999). The aims of this study are to contribute to 

the development of technology and guidelines for the treatment of the lakes that 

form in mine voids as a result of seepage, run-off and residual effluent drainage. It 

is proposed to stock these voids for aquaculture after rehabilitation is complete 

(Phillips et al., 1999). The ACARP project is being undertaken by a team 

comprising of staff from three educational institutions (Curtin University of 

Technology, Edith Cowan University and the South-West College of TAFE), two 

coal mining companies (The Griffin Coal Mining Company Ltd and W esfarrners 

Coal Pty. Ltd.) and two government departments (Conservation and Land 

Management and Western Australian Department of Minerals and Energy; Biggs, 

1998; Phillips et al., 1999). A staged approach has been adopted by ACARP and 

currently the research program is its 3rd stage of development. A series of 

simultaneous and sequential investigations have been incorporated into the three 

stages of the program. These include investigation of: 

• the geology, geochemistry and hydrogeology of the area, 

• low cost water pumping techniques, 
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• amelioration of acid run off from coal mine dumps, 

• passive mine drainage treatments and aquatic vegetation strategies, 

• use of bacterial strategies for increasing pH in acidic voids; and, 

• determining the tolerance and potential for restocking of the lakes with 

fish and crustaceans. 

(Biggs, 1998 ; Phillips et al., 1999) 

This thesis addresses a sub-component of the bacterial strategies sub-program 

investigating the use of bacteria to increase water pH. 

Study aims 

Worldwide considerable research has been undertaken into the use of organic 

matter for treating point source acid mine drainage. Aside from a few small scale 

experiments by Tuttle et al. ,  (1969a, b) and Gyure et al. ,  (1987), very little 

research has been undertaken to rehabilitate acidic voids using organic matter. In 

WA, the climate tends to reduce the influence of acid mine drainage point sources 

and increase the significance of diffuse sources. This limits the usefulness of 

techniques such as successive alkalinity producing systems. In Collie the mine 

voids are primarily isolated and there is no obvious flow between voids or across 

the landscape. 
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This study aims to investigate the potential for in situ additions of organic matter 

to increase pH in flooded coal mine voids in Collie (WA). 

Specifically: 

• to test a range of locally available organic matter types for their 

effectiveness in increasing pH within Collie void; 

• to determine the mechanisms responsible for any changes seen in pH when 

organic matter was added; 

• to examine the longer term effects on pH, nutrients and sulphate levels in a 

field situation similar to a Collie mining void when an economically 

reasonable quantity of organic matter is added. 
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2.0 STUDY SITE 

Collie 

Collie is situated about 160km S.S.E. of Perth and 55 km east of Bunbury (33° 22' 

116° 09' Figure 2.1 ). The town of Collie has a resident population of about 9500 

people and is located on the north western rim of the Collie Basin. The major land 

uses in the area are coal mining, power generation and agriculture which are the 

cornerstones of the local economy (Collie Water Advisory Group, 1 996). The 

recreation and nature conservation values of the surrounding State forest areas are 

highly regarded along with the recreational opportunities provided in the area. 

Collie has a mediterranean climate with 75% of its rainfall occurring in the five 

months from May to September (Collie Water Advisory Group, 1996). 
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Figure 2.1 Location of Collie. 
(Readers Digest Australia, 1994) 
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Geology of the area 

The Collie Basin is a small sedimentary basin occurring in the Collie River 

catchment (Collie Water Advisory Group, 1996). It occupies about 10% of the 

river catchment and is approximately 27 km long and up to 13 km wide and has 

an area of about 225 km2
. The basin contains large coal and groundwater 

resources which are being mined (Collie Water Advisory Group, 1996). The 

Collie basin is divided into two sub basins - Cardiff and Premier (Collie Water 

Advisory Group, 1996). The coal seams do not outcrop and all knowledge of the 

coal sequence is derived from borehole data and mining exposures with open-cut 

and underground mines (Stedman, 1988). 

The Premier sub basin contains seams in three separate horizons. The uppermost 

coal unit, Muja, includes nine named seams (Ate, Bellona, Ceres, Diana, Eos, 

Flora, Galatea, Hebe, Iona; Stedman, 1988). All seams are mined in the Muja 

Open Cut to a depth of over 200 metres, which necessitates dewatering 

operations. The underlying Premier coal member also contains nine named seams, 

three of which are mined at the Chicken Creek Open Cut to the east of Muja. The 

same coal bearing unit was mined at the Ewington mine site. 

Ewington : the study site 

Ewington is on private property and there is no general public access to the site. 

As Amalgamated Collieries Ltd., the miners of Ewington, no longer exist, any 

rehabilitation of Ewington and the surrounding area is now the responsibility of 
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the private landowner who is leasing the land from the State government 

(Stedman, 1988). 

Ewington is the focus void of the ACARP research program due to its small size 

and lack of public access. Therefore it was chosen as the focus for this study. 

Ewington has a relatively low pH (3.3-4.6) due to acid drainage from the 

surrounding overburden dumps and from groundwater inflow (Phillips, et al. , 

1999). Eroded steep cliffs on the southern and south-eastern bank surround part of 

the perimeter of the lake. This erosion would suggest that the lake receives run off 

after heavy rains across overburden dumps, potentially increasing the acidity of 

the lake. Overburden dumps mostly surround Ewington. There is also an acidic 

seep on the south-eastern bank throughout the winter-spring period (Phillips et al. , 

1999). 

Ewington was mined to a depth of 10 - 1 5  m (Figure 2.2; Western Australian 

Forests Department, 1983). Erosion and sedimentation processes are likely to 

have reduced the angle of the sides, nevertheless, their gradient is still steep 

leaving only a narrow littoral zone around most of its edges. Overburden dumps 

surrounding Ewington are generally poorly vegetated and consequently the supply 

of allochthonous nutrients into the lake is probably small. 

There are 25 species of plants within l Om of the water in Ewington (Phillips et 

al., 1999); most of which are endemic to the area. The rushes and sedges are 

sparsely distributed with a concentration on the eastern shallow wing (Phillips et 
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al. , 1 999) . The groundcovers are sparse, especially on the southern bank (Figure 

2.3). 

The pH ofEwington varied little throughout 1 998 except for a couple of 

occasions when minor changes were noted. Conductivity appeared to vary on a 

seasonal basis due to evapo-concentration in summer and dilution in winter. The 

changes in conductivity are small in magnitude (870- 1 6 1 8  µs cm- 1
) and are 

unlikely to have any effects on the voids biota (Phillips et al., 1 999). Ewington 

water becomes stratified based on temperature in summer although only the 

deepest section is affected. Slight declines in dissolved oxygen were noted in 

summer in the bottom waters, probably associated with the hypoliminion in the 

deepest section (Phillips et al. , 1999). 
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Figure 2.2 Bathymetry of Ewington. 
(from Phillips et al. , 1999) 

Figure 2.3 Peripheral vegetation map showing distribution of rushes, sedges 
and ground cover. 

(from Phillips et al., 1999) 
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3.0 METHODS 

A pilot experiment (in appendix), three laboratory experiments followed by a field 

experiment were used in this study. The laboratory experiments were designed to 

test, which organic matter types are the most effective, if the quantity of organic 

matter added made any difference to the pH change, and the mechanisms 

responsible for the changes in pH. The field experiment tested the organic matter 

types effectiveness in situ at Ewington over a five month period. The approach 

taken by the study in relation the laboratory experiments is shown in Figure 3 .1. 

Acid Mine Drainage in Coll ie 

Addition of Organic Matter 

Does this cause a change? 

� /
ot Exp

\

ent) 

� 

Does the quantity 
of organic matter 
added make a 
difference 

Does the dissolved 
oxygen condition 
make a difference 

Is sulphate reducing 
bacterial activity the 
mechanism for the 
change? 

Is the addition of alkalinity 
the mechanism for change? 

(Experiment 3) 
(Experiment 1 )  

(Experiment 1 )  (Experiment 2) 

Figure 3.1 The approach taken by the study. 

This chapter describes the methods that are common to both the laboratory and 

field experiments described in the subsequent chapters. 
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Selection of organic matter types 

The three types of organic matter (manure, hay, and mulch) were chosen for this 

research project based on their availability and cost. If organic matter additions 

are a solution to the acidic voids problem in Collie, then there will need to be very 

large quantities available at an economically affordable price. If this is not 

possible it may become uneconomic and unfeasible for mining companies to 

utilise the remediation method. Hay was obtained from bales bought at the 

Ewington property, and the mulch was shredded vegetation that is commonly used 

in home gardening and was supplied by Greenwaste Services, Unit 11/16 

Dellarnarta Road, Wangara, WA. The cow manure was made into a slurry by 

adding water to raw cattle faeces obtained from a Collie dairy farmer. The cattle 

faeces were about 6 months old when collected. 

Measurement of physio-chemical properties 

In this study a variety of parameters were measured in both the laboratory and 

field experiments. 

Conductivity 

Conductivity was measured in the laboratory and field experiment using a Yeo 

Kal Model 611 Intelligent Water Quality Analyser or Wissenschaftlich

Technische-Werkstatten (WTW) 330 conductivity field meter. Measurements 

were automatically standardised at 25 °C. Meters were calibrated before use. 
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Alkalinity 

Alkalinity is a measure of acid-neutralising/buffering capacity. It is the sum of all 

the titratable bases. The measured value may vary significantly with the end-point 

pH used (APHA, 1989). Alkalinity is a measure of an aggregate property of water 

and can be interpreted in terms of specific substances only when the chemical 

composition of the sample is known (APHA, 1989). 

Alkalinity was determined by titration (APHA, 1989) of a 25 mL sample with a 

standard solution (approx 0.003N) of sulphuric acid to a pH of 4.5, detected using 

a WTW 330 pH meter. The alkalinity is reported in terms of CaC03. 

pH 

pH was measured using a Yeo Kal Model 611 Intelligent Water Quality Analyser 

or WTW 330 field pH meter. Measurements were automatically corrected for 

temperature and meters were calibrated before use. 

Dissolved oxygen 

Dissolved oxygen levels in natural and waste waters are influenced by the 

physical, chemical and biochemical activity in the water body (APHA, 1989). 

Measurements of dissolved oxygen were taken using a Yeo Kal Model 611 

Intelligent Water Quality Analyser or WTW OXI 320/set. Meters were calibrated 
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before sampling, and measurements were recorded in mg 02 L- 1 and as a 

percentage of total saturation (% saturation). 

Sulphate 

Water samples used to measure sulphate content were stored at 4 °C to avoid the 

conversion of S04 
2- to s2- (APHA, 1989). Sulphate was measured using the 

barium chloride turbidimetric method (APHA, 1989). All measurements were 

made at 20 ± 2 °C. A sample of 100 mL of water was placed in an Erlenmeyer 

flask and a 20 mL aliquot of buffer solution A (APHA, 1989) was added and 

mixed at a constant speed. While it was mixing "a spoonful of barium chloride 

crystals (BaC12)" (APHA, 1989, p. 4-208) was added and stirred for 60 seconds. 

After the stirring period had ended the turbidity was measured at 420 nm on a 

spectrophotometer (Shimadzu) after five minutes (APHA, 1989). The sample 

colour and turbidity were corrected against a blank sample from the same water 

by not adding any BaCli crystals. 

Sulphide 

Water samples (250 mL) were collected and preserved by adding 10 drops of zinc 

acetate (2M; APHA, 1989). Sulphide measurements were made using a Sure-flow 

™ combination silver/sulphide electrode and an Orion 290 field meter (Orion 

Research, 1998). A Sulphide Anti-Oxidant Buffer II (SAOB II) solution was 

prepared using 40 g L- 1 of sodium hydroxide (NaOH), 160 g L- 1 sodium salicylate 

(C6H4(0H).COONa) and 36 g L- 1 ascorbic acid (C6H606; Orion Research, 1998). 

A stock solution of sodium sulphide was made by adding 100 g ofreagent grade 
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NaS.9H20 in 100 mL of distilled, deaerated water. A sulphide standard was 

prepared weekly by pipetting 10  mL of the stock solution into a 1 L volumetric 

flask. A 500 mL aliquot of the SAOB II buffer solution was added and the 

solution made up to 1 L with distilled, deaerated water. The water was deaerated 

by bubbling the water with nitrogen gas through an air stone for 1 5  minutes. It 

was then checked using a WTW 330 OXI meter to make sure the dissolved 

oxygen level was < 0.01 mg L- 1 • The exact concentration of sulphide was 

determined by titrating 10  mL of this sulphide solution with 0.1 M lead perchlorate 

using a millivolt electrode as an end point indicator. The concentration was 

calculated using the following equation: 

C = 3206 (VtfVs) (Equation 3.1) 

C = concentration as ppm sulphide, 

V1 = volume of titrant at end point, 

V5 = volume of standard (1 0 mL; Orion Research, 1998). 

Other standards were prepared by serial dilution of the weekly standard. The 

meter was then calibrated using a three-point calibration method (Orion Research, 

1998). 

The measured concentration of sulphide in parts per million (ppm) was recorded 

from the Orion 290a meter. The recordings were taken from a 25 mL sample, 

which had been diluted 1 :  1 with the SAOB II buffer solution and mixed at a 

constant rate by a magnetic stirrer. Deaerated, distilled water was always used to 

prevent the oxidation of sulphide during the measurements. 
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Gilvin 

Gilvin is a term used to describe the intense brown colour formed by humic/fulvic 

acids in aquatic systems at concentrations that can effect the attenuation of 

photosynthetically available radiation (Lund and Ryder, 1997). It was measured to 

provide an indication of the level of dissolved carbon present in the water. It can 

also provide an indication of the aesthetic appeal of the water. Gilvin was 

measured by determining the absorbency of filtered (Whatman ® GF IC) water at 

440 nm and multiplying by a correction factor (2.303; Wrigley, et al., 1988). A 

correction factor was then used to correct the absorbency for one metre (i.e., if 

1 cm cuvettes were used, the absorbency was multiplied by 2.303 * 100, to make 

up a one metre light path; Equation 3.2). Measurements were made using 4 cm 

cuvettes in a spectrophotometer (Shimadzu model). A blank of distilled water was 

used to zero the spectrophotometer prior to measurement. 

Gilvin (8440 m- 1 ) = Abs440 * 2.303 (Equation 3.2) 

Filterable reactive phosphorous, nitrite/nitrates, ammonia 

Water samples (250mL) were filtered using Whatman ® GFIC papers. The water 

samples were then frozen and sent to the Marine and Freshwater Research 

Laboratory Environmental Science (MAFRL) at Murdoch University, Western 

Australia for analysis. This is an NATA accredited research laboratory. The 

ammonia was measured on a Lachat Automated Flow Injection Analyser (Lachat 

Instruments QuickChem Method 31-107-06-1-A (29th Jul 1994). The filterable 

reactive phosphate was measured on a Lachat Automated Flow Injection Analyser 

(Lachat Instruments QuickChem Method 31-115-01-3-A ( l  7th Aug 1994) and the 

nitrate plus nitrite was measured using a Lachat Automated Flow Injection 
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Analyser (Lachat Instruments QuickChem Method 3 1 - 1 07-04-1 -A ( l 8th Jul 

1 996). 
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4.0 LABORATORY EXPERIMENTS 

Introduction 

Studies designed to evaluate the effectiveness of wetland systems constructed for 

mine drainage treatment should desirably monitor hydraulic fluxes, water 

chemistry and wetland substrate chemistry (Henrot, et al. 1989). However, cost 

and personnel commitment required for this type of research are often in excess of 

available resources. In this situation, small scale laboratory studies can be useful 

for evaluating the processes involved in chemical modification of mine drainage 

in wetland systems instead of more expensive field monitoring programs. 

Laboratory studies provide the ability to control hydraulic flux and water 

chemistry, minimising sources of variability, which often make interpretation of 

field research difficult (Henrot, et al. ,  1 989). Lyew and Sheppard, (1997), 

Chermack and Runnells, ( 1 997) and Wieder, Linton and Heston (1990) all used 

laboratory mesocosms or cores for research to examine the effects of sulphate 

reducing bacterial action or chemical cap development on acid drainage 

environments. Cores represent an artificial microcosm that attempt to replicate 

conditions in a waterway in a laboratory situation. As cores are taken from the 

lake and transported to the laboratory, there is always the potential for the 

disturbance of the water column and associated substrate to alter the active 

biological processes in the core, such that they no longer replicate the lake 

situation. It is difficult to replicate light conditions, water inflow, and biological 
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activity that occur in a lake in a core transported to the laboratory. Cores therefore 

can only ever approximate conditions of the lake. Cores enable the researcher to 

set up manageable experiments that might provide an indication of what could 

occur in an in situ experimental situation. 

A pilot study and three sequential experiments were conducted to determine the 

effectiveness of different organic matter additions (i.e., manure, hay and mulch). 

The pilot experiment was designed to quantify the changes in pH with three 

organic treatments of acidic void water. The research protocol and results from 

the pilot study are contained in appendix 1 and are not described in this section 

because the outcome from this experiment was very similar to the results for 

experiment 1. 

To address the first aim of the project, a series of three sequential experiments 

were undertaken. Experiment 1 tested the effectiveness of two quantities of 

selected organic matter on pH and sulphate reducing bacterial activity. As 

sulphate reducing bacterial activity appeared low experiment 2 tested the effects 

of sulphate reducing bacteria and inoculations when organic matter was added to 

cores. As pH improvements were recorded with the addition of organic matter 

experiment 3 attempted to determine the importance of alkalinity generated by the 

organic matter on changes in pH. 
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Methods for Laboratory experiments 

The three experiments all used intact cores and the oxygenated conditions 

described below. A pilot study (see Appendix 1) demonstrated the practicality of 

using this experimental setup. 

Intact cores 

Cores containing water and substrate from Ewington were collected using perspex 

tubes (600 mm high and 100 mm in diameter). These perspex tubes were pushed 

into the sediment by hand to a depth of 200 mm and a stopper placed on top of the 

tube. The vacuum created in the tube when it was lifted enabled an intact sample 

of sediment and the water column to be removed. A stopper was inserted in the 

bottom of the tube before it was transported to the laboratory. A stopper in the top 

of the core minimised gas exchange with the ambient atmosphere. When in the 

laboratory, the sediment section of each core was wrapped in black plastic to 

exclude light and hence photosynthetic activity in the sediment (Figure 4.1 ). 

Cores were then left in a controlled temperature laboratory (20 ± 2 °C) for two 

days to settle prior to experimentation. 

66 



I I 
e r  � Rubbe r sto pp  

Wa te r 

600 m m  
0 0 

o D "' 
0 0 

0
0 

o O 

0 • 
00() 
0 .J 
o �  Airsto ne 

Ba c k  p la stic 

Se d ime nt 
200 mm 

/ '\ 

1 00 m m  

Figure 4.1 Schematic design of a core used in the laboratory experiments. 

Dissolved oxygen conditions 

Sulphate reducing bacteria are strictly anaerobic and are severely inhibited by 

even small amounts of oxygen. Water chemistry and biota changes in the intact 

cores were therefore examined under two different aeration conditions, hypoxic 

and oxic, to see if sulphate reducing bacteria are responsible for any pH changes. 
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To create the hypoxic conditions {< 2 mg 02 L- 1 ) in the cores, dry nitrogen gas 

was bubbled through the water column for 15 minutes for the first two days after 

any treatments were added, and then each sampling day (different for each 

experiment) to evacuate dissolved oxygen and to maintain core water oxygen 

levels below 2 mg 02 L-1 • Water in the oxic cores was bubbled with atmospheric 

air, in the same pattern as the hypoxic cores, to maintain the dissolved oxygen 

content above 5 mg 02 L- 1 . An airstone was used to increase bubble surface area 

and improve sequestration of air into the water column. Hypoxic conditions were 

used instead of complete anoxia due to the difficulties experienced in the pilot 

experiment in maintaining the dissolved oxygen levels at zero. 

Experiment 1 - Quantity and type of organic matter needed to produce an 

affect 

Ninety cores collected on the 4/8/98 were divided into two groups; 45 cores with 

oxic conditions and 45 to hypoxic conditions. Within each group, six replicates of 

the three treatments (hay, mulch and manure) by two quantities (50 cm3 and 100 

cm3) and six controls were randomly assigned on day O (Table 4.1 ). These two 

organic matter quantities were chosen because the equivalent amount to 50 cm3 in 

a perspex tube when spread evenly over the lake bottom was considered an 

economically feasible quantity of organic matter, if it was to be used in a 

rehabilitation situation. One hundred cm3 was used to determine what advantage 

would be gained by a two fold increase in organic matter. Only five replicates of 

100 cm3 organic matter treated cores were used because I was limited to 

transporting ninety cores from the study site to the laboratory. 
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Table 4.1 Design of Experiment 1 :  Core allocations to the three organic 
matter treatments and control. 

50cm3 of Organic Matter 100cm" of Organic Matter 

Oxygen concentration 

Organic Oxic Hypoxic Oxic Hypoxic 

Matter (>5mg 02 L- 1 ) (<2mg 02 L- 1
) (>5mg 02 L- 1 ) (<2mg 02 L- 1 ) 

Control 6 6 6 6 

Manure 6 6 5 5 
Hay 6 6 5 5 

Mulch 6 6 5 5 

The intervals of measurements for temperature, dissolved oxygen and pH were 

days -1, 0, 1, 2, 4, 6, 9, 11, 13, 17, 23, 29, 37 and 43. Sulphate, sulphide and 

gilvin were measured at days -1 and 43. 

Experiment 2 - Testing for sulphate reducing bacteria 

Thirty-six cores were collected from Ewington (24/11/98) and transported to the 

laboratory on the same day. All cores were kept under hypoxic conditions. Twelve 

cores were randomly assigned as controls, 12 treated with 50 cm3 of manure and 

12 treated with 50 cm3 of mulch. In each block of 12 cores, six were inoculated 

with sulphate reducing bacteria (Table 4.2). 
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Table 4.2 Design of Experiment 2:  Core allocation to the two organic matter 
treatments and control. 

Oxygen concentration 

Hypoxic (<2mg 02 L- 1
) 

Organic Matter Inoculum added No Inoculum 

Control 6 6 

Manure 6 6 

Mulch 6 6 

The sulphate reducing bacteria were obtained by centrifuging (3000 rpm, 2 

minutes) a sample of the top 5 cm of sediment taken from Lake Joondalup, until 

50 mL of supernatant was obtained. Lake Joondalup produces hydrogen sulphide 

gas at times of the year indicating that it is a good source of sulphate reducing 

bacteria (M. Lund, pers. comm. November, 1998). The supernatant was then 

injected into the sediment of the cores. At all stages of collection, preparation and 

injection of the inoculum, exposure to oxygen was minimised by use of a nitrogen 

atmosphere gas chamber. Dissolved oxygen levels and pH of the water column 

were monitored for days -1, 1 ,  2, 8, 14, 20, 23, 28, 34, 41 and 48. At the end of 

the six-week period a sodium sulphate (Na2S04) aliquot was added to each sample 

to bring sulphate levels to approximately 800 mg L- 1
• This was used to test 

whether sulphate reducing bacteria were present in the sediment. If they were 

present, a black sulphide precipitate would be evident (Lyew and Sheppard, 

1999). Sulphate, sulphide and gilvin were measured six weeks after the sodium 

sulphate was added. 
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Experiment 3 - Measuring alkalinity production 

Thirty six cores of doubly, deionised water were prepared with no sediment on 

7 /6/99. Eighteen of the cores were kept under hypoxic conditions and 18 cores 

under oxic conditions. Within each block of 18 cores, six were left as controls, six 

were treated with manure and six were treated with mulch (Table 4.3). Fifty cubic 

centimetres of manure or mulch was added to each treatment tube. 

Table 4.3 Design of Experiment 3 :  Core allocation to two organic matter 
treatments and control. 

Oxygen concentration 

Organic Matter Oxic Hypoxic 

(>5mg 02 L-1 ) (<2mg 02 L-1 ) 

Control 6 6 

Manure 6 6 

Mulch 6 6 

Dissolved oxygen levels and pH of the water columns were monitored on days -1, 

1, 3, 7, 10, 15, 22, 28, 35 and 42. Water in the cores was sampled to measure 

sulphate, sulphide, gilvin and alkalinity for days -1, 22 and 42. 

Data analyses for laboratory experiments 

Data reporting 

Core experiments 

Means and standard errors ( se) are reported for all data from each experiment. 

These data are generally reported in Appendix 2. Summary tables of these more 

detailed tables are incorporated into the text. The results also present a grand 
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mean for each treatment using the data points after the effect of the treatment had 

stabilised. A visual observation of the plotted data was used to determine when 

the effect of the treatment had stabilised in each experiment. The mean for the pH 

and dissolved oxygen are reported for days 9 to 43 for experiment 1 ;  and days 14 

to 48 for experiment 2; and days 7 to 42 for experiment 3. 

Repeated measures MANOV A 

A repeated measures MANOV A (Hair, et al. 1 995) was used to determine 

differences among treatments in all experiments. The repeated measures 

MANOVA was calculated using the data points after the cores or ponds had 

stabilised. The same set of data points were used to calculate the grand means for 

stabilised cores and ponds over a period of time (see earlier). Interaction effects 

were routinely monitored in the statistical analysis. They are only referred in the 

subsequent text if they interaction was significant at the oc = 0.05 level. 

A Tukey test was used to determine post hoe differences between organic matter 

treatments, and organic matter treatments and controls that are observed in the 

MANOV A. The statistical analysis was generally performed after the data had 

stabilised into a regular pattern, however, this was not always the case as total 

stabilisation for some experiments were not evident for the duration of the 

experiment. For example, pH might slowly increase over the duration of the 

experiment. This would generally be detected in the Wilks' Lambda test of 

significance for repeated measures. Where a significant difference was found 

between organic matter treatments, and organic matter treatments and control, the 
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post hoe Tukey test enabled a week-by-week examination of where the 

differences occurred. If there was a trend, for example, a slow increase in pH for 

the treatments and not the control, then this would be detected from the Tukey test 

and is reported. 

Power analysis 

If a particular statistical test indicated no significant difference it might be because 

there is no real difference or because the study design makes it unlikely that a real 

effect would be detected (Inouye, 1997). Small samples sizes and wide variability 

within treatments make it statistically more difficult to detect difference between 

treatments when they actually exist. Statistical power indicates the probability of 

obtaining a statistically significant result, when there is a real difference in the 

treatments (type II errors). Acid mine drainage remediation is expensive, and 

researchers and mine management would not like to discard a potentially cheaper 

solution to the problem simply because it was unable to be statistically 

demonstrated using stringent criteria when further exploratory investigation may 

provide a more conclusive positive result. A power analysis was calculated for the 

experimental results using SPSS. Power analysis results were routinely considered 

in the data analyse and are presented in most summary tables to assist the reader 

to interpret the results. 
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Results 

Experiment 1 

pH 

A significant increase in pH of between 1-3 units was recorded for mulch, manure 

and hay over the 57 day experiment (Figure 4.2). The largest increase was seen 

for manure {4.40 (± 0.032) to 7.09 (± 0.033)} , followed by mulch {4.39 (± 0.03) 

to 6.85 (± 0.03)}. In both cases pH had increased and stabilised after 10 days. Hay 

produced a more variable response with a final value over 0.5 of a pH unit below 

the other organic matter types {4.51 (± 0.065) to 6.39 (± 0.035)} . 

