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Abstract 

Mangrove stands are uncommon within semi-arid climates and rare within inland 

systems. It is uncertain whether the same environmental variables influence mangroves 

growing in a semi-arid climate as the trees growing in tropical and sub-tropical areas. 

Field studies conducted on the ecophysiological responses of the mangrove species 

Avicennia marina are few; however hydrological regimes are considered the key factor 

influencing mangrove stand zonation, structure and individual tree growth. The 

Gascoyne region of Western Australia provides a unique opportunity to investigate 

whether mangroves growing within an inland semi-arid environment display similar 

growth patterns and ecophysiological responses to their coastal counterparts.   

This study investigates the distribution, structure and condition of the mangrove A. 

marina growing at Lake MacLeod and coastal and riverine stands near Carnarvon, 

Western Australia. Hydrological categories based on freshwater inputs, tidal influences, 

distance from permanent water sources and sediment elevations were used to investigate 

the environmental conditions present within specific hydrological regimes. Mangrove 

tree responses to environmental conditions were evaluated by assessing above-ground 

biomass, shoot production, water-use efficiency, photosynthesis, specific leaf area, 

weight and total chloride content. The overarching objective was to determine the 

environmental factors influencing the presence, morphology and physiological state of 

A. marina growing at inland, coastal and riverine sites in a semi-arid climate.  

Soil moisture content, organic matter content, average and seasonal range in sediment 

EC, and distance from the permanent water sources were found to influence vegetation 

characteristics at Lake MacLeod. Soil moisture content was highest close to permanent 

ponds and at lower sediment elevations. Sediment salinity was highest close to pond 

edges, although the majority of the lake bed is hypersaline due to high 

evapoconcentration. The environmental gradients are complex at Lake MacLeod as a 

result of the unique hydrological regime. Seawater supply to permanent ponds is 

constant via an underground karst system which enters the lake through vents and 

seepages present along the western edge of the lake bed. It is evident that the constant 

supply of marine water is the key environmental factor supporting mangrove presence 

and structure. Average mangrove tree height, basal area, density and canopy cover are 

greatest near the permanent ponds. Mangrove density and height was also high, though 

patchy away from the ponds where saline seepages occurred. A high density of stunted 

mangroves was found on lake shorelines receiving periodic saline flooding via wind 
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surges. Samphire cover was also greatest close to the permanent ponds, demonstrating 

that both mangrove and Samphire presence and importance is influenced by consistency 

of water availability. 

Sediment conditions were significantly different between inland and coastal sites, with 

sediment salinity and moisture content higher at Lake MacLeod. The ecophysiological 

responses displayed by A. marina in different categories of hydrological regimes 

revealed that consistency of water supply, irrespective of salinity, is an important driver 

of long and short-term productivity, water-use efficiency, leaf size and weight, and tree 

height.  

In general, short and long-term production was inversely proportional to distance from 

permanent water sources, although it was highly variable due to seepages away from the 

permanent ponds. Mangrove trees growing at the landward edge of coastal sites were 

the most water-use efficient (~ -28 δ¹³C), relative to the inland Lake MacLeod trees (~ -

26 δ¹³C), and was directly linked to water supply not quality. Photosystem health in 

trees growing at both the riverine stands (yield 0.66 ± 0.01) and inland stands found at 

greater distances from ponds (yield 0.065 ± 0.02), were significantly lower than all 

other trees in this study. Relative maximum electron transfer rate was also significantly 

lower at these sites, suggesting that the riverine trees were affected by other stresses 

such as herbicides. Mangrove trees near permanent water sources, or that received tidal 

flushing, displayed larger leaves and lower specific leaf weight, indicating that A. 

marina has the ability to not only tolerate hypersaline conditions but also acclimate to 

harsh and variable conditions via changes to ecophysiological responses and 

morphology.  

This research has developed a better understanding of how A. marina persists at Lake 

MacLeod and whether these trees are under greater stress as opposed to the mangroves 

growing at coastal stands. Sediment conditions between coastal and inland sites were 

significantly different, but it was distance from permanent water sources that influenced 

mangrove stand features. Therefore, the key environmental variable influencing 

distribution, structure and ecophysiological state of A. marina growing in a semi-arid 

climate is predominantly water availability.  
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1 Introduction and Study Objectives 

Mangroves are marine plants with a growth form that ranges from trees to shrubs and 

are typically found on the fringes of the ocean (Nybakken and Bertness 2005). A 

mangrove dominated habitat, referred to as “mangrove forest”, “mangroves” or 

“mangal”, (Nybakken and Bertness 2005; Duke 2006), consist of single to multi-species 

communities. They provide important ecosystem functions and services, such as 

buffering to erosion (Lovelock, Feller et al. 2004; Duke and Larkum 2008); filtering 

nutrients and pollution (Connolly and Lee 2007); and providing spawning, feeding, 

nesting and nursery areas for a wide variety of organisms (Saenger 1982; Boorman 

1999; Johnstone, Burbidge et al. 2000).  

Mangrove dominated habitats commonly establish between latitudes 25° N and 25° S 

(Dawes, Siar et al. 1999; Connolly and Lee 2007), and in both tropical and subtropical 

locations there is high mangrove species diversity (Parida and Jha 2010). Occurrence of 

mangroves outside these latitudes is normally as a result of warm ocean currents 

(Nybakken and Bertness 2005), in either subtropical-arid, semi-arid or, more rarely, 

temperate locations. Within semi-arid and temperate conditions in Australia, mangrove 

species diversity is reduced, consisting of only a single species Avicennia marina 

(Saenger, Specht et al. 1977; Pedretti and Paling 2001).   

The interface of marine and terrestrial environments (i.e. intertidal zone) is a 

challenging ecosystem for most plant species, due to tidal inundation and exposure to 

variable salinity. However mangrove species are well adapted to this environment 

(Hogarth 1999). Their root systems allow gas exchange to continue while inundated or 

subject to anaerobic sediment conditions (Nybakken and Bertness 2005). Salt tolerance 

strategies are key to their survival; mangroves use either secretion, exclusion, or tolerate 

elevated salinity of internal fluids to manage the vast range of external salinities to 

which they are exposed (Hogarth 1999). Vivipary is a common reproductive strategy 

allowing dispersal of propagules via water flow to suitable recruitment sites (Connolly 

and Lee 2007).  

Saltmarsh plants can be associated with mangroves and consist of herbaceous or low 

woody vascular plants. The habitats they form are categorised into three main 

ecosystem groups: shrublands (dominated by chenopods), sedge and rush swamps 

(upper marsh fringe) and grasslands (poorly developed in Australia) (Adam 2002). 

Saltmarsh habitats are highly valued for their ecosystem services, which are similar to 
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those that mangrove habitats provide (Boorman 1999). In higher latitudes, saltmarsh is 

the main community on shorelines, as mangroves are not present (Adam 1991). In lower 

latitudes, saltmarsh vegetation is most common in the upper reaches of the intertidal 

zone, with mangroves growing closer to the edge of the ocean or estuary (Ellison and 

Simmonds 2003). Where rainfall is high (i.e. tropics), mangroves dominate with little or 

no saltmarsh vegetation. Conversely, within temperate to arid areas or where rainfall is 

strongly seasonal, saltmarsh vegetation dominates and is supported by sparsely 

interspersed mangrove trees (Adam 2002). This pattern is evident in Australia (Duke 

and Larkum 2008). In Northern parts of Australia mangrove stands dominate, and with 

graduation into temperate and semi-arid regions of Australia saltmarsh communities 

become extensive but sparse (Hogarth 1999; Connolly and Lee 2007).  

1.1 Environmental conditions known to influence mangrove distribution, 

structure and physiology 

Existing plant community structure models highlight that when faced with elevated 

environmental stress, physical components of the environment (rather than biological 

interaction) have a high relative importance (Grime 1977; Menge and Sutherland 1987). 

Globally, the key environmental factors that influence mangrove and saltmarsh presence 

and importance are debatably salinity, temperature, soil type and freshwater supply 

(Connolly and Lee 2007). This does not negate the possibility that subsidiary factors are 

important at the specific site scale (Clough 1993; Matthijs, Tack et al. 1999), for 

example local topography and interactions with the ocean. Most studies on 

environmental influences on mangroves have been conducted on tropical or subtropical 

coastlines and have linked high soil salinities to reduced mangrove height, growth and 

productivity (Dawes, Siar et al. 1999; Ajmal Khan and Aziz 2001; Ellison and 

Simmonds 2003; Connolly and Lee 2007).  

Spatial distribution of a mangrove stand reflects flooding regularity and quantity (Bunt 

1999; Matthijs, Tack et al. 1999) and lower temperatures result in poor species diversity 

(Saenger, Specht et al. 1977). Lovelock et al. (2004) and McKee et al. (2002) 

researched fringing and dwarf mangroves within tropical climates and they reported 

lower nutrients, resulting from reduced or no tidal flushing, directly linked to reduced 

mangrove growth. However, currently no similar studies are available on semi-arid or 

temperate climates and it is not clear whether the same environmental factors that affect 

mangrove distribution, structure, and physiology in tropical climates are also relevant in 

these areas. 
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River inflow, frequency and extent of tidal flushing have been suggested as being 

particularly important influences on mangrove and saltmarsh dynamics (Saenger 1982; 

Nybakken and Bertness 2005). Mangroves existing along coastal shorelines can be 

exposed to two different hydrological regimes.  

1. Mangrove stands present along the coastline, receiving only rainfall and limited 

surface runoff (Figure 1).  

2. Riverine or estuary stands present along riverbanks and at river mouths, 

receiving significant freshwater flow more regularly and for longer periods of 

time (Figure 2).  

Survival is difficult in the intertidal zone due to extreme variability in salinity gradients, 

sediment temperature, hydrological exposure, anoxia and osmolarity (Saenger 1982). 

However, all coastal mangrove systems receive regular flushing via tidal movement 

which is essential for flushing the root zones and re-establishing suitable temperature, 

oxygen and salinity levels within the sediment (Naidoo 2010). These conditions enable 

healthy, lush growth and the mangrove stands are tall, productive systems.  

 

 

Figure 1: Conceptual diagram outlining potential hydrological regimes present at sites along the coast of 

the Gascoyne region, Western Australia. 
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Figure 2: Conceptual diagram outlining potential hydrological regimes present at river sites surrounding 

Carnarvon, Western Australia. 

Hydrological patterns at a site are influenced by local geomorphology, water quality, 

quantity and delivery patterns, principally timing and duration of inundation (Phillips, 

Butcher et al. 2005). This in turn affects the variability in salinity, sediment oxygen 

levels and allochthonous nutrient inputs (Vilarrubia 2000; Lovelock, Ball et al. 2009).  

Mangrove trees growing at the seaward edge of coastal stands are taller and more robust 

than landward trees (Dawes, Siar et al. 1999; Matthijs, Tack et al. 1999; Naidoo 2010). 

Mangrove tree productivity is enhanced when regular freshwater inflow occurs, 

stabilising sediment and interstitial water salinity (Connolly and Lee 2007). This leads 

to larger trees closer to the seaward edge, graduating to smaller trees along the landward 

edge of the stand (Naidoo 2010). 

Although coastal and riverine mangroves are usually periodically inundated with water 

or situated in waterlogged sediments, drought conditions can still occur due to high 

salinity and temperature. When salinity and temperature increase in sediments or the 

water column, mangrove growth can be reduced due to lower water uptake and reduced 

transpiration and photosynthesis (Parida and Jha 2010). However, dwarfing is also 

attributed to several edaphic conditions apart from salinity, including nutrient limitation, 

redox potential, and waterlogging (Naidoo 2010). 
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Inland mangrove systems are rare globally, with only seven identified by Ellison 

(1997). These systems have a historical connection to the ocean (Ellison and Simmonds 

2003), however maintain a restricted hydrological link to the larger marine 

environment. Seawater inflow is then thought to maintain similar hydrological 

conditions commonly found within mangrove habitats (Nybakken & Bertness, 2005). 

Some examples of inland mangrove systems include geological embayment relics 

(Ellison and Simmonds 2003) in Bermuda (Thomas, Logan et al. 1992), Inagua 

(Bahamas) (Lugo 1981), 80 Mile Beach at Mandora (Western Australia, (Beard 1967) 

and Lake MacLeod (Western Australia, Figure 4b; Beard 1967). All reported inland 

mangrove systems are located in either tropical or subtropical climates except for Lake 

MacLeod, which endures semi-arid climatic conditions (Ellison 1997). 

In contrast to coastal and riverine mangrove systems, most of the inland mangrove 

systems are exposed to indirect or no tidal fluctuation, have higher evaporation rates, 

high variability in salinity (with hypersalinity common) and episodic or periodic river 

water flooding.  These factors are likely to result in restricted habitat distribution and 

cause greater physiological stress to the mangroves, as the frequency and magnitude of 

either seawater or river water flushing is reduced (Ellison and Simmonds 2003; Naidoo 

2010) (Figure 3). 

 

Figure 3: A generic conceptual diagram indicating a probable hydrological regime influencing inland 

mangrove ecosystems. 
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Patterns in inland mangrove growth relative to hydrological conditions are likely to 

follow that of coastal systems, however previous work has suggested inland plants are 

shorter than their coastal counterparts, with more obvious, discrete ecotones athwart the 

stands (Ellison, 1997; Ellison & Simmonds, 2003). 

1.2 Mangrove traits and ecophysiological responses to environmental 

stress 

Mangroves possess morphological, anatomical, physiological and reproductive features 

that allow survival under high and variable salinity levels (Saenger 1982; Stewart and 

Popp 1987; Ball 1988a). Morphological features of mangroves that aid survival in the 

intertidal zone are well studied; these features generally function to minimise water loss 

and improve water-use efficiency (WUE) (Naidoo 2010). Most mangrove species 

possess aerial root morphologies such as stilt, pneumatophore, knee and buttress roots. 

Gas exchange occurs even in anoxic sediments due to aerenchyma tissue and lenticels 

within the roots, as well as tidal movement (Hogarth 1999). This specialised root 

structure and function is paramount to the survival of mangroves within hypoxic 

environments (Ball 1988a). The root systems cope well with temporary inundation, 

although prolonged flooding has been directly linked to mangrove mortality (Ellison 

2001). Ideally, flooding in mangrove stands should range from seasonally tidal or near-

permanent (Krauss, Lovelock et al. 2008). Water movement and flushing of sediment 

surrounding the root zone helps to maintain an acceptable level of aerobic conditions 

(Saenger 1982). 

Leaf anatomy and morphology are reliable measures linked to the environmental 

conditions experienced by mangrove trees (Liang, Zhou et al. 2008; Parida and Jha 

2010). Adaptation to drought stress, resulting from harsh osmotic relations, is 

commonly displayed as lower specific leaf area, thicker leaves and cuticles and heavier 

specific leaf weight (Lugo, Cintrn et al. 1982; Naidoo 2010; Naidoo, Hiralal et al. 

2011). Sobrado (1999) identified that individual leaf area and weight ratios  in the dry 

season were 24% and 20% lower in low and high salinities respectively, relative to the 

wet season. Therefore, specific leaf area is a good indicator of environmental stress in 

mangroves (Lugo, Cintrn et al. 1982; Medina and Francisco 1997). 

Depending on age, salt tolerance and environmental salinity, mangrove species utilise 

either one or all three of the following salt regulation strategies; exclusion, excretion 

and salt accumulation. These salt regulation strategies involve roots, salt glands on 
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leaves and physiological processes within the leaves (Hogarth 1999). It is unclear how 

each individual species manages salt regulation, and further physiologically based 

studies are needed to elucidate the exact mechanisms of ion regulation that mangroves 

utilise to adapt to highly saline environments. Some mechanisms are known to be more 

dominant in certain species than others (Hutchings and Saenger 1987); this is dependent 

on salt tolerance and species morphological adaptations. Salt secreting species such as 

Avicennia have higher salt permeability at the root zone, with ion regulation also 

controlled within leaves via salt glands on the leaf cuticle (Medina and Francisco 1997; 

Hogarth 1999). The mechanism used by a species to control ion movement and 

accumulation influences leaf ion content. Suarez & Medina (2006) found that increased 

salinity reduced K
+
 uptake and increased Na

+ 
concentration in tissue water content of 

leaves on mangroves (A. germinans). The efficiency with which each mangrove species 

tolerates high and fluctuating salinities determines mangrove species global distribution, 

stand zonation and anatomical features (Banerjee 1993; Sobrado and Ball 1999). 

Ecophysiological responses of mangroves are primarily driven by hydrological regimes 

and salinity, although factors such as light and temperature can also influence responses 

(Hutchings and Saenger 1987). It is expected that with increased drought stress and 

higher salinity, mangrove trees will display higher WUE, lower productivity and 

reduced photosynthetic rate. These ecophysiological responses directly affect the 

structure and condition of mangroves (Medina and Francisco 1997; Wei, Yan et al. 

2008; Naidoo 2010). However, there are no ecophysiological studies relating to 

mangroves at inland locations within a semi-arid climate, and few quantitative studies 

on mangroves in natural hypersaline conditions (Sobrado and Ball 1999; Naidoo 2010). 

Previous studies of WUE reveal that environmental factors such as light intensity 

(Sobrado and Ball 1999), atmospheric CO₂ concentration (Krauss, Lovelock et al. 

2008), water stress (Naidoo 2006; Naidoo 2010), temperature (Ball 1988a), nutrients 

(Lovelock, Feller et al. 2004; Martin, Bruhn et al. 2010) and salinity (Medina and 

Francisco 1997; Naidoo, Hiralal et al. 2011) alter the stable carbon isotope ratio within 

plants (Farquhar, Ehleringer et al. 1989; Wei, Yan et al. 2008).  

The mangrove habitat is an evaporative saline environment that requires mangroves to 

conserve water to maintain favourable carbon, water and salt relations (Martin, Bruhn et 

al. 2010). Riverine and coastal fringing mangroves generally display lower WUE than 

scrub or dwarf mangrove trees growing along landward edges of mangrove stands 

(Cheeseman and Lovelock 2004; Naidoo, Hiralal et al. 2011). Typically dwarfed 



18 

 

mangrove trees experience infrequent tidal inundation and high evapotranspiration rates, 

producing hypersaline sediment conditions (Naidoo, Hiralal et al. 2011). These 

conditions prevent water uptake via osmotic drought and hence the dwarfed trees are 

more WUE (Naidoo 2010).  

