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  ABSTRACT 

Aerobic interval training, a form of high intensity interval training, is commonly 

prescribed to both the general and clinical populations. However, the acute physiological effects 

from a single bout of aerobic interval session are not fully understood. In training studies, these 

acute physiological effects may confound actual training adaptations when they occur following 

the final training session [1]. Furthermore, while recreationally active men perceived aerobic 

interval training to be more enjoyable than continuous moderate-intensity exercise [2], the 

preference of overweight and obese individuals has not been extensively researched. Since 

overweight and obese individuals tend to have lower exercise tolerance, it is possible that their 

perceived enjoyment may differ to recreationally active participants. Thus, the aim of this study 

was to examine the physiological effects and perceived enjoyment of an acute bout of aerobic 

interval (AI) and a continuous moderate-intensity (CME) in an overweight and obese population. 

In a randomised and counterbalanced order, eight overweight/obese (waist: 103 ± 10 

cm) participants performed bouts of CME (40 min at 50% of peak power output (PPO)) 

and AI cycling (13 x 1 min at 85% of PPO: 13 x 2 min at 30% of PPO). CME and 

AI were matched for duration and total work performed. Salivary cortisol was measured before, 

10 and 30 min post exercise and analysed using standard enzyme-linked immunosorbent assay 

kits. Blood pressure (BP), blood metabolites (glucose and lipid), insulin and resting 

metabolism were measured at baseline, post 24, 48 and 72 h exercise trials in a fasted and rested 

state. Peripheral BP was measured in duplicate using a manual sphygmomanometer and central 

BP and its associated hemodynamic parameters were derived from the radial pulse wave using 

a sphygmocardiogram (SphygmoCor). Resting metabolic profile was determined from gas 

exchange (TrueOne® gas analyser) measured in a supine and rested state over 40 min. 

Anthropometric (waist and hip circumferences and body composition) measurements were taken 

at baseline and at post 72 h after the last exercise trial. Participants completed the Physical 

Activity Enjoyment Scale (PACES) at the end of each trial.  

Salivary cortisol expressed as a percentage of baseline level increased in both trials and 

was significantly (mean ± SD) 189 ± 35% (p < 0.05) higher at 30 min post exercise. Resting 

brachial diastolic BP was lower in the AI trial compared with CME trial (82 ± 5 vs. 84 ± 5 
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mmHg respectively, p < 0.05). Resting brachial diastolic BP was lower than baseline (86 ± 12 

mmHg) at 24 h (83 ± 5 mmHg, p < 0.05) and at 72 h (82 ± 5 mmHg, p < 0.05) post exercise, 

however, there was no significant interaction between exercise trials and time points (p = 

0.07). Resting brachial mean arterial pressure was lower than baseline (102 ± 14 mmHg) at 24 h 

(99 ± 6 mmHg, p < 0.05), 48 h (98 ± 6 mmHg, p < 0.05) and 72 h (98 ± 6 mmHg, p < 0.05) post 

exercise. Resting brachial mean arterial pressure was also lower in the AI trial compared with 

CME trial (98 ± 6 vs. 100 ± 5 mmHg respectively, p < 0.05), however, there was no significant 

interaction between exercise trials and time points (p = 0.07). Derived resting aortic diastolic BP 

was lower in the AI trial, compared with the CME trial (83 ± 5 vs. 85 ± 5 mmHg respectively, p 

< 0.05). Compared with baseline (87 ± 4 mmHg), derived resting aortic diastolic BP was lower 

at 24 h (83 ± 5 mmHg, p < 0.05) and 72 h (82 ± 5 mmHg, p < 0.05) post exercise. No significant 

interaction effects were observed for derived resting central diastolic BP (p = 0.10). Derived 

resting mean aortic pressure was lower in the AI trial, compared with the CME trial (98 ± 6 

mmHg vs. 100 ± 5 mmHg, respectively, p < 0.05). Compared with baseline (102 ± 5 mmHg), 

derived resting mean aortic pressure was lower at 24 h (99 ± 6 mmHg, p < 0.05), 48 h (98 ± 6 

mmHg, p < 0.05) and 72 h (98 ± 6 mmHg, p < 0.05) post exercise. There was a trend towards 

interaction effects for resting derived mean aortic BP, however significance was not reached (p = 

0.063). Resting carbohydrate oxidation rate was higher than baseline (0.10 ± 0.06 g/min) at 72 h 

post exercise (0.16 ± 0.02 g/min), with no significant difference observed between trials. PACES 

scores were significantly higher for the AI than the CME trial (109 ± 13 vs. 96 ± 10).  

The main finding from this study is that a single AI and CME session can elicit acute 

physiological effects that last up to 72 h, with no significant difference observed between 

conditions. Significant decrements in diastolic and mean arterial pressures were observed up to 

72 h and resting carbohydrate oxidation rate was significantly higher 72 h following exercise. 

Therefore, training studies should look at scheduling post study measurement sessions more than 

72 h after the last exercise session bout to avoid confounding acute physiological effects with 

training adaptations. Finally, the study has also demonstrated that overweight/obese males enjoy 

the AI session more than the CME session. 
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CHAPTER ONE  INTRODUCTION 

In developed countries with a high national income and aging population, 

physical inactivity is established as one of the major risk of mortality [3, 4]. 

Furthermore, its detrimental effect is not isolated, as physical inactivity increases the 

risk of other mortality factors, such as high blood pressure, elevated blood glucose and 

obesity, all of which are associated with many chronic diseases such as cardiovascular 

diseases and cancer [4-10]. The incidence of physical inactivity also has significant 

negative social and economic impacts. In Australia, the total direct cost attributable to 

obesity, as defined by both waist circumference and body mass index (BMI), amounted 

to $21 billion in 2005 [11]. Since prevalence of obesity in Australia is projected to 

increase by 65% in 2025, obesity attributed cost will likely to increase in tandem [12].  

However, physical activity can lead to a 32% reduction in mortality [5] and a 2.5% 

reduction in global physical inactivity can avert an estimated 1.3 million deaths annually 

[13]. Collectively these data clearly show that physical activity is essential in 

maintaining general health and reducing mortality risk, which translates to reduction in 

health costs associated with ageing. Indeed, exercise has been established as one of the 

most cost-effective strategies for the prevention and management of several chronic 

diseases, including diabetes, cardiovascular disease (CVD) and some cancers.  