The 100cm3 quantities of manure produced significantly different final pH values 

to that for 50cm3 , however, the differences were relatively small {50cm3 ; 7.10 (± 

0.02); 100 cm3 ; 7.31 (± 0.03); Figure 4.2; Table 4.4} . No significant difference 

was found between pH values for different quantities of hay {50cm3
; 5.94 (± 

0.05); 100 cm3
; 5.80 (± 0.06)} or mulch {50cm3

; 6.54 (± 0.03); 100 cm3 ; 6.61 (± 

0.03)} (Figure 4.2; Table 4.4). 

74 



::c 
Q. 

::c 
Q. 

8.00 -,------------------------, 

7.50 

7.00 

6.50 

6.00 - Manure 50 cm3 

-0- Manure 1 00 cm3 

5.50 -----,.--.....-----.--------.--...,.----,.----1 

0 5 1 0  1 5  20 25 30 35 40 45 

Days 

7.50 ...------------------------, 

7.00 

6.50 

6.00 

5.50 

5.00 

4.50 

- Hay 50 cm3 

4.00 +----,---,----,----,---,-----,.---,------.-----1 

0 5 1 0  1 5  20 25 30 35 40 45 

Days 

6.50 

6.00 

i 5.50 

5.00 

- mulch 50cm3 
4.50 -0- mulch 1 00cm3 

4.00 +----.---.----,----.---.....----,---.----,-----1 

0 5 1 0  1 5  20 25 30 35 40 45 

Days 

Figure 4.2 Experiment 1 :  Comparison of changes in mean pH values for the 
three treatments over the duration of the experiment showing the effects of 

quantity for manure (a); bay (b); and mulch (c). 
Standard error bars are shown for each sampling day, n = 6 for each treatment. 
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There was no significant difference in pH values between aeration conditions for 

the control or mulch treatment but there was a significant difference between 

aeration conditions for the manure {hypoxic, 7.10 (± 0.06); oxic, 6 .85 (± 0.06)} 

and hay treatments {hypoxic, 5.62 (± 0.06); oxic, 5.98 (± 0.05); Tables 4.6 } .  

Dissolved oxygen 

The control cores were hard to keep below the desired 2 mg 02 L- 1 for the hypoxic 

conditions. Mean dissolved oxygen concentrations in the hypoxic control cores 

was 2.43 {± 0.07) mg 02 L- 1 and in the oxic control cores 4.08 {± 0.09) mg 02 L- 1
• 

Minor oxygen leakage around the rubber stoppers is the suspected reason for the 

increased oxygen concentrations in the hypoxic cores. 

The dissolved oxygen levels for the two aeration conditions remained 

significantly different for the control cores, however, the lower level was not 

anoxic (Figure 4.3). The three treatment conditions all showed hypoxic conditions 

generally < 0.2 mg L- 1 with the addition of organic matter (Figure 4.3). 
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Figure 4.3 Experiment 1 :  Comparison of changes in mean dissolved oxygen 
levels (mg L"1) over the duration of the experiment showing the interaction 

between aeration condition for each of the treatments and the control. 
Standard error bars for each sampling day, n = 6 for each treatment. 
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There was no significant change in dissolved oxygen levels for the manure or hay 

over the period of the experiment (Table 4.4) but there was a significant decrease 

in the dissolved oxygen levels for the mulch {from 2.64 (± 0.05) mg 02 L" 1 at day 

1 to 0.40 (± 0.18) mg 02 L" 1 at day 43} . Higher quantities of organic matter 

reduced dissolved oxygen levels for manure and mulch treatments {manure - 50 

cm3
, 1.53 (± 0. 1 2) mg 02 L" 1

; 100 cm3
, 1.03 (± 0.13) mg 02 L" 1

; mulch - 50 cm3
, 

0.87 (± 0.11) mg 02 L" 1 ; 100 cm3
, 0.45 (± 0.11) mg 02 L" 1 } .  

Sulphate and sulphide 

Water for all experiments came from the same source {sulphate; 0.81 (± 0.14) mg 

S04 L" 1
; sulphide; 67 .60 (± 16.17) ppb} . There was no significant difference in 

the sulphate or sulphide levels between the organic matter treatments when 

comparing aeration or quantity (Table 4.4). Although sulphate levels in all 

treatments were generally low, a post hoe Tukey test on day 43 results showed 

that sulphate levels for manure {3.25 (± 0.141) mg S04 L" 1
} and hay {3.41 (± 

0.505) mg S04 L" 1
} treatments were approximately twice as high as those for the 

mulch treatment {1.32 (± 0.662) mg S04 L" 1
} and the controls {0.81 (± 0.141) mg 

S04 L" 1 ; Table 4.4} . 

For sulphide, there was a significant difference among treatments, and a 

significant difference between quantities (Table 4.4; Figure 4.8). On day 43 the 

manure {496.0 (± 71.4) ppb} and hay {412.9 (± 118 . l ) ppb} treatments had 

significantly higher sulphide levels than the mulch {216.6 (± 51.1) ppb} treatment 
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and the control { 132.8 (± 26.4) ppb}.  The post hoe Tukey test showed that when 

more organic matter was added there was a significant increase in the sulphide 

levels for manure and hay (Table 4.4; Figure 4.4); the corresponding sulphate 

levels were low (Table 4.4). This suggests sulphate is being converted to sulphide 

by sulphate reducing bacterial activity, at least in the early phase of the 

experiment. Neither the aeration conditions nor the quantity of organic matter 

added made any difference to the level of sulphate reduction. 
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Figure 4.4 Experiment 1 :  Comparison of sulphide levels (ppb) among 
treatments (a); between aeration conditions (b); and between quantities (c). 
Mean sulphide level on day O (before treatment) was 2.4 (± 1 .33) ppb. Standard 

error bars are shown for each sampling day, n = 6 for each treatment. 
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Gilvin 

A significant increase was recorded in gilvin values for the three treatments over 

the duration of the experiment. Mean gilvin values (g440) for day 43 for the three 

treatments and control were: control 3. 11 (± 0.10) g44o m-1 ; manure 50.68 (± 0.57) 

g440 m- 1 ; hay 38.23 (± 1.06) g440 m- 1 ; and mulch 53.10 (± 1.26) g440 m- 1 compared 

with 2.82 (± 0.610) g44o m- 1 at the beginning of the experiment. 

There was a significant interaction between treatments and quantities, and 

treatment and aeration (Table 8. 7; Figure 4.5) for gilvin values which means that 

further statistical analysis is not possible for the time series data. The hay { 55. 76 

(± 8.574) g440 m- 1 } treatment had higher gilvin levels for the oxic conditions than 

for hypoxic conditions {31.74 (± 3.380) g440 m- 1 } ,  whereas, for the other organic 

matter treatments and control, the hypoxic condition had higher gilvin levels 

{manure hypoxic - 16.89 (± 1.201) g440 m- 1 vs oxic - 16.46 (± 2.081) g440 m- 1 ; 

mulch hypoxic - 30.87 (± 6.183) g440 m- 1 vs oxic 24.90 (± 3.65 1) g44o m- 1 ; control 

hypoxic - 0.17 (± 0.302) g440 m- 1 vs oxic 4.19 (± 0.958) g44o m- 1
; Figure 4.9}.  

Gilvin levels were higher when increased amounts of organic matter were added 

{manure 55.34 (± 4.21) g440 m- 1 to 80.32 (± 7.02) g440 m-1 ;  hay 123.27 (± 8.49) g440 

m- 1 to 202.39 (± 34.47) g44o m- 1 ; and mulch 61.85 (± 7.22) g44o m- 1 to 171.19 (± 

15.56) g44o m- 1
} .  An ANOVA on day 43 day data indicated a significant difference 

(F 3,86 = 31.6, P < 0.001) among treatments and the controls for gilvin values. A 

subsequent post hoe Tukey test indicated a significant difference in gilvin levels 

between the control and treatments, and among some treatments {hay 43.75 (± 
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5.205) 8440 m· 1 > mulch 27.89 (± 3.564) g440 m· 1 > manure 16.67 (± 1.173) g440 m· 1 

> control 2.18 (± 0.646) 8440 m· 1
} .  

The hay treatment had a strong unpleasant odour and a slimy film formed on the 

surface of the cores after about three days. It took the mulch about three days to 

settle to the bottom and settlement rate increased when the water was slightly 

agitated as in pilot experiment. 
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Figure 4.5 Experiment 1 :  A comparison of gilvin values between aeration 
conditions (a) and between quantities of organic matter (50 vs 100 cm3; b). 
Standard error bars are shown for each sampling day, n = 6 for each treatment. 
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Table 4.4 Experiment 1 :  Mean and standard errors for pH, dissolved oxygen, sulphate, sulphide and gilvin for days 9 to 43. 
* indicates significant values at p � 0.05 ; S04 - sulphate; s2

- - sulphide; sulphate, sulphide and gilvin for day 43 (see methods section for details 
on the calculation of means). D - days; T - treatments; A - aeration conditions; Q- quantity. 

Treatment Aeration Quantity x ± se D x T  D x T x A  D x T x  D x T x A x Q  Tukey test results at last sampling day 
Q 

F value F value F value F value Control Manure Hay Mulch 
Control <2 mgL· 1 50 cm3 

4.62 ± 0.079 264.3* 6.942* 1 .795 0.392 Control 

<2 mgL· 1 100 cm3 
4.89 ± 0. 108 

>5 mgL· 1 50 cm3 
4.96 ± 0. 106 

>5 mgL·1 100 cm
3 

5.04 ± 0.073 

Manure <2 mgL· 1 50 cm3 

7.23 ± 0.032 Manure * 

<2 mgL· 1 1 00 cm3 
7.49 ± 0.042 

>5 mgL· 1 50 cm
3 

6.96 ± 0.028 
pH >5 mgL· 1 100 cm3 

7 . 13  ± 0.038 

Hay <2 mgL· 1 50 cm3 

5 .77 ± 0.076 Hay * * 

<2 mgL· 1 100 cm3 

5.58 ± 0.092 

>5 mgL" 1 
50 cm3 

6. 1 1  ± 0.040 

>5 mgL· 1 100 cm3 

6.02 ± 0.049 

Mulch <2 mgL· 1 50 cm3 
6.57 ± 0.044 Mulch * * * 

<2 mgL· 1 100 cm3 
6.52 ± 0.032 

>5 mgL· 1 50 cm3 
6.52 ± 0.037 

>5 mgL· 1 100 cm
3 

6.63 ± 0.04 1 
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Table 4.4 cont. 

Treatment Aeration Quantity x ± se D x T  D x T x A  D x T x  D x T x A x Q  Tukey test results at last sampling day 
Q 

F value F value F value F value Control Manure Hay Mulch 
Control <2 mgL- 1 50 cm3 2.26 ± 0.092 5 1 2.2* 36.781 * 8.796* 0.836 Control 

<2 mgL- 1 1 00 cm3 2.60 ± 0.089 
>5 mgL- 1 50 cm3 4 . 1 5  ± 0. 140 
>5 mgL- 1 1 00 cm3 4.00 ± 0. 1 19 

Manure <2 mgL- 1 50 cm3 0.66 ± 0.068 Manure * 
<2 mgL- 1 1 00 cm3 0.32 ± 0.046 
>5 mgL- 1 50 cm3 1 .73 ± 0. 1 70 

DO >5 mgL-1 1 00 cm3 0.99 ± 0. 1 64 
(mg L" 1 ) 

Hay <2 mgL· 1 50 cm3 0. 1 1  ± 0.012  Hay * * 
<2 mgL· 1 1 00 cm3 0. 14 ± 0.038 
>5 mgL· 1 50 cm3 0. 14 ± 0.01 1 
>5 mgL· 1 1 00 cm3 0. 1 6  ± 0.0 1 5  

Mulch <2 mgL-1 50 cm3 0. 1 5  ± 0.067 Mulch * * * 

<2 mgL- 1 1 00 cm3 0.27 ± 0.095 
>5 mgL· 1 50 cm3 0.09 ± 0.0 10  
>5 mgL· 1 1 00 cm3 0. 1 1  ± 0.028 
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Table 4.4 cont. 

Treatment Aeration Quantity x ± se D x T  D x T x A  D x T x  D x T x A x Q Tukey test results at last sampling day 
Q 

F value F value F value F value Control Manure Hay Mulch 
Control <2 mgL·' 50 cm3 

0.88 ± 0.222 7.454* 1 .720 1 .043 0.485 Control 
<2 mgL· 1 1 00 cm

3 
0.65 ± 0. 1 1 8 

>5 mgL· 1 50 cm
3 

1 . 14 ± 0.497 

>5 mgL· ' 1 00 cm3 
0.57 ± 0. 1 1 5  

Manure <2 mgL· ' 50 cm
3 

2.40 ± 0.526 Manure * 

<2 mgL·' 1 00 cm3 
3 .02 ± 1 .683 

S04 >5 mgL· ' 50 cm
3 

3.54 ± 0.346 
(mg L" 1 ) >5 mgL·' 1 00 cm

3 

4.25 ± 0.908 

Hay <2 mgL· ' 50 cm
3 

2.5 1 ± 0.674 Hay * 

<2 mgL· ' 100 cm3 
4. 1 7  ± 1 .642 

>5 mgL· ' 50 cm
3 

3.06 ± 0.638 

>5 mgL· ' 1 00 cm
3 

3.91 ± 0.501 

Mulch <2 mgL· ' 50 cm
3 

0.59 ± 0. 1 07 Mulch * * 

<2 mgL· 1 100 cm
3 

3 . 14  ± 2.409 

>5 mgL· 1 50 cm
3 

0.64 ± 0.047 

>5 mgL·' 1 00  cm
3 

0.70 ± 0.2 1 1 
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Table 4.4 cont. 

Treatment Aeration Quantity x ± se D x T  D x T x A  D x T x  D x T x A x Q  Tukey test results at last sampling day 
Q 

F value F value F value F value Control Manure Hay Mulch 
Control <2 mgL- 1 50 cm3 273.87 ± 273.87 ± 273.87 ± 273.87 ± Control 

60.33 ± 1 8. 724 5 1 .3 5 1 .3 5 1 .3 5 1 .3 
<2 mgL· 1 1 00 cm3 1 75.50 ± 29.208 
>5 mgL- 1 50 cm3 1 19.25 ± 39.635 
>5 mgL- 1 1 00 cm3 1 75.95 ± 90.8 1 1  

Manure <2 mgL· 1 50 cm3 444.23 ± 1 14. 73 Manure * 
I 

<2 mgL· 1 1 00 cm3 664.80 ± 59. 1 70 
s2- >5 mgL- 1 50 cm3 471 .67 ± 76.2 10  

(ppb) >5 mgL- 1 100 cm3 4 18.70 ± 276. 1 2  
Hay <2 mgL- 1 50 cm3 1 14.02 ± 14.943 Hay * 

<2 mgL- 1 100 cm3 540.60 ± 94.955 
>5 mgL- 1 50 cm3 37 1 .33 ± 76.8 12  
>5 mgL· 1 1 00 cm3 693.70 ± 502.64 

Mulch <2 mgL- 1 50 cm3 96.33 ± 27.532 Mulch * 
<2 mgL- 1 100 cm3 410.40 ± 1 84.4 1 
>5 mgL- 1 50 cm3 204.90 ± 66. 14 1  
>5 mgL· 1 1 00 cm3 1 80.98 ± 67.507 
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Table 4.4 cont. 

Treatment Aeration Quantity x ± se D x T  D x T x  D x T x  D x T x A x  Tukey test results at last sampling day 
A Q Q 

F value F value F value F value Control Manure Hay Mulch 
Control <2 mgL- 1 50 cm3 0.54 ± 0.57 1  102.660* 14.365* 16. 1 78* 6.708* Control 

<2 mgL- 1 1 00 cm3 

-0.2 1 ± 0. 1 40 
>5 mgL- 1 50 cm3 3 .71  ± 0.392 
>5 mgL- 1 1 00 cm3 4.67 ± 1 .948 

Manure <2 mgL- 1 50 cm3 1 5 .07 ± 1 .772 Manure * 
<2 mgL- 1 1 00 cm3 19.08 ± 1 .0 12  
>5 mgL- 1 50 cm3 12.60 ± 1 .057 

Gilvin >5 mgL- 1 100 cm3 2 1 .08 ± 3.5 12 
(g440 m-') Hay <2 mgL- 1 50 cm3 25.86 ± 3.947 Hay * * 

<2 mgL- 1 100 cm3 38. 79 ± 4.078 
>5 mgL- 1 50 cm3 35.78 ± 8.280 
>5 mgL- 1 1 00 cm3 79.74 ± 6. 1 65 

Mulch <2 mgL- 1 50 cm3 1 5 .07 ± 3.49 1 Mulch * * * 
<2 mgL-' 1 00 cm3 49.84 ± 5.203 
>5 mgL- 1 50 cm3 1 5.86 ± 1 .441 
>5 mgL- 1 1 00 cm3 35.75 ± 4.028 
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Table 4.5 Experiment 1 :  MANOVA, Wilks' Lambda and Tukey test results. 
See methods section for description of repeated measures analysis calculations; DO - Dissolved oxygen, D - Days, T - Treatments, A - Aeration 

Conditions, 1- Control; 2 - Manure; 3 - Hay; 4 - Mulch, Ohs. Power is provided at both the 95 and 90% levels. 

Experiment 1 

pH 

DO 

Sulphate 
(mg L-1) 
Sulphide 
(ppb) 
Gilvin 
C!44o m-1) 

D * T  
D * T * A 
D * T  
D * T * A  
D * T  
D * T * A 
D * T  
D * T * A  
D * T  
D * T * A  

F value 

39.17 
0.740 
46.10 
0.430 
6.403 
0.962 
1.586 
0.099 

90.316 
3.979 

MANOVA 

Hyp./error Sig. 
df 

3/16 0.000 
3/16 0.544 
3/16 0.000 
3/16 0.736 
3/16 0.005 
3/16 0.435 
3/16 0.232 
3/16 0.959 
3/16 0.000 
3/16 0.011 

Wilks' Lambda 

Ohs Power Value Hyp./error Sig. Ohs Power 
df 

alpha = 0.05 alpha = 0.1 alpha = 0.05 alpha = 0.1 
1.000 1.000 0.254 15/33.5 0.186 0.640 0.769 
0.170 0.280 0.244 15/33.5 0.164 0.660 0.785 
1.000 1.000 0.170 15/33.5 0.050 0.810 0.890 
0.120 0.200 0.170 15/33.5 0.046 0.815 0.900 
0.916 0.963 
0.215 0.333 
0.338 0.478 
0.064 0.123 
1.000 1.000 
0.814 0.890 
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Table 4.5 continued, Tukey test results represented by P values. 

Day 8 Day 12 Day 16 Day 26 Day 34 Day 42 
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

2 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.001 
pH 3 0.993 0.000 0.997 0.000 0.975 0.000 0.057 0.000 0.999 0.000 0.992 0.001 

4 0.000 0.000 0.001 0.006 0.001 0.010 0.007 0.003 0.015 0.558 0.016 0.004 0.191 0.031 0.149 0.095 0.105 0.154 
2 0.000 0.625 0.000 0.551 0.000 0.905 0.000 0.849 0.000 0.978 0.000 I .OOO 

DO 3 0.000 0.625 0.000 0.551 0.000 0.905 0.000 0.849 0.000 0.978 0.000 I .OOO 
4 0.000 0.641 I .OOO 0.000 0.453 0.998 0.000 0.912 I .OOO 0.000 0.934 0.934 0.000 I .OOO 0.985 0.000 I .OOO I .OOO 

Sulphate 2 1.00 0.706 
(mg L- 1 ) 3 0.686 0.706 

4 0.035 0.033 0.004 
Sulphide 2 0.419 0.991 
(ppb) 3 0.279 0.991 

4 0.966 0.686 0.512 
Gilvin 2 0.000 0.025 
(g440 m· 1 ) 3 0.000 0.025 

4 0.000 0.858 0.004 
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Experiment 2 

This experiment had two aims; 1 ,  to determine if low levels of sulphate reducing 

bacterial activity as seen in experiment 1 was due to the lack of sulphate reducing 

bacteria, or 2, whether it was due to low sulphate levels, or a combination of both. 

pH 

There was a significant difference among organic matter treated cores and the 

control cores for pH, but no significant difference between inoculation conditions 

(Table 4.6, Figure 4.6). The post hoe Tukey test indicated that the two organic 

matter treatments {manure; 6.80 (± se0.03) and mulch; 6.76 (± 0.03)} had 

significantly higher pH values than the control { 5 .44 ( ± 0. 08)} , but there was no 

significant difference between the two treatments (Figure 4.6). Thus the increase 

in pH in the treatments in experiments 1 and 2 were not due to the lack of sulphate 

reducing bacteria. 

Dissolved oxygen 

There was no significant difference in dissolved oxygen levels among treated 

cores, although the treated cores had significantly lower levels of dissolved 

oxygen that the controls. There was no significant difference between inoculated 

conditions for treated cores. 
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Figure 4.6 Experiment 2: A comparison of changes in mean pH values for 
organic matter treatments and controls for the duration of the experiment, 

showing differences between inoculated and on-inoculated conditions. 
Standard error bars are shown for each sampling day, n = 6 for each treatment. 

Sulphate and sulphide 

After the sulphate inoculation, there was a significant difference among the two 

organic matter treatments and the control for the sulphate, but there was no 

significant difference between the different inoculation conditions (Table 4.6). 

The post hoe Tukey test indicated that after the sulphate inoculation the control 

had a significantly higher sulphate level {2100.23 (± 161 .96} mg 804 L" 1 } than 

the manure and mulch treatment {19.02 (± 6.35) mg 804 L" 1 ; and 40.93 (± 12.57) 

mg 804 L" 1 respectively; Table 4.6 } .  This indicates a reduction of sulphate in the 

treated cores. 
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For sulphide, there was no significant difference among the organic matter 

treatments and no significant difference among inoculation conditions after the 

sulphate inoculation {control no inoculation - 0.03 {± 0.033) ppb; control 

inoculation - 2.23 (± 2.333) ppb; manure no inoculation - 2.08 (± 1.110) ppb; 

manure inoculation - 0.90 {± 0.682) ppb; mulch no inoculation - 8.30 (± 4.567) 

ppb; mulch inoculation - 1.95 (± 1.254) ppb; Table 4.6 } .  

All o f  the cores containing organic matter produced a small amount o f  black 

precipitate, showing that there was a small amount of bacterial activity in all the 

cores (Gyure, et al., 1987; Johnson, et al., 1997). However, there was no 

observable difference in the amount of black sulphide precipitate between the 

inoculated and non-inoculated cores. pH for the treatment cores increased in both 

the inoculated and non-inoculated cores. Thus, the increase in pH values for the 

treatments in experiment 1 was not due to a lack of sulphate and the consequential 

lack of sulphate reducing bacterial activity. 

Gilvin 

The changes in gilvin values were similar to those observed in experiment 1 with 

the control being significantly less than the treated cores. There was no significant 

difference among inoculation treatments (Table 4.6). 
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Table 4.6 Experiment 2: Summary of mean and standard errors for pH, dissolved oxygen, sulphate, sulphide and gilvin. 
* indicates significant values at P :::;;0.05; S04 - sulphate; s2

- - sulphide; sulphate, sulphide and gilvin are on last day only. D - days; T -
treatments; I - inoculation conditions. 

Treatment Inoculation x ± se D x T  D x l  D x T x l  Tukey test results at last sampling day 
F value F value F value Control Manure Mulch 

Control No inoculum 5.45 ± 0.093 34.639* 0.092 0.029 Control 
Inoculum 5.42 ± 0.139 

Manure No inoculum 6.84 ± 0.046 Manure * 
pH Inoculum 6.75 ± 0.042 

Mulch No inoculum 6.76 ± 0.040 Mulch * 
lnoculum 6.75 ± 0.044 

Control No inoculum 1.79 ± 0.102 8.420* 0.035 1.454 Control 
Inoculum 1.27 ± 0.112 

Manure No inoculum 0.77 ± 0.107 Manure * 
DO (mg L-1 ) Inoculum 0.92 ± 0.129 

Mulch No inoculum 0.43 ± 0.111 Mulch * 
Inoculum 0.68 ± 0.146 
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Table 4.6 cont. 
Treatment Inoculation x ± se D x T  D x l  D x  Tx l Tuk:ey test results at last sampling day 

F value F value F value Control Manure Mulch 
Control No inoculum 2 1 5 6.22 ± 287.85 1 149.046* 0.097 0. 1 16 Control 

Inoculum 2044.24 ± 1 76.945 
Manure No inoculum 1 4.79 ± 5.541 Manure * 

S04 (mg L- Inoculum 23.25 ± 1 1 .825 I ) Mulch No inoculum 42.06 ± 16 .068 Mulch * 

Inoculum 39.80 ± 20.895 
Control No inoculum 0.03 ± 0.033 2.0 10  0.977 1 .910 Control 

Inoculum 2.23 ± 2.233 
Manure No inoculum 2.08 ± 1 . 1 1 0  Manure 

s
2

- (ppb) Inoculum 0.90 ± 0.682 
Mulch No inoculum 8.30 ± 4.567 Mulch 

Inoculum 1 .95 ± 1 .254 
Control No inoculum 2.56 ± 0.761 34.50* 0.2 1 7  4.201 * Control 

Inoculum 7.52 ± 3.999 
Gilvin Manure No inoculum 1 8.95 ± 2.05 1 Manure * 

(g440 m- 1
) Inoculum 14.70 ± 3.364 

Mulch No inoculum 1 8.93 ± l .699 Mulch * 

Inoculum 1 6.30 ± I .  723 
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Table 4. 7 Experiment 2: MANOV A, Wilks' Lambda and Tukey test results. 
See methods section for description of repeated measures analysis calculations; DO - Dissolved oxygen, D - Days, T - Treatments, A - Aeration 

conditions, 1- Control; 2 - Manure; 3 - Hay; 4 - Mulch, Ohs - Observed. 

MANOVA Wilks ' Lambda 

F value Hyp./error Sig. Ohs Power Value Hyp./error Sig. Ohs Power 
Df df 

alpha = 0.05 alpha = 0. 1 aloha = 0.05 alpha = 0. 1 
D * T  264.3 3/74 0.000 I .OOO I .OOO 0.059 2 1/195.8 0.000 I .OOO I .OOO 

pH D * T * A  6.942 3/74 0.000 0.973 0.988 0. 192 2 1/195.8 0.000 I .OOO I .OOO 
D * T * Q  1 .795 3/74 0. 156 0.449 0.58 1  0.659 2 1/195.8 0.096 0.905 0.950 
D * T * A * Q  0.392 3/74 0.795 0. 124 0.208 0.848 2 1/195.8 0.946 0.401 0.537 
D * T  5 12.2 3/74 0.000 I .OOO I .OOO 0.05 1 2 1/ 195.8 0.000 I .OOO I .OOO 

DO D * T * A  36.78 1 3/74 0.000 I .OOO I .OOO 0.363 2 1/195.8 0.000 I .OOO I .OOO 
D * T * Q  8.796 3/74 0.001 0.94 1 0.97 1 0.571 21/195.8 0.007 0.98 1 0.992 
D * T * A * Q  0.836 3/74 0.478 0.223 0.335 0.690 2 1/195.8 0. 1 88 0.853 0.9 17  

Sulphate D * T  7.454 3/74 0.000 0.083 0. 148 
(mg L- 1) D * T * A  1 .720 3/74 0. 170 0.432 0.564 

D * T * Q  1.043 3/74 0.378 0.272 0.393 
D * T * A * O  0.485 3/74 0.694 0. 144 0.235 

Sulphide D * T  5.623 3/74 0.002 0.934 0.967 
(ppb) D * T * A  0.876 3/74 0.457 0.233 0.346 

D * T * Q  0.878 3/74 0.457 0.233 0.347 
D * T * A * Q  0.2 10 3/74 0.889 0.088 0 . 1 57 

Gilvin D * T  1 02.660 3/74 0.000 I .OOO I .OOO 

(g440 m·') D * T * A  14.365 3/74 0.000 I .OOO I .OOO 
D * T * Q  16. 1 78 3/74 0.000 I .OOO I .OOO 

D * T * A * Q  6.708 3/74 0.000 0.969 0.986 
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Table 4. 7 continued, Tu key test results represented by P values. 