Medina & Francisco (1997) developed a conceptual model of the interactions between 

salinity, nutrients and freshwater availability, based on edaphic and climatic conditions 

within arid coastal and riverine mangroves. Their model highlighted that WUE of 

mangrove plants increased at higher salinity, while photosynthesis and productivity 

decreased. Therefore, habitats with higher salinity are likely to have smaller plants, that 

use less water physiologically (due to limited water availability) to maintain 

productivity. Not all mangrove species however respond the same way to higher 

salinity, therefore only absolute values of δ¹³C ratios within the same species can be 

compared (Wei, Yan et al. 2008).   

Mangrove photosystems regulate photosynthesis depending on environmental 

conditions. Photosystem response to salinity and light are interrelated and are key in 

influencing the daily variability in photosynthetic rate for mangroves (Krauss, Lovelock 

et al. 2008). Increased light (difference between predawn and midday) reduces the 

efficiency of photosystem II (PSII) over and above any changes to water availability or 

salinity levels (Sobrado 1999). However, down regulation of PSII occurs when trees are 

exposed to hypersaline conditions, along with other environmental stressors (Larcher, 

Wagner et al. 1990; Kathiresan and Bingham 2001). Ion deficiency and accumulation, 

particularly for potassium (K
+
), sodium (Na

+
) and chloride (Cl‾), within 

photosynthetically active tissues also influences the photosynthetic metabolism (Krauss, 

Lovelock et al. 2008). Interestingly, Ball et. al. (1987) revealed that the decrease in 

photosynthetic rate of A. marina at increased salinity, was due to salinity-induced K
+ 

deficiency, rather than toxic effects of Na
+
 and Cl‾ accumulation. 

Chlorophyll a fluorescence is a well utilised method for investigating photochemical 

processes within PSII. This can provide information on photosynthetic capacity and 

efficiency (Ralph and Gademann 2005). Portable fluorometers allow in situ 

measurements of these processes. Rapid light curves (RLC) measure the actual 

photosynthetic rate by plotting electron-transport rate versus irradiance to calculate the 

relative maximum electron transfer rate (rETRmax) during photosynthesis (Ralph and 

Gademann 2005). The photochemical efficiency of PSII is determined by dark-adapting 
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leaves before a light pulse. This measure indicates the amount of light energy converted 

by PSII and represents the stress level of a plant (Naidoo 2010).  It is expected that trees 

growing within extreme and highly variable hydrological regimes will display lower 

rETRmax and maximal fluorescence than those growing in a more consistent regime 

(Naidoo 2006).   

Temperature, salinity and aridity are key environmental factors influencing growth and 

survival of individual mangrove species (Clough 1993). At a regional scale temperature 

and aridity are the prominent factors influencing mangroves, whereas at the local scale 

salinity is the most influential factor. Tropical and subtropical mangrove trees are larger, 

have higher production rates and larger above-ground biomass than the same species in 

a temperate or semi-arid climate (Naidoo 2010). The local hydrological regime and 

salinity level are the principal abiotic factors affecting mangrove tree growth and 

productivity (Wei, Yan et al. 2008; Naidoo 2010). It is common to see reductions in 

above-ground biomass with increased elevation and distance from water. There is a 

distinct gradient in sediment salinities that can become hypersaline due to increased 

variability and harsher environmental conditions (Saintilan 1997; Dawes, Siar et al. 

1999; Ross, Ruiz et al. 2001; Suarez and Medina 2006).  

1.3 Significance and objectives of the study 

Recent interest lies in the environmental influences responsible for mangrove tree 

productivity and ecophysiological responses (Naidoo 2010; Naidoo, Hiralal et al. 2011);  

however few studies exist on mangroves at the climatic and physiological extremes of 

their geographical range. Central ecophysiological paradigms are focused around 

inundation depth, duration and frequency, salinity gradients and geomorphological 

characteristics (Krauss, Lovelock et al. 2008). Research is required across a broader 

range of salinities (Wei, Yan et al. 2008) including rare locations such as inland systems 

with unique hydrological regimes.  These inland mangrove systems may receive limited 

freshwater inflows, no tidal influence and restricted links to the ocean (Ellison 1997). It 

is not known if mangroves growing in inland systems display similar morphological 

features, growth patterns and ecophysiological responses to their coastal counterparts.   

A unique opportunity exists to assess the largest inland mangrove system in the 

southern hemisphere; Lake MacLeod in the semi-arid Gascoyne region of Western 

Australia, and compare it to nearby coastal and riverine mangrove systems growing in a 

semi-arid climate. Coastal mangrove stands within a semi-arid climate are rare and 
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research is needed on relating the environmental and mangrove vegetation 

characteristics of this habitat to coastal and riverine habitats.  

This study investigated the distribution and structure of A. marina in relation to 

hydrological and sediment conditions existing at the semi-arid, inland mangrove system 

at Lake MacLeod. In addition, the productivity, water-use efficiency (WUE) and 

morphological traits of A. marina growing in the three different hydrological regimes 

(inland, coastal and riverine) of the Gascoyne were compared. This research is expected 

to highlight key environmental variables associated with A. marina distribution, 

structure and physiological condition within these semi-arid climatic conditions and 

enable comparison with more common studies of sub-tropical/tropical mangrove 

systems.  

It is expected that trees at the semi-arid inland system of Lake MacLeod will display a 

range of mangrove plant sizes, canopy and density based on gradients in hydrology and 

salinity. According to Medina & Francisco (1997), the semi-arid, evaporative inland 

marine system of Lake MacLeod, with its lack of tidal flushing, will support small 

mangrove plants of lower canopy cover and basal area where sediment salinities are 

highest. In the physiological comparisons, Lake MacLeod mangroves are expected to 

have greater WUE, but lower productivity, than both coastal and inland mangrove trees 

due to reduced freshwater inflow, absence of tidal flushing and higher sediment 

salinities due to evapoconcentration. However, the landward edge of coastal mangrove 

stands is expected to have trees with similar physiological status to the inland 

mangroves. 

The comparisons outlined above will further our understanding of the growth, structure 

and ecophysiological responses of mangroves under the variable conditions of Lake 

MacLeod and Carnarvon areas. This will also contribute to our understanding of the 

natural recovery of Lake MacLeod mangrove stands and the strategies required for 

mangrove monitoring and recovery processes. 

1.4 Thesis structure 

This thesis presents the results of research on mangrove dominated stands containing 

Avicennia marina and Samphire species within the Gascoyne region of Western 

Australia. This work was supported by Rio Tinto and Dampier Salt Ltd. The research 

results fill some high priority knowledge gaps highlighted from the Lake MacLeod 

Report produced by Edith Cowan University for Dampier Salt Ltd. This thesis aims to 
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increase knowledge on the persistence of a unique inland marine mangrove system 

found within a semi-arid climate zone.  

This thesis is divided into five main chapters: 

 Chapter 1 is a general introduction which describes the structure, morphological 

and ecophysiological features of mangroves growing in a semi-arid climate. 

 Chapter 2 describes all aspects of the study region. 

 Chapter 3 investigates the environmental drivers which influence presence and 

importance of mangrove dominated vegetation at an inland marine system Lake 

MacLeod. 

 Chapter 4 investigates and compares morphological features and the 

ecophysiological state of mangroves in relation to environmental conditions 

found at coastal and inland locations within a semi-arid climate. 

 Chapter 5 is an overall thesis discussion and conclusions resulting from the 

research undertaken. 
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2 Chapter two - Study Region 

This chapter describes the region and study sites where the research was conducted. 

Climate, land use, hydrology and vegetation types are described. This information 

provides background into the site selection and the context of the study. 

2.1 Location and Climate 

This study was conducted in the Gascoyne region, mid-west Western Australia, an area 

of 138,000 km² at inland mangrove stands, Lake MacLeod and coastal fringing and 

riverine mangrove stands, near the township of Carnarvon (Figure 4). The climate of 

this region is semi-arid with low but variable rainfall, high evaporation and extreme, 

episodic climatic events such as cyclones. 

 

Figure 4: a) Gascoyne region within the mid-west of Western Australia. b) Carnarvon township and Lake 

MacLeod’s location within the Gascoyne region. 

Lake MacLeod in the Gascoyne region is in a transitional climate zone; between 

temperate winter-dominated rainfall and tropical summer-dominated rainfall. Mean 

temperatures range from 17°C - 35°C in summer and 10°C - 20°C in winter, 

evaporation rates range from 2400 mm – 3600 mm per annum and rainfall is on average 

200 mm – 300 mm per annum (Bureau of Meteorology 2013). Rainfall is irregular and 

ephemeral (Russell 2004) though it generally falls during the temperate winter months 

(May – July). Prior to and during the first year of this study, the area was wetter than the 

previous 68 years (1945 - 2013) average of 230 mm, where in 2011, 399 mm and in 

2010, 367.6 mm of rain fell. This significantly increased freshwater influx to water 

a) b) 
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bodies within the area causing flooding of the Gascoyne River and associated wetlands, 

Lake MacLeod (Bureau of Meteorology 2013). 

This region is within the global southeast trade wind belt, winds prevail from the south 

for most of the year. During summer, there is a strong sea breeze that increases in 

strength in the afternoon. Average summer wind velocities are 25 km/hr, with gales of 

40 – 50 km/hr occurring regularly. During winter, weaker southerlies (average velocity 

of 15 km/hr) occur without the complication of a strengthening sea-breeze and gales 

become less frequent (Logan 1982; Bureau of Meteorology 2011). The combination of 

high solar radiation levels, low erratic rainfall and strong winds significantly contribute 

to the extreme evaporation rates in the region, which peak during October to March 

(average ~ 1788.4 mm) and decrease in winter (average ~ 1096.9 mm). These 

environmental factors are pivotal to the hydrological regime experienced at Lake 

MacLeod and impact vegetation distribution, structure and composition (Phillips, 

Butcher et al. 2005).  

2.2 Land use 

The land surrounding Lake MacLeod and Carnarvon is managed as pastoral properties, 

with mining activities including salt and gypsum production also occurring. National 

(e.g. Cape Range, Kennedy Range) and Marine Parks (e.g. Ningaloo, Shark Bay) are 

also located within this region. Lake MacLeod has also been proposed for listing under 

the Ramsar International Convention on Wetlands as a Wetland of International 

Importance based on it being an important habitat to a diverse range of bird species 

including transequatorial migratory waders (Gascoyne Development Commission 

2010). Additionally Lake MacLeod is listed in the Directory of Important Wetlands in 

Australia (DIWA) as a nationally significant wetland (DEC 2009).  

Land use surrounding Carnarvon is dominated by irrigated horticulture with 

approximately 2000 ha of the river levee and flood plains utilised for this industry, 

beyond these areas is an extensive pastoral industry (Waddell, Thomas et al. 2012). The 

Carnarvon boat harbour is designed to accommodate recreational fishing boats and 

commercial fisheries such as prawn trawlers and scallop vessels (Department of 

Transport 2014).  
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2.3 Inland Environment - Lake MacLeod 

2.3.1 Origin and Morphology  

Lake MacLeod is an expansive and complex wetland covering 2,000 km². It is 

approximately 18 km inland and extends roughly parallel to the coast for around 120 

km to the north from Carnarvon (DEC 2009). Originally a marine embayment, Lake 

MacLeod was separated from the Indian Ocean approximately 6000 years ago by the 

continual accretion of dune ridges to the south of the basin (Russell 2004). The lake bed 

is 3–4 metres below sea level and is predominately dry throughout the year (Phillips, 

Butcher et al. 2005), although a number of areas have permanent water. Lake Macleod 

is unique, complex and has eight main wetland types (Environment Australia 2001). 

These include a mix of distinct ‘inner wetlands’ with permanent water (sinkholes, 

channels, ponds, marshes) along the western extent, with ‘flood out marshes’ at the 

river mouths to the northeast of the greater lake area (DEC 2009).  

2.3.2 Hydrology 

Water input into the Lake MacLeod system is directly from rainfall, via runoff from 

river systems or through seepage of marine waters. The main lake bed experiences 

episodic surface water input from the Lyndon and Minilya Rivers in the northeast, plus 

indirect inputs from the Gascoyne River to the south via smaller tributaries including 

Cardabia and Boolathana Creeks. River water input is irregular and variable; with the 

lake becoming inundated only following heavy rainfall events associated with cyclones.  

The Lake MacLeod system is separated into three ‘ponds’ Ibis, Cygnet and Chirrida 

Ponds (Figure 5), which are fed by the seepage of marine water through a unique 

subterranean coastal limestone karst system. Seawater is pushed into the saline ponds 

through the Cygnet seepage face; this is a hydrological structure critical for maintaining 

the Lake Macleod evaporite system. Lying along the north western side of the lake 

basin, the Cygnet seepage face discharges seawater through porous surfaces - ranging 

from cavernous openings metres in diameter to smaller holes less than 1 mm across 

(Shepherd 1991). The outlets termed ‘vents’ facilitate flow from hydrostatic pressure 

initiated by tidal movement and is maintained due to lower elevation of the lake bed 

compared to the sea (Phillips, Butcher et al. 2005). Water discharged from the seepage 

face display chemical properties similar to seawater upon discharge into the ponds, 

increasing in concentration with distance from the vents due to evaporation. Water 

sources entering the Lake MacLeod system differ (fresh or saline) resulting in dynamic 
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water and sediment chemical properties. This produces extreme and harsh conditions for 

flora and fauna existing within and surrounding the system, and it is thought that many 

species are surviving at the edge of their tolerance range (Ellison 2001; Ellison and 

Simmonds 2003). This seawater input is constant and seawater continually overflows 

from the ponds onto the surrounding ‘spill sheets’, which are flat expanses of sediment 

that the water discharged from the vents sits on. The water is moved over these spill 

sheets by wind. 

 

Figure 5: Lake MacLeod evaporite basin including permanent water bodies Chirrida, Cygnet and Ibis 

Ponds and Dampier Salt Limited (DSL) mining operations (adapted from; Streamtec Pty Ltd 2000).  
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2.3.3 Vegetation 

The Lake MacLeod mangrove stand is one of the largest of the eight known inland 

mangrove stands worldwide (Ellison 1997; Ellison and Simmonds 2003). Like 

mangrove stands in temperate and semi-arid climates of Australia (Johnstone 1990), 

Avicennia marina is the dominant overstorey species at Lake MacLeod. It occurs with a 

range of Samphire species, Tecticornia, Sarcocornia and Chenopodium genera. The 

taxonomic identities of these genera are currently under investigation (K. Shepherd 

pers. comm., Nov. 2012). Mangrove and Samphire vegetation commonly occur 

together, with Samphire shrubs found around the base of the mangrove trees, although 

they can be found independently across the lake bed.  

The vegetation growing within Lake MacLeod lakebed is highly variable in structure, 

form and composition. There is generally a fringing band of vegetation surrounding 

each lagoon, pond or channel, commonly a larger closed to open forest. Here, the trees 

are reasonably tall, some A. marina reaching 3 - 4 m in height with large trunks and 

dense canopies. The associated pneumatophore beds are dense and relatively tall, with 

the Samphire vegetation occurring as a dense understorey (Johnstone 1990; Ellison and 

Simmonds 2003). Behind this narrow band of trees, vegetation structure, form and 

composition varies considerably, either low open Samphire scrubland, scarcely 

scattered shorter to dwarfed A. marina supported by Samphire shrubs; or bare saltpan 

(Ellison and Simmonds 2003). With greater distance from the permanent water bodies, 

the pneumatophores are generally sparser and much shorter. These structural features 

appear to be dependent upon the occurrence of a constant supply of water.  

2.4 Coastal Environment of Carnarvon 

2.4.1 Location and Significance  

Carnarvon is adjacent to the World Heritage Area of Shark Bay, the Shark Bay Marine 

Reserve and Woomeral Special Purpose Zone to the south, as well as Ningaloo Marine 

Park to the north. The coast line immediately surrounding Carnarvon is low lying and 

has been in the present form for approximately 6000 years as sea level along the West 

Australian coast has been relatively stable since then (Lambeck and Nakada 1990). The 

limestone coast line supports an extensive mangrove stand with A. marina occurring 

along the sandy low lying coast, river mouth, channels and wetlands. 
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2.4.2 Hydrology 

The dominant hydrological processes on the coast are river discharge and tidal flows. 

The difference in tide range is from 0.3 m to a maximum of 1.7 m, usually there are two 

high tides a day and less commonly one (tide-forecast 2013). The Gascoyne River is 

large and the catchment area vast. It flows irregularly, typically after extreme events 

during the tropical cyclone season, although rainfall during the south west temperate 

winter season is regular and lower flows are recorded during this time.  

2.4.3 Vegetation 

Vegetation within the Gascoyne region is predominantly low open woodlands 

dominated by Acacia sp. with understorey vegetation including Eremophila sp., Cassia 

sp. shrubs with hummock grasses and an array of salt bushes including rich 

communities of Samphires (Burbidge, McKenzie et al. 2000). Coastal mangrove stands 

surrounding Carnarvon consist of one species, Avicennia marina and these can occur as 

woodland to stunted shrubland stands (Johnstone, Burbidge et al. 2000). Individual 

trees found at the water’s edge on the coastline or riverbanks are large (> 5 m) with 

dense canopies and smaller, dwarfed and sparsely spread trees occurring further inland. 

The coastal and riverine stands display typical community-pattern zonation found 

within tropical and subtropical mangrove stands, although the zones appear to be much 

narrower with more distinct demarcation between zones (Bunt 1999; Vilarrubia 2000; 

Martin, Bruhn et al. 2010).  

2.5 Site selection  

2.5.1 Rationale for locations and sites 

The aim of this study was two-fold: firstly to examine the patterns in mangrove 

dominated vegetation and how those patterns are related to hydrological and 

environmental conditions at inland mangrove stands; and secondly to compare the 

ecophysiological traits of the mangrove A. marina between coastal and inland mangrove 

stands. Four sites were selected in both inland and coastal environments that covered a 

range of hydrological conditions relating fresh and salt water supply (Table 1 & Table 

2). 
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Table 1: Inland study area description based on hydrological, geomorphological and topographical 

characteristics of Lake MacLeod sites. 

Site characteristics Inland marine – Cygnet Pond Inland marine – Chirrida Pond 

Geomorphology & 

Topography 

Deep ponds & Marsh areas. 

Low-lying barrier south of the 

pond (1) 

Channel to Ibis Pond (2) 

Northern cluster of ponds.  

Middle cluster of ponds. 