Many international and national agencies have outlined exercise prescription 

guidelines to encourage healthy active living [14-17]. While these guidelines vary 

slightly between countries, they generally convey the analogous message of encouraging 

individuals to engage in regular moderate-intensity physical activity between 30 to 60 

min on most if not all days [18]. However, these guidelines are often voluminous and 

difficult for some individuals to commit to. Supporting this, the most commonly cited 

barrier against exercise engagement and adherence is a lack of time [19-22]. There has 

recently been a paradigm shift in exercise recommendation from the sole emphasis on 

exercise volume towards the additional consideration of exercise intensity. Indeed, the 

increasing body of research highlighting the benefits of vigorous intensity physical 

activity [23-25] has prompted the American College of Sports Medicine (ACSM) and 
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American Heart Association (AHA) to advocate it explicitly in their physical activity 

guidelines [14].  

High-intensity interval training (HIIT) allows participants to perform cumulative 

vigorous bouts of exercise and is characterised by intermittent periods of work and rest. 

The contribution from anaerobic and aerobic energy systems vary with the duration and 

number of work bouts performed and the recovery between bouts. For the purpose of 

this thesis, HIIT protocols will be broadly classified into sprint (i.e. 10 – 30 sec “all-out” 

maximal work) interval (SIT) and aerobic (i.e. 80% - 100    O2max) interval (AIT) 

training protocols. While HIIT may result in rapid favourable adaptations, the high-

intensity nature of HIIT protocols especially those involving “all-out” sprints may be 

unsafe, impractical and thus unsuitable for many untrained, unhealthy or ‘at risk’ 

individuals [26]. Indeed, poor cardiovascular health of overweight and obese individuals 

may increase the risk of acute cardiovascular accidents during HIIT in these individuals 

[27-30]. Despite this, HIIT, especially AIT has been previously prescribed to various 

clinical populations with reports of favourable skeletal, cardiac and endothelial 

adaptations, resulting in improvements in blood lipid profile and blood glucose, aerobic 

capacity and exercise performance [1, 31-35].  

These favourable adaptations can occur after as little as two weeks of HIIT (i.e. 

either AIT or SIT) [1, 26, 36]. Although training adaptations resulting from long term 

adoption of AIT have been extensively studied, our understanding of the acute 

physiological responses to a single session of AIT is limited. The acute physiological 

responses following a training intervention have previously been termed ‘last exercise 

bout’ effects [37]. Understanding these responses is important as they can confound 

actual training adaptations, especially following short term intervention studies [1]. 

Furthermore, prolonged physiological effects after an acute exercise intervention may 

convey transient favourable health benefits which can be accumulative if the exercise 

modality is performed over multiple sessions [37]. As such, detailed understanding of 

the acute physiological effects and stress induced by AIT may aid in improving exercise 

program prescription in athletic, general and clinical populations. 
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Cortisol is an adaptive endocrinal response towards both physical and mental 

stress [38]. It is responsible for substrate mobilisation during increased metabolic 

demands [39] and partly explains stress-induced metabolic and physiological adaptations 

[40, 41]. Both exercise duration and intensity significantly influence cortisol secretion 

during and following exercise [42-44]. In comparison to lean individuals, overweight 

and obese participants have previously been reported to have an elevated cortisol 

response following exercise [45]. However, we are currently unaware of any studies that 

have examined post exercise cortisol response after a single aerobic interval (AI) session 

in overweight and obese individuals. These individuals are at greater risk of developing 

metabolic diseases; therefore cognizance of any favourable acute physiological 

responses to a single bout of AI session would help further contribute to better exercise 

prescription. Exercise intensity plays a crucial role in exercise adherence [46]. Indeed, it 

has previously been found that the prescription of exercise at an intensity greater than 

the preferred intensity diminish enjoyment of exercise in overweight individuals [47]. 

Hence, while AIT may be a potential alternative to the conventional continuous 

moderate-intensity exercise (CME), it is possible that such exercise may be less 

preferred by certain clinical populations. Conversely, prospective findings from Bartlett 

et al. (2011) show that recreationally active men perceived AIT to be more enjoyable 

than CME, indicating that it may be an ideal exercise model that encourages exercising 

at higher intensities without compromising on perceived enjoyment [2]. However, Sim, 

Wallman, Fairchild and Guelfi (2014) reported that overweight individuals perceived 

similar enjoyment from both AI and CME [48]. This indicates that perceived enjoyment 

of AIT differs between recreationally active and overweight individuals and is 

diminished in the latter. Therefore, further research is needed in order to better 

understand the acute physiological responses to AIT and the perceived enjoyment of 

such exercise in overweight individuals. 

1.1 Purpose 

The primary objective of this thesis was to examine and compare the influence 

single bouts of aerobic interval and continuous moderate-intensity exercise have on 
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fasting blood lipid and glucose profiles, insulin, resting central and peripheral blood 

pressures, resting metabolism (i.e. metabolic rate, energy expenditure and 

lipid/carbohydrate oxidation rates) and measurements of body composition (i.e. lean, fat 

and bone tissue masses) over a 72 h post exercise period in overweight and obese 

individuals. A secondary purpose of this study was to compare the post exercise (i.e. 10 

and 30 min) salivary cortisol response between aerobic interval and continuous 

moderate-intensity cycling performed by overweight and obese individuals. The final 

objective of the study was to determine and compare the perceived enjoyment of single 

bouts of aerobic interval and continuous moderate-intensity cycling in overweight and 

obese individuals. 