Day 9 Day 11 Day 13 Day 17 Day 23 Day 29 Day 37 Day 43 
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

pH 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.02 0.00 

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. 1 9  0.00 0.01 0.00 0.00 0.00 0.00 

DO 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. 1 9  0.00 0.01 0.00 0.00 0.00 0.00 

4 0.00 0.01 0. 1 3  0.00 0.00 0.5 1 0.00 0.00 0.01 0.00 0.00 0.98 0.00 0.04 0.89 0.00 0.01 1 .00 0.00 0.00 0.98 0.00 0.00 1 .00 

Sulphate 2 0.003 1 .00 

(mg S04 3 0.002 1 .00 

L"I) 4 0.88 0.03 0.02 

Sulphide 2 0.004 0. 86 

(ppb) 3 0.04 0.86 

4 0.84 0.04 0.24 

Gilvin 2 0.00 0.00 

(g440 m· 1
) 3 0.00 0.00 

4 0.00 0.00 0.00 
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pH 
DO 

Table 4.8 Experiment 2; Control data only. MANOV A and Wilks' Lambda test results. 
See methods section for description ofrepeated measures analysis calculations; DO - Dissolved oxygen (mg L- 1 ), D - Days, T - Treatments, A 

Aeration Conditions. 
MANOVA Wilks' Lambda 

F value Hyp./error Sig. Ohs Power Value Hyp./error Sig. Ohs Power 
df df 

alpha = 0.05 alpha = 0.1 alpha = 0.05 alpha = 0.1 
D * A  1.26200 1/22 0.290 0.179 0.280 0.091 7/16 0.000 I .OOO I .OOO 
D * A  128.624 1/22 0.000 I .OOO I .OOO 0.079 7/16 0.000 I .OOO I .OOO 
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pH 

DO 

Table 4.9 Experiment 2; Manure data only. MANOVA and Wilks' Lambda test results. 
See methods section for description of repeated measures analysis calculations; DO - Dissolved oxygen, D - Days, Q - Quantity, A - Aeration 

Conditions. 
MANOVA Wilks' Lambda 

F value Hyp./error Sig. Ohs Power Value Hyp./error Sig. Ohs Power 
df df 

alpha = 0.05 alpha = 0.1 alpha = 0.05 alpha = 0.1 
D * A  30.525 1/18 0.000 0.999 I .OOO 0.255 7/12 0.007 0.931 0.975 
D * Q  12.352 1/18 0.002 0.913 0.958 0.477 7/12 0.161 0.495 0.655 
D * A * Q  0.831 1/18 0.374 0.139 0.227 0.463 7/12 0.141 0.522 0.680 
D * A  26.394 1/18 0.000 0.998 0.999 0.126 7/12 0.000 I .OOO I . OOO 
D * Q  10.954 1/18 0.004 0.879 0.938 0.432 7/12 0.103 0.583 0.736 
D * A * Q  1.993 1/18 0.175 0.267 0.389 0.507 7/12 0.208 0.442 0.602 
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Table 4.10 Experiment 2 :  Hay data only. MANOVA and Wilks' Lambda test Results. 
See methods section for description of repeated measures analysis calculations; DO - Dissolved oxygen (mg L-1 ), D - Days, Quantity, A -

Aeration Conditions. 

MANOVA Wilks' Lambda 

F value Hyp./error Sig. Ohs Power Value Hyp./error Sig. Ohs Power 
df df 

aloha = 0.05 alpha = 0.1 aloha = 0.05 aloha = 0.1 
D * A  62.354 1/18 0.000 I .OOO I .OOO 0.141 7/12 0.000 0.999 I.OOO 
D * Q  10.697 1/18 0.004 0.871 0.933 0.622 7/12 0.451 0.279 0.423 
D * A * Q  0.963 1/18 0.339 0.153 0.247 0.532 7/12 0.254 0.400 0.559 
D * A  0.470 1/18 0.502 0.100 0.173 0.618 7/12 0.442 0.284 0.420 
D * Q  0.610 1/18 0.445 0.115 0.194 0.401 7/12 0.073 0.647 0.789 
D * A * O  0.720 1/18 0.407 0.127 0.211 0.615 7/12 0.436 0.287 0.431 
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pH 

DO 

Table 4.1 1  Experiment 2:  Mulch data only. MANOV A Wilks' Lamda test results. 
See methods section for description of repeated measures analysis calculations; DO - Dissolved oxygen (mg L-1), D - Days, Q - Quantity, A 

Aeration Conditions. 

MANOVA Wilks' Lambda 

F value Hyp./error Sig. Ohs Power Value Hyp./error Sig. Ohs Power 
df df 

alpha = 0.05 alpha = 0. 1 alpha = 0.05 alpha = 0. 1 
D * A  0.284 1/ 18 0.601 0.080 0.1 44 0. 103 7/1 2  0.000 1 .000 1.000 
D * Q  1 .834 1 / 18  0. 1 92 0.250 0.368 0.33 1  7/1 2  0.029 0.797 0.899 
D * A * Q  0.698 1 / 18  0.414  0.1 24 0.207 0.430 7/1 2  0.10 1  0.587 0.739 
D * A 8.289 1 / 18  0.010  0.778 0.870 0.436 7/1 2  0. 1 07 0.575 0.729 
D * Q  6.609 1/ 18 0.0 1 9  0.682 0.796 0.364 7/1 2  0.046 0.727 0.852 
D * A * Q  6.867 1 / 18  0.01 7 0.698 0.809 0.507 7/1 2  0.208 0.442 0.602 
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Experiment 3 

Alkalinity 

The alkalinity for day O was the same for each core because the water (DI) came 

from the same source. A significant difference developed among treatments by the 

end of the laboratory trial (day 42). The post hoe Tukey test results showed the 

mulch treatment { 151.33 (± 6.181) mg CaC03 L " 1 } had a significantly higher 

alkalinity than the control {20.22 {± 2.808) mg CaC03 L" 1 } and manure {93.40 {± 

3.242) mg CaC03 L" 1 } treatment, and the manure treatment had a higher alkalinity 

than the control (Table 4.12). The addition of organic matter therefore probably 

contributed to the increase in pH in the treated cores, however, there must have 

been other contributors as the pH was higher in the manure than in the mulch, 

whereas the alkalinity was higher in the mulch than in the manure. 

1 80 

1 60 
-0- Control (hypoxic) 

1 40 
- Control (oxic) 
-1::r- Manure (hypoxic) 

1 20 --..- Manure (oxic) 
--<>-- Mulch (hypoxic) 0 1 00 (.) � Mulch (oxic) Ill 

80 (.) 

60 

40 

20 

0 

0 5 1 0  1 5  20 25 30 35 40 45 

Days 

Figure 4.7 Experiment 3:  A comparison of alkalinity values (mg CaC03 L·1> 
between treatments under different aeration conditions. 

Standard error bars are shown for each sampling day, n = 6 for each treatment. 
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pH 

The pH for organic matter treated cores increased over the first couple of days and 

then decreased again to a slightly higher pH than the original levels (Table 4.8). 

There was a significant difference in pH values among treatments with a post hoe 

Tukey test indicating that the pH of the two organic matter treatments {mulch 

6.68 (± 0.024) and manure 7.08 (± 0.024)} were significantly (P < 0.05) higher 

than the control between days 22 and 42 {6.55 (± 0.021) } ,  and for days 7 to 42 the 

manure treatment had a significantly higher pH than the mulch treatment (Table 

4.12). The magnitude of change in pH for the treatments was similar to 

Experiment 2. 

7.50 

:c 7.00 
c. 

6.50 - control 
___....__ manure 
� mulch 

6.QQ --1--���������������������� 

5 1 0  1 5  20 25 30 35 40 45 

Days 

Figure 4.8 Experiment 3: A comparison of pH values between treatments. 
Standard error bars are shown for each sampling day, n = 6 for each treatment. 
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Sulphate and sulphide 

There was no significant difference among treatments or aeration condition for 

sulphate (Table 4.12), and no sulphide was present on day 42 for any treatments 

or the control. Small amounts of sulphate were found after organic matter was 

added to the cores; the mean sulphate levels at day 42 were; control - 2.47 (± 

1.099) mg S04 L" 1
; manure - 4.20 (± 1.544) mg S04 L- 1

; mulch - 5.33 (± 2. 706) 

mg S04 L- 1
• As no sulphide was evident it was concluded there was no sulphate 

reducing bacterial activity present. 
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Table 4.12 Experiment 3 :  Summary of mean and standard errors for pH, dissolved oxygen, sulphate, and alkalinity. 
* indicates significant values at P �0.05; S04 - sulphate; sulphate, sulphide and alkalinity are on last day only. D - days; T - treatments; A -

aeration conditions. 
Treatment Aeration x ± se D x T  D x T x A  Tukey test results at last sampling day 

F value F value Control Manure Mulch 
Control <2 mgL- 1 6.63 ± 0.029 153.102* 2.370 Control 

>5 mgL- 1 6.48 ± 0.025 
Manure <2 mgL- 1 7.18 ± 0.026 Manure * 

pH >5 mgL- 1 6.99 ± 0.036 
Mulch <2 mgL- 1 6.71 ± 0.029 Mulch * * 

>5 mgL- 1 6.65 ± 0.039 
Control <2 mgL- 1 3.03 ± 0.149 277.243* 3.195 Control 

>5 mgL- 1 4.69 ± 0.176 
DO (mg L- 1

) Manure <2 mgL- 1 1.80 ± 0.146 Manure * 
>5 mgL- 1 3.30 ± 0.197 

Mulch <2 mgL- 1 0.25 ± 0.028 Mulch * * 
>5 mgL- 1 1.27 ± 0.181 
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Table 4.12 cont. 

Treatment Aeration x ± se D x T  D x T x A Tukey test results at last sampling day 
F value F value Control Manure Mulch 

Control <2 mgL·' 3.88 ± 1 .787 0.538 0.577 Control 
>5 mgL· 1 1 .06 ± 1 .1 48 

Manure <2 mgL· 1 2.92 ± 1 .638 Manure 
S04 (mg L.1) >5 mgL· 1 5.48 ± 2.673 

Mulch <2 mgL· 1 6.35 ± 5.3 1 0  Mulch 
>5 mgL·' 4.3 1 ± 1 .90 1 

Control <2 mgL·' 1 9.05 ± 5.942 1 87. 1 92* 0.20 1 Control 
>5 mgL·' 21 .00 ± 3.737 

Alkalinity Manure <2 mgL·' 90.90 ± 5.51 2  Manure * 
(mg CaC03 L. >5 mgL·' 95.90 ± 3 .658 I ) Mulch <2 mgL·' 1 46.16  ± 7.61 4  Mulch * * 

>5 mgL·' 1 56.50 ± 9.97 1 
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Table 4.13 Experiment 3 :  MANOV A, Wilks' Lambda and Tukey test results. 
See methods section for description of repeated measures analysis calculations; DO - Dissolved oxygen, D - Days, T - Treatments, 1 - Control; 2 

- Manure, 4 - Mulch. 

MANOVA Wilks' Lambda 

F value Hyp./error Sig. Obs Power Value Hyp./error Sig. Obs Power 
df df 

alpha = 0.05 alpha = 0. 1 alpha = 0.05 alpha = 0. 1 
pH D * T  34.639 2/30 0.000 1 .000 1 .000 0.502 12/50 0.092 0.787 0.877 

D * I 0 .092 1/30 0.764 0.060 0 . 1 1 5 0.837 6/25 0.572 0.260 0.388 
D * T *  I 0 .029 2/30 0.97 1 0.054 0. 1 06 0.864 12/50 0.984 0. 1 58 0.259 

DO D * T  8.420 2/30 0.00 1 0.947 0.976 0.523 12/50 0 . 1 24 0.749 0.849 
mg L- 1 D * I 0.035 1 /30 0.835 0.054 0. 1 06 0.903 6/25 0.840 0. 1 54 0.253 

D * T *  I 1 .454 2/30 0.250 0 .286 0 .4 1 1 0.892 12/50 0.995 0. 1 30 0.220 
Sulphate D * T  149.046 2/30 0.000 1 .000 I .OOO 
(mg L- 1

) D * I 0.097 1/30 0.757 0.061 0. 1 16 
D * T *  I 0. 1 1 6 2/30 0.891 0.066 0. 1 25 

Sulphide D * T  2.0 1 0  2/30 0. 1 52 0.382 0.5 1 6  
(ppb) D * I 0.977 1 /30 0.33 1 0. 160 0.253 

D * T *  I 1 .9 1 0  2/30 0. 166 0.365 0 .498 
Gilvin D * T  34.50 2/30 0.000 I .OOO I .OOO 
(g440 m- 1 ) D * I 0.2 1 7  1/30 0.643 0.074 0. 1 36 

D *  T *  I 4.20 1 2/30 0.0 1 9  0.7 19  0 .8 1 9  
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Table 4.13 continued, Tukey test results represented as P values. 

Day 14 Day 20 Day 23 Day 28 Day 34 Day 41 Day 48 
1 2 1 2 1 2 1 2 1 2 1 2 1 2 

pH 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

4 0.000 0.933 0.000 0.678 0.000 0.901 0.000 0.955 0.000 0.968 0.000 0.99 1 0.000 I .OOO 

DO (mg L-1) 2 0.546 0.07 1 0.042 0.0 1 7  0.275 0.082 0.0 1 8 

4 0.002 0.033 0.000 0.0 1 6  0.000 0. 1 24 0.004 0.826 0. 1 63 0.949 0.289 0.767 0.033 0.965 

Sulphate (mg L-1) 2 0.000 

4 0.000 0.986 

Sulphide (ppb) 2 0.986 

4 0. 1 83 0.24 1 

Gilvin (g440 m- 1 ) 2 0.000 

4 0.000 0.887 
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Table 4.14 Experiment 3 :  Control data only. MANOV A and Wilks' Lambda test results. 
See methods section for description of repeated measures analysis calculations; DO - Dissolved oxygen, D - Days, I - Inoculation. 

MANOVA Wilks' Lambda 

F value Hyp./error Sig. Ohs Power Value Hyp./error Sig. Ohs Power 
df df 

alpha = 0.05 alpha = 0.1 alpha = 0.05 alpha = 0.1 
pH D * I 0.005 1/10 0.944 0.050 0.101 0.617 6/5 0.778 0.106 0.196 
DO D * I 1.973 1/10 0.190 0.246 0.370 0.465 6/5 0.529 0.162 0.282 
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Table 4.15 Experiment 3:  Manure data only. MANOV A Wilks' Lambda test results. 
See methods section for description of repeated measures analysis calculations; DO - Dissolved oxygen, D - Days, I - Inoculation. 

MANOVA Wilks' Lambda 

F value Hyp./error Sig. Obs Power Value Hyp./error Sig. Obs Power 
df df 

alpha = 0.05 alpha = 0.1 alpha = 0.05 alpha = 0.1 
pH D * I 1 . 1 1 7  1 / 10  0.316 0. 160 0.259 0.754 6/5 0.928 0.078 0.1 49 
DO D * I 0.209 1/10 0.657 0.070 0. 13 1  0.438 6/5 0.481 0.1 76 0.303 
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Table 4.16 Experiment 3 :  Mulch data only. MANOVA Wilks' Lambda test results. 
See methods section for description of repeated measures analysis calculations; DO - Dissolved oxygen, D - Days, I - Inoculation. 

MANOVA Wilks' Lambda 

F value Hyp./error Sig. Ohs Power Value Hyp./error Sig. Ohs Power 
Df df 

alpha = 0.05 alpha = 0.1 alpha = 0.05 aloha = 0.1 
pH D * I 0.012 1/10 0.914 0.051 0.102 0.681 6/5 0.859 0.091 0.172 
DO D * I 0.554 1/10 0.474 0.104 0.181 0.582 6/5 0.726 0.116 0.212 
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Table 4.17  Experiment 3. MANOV A, Wilks' Lambda and Tukey test results. 
See methods section for description of repeated measures analysis calculations; DO - Dissolved oxygen, D - Days, T - Treatments, A - Aeration 

Conditions, 1- Control; 2 - Manure; 4 - Mulch. 

MANOVA Wilks' Lambda 

F value Hyp./ Sig . Ohs Power Value Hyp./error Sig. Ohs Power 
error df 

df 
alpha = 0.05 alpha = 0.1 alpha = alpha = 0.1 

0.05 
pH D * T  1 53.102 2/30 0.000 I .OOO I .OOO 0.231 12/50 0.000 0.999 I .OOO 

D * T * A  2.370 2/30 0.111 0.442 0.577 0.439 12/50 0.032 0.883 0.940 
DO D * T  277.243 2/30 0.000 I .OOO I .OOO 0.023 12/50 0.000 I.OOO I .OOO 
(mg L- 1 ) D * T * A  3 .195 2/30 0.550 0.567 0.696 0.201 12/50 0.000 I .OOO I .OOO 
Sulphate D * T  0.538 2/30 0.590 0.130 0.217 
(mg L- 1 ) D * T * A  0.577 2/30 0.568 0.137 0.226 
Alkalinity D * T 187. 1 92 2/28 0.000 I.OOO I .OOO 
(mg CaC03 L- 1 ) D * T * A  0.201 2/28 0.819 0.078 0.143 
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Table 4. 1 7  continued, Tukey test results represented by P values. 

Day 7 Day 10  Day 15  Day 22 Day 28 Day 35 Day 42 
1 2 1 2 1 2 1 2 1 2 1 2 1 2 

pH 2 0.000 0.000 0.000 0.000 0.000 0.000 0.002 

4 I .OOO 0.000 0.404 0.000 0.242 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

DO 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

4 0.000 0.006 0.000 0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Sulphate 2 0.820 

(mg L- 1 ) 4 0.563 0.903 

Alkalinity 2 0.000 

(mg CaC03 L-1 ) 4 0.000 0.000 
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Summary and discussion of laboratory experiments 

The abandoned mine voids in Collie represent a unique situation. Throughout the 

world acid mine drainage sites typically have high concentrations of heavy metals, 

and high sulphate levels (Hancock, 1 997; Whitehead, et al., 1 995;  Woodin and 

Skiba, 1 990) Voids near Collie do not show either of these characteristics; they 

are low in sulphate and have low concentrations of heavy metals (M. Lund, pers. 

comm.,  January, 1 999). This series of laboratory experiments was designed to test 

whether the addition of organic matter increased void water pH as was indicated 

by (Tuttle et al., 1 969 a,b; Gyure et al., 1 987). If it did, was there a difference 

between the types of organic matter and was suphate reducing bacterial activity 

the primary cause. If sulphate reducing bacteria was not the cause was there 

another possible explanation for the increases in pH with the addition of organic 

matter. 

The addition of manure and mulch increased the pH of the cores compared to the 

control, and the addition of the hay also increase pH but not to the same level as 

the other two organic materials under both aeration conditions. The addition of 

similar volumes of manure and mulch resulted in a greater increase in pH for the 

manure treatment compared to the mulch treatment under both aerated and 

hypoxic conditions. These results conform with those of Tuttle et al. , ( 1 969 a, b) 

and Gyure, et al. ,  ( 1987) who found that the pH of acid water increased when it 

was passed through organic matter. 
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Acid Mine Dra inage i n  Col l ie 

Addition of Organic Matter 

Does this cause a change? 
(Pi lot Experiment) 

YES 

Does doubling the 
quantity of organic 
matter added make 

a difference to pH 

Is sulphate reducing 
bacterial activity the 
mechanism for the 
change? 

Is the addition of alkalinity 
the mechanism for change? 

(Experiment 1 )  

Yes for manure 
No for mulch and hay 

(Experiment 2) 

Low levels of SRB 
are evident but not 
the primary cause 
of an increase in pH 

(Experiment 3) 

Yes, but it is 
only a contributing 
variable 

Figure 4.9 The approach taken by the study. 

Doubling the quantity of organic matter additions from 50 to 100 cm3 per core 

produced significantly higher pH values for manure ( 50 cm3 
- 7 .1 compared with 

7 .31 for 100 cm3). There was no difference in pH values between the quantities 

for the mulch and hay treatments. This suggests that there is an asymtopic affect 

for the introduction of mulch and hay in increasing the pH. Increased quantities of 

manure and hay increased gilvin values. There are two likely mechanisms to 

explain these results; 1) increased amounts of organic matter provided more 

nutrients and carbon sources in the manure (but not the hay and mulch) for the 

sulphate reducing bacteria to consume, resulting in a greater level of sulphate 

reduction, hence an increased pH; or 2) the addition of more manure increased the 

quantity of introduced alkalising substance to the water column which increased 
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the pH. Whereas increasing the quantity of mulch and hay did not increase the 

quantity of alkalising substance available to neutralise the acid. These alternative 

hypotheses were tested in experiments 2 and 3 respectively. 

The volume of mulch and hay per unit volume of acidic water required before the 

increases in pH cease is unknown but is between the equivalent of adding 50 and 

100 cm3 or organic material to a 100 mm diamater core filled with 400 mm of 

void water. Additional experiments are required to determine the exact quantity of 

mulch or hay neccessary to obtain the maximum increase in pH as there is no 

literature that discusses the affect of quantity of organic matter additions on 

changes in pH. 

For all organic matter treated cores the dissolved oxygen levels were low (mean; 

0.45 mg 02 L- 1 with a range of 0.01 to 4.51 mg 02 L- 1 ) indicating these cores were 

mostly hypoxic. Doubling the quantity of organic matter also significantly 

decreased the dissolved oxygen levels for all treatments. Kim, et al., (1999) 

suggested that in mine waste water the biological oxygen demand of organic 

compounds added to a system would exceed the available oxygen and exhaust the 

oxygen supply, rendering the environment anaerobic. The low level of dissolved 

oxygen in the organic matter treated cores is therefore probably explained by this 

high biological oxygen demand. For experiments 1 and 2, the dissolved oxygen 

levels on the last day for the control cores for the two aeration conditions were 

about 4 mg 02 L-1 • The interval between bubbling cores with nitrogen for the 

hypoxic and compressed air for the aerated cores increased so the dissolved 

oxygen level in the cores might represent a more natural level. This meant that the 
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dissolved oxygen levels for the control aerated and hypoxic cores decreased and 

increased, respectively, because the gases bubbled in the cores had leaked past the 

rubber stopper seals. 

Void water has very low gilvin levels. The addition of organic matter significantly 

increased gilvin levels and the colouration in the cores. As might have been 

expected, doubling the quantity of organic matter increased the levels of gilvin. 

Gilvin levels for the mulch and manure treatments were significantly higher than 

for hay and the control indicating that these two treatments will most probably 

give the void water more colour. 

The major cause of acidic mine voids throughout the world is acid mine drainage 

(Gray, 1 998). Often associated with acid mine drainage are high sulphate levels 

due to the oxidation of pyrite (FeSx). If sulphate reducing bacteria were 

responsible for the pH increase, a high level of sulphate and sulphide would 

normally be present. However, the levels of sulphate present in the core samples 

used in the laboratory experiment were low (� 4 mg S04 L-1 ; Sass, et al., 1997). 

Doubling (50 to 100 cm3
) the quantity of organic matter added to the cores made 

no significant difference to the level of sulphate indicating none of the organic 

matters contained dissolved sulphate. However, the higher quantity of organic 

matter increased sulphide levels in treated cores. The levels of sulphide for the 

manure and hay were higher than for the control, and the manure treatment was 

higher than for the mulch at the end of Experiment 1. This suggests that there 

might have been low levels of sulphate reducing bacterial activity and the bacteria 

1 1 6 



had depleted the available sulphate. This would explain the low sulphate levels 

and higher levels of sulphide precipitate. 

Six weeks after the sodium sulphate aliquot was added to the treatment and 

control cores in experiment 2, the sulphate levels were higher in the control cores 

than in both inoculated and non-inoculated treatments cores; there was no 

significant difference between the inoculation conditions in the sulphate levels. 

All of the cores containing organic matter also produced a small amount of black 

precipitate. This provides futher evidence of low levels of sulphate reducing 

bacterial activity in all of the cores (Gyure, et al. 1987;  Johnson, et al., 1997). The 

lack of a significant difference in pH values between the inoculated and 

uninoculated cores after the sulphate aliquot was added was probably due to the 

already available sulphate reducing bacteria in the treated cores having converted 

all the available sulphate into sulphide and additional sulphate reducing bacteria 

could provide no increase in pH as there was no available sulphate for it to react 

with. 

Manure released about the same quantity of alkalinity into the cores as the mulch 

treatment after 22 days. However, after 22 days the mulch treatment continued to 

release alkalinity at the same rate whereas the increase in alkalinity for the manure 

cores was comparatively less. Mulch may have more alkalising capacity per unit 

volume than manure. In the mulch the alkalinising material may not be as readily 

available for release under low pH compared with manure and may be more 

dependant on time, bacterial processes or a higher pH. This might be why mulch 

had a greater ability to release carbonates for the duration of the experiment. If the 
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pH in cores containing organic materials primarily increased as a consequence of 

the introduction of alkalising substances, then it would be expected the pH value 

in the mulch would have been higher than the manure. This was not the case, as 

the mean pH in the manure cores was 7.08 compared with the mulch cores of 

6.68. These results indicate that the alkalising affect contributes to the increase in 

pH, but other biological or chemical processes are also involved and make the 

difference between the mulch and manure cores. 

In summary, the addition of organic materials into intact cores from Ewington 

increased the pH. Significant increases in pH experienced in the treated cores 

could not be explained adequately by the low level of sulphate reducing bacteria 

acting on the available carbon source (i.e., organic matter). This is different to the 

studies reported by Tuttle et al. , (1969 a, b) and Gyure, et al., (1987) where 

sulphate reducing bacteria were the primary cause of the increase in pH. The 

organic material introduced into the cores contained alkalising substances that 

contributed to the increase in pH. Similar volumes of manure and mulch 

introduced into cores larger increases in pH for manure, and both pH values, these 

increases were greater than for hay. Doubling the volume of mulch added to cores 

did not increase the pH whereas it did for manure and hay. In the alkalising 

experiment, similar volumes of mulch and manure added to cores resulted in 

mulch releasing more alkalising material but manure providing the higher pH. It is 

therefore obvious that other unknown chemical or biological processes resulted in 

the manure treated cores to having a higher pH value than the mulch treated cores. 
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5.0 FIELD EXPERIMENT 

Introduction 

Mesocosms are often used for testing (verifying ) laboratory results in field 

situations. Wieder, et al., (1990), and Street and Titmus (1982) both used 

mesocosms experiments to examine acid mine drainage issues. Street and Titmus 

(1982) used a partitioned lake and Wieder, et al., (1990) used six model wetlands 

to test dynamics in wetlands exposed to synthetic acid mine drainage. Wieder, et 

al., (1990) suggested that the use of mesocosms could be useful in generating site

specific data that can be applied to the formulation of cost-benefit analyses to 

compare a proposed wetland treatment system with alternative chemical methods 

for treating acid mine drainage. 