Southern cluster of ponds (4) 

Mangrove presence Monospecific A. marina. All ponds 

have mangroves, spatial extent 

varies dependent upon local 

geomorphology. (2) 

Monospecific A. marina. Almost all 

ponds in this region have a 

narrowband of mangrove trees 

surrounding the individual water 

bodies. (2, 4) 

Salinity 

 

Similar to seawater at vents with a 

gradient to hypersaline with 

distance from vents 

(2) 

Similar to seawater at vents with a 

gradient to hypersaline with distance 

from vents (2) 

H
y

d
ro

lo
g

y
 

 

River flow Rarely 1 in 6 - 5 year event (1, 2) Very rare, 1 in 10 year event (1, 2) 

Residence time of 

river water flow 

Moderate/high depending on event 

(2) 

Minor/Moderate depending on event 

(2) 

Tidal exchange Indirect, small (cm) variation in 

fluctuation (1) 

Indirect, small  (cm) variation in 

fluctuation (1) 

Seepage 

 

Southern Cygnet Seepage face 

facilitates saltwater intrusion from 

the western side; spill sheet flow is 

generally in an eastern/southern 

direction (1, 3) 

Isolated ponds fed by saltwater via 

Northern Cygnet Seepage Face on the 

western side (1) 

(1), Shepherd, 1991; (2), Ellison, 1997; (3), Russell, 2004; (4), Google Earth 

2.5.2 Inland sites 

One site in Lake MacLeod was in Cygnet Pond Goat Bay (23° 58 179’’ S, 113° 36 

372’’ E) and the remaining three were in the Chirida Ponds; Whistler Pond (23° 50 825” 

S, 113° 41 960” E); Pete’s Pond (23° 46 976’’ S, 113° 45 764’’ E); and Neil’s Pond 

(23° 48 667’’S, 113° 41 579’’ E). These sites span the lake bed from far north (Pete’s 

Pond) to the most southern site (Goat Bay) (Figure 6 a & b). As the hydrological regime 

occurring at Lake MacLeod is extremely complex, varying extensively from north to 

south, the sites included comprise the most suitable suite of wetlands representative of 

the hydrological patterns present. There is no tidal exchange at these sites, but sea-water 

is delivered from vents into the ponds. Due to the large size of Cygnet Pond, a large 

wind fetch can be generated and wind waves facilitate the movement of water out of 
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Cygnet Pond onto surrounding sediment and mangrove and salt-marsh habitat. River 

water rarely flows into Cygnet or the Chirrida Ponds. However, when it does it is less 

rare in the Chirrida Ponds (1 in 10 years) vs. Cygnet Pond (1 in 5 years). When 

freshwater reaches Cygnet Pond, it has a longer residence time than the Northern 

Chirrida Ponds.  

 

 

 Figure 6: a) The greater Lake MacLeod with Ibis, Cygnet and Chirrida Ponds and Sandy Bluff Sill, the 

geomorphological feature separating Northern and Southern regions of the lake. b) Location of the 

inland sites Pete’s Pond, Neil’s Pond, Whistler Pond and Goat Bay. 

2.5.3 Coastal sites 

Two sites were selected at fringing coastal mangrove stands, south of Carnarvon (Figure 

7) and away from the direct influence of a fresh-water river (Coastal site 1 - 113° 40 

837” E, 25° 03 224” S, and Coastal site 2 - 113° 43 843” E, 25° 07 264” S)(Table 2). 

Both these sites are within the Brickhouse Station lease and the band of mangroves up 

to 200 m wide with a seaward and landward edge (Figure 7b). Two sites were selected 

at coastal riverine mangrove stands associated with the Gascoyne River Mouth, one at 

b) a) 
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the false mouth of the Gascoyne River (113° 39 143” E, 24° 53.266” S) within 

Carnarvon township, next to the port, and one slightly north of Carnarvon town site at 

One Arm Tree Point (113° 37 738” E, 24° 51 716” S) (Figure 7b). The main difference 

between these two sets of sites was the freshwater influence at the riverine sites. 

 

Table 2: Coastal study area description based on hydrological, geomorphological and topographical 

characteristics. 

Site characteristics Coastal fringing - Carnarvon Coastal Riverine - Carnarvon 

Geomorphology & Topography Elevation begins at sea level and 

gradually increases in a 

perpendicular landward direction 

(1).  

Varied from low flat areas with 

gradual increases in elevation to 

sharp increases (riverbank) in 

elevation to gradual increases. 

Salinity 

 

Seawater to hypersaline depending 

upon location within intertidal 

zone and tidal patterns (1). 

Almost fresh to brackish to saline 

dependent upon distance from the 

river mouth. 

Mangrove presence Dominated by A. marina 

supported by Aegialitis annulata 

(2).  

Dominated by A. marina supported 

by Aegialitis annulata (2). 

H
y

d
ro

lo
g

y
 

River flow Nil, direct rainfall has a 

moderate/low impact. 

Regular and low – winter*, episodic 

and extreme – summer*. 

Tidal exchange Regular daily flushing water 

fluctuation up to 1.80 metres in 

height. 

Regular daily flushing water 

fluctuation up to 1.80 metres in 

height. 

Residence time of river 

water flow 

Nil           

 

Moderate    

(1 Nybakken and Bertness 2005); (2 Pedretti and Paling 2001)        * South West Western Australian weather patterns 

 

 



31 

 

 

Figure 7: a) All coastal and riverine sites are found within the shaded area surrounding Carnarvon 

Township.  b) The shaded boxes indicate the locations of the coastal and riverine sites: One Arm Tree 

Point (4), Gascoyne River Mouth (3) and the two coastal sites (1 & 2). 
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3 Chapter three – Inland mangrove vegetation distribution and 

structure relative to local environmental conditions. 

 

3.1 Introduction 

Globally, inland mangrove systems are rare with only eight recorded worldwide 

(Ellison 1997).  They originate from sea level (Shepherd 1991; Ellison 1997) and 

geomorphological changes to the basin (Van Steenis 1984; Thomas, Logan et al. 1992) 

and/or coastline so that an embayment becomes separated from the ocean  (Stoddart, 

Bryan et al. 1973; Lugo 1981; Van Steenis 1984; Ellison 1997; Ellison and Simmonds 

2003). The eight identified inland mangrove systems also have unique hydrological 

regimes, ranging from hypersaline to brackish/freshwater conditions (Ellison 1997). 

These differences in hydrological regimes are largely related to climate and the relative 

importance of freshwater inflow. For example, tropical inland mangrove stands found at 

Anchialine Ponds, Bermuda (Thomas, Logan et al. 1992) are limestone based with 

connections to the ocean whereas mangroves situated on Inagua Bahamas (Lugo 1981), 

Tuvalu Island in the South Pacific (Woodroffe 1987) and northern and southern Irian 

Jaya  (Van Steenis 1984; Ellison and Simmonds 2003), have no apparent connection to 

the ocean and rely entirely on rainfall and/or river inputs. In contrast, temperate or semi-

arid habitats where rainfall is lower and evaporation is high the systems are likely to 

present hypersaline conditions through evapoconcentration. As Lake MacLeod is the 

only inland mangrove system found outside the tropics, one may expect the regime of 

freshwater inflow and particularly evaporation to define mangrove distribution and 

structure.  

The quality of water inflow and outflow contributes to local hydrological conditions and 

is a key influence on vegetation patterns (Feller, Lovelock et al. 2010). Unlike coastal 

and riverine mangroves, inland systems receive minimal or no tidal influence and 

reduced throughflow of surface water such as in riparian systems. This reduced flushing 

of the root zone in combination with evapoconcentration can lead to hypersaline 

conditions (Paliyavuth, Clough et al. 2004). Where inland systems are connected to the 

ocean via submarine caves (Thomas, Logan et al. 1992) or an underground karst 

network (Logan 1982) marine inflow is possible due to hydrostatic pressure, however 

the tidal range is small (centimetres).  
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Limited tidal range and hypersaline conditions have been associated with a narrower 

distribution of mangroves (Feller, Lovelock et al. 2010) and the trees often exhibit a 

smaller growth form than the same species found within coastal habitats, i.e. lower tree 

height, canopy cover and basal area as well as xeromorphic leaf traits (Beard 1967; 

Stoddart, Bryan et al. 1973; Lugo 1981; Van Steenis 1984; Thomas, Logan et al. 1992; 

Ellison and Simmonds 2003). The reported range in height varies from 1 to 7 metres, 

depending on the local hydrological regime. Typically, where rainfall is low and 

evaporation high, the resultant high salinity represses mangrove growth, production and 

reproduction (Naidoo 2010).  

The Lake MacLeod ecosystem has a very complex and crudely understood hydrological 

regime (Ellison 2003). It is represented by an extensive basin comprised largely of a dry 

lake bed with brackish-saline flats that surround permanent saline ponds and lagoons 

maintained by seawater sourced from an underground karst network (Johnstone 1990). 

This system supports A. marina stands under conditions of low rainfall, no tidal 

influence and high evaporation rates. Although the tidal range may only be a few 

centimetres, evaporation rates in the basin are high and this causes a relatively continual 

inflow of seawater (Phillips, Butcher et al. 2005). There is irregular and episodic 

rainfall which can cause flooding at Lake MacLeod, usually one in 5 – 10 years and 

typically occurs as a result of summer cyclones (Streamtec Pty Ltd 2002).  

Mangroves at Lake MacLeod appear to only persist where consistent water sources are 

present via an underground limestone karst system. Essentially, Lake MacLeod is an 

expression of the hydrogeological saline groundwater system present in the area, which 

is separate from the regional fresh groundwater system that does not appear to upwell 

into the lake (Russell 2004). The balance between hydrostatic pressure and evaporation 

generates a relatively consistent supply of seawater (Russell 2004) through openings 

called ‘vents’ where water supply and salinity is relatively consistent. With increasing 

distance from the vents, surface and soil water become hypersaline primarily via 

evapoconcentration. Exceptions to this pattern occur due to the variable characteristics 

and location of ‘vents’ along the western side of the larger lagoon areas of Lake 

Macleod and within the smaller ponds within the ‘Northern Pond’ area above Sandy 

Bluff Sill (Figure 6) (Shepherd 1991). In addition, there are smaller (ranging from 

centimetres to metres) seeps that discharge seawater constantly and often support 

mangrove vegetation similar to that surrounding the larger bodies of water (Figure 8). 
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Some seeps however may be devoid of mangroves and Samphire and only support a 

thick cyanobacteria mat (Figure 8;  Shepherd 1991). 

  

Figure 8: Photos of vents found at distances from the main water body. (Left) A vent provides this small 

pool of water with a constant supply of seawater, thus allowing taller mangrove trees to exist. (Right) A 

small seep opening, found in a bare area of saltpan, that supports an algal mat. 

This persistent discharge of seawater from vents into spill sheets and saltpans combined 

with high evaporation, may strongly influence water availability and salinity and define 

mangrove distribution and structure. The characteristics of the lake make it an ideal 

candidate to specifically address the objective of this chapter, which is: 

To identify the environmental parameters associated with variability in the distribution 

and structure of the mangrove-dominated vegetation at Lake MacLeod. 

 

3.2 Materials and Methods 

3.2.1 Sampling Design 

To address the objective of this study, a survey of the mangrove dominated vegetation, 

including Samphire and the associated environmental variables, was undertaken in 

February and July 2012. This occurred at four locations in Lake MacLeod as detailed in 

Chapter 2 (Figure 6). Goat Bay is part of Cygnet Pond below Sandy Bluff Sill and 

Whistler, Neil’s and Pete’s Ponds are components of the southern, middle and northern 

clusters of ponds within Chirrida Pond (in that order) above Sandy Bluff Sill (Figure 9). 

The four sites represented a range of hydrological conditions found at Lake MacLeod 

(Table 3). 
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Table 3: Hydrological characteristics of the four sampling locations within Lake MacLeod. 

 Goat Bay Whistler Pond Neil’s Pond Pete’s Pond 

Geomorphology 

& Topography 

Deep ponds & Marsh 

areas. 

Low lying barrier 

south of the pond (1). 

Channel to Ibis Pond 

(2). 

Southern cluster of 

ponds (3). 

Middle cluster 

of ponds (3). 

Northern cluster 

of ponds (3). 

River flow  1 in 5 - 6 year event     

(1, 2). 

1 in 10 year event 

(1, 2). 

1 in 10 year 

event (1, 2). 

1 in 10 year 

event (1, 2). 

Residence time 

of river water 

flow 

Moderate/high 

depending on event 

(2). 

Minor depending 

on event (2). 

Minor/Moderate 

depending on 

event (2). 

Moderate 

depending on 

event (2). 

(1 Shepherd, 1991) (2 Ellison, 1997) (3 Google Earth) 

 

To examine the variability in mangrove-dominated vegetation presence and structure 

associated with hydrological (water quantity and quality) conditions at each of the 

sampling locations, a gradsect design was employed (Austin and Heyligers 1991). A 

gradsect design determines sample location by change in elevation. This method was 

selected as elevation influences hydrological conditions experienced by vegetation 

therefore maximising the probability of capturing differences in vegetation 

characteristics within and between locations (Austin and Heyligers 1991; Wessels, Van 

Jaarsveld et al. 1998). 
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Figure 9: Location of permanent individual ponds which represent the greater Lake MacLeod. 

At each location, three replicate gradsects were arranged perpendicular to the pond edge 

(Martin, Bruhn et al. 2010). Plots (10 m x 10 m) were located from the edge of the 

pond, with plot one covering the first 10 m from the pond edge and subsequent plots 

placed along the gradsect where a 10 cm change in elevation (negative or positive) 

occurred, or every 20 m, whichever occurred first. Elevation was measured using an 

automatic level (Leitz/Sokkisha, C3E) and staff. The minimum length of each gradsect 

was 100 m, or 20 m beyond the last mangrove tree. Each plot was defined on the basis 

of relative elevation and distance from the pond edge (Figure 10). Due to the gradsect 

design, the number of plots in each varied, from 4 - 7, with four being the most common 

outcome.  
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Figure 10: Schematic displaying the sample design used at sites within Lake MacLeod. Insert: Gradsect 

method utilises changes in sediment elevation to determine plot placement.  The sampling design and 

method is structured to best capture the key environmental parameters accounting for variability in 

mangrove dominated vegetation characteristics.  

 

3.2.2 Vegetation Sampling 

The following mangrove vegetation variables were measured in each plot: 

Samphire cover 

Samphire cover was estimated visually as a percentage cover of the 100 m² plot. This 

percentage was then converted to m².  

Mangrove trees 

Tree density 

The mangrove trees were counted in each plot and expressed as a number per plot (100 

m²).  

 

Cygnet Pond 

Goats Bay 

 

Chirrida Pond 

Whistler Pond 

 

Chirrida Pond 

Neil’s Pond 

Gradsect 

      2 

Gradsect 

       3 

Plots (4 - 7) 

Chirrida Pond 

 Pete’s Pond  

 

Pond/water’s edge 

Elevation changes – negative and positive 

100 m – 180 m 

total length 

Insert: Gradsect method 

Sites 

Gradsect 

      1 
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Canopy cover (CC) 

Canopy cover of each mangrove tree was measured by recording the diameter of the 

widest part of the canopy, and the perpendicular diameter in the same horizontal plane, 

to the nearest mm. Canopy cover (m²) was then calculated for each tree using equation 

1.  

 Canopy cover =  (    )                                                                                                         (Equation 1) 

 A - Widest diameter; B - perpendicular diameter  

Two variables were then determined for each plot; total canopy cover (m²), by summing 

the canopy cover of all trees in a plot and average canopy cover (m²) by averaging all 

trees in a plot. 

Basal area (BA) 

Basal area per plot was estimated by measuring the diameter of the trunk of each 

mangrove tree at 30 cm above either ground level or the basal plate, with a diameter 

tape to the nearest mm. Where trees had multiple trunks, each trunk was measured and 

added together (Clough 1998) and, where there was an exposed basal plate the widest 

point across the plate was measured (Clough, Dixon et al. 1997) . Basal area (m²) was 

calculated for each tree using equation 2.  

 Basal area = (
 

 
)
  

                                                                                                                 (Equation 2) 

D - Diameter 

Once again two variables were determined for each plot as described above, total and 

average.  

Height 

Height was estimated using a measuring staff; the maximum height of the tree was 

recorded to the nearest mm and expressed in metres. Two variables were determined for 

each plot; maximum and average tree height (m). 

Number of dead branches  

Dead branches were counted on each mangrove tree and expressed as average and total 

per plot. 



39 

 

Mangrove pneumatophore density and height 

A smaller 25 cm x 25 cm quadrat was placed in nine locations within the larger 100 m² 

plots (Figure 11) in which mangrove pneumatophores were counted, summed and 

expressed as number per m
-2

. The tallest pneumatophore in each quadrat was also 

measured and expressed as average maximum pneumatophore height per plot (mm).  

 

Figure 11: Sampling locations (quadrats) for pneumatophore and sediment variables within each plot. 

Litter 

Litter cover was estimated as a percentage cover and converted to m² per plot. 

Maximum depth of the litter layer was measured to the closest mm and expressed as the 

maximum litter depth per plot.   

3.2.3 Sediment and Water Sampling 

Sediment elevation relative to the water level of the pond and distance from the pond 

edge were recorded for all plots. In addition, the following environmental variables 

were measured:  

Sediment sampling 

All sediment variables were estimated from three quadrats in each plot (Figure 11). 

Sediment cores (5 cm diameter, metal) were taken to a depth of up to 10 cm. Shallower 

core depths were necessary at some sites due to consolidated layers in the sediment. 

Each sediment core was stored in a plastic bag and placed on ice in a portable cooler. 

Pneumatophore only  

Sediment & 

pneumatophore 10 m x 10 m plot 

Gradsect line 
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Samples were frozen on return to the laboratory until further analysis. Sediment cores 

were collected and variables measured in February and July 2012 to capture seasonal 

effects of rainfall and evaporation.  

Sediment moisture content 

Sediment moisture content (SMC, %) was determined on defrosted sediment cores after 

oven drying at 105ºC (>24 hours), and calculated using equation 3.  

SMC = (
       

  
 )                                                                                                                (Equation 3) 

WW - wet weight; DW  – dry weight  (Buurman, van Lagen et al. 1996)  

As there were no consistent seasonal differences in SMC, data were expressed as an 

average and range per plot.  

Sediment electrical conductivity and pH. 

Sediment electrical conductivity (EC, mS cm¯³) and pH (with and without CaCl2) of 1:5 

water extracts (Al-Busaidi, Cookson et al. 2005; Lara and Cohen 2006) was measured 

using an Orion 5-Star portable Multimeter Kit (pH/ORP/ISE/DO/Conductivity; Thermo 

electron Corporation). As there were no consistent seasonal differences in EC or pH, 

data were expressed as an average and range per plot. 

Sediment clay content 

Sediment clay content (%) was estimated using field texture analysis (McDonald and 

Isabell 1984). The field texture grade categorised the clay content of each quadrat 

sample and was expressed as average % clay content per plot. 