1.2 Research Questions 

i. What influence does single bouts of aerobic interval and continuous 

moderate-intensity cycling have on fasting blood lipid, glucose and insulin 

profiles, resting central and peripheral blood pressures and its associated 

parameters and resting metabolism in overweight and obese individuals in the 24 

h, 48 h, and 72 h following exercise. 

ii. Is there a difference in post-exercise (i.e. 24 h, 48 h, and 72 h) fasting 

blood lipid, glucose and insulin profiles, resting central and peripheral blood 

pressures and its associated parameters and resting metabolism following aerobic 

interval and continuous moderate-intensity cycling in overweight and obese 

individuals. 

iii. Is there a difference in post-exercise salivary cortisol response between 

single bouts of aerobic interval and continuous moderate-intensity exercise in 

overweight and obese individuals? 

iv. Is there a difference in perceived enjoyment between single bouts of 

aerobic interval and continuous moderate-intensity exercise in overweight and 

obese individuals? 
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1.3 Abbreviations of Selected Terms 

 

AIT aerobic interval training 

AI aerobic interval session 

BMI body mass index 

BPM beats per min 

CDBP derived aortic diastolic blood pressure 

CMAP derived mean aortic pressure 

CME continuous moderate exercise 

CSBP derived aortic systolic blood pressure 

DBP diastolic blood pressure (brachial) 

DEXA dual-energy X-ray absorptiometry 

HDL high density lipoprotein 

HIIT high-intensity interval training 

HOMA homeostatic model assessment 

HR heart rate 

LDL low density lipoprotein 

MAP mean arterial pressure (brachial) 

MCHO carbohydrate oxidation rate 

Mlipid lipid oxidation rate 

OGTT oral glucose tolerance test 

PACES physical activity enjoyment scale 

PAR-Q physical activity readiness questionnaire 

PPO peak power output 

REE resting energy expenditure 

RER respiratory exchange ratio 

RMR resting metabolic rate 

RPE rating of whole body perceived exertion 

SBP systolic blood pressure (brachial) 

SI sprint interval session 

SIT sprint interval training 

  O2peak   O2max peak/maximal oxygen consumption 
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CHAPTER TWO  LITERATURE REVIEW 

 2.1 Physical Inactivity and its Implications 

In 2004, physical inactivity was identified as the fourth leading risk factor of 

mortality, contributing to 6% in global mortality [4]. However, physical inactivity does 

not elicit an isolated effect but also modifies other metabolic risks factors such as 

increased blood glucose, elevated blood pressure and obesity [10]. These in turn increase 

the risk of many chronic diseases, such as coronary heart disease, type 2 diabetes and 

various cancers [5-9]. The increased prevalence of physical inactivity has been largely 

attributed to rapid urbanisation, industrial mechanisation and use of mechanised 

transport [3, 49]. In 2012, 31.1% of adults globally were physically inactive with 

prevalence greatest in countries with a high average income and an aging population [3]. 

Physical inactivity not only negatively influences health but also has significant social 

and economic impacts. For example, in Canada, physical inactivity costed the economy 

$6.8 billion in 2009, which equates to about ~3.7% of the total health care cost [50]. In 

Australia,  health care cost of sedentary middle-aged women was reported to be 26.3% 

greater than those who were moderately active [51]. This is a pressing issue as a recent 

population study revealed that more than half of Australians are either sedentary or 

reported low level of physical activity [52]. Fortunately, physical inactivity is a 

modifiable behavioural risk factor. On a global scale, a reduction in physical inactivity 

by 2.5% can avert an estimated 1.3 million deaths every year [5]. For an individual, 

becoming physically active can confer a 32% reduction in risk of all-caused mortality 

[13]. Clearly, increasing the level of physical activity of the general population is 

therefore pertinent in improving a variety of health, economic and social outcomes. 

2.2 The Undefined “Optimal” Exercise Dose 

To address the increasing prevalence of physical inactivity, several international 

and national agencies have developed guidelines to encourage physical activity. Most of 

these conventional guidelines endorse the daily engagement in moderate-intensity 
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physical activity for a minimum duration, varying between 30-60 min [18]. The 

rationale behind these guidelines was based on findings that demonstrated a clear 

association between accumulated total or weekly caloric expenditure and cardiovascular 

mortality [18, 19]. However, there are studies in the literature suggesting that exercise 

volumes lower than the conventional minimum recommendation may be sufficient to 

elicit a reduction in health risks [53-55]. For example, Wen et al. (2011) suggested that 

health benefits may be accrued with as little as 15 min of moderate-intensity exercise 

[56]. Indeed, the volume, frequency and intensity of physical activity may all 

significantly influence the adaptations and consequential health benefits of exercise, 

with the best possible permutations of these factors yet to be clearly established [55, 57]. 

Therefore, while previous research has clearly presented a strong dose-response 

relationship between physical activity and health benefits, the specifics of this 

relationship remains largely undefined [13]. On the premise that the total energy 

expended through physical activity is partly mediated by exercise intensity, it has been 

suggested that exercise intensity plays an influential role in the dose-response 

relationship between physical activity and health benefits. Regular participation in 

vigorous intensity physical activity and the associated greater energy expenditure has 

been associated with decreased mortality and cardiovascular related morbidity and a 

healthier state of being when compared with lower intensity exercise [25, 58, 59]. 

Consequentially, there has been a paradigm shift in exercise recommendations with 

added emphasis on exercise intensity apart from total exercise volume [23-25, 60]. Such 

a change in consensus was reflected in the update to the American College of Sports 

Medicine (ACSM) and American Heart Association (AHA) physical activity guidelines 

in 2007 which explicitly included recommendations on the participation of vigorous-

intensity physical activity [14].  

Independent of the volume (i.e. duration) spent engaged in the physical activity; 

there is also evidence to suggest that exercise intensity can confer a reduction in risk of 

chronic diseases. For instance, it has been reported that high-intensity physical activity 

of ≥ 6 metabolic equivalents (METs), independent of exercise volume, was associated 

with lower relative risk of coronary heart disease (CHD) compared to both moderate-

intensity (4 – 6 METs) and lower-intensity (1 – 4 METs) exercise [59]. Within this study 
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every increment of 1 MET was accompanied by a 4% reduction in CHD risk [59]. This 

research is supported by isocaloric training studies, which have found that high-intensity 

exercise (i.e.  0 –  0     O2peak) training results in greater improvements in 

cardiovascular fitness, glucose tolerance, blood lipid profile and blood pressure when 

compared with moderate-intensity exercise (i.e.  0 – 60     O2peak) training [61, 62]. As 

such, the observed benefits are not simply the result of an increase in total training load 

(i.e. volume and intensity) but instead may be caused by the high-exercise intensities per 

se. These observations highlight that individuals can maintain a healthy state of being 

with lower time commitment by regular participation of vigorous-intensity physical 

activity. This is important since ‘lack of time’ is a commonly cited barrier against 

exercise adherence and participation in physical activity [19-22].  