Based on the first laboratory experiment it was concluded that mulch and manure 

treatments were better than hay for increasing the pH of acidified Collie mine 

void water. The hay treatment was therefore not included in the field experiment. 

It was also concluded that the dissolved oxygen levels in the ponds could not be 

controlled (based on lab experiment) because it was not possible to seal the ponds 

from atmospheric air. Results from the laboratory experiments indicate that 

hypoxic conditions created by biological oxygen demand would provide a suitable 

environment for sulphate reducing bacteria should this be a primary agent for 

increasing pH in in situ ponds. However, sulphate reducing bacteria was not 

expected to be a primary mechanism for pH change in the ponds based on 

laboratory experiments. 
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The aim of the field experiment was to determine a) the effect that the addition of 

vegetation mulch and cattle manure have on the pH of lake water in a situation 

similar to that in Ewington; b) the longevity of the treatment affects in a field 

situation; and c) whether experimental results using intact cores in a laboratory 

can be used to predict the outcomes of similar experiments in ponds in a field 

situation. If this were the case then researchers could be more confident about 

predicting likely outcomes of in situ rehabilitation programs based on the 

relatively inexpensive laboratory experiments. 

Methods 

Mesocosms 

In the field experiment 18 ponds, approximately 2 x 3 m and with a water depth of 

1 m, were excavated next to Ewington (Figure 5.1 ). Six ponds were treated with 

mulch and six with manure. The remaining six ponds were left as controls. Site 

constraints meant that a row of 5, a row of 9 and a third row of 4 ponds were 

excavated adjacent to the lake. Where possible the field experiment was designed 

so that a pair of control's or a pair of similar organic matter treatments were 

placed next to each other and spread systematically along the rows, to minimise 

the effect of changes in soil texture and contamination by groundwater inflow 

(Figure 5.1). The sides of the ponds were stabilised with polypropylene sandbags 

to prevent collapse of the sidewalls and the potential contamination of the next 

pond. Sandbags were soaked in Ewington for 24 hours prior to use and were filled 

with the sand extracted from each hole so as to minimise the potential 

contamination of each pond by soil from another source. A slurry of sediment 
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from Ewington was pumped into each pond to a depth of approximately 100 mm 

to ensure that as far as possible each pond replicated the real void ecosystem. The 

pump moved water and sediment at a fixed rate and the continual movement of 

the suction pipe over a new piece of the bottom of Ewington meant that if all the 

ponds were filled to the same depth, a comparable amount of slurry was obtained 

for each pond. Ground water also infiltrated into the 18 ponds and combined with 

the water pumped to fill the ponds to a depth of approximately one metre a couple 

of days after they were constructed. Three days were allowed for the sediment to 

settle and for the ponds to become stable before the organic material was 

introduced. 

D C o ntro l 

D Ma nure 

D Mu lc h  

Ewingto n  

l 
Direction of 

groundwa te r flow 

Figure 5.1 Layout of the ponds adjacent to Ewington showing the pairing of 
similar organic matter types for the field experiment. 
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The centre of each pond (top and bottom) and Ewington (two metres from bank, 

one metre deep adjacent to the ponds) were measured for pH, dissolved oxygen, 

conductivity, temperature, redox potential. In addition, pond turbidity, salinity, 

sulphide, sulphate, heavy metals, water nutrients (nitrate/nitrite, FRP and 

ammonia), chlorophyll a, and water depth were monitored. Samples were taken 

for each pond weekly for the first month and then fortnightly for the following 

four months. The field trial was conducted between January and July 1999, 

between 0930 and 1200 hours. 

Measurement of physical, chemical and biotic properties of the 

ponds 

Depth 

The water depth of the ponds was measured using a fibreglass tape measure 

attached to a plumb bob. Measurements were taken at the centre of the pond, 

which was presumed to be the deepest part of the excavated voids. 

Temperature 

Temperature of the water column in the ponds was measured using a thermistor 

incorporated into the probe of either the Yeo Kai Model 611 Intelligent Water 

Quality Analyser, a WTW OXI 320/set, WTW 330 pH meter or a WTW 330 

conductivity meter depending on the availability. 
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Turbidity 

The turbidity was measured in situ for the ponds using a turbidity probe on a Yeo 

Kal Model 61 1 Intelligent Water Quality Analyser. The meter was calibrated 

before use. 

Macro-invertebrates 

The macro-invertebrate sampling was performed using a 25 x 25 cm, 500 µm 

Fresh Water Biological Association (FBA) sweep net. Two minutes of intense 

sweeping (top layers of sediment and in the water column) was used to estimate 

macro-invertebrate family richness and presence/absence. The invertebrates were 

put in plastic bags with water from the ponds. The samples were then live sorted 

in a white plastic tray, for 15 minutes by hand that evening and subsequently 

stored in 70% ethanol for later identification. Samples were identified to Family 

level using Davis et al. (1997) and counted using a dissecting microscope. 

Chlorophyll a 

Assessing concentration of chlorophyll a is the most common method for 

estimating phytoplankton biomass and is less time consuming than phytoplankton 

counts and simpler than other productivity methods (Axler and Owen, 1994 ). The 

concentration of chlorophyll a has also been shown to relate to primary 

productivity in water and can be used to assess the physiological health of algae 

by examining its degradation products (the phaeopigments, phaeophytin-a and 

phaeophorbide-a; Axler and Owen, 1994 ). 
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A 250 mL water sample was taken from each pond and filtered (Whatman ® 

GF/C). The filter paper was then frozen. Thawed filter papers were placed in 

centrifuge tubes to which 10 mL of N, N - Dimethylformamide (DMF) was 

added. The centrifuge tubes were stored in the dark at 4 °C for 24 hours. The 

absorbency of the DMF was then determined at 750 and 665 nm using a 

spectrophotometer (Shimadzu). The sample was then acidified using 200 µL of 

0.2M hydrochloric acid (HCl). The acid was added directly into the cuvette. 

Another reading was then made at 750 and 665nm. 

The chlorophyll level (µg L- 1 ) was then calculated by: 

28.43 * {(665B - 750B) - (665A - 750A)} * 10 I (vol * cuv) = [chl a] 

(Equation 5.0) 

A = After acidification 

B = Before acidification 

vol = Volume of water sample in litres 

cuv = light path of cuvette in centimetres ( APHA, 1989). 

Phytoplankton 

The phytoplankton levels were measured by collecting six replicates of 1 .  77 litres 

of pond water from the vertical column (50 mm core of 900 mm in length) and 

pouring it through a phytoplankton net. The six water samples from each pond 

where each stored in a McCartney vial and preserved with 10 ml of 70% 

histoethanol. Vials were allowed to settle for 40 days. The surface one mL from 

each vial was removed every 4 days. The remaining one mL from each vial was 

placed on Sedwick Rafter slide and examined under a microscope. The number of 
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phytoplankton were counted per unit area, averaged and multiplied to give an 

estimate of phytoplankton numbers per litre (APHA, 1989). 

Data Analysis 

For the field experiment, means and standard errors are presented for each 

sampling day and the grand means and the repeated measures MANOV A results 

are reported for days 83 to the end of sampling at day 153 for pH, dissolved 

oxygen (% saturation and mg 02 L- 1 ), conductivity, temperature and depth. The 

mean values are reported for redox potential (ORP), turbidity and salinity for the 

combined data for days 111 to 153. The days are different here because the 

equipment was not available for some sampling days. Data are reported separately 

for top and bottom water samples. The mean for the top and bottom samples were 

averaged to give a mean (mid-level) value for each pond and used in the statistical 

analyses. 

Data for days 83 to 153 for pH, dissolved oxygen, conductivity, temperature, 

chlorophyll a and depth, and days 111 to 153 for ORP, turbidity and salinity were 

used to calculate a grand mean for the period. Data for each pond for each of 

these sampling days were used in the repeated measures MANOV A and the post 

hoe Tukey test to determine statistical differences between controls and various 

treatments, and between treatments. Summary data for each treatment and each 

sampling day are presented in the appendix. 
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Long term monitoring data 

Regular monthly monitoring of a selected deep-water site near the centre of 

Ewington has been in progress since April 1997. Before 1997, a few infrequent 

measurements were taken by Mills ( 1 995) and Lisa Edwards, an Edith Cowan 

University honours student during 1 995. Measurements included the recording of 

pH and conductivity at the top and bottom of the water, and dissolved oxygen and 

temperature at a mid-water point. These data are used to display temporal changes 

in the physical and chemical properties of the lake and to demonstrate that the 

chemistry of the constructed ponds acted in a similar manner to the void. 

Results 

Rainfall 

Rainfall during the period of the field experiment increased after day 97 and 

continued for the rest of winter (28 April 1999; Figure 5 .2 ). 
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Figure 5.2 Weekly rainfall compared with changes in mean pond depth 
during the period of the field experiment. 

Rainfall data collected at Griffin Coal, Collie (approx 15 km from study site). 

Depth 

The mean depth of the ponds for days 83 to 153 were; controls 0.77 (± 0.031) m; 

manure 0. 72 (± 0.032) m; and mulch 0.86 (± 0.032) m. Depth changed as 

evaporation and precipitation altered the surface water run off and level of the 

watertable (Figure 5.2). The water levels in the ponds dropped gradually till about 

day 97, then increase till the end of sampling at day 153. The increase in depth 

after day 97 corresponds with the commencement of the winter rains (Figure 5.2). 

127 



Do the mesocosms closely parallel the lake? 

A strong correlation exists between the data for the in situ control ponds and 

Ewington over the period of the field experiment for pH, dissolved oxygen levels, 

conductivities, sulphate, sulphide, nutrient and phytoplankton levels (see results 

below, Figures 5.3 and 5.7, Tables 5.1, 8.14 to 8.18) indicating that the ponds are 

a reasonable indicator of the Ewington environment. The ponds are, however, 

more responsive to changes in rainfall and temperature than Ewington, probably 

due to their smaller size and shallow depth. 

Water temperature 

There was a decrease in pond water temperature from day 83 to 153 (Table 5.3). 

At the bottom of the water column, the mean temperature was generally about 0.5 

�C cooler than at the surface for all the ponds. There was no significant difference 

in water temperature among treatment ponds (Table 8.17; Figure 5.3) and the 

pattern of temperature change for the ponds correlated strongly with the water 

temperature pattern reported from Ewington since January 1997 (Figure 5.4). The 

mean temperature from April 1991 to August 1999 for Ewington was 17.9 (± 

0.76) °C (Figure 5.6), with the warmest water in February and coolest in July. As 

the pattern of water temperature for the control and treatment ponds and the lake 

are similar. As a consequence temperature is not considered to be a variable likely 

to influence comparisons for physical or chemical processes. 
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Figure 5.3 Changes in mean pond water temperature for the three treatment 
conditions and Ewington for the duration of the experiment. 

Standard error bars are shown for each sampling day, n = 6 for each treatment. 
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Figure 5.4. Changes in Ewington water temperature from January 1997 to 
August 1999. 
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pH 

There was no significant (P < 0.05) difference between the top and bottom pH and 

there was no significant change in pond water pH values after day 83 (Table 5. 1 ). 

The mean pH for the top and bottom of the water column in each pond for days 83 

to 153 for the two organic matter treatments and control were; control 5.1 6 (± 

0.199); manure 5.95 (± 0.1 27); and mulch 5.75 (± 0.1 07). There was a significant 

(P < 0.05) difference among pH values for treatments and controls. 

Fluctuation in pH in Ewington showed the same pattern as was evident in the 

treatment ponds (Figure 5.5). The pH values for manure and mulch ponds were 

consistently higher (> 0.5 to 1 .0) than for the control ponds for all days except day 

1 53; these values were inturn was higher (< 0.25 to 0.8) than Ewington. The pH of 

pond water increased for the two organic matter treatments and the control from 

day 97 until day 1 39 (Figure 5.5). There appeared to be an inflow of ground water 

into the ponds as indicated by the changing pond depths associated with increased 

rainfall. It was concluded that the increase in pond water pH after day 97 was 

associated with the steady inflow of more pH neutral ground water after periods 

of rain. The height of the bund around each pond meant there was little chance of 

surface water running into any of the ponds and thus changing the pond water pH. 

The decrease in pH from day 1 39 to day 153 goes against this trend. The heavier 

rains in the last couple of weeks before the experiment concluded might have 

flushed considerably increased amounts of ground water into the lake returning it 

to its more characteristic low pH levels. Figure 5.6 shows substantial fluctuations 

in lake pH over a period of two years but there are no data on changes in pH for 

ground water in the vicinity of Ewington. 
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Figure 5.6 Temporal changes in the pH for Ewington from January 1997 till 
August 1999 

The post hoe Tukey test indicated that the manure treatment had a significantly 

higher pH than the control for days 83 to 139, whereas the pH in the mulch 

treatment was only significantly higher than the control for days 83 and 97 {Table 

5 .1 ). The pH for the control ponds increased at a more rapid rate than in the 

treatment ponds toward the end of the field experiement ( control ponds increased 

from 4.52 on day 83 to 5.33 on day 153; mulch ponds increased from 5.56 to 5.62; 

manure ponds increased from 5.66 to 5.89). At day 153 there was no significant 

difference between the pH for the control and treatment ponds. An unscheduled 

opportunity arose on 20 March 2000 to revisit Ewington and record pH values in 

the ponds. The mean pH values for the control ponds was 4.31 (± 0.056), the 

mulched ponds was 4.48 (± 0.125) and the manure ponds was 5.78 (± 0.29). An 

ANOV A on these data indicated a significant difference (F2,1 5  = 18.83, P < 0.001) 
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among treatments and the control ponds. A post hoe Tukey test indicated that 

there was no significant difference between the mulch and control ponds but the 

pH in the manure ponds was higher than in the mulch and the control ponds. 

These data indicate the increase in pH values for the manure treatment have been 

sustained over a period from January 1999 to March 2000, covering a complete 

seasonal cycle. 

The mean surface pH value for Ewington from May 1993 to August 1999 was 

4.31 (± 0.049); the mean bottom pH value from April 1995 to August 1999 was 

4.35 (± 0.059) (Figure 5.6). pH occasionally showed a substantial shift from the 

norm. One possible explanation for these shifts in pH is the changing rate of 

ground water inflow after winter rainfall. Similar variations were also evident in 

the ponds constructed adjacent to Ewington and monitored over a period of six 

months. 

Table 5.1 .  Comparison of means and standard errors for pH for days 83 to 
153 for two treatments, the controls and Ewington. 

Treat't Day 83 Day 97 Day 1 1 1  Day 125 Day 1 39 Day 153 
- - - -

x ± se x ± se x ± se x ± se x ± se x ± se 

Control 4.52 ± 0.1 10 4.68 ± 0.106 5.08 ± 0. 1 39 5.45 ± 0. 100 5.72 ± 0. 1 1 8  5.53 ± 0. 1 77 

pH Manure 5.66 ± 0. 1 25 5.63 ± 0. 1 2 1  5.91 ± 0. 1 40 6. 1 7  ± 0. 107 6.45 ± 0.099 5.89 ± 0. 124 

Mulch 5.56 ± 0. 1 5 1  5.46 ± 0. 1 59 5.75 ± 0. 1 5 1  5.95 ± 0. 132  6. 1 6 ± 0. 1 39 5.62 ± 0. 1 49 

Lake 4.26 4.34 4.7 4.87 5. 1 l 4.6 
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Figure 5.5 Changes in the mean pH for pond water for the two treatments, 
control, and Ewington for the duration of the experiment. 

Standard error bars are shown for each sampling day, n = 6 for each treatment. 

Dissolved oxygen 

The pattern of results for dissolved oxygen measured in mg 02 L" 1 and as a 

percentage of saturation are the same (Tables 5 .2, 8.15 and 8.1 6). The dissolved 

oxygen levels increased during the field experiment but only after the rainfall 

increased (about day 97). A post hoe Tukey test indicated that the dissolved 

oxygen levels in the mulch ponds were significantly lower than the control 

(except for day 153; mulch 0.35 {± 0.044) mg 02 L" 1 and control; 7.09 {± 0.879) 

mg 02 L" 1
) and lower than the manure (4.08 {± 0.9 15) mg 02 L" 1

) until day 11 1. 

After day 1 11  there was no significant difference between the control and manure 

treatment nor the manure and mulch treatments (Figure 5.7). The dissolved 

oxygen levels in Ewington for days 83 to 1 53 were 8.56 (± 0.875) mg 02 L- 1
• This 
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is higher than the levels experienced in the ponds. The dissolved oxygen levels at 

the bottom of the water columns were always lower than the surface dissolved 

oxygen levels. 
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Figure 5.7 Changes in the mean dissolved oxygen (mg 02 L-1) content for the 
two treatments and the control ponds for the duration of the field experiment 

Standard error bars are shown for each sampling day, n = 6 for each treatment. 

Conductivity 

Water at the bottom of the control and manure ponds had a mean conductivity 50 

µs cm -I higher than the surface. This was not the case for the mulch treatment 

(see appendix Table 8.18). There was no significant (P < 0.05) difference in 

conductivity between the treatments and control (Table 5.2). 
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The conductivity in the control ponds was not significantly different to the 

conductivity in Ewington over the same 6 month sampling period till August 1999 

" {Ewington; 1099. 14  (± 26.285) µs cm- 1 } ,  however, wide fluctuation in the results 

might have obscured any differences. The conductivity for the ponds and 

Ewington were generally highest at the end of summer (February/March) and 

decreased as the rainfall increased in winter. The conductivity for the ponds 

becomes variable after day 97 (Figure 5.8) most probably because of the inflow 

ground water resulting from increased rainfall (Figure 5.2). The rainfall decreases 

the conductivity by introducing freshwater to the surface ground water, which 

flows into the ponds. 
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Figure 5.8 Conductivity changes for Ewington (µs cm-1) from January 1997 
to August 1999. 
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Figure 5.9 Changes in mean conductivity (µs cm"1) for the treatment the 
control ponds, and Ewington for the duration of the experiment. 

Standard error bars are shown for each sampling day, n = 6 for each treatment. 

Turbidity 

As might be expected, the turbidity at the bottom of the water column was 

significantly higher than at the top for all treatments and the controls. There was 

no significant difference in turbidity between the treatments and control ( control -

42.85 (± 18 .9) ntu; manure - 25. 75 (± 1 1 .8) ntu; mulch - 45.08 (± 26.3) ntu; Table 

5.3; Figure 5.10). Turbidity was not measured every sampling day as the 

equipment wasn't always available. 
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Figure 5.10  Changes in mean pond water turbidity (ntu) for the treatments 
and control for the duration of the experiment. 

Standard error bars are shown for each sampling day, n = 6 for each treatment. 

Oxidation reduction potential 

At the bottom of the water column the control redox potential was generally twice 

as high as the surface, whereas for the organic matter treatments the redox 

potential was more uniform across the water column. There was no difference in 

the redox potential among the organic matter treatments and controls (manure -

160.81 (± 6.64) mV; mulch - 167.46 (± 13.18) mV; control - 197.16 (± 5.563) 

mV; Table 8.20) and no significant change in the potential over time (Table 8.20; 

Figure 5.10). 
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Figure 5.1 1  Changes in mean redox potential for the treatments and the 
control for the duration of the experiment. 

Standard error bars are shown for each sampling day, n = 6 for each treatment. 

Gilvin 

There was no significant change in gilvin values between days 83 and 153 (Table 

5.2). The mean gilvin values for days 83 to 153 for the two treatments and control 

were; control 1.07 (± 0.002) g440 m· 1
; manure 4.05 (± 0.002) g44o m· 1

; and mulch 

3. 79 (± 0.003) g440 m· 1
• There was no significant difference in gilvin values among 

the organic matter treatments or control (Figure 8.23; Table 5.2). Variation 

between ponds and consideration of the statistical power of the analysis would 

suggest a visual inspection of the data might be more informative. Toward the end 

of the trail there appear to be no differences between the two treatments which 

were in tum slightly higher than the control. 
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Figure 5.12  Changes in mean gilvin values for the organic matter treatments 
and control for the duration of the field experiment. 

Standard error bars are shown for each sampling day, n = 6 for each treatment. 

Chlorophyll a 

The chlorophyll a levels in the manure treatment were significantly higher than 

for the control on days 111 and 1 53, and the manure treatment was significantly 

higher than the mulch treatment on day 1 53 {the means for days 27 to 1 53 are; 

control - (8.47 ± 1.125) µg L-1 ;  manure -33.30 (± 4.206) µg L-1 ;  and mulch -

12.36 (± 2.117) µg L- 1 ; Figure 5.13; Table 5.3}. There was no significant change 

in chlorophyll a levels over days 27 to 1 53 (Table 8.23) and but there was a 

significant difference in chlorophyll a levels between the organic matter 

treatments and control. The control was significantly (P < 0.5) lower than the 

manure. 
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Figure 5.13 Changes in mean chlorophyll a levels for the treatments and the 
control ponds for the duration of the experiment. 

Standard error bars are shown for each sampling day, n = 6 for each treatment. 

Filterable reactive phosphate (FRP) 

The mean FRP levels for day 153 for the two treatments and control were; control 

3.67 (± 0.422) µg P L- 1 ;  manure 100.17 (± 23.159) µg P L-1 ; and mulch 3.50 (± 

0.428) µg P L- 1 • There was a significant difference in FRP among treatments 

(Figure 5.14; Table 5.3) and the post hoe Tukey test indicated that FRP levels in 

the manure treatment were higher than for the mulch and controls, but there was 

no difference between the mulch and the controls. The increased level ofFRP 

found in the manure treatment probably explains why the chlorophyll a levels are 

significantly higher for the manure treatment, as the increased nutrients provides 

better conditions for the growth of chlorophyll a. 
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Figure 5.14 Changes in mean FRP for the treatment and control ponds for 
the field experiment. 

Standard error bars are shown for each sampling day, n = 6 for each treatment. 

Ammonia and nitrate/nitrites 

There was no significant difference between the treatments and controls for 

ammonia or for soluble nitrate/nitrites (Table 5 .2). The mean ammonia levels at 

the end of the field experiment were; control - 9.17 (± 1.302) µg N L  -1 ; manure -

12.00 (± 1.238) µg N L  - 1 ; and mulch - 17.67 (± 7.898) µg N L  -1 and the mean 

nitrate/nitrite levels were; control - 1.30 (± 85. 7) µg N L  - 1 ; 1.24 ± 79.5) µg N L  -

1 ; and mulch - 7 .99 (± 98.8) µg N L  - 1 • 

Sulphate and sulphide 

There was no significant change in sulphate or sulphide levels or between the 

different organic matter treatments or controls over days 83 to 153 (Table 5.2). 

The mean sulphate levels for the field experiment were; control - 6.90 (± 0.53) 
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mg S04 L- 1
; manure - 7.64 (± 0.88) mg S04 L- 1

; and mulch - 7307 (± 1 .3 1 )  mg 

S04 L- 1
• The mean sulphide levels showed a similar pattern (no significant 

differences) to the sulphates with the control being slightly lower than the 

treatments; control - 3.73 (± 3.46) ppb; manure - 7.04 (± 6.90) ppb; mulch - 9.63 

(± 9.50) ppb. 

Macro-invertebrates 

There was considerable variability in the individual abundance and numbers of 

families represented among ponds (Table 8.26). There was no significant 

difference (ANOVA; F2, 1 5  = 2.01 ,  P = 0. 1 68) among control and treatment ponds 

for the number of individual specimens caught, nor was there a significant 

difference (ANOVA; F2, 1 5  = 0.09, P = 0.9 1 1 )  among control and treatment ponds 

for the number of Families represented. The mean number of invertebrates caught 

in each of the ponds was; control 54.50 (± 9.283); manure 58. 1 7 (± 1 3.055); and 

mulch 1 40.50 (± 57. 1 43), and the mean number of Families represented for each 

pond was; control 8.00 (± 1 .00); manure 7.83 (± 0.601 ); and mulch 1 7.50 (± 

0.847). 

Phytoplankton 

There was considerable variability between ponds for different treatments in the 

number of invertebrates and number of Families represented. There was no 

significant difference between the organic matter treatments and the control 

ponds. Mean phytoplankton counts for Ewington where within the 95% 

confidence limits for the means for the treatment and control ponds for day 1 53 

(Table 5.3). The mean phytoplankton count for each of the ponds were; control 
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59.22 (± 32.555) L- 1
; manure 393.85 (± 184.209) L-1 ; mulch 46.55 (± 31.294) L- 1 

and Ewington 241.62 (± 116.011) L- 1 (n = 6). 

Table 5.2 Field experiment: Summary of mean and standard errors for pH, 
dissolved oxygen, conductivity, oxidation-reduction potential, sulphate, 
gilvin, ammonia, FRP and nitrate/nitrites for days 83 to 1 53 except for 

sulphate; sulphide, ammonia, FRP and nitrate/nitrites which are for the last 
day only. 