Sediment organic matter content 

Organic matter content (OM, %) was determined by undertaking a loss on ignition 

(LOI) method (Buurman, van Lagen et al. 1996). A crucible two thirds full of sediment 

was placed into a furnace and ignited at 500°C for 2 hours. The mass lost represents the 

OM (%) within the sample it was calculated using equation 4. 

 OM content =       
(      )

  
                                                                                                    (Equation 4) 

OS - mass of oven dried sediment; IS – mass of ignited soil 
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3.3 Data analysis  

To identify for variability in vegetation attributes and how this related to sediment and 

water characteristics, all variables (Table 4) were analysed using a Canonical Analysis 

of Principal Coordinates (CAP) which is a constrained ordination (Primer-E 2009). A 

permutation test was run with a maximum number of permutations set at 9999 using 

Permanova+ (Anderson, Gorley et al. 2008) 

Table 4: Vegetation and environmental variables used in the data analysis for identifying environmental 

and vegetation relationships. 

Data type Variable Code Unit/plot (100m²) 

Vegetation Mangrove tree density MD density 

 Mangrove tree canopy cover TCC/ACC m² 

 Mangrove tree basal area TBA/ABA m² 

 Mangrove tree height MH m 

 Dead branches on mangrove tree TDB/ADB count 

 Pneumatophore density PD count 

 Pneumatophore max. height PH mm 

 Samphire cover SC m² 

 Litter cover TLC m² 

 Litter depth LD mm 

Environmental Distance from pond Distance m 

 Sediment elevation Elevation mm 

 Sediment moisture content SMC % 

 Sediment moisture content diff. SMC differ % 

 Sediment electrical conductivity EC mS/cm 

 Sediment electrical conductivity 

diff. 

EC differ mS/cm 

 Sediment pH pH pH 

 Sediment clay content Clay content % 

 Sediment organic matter content OM % 

 

The results of the permutation test revealed the strength of these canonical relationships 

and highlighted the main environmental variables that have an association with the 

observed variation in the vegetation variables. To further investigate the relationships 

between hydrological drivers and sediment variables, the significance of the linear 
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regression was determined using Pearson’s correlation coefficient in SPSS Statistics 

V19.0, with the significance level set at p < 0.05. 

The plots were placed into five hydrological categories based on sediment elevation and 

distance from permanent water source. Significant differences between groups in 

sediment variables: SMC, EC, pH, OM and key vegetation variables: Mangrove tree 

height, canopy cover, basal area, average dead branches, density and Samphire cover 

were analysed using One-way ANOVA SPSS Statistics V19.0, with ANOVA and LSD 

Post hoc significance level set at p ≤ 0.05. Finally, plots were grouped based on 

vegetation type and the coefficient of variance (%) was determined for sediment 

variables SMC, EC, pH and OM. 

 

3.4 Results 

3.4.1 Multivariate analysis of mangrove vegetation and environmental 

variables. 

There was a significant canonical correlation between the vegetation and environmental 

variables within Lake MacLeod (p = 0.0089). The canonical analysis of principal 

coordinates (CAP) revealed that the correlation eigenvalues (λ) for axes one and two 

were high at 0.6896 and 0.4755 respectively (Figure 12). Pearson correlation values 

indicate that the environmental variables responsible for the spread of data points along 

CAP axis one are average SMC (0.836), distance from pond (-0.386) and average 

sediment OM content (-0.244). Mean sediment EC (-0.667), and the temporal difference 

in sediment EC (February and July) (0.469) are responsible for the spread of data points 

along CAP axis two (Figure 12). A negative value indicates that the variable decreases 

along the axis whereas a positive value indicates it increases along the axis. 

Mangrove tree density, average height, and total canopy cover as well as 

pneumatophore density and maximum height, correlated positively with axis one 

(Figure 12). Total Samphire cover, litter cover and the average dead number of branches 

per tree all correlated with axis two.  Samphire cover increased whereas total litter cover 

and average number of dead branches decreased along CAP axis two (Figure 12). 
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Based on the output of the CAP, the following patterns are evident: 

1. Mangrove tree height, total canopy cover, and pneumatophore density and 

maximum height increased with SMC.  

2. Dead branches per mangrove tree and total litter cover increased with sediment 

EC.  

3. Plots with greater Samphire cover had greater seasonal variation (range) in 

sediment EC.  

4. Mangrove tree canopy cover, height and basal area increased with decreasing 

sediment EC and increasing SMC. 

5. With greater distance from the pond, mangrove tree density, pneumatophore 

density and maximum height all decrease. Relative elevation did not correlate 

with vegetation characteristics.  
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Figure 12: Canonical analysis of principal ordinations of mangrove-dominated vegetation and environmental variables. Each point represents a plot. Left: Vegetation 

variables overlayed; SC – total Samphire cover, MD – Mangrove tree density, PD - pneumatophore density, PH – average maximum pneumatophore height, MH – 

average mangrove tree height, TCC - total mangrove tree canopy cover, TBA - total mangrove tree basal area, ACC – average mangrove tree canopy cover, TDB - 

total dead branches on mangrove trees, ABA – average mangrove tree basal area, LD - maximum litter depth, TLC - total litter cover and ADB – average dead 

branches on mangrove trees. Right: Environmental variables overlayed; SMC – average sediment moisture content, SMC differ - temporal difference in SMC, EC – 

average sediment electrical conductivity, OM content – average organic matter in sediment, Distance - from the pond edge, pH – average sediment pH, Clay content – 

clay content in sediment, Elevation – relative sediment elevation in relation to the level of the water surface and EC differ - temporal difference in sediment EC.     
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3.4.2 Hydrological categories and sediment attributes 

The influence of hydrologically relevant variables i.e. elevation and distance from pond, 

on environmental conditions is investigated in this section. 

SMC is higher within ~80 m of the pond edge and on average is lower further away 

from a pond, although there is variation between ponds. SMC was high at plots within 

~30 m from the pond edge and ranged between 25% - 45%. At relative elevations 

between 0 – 500 mm, the SMC varied from 20% - 40%. At elevations greater than 500 

mm, high SMC was restricted to close to the pond edge. SMC of elevated, but more 

distant plots were always low (Figure 13).  

 

Figure 13: 3D scatterplot revealing relationships between sediment moisture content, relative sediment 

elevation and distance from pond. 
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There was marked variability in sediment EC across the Lake MacLeod plots (Figure 

14). Sediment EC was generally lower at plots near the pond edge and increased with 

elevation, irrespective of distance. 

 

 

 

Figure 14: 3D scatterplot indicating the relationship between sediment EC, relative elevation and 

distance from pond. 
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Sediment pH was lower at the pond edge and increased with elevation (Figure 15). 

 

 

 

 

Figure 15: 3D scatterplot indicating the relationship between sediment pH, relative elevation and 

distance from pond.  
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Overall, sediment OM increased with increasing distance and elevation. Consistent 

patterns were observed at > 500 mm elevation where sediment OM was highest (Figure 

16). 

 

 Figure 16: 3D scatterplot indicating the relationship between sediment OM content, relative elevation 

and distance from pond.  

The complexity of the relationships between hydrological ‘drivers’ (elevation and 

distance relative to pond) and sediment variables within the Lake MacLeod system 

highlights the importance of depicting interaction between multiple variables when 

categorising plant habitat. 

There was no consistent relationship between distance from pond and elevation (Figure 

17). At Goat Bay relative sediment elevation increased with distance from pond 

whereas this relationship was variable at Whistler Pond and Neil’s Pond. Sediment 

elevation did not change with distance at Pete’s Pond. All plots ranged from 243 mm 

below pond water surface to 1501 mm above, with distances up to 200 m from the pond 

at Goat Bay and Whistler Pond and 100 m from the pond at both Neil’s and Pete’s 

ponds. Five different categories of hydrological conditions were identified based on the 

relative elevation and distance from pond (Figure 17). 
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Figure 17: The position of individual plots based on distance from the pond edge and elevation relative to 

pond water level. Groupings (categories) are based on similar elevation and distance characteristics: 1) 

At or below pond water surface height, close to pond [NL] (4 plots); 2) Above pond water surface height, 

close to the pond [NH] (4 plots); 3) At or below pond water surface height, away from pond [FL] (21 

plots); 4) Increasing elevation with increasing distance from the pond [FH] (11 plots); and 5)Above pond 

water surface height, away from pond, but elevation not increasing with distance from pond [FF] (15 

plots). 

Plots with low elevation close to pond (NL) had high mean SMC and variable sediment 

EC. Sediment pH was lowest in NL plots and OM content was variable. Plots with high 

elevation close to pond (NH) had high average sediment EC and pH with relatively 

consistent OM content. Plots with low elevation away from pond (FL) are extremely 

varied in nature; on average sediment EC was lower than seawater, but the range was 

vast. These plots had reasonably high SMC with a broad range of values recorded and 

extremely varied sediment pH and OM content. The plots with high elevation away 

from pond (FH) had sediment EC close to seawater and low average SMC, while 

average sediment OM content and pH were high. Plots that were above the pond water 

surface height and away from pond, but elevation not increasing with distance from 

pond, (FF) varied in sediment EC, but the average was just higher than seawater (Table 

5). 
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Table 5: Mean (±SE) and range values of sediment variables for plots in each hydrological category. 

Subscript letters signify significant differences between hydrological categories (similar letters denote no 

difference) according to 1-way ANOVA and LSD post-hoc test (Significance level of 0.05). 

                                             Environmental variables 

   SMC (%) EC (mS/cm) pH OM (%) 

H
y

d
ro

lo
g

ic
a

l 
ca

te
g

o
ry

 

NL Mean 53.71 ± 1.87ac 41.25 ± 2.80a 8.93 ± 0.04a 7.32 ± 0.42a 

 Range 37.71 – 65.77 14.43 – 63.88 8.49 – 9.27 3.44 – 10.25 

NH Mean 41.84 ± 1.71bcd 45.43 ± 5.0a 9.44 ± 0.05b 7.44 ± 0.19a 

 Range 37.59 – 50.62 26.76 – 68.35 9.28 – 9.63 6.39 – 8.22 

FL Mean 48.65 ± 2.1ac 30.32 ± 2.94a 9.08 ± 0.06c 6.13 ± 0.42b 

 Range 38.42 – 70.02 12.05 – 52.61 8.48 – 9.43 2.97 – 9.09 

FH Mean 31.72 ± 1.03bd 38.07 ± 1.57a 9.36 ± 0.01b 8.88 ± 0.33c  

 Range 22.32 – 41.22 25.22 – 54.49 9.26 – 9.46 4.97 – 11.91 

FF Mean 39.54 ± 2.79bd 36.98 ± 1.95a      9.11 ± 0.06 c 8.21 ± 0.2a 

  Range 23.18 – 55.13 19.11 – 42.73 8.86 – 9.39 6.25 – 9.00 

 

SMC in plots within FH were significantly different to hydrological categories NL (p < 

0.001) and FL (p < 0.05). Sediments at lower elevations (NL & FL) were also 

significantly different to FF (p < 0.001). Sediment EC within plots across all 

hydrological categories were not significantly different; there was high variability 

within each category. Sediment pH within plots grouped in NL hydrological category 

was significantly different to all other hydrological categories (p < 0.005). Sediment pH 

within plots grouped in hydrological categories NH and FH were significantly different 

to plots grouped in FL and FF (p < 0.0001). OM content within sediments was 

significantly different between FL and FH and all other hydrological categories (p < 

0.05).  

3.4.3 Mangrove vegetation attributes in each hydrological category 

Vegetation present at Lake MacLeod consisted of both mangrove trees and Samphire, 

with greatest densities occurring close to the pond edge at lower elevations [NL]. 

However, mangrove tree density was also high at distances further from the pond at 

high elevation [FH], particularly where small vents/seepages occurred. Samphire 

vegetation dominated those plots which occurred above pond water surface height and 

at greater distances from pond (or small seepages) and where mangrove trees were least 

common [FF].  
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Mangrove trees found within plots close to the pond at low elevations [NL] were taller, 

with greater basal area and canopy cover than plots found anywhere else in the study 

site. This category is also where the average number of dead branches found on 

mangrove trees was highest. Plots close to the pond, but at higher elevation [NH], had 

trees similar in height to trees found in NL, but they had lower total basal area and 

canopy cover. Plots at a greater distance from the pond [FL & FH] had mangrove trees 

that were shorter with smaller total basal area and canopy cover. Trees within plots 

above pond water surface height and away from the pond, but elevation not increasing 

with distance from pond [FF], were short (≤ 1m) with small canopies and basal areas. 

This hydrological category at Lake MacLeod supported sparsely scattered small 

mangrove trees with a high cover of Samphire vegetation (Figure 18). 

Mangrove tree BA was significantly lower with greater distance from pond edge, trees 

growing in hydrological category NL were significantly different to trees in FF (p < 

0.001) and FH (p < 0.05). The other significant differences in BA was between trees in 

hydrological categories NH and FL and FF (p < 0.01 & p < 0.05, respectively) (Figure 

18).  Mangrove tree height was significant different across many of the hydrological 

categories, trees growing in NL, NH and FL were significantly different to FH and FF 

(p < 0.001), but trees in the NL category were significantly taller than in FL (p < 0.05) 

(Figure 18). Mangrove tree CC was significantly different between trees in hydrological 

categories with low elevation and close to pond edge NL (p < 0.001), NH (p < 0.001) 

and FL (p < 0.001) and plots with greater distance from pond edge FH and FF (Figure 

18). Average dead branches on mangrove trees were not significantly different between 

hydrological categories, but on average trees in NL had more dead branches than any 

other category (Figure 18). Hydrological category FF significantly differed in mangrove 

tree density to hydrological categories NL and FH (p < 0.05). Hydrological categories 

NL and FF significantly differed in Samphire cover to plots in categories NH (p < 0.05) 

and FL (p < 0.05) (Figure 18). 
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Figure 18: Mangrove tree and Samphire vegetation variables describing Lake MacLeod vegetation 

importance and presence based on hydrological categories present. 1. NL - Low elevation close to pond 

[n=4], 2. NH - High elevation, close to pond [n=4], 3. FL - Low elevation, away from pond [n=21], 4. 

FH - High elevation, away from pond [n=11], 5. FF - Mid elevation, mid distance from pond [n=15]. 

Subscript letters signify significant differences between hydrological categories (similar letters denote no 

difference) according to 1-way ANOVA and LSD post-hoc test (Significance level of 0.05). 
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3.4.4 Association between specific vegetation types and sediment 

conditions. 

Associations between environmental variables and the presence of vegetation, 

Mangrove only, Samphire only and Mangrove + Samphire plots are presented in Figure 

19. Most of the plots sampled within the study gradsects contained both Mangroves and 

Samphires. In contrast, plots that were bare or contained just Mangrove or Samphire 

were less common (Appendix 1.1).  

Plots containing Mangrove only vegetation had the smallest range in SMC with a 

coefficient of variation (CV) value of 14.8%. Plots with Samphire only (CV of 25.9%) 

had no outliers but variation was high and plots with no vegetation had low variation 

with a CV value of 17.3%. The plots containing Mangrove and Samphire vegetation 

included the maximum range of SMC when inclusive of points outside the 10
th

 and 90
th

 

percentile, this group of plots contained many outliers. The CV value of 28.4% supports 

this variation (Figure 19). 

Plots with both vegetation types present had the broadest range of sediment OM content 

with many outliers above and below the 10
th

 and 90
th

 percentile range (CV of 28.2%), 

but it was the plots with mangrove trees only which had the highest CV value of 33% 

(Figure 19). Sediment pH was consistent across all plots ranging from alkaline (~8.4) to 

highly alkaline (~9.9). This consistency is supported by the following low CV values; 

Bare plots CV of 3.1%, Mangrove trees only CV of 3.9%, Samphire shrubs only CV of 

3.2% and plots with both Mangrove and Samphire vegetation had a CV of 3%. 

Coefficient of variances for average sediment EC was high across all vegetation group 

types. The broadest range was in plots which contained Mangrove trees only with a CV 

value of 41% and lowest in plots with Samphire vegetation only (CV of 33.8%). A 

broad range of sediment EC was identified within plots that had both vegetation types 

(CV of 36.4%), with many outliers presented in the data.  
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Figure 19: Vegetation type groups (Samphire [n=9], Mangrove trees [n=8], Samphire and Mangrove 

[n=32] and bare [n=10]) and key environmental variables relating to sediment condition (mean moisture 

content, mean organic matter content, mean pH and mean electrical conductivity) at sites within Lake 

MacLeod. Box plot lower line is the 25
th

 percentile, the middle line represents the median, the upper line 

is the 75
th

 percentile and error bars represent the 10
th

 and 90
th

 percentile. Black dots represent plots 

outside this range.    

3.5 Discussion 

This chapter examines the relationship between environmental conditions and mangrove 

dominated vegetation characteristics at Lake MacLeod. Significant associations 

between hydrological and sediment characteristics were revealed. The inland mangrove 

system at Lake MacLeod has highly variable environmental factors both spatially and 

temporally, (Figure 20) contributing to the variability observed in hydrological 

conditions, sediment properties and vegetation characteristics. The dominant factors 
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associated with variability in mangrove vegetation presence and structure were relative 

elevation and distance from a consistent water source. The interaction between these 

factors represents subtle hydrological and sediment differences that influence mangrove 

vegetation. 

The apparent environmental variables influencing vegetation characteristics were 

sediment variables such as SMC and OM content, average and seasonal range in 

sediment EC and the hydrological variable distance from pond (Figure 12). Distance 

from a consistent (continuous discharge) water source and elevation in relation to the 

water source are two well documented factors contributing to hydrological condition, 

and ultimately mangrove presence and importance within mangrove dominated stands 

(Paliyavuth, Clough et al. 2004; Naidoo 2010). Overall, relative elevation increased 

slightly with increasing distance from the pond, although no consistent pattern was 

identified between these factors. This inconsistency prompted grouping of plots into 

hydrological categories based on each plot’s position according to relative elevation and 

distance from the pond edge; these categories were useful for exploring the complex 

relationships influencing vegetation characteristics.  

Typically, hydrological conditions within mangrove stands vary along an environmental 

gradient; differences in vegetation attributes along the gradient depend on elevation, 

slope and frequency of flooding. In Australian coastal mangrove systems, habitats 

closer to permanent water and at lower relative elevations typically have higher average 

SMC and sediment EC is equivalent to that of seawater (52 mS/cm) or lower with less 

fluctuation (Kenneally 1982). With increasing distance from permanent water and 

higher elevation, SMC and sediment EC have been shown to be lower due to increased 

influence from freshwater inflow (Medina and Francisco 1997; Naidoo, Hiralal et al. 