Studies such as that published by Talanian, Galloway, Heigenhauser, Bonen and 

Spriet (2007) which reported training adaptations comparable to those observed in 

longer duration endurance type training studies from just 2 weeks of aerobic interval 

training, prompted further research on high-intensity interval exercise modality as a 

time-efficient alternative against the traditionally recommended continuous moderate-

intensity exercise modality [36]. In fact, studies comparing between both these 

modalities have reported greater if not comparable favourable metabolic adaptations 

after high-intensity interval training despite having controlled for or a marked difference 

in total exercise volume [33, 63-65]. Therefore, the following sections of this chapter 

will review the current body of literature relating to the possible benefits of high-

intensity exercise. This literature will be discussed in comparison with traditional 

continuous moderate-intensity training and within the context of its application in both 

the general and clinical populations. 

2.3 High-intensity Interval Training (HIIT) 

High-intensity interval training (HIIT) is an exercise modality which is 

characterised by repetitions of short high-intensity work interspersed with bouts of low-

intensity exercise or complete rest. Due to the intermittent nature of most sports and the 

ability of HIIT to rapidly improve performance this modality has been commonly 
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utilised in athletic populations [66-69]. Numerous factors may be altered within HIIT in 

order to vary the exercise stimulus and adaptation, including exercise and recovery 

modality, exercise intensity and work-rest ratio duration. As a result, considerable 

possible combinations exist for HIIT. Therefore, for the purpose of this literature review, 

the discussion on HIIT will be limited to sprint interval training (SIT) and aerobic 

interval training (AIT). The protocol for a typical SIT session usually involves 4 - 6 sets 

of 10 - 30 seconds “all-out” sprints, interspersed with 4 - 4.5 min of complete rest or 

low-intensity recovery [1, 70-73]. In contrast, AIT is typically characterised by longer 

periods (i.e. 1 - 4 min) of high-intensity exercise (i.e.  0  -  00  of   O2max, HRmax or 

HRR) interposed with similar periods (e.g. 1 - 4 min) of rest, performed over 4 or more 

sets [70, 74]. The contrast between a SIT and AIT is defined by the difference in the 

contribution from each energy system during exercise. The short supra-maximal work 

intervals during SIT results in a high anaerobic energy demand, rapidly impairing 

phosphocreatine and anaerobic glycolytic pathways and aerobic energy demand 

increases with the increasing number of intervals [68, 75, 76]. However, the lower 

exercise intensity (i.e. at or near maximal aerobic power or velocity at   O2max) and 

longer interval duration of the AIT results in considerable contribution from aerobic 

system throughout each effort [66, 77]. Due to the high-intensity and very short duration 

of SIT many of the observed adaptations have been observed in the periphery (i.e. 

muscle). Indeed, SIT has been shown to elicit an upregulation of key intramuscular 

regulatory enzymes of all three energy systems (i.e. creatine kinase, phosphofuctokinase 

and citrate synthase), enhancing oxygen utilisation [66, 78]. Furthermore, SIT can also 

elicit muscular morphological changes such as muscular hypertrophy, a bidirectional 

shift in muscle fibre towards type IIa and improve muscle contractile characteristics via 

an increase in the volume of the sarcoplasmic reticulum [78]. Conversely, AIT has been 

shown to result in significant central (i.e. cardiac output) and peripheral adaptations [73, 

79, 80]. For instance, improvement in aerobic capacity in tandem with an increase in left 

ventricle end diastolic volume and the resultant stroke volume was observed after 13 

weeks of AIT in obese adolescents [79] and enhancement in key intramuscular 

regulatory enzymes associated with anaerobic glycolytic and aerobic energy systems 

was observed after 6 weeks of AIT in recreationally active individuals [81]. The premise 
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for the prescription of HIIT, in untrained and clinical populations lies within the work-

rest interval bouts which exposes individuals to intermittent bouts of high cellular stress 

over extended periods, thereby allowing for greater adaptations than would be possible 

with steady state exercise [70, 82]. Importantly, HIIT has been safely prescribed to a 

number of clinical populations (i.e. individuals with type two diabetes, metabolic 

syndrome, post-myocardial infarction), despite the concern for an increased risk of acute 

cardiovascular accidents [1, 30-35, 83-86]. Therefore, the following sections of the 

review examine the literature pertaining to the intramuscular, metabolic and health 

benefits of HIIT in order to illustrate how HIIT can be used as an alternative exercise 

intervention to the traditional continuous moderate-intensity modality. 

2.4 Metabolic adaptations from HIIT in both healthy and clinical 

populations 

Skeletal muscle fibres are extremely adaptable to physiological stress. 

Neurological, morphological and metabolic adaptations can occur in response to 

exercise training resulting in enhanced skeletal muscle work capacity [78, 87]. In this 

section, we will limit the discussion to metabolic adaptations occurring in response to 

HIIT. Observed intramuscular metabolic adaptations in response to HIIT includes an 

increase in the protein content and activity of key regulatory metabolic enzymes, 

increase in intramuscular substrate availability and its delivery and lastly, improvement 

in its buffering capacity [66, 78]. 

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC- α) 

is considered a ‘key regulator’ of several transcriptional factors that are associated with 

adaptive thermogenesis, fibre type switching in skeletal muscle, mitochondrial 

biogenesis, cellular metabolism and heart development [88]. The expression of PGC-1α 

after exercise is activated through several upstream signalling pathways including 

Ca2+/calmodulin-dependent protein kinase IV (CaMKIV) and calcineurin A (CnA) (i.e. 

calcium-mediated signalling via nerve stimulation) [89, 90], p38 mitogen-activated 

protein kinase (p38 MAPK) [91] and AMP-activated protein kinase (AMPK) (i.e. when 

AMP:ATP ratio is high) [92]. Numerous studies have shown that PGC- α , along with 
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downstream markers of mitochondrial biogenesis and both lipid and glucose oxidation, 

may be upregulated following AIT and SIT  [26, 32, 33, 65, 93, 94]. For instance, a brief 

(i.e. 1 week, 3 sessions per week) period of SIT resulted in a significant increase in the 

protein content of the mitochondrial enzyme cytochrome c oxidase subunit IV (COX IV) 

and the cellular glucose transporter GLUT IV, which will improve cellular glucose 

utilisation and oxidative capacity [95]. However, within this study no training effect was 

observed in lipid transporters (i.e. fatty acid translocase and fatty acid binding protein) 

[95]. Furthermore, 6 to 7 weeks of SIT can increase hexokinase (HK), 

phosphofructokinase (PFK), citrate synthase (CS) [96],  pyruvate dehydrogenase (PDH) 

and β-hydroxyacyl-CoA-dehydrogenase (β-HAD) [65], which will improve both glucose 

and lipid oxidative capacities. Alternatively, 2 weeks of AIT in healthy individuals has 

been shown to upregulate the enzymatic activity of CS [26, 36] and elicit an increase in 

the protein content of COXII, COXIV, GLUT IV [26] as well as an increase in fatty acid 

binding protein with no increase in fatty acid translocase [36]. Longer AIT (i.e. 20 

weeks) in healthy individuals has also been shown to result in significant increases in the 

activity of other enzymes involved in both glycolytic and oxidative pathways (i.e. HK, 

PFK, malate dehydrogenase (MDH) and β-HAD) [97]. Collectively these studies 

indicate that both AIT and SIT are effective in activating cell signalling cascades that 

ultimately improve the oxidative and metabolic capacity of muscle.  