* indicates significant values at P ::;0.05; 

Treatment - D x T  Tukey test results at last sampling day x ± se 
F value Control Manure Mulch 

pH Control 5 . 16 ± 0. 199 6. 1 66 Control 
Manure 5 .95 ± 0. 1 27 Manure * 
Mulch 5.75 ± 0 . 107 Mulch 
Lake 4.65 ± 0. 1 3 1  
Control 7.09 ± 0.879 12.789 Control 
Manure 4.08 ± 0.9 1 5  Manure 

DO (mg L" 1) Mulch 0.35 ± 0.044 Mulch * 
Lake 8.56 ± 0.875 
Control 1026.26 ± 1 38.5 1 . 130 Control 

Conductivity Manure 938. 1 ± 129. 140 Manure 
(µs cm- 1) Mulch 898.82 ± 1 2 1 .33 Mulch 

Lake 1 1 37.00 ± 67.49 
Control 197. 16 ± 5 .563 1 .481  Control 

ORP (mV) Manure 1 60.2 1 ± 6.636 Manure 
Mulch 1 67.46 ± 1 3  . 1 8  1 Mulch 
Lake 339.00 ± 1 1 .86 
Control 6.90 ± 0.527 0. 1 64 Control 

S04 (mg L- 1 ) Manure 7.64 ± 0.876 Manure 
Mulch 7.07 ± 1 .3 14 Mulch 
Control 2.02 ± 0.306 3.352 Control 

Gilvin (g44o) Manure 6.27 ± 0.385 Manure 
Mulch 6.46 ± 0.675 Mulch 
Control 9. 1 7  ± 1 .302 0. 1 25 Control 

Ammonia Manure 12 .00 ± 1 .238 Manure 
(µg N L · 1) Mulch 1 7.67 ± 7.898 Mulch 

Control 3 .67 ± 0.422 6.9 1 1  Control 
FRP Manure 100. 17  ± 23 . 1 6  Manure * 

(µg P L " 1) Mulch 3.50 ± 0.428 Mulch * 
Control 1 29. 1 7  ± 85 .69 0.628 Control 

Nitrate/nitrite Manure 198. 17  ± 79.48 Manure 
(µg N0z(N03 L ·1 > Mulch 1 50.00 ± 98.82 Mulch 
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Table 5.3 Field experiment: Summary of mean and standard errors for 
temperature, turbidity, chlorophyll a, invertebrate diversity, invertebrate 
abundance and phytoplankton for days 83 to 153 except for invertebrate 

abundance and diversity which are for the last day only. 
* . d. . fi I P <O 05 m 1cates s1gm icant va ues at - . ' 

Treatment - D x T  Tukey test results at last sampling x ± se 
day 

F value Control Manure Mulch 
Control 14.45 ± 1 .4 14 2.849 Control 

Temperature Manure 14.03 ± 1 .330 Manure 
Mulch 14.60 ± 1 .364 Mulch 
Lake 16.85 ± 1 . 1 79 
Control 42.85 ± 1 8.924 1 .595 Control 
Manure 25.75 ± 1 1 .793 Manure 

Turbidity Mulch 45.08 ± 26.337 Mulch 
(ntu) Lake 7.68 ± 5 .865 

Control 8.47 ± 1 . 125 4.809 Control 
Chlorophyll a Manure 33 .30 ± 4.206 Manure * 

Mulch 12.36 ± 2. 1 17 Mulch * 
Control 8.00 ± 1 .00 0.87 Control 

Invertebrate Manure 7.83 ± 0.601 Manure 
diversity Mulch 9.83 ± 1 .701 Mulch 

Control 54.50 ± 9.283 2.01 Control 
Invertebrate Manure 58. 1 7  ± 1 3 .06 Manure 
abundance Mulch 140.50 ± 57. 14 Mulch 

Control 59.22 ± 32.556 2. 1 59 Control 
Phytoplankton Manure 393.85 ± 1 84.2 1 Manure 

{L- 1)  Mulch 46.55 ± 3 1 .294 Mulch 
Lake 24 1 .62 ± 1 1 6.0 1 
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Summary and Discussion of Field Experiment 

The laboratory experiments indicated that the addition of organic materials would 

increase the pH. Manure and mulch were better at increasing pH than hay; and as 

a consequence hay was not used in the field experiment. The low level of sulphate 

reducing bacterial activity does not adequately account for the significant 

increases in pH in the treated cores. Organic material introduced into the cores 

contained alkalising substances and was the primary contributor to the increase in 

pH. It was therefore expected that the addition of manure and mulch to the in situ 

ponds would result in an increase in pH. It was not known how long the effect 

might last nor whether dissolved oxygen and sulphate levels would decrease, and 

gilvin and sulphide levels would increase as they did in the cores. 

The threefold aim of the field experiment was to determine a) the effect that the 

addition of vegetation mulch and cattle manure have on the pH of lake water in a 

situation similar to that in Ewington; b) the longevity of the treatment affects in a 

field situation; and c) whether experimental results using intact cores in a 

laboratory can be used to predict the outcomes of similar experiments in ponds in 

a field situation. 

The pH values for manure and mulch ponds were generally higher (0.5 to 1 .0 pH 

units) than for the control ponds; these values were intum higher (< 0.25 to 0.8 pH 

units) than Ewington. The pH for the control ponds increased at a more rapid rate 

than the treatment ponds towards the end of the field experiement ( day 83 to day 

1 53). The measurement of pH values in the control and treatment ponds again in 
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March 2000, some 15 months after they were first established, provided evidence 

that the manure treatment was able to maintain a significant increase in the pH. 

Although the pH was 5.8, and below what might have been hoped for, it was still 

1.5 pH units above the control. As the pH in both Ewington and the experimental 

ponds commenced increasing about the time of the winter rains (Figure 5.5). This 

suggests that the inflow of ground water was the primary cause for the change in 

pH. The reason for the sudden decline in pH for the treatment, control ponds and 

Ewington from day 139 to 153 is unknown, but maybe a consequence of the 

higher rainfall in the last weeks before the conclusion of the study that flushed a 

greater quantity of ground water into these voids returning the lake (and the 

ponds) to their more characteristic and lower pH levels. These data suggest that 

the addition of both manure and mulch will increase the pH of Ewington water. 

pH values in Ewington are likely to occilate as they did in the ponds over the 

study period primarily due to the inflow of surface and groundwater. The 

sustained higher pH values for the treated ponds compared with the controls and 

Ewington over a period of 15 months suggest that effects could be long term. 

The dissolved oxygen levels after an initial increase slowly declined presumably 

due to biological oxygen demand until the winter rains commenced about day 97 

from which time they increased (Figure 5.7). The sudden decline in dissolved 

oxygen levels at day 125 (26 May) corresponds with the first heavy rain recorded 

for the winter. These rains resulted in substantial runoff into the lake and 

presumably into some of the ponds as the sides of some of the ponds collapsed 

destroying the surrounding berms which were put in place to prevent surface 

water inflow . .  The collapsed sides also released fresh organic matter into the 

146 



pond water. The number of frogs and tadpoles in the ponds was observed to 

increase at this time although they where not counted. 

For turbidity, salinity, chlorophyll a, sulphate and sulphide there was no 

significant change over time. However, significant variations within treatments 

for gilvin (Figure 5.12), chlorophyll a (Figure 5.13) and FRP may well have 

masked important differences and trends. These substantial differences among 

ponds with similar treatments were expected as minor physical changes to 

individual pond mesocosm environments were likely to occur (e.g. , bank collapse, 

animal disturbance, varying ground water inflow rates) as part of the natural 

processes in the area. 

The level of sulphate was low for the ponds in acid mine drainage areas (M. lund, 

pers comm. January 1999) and therefore the consequential level of sulphide was 

also low. These low sulphate/sulphide levels are consistent with the results for the 

laboratory experiments and suggest that sulphate reducing bacteria were not 

responsible for most of the increase in pH. For sulphate reducing bacteria to act in 

acidified waters an oxidation reduction potential of less than -100 m V is required 

(Lyew et al. 1994; Lyew and Sheppard, 1997). Only mulch had an oxidation 

reduction potential low enough to support sulphate reducing bacteria and it was 

only at this level for the first 40 days of the field experiment. In addition, the 

dissolved oxygen levels in the ponds were generally too high to enable sulphate 

reducing bacteria to exist is sufficient quantity to cause the increase in pH 

(Hammack and Edenbom, 1991 ). 
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The level of FRP was significantly higher in the manure treatment ponds than for 

the control or mulch treatments. Ponds with the manure added had the highest 

levels of chlorophyll a, with the control and mulch ponds having comparable 

levels. It is probable that the higher phosphate levels in conjunction with higher 

pH values are responsible for the increased levels of chlorophyll a found in the 

manure treatment ponds . It was also noted that for Ewington, chlorophyll a is 

lowest in winter; which is probably due to the cooler water temperatures and 

lower levels of sun light which would result in lower levels of photosynthesis. If 

the trend in chlorophyll a levels in Ewington parallels those in the ponds, it might 

be expected that as the water temperature increased in the ponds with the onset of 

summer, chlorophyll a densities would also increase. 

The conductivity levels for the ponds are more irregular after the winter rains 

commenced ( day 97). Rain and surface inflow havning less ions would reduce 

conductivity, whereas inflow groundwater might increase conductivty as the water 

would pick up ions as it moves through the soil. Inflow surface and groundwater 

therefore contribute to occilations not only in pH and disssolved oxygen 

concentration but affect the physical parameters such as conductivity, depth and 

turbidity. 
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6.0 DISCUSSION 

Acid drainage is potentially the largest negative environmental impact resulting 

from coal mining (Harries, 1998a; Lowson, et al., 1993; Robertson, 1987; Ryan 

and Joyce, 1 99 1 ). It therefore represents a significant financial liability for mining 

companies. If mine site ownership is returned to the Crown then there can be a 

significant cost burden on the community as acidity problems can extend for 

many years beyond the life of the mine. This is the case for the abandoned coal 

mining voids in Collie. 

Passive biological water treatment systems appear to represent the first real 

alternative to the expensive chemical neutralisation and aeration programs. 

Although not universally applicable, these systems have the advantage of being 

simple and requiring little in terms of installation, operation and maintenance 

(Perry and Kleinmann, 1991 ). Based on 25 years of data, Cambell and Lind 

( 1 969) found that acidic mine lakes with a greater input of organic matter, such as 

leaves and grass, exhibited a higher pH than lakes with lesser amounts of organic 

matter input. It was concluded from their observations, and studies by Tuttle et al. 

(1969b ), and Gyure, et al. ( 1987) that the acidity of mining void lakes would 

decrease as a consequence of biological activity. The use of sulphate reducing 

bacteria and organic matter additives to increase the pH therefore represents an 

inexpensive biological alternative to chemical neutralisation of acidic lakes 

(Gyure, et al. 1 987; Tsukamoto and Miller, 1 999; Tuttle, et al. 1 969a). 
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The addition of organic material significantly increased the pH of Ewington water 

in laboratory and field experiments. This increase in pH was of the order of 1.0 to 

1.5 pH units in the laboratory experiments using manure and mulch, and 0.5 to 1.0 

pH units for manure and mulch in the field experiment. However, this increase 

was not completely due to the activity of sulphate reducing bacteria as has been 

reported in other acidic mining voids (Harries, 1998a; Lowson, et al., 1993; 

Robertson, 1987; Ryan and Joyce, 1991 ). In addition to the low level of sulphate 

reducing bacteria, organic matter introduced into the intact Ewington cores and 

the in situ ponds introduced alkalising chemicals that neutralised the acid water. 

In the laboratory experiments manure, and to a less extent mulch, when added to 

deionised water increased the pH, however, mulch contributed more carbonates 

than manure. There was little difference in the alkalising affect of mulch and 

manure for the first 22 days of the experiment but between day 22 and the 

conclusion of the experiment at day 42, cores containing mulch continued to 

increase their pH whereas, cores containing manure produced lower levels of 

carbonates. Mulch may have more alkalising material available for release than 

manure, however, in the mulch treatment the alkalinity may not be as readily 

available for release under low pH compared with manure and may be more 

dependant on time or bacterial processes. Or alternatively, mulch has a greater 

surface area being composed essentially of shredded vegetation thus enabling 

more of the alkalsing chemicals to be exposed to the acid water. Manure on the 

other hand is a slurry and rapidly settles to the bottom with only the surface 

exposed to the water column. This might be why mulch had a greater ability to 

release carbonates over the duration of the experiment. If the pH in cores 
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containing organic materials increased as a consequence of the introduction of 

alkalising substances, then it would be expected the pH value in the mulch would 

have been higher than the manure. This was not the case, as the mean pH in the 

manure cores was 7.08 (± 0.024) compared with the mulch cores of 6.68 (± 

0.024). This result indicates that the alkalising affect contributes to the increase in 

pH, however, other unknown biological or chemical processes must contribute to 

the difference between the mulch and manure cores. 

Low sulphate levels in Ewington water, intact cores and in situ ponds meant there 

was little opportunity for sulphate reducing bacterial activity to neutralise acid 

water. When a sulphate aliquot was added to treated cores, sulphate levels 

decreased and black sulphide precipitate increased indicating low levels of 

sulphate reducing bacterial activity, however, this activity was not sufficient to 

significantly increase the pH. This suggests the limiting factor for sulphate 

reducing bacterial activity might have been sulphate in the cores and the in situ 

ponds. Perry and Kleinmann (1991) indicate 200 - 500 m2 of mushroom compost 

based wetlands are necessary to neutralise a kg/day of net acidity from acid mine 

drainage in a flow through system. Mushroom compost was deemed the most 

successful and inexpensive substrate because it supported high levels of sulphate 

reducing bacterial activity but it also contains limestone, which contributes 

additional alkalinity. The data of Perry and Kleinmann (1991) add support to the 

suggestion that sulphate reducing bacterial activity in the cores and ponds was 

inhibited by a lack of sulphate in the Ewington water and the added organic 

material. The addition of soluble sulphate at the time of adding the organic 
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material might have enhanced the contribution of sulphate reducing bacteria to 

increase pH. 

Organic matter may contribute in other ways to increasing the pH in the lakes. 

When organic matter is evenly spread over the sediment a capping effect may 

limit oxygen reaching the pyrite in the sediments reducing the oxidation of the 

pyrite, which reduces the amount of acidity being formed (Johnson et al., 1997). 

Capping the substrate in the in situ ponds may inhibit the oxidation of any pyrite 

in the soil but this is not the primary mechanism operating in the ponds to increase 

pH. As acidic ground water was observed to enter the ponds from the side-walls 

during pond construction it is highly probable that it entered through the bottom 

as well. However. Organic matter added to the ponds covered the bottom but not 

the sides; thus negating a capping effect for inflow water through the side-walls. 

Organic matter additions could have provided a capping affect for groundwater 

entering through the bottom of the ponds. 

The addition of some organic matter types ( e.g., manure) can increase the level of 

soluble nutrients in the water. This in turn increases the likelihood of algal growth 

and chlorophyll a levels, which leads to the establishment of a biologically active 

system (Kalin and Geller, 1998). For the experimental ponds adjacent to 

Ewington, nutrient levels increased for FRP but not for ammonia or 

nitrates/nitrites when manure was added but not for mulch. This is probably the 

reason for the significantly higher chlorophyll a count in the manure ponds 

compared with the mulch and control ponds. Kalin and Geller (1998), in 

summarising the views of a number of chapter authors in Acidic Mining Lakes 
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(1998), indicate that there is a commonly held view by limnologists that 

autochthonous succession from young to mature lakes exists, resulting in lakes 

progressively accumulating sediment and developing ecosystems. During this 

process the emerging ecosystem neutralises the acidic content of the water. 

However, Kalin and Geller ( 1998) go on to point out this theory has yet to be 

tested and the underlying mechanisms are not known. Brewer and Goldman 

(1976) provide some indirect evidence that the hypothesis might be supported by 

future research, in that they demonstrated that the addition of phytoplankton can 

increase the alkalinity of a culture medium resulting from the N03- and NH/ 

uptake. The introduction of organic matter into Ewington mine void water may 

have accelerated the processes for the establishment of a sustainable ecosystem in 

the ponds. This hypothesis is supported by the significant increase in chlorophyll 

a and macroinvertebrates found in the ponds at the conclusion of the study. 

Based on the data available it appears that the primary mechanism for increasing 

pH in the in situ ponds was the addition of alkalising substances in the manure 

and mulch. Low levels of sulphate reducing bacterial activity and possibly a 

capping affect for some of the inflowing acidic ground water might have also 

contributed to neutralising the pH. An increase in pH enabled the growth of micro 

fauna and flora in the ponds. These are the primary producers for a sustainable 

ecosystem (Axler, and Owen, 1994; Knox, Ladiges and Evans, 1994). The 

maintenance of a higher pH in the manure ponds after a period of 15 months 

suggest that the growth in micro flora and fauna and other associated biological 

processes will lead to a sustainable system capable of maintaining a pH 1 - 1.5 

units above untreated ponds (Kalin and Geller, 1998). If similar biological 
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processes operated in Ewington, the addition of a slurry of manure could increase 

the pH to about 5.5 - 6.0. A pH of 5.5 - 6.0 in Ewington would is sufficient to 

enable the lake to be used for recreational purposes and perhaps aquaculture 

(ARMCANZ and ANZECC, 1996; NH&MRC, 1990). 

The addition of hay to mining voids has been suggested because it is relatively 

inexpensive, it can add phosphorus and nitrogen and provides food and shelter for 

macroinvertebrates (Cale and Edward, 1990, 1994b, Street and Titmus, 1982). In 

the laboratory experiments the addition of hay resulted a lower pH than for mulch 

and manure and a slimy film on the surface that would detract from the aesthetic 

appearance of the water voids that used this treatment. Hay treatments also had a 

strong and unpleasant odour. The lower increase in pH, slimy film and unpleasant 

odour in the hay treated cores suggests that manure and mulch are better choices 

than hay as rehabilitation solutions for existing coal mine voids in the Collie 

region. 

It took about three days for the organic matter to settle to the bottom, which 

probably reflected the time it took the mulch and hay to become saturated. If the 

surface of the core was slightly agitated the mulch and hay treatments settled 

faster. The time taken for the mulch and hay to become saturated might be a 

useful feature of the organic matter treatments. If the organic matter additions 

floated on the surface of the water in a mining void it would be much easier to 

evenly spread the organic matter across the lake bottom. If the organic matter 

treatments sank quickly, like the manure slurry, there could be a concentration of 

organic matter around the point of distribution. 
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Is the increase in pH, as a consequence of the additions of organic matter, 

sustainable in an acid mine void? This question cannot be answered directly from 

this research as no experiments were undertaken in the lake. The laboratory 

experiments are too removed from the field situation and too short to provide any 

real indication to the permanency of any changes. The field trial results, although 

over a period of 21 weeks, are a series of mesocosms established in excavated 

ponds adjacent to Ewington. Although the physical and chemical properties of the 

control ponds approximated those in Ewington there were sufficient differences to 

indicate caution should be exercised in extrapolating the findings to the lake. 

However, the most interesting result is the pH values measured in the ponds in 

March 2000. The manure treated ponds were significantly higher (5.8) than those 

treated with mulch (4.5) and the control (4.3) ponds. If the pH values in Ewington 

in March 1998 (4.4) and March 1999 (4.2) are indicative of the values in March 

2000, then the manure treated ponds were approximately 1 .5  pH units above those 

in the lake (� 4.3) and the control ponds. These data suggest that the addition of 

manure to acidic mine void water can increase the pH significantly. Whether it 

would work in Ewington can only be determined by adding organic material to 

the lake or a similar large body of water. Alternatives to manure could also be 

examined. For example, if the introduction of organic matter has two effects, a) an 

initial increase in pH because of the introduction of alkalising substances, and b) 

the higher pH enables the establishment of micro flora and fauna communities 

based on the carbon, soluble phosphate and other nutrients introduced with the 

organic matter; then it might be feasible to use lime or another neutralising 

1 5 5  



chemical compound to provide the initial increase in pH and the addition of 

phosphate and other nutrients to sustain the ecosystem, maintaining a higher pH. 

The addition of organic matter also caused a decrease in dissolved oxygen and an 

increase in the gilvin value in the laboratory experiments. The decrease in 

dissolved oxygen concentrations is most probably a result of biological oxygen 

demand (Kim et al. 1999; Robinson and Robb, 1995). In the field trial, dissolved 

oxygen concentrations increased from day 83 corresponding to the 

commencement of the winter rains and the inflow of ground water into the ponds. 

Gilvin is an important measure in a rehabilitation situation where an aesthetic 

value is often placed on the final product. It is appreciated that people's opinions 

differ and some people will be more concerned than other about the extent of 

water discolouration in a rehabilitated mine site. Stockton, a neighbouring 

abandoned mine void, is currently used for recreational purposes and aesthetic 

values are important. The gilvin value is also important as it provides an indicator 

of the dissolved organic carbon levels in the water. Dissolved carbon is one of the 

primary building blocks for a functional aquatic ecosystems (Anderson and 

Williams, 1999) and therefore a necessary component in establishing an 

ecosystem in acidic mine voids as the pH increases. 

Doubling the quantity of organic matter increased the levels of gilvin. The 

increased colouration in the water is a result of increased amounts of carbon 

released in to the water by the organic matter and higher quantities of organic 

matter enabled more humic/fulvic acids to be leached out. Gilvin values for the 

control ponds were lower than for the treatment ponds as might have been 
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expected because of the addition of organic material. Gilvin values declined over 

the duration of the field experiment suggesting that dissolved carbon was being 

removed from the water column by biological activity. This aesthetically 

unpleasant environment could last for some time after the introduction of the 

organic material into the lake. Althought water colouration is an important issue 

in designing mine site rehabiliation management solutions the gilvin levels 

experienced in the cores were less than those commonly found in the Swan 

Coastal Plain wetlands (Wrigley et al., 1988). The dissolved oxygen level of the 

water was not correlated with gilvin levels. Turbidity, another indicator of 

aesthetic appearance of the water, was not significantly different between the 

treatments and the controls. 

If the addition of organic materal is used to accelerate the commencement of the 

biological succession processes (Kalin and Geller, 1998) then a combination of 

manure and mulch may result in a higher pH as it appears that the mechanisms 

manure and mulch use to increase pH could be different. Mulch was able to 

continue to reduce the pH by alkalising the water at a higher pH than manure, 

whereas similar quanitities of manure, particular at the lower pH levels, had a 

greater impact on increasing the pH levels. In the longer term (up to 15 months) 

the pH in the ponds treated with manure were significantly higher than those 

treated with mulch and the untreated controls. Further research is therefore 

required before we understand the chemical or biological processes that enable the 

addition of either of these two organic materials to increase pH in acidic water. 
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From a mine management perspective, the local availability of the organic matter 

types and the cost will be prime considerations when deciding the final 

composition of the mix. For example, in Collie, the Shire council may be willing 

to dispose of its shredded waste vegetation, prunings from regular street tree 

maintanence at the mine site instead of in its land fill program. Or alternatively, a 

local dairy farmer may be willing to provide the mining company with the manure 

that gets washed from the sheds and milking areas. The cost of transporting the 

organic materials to the site would be the major expense. 

Future research 

This study indicates that the addition of organic matter, in particular cattle faeces 

and mulched vegetation, may increased the pH of acidic mine void water in the 

vicinity of Collie, Western Australia. Both substances contributed alkalising 

material to the water column but there were other biological or chemical processes 

involved that were not understood. Low levels of sulphate reducing bacterial 

activity and capping pyrite in the substrate were not shown to make a significant 

contribution to increasing pH. These unknown process warrants further 

investigation. 

A long term, in situ, lake-scale monitoring experiment, in Collie looking at the 

changes in pH and other chemical and physical variables should be undertaken. 

Laboratory trials in this situation provided a useful indication of what 

subsequently occurred in the in situ ponds with the addition of organic matter. It is 

unknown the extent to which laboratory and field trials will provide an indication 

of what will occur in Ewington. The treatment of Ewington could be used as the 
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next experiment in the process to determine a satisfactory rehabilitation program 

for other voids in the area. Such as study would examine whether the organic 

matter treatments are useful at a depth greater than 1 m and whether they are still 

performing as remediation devices after a period of 12 months. 

The quantity of organic material necessary to bring about a sustained long-term 

increase in pH is also unknown. Such a research project would also need to take 

into account economic considerations. Future research might also investigate the 

optimium mix of organic materials and quantities that could be used to determine 

an economic rehabilitation solution for industry. 
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Appendix 1 

Pilot Experiment 

The purpose of this pilot study was two fold: 

a) to determine if the addition of hay, manure and mulch to intact cores from 

Ewington would result in an increase in pH, 

b) to determine if the selected quantity of organic matter (250 cm3 per core) 

was adequate to initiate an increase in pH. 

Pilot Experiment - Effects of organic matter additions 

Twenty-four intact cores were collected from Ewington (3/6/98) and transported 

to the laboratory on the same day. The cores consisted of approximately 25% 

sediment (200mm) and 75% water. Twelve cores were randomly assigned to the 

oxic conditions (>5mg 02 L- 1 ) and 1 2  cores to the hypoxic conditions (<2mg 02 

L-1 ). Three replicates of each treatment (hay, mulch, manure) and three controls 

were assigned to the oxic and hypoxic treatments. The controls were sampled 

under the same conditions as the treated cores except they had no organic matter 

added. 

For each treatment 250cm3 of either hay, manure or mulch was placed in each of 

the randomly selected cores. Temperature, dissolved oxygen and pH of the water 

columns were measured at intervals; before treatment ( day -1) and then days 0, 1, 

4, 6, 8 ,  12, 16, 26, 34 and 42. Water in the cores was sampled to measure 

sulphate, sulphide, gilvin and acidity on days -1 , 1 5  and 42. Heavy metal content 

of the water in the cores was also measured on days -1 and 42. 



Results 

The addition of 250 cm3 of mulch and manure to intact sediment cores from 

Ewington significantly (P < 0.05) increased the pH. A post hoe Tukey test 

indicated that the pH for the manure treatment {hypoxic; 7.83 (± 0.06) and oxic; 

7.64 (± 0.04)} was significantly higher than the control and the hay treatment for 

days 8 to 42; and the pH for the mulch treatments {hypoxic; 6.59 (± 0.05) and 

oxic; 6.64 (± 0.06)} were significantly higher than the control samples for days 8 

to 16 (Figure 8.1; Table 8.1). There was no significant difference between the 

control and hay treatment for pH. 
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Figure 8.1 Pilot Experiment: Changes in mean pH for organic matter 
treatments and controls for the duration of the experiment. 

Standard error bars are shown for each day, n = 3 for each treatment. 

45 
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The control cores were hard to keep below the desired 2 mg 02 L- 1 for the hypoxic 

conditions, and the organic matter treatment cores were hard to keep above the 5 

mg 02 L- 1 for the oxic conditions because of small leakages around the stopper in 

the cores. Mean hypoxic control core dissolved oxygen levels were: 4.57 (± 0.5) 

mg 02 L- 1 and mean oxic control core dissolved oxygen level were: 5.68 (se ± 0.4) 

mg 02 L- 1 . Despite this, a significant difference among treatments was recorded 

for the dissolved oxygen levels in the pilot experiment (Table 8.1 ). A post hoe 

Tukey test indicated that the manure, hay and mulch treatments all had 

significantly lower dissolved oxygen levels than the control (Table 8.1 ). There 

was, however, no significant difference among the manure, hay or mulch 

treatments for dissolved oxygen. 
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Figure 8.2 Pilot Experiment: Changes in mean dissolved oxygen (mg 02 L"1) 

levels for treatments and controls for a) hypoxic and b) aerobic cores for the 
duration of the experiment. 

Standard error bars are shown for each day, n = 3 for each treatment. 

1 8 1  



When organic matter was added there was a significant increase in gilvin levels 

among treatments but no significant difference between aeration conditions 

{before 5.3 (± 2.8) 8440 m- 1
; after - manure was 50.68 (± 0.6) g440 m- 1 ; hay was 

38.23 (± 1.1) 8440 m- 1
; mulch was 53.10 (± 1.3) 8440 m- 1

} .  A post hoe Tukey test on 

day 42 results indicated that the gilvin values for the treatments were all 

significantly higher than the controls, and the manure and mulch treatments were 

significantly higher than the hay treatment (Table 8.2). The increased gilvin levels 

after the addition of organic matter indicates increased levels of dissolved carbon 

in the water under both aeration conditions. 

The sulphate levels in the pilot experiment cores were low for all treatments ( < 4 

mg 804 L-1). There was a significant (P < 0.05) difference among treatments 

irrespective of the aeration conditions. A post hoe Tukey test on day 42 results 

indicated that the mulch treatment had a significantly (P < 0.05) higher level of 

sulphate than the control, manure and hay treatments, but there were no other 

differences (Table 8.1 ). 