2011). In the analysis of hydrological categories (habitats) at Lake MacLeod, it was 

revealed that SMC was highest at low elevations close to discharging ponds [NL] and at 

low elevations away from ponds [FL]. At low elevations away from the pond edge, high 

SMC and surface water can persist due to the existence of smaller vents and seepages 

distributed throughout the greater lakebed. SMC decreased with increasing elevation 

both near and (typically) far from discharging ponds. [FH & FF]. Regular daily water 

movement is also common, caused by local trade winds that push water into parts of the 

lake bed at lower elevation (Shepherd 1991).  
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Variability in sediment EC can also be attributed to the local climate, micro-elevation 

and the complex geomorphology and topography found at Lake MacLeod (Figure 20). 

Average sediment EC was highest near the ponds (NH) where consistent seawater 

discharge and evapoconcentration occurs, due to the extreme variability there were no 

significant differences between hydrological categories (Table 5). With subtle increases 

in elevation near the ponds, sediment EC increased most likely due to extenuated 

capillary rise and evaporation of seawater. Lowest average sediment EC was found at 

greater distances from the ponds at low elevations [FL & FF] where the influence of 

seasonal and episodic freshwater inflow may reduce concentration of salts in the surface 

sediments.  

 

Figure 20: A conceptual diagram displaying the key environmental drivers that may contribute to the 

hydrological regime currently observed at Lake MacLeod. 

Sediment OM content had a significant relationship with elevation but not with distance 

from pond and reflects the presence of vegetation, as litter accumulation, entrapment of 

sediment and shallow roots raise sediment elevation with time (Saintilan and Williams 

1999).  
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Mangrove vegetation distribution and structure reflect habitat heterogeneity 

The presence of mangrove and Samphire vegetation is dependent upon the extent of 

flooding (Matthijs, Tack et al. 1999). In the case of coastal and riverine mangroves, 

denser and taller stands occur under conditions of consistent flooding by marine water 

(Dawes, Siar et al. 1999; Matthijs, Tack et al. 1999; Naidoo 2010). The width of the 

mangrove fringe is known to reflect tidal influence and elevation characteristics 

(Saenger 1982; Matthijs, Tack et al. 1999; Feller, Lovelock et al. 2010). At Lake 

MacLeod, mangrove tree cover, basal area and height were highest close to ponds and 

consistent discharge of marine water. However, due to the absence of significant tidal 

variation, the width of the ‘high biomass’ mangrove fringe surrounding the ponds was 

comparatively narrow. Samphire cover was also highest close to the pond perimeter.  

Elevation above and distance from consistent water supply is known to reduce 

mangrove stand biomass in other inland (Lugo 1981; Thomas, Logan et al. 1992; 

Vilarrubia 2000) and coastal mangrove systems (Dawes, Siar et al. 1999; Paliyavuth, 

Clough et al. 2004; Lara and Cohen 2006). At Lake MacLeod, with increasing distances 

away from ponds mangrove cover, basal area and height decreased as the influence of 

drying and episodic freshwater inflow increased. In some habitats such as Goat Bay, the 

fringe of mangroves was wider and density remained high with increasing distance and 

elevation, although cover, basal area and height decreased with distance from pond 

edge. This is probably due to the influence of easterly wind-driven waves extending the 

width of the wetted perimeter of the pond. This is representative of other inland 

mangrove stands such as Inagua (Lugo 1981), Madora salt marshes (Beard 1967) and 

Barbuda (Stoddart, Bryan et al. 1973). 

Salinity gradients and their influence on mangrove stand structure and condition has 

been previously reported (Menge and Sutherland 1987; Hogarth 1999; Matthijs, Tack et 

al. 1999; Ajmal Khan and Aziz 2001; Lara and Cohen 2006; Feller, Lovelock et al. 

2010) and suggest that sediment EC is a key environmental determinant of mangrove 

habitat. At Lake MacLeod, sediment EC did indeed associate with vegetation attributes 

as reflected in the CAP analysis. Biomass attributes such as cover and basal area 

increased with sediment EC and both were associated with close proximity to pond 

edge. Of note is the correlation between EC and number of dead branches found on 

mangrove trees. The greatest extent of mangrove canopy dieback was recorded at plots 

close to the pond edge where sediment EC was also elevated. However, one should be 
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cautious about interpreting this canopy dieback as a function of higher sediment EC. 

Mangroves at the pond edge are also at the lowest relative elevation and therefore 

subjected to greater frequency and duration of inundation. Significant freshwater inflow 

and prolonged flooding of mangroves have been reported at Lake MacLeod (Ellison 

2001) and it is highly likely the observed canopy dieback is a result of interaction 

between prolonged submergence of pneumatophores (Ellison 2009) and elevated 

sediment EC. The effect of both variables is unlikely to be simultaneous but cumulative 

over time. A. marina habitat salinities have been reported to be 5 mS/cm - 85 mS/cm 

(Gordon 1993; Sobrado 1999) and Lake MacLeod sediment EC represents the complete 

range of salinities with the higher end of this range occurring commonly (47.1 – 75.4 

mS/cm) (Streamtec Pty Ltd 2003). 

Consistency of marine water supply appears to be a key environmental variable 

responsible for the presence and persistence of mangrove vegetation at Lake MacLeod. 

Ellison & Simmonds (2003) suggested that frequency, quantity and quality of water 

supply influenced Lake MacLeod vegetation condition. The environmental gradients 

identified at Lake MacLeod in the current study support this suggestion and represent 

the interaction between discharge of marine water, evapoconcentration and infrequent 

freshwater inflow from the catchment.  The absence of tidal fluctuation limits the extent 

of hydrological and sediment characteristics that are optimal for mangrove growth, as 

represented by structural attributes. Consistency of marine discharge therefore appears 

to be critical for maintaining a narrow hydrological envelope that supports optimal 

mangrove productivity in this inland mangrove system. How the optimal productivity at 

Lake MacLeod compares to reported high productivity coastal systems is unknown, 

however Medina and Francisco (1997) suggest that with increasing salinity (e.g. 

through evapoconcentration of consistent marine discharge) and reduced frequency of 

freshwater inflow, mangrove productivity will be comparatively low. The following 

chapter focuses on this comparative assessment of mangrove productivity and water use 

efficiency. 

 

 

 

 



 

59 

 

4 Chapter Four – Ecophysiological condition and morphological 

features of Avicennia marina growing in a semi-arid climate 

4.1 Introduction  

Avicennia marina has the broadest global distribution of all mangrove species; from 

tropical - temperate and high rainfall - semi-arid climates (Figure 21). It occupies a 

diversity of habitats within the intertidal zone and can tolerate both variable and a wide 

range of hydroedaphic conditions (Duke 2006). This means that the species A. marina 

can be exposed to a wide range of environmental conditions, which vary over daily, 

seasonal or annual cycles such as; water availability (Paliyavuth, Clough et al. 2004), 

salinity (Medina and Francisco 1997; Naidoo 2006), irradiance (Ball and Sobrado 

1998), temperature (Stewart and Popp 1987) and nutrients (McKee, Feller et al. 2002; 

Martin, Bruhn et al. 2010). Across this range of environmental conditions A. marina 

exhibits a broad range of morphological features (Clough 1984; Naidoo 2010), 

anatomical characteristics (Suarez and Medina 2006) and ecophysiological responses 

(Sobrado 1999; Wei, Yan et al. 2008; Feller, Lovelock et al. 2010; Naidoo, Hiralal et al. 

2011).  

 

Figure 21: Global distribution of Avicennia. Green areas indicate presence (MangroveWatch, Australia). 

  

4.2 Avicennia marina 

Avicennia has been identified as the most salt tolerant mangrove genus, tolerating 

brackish to hypersaline conditions (Hutchings and Saenger 1987; Sobrado 1999). There 

are various structural (Naidoo 2006), physiological (Stewart and Popp 1987) and 

biochemical processes (Naidoo, Hiralal et al. 2011) that mangroves use to regulate 

uptake and accumulation of salt (Popp, Polania et al. 1993).  A. marina regulates salt 
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movement primarily via uptake of salt and then secretion from leaves (Clough 1984), 

although other physiological processes are also involved in salt management (Liang, 

Zhou et al. 2008).  

4.3 Plant responses to salinity and water stress 

Although many environmental conditions influence plant traits, this study focussed 

primarily on salinity and soil moisture, so this will be the focus of the following 

discussion. Higher salt stress is often associated with water stress, and due to this 

relationship, these stressors are often divided into two components; ionic effects within 

cells and stress derived from osmotic relations at the leaf and root level (Yeo 1983). 

These stresses affect intrinsic photosynthetic capacity leading directly to reduced 

productivity (Medina and Francisco 1997). Research indicates that these stressors and 

responses are not independent; with growth and productivity affected by a complex mix 

of environmental factors (Krauss, Lovelock et al. 2008). 

Mangrove trees demonstrate variability in their water-use efficiency and photosynthetic 

rates and this depends upon the climate and hydrological environment in which they are 

growing. Photosynthetic rate is primarily regulated by irradiance but factors such as 

salinity and water stress are also important (Lovelock and Ball 2002). For example, 

down-regulation of photosynthesis occurs under hypersaline conditions (Naidoo, Hiralal 

et al. 2011). This occurs due to the changes in concentration of ions in the leaf cells, in 

particular; K
+
, Na

+
, Cl‾ (Ball, Chow et al. 1987; Suarez and Medina 2006), which put 

extra pressure on intrinsic processes (Krauss, Lovelock et al. 2008). For example 

Naidoo et al. (2011) found that under chronic hypersalinity and low soil water potential, 

there were high soil concentrations of Cl‾, Na
+
, K

+
, Ca

2+
, and Mg

2+
. These 

hydroedaphic conditions induced higher concentrations of Na
+
 and Cl‾ within leaf 

material and reduced uptake of K
+
, Ca

2+
 and Mg

2+
 leading to an ion imbalance within 

the leaves. Due to the changes in leaf ion content under different salinity and soil water 

conditions, ion content is a reliable indicator of the local hydroedaphic conditions (Ball 

and Farquhar 1984).  

Mangrove tree growth is dynamic, rates can change across scales of months to years, 

therefore numerous measures are used to represent various scales of growth (Alongi 

2002). Climate and local hydrological regimes, particularly irradiance, temperature 

(Clough 1993) , salinity and water stress (Naidoo 2006) and sediment quality influence 

the production and growth of mangrove stands (Clough 1992). Rate of shoot growth is a 
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commonly used short-term measure of plant productivity (Ball 1988b). Salinity stress 

and low water potential generally results in a decline in plant productivity, which is 

directly, but not solely linked to a decrease in photosynthetic capacity (Ball 1988b; 

Gonzalez-Mendoza, Espadas y Gil et al. 2011). These stressors also influence the 

morphology of leaves. Naidoo (2010) established that A. marina exposed to irregular 

tidal inundation and hypersaline conditions developed thicker leaves with higher 

specific leaf weight (SLW) and lower specific leaf area (SLA). These morphological 

features are strategies to reduce water loss, which results in a decline in photosynthetic 

rate and therefore reduced growth (see summary; Table 6).  

Variation in the biomass and form of trees is also influenced by environmental 

conditions, particularly soil moisture and salinity. For example A. marina displays a 

range of structural forms from tall to dwarf trees, attributed to environmental 

differences not genetic variation (Lin and Sternberg 1992a; Medina and Francisco 1997; 

Naidoo 2006; Naidoo, Hiralal et al. 2011). Typically aboveground biomass is reduced 

in semi-arid climates at higher elevations and with increased distances from permanent 

water sources (Lin and Sternberg 1992a; Naidoo 2010). The total aboveground biomass 

is often considered an estimate of long-term productivity of a mangrove forests (Clough 

and Scott 1989).  

4.4 Interactions with water-use efficiency, photosynthesis and 

productivity 

Medina & Francisco (1997) proposed that the rates of photosynthesis, productivity and 

water-use efficiency (WUE) of a number of mangrove species including Avicennia were 

influenced by the interactions between salinity and freshwater supply. They presented 

this model over two different climate types with contrasting annual rainfall; humid and 

arid, and included three different hydrological regimes; fringing mangroves on an arid 

coast, fringing mangroves on a humid coast and riverine mangroves on a humid coast. 
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Figure 22: A prediction of where the different mangrove stands from this study would be positioned 

within the E. Medina & M. Francisco’s hypothetical model. This version displays the interactions 

between salinity and water availability with both factors relating directly to hydrological regime at sites. 

(Medina and Francisco 1997). ** indicates the stands from Medina & Francisco’s study, wet (average 

annual rainfall - 1892 mm) and dry (average annual rainfall - 643 mm). 

Their model predicts that as there is an inverse relationship with salinity and freshwater 

supply, mangroves exposed to greater salinity and less freshwater would have a higher 

water-use efficiency and lower photosynthetic rate and productivity compared to those 

exposed to higher amounts of freshwater and lower salinity. This is attributed to the fact 

that photosynthesis and WUE are interrelated: as WUE increases the rate of 

photosynthesis slows, resulting in reduced growth (Alongi 2009). This model does not 

make predictions for inland mangrove systems or riverine mangroves in arid climates. 

Here, we predict that compared to all other hydrological regimes inland systems would 

have less freshwater supply and greater salinity; as they are isolated from rivers with the 

fresh water and flushing that these bring, additionally they are not exposed to tidal 

flushing but have a continual supply of salt-water entering ponds and a high evaporation 

rate. Therefore, mangroves growing in these habitats would have greater water-use 

efficiency and lower photosynthesis and productivity compared to all other habitats with 

different hydrological regimes (Figure 22, Table 6). In contrast, coastal riverine 

mangroves in arid climates would be intermediate to arid fringing mangroves and 
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humid mangroves as they would have relatively more fresh water input and flushing, 

both from river and tidal flow compared to coastal fringing mangroves in arid climates.   

Table 6: Typical responses to environmental conditions within a range of hydrological habitats which 

mangroves exist. Arid fringing, Humid fringing and Humid riverine characteristics are derived from the 

Medina and Francisco model (Figure 22). Arid inland and Arid riverine are predictions. Subscripts refer 

to additional references which support the Medina and Francisco model or guided the predictions. 

Variables Arid Humid 

 Inland Fringing Riverine Fringing Riverine 

WUE   very high 

2,7,16,17 

high 2,7,16,17 moderate 

7,15,2 

low 7,15,17, 16 very low 7,15,2 

Photosynthesis   very low 

9,18,12,1,8 

 low 9,18,12,1,8 moderate 

18,12,13,1 

high 18,12,13,1 very high 

18,12,13,1 

Growth  

(short-term) 

very low 7,4 moderate/low 

7,4 

moderate 7,4 high 7,4 very high 7,4 

Above ground 

biomass  

(long-term) 

very 

low/low 

9,11,1  

moderate 9,1 high 11,1 high 11,1 very high 11,1 

Specific leaf 

weight  

very high 

10,18 

high 10,7,18 moderate 

10,7,18 

low 7,18 very low 7,18 

Specific leaf 

area  

very low 

10,8 

low 10,8,7,17 moderate 7 high 7,17 very high 7  

Tree height  very low 

9,8,11,10 

moderate 

17,9,8,10,16 

high 7,11,5 very high 

11,5,17,10,16 

very high 7,11,5 

Leaf Chloride 

content 

very high 

19 

high 19 moderate 19 low  19 very low 19 

Photochemical 

efficiency   

very low 9, 

10 

low 9, 10,14 moderate 

14,13 

high 13 very high 14,13 

 

[1] (Suarez and Medina 2006); [2] (Ball and Sobrado 1998); [3] (Krauss, Lovelock et al. 2008); [4] 

(Martin, Bruhn et al. 2010); [5] (Lara and Cohen 2006); [6] (Lugo, Cintrn et al. 1982); [7] (Medina 

and Francisco 1997); [8] (Naidoo 2010); [9] (Naidoo 2006); [10] (Naidoo, Hiralal et al. 2011); [11] 

(Ross, Ruiz et al. 2001); [12] (Ball and Farquhar 1984); [13] (Gonzalez-Mendoza, Espadas y Gil et 

al. 2011); [14] (Sobrado and Ball 1999); [15] (Wei, Yan et al. 2008); [16] (McKee, Feller et al. 

2002); [17] (Lin and Sternberg 1992a); [18] (Lugo, Medina et al. 2007); [19] (Popp 1984). 
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Here we build on the Medina Francisco model by predicting, not only photosynthesis, 

productivity and water-use efficiency but additional traits that have been shown to be 

involved in the plant processes associated with salinity and water stress such as 

photosystem efficiency, leaf ionic composition, specific leaf size and weight and tree 

structure (Table 6).  

Due to the salinity levels, freshwater delivery and flushing conditions expected across 

these habitats, we predict that mangrove stands will express traits across a gradient from 

inland, to arid coastal fringing, to arid coastal riverine and then to humid coastal 

fringing and humid coastal riverine, which are not part of this study, but have been 

presented previously by Medina & Francisco (1997). Like the variables water-use 

efficiency, photosynthesis and productivity, other plant traits such as specific leaf area 

and weight and tree height would also vary across this gradient, from the smallest, 

densest leaves at the inland sites up to larger and less dense leaves at the humid riverine 

sites. Chloride content of leaves is also expected to reflect increased salinity exposure 

with greater chloride content at the inland sites, followed by coastal fringing and then 

coastal riverine. Finally plants are likely to be most stressed at the inland sites due to 

high salt exposure and would have the lowest photosynthetic efficiency here. 

This study will fill a number of gaps. Firstly we will assess the relationship between 

water-use efficiency, photosynthesis and productivity of the stress tolerant mangrove A. 

marina at arid inland, coastal fringing and coastal riverine habitats. Two of these 

habitats, inland and semi-arid coastal riverine have not been investigated before and will 

add to the model of Medina and Francisco (1997). Secondly, we will examine the 

relationship between key vegetation traits that vary with salinity and sediment 

conditions among inland and coastal mangrove stands in semi-arid environments. 

This study has two main investigations. Firstly to compare the productivity, water-use 

efficiency, morphological features and physiological attributes of mangrove A. marina 

growing within a semi-arid climate at both coastal and inland locations. The following 

hypothesis was tested: 

 There is no significant difference in the water-use efficiency, photosynthesis, 

productivity and other key ecophysiological traits of the mangrove Avicennia 

marina in a semi-arid inland marine habitat compared to a coastal habitat. 
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Secondly, to examine the relationship between the environmental and hydrological 

conditions and the ecophysiological features of the mangrove Avicennia marina in 

semi-arid inland, coastal and riverine habitats.  