Furthermore, while there are extant AIT studies on intramuscular metabolic 

adaptations in the clinical population, to the best of the author’s knowledge, there are no 

existing SIT studies which have observed for these adaptations in this population. The 

beneficial effects of HIIT are not limited to healthy populations. Indeed, AIT has been 

shown to be effective in enhancing aerobic enzymatic activity and increasing protein 

content of PGC-1α, COX I, II and IV and GLUT IV and in a variety of clinical 

populations including type 2 diabetics, patients with medically treated post-infarction 

heart failure and overweight and obese individuals [31-33, 94]. These results are 

important since many of these markers have been implicated the development or 

progression of chronic diseases. For instance, citrate synthase activity (i.e. indicator of 

mitochondria content) is reduced in obese insulin resistant individuals and type 2 

diabetics [98-100], thus exercise induced increase in expression and content of PGC-1α 
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leading to mitochondria biogenesis may assist in the treatment and prevention of 

metabolic syndrome.  Collectively, these studies have shown that HIIT can induce 

favourable intramuscular metabolic adaptations in both healthy and clinical populations. 

Specifically, both AIT and SIT can enhance intramuscular oxidative capacity and 

improve glucose utilisation, however it seems that while AIT can improve intramuscular 

lipid oxidation and utilisation, the effect that SIT has on lipid utilisation requires more 

research.  

2.5 Cardiometabolic benefits from high-intensity interval training in both 

healthy and clinical populations 

Undesirable metabolic and physiological changes are corollary to assuming a 

more sedentary lifestyle and together with environmental factors such as increased 

availability of food can strongly condition the obesity phenotype [4, 101]. A chronic 

state of obesity may result in a pre-morbid state, known as metabolic syndrome, which is 

usually characterised by a large waist circumference, dyslipidaemia, glucose intolerance, 

hypertension, low grade inflammatory and prothrombotic states [102, 103]. Metabolic 

syndrome predisposes an individual towards greater risks of developing related co-

morbidities such as type II diabetes and cardiovascular diseases [104, 105]. This section 

will further illustrate how HIIT can elicit favourable systemic physiological adaptations, 

thus attenuating metabolic risk factors. 

2.5.1 Aerobic capacity and exercise tolerance 

In both clinical and healthy individuals, short term (i.e. 2 – 3 weeks) AIT and 

SIT have been shown to increase aerobic capacity [1, 36, 83, 106].  or instance,   weeks 

of AIT (i.e. 4 min at  0  of   O2peak interspersed with 2 min rest, 13 sessions) increased 

absolute   O2peak by 13% in recreationally active women [36]. In patients with severe 

chronic heart failure, 3 weeks of AIT (i.e. cycling: 30 sec at 50% peak power output 

(PPO) interspersed with 60 sec at 15 W, 5 times a week, treadmill walking: 60 sec at 2.4 

mph interspersed with 60 sec at 0.9 mph, 3 times a week) increased relative   O2peak by 

20% [83]. Following 2 – 3 weeks of progressive  IT, relative   O2max increased by 5% in 

recreationally active individuals [106] and absolute   O2peak increased by 8.4% in 
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overweight/obese individuals [1]. Likewise, long term AIT (i.e. 4 weeks to 6 months) 

[32-34, 64, 84, 94, 107, 108] and SIT (i.e. 4 – 15 weeks) [35, 73, 96, 106, 109-111] 

studies also reported improvement in aerobic capacity. Importantly, improvement in 

aerobic fitness is a favourable adaptation, since it is a robust indicator of all-cause 

mortality [112-115]. Furthermore, in some SIT and AIT studies, an increase in exercise 

tolerance is concomitant with improvement in aerobic capacity [35, 36, 83]. For 

instance, after two weeks of AIT (i.e. 4 min at  0  of   O2peak interspersed with 2 min 

rest) with improvement in aerobic capacity, recreationally active women responded to a 

similar 60 min cycling trial ( 60  of   O2peak) at a lower percentage of their   O2peak, 

with increased fat oxidation rate, reduced carbohydrate oxidation rate and with both 

lower HR and plasma epinephrine levels [36]. The attenuated epinephrine indicates a 

reduced sympathetic response towards the similar workload following training resulting 

in a lower HR response and reduction in glycogenolysis that is supported by the changes 

in substrate utilisation [116, 117]. Similarly, two weeks of SIT in healthy individuals 

improved relative aerobic capacity and responded to a similar workload (i.e.   h at 6   

of   O2peak) with reduced absolute oxygen consumption and carbohydrate utilisation in 

tandem with an increase in lipid oxidation rate [118]. Notably, in patients with stable 

chronic heart failure, an increase in exercise tolerance was evident by the similar HR, 

blood pressure (BP) and whole body rating of perceived exertion (RPE) responses 

despite increase training workload. 