In summary, the addition of hay, manure and mulch significantly increased pH 

and gilvin values, and reduced dissolved oxygen levels. Manure produced the 

greatest increase in pH. A quantity of 250 cm3 or organic matter per core was 

sufficient to initiate a significant change in pH. 
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Table 8.1 Pilot Experiment: Summary of mean and standard errors for pH, dissolved oxygen, sulphate, sulphide and gilvin. 
* indicates significant values at P � 0.05; S04 - sulphate; s2- - sulphide; sulphate, sulphide and gilvin are on last day only. D - days; T -

treatments; A - aeration conditions. 
Treatment Aeration x ± se D x T  D x T x A  Tukey test results at last sampling day 

F value F value Control Manure Hay Mulch 
Control <2 mgL· 1 5 .99 ± 0.201 39. 1 7* 0.740 Control 

>5 mgL· 1 5 .47 ± 0. 1 93 
Manure <2 mgL·1 7.83 ± 0.057 Manure * 

pH >5 mgL· 1 7.64 ± 0.043 
Hay <2 mgL· 1 5.63 ± 0. 1 1 7 Hay * 

>5 mgL· 1 5.66 ± 0. 1 07 
Mulch <2 mgL" 1 6.59 ± 0.045 Mulch 

>5 mgL· 1 6.64 ± 0.057 
Control <2 mgL" 1 4.57 ± 0.499 46. 1 0* 0.430 Control 

>5 mgL· 1 5 .68 ± 0.389 
Manure <2 mgL· 1 0.09 ± 0.206 Manure * 

DO (mg L.1
) >5 mgL· 1 

0.58 ± 0. 1 3 1  
Hay <2 mgL" 1 0.45 ± 0. 1 72 Hay * 

>5 mgL· 1 0.20 ± 0.03 1 
Mulch <2 mgL· 1 0.77 ± 0.363 Mulch * 

>5 mgL· 1 0. 1 7  ± 0.014 
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Table 8.1 cont. 
Treatment Aeration x ± se D x T  D x T x A  Tukey test results at last sampling day 

F value F value Control Manure Hay Mulch 
Control <2 mgL- 1 1 . 1 8  ± 0.042 6.403* 0.962 Control 

>5 mgL- 1 1 .64 ± 0. 106 
Manure <2 mgL- 1 1 .54 ± 0.273 Manure 

S04 (mg L-1 ) >5 mgL- 1 1 .25 ± 0. 127 
Hay <2 mgL- 1 0.88 ± 0. 1 00 Hay 

>5 mgL- 1 0.92 ± 0.052 
Mulch <2 mgL- 1 3.33 ± 0. 1 1 3 Mulch * * * 

>5 mgL- 1 2.29 ± 0. 1 10 
Control <2 mgL- 1 1 1 .37 ± 2.77 1 1 .586 0.099 Control 

>5 mgL- 1 1 .59 ± 0.391 
Manure <2 mgL- 1 322.58 ± 1 0.760 Manure 

s
2
- (ppb) >5 mgL- 1 403.83 ± 5 1 .  768 

Hay <2 mgL- 1 507.38 ± 138.396 Hay 
>5 mgL- 1 352.43 ± 100.686 

Mulch <2 mgL- 1 97.83 ± 28. 1 70 Mulch 
>5 mgL- 1 1 24.00 ± 35.507 

Control <2 mgL- 1 4.00 ± 0.465 90.3 16* 3 .979* Control 

>5 mgL- 1 2. 10  ± 0.459 
Manure <2 mgL- 1 49.32 ± 2.282 Manure * 

Gilvin >5 mgL- 1 49.9 1 ± 2.888 
(
g44o m-

1 ) Hay <2 mgL- 1 46.98 ± 5.788 Hay * * 

>5 mgL- 1 29.04 ± 4.877 
Mulch <2 mgL- 1 48.84 ± 3.927 Mulch * * 

>5 mgL- 1 57.44+6.000 
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Table 8.2 Experiment 1 :  Means and standard errors for pH. 
Figures in bold indicate data from days used in MANOV A analysis, n = 6 for each treatment. 

Conditions Days from start of Experiment 1 Grand mean 
± Standard 

Error 
0 0.5 1 4 6 8 12  16  26 34 42 

Control 4.99 4.99 5.24 5.37 5.42 5.65 5.71 5.91 6.49 5.93 6.26 5.99 
± 0.229 ± 0.229 ± 0.393 ± 0.384 ± 0.5 1 8  ± 0.447 ± 0.555 ± 0.607 ± 0.062 ± 0.610 ± 0.740 ± 0.20 1 

Manure 5 .07 7.46 7.47 7.68 7.74 7.88 7.80 7.92 7.71 7.66 8.04 7.83 
Hypoxic ± 0.225 ± 0.240 ± 0.233 ± 0.245 ± 0.280 ± 0.214 ± 0.1 17 ± 0.139 ± 0.101 ± 0. 162 ± 0.031 ± 0.057 

Hay 5 .24 6. 1 3  5.37 5 .07 5.04 5.15 5.36 5.58 5.56 6. 1 1  6.04 5 .63 
± 0.408 ± 0. 148 ± 0.076 ± 0.059 ± 0.070 ± 0.075 ± 0.214 ± 0. 195 ± 0.225 ± 0.354 ± 0.267 ± 0. 1 1 7 

Mulch 5 .05 5 .62 5 .82 5.98 6. 14 6.41 6.41 6.62 6.64 6.64 6.82 6.59 
± 0 . 1 93 ± 0.303 ± 0.028 ± 0.042 ± 0.025 ± 0.042 ± 0.076 ± 0. 108 ± 0.059 ± 0.019 ± 0. 131 ± 0.045 

Control 4.7 1  4.7 1  4.67 4.80 4.88 5.05 5.14 5.14 6.07 5.83 5.56 5 .47 
± 0.037 ± 0.037 ± 0.08 1 ± 0. 106 ± 0.077 ± 0.087 ± 0.222 ± 0.250 ± 0.720 ± 0.592 ± 0.682 ± 0. 193 

Manure 4.88 7.61 7.35 7.45 7.53 7.64 7.56 7.65 7.51 7.74 7.75 7.64 
Oxic ± 0. 1 35 ± 0.020 ± 0.069 ± 0.078 ± 0.058 ± 0.013 ± 0.087 ± 0.129 ± 0.110 ± 0.169 ± 0.090 ± 0.043 

Hay 4.88 5 .70 5.35 5 .27 5 .67 5.67 5.60 5.71 5.45 5.55 6.00 5 .66 
± 0.064 ± 0.352 ± 0. 1 1 1  ± 0. 122 ± 0.292 ± 0.289 ± 0.306 ± 0.269 ± 0.139 ± 0.247 ± 0.403 ± 0. 107 

Mulch 4.92 5 .58 5 .91 6. 1 6  6.40 6.51 6.47 6.60 6.66 6.59 7.01 6.64 
± 0.0 1 2  ± 0.072 ± 0.045 ± 0.065 ± 0.072 ± 0.110 ± 0.150 ± 0.191 ± 0.030 ± 0.015  ± 0.037 ± 0.057 
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Table 8.3 Experiment 1 :  Means and standard errors for dissolved oxygen (mg L- ). 
Figures in bold indicate data from days used in MANOVA analysis, n = 6 for each treatment. 

Conditions Days from start of Experiment 1 Grand 
mean 

± Standard 
Error 

0 0.5 1 4 6 8 12 16 26 34 42 
Control 0.24 0.18 1.41 4.10 3.64 3.42 4.47 2.91 7.13 6.25 3.82 4.57 

± 0.058 ± 0.049 ± 0.056 ± 0.183 ± 0.662 ± 0.746 ± 0.872 ± 1 .501 ± 0.971 ± 0.788 ± 0.764 ± 0.513 
Manure 0.31 0.59 0.29 0.73 0.16 0.24 0.69 0.44 1 .78 2.04 0.1 8  0.90 

± 0.152 ± 0.279 ± 0.090 ± 0.472 ± 0.012 ± 0.051 ± 0.198 ± 0.172 ± 0.509 ± 0.444 ± 0.065 ± 0.206 
Hypoxic Hay 0.27 1.41 0.10 0.12 0.10 0.19 0.25 0.13 0.95 1 .07 0.07 0.45 

± 0.102 ± 0.069 ± 0.013 ± 0.003 ± 0.009 ± 0.055 ± 0.090 ± 0.003 ± 0.660 ± 0.760 ± 0.024 ± 0.172 
Mulch 0.32 0.70 0.09 0.11 0.12 0.16  0.23 0.09 1 .86 2.05 0.22 0.77 

± 0.107 ± 0.092 ± 0.015 ± 0.009 ± 0.019 ± 0.049 ± 0.036 ± 0.007 ± 1 .531 ± 1 .495 ± 0.140 ± 0.363 
Control 8.21 8.95 7.98 6.44 6.69 6.43 6.16 5.80 6.27 6.65 2.78 5.68 

± 0.233 ± 0.082 ± 0.455 ± 0.299 ± 0.295 ± 0.312 ± 0.502 ± 0.347 ± 0.760 ± 0.094 ± 1.1 78 ± 0.389 
Manure 8.42 8.23 4.83 0.17 0.41 1 .06 0.86 0.53 0.56 0.30 0.16 0.58 

Oxic ± 0.254 ± 0.328 ± 1.191 ± 0.018 ± 0.123 ± 0.684 ± 0.1 14 ± 0.079 ± 0.302 ± 0.032 ± 0.127 ± 0.131 
Hay 7.25 8.01 0.18 0.11 0.16 0.19 0.31 0.10 0.16 0.28 0.17 0.20 

± 1.208 ± 0.624 ± 0.033 ± 0.012 ± 0.026 ± 0.025 ± 0.090 ± 0.015 ± 0.032 ± 0.121 ± 0.089 ± 0.031 
Mulch 8.13 8.34 0.11 0.12 0.13 0.24 0.21 0.16 0.15 0.16 0.1 1  0.17 

± 0.317 ± 0.268 ± 0.015 ± 0.018 ± 0.026 ± 0.062 ± 0.021 ± 0.003 ± 0.006 ± 0.012 ± 0.026 ± 0.014 
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Table 8.4 Experiment 1 :  Mean and standard errors for sulphate (mg L"1), 
sulphide (ppb) and gilvin values (g440 m·1). 

n = 1 for day 0, n = 6 for days 15 and 42. 

Variable Condition Treatment Days from start of Experiment 
0 15 42 

Control 1.20 4.09 ± 1.229 1.18 ± 0.147 
Manure 1.20 1.13 ± 0.353 1.54 ± 0.946 

Hypoxic Hay 1.20 2.35 ± 0.466 0.88 ± 0.346 
Mulch 1.20 3.64 ± 0.214 3.33 ± 0.391 

Sulphate Control 1.20 2.75 ± 0.175 1.64 ± 0.369 
Manure 1.20 1.40 ± 0.522 1.25 ± 0.439 

Oxic Hay 1.20 0.68 ± 0.179 0.92 ± 0.178 
Mulch 1.20 4.69 ± 0.181 2.29 ± 0.380 

Control 6.25 0.00 ± 0.000 11.37 ± 9.601 
Manure 6.25 120.50 ± 34.324 322.58 ± 37.273 

Hypoxic Hay 6.25 93.00 ± 20.664 507.38 ± 479.419 
Mulch 6.25 41.90 ± 37.133 97.83 ± 97.583 

Sulphide Control 6.25 56. 17 ± 50.990 1.59 ± 1.354 
Manure 6.25 129.83 ± 129.83 403.83 ± 179.328 

Oxic Hay 6.25 350.78 ± 298.88 352.43 ± 348.786 
Mulch 6.25 3.97 ± 3.967 124.00 ± 123.000 

Control 5.33 ± 2.822 3.77 ± 0.826 4.00 ± 0.465 
Manure 5.33 ± 2.822 22. 7 6 ± 1.109 49.32 ± 2.282 

Hypoxic Hay 5.33 ± 2.822 41.01 ± 2.474 46.98 ± 5.788 
Mulch 5.33 ± 2.822 64.15 ± 8.837 48.84 ± 3.927 

Gilvin Control 5.33 ± 2.822 8.57 ± 4.996 2.10 ± 0.459 
Manure 5.33 ± 2.822 23.09 ± 1.712 49.91 ± 2.888 

Oxic Hay 5.33 ± 2.822 38.59 ± 2.319 29.04 ± 4.877 
Mulch 5.33 ± 2.822 59.43 ± 4.882 57.44 ± 6.000 
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Table 8.5 Experiment 2 :  Means and standard errors for pH. 
1gures m 0 m 1cate ata om ays use m ana1ys1s, n = or eac rea men . b Id . d" d fr d d

. 
MANOVA I 5 fi h t t t 

Con d. Quantity of Days from start of Experiment 2 Grand 
organic mean ± 
matter Standard 

Error 
0 1 2 4 6 9 1 1  1 3  1 7  23 29 37 43 

Control 4.46 4.79 4.32 4.44 4.52 4.26 4.65 5.31 3.70 4.60 4.54 4.95 4.96 4.62 
± 0.080 ± 0. 1 84 ± 0. 1 1 4 ± 0. 1 10 ± 0. 1 23 ± 0.106 ± 0.121 ± 0.167 ± 0.271 ± 0.1 75 ± 0.142 ± 0.160 ± 0.138 ± 0.243 

Manure 4.40 6.88 7. 1 3  7. 1 8  7.33 7.29 7.32 7.30 7.44 7.16 7.22 7.15 7.1 2  7.25 
50 cm3 ± 0.042 ± 0. 1 07 ± 0. 132 ± 0. 1 1 6  ± 0. 1 24 ± 0.077 ± 0.054 ± 0.069 ± 0.109 ± 0.066 ± 0.106 ± 0.1 78 ± 0.039 ± 0.035 

Hay 4.58 6.47 5 . 1 2  5.32 5.77 5.52 5.77 5.90 4.79 5.45 5.62 6.38 6.20 5.70 
± 0. 1 44 ± 0.245 ± 0. 1 44 ± 0. 1 1 7  ± 0. 1 53 ± 0.144 ± 0.1 1 1  ± 0.074 ± 0.145 ± 0.141 ± 0.096 ± 0.213 ± 0.1 1 2  ± 0.080 

Mulch 4.46 5.56 5.29 5.87 6.26 6.23 6.45 6.56 6.16 6.49 6.61 7.10 6.74 6.54 
± 0.052 ± 0. 1 93 ± 0.063 ± 0.061 ± 0.058 ± 0.045 ± 0.065 ± 0.043 ± 0.054 ± 0.065 ± 0.058 ± 0.167 ± 0.053 ± 0.048 

Hypoxic Control 4.38 4.56 4.02 4.2 1 4.53 4.40 4.69 5.38 3.83 5.03 4.88 5.49 5.24 4.87 
± 0.05 1 ± 0.028 ± 0.056 ± 0.086 ± 0.077 ± 0.13 ± 0.106 ± 0.157 ± 0.347 ± 0.296 ± 0.331 ± 0.322 ± 0.292 ± 0. 1 14 

Manure 4.49 7. 1 7  7.27 7.34 7.47 7.48 7.62 7.67 7.74 7.43 7.47 7.37 7.38 7.52 
100 cm3 ± 0.038 ± 0.057 ± 0.082 ± 0. 104 ± 0.053 ± 0.051 ± 0.1 1 7  ± 0.122 ± 0.120 ± 0.070 ± 0.086 ± 0.052 ± 0.058 ± 0.036 

Hay 4.72 7. 1 7  5.07 5. 1 1  5 .71  5.46 5.62 5.78 4.32 5.27 5.31 5.96 6.06 5.47 
± 0.203 ± 0.064 ± 0.090 ± 0. 1 74 ± 0. 105 ± 0.142 ± 0.127 ± 0.089 ± 0.225 ± 0.040 ± 0.100 ± 0.090 ± 0.032 ± 0.090 

Mulch 4.39 6. 1 2  5.24 5.41 6.20 6.33 6.49 6.57 6.33 6.64 6.64 6.73 6.78 6.57 
± 0.041 ± 0.094 ± 0.029 ± 0.067 ± 0.026 ± 0.029 ± 0.059 ± 0.055 ± 0.048 ± 0.024 ± 0.019 ± 0.025 ± 0.028 ± 0.028 

Control 4.37 3.39 3.92 4.60 4.56 5.1 1  4.84 5.19  4.81 4.68 4.90 5.13 5.1 1 4.97 
± 0. 1 27 ± 0.23 1 ± 0.208 ± 0.243 ± 0.297 ± 0.254 ± 0.324 ± 0.199 ± 0.341 ± 0.353 ± 0.352 ± 0.356 ± 0.376 ± 0. 109 

Manure 4.29 6.54 6.76 6.88 6.64 7.03 7.1 2  7.15  7.04 6.72 6.90 6.90 6.88 6.97 
50 cm3 ± 0.087 ± 0.240 ± 0. 1 43 ± 0. 1 79 ± 0. 133 ± 0.1 16 ± 0.036 ± 0.060 ± 0.023 ± 0.141 ± 0.040 ± 0.036 ± 0.028 ± 0.03 1 

Hay 4.39 6 . 12  5.99 5.66 5.61 6.05 6.1 2 6.21 5.91 5.71 6.02 6.24 6.40 6.08 
± 0.038 ± 0.348 ± 0. 1 3 1  ± 0. 1 78 ± 0.240 ± 0.075 ± 0.060 ± 0.066 ± 0.124 ± 0.1 21 ± 0.1 1 1  ± 0.094 ± 0.102 ± 0.043 

Mulch 4.3 1 4.04 4.95 5.73 5.91 6.30 6.40 6.54 6.46 6.24 6.57 6.65 6.72 6.48 
± 0.062 ± 0.064 ± 0. 1 10  ± 0.074 ± 0. 1 20 ± 0.046 ± 0.012  ± 0.030 ± 0.041 ± 0.175 ± 0.049 ± 0.028 ± 0.031 ± 0.032 

Oxic Control 4.33 3.34 4.02 4.24 4.55 5.1 7 4.76 5.09 4.70 4.76 4.83 5.38 5.26 4 . 19  
± 0.072 ± 0.044 ± 0.056 ± 0. 1 88 ± 0.056 ± 0.121  ± 0.1 15 ± 0.147 ± 0.215 ± 0.199 ± 0.160 ± 0.196 ± 0.259 ± 0.092 

Manure 4.44 7.25 7.20 7 . 15  7.07 7.00 7.38 7.27 6.98 6.99 7.04 7.16 7.19  7. 1 3  
100 cm3 ± 0.044 ± 0. 1 34 ± 0.084 ± 0.055 ± 0.074 ± 0.037 ± 0.050 ± 0.072 ± 0.133 ± 0.193 ± 0.135 ± 0.105 ± 0.1 17 ± 0.043 

Hay 4.35 7.29 6.5 1 6. 1 8  6.23 5.99 5.96 5.92 5.54 5.66 5.90 6.26 6.43 5.96 
± 0.034 ± 0. 1 28 ± 0. 1 1 4 ± 0.083 ± 0. 1 27 ± 0.054 ± 0.045 ± 0.072 ± 0.092 ± 0.088 ± 0.060 ± 0.058 ± 0.042 ± 0.048 

Mulch 4.42 5.03 5.60 6.08 6.23 6.35 6.53 6.53 6.56 6.36 6.66 6.75 6.89 6.58 
± 0.036 ± 0. 1 67 ± 0.032 ± 0.039 ± 0.074 ± 0.027 ± 0.025 ± 0.039 ± 0.072 ± 0.202 ± 0.028 ± 0.160 ± 0.054 ± 0.042 
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Cond. 

Hypoxic 

Oxic 

Table 8.6 Experiment 2 :  Means and standard errors for dissolved oxygen (mg L-1) • . 
b Id

. 
d

. 
d fr d d

. 
MANOVA I 

. 5 fi h t t t Figures m 0 m 1cate ata om ays use m analysis. n = or eac rea men . 

Quantity Days from start of Experiment 2 
of organic 

matter 
0 I 2 4 6 9 I I  1 3  1 7  23 

Control 0.98 0.37 0.88 1 .96 1 .87 2.49 1 .98 1 .73 2.24 1 .92 
± 0.299 ± 0.205 ± 0.2 10  ± 0. 1 98 ± 0. 1 22 ± 0.218  ± 0.221 ± 0.176 ± 0.085 ± 0.215 

Manure 0.4 1 0. 1 8  0.42 0.67 0. 10  0.48 0.67 0.63 1 .09 0.48 
50 cm3 ± 0. 1 27 ± 0.072 ± 0. 1 1 5 ± 0.310 ± 0.019 ± 0.167 ± 0.219 ± 0.195 ± 0.146 ± 0.176 

Hay 0.35 0.22 0.05 0.03 0.04 0.05 0.07 0.06 0.07 0.12  
± 0. 1 94 ± 0. 1 22 ± 0.020 ± 0.005 ± 0.002 ± 0.012 ± 0.020 ± 0.006 ± 0.013 ± 0.015 

Mulch 0.73 0.27 0.04 0.07 0.05 0.02 0.05 0.04 0.07 0.09 
± 0.238 ± 0. 1 14 ± 0.012 ± 0.017 ± 0.008 ± 0.002 ± 0.008 ± 0.002 ± 0.006 ± 0.012 

Control 0.93 0.67 1 . 1 4  2.03 2.26 2.93 2.43 2.02 2.43 2.06 
± 0.529 ± 0.299 ± 0. 1 82 ± 0. 1 57 ± 0. 1 81 ± 0.232 ± 0.296 ± 0.149 ± 0.132 ± 0.262 

Manure 0.20 0 . 14 0. 19  0. 1 9  0.08 0.23 0.23 0.37 0.50 0.29 
1 00 cm3 ± 0.078 ± 0.033 ± 0.014  ± 0.089 ± 0.022 ± 0. 178 ± 0.088 ± 0.073 ± 0.108 ± 0.057 

Hay 0.32 0.22 0.08 0.04 0.04 0.02 0.05 0.07 0.07 0.46 
± 0.254 ± 0. 1 09 ± 0.026 ± 0.007 ± 0.002 ± 0.002 ± 0.003 ± 0.009 ± 0.000 ± 0.360 

Mulch 0. 1 1  0.22 0.03 0.04 0.04 0.02 0.04 0.05 0.06 0.09 
± 0.03 1 ± 0.064 ± 0.006 ± 0.010 ± 0.002 ± 0.002 ± 0.002 ± 0.002 ± 0.009 ± 0.002 

Control 4.89 4.75 4.46 5.40 5.44 5.61 5.28 4.59 3.87 3.34 
± 0. 1 10 ± 0.031 ± 0.085 ± 0.263 ± 0.361 ± 0.365 ± 0.316 ± 0.1 75 ± 0.244 ± 0.164 

Manure 4.79 4.77 4.52 4. 1 4  1 .43 2.27 3.81 3.21 I.St 0.43 
50 cm3 ± 0.082 ± 0. 1 66 ± 0. 191  ± 0.305 ± 0.697 ± 0.237 ± 0.261 ± 0.257 ± 0.31 1 ± 0. 1 16  

Hay 4.96 4.97 0.65 0 . 13  0.06 0.04 0.15 0.1 1  0.1 2  0.13 
± 0.056 ± 0. 1 87 ± 0.392 ± 0.025 ± 0.01 1 ± 0.013 ± 0.029 ± 0.024 ± 0.012 ± 0.016 

Mulch 4.82 4.79 3.53 0.93 1 .77 1 .55 1 . 13 1 .51 0.30 0.23 
± 0. 106 ± 0. 1 28 ± 0. 1 85 ± 0.254 ± 0.291 ± 0.468 ± 0.404 ± 0.481 ± 0.163 ± 0.1 1 7  

Control 4.9 1 5.2 1 4.66 5.06 5.73 4.73 4.90 4.79 3.55 3.27 
± 0.033 ± 0. 145 ± 0. 1 05 ± 0.080 ± 0. 1 33 ± 0.180 ± 0.326 ± 0.230 ± 0.065 ± 0.168 

Manure 4.88 4.9 1 3.88 2.58 0. 1 9  1 .07 2.28 1 .77 0.56 0.44 
1 00 cm3 ± 0. 1 1 2 ± 0. 147 ± 0. 1 43 ± 0.443 ± 0.069 ± 0.667 ± 0.632 ± 0.525 ± 0.219 ± 0.143 

Hay 4.95 4.43 0. 1 5  0.o7 0.06 0.08 0.1 1 0.10 0.1 2  0.17  
± 0. 1 14 ± 0. 109 ± 0.042 ± 0.012 ± 0.004 ± 0.030 ± 0.029 ± 0.002 ± 0.020 ± 0.009 

Mulch 4.85 5 . 1 1 0.35 0.09 0.08 0.07 0.07 0.08 0.08 0.15 
± 0. 1 1 6 ± 0. 1 7 1  ± 0. 13 1  ± 0.007 ± 0.010 ± 0.007 ± 0.007 ± 0.002 ± 0.013 ± 0.016  

Grand 
mean ± 

Standard 
Error 

29 37 43 

1 .64 2.69 2.67 2. 1 7  
± 0.213 ± 0.187 ± 0.213 ± 0.085 
0.37 0.96 0.59 0.66 
± 0.150 ± 0.328 ± 0. 1 1 7  ± 0.072 
0.14  0.21 0.1 2  0. 1 1  
± 0.01 1 ± 0.094 ± 0.014 ± 0.014 
0.1 4  0.10 0.1 4  0.08 
± 0.009 ± 0.012 ± 0.034 ± 0.007 
1 .71 2.77 2.83 2.40 
± 0.215 ± 0.240 ± 0.293 ± 0.097 
0.23 0.29 0.44 0.32 
± 0.010 ± 0.019 ± 0.073 ± 0.033 
0.20 0.14  0.1 7  0. 1 5  
± 0.012 ± 0.01 1 ± 0.036 ± 0.046 
0.19  0.08 0.15 0.09 
± 0.015  ± 0.010 ± 0.040 ± 0.010 
2.91 3.91 4.1 7  4.2 1 
± 0.183 ± 0.331 ± 0.212 ± 0. 1 5 1  
0.65 1.10 1.56 1 .82 
± 0.137 ± 0.346 ± 0.332 ± 0. 1 85 
0.20 0.20 0.20 0. 1 5  
± 0.017 ± 0.043 ± 0.035 ± 0.01 1 
0.18  0.23 0.21 0.67 
± 0.007 ± 0.065 ± 0.073 ± 0. 1 26 
2.72 3.99 4.55 4.06 
± 0.068 ± 0.137 ± 0.223 ± 0. 1 27 
0.39 0.50 0.83 0.98 
± 0.057 ± 0.066 ± 0.41 7  ± 0. 169 
0.22 0.21 0.14 0. 14  
± 0.009 ± 0.036 ± 0.017 ± 0.010 
0.22 0.1 2  0.12  0.1 1 
± 0.014  ± 0.006 ± 0.013 ± 0.008 
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Table 8.7 Experiment 2 :  Mean and standard errors for sulphate (mg L"1), 

Sulphate 

Sulphide 

sulphide (ppb) and gilvin values (g440 m·1). 