4.5 Materials and Methods 

4.5.1 Sampling Design 

Four sites were sampled in Lake MacLeod which constituted the inland region and four 

locations were sampled along the coast and in the Gascoyne River, which constituted 

the coastal region. At the inland sites, the same plots as described in Chapter 3 were 

sampled. There were three gradsects running perpendicular to the pond edge with 

between four – seven plots (10 x 10 m) (Chapter 3; Figure 10). At the coastal sites, there 

were two sites selected along the river edge (Riverine mangroves) and two along the 

coast (Coastal mangroves). At the riverine mangroves sites, there was a narrow band of 

mangrove trees along the river edge. Here three plots along the river edge were 

sampled, with each plot ~ 20m apart from the next. Whereas at the coastal mangrove 

sites, each stand of mangroves was ~ 100 m wide and three plots were sampled along 

the water’s edge and three at the back of the mangrove stand, farthest from the water’s 

edge (See Chapter 2 for more details). Due to the larger trees at these sites, it was not 

always possible to sample 4 trees in a 10 x 10 m area, so the plots were slightly larger to 

allow sampling of four trees in a similar proximity. Within both the inland and coastal 

regions, a number of hydrological categories or conditions were sampled. The inland 

categories were defined in Chapter 3 and were pooled across the four inland ponds that 

were sampled, as detailed below: 

Inland  

1. At/below pond water level, close to pond (NL, 9 plots) 

2. Above pond water level, close to pond (NH, 7 plots) 

3. At/below pond water level, away from pond (FL, 4 plots) 

4. Increasing elevation with increasing distance from pond (FH, 22 plots) 

5. Above pond water level, away from pond, but elevation not increasing with 

distance from pond (FF, 16 plots) 

The four coastal locations were divided into three hydrological categories  

1. Coastal close to water (N, 2 sites x 3 plots) 

2. Coastal away from water (F, 2 sites x 3 plots) 
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3. Riverine (RN, 2 sites x 3 plots)  

[N] - close to the permanent water source [F] - at a distance from the permanent water 

source [L] - relative elevation below the surface water level [H] - relative elevation 

above the surface water level [FF] - relative elevation above surface water level but not 

increasing with distance. 

  

Figure 23: Location of sites and plots within both inland and coastal regions 

Within each plot a maximum of four trees were measured for a suite of ecophysiological 

traits and environmental conditions. Not all plots at the inland region had four 

mangrove trees within them, therefore numbers of trees in plots varied from one to four 

(Appendix 1.2). The ecophysiological assessment was carried out from the 16
th

 – 23
rd

 of 

July 2012. 

4.5.2 Field sampling 

In February 2012, during the first major data collection described in Chapter 3, up to 

four trees in each plot were tagged for productivity estimates (See details below). Five 

months later all previously attended plots were revisited with the following sampling 



 

67 

 

undertaken. A photograph was taken of each plot and sediment sampling carried out for 

soil moisture content (SMC), sediment salinity (EC), pH and organic matter content 

(OM) following the methods described in Chapter 3 (3.2.3; Figure 11).  

4.5.3 Mangrove sampling 

Eight ecophysiological and morphological measures were taken for each mangrove tree 

(Table 7). These are detailed below. 

Photosynthetic rates and photosynthetic health 

Pulse Amplitude Modulated (PAM) fluorometry was used to estimate the electron 

transport rate (ETR), a proxy for photosynthetic rate, and the photosynthetic efficiency, 

a measure of the photosynthetic health of the plant. The Diving-PAM fluorometer 

(Walz GmbH, Effeltrich, Germany) employs a red light-emitting diode (LED) as the 

measuring light. An internal halogen lamp provides the actinic illumination for rapid 

light curve (RLC) and dark adaptation routines. Ambient light was measured using the 

micro-quantum sensor (Walz GmbH, Effeltrich, Germany) that had been calibrated 

using a Li-Cor quantum sensor (Li-Cor, Lincoln, NE, USA) and is displayed as µmol 

quanta m
-2

 s
-1

. Data transfer and analysis was performed using the PC software 

WinControl Version 3.21(Walz GmbH, Effeltrich, Germany). Both fluorometry 

routines were measured between 8:30am – 11:30am in order to avoid photoinhibition 

influences and standardise as much as possible among sites.  

Relative electron transfer rate 

From each tagged A. marina tree, two of the youngest leaves associated with each tag 

were selected from the exterior of the canopy, either facing north, northeast or 

northwest. A specialized leaf clip was placed on each leaf, one third up the lamina from 

the junction of the petiole on the right-hand side of the midvein. RLCs were measured 

using a preinstalled eight-step routine where the actinic illumination increased with each 

successive step (Heinz Walz GmbH, 1998). Initial irradiance intensity (LC-INT) and 

width (LC-WIDTH) were set to 1 and 10 seconds respectively. Due to field logistics 

two PAMS were used and the same settings were set on each, but the intensity of light 

emitted from each PAM at each RLC step was slightly different. The irradiance (PPFD) 

for each step was as follows 90, 145, 210, 360, 520, 860, 1360 and 2340 µmol quanta 

m‾² s‾¹ for PAM 1 and  47, 125, 190, 325, 395, 660, 860 and 1315 µmol quanta m‾² s‾¹ 

for PAM 2. Relative ETR from each RLC step was calculated using equation 5. 
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                                                                                                         (Equation 5) 

The actual absorbance of incident light in leaves was not measured and the ETR factor 

was set to 0.84, hence it is a relative measure (Schreiber, Gademann et al. 1997). 

Data were exported to Sigmaplot 12 (Systat Software 2012) where ‘regression wizard’ 

was used to fit a curve to the rapid light curve data and estimate the maximum relative 

electron transfer rate (rETRmax) following Ralph and Gademann (2005) (Equation 6). 

Only curves which reached a maximum and either maintained that maximum or 

declined were used in the estimation of rETRmax, all other data are discarded.   

            (
 

   
) (

 

(   )
)

 

 
                                                                                                  (Equation 6)                                                                                 

β - characterises the slope of the RLC where PSII declines. α – is the initial slope of the RLC before the 

onset of saturation.     is a scaling factor defined as the maximum potential rETR. 

From each tree the average of the two readings was calculated. 

Photosystem II health (PSII) 

The maximum quantum yield of photosystem II is observed after the dark adaptation 

routine. This was also performed on two of the youngest leaves from marked branches 

as described above.  Leaves were dark-adapted for 30 minutes and then the potential 

quantum yield of PSII measured (Ralph and Gademann 2005). From each tree the 

average of the two readings was calculated. 

Growth and productivity 

During the February 2012 field trip up to four mature A. marina were tagged, labelled 

and a GPS location recorded within each plot. On each tagged tree four apical shoots 

were selected from the exterior of the canopy, either facing north, northeast or 

northwest and a plastic coated wire was loosely wrapped around the stem just below the 

apical node (branch tag) (Lovelock, Fellar et al. 2007).  

Collection 

On completion of the PAM fluorometry routines, marked branches were removed from 

the tree, put into labelled paper bags and placed into chilled coolers before being frozen 

until laboratory analysis began. Foliage samples were cut from the tree directly below 

the branch tag with the foliar sample including the original apical leaves and any new 

growth. 



 

69 

 

Measurement of growth 

Growth was estimated as total shoot production. All leaves and stems produced over the 

tagging period (February – July) were washed in deionised water and blotted dry. 

Leaves and stems from each tagged shoot were put into labelled paper bags, placed into 

the oven to dry at 70ºC for 48 hours and then weighed.  Total shoot production was 

calculated as g.dry weight/shoot/day: 

    
              

                     
                                                                                                         (Equation 7) 

SP - total shoot production; DW – dry weight 

The average growth per tree was calculated, this measure represents short-term growth 

and represents a portion of the growth period. The average was based on 2 - 4 measures 

depending on the number of tags recovered. 

Long-term productivity 

Above ground biomass was used to estimate long-term mangrove tree productivity. 

Using coefficients for the allometric relationship between A. marina leaf, stem and 

branch dry weight (kg) (W) and stem diameter (cm) (D), above ground biomass was 

estimated (Clough, Dixon et al. 1997). It was calculated using: 

    ( )                ( )                                                                                                   (Equation 8) 

A and B are constants in the equation. This allometric relationship allows for the multi-stemmed nature 

of A. marina.  

The stem diameters were measured for each tagged tree following the methods 

described in Chapter 3 (3.2.2; page 28).  

Tree height 

The height of each tagged tree was measured following the methods described in 

Chapter 3 (3.2.2; page 28). 

Leaf anatomical features 

Foliage samples collected from tagging were used for leaf anatomical feature analysis. 

The youngest most mature leaves were selected with the petiole cut from the leaf, if 

there were two opposing leaves this was performed on both leaves.  Leaf lamina 

thickness (mm) was measured with digital callipers on the right hand side adjacent the 



 

70 

 

midvein at the base of the leaf. Leaf length (mm) was measured from the apex to the 

base of the leaf blade (minus the petiole) and width (mm) was recorded at the widest 

part of the leaf blade. Windias 2.0 PC program (1995 – 2000) supported by a CCD 

camera was used to measure leaf area, which is expressed as mm² (Delta-T Devices 

Ltd.). Each individual leaf was dried in an oven at 55°C for one week and weighed to 

determine the specific leaf weight (SLW, g.cm
-2

): 

      
   ( )

          (  )
                                                                                                                (Equation 9) 

DW – dry weight (Witkowski and Lamont 1991) 

Leaf area (cm
2
) and specific leaf weight were averaged for each tree. 

Water-use efficiency analysis 

Carbon isotope readings were used as a proxy for water-use efficiency as leaf carbon 

isotope ratios (δ¹³C) indicate a time specific WUE of a plant, i.e. it can indicate the 

water transpired for each unit of carbon fixed (Farquhar, Ehleringer et al. 1989). 

Changes in the δ¹³C ratio indicate preferential uptake of  ¹²C above ¹³C, this isotope 

fractionation occurs during CO₂ uptake (Farquhar, Ehleringer et al. 1989). Carbon 

isotope ratios are commonly related to environmental condition (Macfarlane, Warren et 

al. 1999), particularly water quantity and salinity concentrations (Lin and Sternberg 

1992a; Medina and Francisco 1997). Whilst the method is seen as a reliable approach to 

determine WUE, it has only been studied sparingly on mangrove trees in the field 

(Medina and Francisco 1997; McKee, Feller et al. 2002; Wei, Yan et al. 2008). The 

dried leaves used for leaf morphology analysis were pooled for each tree and ground in 

a Retsch oscillating mill (MM 200) at 30 hertz for 4 minutes or until the leaf material 

was pulverized.  The carbon isotope ratio (δ¹³C, ‰) was determined by continuous flow 

isotope mass spectroscopy (Europa Scientific, 20-20 IRMS, Crewe, UK) with 2 mg of 

material using the laboratory standard Vienna PeeDee belemnite (V-PDB). 

Mangrove leaf ion analysis 

The dried, ground samples described above were prepared for Chloride (Cl‾) ion 

analysis. Leaf material (100 mg) was placed into 10 ml plastic eppendorf tubes with ~9 

ml of HNO3 to make a 10 ml solution. The solution was inverted numerous times 

ensuring it was mixed thoroughly. The samples were placed in a preheated oven to 80°C 

for 1 hour and inverted once during the heating process. After an hour the samples were 

removed from the oven and allowed to cool, then inverted again after cooling. All solid 
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material was allowed to settle and from the middle of the solution 0.5 ml was pipetted 

into 50 ml of acid buffer solution (Appendix 1.3).  The concentration of Cl‾ within 

mangrove leaf material was measured with a Corning 956 Chloride Analyzer, units are 

displayed as mg/L. 

Sediment analysis 

Sediment cores from each plot were analysed as described in (Chapter 3; 3.2.3) and the 

following variables derived: soil moisture content (SMC; %), Sediment EC (mS/m), pH 

and Organic matter content (OM, %).  

 

4.6 Data analysis 

To test if there were differences in the water-use efficiency, photosynthesis and 

productivity as well as other key vegetation variables (Table 7) between Inland and 

Coastal mangroves a PERMANOVA routine was run in Permanova+ for Primer 

(Anderson, Gorley et al. 2008) with a maximum number of permutations set at 9999. To 

address the second question, the relationship between A. marina ecophysiology and 

morphological features and sediment conditions across Inland and Coastal sites, all 

variables within Table 7 were included in a CAP, the multivariate constrained 

ordination (Primer-E 2009). In addition, the hydrological categories were overlayed on 

the CAP outputs to examine the patterns in the vegetation due to hydrological 

categories. 
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Table 7: Avicennia marina and environmental variables, measured at Lake MacLeod. These are used in 

data analysis to identify relationships between environmental and ecophysiological and morphological 

features of Avicennia marina. Average for vegetation is calculated per tree and for environment is 

calculated per plot.  

Data Type Variable Code Unit 

Vegetation    

Water-use 

efficiency 

Avg. carbon isotope ratio δ
13

C δ
13

Carbon (‰) 

Photosynthesis Avg. maximum electron transfer rate rETRmax  

Productivity Avg. growth shoot
-1

 day
-1

  SP (sqrt) g.dry 

weight/shoot/day
 

Productivity Total aboveground biomass A/GB (log) dry weight 

(kg) 

Leaf morphology Avg. specific leaf weight SLW g.dry weight/cm
2 

Leaf morphology Avg. specific leaf size LS cm
2 
 

Leaf salt content Leaf chloride content TCC mg/L 

Photosynthetic 

health 

Avg. photochemical efficiency DA yield (Fv:Fm ratio) 

Environmental    

 Avg. sediment moisture content SMC % 

 Avg. sediment pH pH pH 

 Avg. sediment electrical conductivity EC mS/cm 

 Avg. organic matter content OM % 

 

To further investigate the relationships between environmental variables and vegetation 

data, significant variables from the CAP analysis were analysed in a uni-variate manner 

using Sigmaplot 12 (Systat Software 2012). The regression wizard was used to identify 

the best model; both polynomial linear and quadratic equations were fitted and the 

highest r
2 

value determined the best fit. The significance of the fitted model was 

determined in SPSS Statistics V19.0, with significance level set at p < 0.05. The 

variables to test as determined from the CAP analysis were SMC with rETRmax, WUE, 

DA and EC with TCC, LS, A/GB, SP and pH with SLW, WUE, LS, A/GB, SP. In 

addition the relationship between SMC and EC were also assessed. Only the significant 

relationships with an r
2
 greater than 10% were displayed. 
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Finally, although the CAP analysis identified differences between coastal and inland 

mangroves stands, there was also structuring evident due to the hydrological categories 

(i.e. trees from similar hydrological categories grouped together). To investigate these 

relationships further, the environmental and vegetation variables were plotted by 

hydrological category. Sediment variables and key vegetation variables (WUE, ETRmax, 

Growth and Biomass) were summarised within each hydrological category using box 

plots in Sigmaplot (Systat Software 2012). The box plots displayed; median, 25
th

 and 

75
th

 percentile, error bars and black dots representing outliers.  

The mangrove tree variables such as; DA, ETRmax, δ
13

C, A/GB, SLW, LS and TCC in 

each hydrological category were analysed using One-way ANOVA SPSS Statistics 

V19.0. LSD post hoc tests with the significance level set at p ≤ 0.05 was carried out on 

the significant results to determine which hydrological categories were significantly 

different for each variable. If assumptions could not be met in the One-way ANOVA, 

variables were tested in PERMANOVA (Primer-E 2009) with the significance level set 

at p ≤ 0.05; this was only required for SP.  

 

4.7 Results 

4.7.1 Coastal vs. Inland vegetation 

A significant difference between Inland and Coastal mangrove trees is evident when 

comparing the vegetation variables relating to morphological and ecophysiological 

characteristics (PERMANOVA p = 0.0001). The main vegetation variables accounting 

for the separation of coastal and inland mangrove trees are associated with axis one of 

the CAP analysis (Figure 24). These include mangrove leaf size (LS), total aboveground 

biomass (A/GB) and total shoot production (SP) which are greater at the coastal sites, 

and total leaf chloride content (TCC) along with average specific leaf weight (SLW) 

which are greater at the inland sites (Figure 24). Other variables such as water-use 

efficiency (δ¹³C), relative maximum ETR (rETRmax) and photosynthetic health (DA) do 

not explain the separation of coastal and inland sites. They are associated with axis 2 of 

the CAP analysis and are more related to the separation of hydrological categories, 

particularly at the coastal sites (Figure 24). 
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4.7.2 Key environmental variables and the influence on mangrove 

morphological and ecophysiological characteristics 

There was a significant canonical correlation between the environmental and vegetation 

variables at inland and coastal stands (p = 0.0001). Pearson correlation values suggest 

the environmental variables responsible for the spread of data points along CAP axis 

one are average sediment pH (-0.640) and average sediment EC (-0.541). Average 

sediment EC (-0.377), and SMC (0.800) are responsible for the spread of data points 

along CAP axis two (Figure 24). This correlates such that coastal sites have a lower 

sediment salinity and pH than inland sites as they are separated along axis one, and the 

hydrological categories, particularly at the coastal sites are separated by variables such 

as soil moisture and sediment salinity (Figure 24). 

By overlaying the vectors on the CAP the following patterns are evident. As average 

sediment pH increases, average SLW and average δ¹³C also increase. As average SMC 

increases there are increases in average rETRmax, average δ¹³C and average DA. Trees 

exposed to higher sediment EC had higher TCC within the leaves. As average sediment 

pH and average sediment EC decrease average mangrove LS, total A/GB and total SP 

increase (Figure 24). 
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 Figure 24: Ordination (Canonical analysis of principal ordinations; CAP) used to discriminate which environmental variables are responsible for differences in the 

morphology and ecophysiology of vegetation at Lake MacLeod. Points represent features of individual trees. Right: Environmental variables overlayed; SMC – 

average sediment moisture content, EC – average sediment electrical conductivity, OM content – average organic matter in sediment and  pH – average sediment pH. 

Left: Mangrove tree variables overlayed; SLW – average specific leaf weight, δ¹³C – average carbon isotope ratio, ETR - average maximum electron transfer rate, DA 

– average photochemical efficiency, SP – total shoot production per day, LS – average specific leaf size, A/GB - total aboveground biomass and TCC – total leaf 

chloride content.  
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4.7.3 Uni-variate analysis exploring relationships between environmental 

variables and Mangrove characteristics 

 

To further examine the relationships among the key variables explaining the patterns in 

the environmental and vegetation data from the CAP analysis, uni-variate plots were 

examined. The strongest uni-variate relationships occur between sediment EC and LS 

(r
2
 0.5194, p < 0.0001), as sediment EC increases the LS decreases following a 

quadratic relationship (Figure 25) and sediment pH and LS (r
2
 0.5395, p < 0.0001), as 

sediment pH increases LS decreases, following a quadratic relationship. There is also a 

significant linear relationship with sediment EC and TCC (r
2
 0.1124, p < 0.0001), 

explaining 11% of the variation found in this data. There was a broad range of leaf 

TCC, from 61 – 579 mg/L (Figure 25). Finally, there is a statistically significant 

quadratic relationship between sediment pH and SLW (r
2 

0.2164, p < 0.0001), 

explaining 21.6% of the variation (Figure 25). 