2.5.2 Cardiovascular adaptations and improvements in hemodynamic parameters  

Improvement in aerobic fitness may partially explained by favourable 

cardiovascular adaptations. Both SIT and AIT studies have reported concomitant 

improvement in endothelial function with the observed improvement in aerobic fitness 

in both healthy and clinical populations [32, 33, 84, 94, 107, 110]. This improvement 

may be partly explained by an increase in plasma nitric oxide observed in two of the 

AIT studies [33, 84]. The literature also suggests that AIT can reduce the risk of 

coronary artery disease. For instance, oxidised low density lipoprotein (LDL), a 

sensitive marker for coronary artery disease was markedly reduced after 4 months of 

AIT (i.e. 4 min at 90% of HRmax interspersed with 3 min at 70% of HRmax, 3 sessions a 
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week) in individuals with metabolic syndrome [33]. However, this finding is not 

observed in all studies, thus further research is warranted [84, 94]. Furthermore, AIT and 

SIT can also significantly lower blood pressure (BP). For instance, long term AIT can 

favourably lower both systolic [33, 84, 107] and diastolic [33, 84, 94, 107] BP. For 

instance, 4 months of AIT (i.e. 4 min at 90% of HRmax interspersed with 3 min at 70% 

HRmax, 3 sessions a week) decreased systolic BP (144 ± 5 vs. 135 ± 5 mmHg), diastolic 

BP (i.e. 95 ± 3 vs. 89 ± 3 mmHg) and mean arterial pressure (MAP) (i.e. 111 ± 3 vs. 105 

± 3 mmHg). Alternatively, 2 to 6 weeks of SIT can decrease systolic BP in both 

adolescents [119] and overweight/obese individuals [1]. For instance, 7 weeks of SIT 

(i.e. progressive increment from 4 sets of 20 maximal sprint running interspersed with 

20 – 30 sec of active recovery, 3 sessions a week) decreased systolic BP (112 ± 10 vs. 

106 ± 11 mmHg) in adolescents [119]. However, Rakobowchuk et al., 2008 did not 

observe any changes in brachial BP following 6 weeks of SIT (i.e. progressive increment 

from 4 sets of 30 sec maximal “all-out” sprints interspersed with 4.5 min of cycling at 30 

W) in healthy individuals [110]. While short term studies suggest that SIT can lower 

systolic BP, longer term studies are warranted to elucidate if it can lower both systolic 

and diastolic BP. Lastly, favourable cardiac remodelling such as reverse left ventricular 

remodelling resulting in reduced end diastolic and systolic volumes and a greater left 

ventricular ejection fraction from 12 weeks AIT (i.e. 4 min at 90 – 95% of HRpeak, 3 min 

at 70% of HRpeak, 3 sessions a week) have been observed in patients with post infarction 

heart failure [32]. In fact, further insights can be observed from isolated cardiomyocytes 

from rats and mice extracted after AIT. 4 – 6 weeks of AIT can induce distinctive 

adaptations (i.e. balanced hypertrophy, improved contractility and intracellular calcium 

handling and enhanced myofilament calcium sensitivity) in cardiomyocytes [120-122]. 

Notably, AIT intervention studies involving patients with previous history of 

cardiovascular diseases (i.e. chronic heart failure and coronary artery disease) suggests 

that AIT can be safely prescribed to those who are at risk of developing cardiovascular 

diseases. No studies have yet to examine the efficacy of SIT in cardiac rehabilitation, 

possibly due to its supramaximal intensity, making it unsuitable for cardiac 

rehabilitation. 
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2.5.3 Anthropometric and body composition  

Obesity is associated with increased risk of developing both type 2 diabetes and 

cardiovascular diseases [123, 124]. Therefore, an important objective for obese 

individuals or those with metabolic syndrome is improvement in body composition. 

Weight loss and reduction in waist circumference can reduce the related risks for these 

individuals [125, 126]. Long term (i.e. 3 – 12 months) studies observed significant 

reduction in body fat percentage in overweight [94], healthy [97] individuals and 

adolescents [84] after AIT intervention. For example, 3 months of AIT (i.e. 4 min at 85-

95% of HRmax, 3 min at 50-60% of HRmax) resulted in a 2% reduction in body weight, 

reduction in BMI (i.e. 36.6 ± 1.2 vs. 36.0 ± 1.2 kg/m
2
) and 2.2% reduction in body fat in 

obese individuals [94]. However, Nybo et al. (2010) reported that 5 months of AIT (i.e. 

2 min at above 95% of HRmax, 1 min of passive rest, 2 sessions a week) did not result in 

any changes in lean body mass and body fat percentage in healthy individuals [63]. It is 

a possible that the lack of change in body composition in the study by Nybo at al. (2010) 

could be due to difference in participants’ demographics and training protocols. For 

instance, participants in Nybo et al. (2010) exercised for 20 min (includes warm-up and 

cool down) per session, twice a week, which is lower in training volume in comparison 

to the other studies, in which participants exercised more than 20 min per session, thrice 

a week [63, 84, 94]. Therefore, while AIT can improve body composition by reducing 

fat mass, the training duration plays a crucial role in determining its efficacy. Few SIT 

studies have examined changes in body composition, in a study by Buchan et al. (2011), 

body composition (i.e. body fat percentage) was not affected after 7 weeks of SIT (i.e. 

progressive increment from 4 sets of 20 maximal sprint running interspersed with 20 – 

30 sec of active recovery, 3 sessions a week) in adolescents [119]. However, Trapp, 

Chisholm, Freund and Boutcher (2008) reported that 15 weeks of SIT (i.e. progressive 

increment of 8 sec sprinting against 0.5kg followed by 12 sec of slow cycling over 15 

weeks) significantly reduced body mass, fat mass and trunk fat in health women [111]. 

The difference in both recruited populations and exercise protocols could have explained 

the disparity in findings between Buchan et al. (2011) and Trapp et al. (2008) however; 

it can also indicate that a longer period of SIT (i.e. 15 weeks) is needed before 

improvement in body composition can be observed. 



 16 

Presence of abdominal obesity, as assessed by waist circumference is a criteria 

for the classification of metabolic syndrome by several health organisations [127]. 3 – 4 

months of AIT can reduce waist circumference in individuals classified with metabolic 

syndrome and overweight adolescents [33, 84, 107]. For instance, 3 months of AIT (i.e. 

4 min at 90-95% of HRpeak, 3 min at ~70% of HRpeak, 3 sessions a week) significantly 

reduced waist circumference (i.e. 109.6 ± 10 vs. 108.3 ± 10.7 cm) in those with 

metabolic syndrome. However, SIT effect on waist circumference is equivocal. For 

instance, in one study, 2 weeks of SIT in overweight/obese males significantly reduced 

both waist (i.e. 101.3 ± 2.7 vs. 98.9 ± 3.1 cm) and hip (i.e. 110.9 ± 2.2 vs. 109.8 ± 2.2 

cm) circumferences [1]. However, Buchan et al. (2011) did not observe any changes to 

waist-hip ratio after 7 weeks of SIT in adolescents [119]. Thus, AIT can elicit reduction 

in waist circumference, however more SIT studies are warranted to further investigate its 

efficacy in reducing waist circumference. 