Aeration 
conditions 

Hypoxic 

Oxic 

Hypoxic 

Oxic 

n = l O fi d O d 43 or ays an 
Quantity of 

organic matter 

Control 

50 cm3 Manure 

Hay 

Mulch 

Control 

1 00 cm3 Manure 

Hay 

Mulch 

Control 

Manure 

50 cm3 Hay 

Mulch 

Control 

Manure 

1 00 cm3 Hay 

Mulch 

Control 

50 cm3 Manure 

Hay 

Mulch 

Control 

1 00 cm3 Manure 

Hay 

Mulch 

Control 

Manure 

50 cm3 Hay 

Mulch 

Control 

Manure 

1 00 cm3 Hay 

Mulch 

Days from start of Experiment 

0 43 

5 .45 ± 1 .232 0.88 ± 0.222 

9.71 ± 3.069 2.40 ± 0.526 

8.78 ± 4.054 2.5 1 ± 0.674 

5 . 1 3 ± 1 .909 0.59 ± 0. 1 07 

4. 1 3 ± 1 .706 1 . 14 ± 0.497 

6.42 ± 3.867 3.02 ± 0.590 

5 .2 1  ± 1 .452 4.56 ± 1 .595 

3 .89 ± 1 .042 0.67 ± 0.049 

3 .65 ± 0.833 0.65 ± 0. 1 1 8  

1 1 .68 ± 8.588 3.53 ± 1 .962 

5.71 ± 1 .39 1  2.58 ± 0.5 1 8  

1 7.6 1 ± 8.998 3.60 ± 2.896 

3 .29 ± 0.845 0.57 ± 0. 1 1 5 

6.38 ± 2.360 4.25 ± 0.908 

3.71 ± 0.623 3.91 ± 0.501 

3 .62 ± 0.648 0.70 ± 0.21 1 

0.30 ± 0.073 60.33 ± 1 8. 724 

69. 1 8  ± 68.763 444.23 ± 1 14.728 

0.35 ± 0.043 1 1 4.02 ± 14.943 

62.20 ± 6 1 .760 96.33 ± 27.532 

8.22 ± 4. 877 1 1 9.25 ± 39.635 

0.48 ± 0.206 47 1 .67 ± 76.2 1 0  

1 02.77 ± 1 02.247 371 .33 ± 76.8 1 2  

0.82 ± 0.276 204.90 ± 66. 1 4 1  

0.70 ± 0.2 1 9  1 75.50 ± 29.208 

42.24 ± 4 1 . 1 9 1  664.80 ± 59. 1 70 

1 34. 1 2  ± 60.98 1 540.60 ± 94.955 

1 1 7.96 ± 49.723 4 1 0.40 ± 1 84.409 

0.58 ± 0.277 1 75.95 ± 90.8 1 1  

0.44 ± 0. 1 96 4 1 8.70 ± 276. 1 23 

29.72 ± 29.320 693.70 ± 502.643 

45 .54 ± 45 .365 1 80.98 ± 67.507 
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Table 8.7 continued 
Control 1 .46 ± 0.448 0.54 ± 0.57 1  

5 0  cm3 
Manure 0.75 ± 0.569 1 5 .07 ± 1 .772 

Hay 0.34 ± 0.37 1 25.86 ± 3 .947 

Hypoxic Mulch 0.38 ± 0.468 1 5 .07 ± 3 .49 1 

Control 0.7 1 ± 0.5 1 9  3 .7 1  ± 0.392 

1 00 cm3 
Manure 1 .00 ± 0.805 1 2.60 ± 1 .057 

Hay 1 .07 ± 0.660 35.78 ± 8.280 

Mulch 0.25 ± 0.560 1 5 .86 ± 1 .44 1 
Gilvin 

Control 1 .24 ± 1 .071 0.00 ± 0. 1 40 

Manure 0.5 1 ± 0.386 1 9.08 ± 1 .0 1 2  

50  cm3 Hay 0.64 ± 0.855 38.79 ± 4.078 

Oxic Mulch 1 .42 ± 0 .379 49.84 ± 5.203 

Control 0.44 ± 0.548 4.67 ± 1 .948 

Manure 0.66 ± 0.89 1 2 1 .08 ± 3.5 1 2  

1 00 cm3 Hay 0.57 ± 0.708 79.74 ± 6.6 1 5  

Mulch 0.00 ± 0.356 35 .75 ± 4.028 

1 92 



Table 8.8 Experiment 3:  Means and standard errors for pH. 
Figures in bold indicate data from days used in MANOV A analysis, n = 6 for each treatment. 

Con d. Days from start of Experiment 3 Grand mean 
± Standard 

Error 
0 2 8 1 4  20 23 28 34 4 1  48 

Control 4.05 4.1 8  3 . 1 0  4.88 5.30 5.38 5.63 5.63 5.65 5.72 5.45 
± 0. 120 ± 0. 101  ± 0.3 1 3  ± 0.216 ± 0.194 ± 0.230 ± 0.213 ± 0.232 ± 0.280 ± 0.267 ± 0.093 

No Manure 4.02 5.88 5.29 6.49 6.70 6.81 6.86 7.02 7.02 7.01 6.84 
Bacteria ± 0.071 ± 0. 1 3 1  ± 0. 1 2 1  ± 0.090 ± 0.061 ± 0.143 ± 0.135 ± 0.066 ± 0.048 ± 0.123 ± 0.046 

Mulch 3 .98 6.24 5.40 6.56 6.51 6.67 6.75 6.90 6.97 7.00 6.76 
± 0.029 ± 0.097 ± 0. 1 1 7  ± 0.070 ± 0.071 ± 0. 122 ± 0.125 ± 0.039 ± 0.027 ± 0.052 ± 0.040 

Control 4.04 4.20 2.93 5.06 5.26 5.26 5.51 5.61 5.60 5.66 5.42 
± 0.076 ± 0.051 ± 0.363 ± 0.378 ± 0.336 ± 0.470 ± 0.391 ± 0.373 ± 0.376 ± 0.366 ± 0.1 39 

Bacteria Manure 4.1 5  5.97 5. 1 9  6.50 6.57 6.68 6.75 6.90 6.90 6.94 6.75 
± 0.237 ± 0.079 ± 0.097 ± 0.089 ± 0.084 ± 0.124 ± 0.1 1 7  ± 0.092 ± 0.085 ± 0.084 ± 0.042 

Mulch 3 .93 6.1 1  5.37 6.56 6.48 6.61 6.75 6.92 7.00 6.96 6.75 
± 0.005 ± 0.067 ± 0.088 ± 0.045 ± 0.092 ± 0.130 ± 0.1 15  ± 0.069 ± 0.090 ± 0.056 ± 0.044 
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Table 8.9 Experiment 3: Means and standard errors for dissolved oxygen (mg L- ). 
Figures in bold indicate data from days used in MANOVA analysis, n = 6 for each treatment. 

Cond. Days from start of Experiment 3 Grand mean 
± Standard 

Error 
0 2 8 14 20 23 28 34 41 48 

Control 0.62 1.53 2.35 1 .64 1 .96 1 .66 1.70 1 .81 1.76 1.99 1.79 
± 0.285 ± 0.201 ± 0.290 ± 0.323 ± 0.412 ± 0.230 ± 0.192 ± 0.215 ± 0.326 ± 0.239 ± 0.102 

No Manure 0.43 1 .20 1 .00 0.73 0.70 0.63 0.62 1 .12 0.72 0.89 0.77 
Bacteria ± 0.141 ± 0.248 ± 0.361 ± 0.357 ± 0.253 ± 0.276 ± 0.187 ± 0.346 ± 0.321 ± 0.315 ± 0.107 

Mulch 1.20 0.25 0.45 0.08 0.08 0.18  0.42 0.67 0.76 0.80 0.43 
± 0.258 ± 0.171 ± 0. 1 59 ± 0.021 ± 0.021 ± 0.059 ± 0.279 ± 0.388 ± 0.465 ± 0.367 ± 0.111 

Control Mean 0.23 1 .25 1.92 1.02 1 .28 1 .27 1 .07 1 .56 1 .28 1 .43 1.27 
± 0.071 ± 0.177 ± 0.101 ± 0.293 ± 0.376 ± 0.275 ± 0.180 ± 0.363 ± 0.368 ± 0.276 ± 0.1 12 

Bacteria Manure 0.63 1 .13 0.95 1 .26 1 .23 1 .06 0.73 0.97 0.51 0.71 0.92 
± 0.232 ± 0.196 ± 0.279 ± 0.509 ± 0.333 ± 0.284 ± 0.230 ± 0.471 ± 0.268 ± 0.258 ± 0.129 

Mulch 0.57 0.25 0. 15  0.23 0.17 0.53 0.65 1 .18 1 .04 0.96 0.68 
± 0.247 ± 0. 1 52 ± 0.034 ± 0.147 ± 0.060 ± 0.260 ± 0.343 ± 0.568 ± 0.589 ± 0.393 ± 0.146 
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Table 8.10. Experiment 3 :  Mean and standard errors for sulphate (mg L-1), 
sulphide (ppb) and gilvin (g440 m·1). 

n = 6 for each treatment in days O and 43. 

Conditions Mean ± standard error 

Control 2156.22 ± 287 .851 
No Manure 14.79 ± 5.54 

Bacteria Mulch 42.06 ± 16.07 
Sulphate Control 2044.24 ± 176.95 

Bacteria Manure 23.25 ± 11.82 
Mulch 39.80 ± 20.89 
Control 0.03 ± 0.033 

No Manure 2.08 ± 1.110 
Bacteria Mulch 8.30 ± 4.567 

Sulphide Control 2.23 ± 2.233 
Bacteria Manure 0.90 ± 0.682 

Mulch 1.95 ± 1.254 
Control 2.56 ± 0.761 

No Manure 18.95 ± 2.051 
Bacteria Mulch 18.93 ± 1.699 

Gilvin Control 7.52 ± 3.999 
Bacteria Manure 14.70 ± 3.364 

Mulch 16.30 ± 1.173 
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Table 8.1 1  Experiment 3 :  Means and standard errors for pH. 
Figures in bold indicate data from days used in MANOV A analysis, n = 6 for each treatment. 

Conditions Days from start of Experiment 4 Grand mean 
± Standard 

Error 
0 1 3 7 1 0  1 5  22 28 35 42 

Control 7.13 7.08 7.02 6.44 6.70 6.59 6.49 6.57 6.79 6.82 6.63 
± 0.165 ± 0.081 ± 0.1 42 ± 0.026 ± 0.042 ± 0.042 ± 0.043 ± 0.070 ± 0.079 ± 0.080 ± 0.029 

Hypoxic Manure 7.27 7.72 7.34 6.98 7.1 1  7.14 7.02 7.29 7.33 7.38 7. 1 8  
± 0.189 ± 0.052 ± 0.069 ± 0.014 ± 0.034 ± 0.037 ± 0.025 ± 0.038 ± 0.057 ± 0.042 ± 0.026 

Mulch 7.10 7.29 6.59 6.49 6.60 6.64 6.54 6.86 6.91 6.92 6.71 
± 0.167 ± 0.096 ± 0.027 ± 0.046 ± 0.029 ± 0.032 ± 0.027 ± 0.029 ± 0.037 ± 0.031 ± 0.029 

Control 6.60 6.58 6.48 6.44 6.40 6.35 6.32 6.54 6.65 6.65 6.48 
± 0.045 ± 0.039 ± 0.027 ± 0.020 ± 0.024 ± 0.043 ± 0.068 ± 0.051 ± 0.046 ± 0.051 ± 0.025 

Oxic Manure 6.57 7.59 7.08 6.81 6.75 6.74 6.95 7.20 7.28 7.19  6.99 
± 0.028 ± 0.042 ± 0.031 ± 0.029 ± 0.027 ± 0.041 ± 0.042 ± 0.038 ± 0.036 ± 0.036 ± 0.036 

Mulch 6.58 6.91 6.22 6.39 6.42 6.43 6.59 6.84 7.01 6.91 6.65 
± 0.026 ± 0.041 ± 0.037 ± 0.040 ± 0.024 ± 0.030 ± 0.044 ± 0.024 ± 0.034 ± 0.026 ± 0.039 
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Table 8.12  Experiment 3:  Means and standard errors for dissolved oxygen (mg L-1). 
Figures in bold indicate data from days used in MANOV A analysis, n = 6 for each treatment. 

Conditions Days from start of Experiment 4 Grand mean 
± Standard 

Error 
0 1 3 7 10 15 22 28 35 42 

Control 0.68 1.41 1.63 2.58 2.31 1 .78 4.81 3.39 3.17 3.17 3.03 
± 0.358 ± 0.308 ± 0.090 ± 0. 145 ± 0.147 ± 0.053 ± 0.069 ± 0.167 ± 0.185 ± 0.189 ± 0.149 

Hypoxic Manure 0.40 1.00 0.85 0.79 0.82 1 .04 3.35 2. 17  2.22 2.20 1.80 
± 0.156 ± 0.097 ± 0.151 ± 0.1 19 ± 0.203 ± 0.066 ± 0.226 ± 0.161 ± 0.080 ± 0.059 ± 0.146 

Mulch 0.70 1.54 0.13 0.30 0.34 0.21 0.56 0.13  0.08 0.13  0.25 
± 0.359 ± 0.313 ± 0.021 ± 0.038 ± 0.074 ± 0.028 ± 0.027 ± 0.034 ± 0.01 1 ± 0.045 ± 0.028 

Control 5.37 5.44 5.77 4.85 6.25 3.06 6.22 4.21 4.19 4.06 4.69 
± 0.063 ± 0.087 ± 0.114 ± 0.122 ± 0.151 ± 0.065 ± 0.140 ± 0.097 ± 0.109 ± 0.190 ± 0.176 

Oxic Manure 5.62 5.00 4.86 3.26 3.49 1 .85 5.83 2.95 3.01 2.70 3.30 
± 0.076 ± 0.065 ± 0.219 ± 0.185 ± 0.238 ± 0.126 ± 0.312 ± 0.262 ± 0.219 ± 0.272 ± 0.197 

Mulch 5.66 5.42 1.85 2.19 2.23 0.97 1 .94 0.29 1 . 10  0.15  1.27 
± 0.089 ± 0.114 ± 0.466 ± 0.493 ± 0.651 ± 0.214 ± 0.148 ± 0.026 ± 0.483 ± 0.050 ± 0.181 
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Table 8.13 Experiment 4: Mean and standard errors for sulphate (mg L"1), 
sulphide (ppb) and alkalinity. 

n = 6 for each treatment in days 15  and 42. 

Davs from start of Experiment 
0 22 42 

Control 4.49 3.46 ± 0.647 7.33 ± 1 .787 
Hypoxic Manure 4.49 5.07 ± 1 .359 6.25 ± 1 .650 

Sulphate Mulch 4.49 4.88 ± 1 . 1 9 1  9.80 ± 5.310 
Control 4.49 4.56 ± 0.757 4.51 ± 1 . 1 48 

Oxic Manure 4.49 4.1 2  ± 0.708 8 .93 ± 2.673 
Mulch 4.49 3.1 3  ± 0.6 19  7.76 ± 1 .901 
Control 0.00 0.03 ± 0.033 0.00 ± 0.000 

Hypoxic Manure 0.00 0.33 ± 0.333 0.00 ± 0.000 
Mulch 0.00 0.02 ± 0.0 17  0.00 ± 0.000 

Sulphide Control 0.00 0.00 ± 0.000 0.00 ± 0.000 
Oxic Manure 0.00 0.07 ± 0.067 0.00 ± 0.000 

Mulch 0.00 1 .03 ± 0.935 0.00 ± 0.000 
Control 1 .74 1 0.60 ± 2.205 19.05 ± 5.942 

Hypoxic Manure 1 .74 62.31  ± 1 0.98 90.90 ± 5.512 
Mulch 1 .74 79.65 ± 7.041 1 46.1 6 ± 7.61 4 

Alkalinity Control 1 . 74 1 1 . 70 ± 3.226 21 .00 ± 3.737 
Oxic Manure 1 .74 78.59 ± 3.228 95.90 ± 3.658 

Mulch 1 .74 84. 78 ± 8.308 156.50 ± 9.97 1 
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Table 8.14 Field Experiment: Means and standard errors for pH. 
Figures in bold indicate data from days used in MANOV A analysis, n = 6 for each treatment. 

Grand 
Mean ± 

Cond. Days from start of field experiment Standard 
Error 

0 6 1 3  20 27 34 4 1  55  69 83 97 I l l  1 25 1 39 1 53 

Control 5.74 5.01 6. 1 1  6.55 6.42 5.55 4.39 5.96 4.46 4.53 4.69 5.02 5.47 5.75 5.58 5. 1 7 
± 0. 1 1 3 ± 0.326 ± 0.250 ± 0.308 ± 0.246 ± 0.257 ± 0. 1 54 ± 0. 169 ± 0. 1 1 1  ± 0.168 ± 0.159 ± 0.175 ± 0.155 ± 0.1 78 ± 0.273 ± 0. 1 05 

Manure 5.94 6.43 6.97 7.03 7.23 5.91 5.52 6.73 5.69 5.63 5.56 5.88 6.15 6.45 5.86 5.92 
Top ± 0. 1 1 6  ± 0.21 5  ± 0.098 ± 0. 1 33 ± 0.080 ± 0.090 ± 0. 1 98 ± 0. 103 ± 0.202 ± 0.201 ± 0.205 ± 0.209 ± 0.171 ± 0.146 ± 0.177 ± 0.087 

Mulch 5.60 5.90 6.79 7.30 7.58 6.3 1 5.89 7.04 5.83 5.57 5.46 5.74 5.96 6.16 5.64 5.76 
± 0.074 ± 0. 1 65 ± 0. 1 1 5 ± 0.090 ± 0. 1 22 ± 0.088 ± 0. 1 70 ± 0.254 ± 0.23 1  ± 0.226 ± 0.248 ± 0.213 ± 0.188 ± 0.200 ± 0.221 ± 0.091 

Control 5.77 4.77 6.07 6.46 6.42 5.32 4.37 5.87 4.46 4.50 4.66 5.14 5.43 5.68 5.49 5. 1 5  
± 0. 1 28 ± 0.341 ± 0.252 ± 0.325 ± 0.270 ± 0. 1 97 ± 0. 1 56 ± 0. 1 53 ± 0. 1 05 ± 0.158 ± 0.154 ± 0.230 ± 0.141 ± 0.171 ± 0.251 ± 0. 1 02 

Manure 5.95 6.57 6.97 7.07 7.24 5.98 5.52 6.87 5.69 5.70 5.71 5.95 6.18 6.45 5.91 5.98 
Bottom ± 0. 1 22 ± 0.280 ± 0. 1 1 6 ± 0. 133 ± 0.086 ± 0.082 ± 0. 162 ± 0.1 1 3  ± 0. 1 88 ± 0.167 ± 0.141 ± 0.207 ± 0.145 ± 0.148 ± 0.190 ± 0.078 

Mulch 5.59 5.70 6.93 7.3 1 7.65 6.40 5.91 7.20 5.79 5.56 5.46 5.77 5.93 6.16 5.59 5.75 
± 0.084 ± 0.094 ± 0.071 ± 0.082 ± 0. 1 1 2  ± 0.084 ± 0. 1 50 ± 0.241 ± 0.21 8  ± 0.223 ± 0.222 ± 0.236 ± 0.202 ± 0.213 ± 0.220 ± 0.092 

Lake • 4.37 5.35 5.76 5.68 5.08 4.02 5.51 4.24 4.26 4.34 4.70 4.87 5.1 1  4.60 4.65 ± 0. 1 3 1  

1 9 1  



Cond. 

0 

Control 1 .32 
± 0. 1 64 

Manure 1 .52 
Top ± 0.257 

Mulch 2.53 
± 0.636 

Control 1 . 1 7  
± 0.282 

Manure 0.92 
Bottom ± 0. 1 5 1  

Mulch 1 .60 
± 0.465 

Lake * 

Table 8.15 Field experiment: Means and standard errors for dissolved oxygen (mg L-1). 
Figures in bold indicate data from days used in MANOV A analysis, n = 6 for each treatment. 

Days from start of field experiment 

6 1 3  20 27 34 4 1  55 69 83 97 I l l  1 25 

3.57 5.97 5.68 6.43 5.98 5.35 4.83 4.90 4.02 5.55 8.35 7.68 
± 0.497 ± 0.381 ± 0.585 ± 0.488 ± 0.365 ± 0.392 ± 1 .060 ± 0.41 1 ± 0.522 ± 0.267 ± 0.203 ± 0.481 
6.80 7.35 5.72 6.05 4.65 4.02 3.93 4.45 3.38 5.1 0  8.1 2  5.58 
± 0.349 ± 0.555 ± 0.201 ± 0.697 ± 0.823 ± 0.769 ± 0.350 ± 0.560 ± 0.461 ± 0.213 ± 0.541 ± 0.851 
0.35 0.98 0.43 0.37 0.53 1 .36 2 . 1 8  1 .83 1 .62 2.41 4.33 3.70 
± 0. 106 ± 0.257 ± 0. 1 99 ± 0.201 ± 0.25 1 ± 0.3 17  ± 0.901 ± 0.493 ± 0.442 ± 0.785 ± 1 .003 ± 0.864 
2.57 5.77 6.05 6.63 6. 1 5  5.05 5.00 4.96 3.26 5.67 8.37 6.32 
± 0.401 ± 0.382 ± 0.468 ± 0.635 ± 0.440 ± 0.257 ± 0.970 ± 0.324 ± 0.208 ± 0.306 ± 0.308 ± 0.483 
6.32 5.97 4.83 5.08 4.07 4.45 3.97 4.26 3.09 4.70 8.05 4.33 
± 0.590 ± 0.476 ± 0.482 ± 0.704 ± 0.626 ± 0.586 ± 0.563 ± 0.505 ± 0.465 ± 0.249 ± 0.547 ± 0.453 
0. 1 7  0.00 0.05 0.32 0.30 0.61 0.78 1 .37 1 .16 2.15 3.97 3.12  
± 0.033 ± 0.000 ± 0.034 ± 0. 1 1 7  ± 0. 1 1 8  ± 0. 1 70 ± 0. 1 35 ± 0.567 ± 0.437 ± 0.748 ± 0.941 ± 0.777 
4.60 8. 1 0  8.60 J O. J O  1 0.80 3.62 * 6.48 5.24 6.60 9.70 9.60 

Grand 
Mean ± 
Standard 

Error 
1 39 1 53 

9.47 8.67 7.29 
± 0.260 ± 0.282 ± 0.348 
8.03 7.48 6.28 
± 0.563 ± 0.474 ± 0.361 
5.90 7.47 4.24 
± 0.920 ± 0.438 ± 0.446 
9.35 8.40 6.89 
± 0.322 ± 0.270 ± 0.370 
7.65 7.07 5 .81  
± 0.593 ± 0.503 ± 0.364 
5.72 7.38 3.92 
± 0.922 ± 0.485 ± 0.454 
10.80 9.40 8.56 ± 0.875 
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Table 8.16  Field experiment: Means and standard errors for dissolved oxygen (% saturation). 
Figures in bold indicate data from days used in MANOVA analysis, n = 6 for each treatment, * no data collected. 

Grand 
Mean ± 

Con d. Days from start of field experiment Standard 
Error 

0 6 1 3  20 27 34 41 55 69 83 97 I l l  1 25 1 39 1 53 

Control 1 6.05 * 68.60 62.40 72.47 67.67 58.85 57.30 52. 18 45.58 57.00 82.03 73.42 87.53 80.08 70.94 
± 2.685 ± 4.041 ± 6.61 8  ± 5.7 14 ± 4.560 ± 3.624 ± I 1 . 1 5  ± 4.5 19  ± 5.707 ± 3.296 ± 2.081 ± 4.530 ± 2.277 ± 2.580 ± 2.867 

Manure 1 7.00 * 83.65 61 .48 66.40 5 1 .35 47.76 42.88 47.80 36.65 50.83 79.87 53.08 73.70 68.82 60.49 
Top ± 2.901 ± 5.853 ± 2.265 ± 7.729 ± 9. 1 70 ± 9.712 ± 3.392 ± 5.877 ± 4.969 ± 2.023 ± 5.148 ± 8.018 ± 5.255 ± 4.326 ± 3.21 I 

Mulch 1 9.75 * 1 2.08 5.08 5.04 5.72 1 5.78 1 4.08 1 8.47 1 2.21 25.00 44.27 35.08 49.57 68.97 39. 1 8  
± 5.884 ± 3 . 1 36 ± 2.268 ± 1 .978 ± 2. 137 ± 4.286 ± 3.920 ± 5.270 ± 3.025 ± 8.398 ± 9.454 ± 8.309 ± 12.14 ± 4.060 ± 4.351  

Control 1 3.33 * 64.72 65.50 74.37 67.53 54.07 57. 1 8  50.08 38.63 54.83 81.92 60.00 85.83 76.80 66.34 
± 3. 1 19 ± 4.070 ± 5.373 ± 7.389 ± 4.531 ± 1 .921 ± 1 2.68 ± 3.522 ± 2.867 ± 1.759 ± 2.919 ± 4.529 ± 2.764 ± 2.671 ± 3.046 

Manure 1 0. 1 5  * 65.80 5 1 .45 54.92 43. 1 0  42.53 43.50 43.47 35.78 45.83 79.08 41.52 68.60 64.35 55.86 
Bottom ± 1 .771 ± 4.999 ± 5.210 ± 7.765 ± 7.363 ± 9.656 ± 6.084 ± 6.286 ± 5.384 ± 1 .195 ± 5.075 ± 4.042 ± 5.830 ± 4.490 ± 3. 1 75 

Mulch 1 7.65 * 0.20 0.40 3.25 3.50 6.00 8.75 1 5.85 13.40 21.17 40.00 29.85 52.97 68.22 37.60 
± 5.947 ± 0.077 ± 0. 1 37 ± I .4 1 6  ± 1 .43 1 ± 1 .498 ± 1 .479 ± 6.3 1 9  ± 4.652 ± 7.803 ± 9.301 ± 7.412 ± 8.552 ± 4.351 ± 4. 1 83 

Lake * * 98.5 1 05 1 25.4 1 35 47.7 * 1 4  63.4 80 100 97 105.2 90.5 89.35 
± 6.286 
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Table 8.17  Field experiment: Means and standard errors for temperature (°C). 
Figures in bold indicate data from days used in MANOV A analysis, n = 6 for each treatment, * no data collected. 

Grand 
Mean ± 

Cond. Days from start of field experiment Standard 
Error 

0 6 1 3  20 27 34 41  55 69 83 97 I l l  1 25 1 39 1 53 

Control 23.35 29.73 22.01 1 9.87 20.82 2 1 .37 22.25 2 1 .3 1  1 8. 1 3  21 .23 1 5.45 14.57 13.19 1 1 .74 1 1 .72 1 4.65 
± 1 . 156 ± 0.709 ± 0.594 ± 0.51 9 ± 0.432 ± 0.382 ± 0.577 ± 0.305 ± 0.381  ± 0.284 ± 0.467 ± 0.192 ± 0.131 ± 0.264 ± 0.203 ± 0.558 

Manure 22. 1 0  28.87 2 1 .92 1 9.09 1 9.48 20.61 2 1 . 1 8  20.54 1 7.28 20.23 14.33 14.39 1 2.98 1 1 .37 1 1 .47 1 4. 1 3  
Top ± 0.298 ± 0.495 ± 0.444 ± 0.269 ± 0. 1 89 ± 0. 1 64 ± 0.361 ± 0. 10 1  ± 0.282 ± 0.232 ± 0.176 ± 0.1 12 ± 0. 128 ± 0.170 ± 0.109 ± 0.508 

Mulch 23.25 30.63 23.42 20.27 20.48 2 1 .27 22.62 2 1 .36 1 8 . 1 8  20.95 1 5.67 1 5.07 13.26 1 1 .99 1 1 .65 1 4.76 
± 1 . 1 70 ± 0.846 ± 0.649 ± 0.472 ± 0.610 ± 0.529 ± 0.756 ± 0.576 ± 0.468 ± 0.401 ± 0.418 ± 0.081 ± 0.1 1 9  ± 0.234 ± 0.129 ± 0.539 

Control 2 1 .26 25.72 20.61 1 9.51  20. 1 7  20.80 2 1 . 1 8  20.53 1 7.97 20.55 14.52 14.35 1 2.93 1 1 .46 1 1 .48 1 4.21 
± 0.578 ± 0.980 ± 0.958 ± 0.584 ± 0.599 ± 0.409 ± 0.728 ± 0.445 ± 0.558 ± 0.384 ± 0.538 ± 0.240 ± 0.207 ± 0.243 ± 0.157 ± 0.535 

Manure 20.50 24.03 20.07 1 8.41 1 8.98 1 9.80 1 9.72 19.63 1 6.72 19.78 13.58 14.25 1 2.83 1 1 .08 1 1 .19 1 3.79 
Bottom ± 0. 1 98 ± 0.339 ± 0. 1 72 ± 0. 1 64 ± 0. 1 66 ± 0. 1 7 1  ± 0.3 1 6  ± 0. 1 55 ± 0.274 ± 0.194 ± 0.217 ± 0.148 ± 0.145 ± 0.144 ± 0.130 ± 0.498 

Mulch 2 1 .03 23.03 1 9.74 1 9.2 1  1 9.61 20.52 2 1 . 1 3  20.30 1 7.78 20.33 1 5.03 14.91 13.17 1 1 .73 1 1 .48 1 4.44 
± 0.456 ± 0.596 ± 0.222 ± 0.232 ± 0.407 ± 0.329 ± 0.601 ± 0.368 ± 0.494 ± 0.431 ± 0.362 ± 0.083 ± 0.126 ± 0.177 ± 0.106 ± 0.5 12  

Lake • 25 25.3 24.56 24.58 24.32 25.6 23.06 20.6 21.1 19.4 16.93 15.42 14.45 13.8 16.85 
± 1 . 1 79 
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Table 8.18  Field experiment: Means and standard errors for conductivity (µs cm-1). 
Figures in bold indicate data from days used in MANOV A analysis, n = 6 for each treatment. 