There was no significant uni-variate relationship between sediment pH and EC and 

vegetation variables such as A/GB, SP, WUE, DA and rETRmax. SMC did not have 

significant uni-variate relationships with any of the vegetation variables.  
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Figure 25: Uni-variate analysis between sediment EC and specific leaf size (LS) [top right], and total leaf 

chloride content (TCC) [bottom right]; and sediment pH and specific leaf weight (SLW) [bottom left] and 

specific leaf size (LS) [top left]. NL – close to the pond below zero elevation, NH – close to pond above 

zero elevation, FL – increased distance from pond below zero elevation, FH – increased distance from 

pond above zero elevation, FF - increased distance from pond level elevation, N – close to ocean, F – 

away from the ocean, RN – close to ocean riverine sites. 

 

4.7.4 Environmental conditons across hydrological categories  

There were significant differences in environmental conditions in the sediment between 

hydrological categories (SMC: p < 0.01, EC: p < 0.001, pH: p < 0.0001, OM: p < 

0.0001). Sediment EC was significantly lower at all coastal hydrological categories 

compared to all inland hydrological categories (Table 8). There was a trend of lower EC 

at the riverine sites compared to the coastal fringing sites however, this was not 

significant. For Soil moisture content (SMC) there was not a clear distinction between 

the coastal and inland hydrological categories (Table 8). SMC was significantly lower at 

the riverine sites (RN), followed by coastal sites (N, F) and the inland category away 

from the pond at high elevations (FH). This was followed by the inland categories FF 
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and NH, then FL and the highest SMC was at the hydrological category NL, near to the 

pond at lower elevation. There were significant differences in pH values at hydrological 

categories between all inland and all coastal categories with lower pH at the coastal 

location (Table 8). There were also significant differences within inland categories, with 

pH highest at NH and FH, intermediate at FF and lowest at FL and NL. There were 

significant differences in pH at the coastal categories with the highest pH recorded at 

the coastal landward edge, intermediate values at the coastal seaward edge and lowest 

values at the riverine category. There was a significant distinction between coastal and 

inland categories in organic matter content, with the highest amount of organic matter 

recorded at the coastal location. Additionally there were differences within the 

categories at both inland and coastal locations (Table 8). For the inland location the 

lowest organic matter content was at FL, followed by NL, then NH and FF, with the 

greatest content at FH. At the coastal sites, the lowest organic matter content was 

recorded at the riverine and coastal landward edge categories, with both significantly 

different from the coastal seaward edge. 

 

Table 8: Average quality of the sediment within plots grouped in each hydrological category based on key 

sediment variables such as soil moisture content (SMC), electrical conductivity (EC), pH and organic 

matter content (OM). Data is average and standard error measures from both sampling times (February 

and July 2012). Subscript letters signify differences between hydrological categories (similar letters 

denote no difference) according to 1-way ANOVA and LSD post-hoc test (Significance level of 0.05). 

 Environmental variables 

   SMC (%) EC (mS/cm) pH OM (%) 

H
y
d
ro

lo
g
ic

al
 c

at
eg

o
ry

 

NL 

In
la

n
d
 

53.71±1.87abc 41.25±2.80a 8.93±0.04a 7.32±0.42 abce 

NH 41.84±1.71abcdef 45.43±5.0a 9.44±0.05b 7.44±0.19 abde 

FL 48.65±2.1abce 30.32±2.94a 9.08±0.06a 6.13±0.42 ac 

FH 31.72±1.03bdefg 38.07±1.57a 9.36±0.01b 8.88±0.33 bde 

FF 39.54±2.79bcdef 36.98±1.95a      9.11±0.06ab 8.21±0.2 abde 

N 

C
o
as

ta
l 

31.72±3.05bdefg 13.1±1.0b 8.16±0.01cde 43.58±2.17 f 

F 31.11±2.18bdefg 10.35±0.65b  8.34±0.04ce 21.71±1.58 g 

RN 21.91±1.17dfg 4.69±0.28b 7.85±0.08 cd 19.73±0.71 g 
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4.7.5 Ecophysiological condition of mangrove Avicennia marina across 

hydrological categories 

There were no consistent patterns in water-use efficiency (δ¹³C) between coastal and 

inland sites with the highest and lowest water-use efficiency (WUE) recorded at 

hydrological categories at the coastal location. WUE was significantly higher for the 

coastal fringing mangroves at the landward edge (F), and significantly lower for the 

coastal fringing mangroves at the seaward edge (N) and the riverine mangroves (RN) 

(Figure 26). At the inland sites WUE was found to be intermediate across all 

hydrological categories, with all trees having similar median δ¹³C values, but 

significantly different to the coastal categories (Figure 26). 

There were no consistent patterns in maximum rETR, a proxy for photosynthetic rate, 

between coastal and inland sites (Figure 26). Maximum rETR was highest at the coastal 

fringing mangroves on the landward edge (F), lowest at the coastal riverine site (RN) 

and intermediate across all other hydrological categories (Figure 26). Notably inland 

trees close to the pond and at high elevation (NH) displayed a wide range of rates. 
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Figure 26: Water-use efficiency and relative maximum electron transfer rate (rETRmax) through 

photosystem II of Avicennia marina; trees are grouped into hydrological categories. NL – close to the 

pond below zero elevation, NH – close to pond above zero elevation, FL – increased distance from pond 

below zero elevation, FH – increased distance from pond above zero elevation, FF - increased distance 

from pond level elevation, N – close to ocean, F – away from the ocean, RN – close to ocean riverine 

sites. The lower and upper lines of the box plot represent the 25
th

 and 75
th

 percentile respectively and the 

middle line represents the median of the data. The error bars below and above the box represent the 10
th
 

and 90
th 

respectively and black dots are the outliers. Subscript letters signify significant differences 

between hydrological categories (similar letters denote no difference) according to 1-way ANOVA and 

LSD post-hoc test (Significance level of 0.05). 

Aboveground biomass was significantly higher at coastal riverine and coastal fringing 

mangrove stands on the seaward and landward edge, along with inland mangroves in 

hydrological category NH. Aboveground biomass was significantly lower at FH and FF 

than all other categories (Figure 27). 

The highest shoot production occurred on coastal riverine and coastal fringing trees on 

the seaward edge. These were significantly different to all other hydrological categories 

(p < 0.05) except inland plots close to the pond at high elevations (NH). Coastal 
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mangroves on the landward edge (F) were similar to all inland hydrological categories, 

where significantly lower and more variable shoot production occurred (Figure 27). 

 

Figure 27: Aboveground biomass of Avicennia marina log(dry weight(kg)) and shoot production (grams 

dry weight /shoot/day) of A. marina, trees are grouped into hydrological categories. NL – close to the 

pond below zero elevation, NH – close to pond above zero elevation, FL – increased distance from pond 

below zero elevation, FH – increased distance from pond above zero elevation, FF - increased distance 

from pond level elevation, N – close to ocean, F – away from the ocean, RN – close to ocean riverine 

sites. The lower and upper lines of the box plot represent the 25
th

 and 75
th

 percentile respectively with the 

middle line representing the median of the data. The error bars below and above the box represent the 

10
th

 and 90
th 

percentile respectively and black dots represent outliers. Subscript letters signify significant 

differences between hydrological categories (similar letters denote no difference) according to 1-way 

ANOVA and LSD post-hoc test (Significance level of 0.05). 

4.7.6 Vegetation traits of mangrove Avicennia marina across hydrological 

categories 

Individual leaf size (LS) was significantly larger at coastal riverine sites [RN], followed 

by coastal fringing sites [N] and landward edge sites [F] respectively. All of these 
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hydrological categories produced leaves significantly larger than the inland categories. 

Here, trees growing at low elevation and close to the pond edge [NL] displayed 

significantly larger LS than trees at a greater distance and higher elevation [FH & FF] 

(Table 9). Although trees growing in hydrological category NH displayed average LS 

similar to trees within NL the variation was vast, and therefore there was not a 

significant difference (Table 9). Specific leaf weight (SLW) was significantly greater at 

inland hydrological category FF and significantly lighter at the coastal hydrological 

categories N and RN. SLW displayed by coastal fringing trees on the landward edge 

were significantly different to all other trees except those growing close to the pond at 

higher elevations than the pond water level (NH) (Table 9). Total leaf chloride content 

(TCC) was significantly higher in trees growing inland in hydrological categories NH (p 

< 0.05), FF (p < 0.01) and FL (p < 0.05) and significantly lower at coastal categories N 

and F (p < 0.005) (Table 9). Mangrove trees at coastal hydrological categories N and 

RN were significantly taller (p < 0.0001) than all other trees, and those growing at FH 

and FF were significantly smaller (p < 0.0001).  Coastal fringing trees growing on the 

landward edge [F] were statistically similar to mangrove trees growing in hydrological 

categories NL, NH and FL (Table 9). Average photochemical efficiency (DA) was 

significantly lower at hydrological categories FF and RN compared to all other 

categories (p < 0.05) (Table 9).  

Table 9: Comparison of mangrove Avicennia marina vegetation traits across all hydrological categories. 

Subscript letters signify differences between hydrological categories (similar letters denote no difference) 

according to 1-way ANOVA and LSD post-hoc test (Significance level of 0.05). 

 Dark 

adaptation 

(yield) (DA) 

Cl‾ (mg/L) 

(TCC) 

Mangrove tree 

height (m) 

LS (cm²) SLW (g cm‾²) 

In
la

n
d

 

NL 0.69 ± 0.02a 314.9 ± 13.3a e 2.40 ± 0.2 a 60.42 ± 4.61a 0.0037 ± 1.2E-04ac 

NH 0.71 ± 0.02a 345.1 ± 12.02a 2.15 ± 0.3 a 61.17 ± 10.21b 0.0035 ± 8.2E-05ab 

FL 0.72 ± 0.01a 331.3 ± 17.05a 2.15 ± 0.22 a 57.52 ± 4.67b 0.0037 ± 1.6E-04ac 

FH 0.70 ± 0.02a 279.3 ± 12.73b 0.89 ± 0.07 b 46.33 ± 3.08 b 0.0039 ± 6.7E-05cd 

FF 0.65 ± 0.02b 342.6 ± 24.9a 0.81 ± 0.1 b 44.48 ± 5.75 b 0.0041 ± 1.0E-04d 

C
o

a
st

a
l N 0.70 ± 0.01a 222.1 ± 13.36c 3.37 ± 0.15 c 119.94 ± 5.32c 0.003 ± 6.0E-05e 

F 0.72 ± 0.01a 161.2 ± 12.14d 1.88 ± 0.1 a 98.78 ± 4.07c 0.0036 ± 5.3E-05ab 

RN 0.66 ± 0.01b 284.9 ± 11.55b e 3.14 ± 0.17 c 153.06 ± 7.86d 0.0031 ± 8.9E-05e 
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4.8 Discussion 

4.8.1 General information 

Review of the literature has failed to find similar studies comparing WUE, productivity 

and ecophysiological traits of A. marina mangrove trees across inland and coastal 

mangrove stands which are exposed to very different hydrological regimes. Previous 

research from tropical and semi-tropical locations experiencing higher rainfall than this 

study region found that as sediment salinity increases mangrove trees became more 

WUE and less productive  (Medina and Francisco 1997; Naidoo 2010), and Wei et al. 

(2008) noted that further research is required to understand the responses of mangroves 

across a broader range of salinities. This is the intention of this research, focusing at the 

higher range of salinities combined with low rainfall.  

4.8.2 Comparison of environmental conditions at inland and coastal sites 

We predicted that inland sites would be more saline than coastal sites, and this was 

clearly demonstrated based on sediment salinity. As expected, riverine mangroves were 

exposed to the freshest conditions (~ 5 mS/cm), followed by fringing coastal mangroves 

(10-13 mS/cm) and then inland mangroves, which were significantly more saline (42-68 

mS/cm). In addition soil moisture content was elevated at inland sites compared to 

coastal sites. The occurrence of A. marina persisting in soils with characteristically 

elevated salinities and high moisture content has been explained by Naidoo et. al. 

(2011). Under these conditions, low and irregular tidal flushing combined with high 

evaporation rates, as is the case at Lake MacLeod, results in hypersaline sediment 

conditions. At Lake MacLeod, seawater under hydrostatic pressure enters the ponds 

through subterranean vents and as seawater input is continuous, excess spills over onto 

the surrounding lake bed. The high evaporation rate experienced results in the 

maximum salinity levels recorded at mangroves immediately adjacent to the ponds. 

4.8.3 Comparison of water-use efficiency, photosynthesis and productivity 

at inland, coastal fringing and coastal riverine sites 

We predicted that due to elevated salinity levels, reduced freshwater supply and lack of 

tidal flushing at inland sites, water-use efficiency would be greater and photosynthesis 

and productivity reduced compared to coastal sites. This was partly supported in this 

study, as significant differences in the vegetation characteristics of inland and coastal 

sites were detected. These differences were explained by long-term productivity as 

estimated by above-ground biomass of mangrove trees, and short-term productivity, as 



 

84 

 

measured by shoot production, with lower productivity recorded at inland sites. Despite 

these general patterns being supported (Figure 24); there was complexity in these 

patterns related to the specific hydrological conditions the mangrove trees were growing 

under. Here patterns in shoot production and above-ground biomass of coastal fringing 

mangroves growing on the landward edge were more similar to inland mangroves, 

however these results are not unexpected, as Lin & Sternberg (1992a) found that small 

or dwarf mangroves are commonly found on the landward edge of coastal stands, where 

height, canopy size and productivity are much lower than the nearby fringing 

mangroves growing on the seaward edge.  

Long-term productivity (A/GB) was significantly lower at inland sites where trees were 

growing furthest from the ponds but not at low elevations [FH & FF]. Here the average 

sediment EC was on average close to sea water, but the range was large (19 % - 54.5 %) 

and SMC was low (Table 8). These environmental conditions can be attributed to 

limited access to a constant supply of water as they are furthest from the water supplied 

via flow over the edge of ponds, and are not close to seepage directly from the sediment. 

If there was sub-surface seepage, then the soil moisture content would likely be higher. 

Another indication that it is water supply that is most important, rather than sediment 

salinity, is that mangrove tree A/GB was similar at inland hydrological category [NH] 

and coastal categories [RN], [N] and [F]. These categories varied extensively in 

sediment EC i.e. the riverine trees were growing in almost fresh conditions (avg. 4.69 

mS/cm) and the inland trees in hypersaline conditions (avg. 45.43 mS/cm), but all these 

categories had a relatively consistent supply of seawater, either due to tidal flushing 

and/or river flow at the coastal sites, and pumping from the vents at the inland sites. 

Water supply, irrespective of salinity is an important driver of long-term productivity of 

mangrove trees and A. marina is tolerant of a broad range of salinities.  

Short-term productivity (SP) also showed a general trend of greater productivity at 

coastal sites compared to inland sites, but the relationship was also influenced by the 

hydrological conditions. The lowest production rates were observed at the coastal 

fringing mangroves on the landward edge and all inland sites. The inland hydrological 

category close to the pond at a high elevation (NH) was the one exception; here the 

short-term production was similar to coastal fringing and riverine trees. This 

hydrological category had the highest average salinity of all hydrological categories, but 

the moisture content was slightly lower than other categories close to the pond edge. 

This lower moisture content may be beneficial, as coping with waterlogging can be 
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costly to productivity as energy is invested into the pneumatophores in order to maintain 

water uptake and gas exchange i.e. longer pneumatophores are needed to reach above 

the water (Ball 1988a) which has negative consequences for growth. In addition, 

Naidoo (1985) revealed that water uptake is lowered in waterlogged situations as 

opposed to well-drained soils, so if water-uptake is reduced, plants need to be more 

water-efficient and there can be negative implications for productivity (Medina and 

Francisco 1997). However, as there is a constant water supply, but possibly reduced 

waterlogging, shoot production is enhanced (Vilarrubia 2000). The other hydrological 

categories close to the pond edge were permanently inundated (e.g. NL) and shoot 

production was lower, here waterlogging may have impacted productivity.  

Water-use efficiency and photosynthetic rates did not follow our predictions, and were 

not consistently different between inland and coastal sites. WUE was lower at two of 

the coastal habitats, fringing on the seaward edge and riverine (~ -28 ‰), compared to 

the inland hydrological categories (~ -26 ‰). However, the outlier was the coastal 

fringing mangroves on the landward edge; these trees were the most WUE (~ -24.5 ‰) 

of all studied. The sediment data that we have does not provide any insights to explain 

this. The salinity at this habitat was much lower than the inland sites (10 mS/cm vs. 30 -

45 mS/cm). The SMC was similar to some hydrological categories at the inland sites 

(31%), so reduced soil moisture content cannot explain this result either. The low WUE 

in these coastal mangroves on the landward edge of the mangrove stand may be related 

to the frequency of inundation of water, i.e. water supply. Average tidal range in this 

area is from 0.3 m to 1.80 m and there is a mixed tidal pattern due to tidally driven 

water movement and ocean surges (Eliot, Gozzard et al. 2012). We would have 

expected that the trees were regularly flushed by the tidal movement. However, we 

observed a barrier between the seaward and landward edge trees, which is likely to have 

reduced tidal flushing and frequency of inundation. This barrier was a small elevated 

sediment mound. This topographic feature most likely inhibited tidal flushing leading to 

more water-use efficient trees. 

We predicted that photosynthetic rates (ETRmax) would be higher at the coastal riverine 

sites, followed by the coastal fringing and then the inland sites. In fact, the opposite was 

observed; the lowest ETR’s were recorded at the riverine sites. This is unusual as the 

sediment salinity and soil moisture was lowest here compared to all other sites. So it is 

unlikely that these factors are responsible for the lower photosynthetic rates. One 

possible explanation is that the trees were stressed due to another factor. The maximum 
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quantum yield, an indicator of the health of the photosystem can be inhibited by other 

stressors such as toxicants particularly herbicides (Ralph, Smith et al. 2007). The 

photosystem health was depressed at the riverine site (0.66 ± 0.01); healthy 

photosystems would be expected to be 0.8 (Cheeseman, Herendeen et al. 1997). The 

flood that occurred in December 2010 as a result of a tropical storm was 2 to 7 times 

larger than any previous events, this event was subsequently followed by smaller 

flooding events in January and February 2011. These events caused significant damage 

to infrastructure and substantial sediment loss within the region, particularly in the 

rangelands and Carnarvon horticultural area (Waddell, Thomas et al. 2012). The 

catchment condition prior to these events was deemed poor as a result of dry conditions 

and overgrazing which exacerbated erosion and hence the sediment loads within the 

flood were extreme (Waddell, Thomas et al. 2012). Horticultural and pastoral activities 

contribute to increased toxicants within these sediment loads which could possibly 

impact photosynthetic capacity of the aquatic and littoral vegetation of the Gascoyne 

River (Waddell, Thomas et al. 2012). Interestingly, the hydrological category from the 

inland site with the lowest maximum quantum yield also had the lowest ETR. This 

category was furthest from the pond water supply and at similar elevation to the pond 

water level (FF). It also had the lowest A/GB but not the driest or most saline 

sediments. It is not clear which environmental conditions are driving lower 

photosynthetic capacity and shoot production in these inland areas, but it does support 

previous studies where low photosynthetic rate is correlated with lowest growth and 

biomass (Ball and Sobrado 1998; Gonzalez-Mendoza, Espadas y Gil et al. 2011).  