At present, it appears that AIT is superior to SIT in eliciting favourable 

anthropometric and body composition changes; furthermore, longer duration SIT studies 

examining its efficacy in anthropometric and body composition changes are warranted. 

2.5.4 Glucose homeostasis 

Exercise is important in the management of glucose homeostasis in those with 

metabolic syndrome and type 2 diabetes. Extant studies show that short (i.e. 2 – 3 

weeks) [31] and long (i.e. 3 – 5 months) [33, 63, 84] term AIT can mitigate 

hyperglycaemia during fasting and under glucose loading in both healthy and clinical 

populations. For instance, 2 weeks of AIT (i.e. 60 sec at 90% of HRmax, 60 sec at 30 W, 

3 sessions a week) reduced average 24 h blood glucose concentration (i.e. 7.6 ± 1.0 vs. 

6.6 ± 0.7 mmol/L) and sum of the 3 h postprandial area under glucose curves for 

breakfast, lunch and dinner (i.e. 965 ± 483 vs. 679 ± 437 mmol/L.9 h) in type 2 diabetics 

[31]. Additionally, 5 months of AIT (i.e. 2 min at above 95% of HRmax, 1 min of passive 

rest, 2 sessions a week) reduced fasting glucose level (i.e. 5.7 ± 0.2 vs. 5.2 ± 0.1 mM) 

and glucose level after oral glucose tolerance test (OGTT) (i.e. 6.1 ± 0.6 vs. 5.1 ± 0.4 

mM) in healthy individuals [63]. However, a 3 month AIT (i.e. 4 min at 90-96% of 

HRpeak, 3 min at ~70% of HRpeak, 3 sessions a week) study by Stensvold et al. (2010) did 
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not improve insulin sensitivity, reduce fasting glucose levels and glycated haemoglobin 

(HbA1c) in individuals with metabolic syndrome [107]. Until others report can 

corroborate that reported by Stensvold et al. (2010), the literature indicates that AIT can 

improve glucose homeostasis. Studies suggest that SIT as short as 2 weeks up to 6 

weeks can improve insulin sensitivity [1, 109, 128, 129], while two of these studies 

reported no changes to fasting insulin and glucose [128, 129], Whyte et al. (2010) 

reported a reduction in fasting insulin after 2 weeks of SIT in overweight/obese 

individuals [1]. Trapp et al. (2008) also found a significant reduction in fasting insulin 

level following SIT (i.e. progressive increment of 8 sec sprinting against 0.5kg followed 

by 12 sec of slow cycling over 15 weeks) in healthy women [111]. Also, Metcalfe, 

Babraj, Fawkner and Vollaard (2012) reported gender specific improvement in insulin 

sensitivity such that insulin sensitivity improved by 28% only in males [109]. It appears 

that there are divergent findings on the efficacy of SIT in improving fasting glucose and 

insulin levels and more research is warranted, however it may improve peripheral insulin 

sensitivity under glucose loading. Improvement in peripheral insulin sensitivity under 

glucose load could have possibly resulted from the previously mentioned intramuscular 

enhancement in glucose utilisation and transport after SIT.  

2.5.5 Lipid metabolites  

Dyslipidemia is characterised by having elevated levels of triglycerides rich 

lipoproteins (VLDL) or remnants concentration of VLDL and low levels of high density 

lipoproteins (HDL) in the plasma [130]. It is associated with increased risk of 

cardiovascular diseases [131, 132] and is a criterion for the classification of metabolic 

syndrome proposed by several health institutions [127, 133, 134]. 3 – 4 months of AIT 

in both healthy [63] and overweight individuals [94] and those with metabolic syndrome 

[33, 107] did not result in any change to fasting triglycerides, HDL, total cholesterol and 

LDL levels. For instance, 3 months of AIT (i.e. 4 min at 90% of HRmax, 3 min at 70% 

HRmax) did not affect triglycerides, total cholesterol and low density lipoprotein (LDL) 

in those with metabolic syndrome [33]. However, Tjønna et al. (2009) reported a 

divergent decrease in HDL levels after 3 months of AIT in overweight adolescents [84]. 

This disparity could be a result of the difference in population recruited between studies.  
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Likewise, 2 weeks of SIT did not elicit any changes to fasting triglycerides, total 

cholesterol, HDL and non-esterified fatty acid (NEFA) in overweight/obese individuals 

[1]. Similarly, 7 weeks of SIT (i.e. progressive increment from 4 sets of 20 maximal 

sprint running interspersed with 20 – 30 sec of active recovery, 3 sessions a week) did 

not elicit any changes to HDL, LDL and total cholesterol levels in adolescents, however 

authors observed an increase in triglycerides. These studies indicate that both AIT and 

SIT may have negligible effects on lipid metabolites; however more research is 

warranted before it can be conclusive.  

2.6 Comparisons of metabolic adaptations and health benefits between 

HIIT and conventional CME protocols  

To fully appreciate the rationale behind the burgeoning interest in promoting 

high-intensity interval training as an alternative to the preferred conventional continuous 

moderate-intensity exercise (CME) modal, we have to draw insights from comparison 

studies between these two exercise modals. Existing comparison studies tend to feature 

two types of study designs. The first uses an isocaloric design, allowing exercise 

intensity to be the contrasting feature. It is used mostly in the comparison between CME 

and AIT. For instance, participants performing CME in Tjønna et al. (2008) had to cycle 

longer to equalise work volumes between protocols (i.e. AIT: 43 min, includes warm up 

and cool down vs. CME: 47 min) [33]. In another design, both energy expenditure and 

exercise duration are not controlled for to highlight the difference in time commitment 

and energy expenditure. It is used mostly for comparison between SIT and CME. For 

instance, in the study by Burgomaster et al. (2008), the weekly time commitment (i.e. 

SIT: 1.5 h vs. CME: 4.5 h) and total training volume (i.e. SIT: 225 kJ/week vs. CME: 

2250 kJ/week) between SIT and CME protocols differs markedly.  

2.6.1 Intramuscular metabolic and ion handling adaptations 

Impairment in calcium handling can contribute to cardiomyocytes dysfunction, 

conversely, improvement in calcium handling can enhance contractility and increase 

cardiac power output [135, 136]. Likewise, improvement to calcium handling in skeletal 

muscles can improve muscle function via an increase in rate of force production and 
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power output. It is demonstrated in animal models that AIT is superior over CME in 

enhancing intramuscular calcium handling [137, 138]. Likewise, in human studies, AIT 

enhanced reuptake of Ca
2+

 in the sarcoplasmic reticulum in skeletal muscles while no 

changes were detected after CME [32, 33, 94]. For instance, compared with CME (i.e. 