Grand 
Mean ± 

Con d. Standard 
Days from start of field experiment Error 

0 6 1 3  20 27 34 4 1  55  69 83 97 I l l  1 25 1 39 1 53 

Control 1 1 66 1 1 82 377 1221  1246 1255 1275 1 300 1304 1 298 1285 830 1219 967 422 1003 
± 59.874 ± 60.874 ± 14.0 1 1  ± 40.055 ± 34.027 ± 25.377 ± 26.476 ± 8.370 ± 7.619 ± 33.442 ± 13.230 ± 197.55 ± 38.319  ± 32.804 ± 94.439 ± 63.292 

Manure 1 1 83 1 2 1 5  539 1071 1 285 1264 1 261 1251 1288 1293 1 156 507 995 885 581 903 Top ± 30.508 ± 35.2 1 5  ± 1 54.00 ± 1 74.83 ± 1 3.455 ± 22.027 ± 8.755 ± 14. 1 78 ± 9. 787 ± 8.631 ± 1 08.33 ± 137.00 ± 129.44 ± 22.960 ± 91 .544 ± 60.402 
Mulch 1 1 39 1 1 71 558 1 259 1284 1286 1 245 1 240 1265 1261 1222 771 847 847 517 91 1 

± 28.246 ± 1 1 7.5 1  ± 16l . l 5  ± 38.330 ± 34.532 ± 0.981 ± 27.787 ± 3 1 .005 ± 22.677 ± 20.933 ± 22.572 ± 179.40 ± 1 59.32 ± 32.258 ± 82.738 ± 59. 1 50 
Control 9 15  1 1 7 1  380 1 207 1 245 1255 1 256 1 280 1301 1322 1293 902 1340 966 480 1054 

± 1 1 7.43 ± 48.826 ± 1 6.828 ± 4 l . l 46 ± 34.685 ± 25.056 ± 23.243 ± 14. 1 5 1  ± 1 3.963 ± 10.056 ± I0.129 ± 196.80 ± 98.595 ± 32.903 ± 95.986 ± 63.546 

Bottom Manure 1 1 28 1327 390 1 255 1 279 1280 1 260 1 259 1295 1297 1264 657 !021 892 461 932 
± 75.859 ± 1 24.32 ± 7.968 ± l l .509 ± 1 2.564 ± 1 3.656 ± 8.356 ± 13.455 ± l l . 1 14 ± 7.250 ± 4.660 ± 1 79.85 ± 13 1 .04 ± 22.577 ± 1 1 1 .64 ± 64.090 

Mulch 93 1 1 269 399 1 260 1 278 1275 1 249 1 252 1 2633 1 257 1233 641 867 848 476 887 
± 92. 1 53 ± 3 1 .860 ± l l .325 ± 35.755 ± 35.755 ± 32.603 ± 27.425 ± 32.277 ± 22. 8 17  ± 20.482 ± 18.881 ± 170.88 ± 163.96 ± 31 .805 ± 1 14.45 ± 63.369 

Lake . 1 195 368 1 1 86 1 199 1209 1 208 1 239 1265 1278 1257 12 16 1219 939 913 1 1 37 
± 67.485 
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Table 8.19 Field experiment: Means and standard errors for turbidity (ntu). 
Figures in bold indicate data from days used in MANOV A analysis, n = 6 for each treatment, * no data collected. 

Grand 
Mean ± 

Cond. Days from start of field experiment Standard 
Error 

0 6 1 3  20 27 34 41  55  69 83 97 I l l  1 25 1 39 1 53 

Control 361 . 1 8  • 42.05 2 1 .37 2 1 .28 22.32 • 22.80 • • • 0.00 7.48 10.97 76.42 23.72 
± 65.999 ± 10.41 0  ± 2.366 ± 4. 1 74 ± 4.052 ± 3.360 ± 0.000 ± 3.264 ± 6.324 ± 28.797 ± 9.421 

Manure 270.32 • 32.75 30.77 42.78 47.27 * 40.55 * * * 10.20 7.92 14.80 74.87 26.95 
Top ± 58.252 ± 2.755 ± 5.753 ± 1 8.887 ± 14.689 ± 7.061 ± 8.878 ± 5.992 ± 9.226 ± 33.386 ± 10.246 

Mulch 220.00 * 48.47 55.20 42.28 40.47 • 32.30 * * * 25.57 6.47 7.73 1 21 .90 40.42 
± 41 .689 ± 10.583 ± 1 0. 1 02 ± 8.799 ± 7.655 ± 6. 1 49 ± 21 .428 ± 2.797 ± 4.923 ± 47.632 ± 15 .770 

Control 554.60 * 1 6 1 .57 41 .75 48. 1 7  30.58 • 44.80 • • • 39.87 16.85 44.18 147.07 6 1 .99 
± 45.320 ± 89. 199 ± 5.567 ± 14.373 ± 14.386 ± 7.585 ± 18.601 ± 7.776 ± 18.888 ± 91.554 ± 24.630 

Manure 447.88 • 2 16 . 1 8  38.75 65.27 53. 1 0  * 6 1 .27 * * * 17.43 8.67 21.02 81.90 32.25 
Bottom ± 83.061 ± 1 1 6.729 ± 6.044 ± 1 8.905 ± 1 8.651 ± 1 3 .381 ± 10.849 ± 6.464 ± 15.775 ± 2I.173 ± 9. 1 1 9  

Mulch 399.42 * 57.98 63.80 49.38 41 .07 * 33.55 • • * 0.88 16.78 19.53 161.78 49.75 
± 95. 166 ± 1 1 .460 ± 8.996 ± 9.956 ± 6.610 ± 9.361 ± 0.883 ± 7.91 1 ± 5.458 ± 88.317 ± 24.761 

Lake * * 600 59.6 37.7 1 98. 1  * 1 7. I  * * * 1 .5 0 0 29.2 7.68 ± 5.865 
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Table 8.20 Field experiment: Means and standard errors for oxidation reduction potential (ORP). 
Figures in bold indicate data from days used in MANOV A analysis, n = 6 for each treatment, * no data collected. 

Grand 
Mean ± 

Con d. Days from start of field experiment Standard 
Error 

0 6 1 3  20 27 34 41 55 69 83 97 I l l  1 25 1 39 1 53 

Control 1 92.00 ± * 1 42.33 88.33 44.33 1 85.67 * 1 98.50 * * * 182.83 207.00 208.33 177.50 193.92 
1 6.831 ± 30.791 ± 46.463 ±22.494 ± 23.83 1 ± 30. 1 29 ± 19.805 ± 30.100 ± 25.252 ± 19.099 ± 1 1 .55 1 

Manure 1 7 1 .50 * 23.67 4.67 -3.83 7 1 .  1 5  * 95.67 * * * 141.83 169.50 147.17 161.50 1 55.00 
Top ± 9.248 ± 24.300 ± 37.502 ± 23.582 ± 3 1 .2 1 2  ± 1 9.532 ± 28.634 ± 20.683 ± 18.207 ± 12.439 ± 9.976 

Mulch 1 98.50 * -34.00 -1 26.33 -1 57.67 - 1 1 .00 * 23.83 * * * 1 26.67 163.67 208.50 176.17 1 68.75 
± 7.442 ± 49.652 ± 47. 198 ± 47.73 1 ± 38.092 ± 53.385 ± 40.209 ± 30.928 ± 21 .444 ± 18.431 ± 14 .853 

Control 1 66. 17 * 1 60.67 1 04.83 72.67 2 1 8.33 * 228.00 * * * 198.17 193.95 220.83 188.67 200.40 
± 19.668 ± 33 . 164 ± 48.926 ± 26.929 ± 34.448 ± 29.095 ± 22.912 ± 43.588 ± 25.392 ± 21.904 ± 14. 1 22 

Manure 1 57.00 * 26.50 1 1 .00 -7.00 82.33 * 73. 1 7  * * * I I6.l 7 149.17 148.00 150.83 14 1 .04 
Bottom ± 1 9.470 ± 14.646 ± 27.064 ± 1 2.7 1 2  ± 22.242 ± 1 2.422 ± 26.363 ± 14.910 ± 15.388 ± 1 0.852 ± 8.839 

Mulch 1 98.00 * -1 33.50 - 16 1 .50 - 197.83 -34.50 * 33.00 * * * 129.67 1 54.67 201 .67 178.67 1 66 . 17  
± 6.429 ± 20.003 ± 37.1 1 9  ± 37.296 ± 34.470 ± 95.464 ± 42.420 ± 34.529 ± 21.677 ± 19.419 ± 15 .490 

Lake * * 246 245 1 53 285 * 279 * * * 3II  364 352 329 339 
± 1 1 .825 
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Table 8.21 Field experiment: Means and standard errors for salinity (ppm). 
Figures in bold indicate data from days used in MANOV A analysis, n = 6 for each treatment, * no data collected. 

Grand 
mean ± 

Cond. Days from start of field experiment Standard 
Error 

0 6 1 3  20 27 34 4 1  55  69 83 97 I l l  1 25 1 39 153 

Control * * • * • * * * * * * 0.40 0.62 0.64 0.32 0.49 
± o.I IS  ± 0.023 ± 0.023 ± 0.041 ± 0.041 

Manure * * • * * * * * * * * 0.24 0.50 0.58 0.37 0.42 
Top ± 0.078 ± 0.068 ± 0.015 ± 0.063 ± 0.039 

Mulch * * * * * * * * * * • 0.39 0.43 0.55 0.32 0.42 
± 0.101 ± 0.086 ± 0.023 ± 0.056 ± 0.038 

Control * * * * * * * * * * * 0.42 0.68 0.63 0.29 0.5 1 
± 0.)08 ± 0.059 ± 0.023 ± 0.070 ± 0.047 

Manure * * * * * * * * * • * 0.33 0.51 0.58 0.29 0.43 
Bottom ± 0.098 ± 0.067 ± 0.016 ± 0.084 ± 0.043 

Mulch * * * * * * * * * * * 0.3] 0.43 0.54 0.30 0.40 
± 0.094 ± 0.088 ± 0.022 ± 0.078 ± 0.041 

Lake * * * * * * * * * * * 0.63 0.6 0.62 0.56 0.60 ± 0.015 

1 98 



Table 8.22 Field experiment: Means and standard errors for depth (m). 
Figures in bold indicate data from days used in MANOV A analysis, n = 6 for each treatment. 

Grand 
mean ± 

Cond. Days from start of field experiment Standard 
Error 

0 6 1 3  20 27 34 4 1  55 69 83 97 I l l  1 25 1 39 1 53 

Control 0.75 0.75 0.74 0.72 0.69 0.67 0.63 0.60 0.58 0.61 0.65 0.65 0.83 0.93 0.98 0.77 
± 0.066 ± 0.066 ± 0.045 ± 0.060 ± 0.044 ± 0.049 ± 0.05 1 ± 0.065 ± 0.040 ± 0.042 ± 0.052 ± 0.045 ± 0.036 ± 0.040 ± 0.070 ± 0.03 1 

Manure 0.78 0.78 0.67 0.64 0.59 0.58 0.57 0.53 0.57 0.53 0.51 0.67 0.80 0.88 0.95 0.72 
Top ± 0.03 1 ± 0.031 ± 0.03 1 ± 0.024 ± 0.024 ± 0.044 ± 0.03 1 ± 0.036 ± 0.061 ± 0.031 ± 0.027 ± 0.049 ± 0.037 ± 0.044 ± 0.034 ± 0.032 

Mulch 0.96 0.96 0.8 1 0.83 0.80 0.82 0.77 0.73 0.73 0.71 0.72 0.79 0.97 0.99 0.98 0.86 
± 0.064 ± 0.064 ± 0.033 ± 0.044 ± 0.050 ± 0.060 ± 0.056 ± 0.040 ± 0.042 ± 0.045 ± 0.088 ± 0.057 ± 0.071 ± 0.055 ± 0.060 ± 0.032 
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Table 8.23 Field Experiment: Mean and standard errors for sulphate (mg L-1), sulphide (ppm), gilvin(g44o m-1) and chlorophyll a values. 
n = 6 for each treatment for days O to 1 53, * no data collected. 

Grand 
mean ± 

Con d. Days from start of field experiment Standard 
Error 

0 6 1 3  20 27 34 41  55 69 83 97 1 1 1  1 25 1 39 1 53 

Control 7.28 ± 1 .72 ± 1 .88 ± 1 .34 ± 1 .60 ± 3.4 1  ± 2.78 ± 2.84 ± 4.47 ± 5.49 ± 6.70 ± 8.74 ± 8.07 ± 6.71 ± 5.66 ± 6.90 ± 0.527 
2. 1 1 0  0.2 1 8  0.437 0.209 0.246 0.867 0.390 1 . 1 69 0.544 0.781 1.815 2.797 1 .678 1 .385 1 .560 

Sulphate Manure 1 7.35 ± 2.86 ± 3.38 ± 2.33 ± 4.68 ± 6.58 ± 4.22 ± 3.06 ± 4.1 8 ±  9.1 1 ± 4.93 ± 10.85 ± 6.1 2 ±  8.06 ± 6.79 ± 7.64 ± 0.876 
5.3 1 1  0.379 1 .055 0.576 1 .695 1 .760 1 .023 0.7 1 7  1 . 1 94 3.099 1.524 3.904 0.751 1 .612 2.050 

Mulch 16.55 ± 2.93 ± 1 .05 ± 1 .37 ± 1 . 1 9  ± 4.27 ± 2.61 ± 3.86 ± 3.63 ± 5.50 ± 4.57 ± 5.35 ± 12.20 ± 10.02 ± 4.81 ± 7.07 ± 1 .3 14  
4.8 1 5  1 .262 0. 1 79 0.439 0. 10 1  0.8 1 1 0.535 1 .276 0.568 0.777 1 . 128 0.795 5.345 3.649 0.753 

Control 1 2.27 ± 1 3.70 ± 0.00 ± 60.40 ± 1 73 . 17  ± 0.00 ± 0.00 ± 339.50 ± 0.78 ± 21 .03 ± 0.45 ± 0.92 ± 0.00 ± 0.00 ± 0.00 ± 3.73 ± 3.463 

Sulphide 
7.864 1 2.2 12 0.000 41 .361 67.032 0.000 0.000 69.88 0. 1 89 1 2.883 0.062 0.628 0.000 0.000 0.000 

Manure 1 3.22 ± 0.00 ± 0. 1 0 ±  65.07 ± 90.90± 0.02 ± 0.00 ± 306.83 ± 1 .03 ± 41.52 ± 0.57 ± 0.13 ± 0.00 ± 0.00 ± 0.00 ± 7.04 ± 6.897 
2.952 0.000 0.082 64.987 56.623 0.0 17  0.000 97.06 0. 1 76 40.697 0.1 12 0.080 0.000 0.000 0.000 

Mulch 28.00 ± 250.87 ± 1 .5 7±  72.98 ± 104.05 ± 0.08 ± 0.00 ± 1 96.83 ± 6.03 ± 57.13 ± 0.53 ± 0.10 ±  0.00 ± 0.00 ± 0.00 ± 9.63 ± 9.499 
5.854 1 20.05 1 .351 7 1 .0 10 57.863 0.065 0.000 88.688 5 . 155 46.853 0.071 0.063 0.000 0.000 0.000 

Control 3.73 ± 2.81 ± 6.08 ± 4.26 ± 2.50 ± 2.90 ± 1 . 1 7  ± 0.85 ± 1 .35 ± 2.1 7 ±  1 .90 ± 1 .22 ± 0.39 ± 0.00 ± 0.88 ± J .Q7 ± 0.002 

Gilvin 
1 .283 0.925 1 . 1 57 1 .360 0.649 0.646 0.0.689 0.609 0.8 12  0.657 0.634 0.663 0.895 0.854 2.356 

Manure 5.01 ± 7.48 ± 9.34 ± 8.) 3 ±  J O. J O ±  9.80 ± 6.67 ± 7.28 ± 5.84 ± 6.00 ± 5.20 ± 3.58 ± 2.40 ± 3.1 2 ±  4.03 ± 4.05 ± 0.002 
1 .274 0.843 1 .360 1 .2 1 8  1 .362 1 .055 1 .048 1 .724 1 .274 1.143 1 .100 0.226 0.579 0.896 1 .508 

Mulch 2.62 ± 1 5.06 ±  1 3.97 ± 1 0.97 ± 9. 1 5 ±  8.32 ± 6.59 ± 4. 1 9 ±  3.39 ± 4.43 ± 3.42 ± 3.84 ± 1.31 ± 3.63 ± 6.07 ± 3 .79 ± 0.003 
1 .0 19  2.530 2.874 2.900 2.891 2.471 2 . 127 1 .508 0.946 0.862 0.994 0.856 1 .300 2.1 78 3.026 

Control 2.29 ± 2.66 ± * 1 1 .45 ± 10. 1 3 ±  7. 1 9 ±  8.99 ± * 5.7 1 ± 3.89 ± 10.56 ± 3.73 ± 1 1.77 ± 5.39 ± 20.10 ± 9.24 ± 0.0 10  
1 .6 1 8  1 .959 3.880 2. 1 30 1 .677 2 . 140 2.930 4.411  6.676 2.922 5.925 1 .238 7.158 

Chi a Manure 0.00 ± 33.86 ± * 47.87 ± 2.05 ± 46. 1 7 ±  38.05 ± * 27.33 ± 31.66 ± 30.46 ± 45.95 ± 39.07 ± 23.98 ± 66.56 ± 39.61 ± 0.024 
4.780 6.494 22.079 28.079 2 1 .895 1 2.739 12 . 1 1 1  1 1 .018 13.333 17.977 9.668 5.571 1 2.372 

Mulch 2.55 ± 2.06 ± * 1 .20 ± 6.57 ± 6.56 ± 1 0.47 ± * 1 8.91 ± 25.82 ± 16.74 ± 9.59 ± 26.00 ± 1 7.34 ± 16.91 ± 1 8.73 ± 0.0 17  
1 .229 3.691 0.925 9.2 12  2. 1 50 7.2 13  9.927 10.260 9.321 7.164 1 2.485 10.448 5.077 
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Table 8.24 Field Experiment: Mean and standard errors for ammonia (µ.g N L -1>, FRP (µ.g P L -t) and 
nitrate/nitrite (µ.g N02/N03 L -1)_ 

n = 6 for each treatment in days 1, 83 and 153. 

Days from start of field experiment 
0 83 153 

Control 112.67 ± 36.914 7.83 ± 0.792 9.17 ± 1.302 
Ammonia Manure 111.83 ± 26.461 12.50 ± 3.314 12.00 ± 1.238 

Mulch 175.67 ± 38.332 8.33 ± 1.926 17.67 ± 7.898 
FRP Control 3.83 ± 1.078 2.33 ± 0.211 3.67 ± 0.422 

Manure 3.67 ± 0.803 630.00 ± 98.975 100.17 ± 23.159 
Mulch 3.50 ± 0.500 3.17 ± 0.601 3.50 ± 0.428 
Control 105.17 ± 24.674 5.50 ± 1.176 129.17 ± 85.686 

Nitrate/Nitrite Manure 178.83 ± 40.930 3.83 ± 1.078 198.17 ± 79.479 
Mulch 186.00 ± 100.79 3.67 ± 0.715 150.00 ± 98.821 
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Table 8.25 Field Experiment: Mean weekly and cumulative rainfall (mm). 
Figures in bold indicate data from which the grand mean is calculated. 

Grand 
Cond. Days from start of field experiment mean 

0 6 1 3  20 27 34 4 1  55 69 83 97 1 1 1  125 139 153 

Rainfall Weekly 0 1 .83 0 0 0 0 0 0.09 0.89 0.03 0.09 4.32 4.84 3.75 7.35 3.40 

Cumulative 0.00 1 1 .00 1 1 .00 1 1 .00 1 1 .00 1 1 .00 1 1 .00 1 2.20 24.70 25. 10  26.40 86.90 1 54.60 207 . 10 3 10.00 

Table 8.26 Field Experiment: Mean invertebrate numbers and family at the end of week 153. 

Individual Control 54.50 ± 9.283 
Abundance Manure 58.17 ± 13.055 

Mulch 140.50 ± 57.143 

Family Control 8.00 ± 1.00 
Richness Manure 7.83 ± 0.601 

Mulch 9.83 ± 1 .701 
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Table 8.27 Field Experiment: MANOV A, Wilks' Lambda and Tukey test results. 
DO - Dissolved oxygen, D - Days, T - Treatments, Temp - Temperature °C, % sat - percentage saturation, Cond - Conductivity 

I (us cm- ' ), ORP - Organic Redox Potential, 1- Control; 2 - Manure, 3 - Hay, 4 - Mulch. 
MANOVA Wilks' Lambda 

F value Hyp./error Sig. Ohs Power Value Hyp./error Sig. Ohs Power 
Df df 

alpha = 0.05 alpha = 0.1 alpha = 0.05 alpha = 0.1 
pH D * T  6.166 2/15 0.011 0.816 0.902 0.275 10/22 0.086 0.713 0.831 
Temp D * T  8.268 2/15 0.075 0.508 0.651 0.175 10/22 0.014 0.907 0.959 
DO (%sat) D * T  13.451 2/15 0.000 0.991 0.997 0.160 10/22 0.009 0.930 0.971 
DO (mg L- 1 ) D * T  12.789 2/15 0.001 0.988 0.996 0.183 10/22 0.017 0.894 0.951 
Conductivity D * T  1.130 2/15 0.235 0.285 0.416 0.337 10/22 0.176 0.592 0.773 
Turbidity (ntu) D * T  1.595 2/15 0.661 0.106 0.186 0.887 6/26 0.947 0.108 0.189 
ORP D * T  1.481 2/15 0.259 0.267 0.395 0.541 6/26 0.199 0.496 0.639 
Chl a D * T  4.809 2/15 0.024 0.708 0.823 0.340 10/22 0.180 0.587 0.728 
Sulphate (mg L- 1 ) D * T  0.164 2/15 0.850 0.071 0.133 0.480 10/22 0.492 0.367 0.515 
Sulphide (ppb) D * T  0.235 2/15 0.793 0.080 0.147 0.742 6/26 0.654 0.227 0.348 
Gilvin (g440 m- 1 ) D * T  3.352 2/15 0.063 0.543 0.684 0.573 10/22 0.708 0.265 0.398 
Ammonia D * T  0.125 2/33 0.883 0.068 0.127 
FRP D * T  6.911 2/33 0.003 0.899 0.948 
Nitrate/Nitrite D * T  0.628 2/33 0.540 0.146 0.238 
Invertebrate Diversity 0.87 2/15 0.440 
Invertebrate Abundance 2.01 2/15 0.168 
Phytoplankton (L- 1 ) 2.159 3/17 0.130 
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Table 8.27 continued, Tukey test results represented as P values. 

Day 83 Day 97 Day 1 1 1  Dav 125 Dav 139 Dav 153 
1 2 1 2 1 2 1 2 1 2 1 2 

pH 2 0.002 0.008 0.034 0.022 0.027 0.520 
4 0.004 0.931 0.027 0.801 0.092 0.859 0.126 0.632 0.211 0.501 0.960 0.682 

DO (mg L-1) 2 0.747 0.565 0.953 0.075 0.232 0.112 
4 0.003 0.013 0.001 0.004 0.001 0.002 0.002 0.201 0.004 0.099 0.174 0.964 

DO (% sat) 2 0.534 0.539 0.958 0.075 0.268 0.099 
4 0.000 0.002 0.001 0.007 0.001 0.002 0.002 0.197 0.006 0.129 0.188 0.925 

Conductivity 2 0.830 0.257 0.571 0.304 0.185 0.829 
4 0.144 0.353 0.431 0.926 0.869 0.862 0.074 0.676 0.031 0.592 0.924 0.977 

Temp (0C) 2 0.156 0.165 0.785 0.696 0.439 0.378 
4 0.845 0.363 0.773 0.048 0.059 0.016 0.714 0.271 0.653 0.113 0.985 0.467 

Chlorophyll a 2 0.110 0.373 0.046 0.151 0.170 0.005 
4 0.233 0.893 0.904 0.615 0.929 0.091 0.568 0.619 0.455 0.777 0.964 0.003 

ORP 2 0.347 0.574 0.101 0.522 
4 0.338 I .OOO 0.571 I .OOO 0.947 0.173 0.970 0.662 

Turbidity 2 0.878 0.809 0.671 0.884 
4 0.855 0.999 0.996 0.854 0.446 0.923 0.904 0.646 

Sulphate (mg L-1) 2 0.392 0.693 0.858 0.906 0.920 0.866 
4 I .OOO 0.394 0.592 0.985 0.677 0.374 0.652 0.407 0.612 0.839 0.920 0.647 

Sulphide (ppb) 2 0.918 0.602 0.316 I .OOO I .OOO I .OOO 
4 0.769 0.951 0.768 0.958 0.288 0.998 I .OOO I .OOO I .OOO I .OOO I .OOO I .OOO 

Gilvin (g440 m-1) 2 0.024 0.059 0.049 0.337 0.275 0.626 
4 0.216 0.463 0.494 0.391 0.028 0.953 0.786 0.712 0.187 0.967 0.299 0.818 

Ammonia (µg N L -1) 2 0.902 
4 0.880 I .OOO 

Phosphate (µg P L -1) 2 0.039 
4 0.996 0.003 

Nitrate/Nitrite (µg N L -1) 2 0.934 
4 0.582 0.709 
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Table 8.28 Field Experiment: Mean phytoplankton counts at the end of week 153. 

Control 59.22 ± 32.555 
Manure 393.85 ± 184.209 

Phytoplankton Mulch 46.55 ± 31.294 
(L-1) Ewington 241.62 ± 116.011 
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