4.8.4 Comparison of other vegetation traits at inland, coastal fringing and 

coastal riverine sites 

Most of the A. marina vegetation traits followed our predictions. For instance leaf size 

and tree height were greater at coastal sites compared to inland sites and specific leaf 

weight and leaf chloride content were greater at inland sites versus coastal sites (Table 

9). All vegetation traits of A. marina growing at the coastal landward mangrove stands 

displayed statistically similar traits to the inland mangroves, except total leaf chloride 

content. These trees displayed the lowest average TCC which is supported by the 

sediment EC (10.35 ± 0.65 mS/cm) (Table 8). This contrasting result is possibly due to 

sediment deposits increasing elevation within the stands preventing regular tidal 

flushing; with effective root flushing occurring only when ocean surges coincide with a 

high tide or during larger storm events (Eliot et al., 2012). The absence of river flow 
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means that the only other water input these trees experience is from direct rainfall which 

is variable and low. It is therefore assumed that it is a lack of water quantity rather than 

quality that is responsible for the coastal landward edge mangroves displaying 

vegetation traits similar to the inland mangroves.   

4.8.5 Application of the Medina and Francisco model to inland mangrove 

systems 

The Medina & Francisco model uses the environmental variables of freshwater supply 

and salinity, which vary across climatic zones and habitats. This model uses the increase 

in freshwater supply as a way of separating hydrological regimes. In the current study 

all mangroves except the coastal riverine trees received little freshwater input; therefore 

the hydrological categories used did not fit into this model linearly. It was an access to 

permanent water sources that impacted the physiological responses of the mangroves 

rather than water quality. This was evident by the significantly higher sediment 

salinities identified at the inland system compared to coastal sites. In general freshwater 

inputs within this climatic region are reduced. Although variable, the maximum and 

most direct water input is experienced at riverine sites, followed by coastal seaward and 

landward trees receiving indirect input via rainfall and inland trees receiving water 

during extreme events (Table 3).  

Both productivity measures, short (SP) and long-term (A/GB) production fit within the 

models concept, with inland and coastal landward edge trees having lower production 

rates and the riverine and fringing coastal trees having higher production rates (Table 

10). Here photosynthetic rates did not support production rates, with mixed results 

produced. Therefore the photosynthetic rate of these mangroves does not support the 

Medina & Francisco model. Photosynthetic processes are among the most sensitive 

indicators of environmental stress as these processes are impacted by the slightest 

changes in environmental condition around roots influencing biochemical and 

physiological processes (Ball 2009). The inland mangrove trees were expected to 

display the highest WUE based on the model, this was not the case. The most WUE 

mangroves were growing at the coast on the landward edge of the stand (Table 10). This 

is likely due to distance from a permanent water source and lack of root zone flushing. 

The inland trees were exposed to a more constant supply of water than the landward 

coastal trees supporting a conclusion that within a semi-arid climate constant access to a 

water supply rather than quality (i.e. freshwater supply) is more important.  
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Results from this study confirm that mangrove trees in hydrological categories either 

experiencing regular tidal flushing, occurring at lower elevations or near permanent 

water sources; were taller with larger specific leaf area and lower specific leaf weight. 

These traits agree with predictions indicating that A. marina acclimates to conditions 

with changes in morphology (Table 10).  

The predictions for total leaf chloride content and photosystem efficiency were not met; 

with results mixed across all hydrological categories. However, total leaf chloride 

content corresponded with salinity measures in the sediment; with increased sediment 

salinity coinciding with increased chloride content except for mangroves in 

hydrological categories NL and FH (Table 9). Photochemical efficiency of all 

mangroves in this study was unexpected; except for mangroves growing inland at 

hydrological category FF these were similar to the trees growing at the coastal sites and 

riverine mangroves had the lowest efficiency. This mix of results indicates that A. 

marina has the ability to adjust and grow in a semi-arid climate and morphological 

features and ecophysiological responses displayed evidence of this.    

Table 10: The key vegetation traits displayed on Avicennia marina growing in the various hydrological 

categories identified in the sites. WUE – water-use efficiency; rETRmax – relative maximum electron 

transfer rate; DA – photochemical efficiency; SP – shoot production; A/GB – above-ground biomass; tree 

height - individual mangrove tree height; SLW – specific leaf weight; SLA – specific leaf area; TCC – 

total leaf chloride content. Grey shading indicate where patterns within the variable followed 

expectations. 

 Hydrological Categories 

Inland  Coastal                Riverine 

   NL   NH   FL   FH   FF      N     F    RN 

WUE Medium Medium Medium Medium Medium Low High Low 

rETRmax High High Medium High   Low Medium V. High V. Low 

DA Low Medium Medium Medium V. Low Medium Medium V. Low 

SP Low Medium Low Low Low High Low High 

A/GB Medium High Medium Low V. Low V. High High V. High 

Tree height High Medium Medium V. Low V. Low V. High Low V. High 

SLW Medium Medium Medium High High Low Medium Low 

LS Medium Medium Medium Low Low High High V. High 

TCC Medium High High Medium High Low V. Low Medium 
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5 Chapter Five – Study synthesis  

5.1.1 Environmental conditions and Avicennia marina vegetation 

characteristics at Lake MacLeod 

I examined the relationship between sediment environmental conditions and the 

presence and structure of the vegetation dominated by the mangrove A. marina at Lake 

MacLeod, Western Australia. This is a unique inland marine system located in a semi-

arid climate with incredibly high levels of evaporation. The system is fed by 

underground channels that constantly pump seawater into the inland lake where water 

can either pool and form small bodies of water, or seep into the sediment without 

forming ponds. Sediment salinity at Lake MacLeod was incredibly high, a maximum of 

105 mS/cm was measured, one of the highest recorded sediment salinities for A. marina 

mangrove stands worldwide (Van Steenis 1963; Beard 1967; Lugo 1981; Thomas, 

Logan et al. 1992). Sediment moisture was also higher than coastal sites. Most 

mangroves are found near the edge of the ponds, and extend up to 20 meters away from 

the ponds and grow with saltmarsh vegetation. Globally, A. marina tolerates a broad 

range of environmental conditions (Sobrado and Ball 1999) and is found in many 

different climatic zones. This study is unique in examining the relationship between 

vegetation structure and environmental conditions at this extreme and unique 

environment of low rainfall, high evaporation, minimal freshwater input and constant 

seawater supply. 

Typically in coastal mangroves, the sediment moisture and EC varies along distance and 

elevation gradients away from the consistent water source (Kenneally 1982; Ball and 

Sobrado 1998). Soil salinity maximums are usually found furthest from the main water 

source and at higher elevations. The patterns for soil moisture content are the reverse, 

with greater soil moisture closer to the water source and at lower elevations. However, 

these patterns may vary under a number of conditions, specifically when there is 

reduced water input or limited flushing of the root zone and/or low rainfall with high 

evaporation rates. Under these conditions, the maximum sediment EC could be located 

closer to the water source (Hutchings and Saenger 1987). Interestingly, spatial patterns 

in sediment salinity and moisture within Lake MacLeod did not follow the typical 

gradients identified at coastal mangrove stands.  

We predicted that sediment salinity and moisture content would vary with distance from 

the pond, such that moisture content would decrease with greater distance from the 
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permanent water source, and salinity would increase due to high evaporation. However 

the patterns identified at Lake MacLeod were more complex. We identified five 

different hydrological categories related to distance from the pond and elevation relative 

to the pond water level. The most saline and highest SMC was found close to the ponds 

at low and high elevations, due to the continuous flow of seawater into the ponds, lack 

of freshwater input and the high evaporation rates. Sediments were driest further from 

the pond edge, except where sediment elevations were low and sediment salinity was 

slightly higher than seawater (36.98 – 38.07 mS/cm). This suggests that water reaches 

these sediments through seepage of water or exposure to wind driven water from across 

the lake bed. In addition, the presence of smaller permanent vents and seeps occurring at 

distances from the larger water bodies are responsible for the complexity in sediment 

conditions. 

Both sediment salinity and moisture content were strongly associated with the 

vegetation presence and structure. A. marina is clearly tolerant of hypersaline conditions 

providing there is a consistent supply of water, irrespective of whether it is fresh or 

salty. Generally A. marina tree height, canopy cover, basal area and density were 

greatest in narrow bands around the permanent ponds where sediment salinity and 

moisture were highest. This is similar to other inland mangrove systems (Lugo 1981; 

Thomas, Logan et al. 1992). Clearly it is the consistent supply of seawater that supports 

the existence of larger trees. Interestingly, the number of dead branches per tree was 

also highest within this zone, potentially due to the extreme hypersaline conditions. 

Further from ponds where the sediment is less saline and moist, trees were shorter, of 

lower biomass but had similar shoot production rates to other areas. It is likely that 

terminal buds die off, which promotes additional branching and aids development of 

shorter multi-branched mangrove trees (Lin and Sternberg 1992b).  

5.1.2 Comparison of water-use efficiency, photosynthesis and productivity 

of mangrove Avicennia marina growing in coastal, riverine and inland 

stands.  

Medina & Francisco’s (1997) model predicts an inverse relationship between WUE and 

productivity (as well as photosynthetic rates) across a freshwater supply gradient, where 

WUE decreases and productivity increases with greater freshwater supply. Their model 

was based on tropical and semi-arid fringing mangroves. I examined this relationship 

across new habitats, semi-arid riverine and inland mangrove stands. It was predicted 

that inland mangrove trees would display higher WUE and lower photosynthesis and 
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productivity than trees at coastal and riverine sites, as they would be exposed to higher 

salinity, have less flushing and less freshwater input (Medina and Francisco 1997; 

Naidoo 2010).  

The coastal landward edge trees were significantly more WUE than any other trees in 

the study, suggesting that when there is a combination of climatic and hydroedaphic 

stresses, as opposed to salinity stress alone, A. marina becomes more WUE. The trees 

growing within Lake MacLeod displayed an intermediate WUE, which was 

significantly higher than the coastal seaward and riverine trees and significantly lower 

than the coastal landward trees. Even though the main water supply at Lake MacLeod is 

saline, it is the constant supply of water that is influencing the WUE of these inland 

trees. Therefore, at all these semi-arid mangrove stands, moisture availability is more 

important than salinity for WUE. On average WUE of A. marina within this study was 

similar to former research, although individual tree response extended the range of 

WUE previously measured (Lin and Sternberg 1992b; Medina and Francisco 1997; 

McKee, Feller et al. 2002). For example, Wei et al. (2008) studied A. marina growing in 

a sub-tropical climate with salinities ranging from 14% – 19%: these trees were less 

WUE (avg. -28.82 ‰) than the semi-arid coastal riverine (avg. – 27.55 ‰) and fringing 

trees (avg. – 27.58 ‰) from the present study. 

 The variability of natural ecosystems makes it difficult to compare the productivity 

levels measured with other research, but the current results do follow a similar pattern to 

the Medina & Francisco (1997) model. Mangrove trees with higher long-term 

productivity (A/GB) and greater short-term productivity (SP) were closest to permanent 

water sources at Lake MacLeod, or were growing where the frequency of inundation 

was regular through tidal flushing at the coastal sites. SP and A/GB in coastal landward 

edge mangrove trees displayed similar patterns to trees growing at Lake MacLeod close 

to the pond edge at higher elevations. SP on these trees was highly variable (many did 

not grow at all). Previous studies indicate that salinity is among the environmental 

variables that influences mangrove tree production (Clough 1984; Clough 1992). The 

hypersaline conditions within inland sediments confirm the importance of salinity to 

mangrove production, yet this is in contrast to the coastal landward trees where 

sediment salinity was significantly lower (10.35 ± 0.65 mS/cm). The long-term 

production (A/GB) patterns displayed by trees within this study are supported by other 

field studies (Lin and Sternberg 1992b; Vilarrubia 2000; Naidoo 2010). Where there is 

lower sediment EC, the A/GB is highest; this was found at the coastal fringing and 
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riverine sites. Except at Lake MacLeod, the greatest A/GB was surrounding the ponds 

where sediment salinity is highest. These contrasting results indicate that distance from 

a permanent water source, and not salinity, is the key factor driving short and long-term 

production of mangroves at Lake MacLeod and coastal locations.  

The photosynthetic rate (rETRmax) and photochemical efficiency (DA) of A. marina 

measured during this study were not significantly different between inland and coastal 

trees, but rETRmax was significantly different between the hydrological categories. The 

photosynthetic response patterns displayed by these mangrove trees were unexpected 

and complex. Unusually rETRmax of mangrove trees at the riverine site were 

significantly lower than all other trees. These trees were clearly stressed as 

photochemical efficiency (DA) was also low; displaying a similar photochemical 

efficiency to mangroves growing inland at greater distances from the pond edges and at 

elevations above the water level. This finding is difficult to explain without collecting 

further information that was beyond the scope of the present study. Based on 

surrounding land use (extensive horticulture and pastoral) and extreme flooding events 

that occurred prior to the commencement of this study, it is possible the introduction of 

toxicants (i.e. herbicides) into the river system is placing extra stress on the riverine 

trees (Waddell, Thomas et al. 2012). Ralph et. al. (2007) revealed that fluorescence 

parameters can be used to identify plant stress caused by herbicides and other 

pollutants, which may be applicable to future studies in this area.  

5.1.3 Knowledge gained from this study 

This research has improved our understanding of the extreme conditions that the 

mangrove A. marina can grow in, and the environmental drivers responsible for the 

structure of vegetation dominated by A. marina in a unique inland lake system. Lake 

MacLeod is an inland saline system that has supported A. marina mangrove stands for 

~5300 years (Logan 1987); therefore this species is clearly capable of persisting under 

extreme conditions. These mangrove trees display a range of ecophysiological features, 

particularly related to mangrove tree height, canopy cover, basal area, leaf area and 

weight, growth and water-use efficiency which are indicative of mangroves growing 

within stressful conditions. These results support Youssef & Saenger’s findings (1999) 

that good correlations exist between salinity and mangrove presence and structure; 

however the present study demonstrates that it is not the only factor driving mangrove 

production. It is evident that there is an interaction between a number of environmental 

variables that explain the patterns in mangrove stand characteristics (Ball 1988b). Water 
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availability was clearly the most important environmental factor contributing to the 

persistence of A. marina at inland and coastal stands within a semi-arid climate. 

Across habitats from coastal riverine, to coastal fringing and to inland mangrove 

habitats, there were a number of processes influencing water supply. On the coast 

seawater is exchanged with tidal movement, but in the inland system there is a constant 

supply due to the positive pressure from the vents. In both areas, trees furthest from this 

water supply were most water-use efficient. Freshwater is supplied through irregular 

rainfall and river flow, therefore the coastal habitats are likely to receive more 

freshwater due to the river flow. This was clearly demonstrated by the lower salinity 

and greater productivity in these habitats compared to inland systems. The key 

difference between inland and coastal systems is the more constant supply of seawater 

at the inland system, compared to the irregular but greater supply of freshwater in 

coastal habitats. 
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7  Appendix 1 

 

Appendix 1.1: Indication of where individual plots and the vegetation type were found at Lake MacLeod, 

based on relative sediment elevation and distance from the pond edges. 

Appendix 1.2: Design outline for all sites, numbers of trees tagged in each plot.  

Site Gradsect/plot Trees Gradsect/plot Trees Gradsect/plot Trees 

Goat Bay 1.1 2 2.1 4 3.1 2 

 1.2 2 2.2 4 3.2 3 

 1.3 0 2.3 4 3.3 4 

 1.4 3 2.4 3 3.4 2 

 1.5 4 2.5 4 3.5 3 

 1.6 4  2 3.6  

 

Site Gradsect/plot Trees Gradsect/plot Trees Gradsect/plot Trees 

Whistlers 1.1 4 2.1 4 3.1 3 

Pond 1.2 0 2.2 0 3.2 0 

 1.3 3 2.3 0 3.3 3 

 1.4 3 2.4 0 3.4 0 

   2.5 0 3.5 0 

   2.6 0 3.6 4 

   2.7 2   
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Site Gradsect/plot Trees Gradsect/plot Trees Gradsect/plot Trees 

Neil’s 1.1 4 2.1 4 3.1 3 

Pond 1.2 4 2.2 1 3.2 0 

 1.3 4 2.3 0 3.3 0 

 1.4 2 2.4 4 3.4 0 

 

Site Gradsect/plot Trees Gradsect/plot Trees Gradsect/plot Trees 

Pete’s 1.1 4 2.1 4 3.1 4 

Pond 1.2 0 2.2 0 3.2 0 

 1.3 0 2.3 0 3.3 0 

 1.4 3 2.4 0 3.4 0 

 

Site Gradsect/plot Trees Gradsect/plot Trees Gradsect/plot Trees 

Coastal 1 1.1 4 2.1 4 3.1 4 

 1.2 4 2.2 4 3.2 4 

 

Site Gradsect/plot Trees Gradsect/plot Trees Gradsect/plot Trees 

Coastal 2 1.1 4 2.1 4 3.1 4 

 1.2 4 2.2 4 3.2 4 

 

Site Gradsect/plot Trees Gradsect/plot Trees Gradsect/plot Trees 

Riverine 

GRM 

1.1 4 2.1 4 3.1 4 

 

Site Gradsect/plot Trees Gradsect/plot Trees Gradsect/plot Trees 

Riverine 

OATP  

1.1 2 2.1 4 3.1 4 

 

Appendix 1.3: Contents of acid buffer solution, these amounts make up 500ml of solution. 

Ingredient  ml 

Thymol blue gelatine indicator (TBGI) 6.25 

Nitric Acid (conc.) 5 

Acetic Acid (conc.) 10 

Chloride standard (200ppm) 2.5 

Extran 300 0.5 
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