47 min at 70 - 75% of HRmax, 3 sessions a week), 3 months of AIT (i.e. 4 min at 90% of 

HRmax, 3 min at 70% of HRmax, 3 sessions a week) increased maximal rate of calcium 

uptake by sarcoplasmic reticulum calcium ATPase by 60% with no observed effect in 

the CME group and significant improvement to peak systolic mitral annulus velocity 

(i.e. an index of global contractility in the heart) by 22% with no observed effect in the 

CME group.. To the best of the authors’ knowledge, no study has yet to compare the 

effect of SIT with CME on skeletal muscle calcium handling and this warrants further 

study. Comparison studies between AIT and CME on changes to PGC- α protein levels, 

showed that between the two protocols, PGC- α protein levels increased only after AIT 

and not CME [32, 33, 94] and in two of these studies, energy expenditure between AIT 

and CME was similar [32, 33]. Furthermore, 6 weeks of SIT, despite having a lower 

training volume (i.e. SIT: ~225 vs. CME: 2250 kJ/week) and time commitment (i.e. SIT: 

1.5 vs. CME: 4.5 h/week) than CME, elicited similar marked increase in protein content 

of PGC- α to CME [65]. These findings suggest that with sufficiently high exercise 

intensity, training volume can be reduced to elicit similar mitochondrial biogenesis, 

therefore illustrates the time efficient characteristic of HIIT. In fact, the transcription of 

PGC- α is influenced by exercise intensity [139]. On this basis, improvement in 

intramuscular metabolic capacity should be greater after HIIT. Indeed, Tremblay, 

Simoneau and Bouchard (1994) observed that 20 weeks of AIT (i.e. 30 min at 70% heart 

rate reserve, 15 - 30 sec at 60% of maximal aerobic power and 60 – 90 sec at 70% of 

maximal aerobic power) up-regulated both phosphofructokinase and hexokinase 

activities, while CME (i.e. 30 – 45 min at 60 – 85% maximal heart rate reserve, 4 – 5 

sessions a week) down-regulated and induced greater enzymatic activities in both lipid 

oxidative and citric-acid cycle pathways than CME [97]. Furthermore, total energy 

expenditure was different between the two protocols (i.e. CME: 120.4MJ vs. AIT: 

57.9MJ) [97]. Difference in intramuscular adaptations between both HIIT and CME 

protocols, could be partly explained by the difference in substrate utilisation relative to 
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exercise intensity. Considering that exercising at a constant intensity of 6     O2max for 

30 min, would elicit maximal lipid oxidation rate, the glycolytic pathway may not be 

sufficiently stressed, therefore partly explaining the down-regulation of enzymatic 

activities in the glycolytic pathway observed after CME [140]. Comparison studies 

between SIT and CME reported similar increment in intramuscular metabolic capacity 

despite difference in total training volume [65, 141]. For instance, in a 6 week SIT 

versus CME comparison study, both training protocols induced similar increase in 

intramuscular glycolytic and lipid oxidative potentials, despite a substantial difference in 

total training volume (i.e. ~225kJ/week vs. ~2250kJ/week) [65]. Repeated sprints slowly 

increase energy derivation from the aerobic pathway, which likely explains the observed 

increase in both glycolytic and aerobic capacities [75, 142]. Therefore, both SIT and 

AIT are superior to CME in increasing intramuscular metabolic capacity, mediated by 

their ability to induce greater mitochondria biogenesis.  

2.6.2 Cardiovascular adaptations and improvements in hemodynamic parameters 

CME is commonly prescribed to improve aerobic fitness, however, in 

comparison to AIT; most comparison studies reported that the latter is superior to CME 

in eliciting greater improvement in aerobic capacity [32-34, 63, 64, 94]. Comparison 

studies using an isocaloric design between AIT and CME which reported greater 

improvement in aerobic fitness after AIT suggests that improvement in aerobic fitness is 

likely to be exercise intensity dependent [32-34, 64]. On the contrary, others have also 

reported similar improvements in aerobic capacity after both AIT and CME [108, 143]. 

For instance, Wisloff et al. (2007) reported that AIT (i.e. 4 min at 90 – 95% of HRpeak, 3 

min at 70% HRpeak, 3 sessions a week) elicited a greater improvement to   O2peak (i.e. 

AIT: 35% vs. CME: 16%) compared to CME (i.e. 47 min at 70 – 75% HRpeak, 3 sessions 

a week) [32]. However,  arburton et al. ( 004) observed that both AIT (i.e.   min at 

 0    O2peak, 2 min at 40    O2peak, 3 sessions a week) and CME (i.e.    below 

anaerobic threshold with progressive increment from 30 – 4  min, 3 sessions a week) 

elicited similar increment in   O2max [144]. It is likely that the disparity between both 

findings is a result of the different training protocols, and is plausible that the duration 
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spent exercising in the high-intensity is also crucial to the improvement in aerobic 

capacity.  

In addition to the improvement in calcium handling with enhance muscular 

contractility, AIT is also superior to CME in eliciting reverse left ventricle remodelling 

of the heart and improvement in endothelial function [32]. For instance, Wisloff et al. 

(2007) observed a decline in left ventricle systolic (i.e. by 15%), diastolic (i.e. 12%) 

diameters, a decline in pro-B-type natriuretic peptide level (i.e. marker of cardiac 

hypertrophy and severity of heart failure) by 40% and improvement in flow mediated 

dilation only after AIT and not CME [32]. Furthermore, the observed exercise intensity 

dependent balanced hypertrophy in cardiomyocytes in rats after AIT, supplements how 

AIT is superior to CME in enhancing cardiac function [138]. These studies indicate that 

AIT is likely to be superior to CME as an exercise intervention for cardiac rehabilitation. 

Pertaining to SIT and CME comparison studies, both protocols improved aerobic 

capacity [73, 110, 119], endothelial function [110] and peripheral artery distensibility 

[110] despite marked differences in exercise volume. For instance, despite difference in 

weekly workloads (i.e. AIT: 225 kJ vs. CME: 2250 kJ), both SIT and CME induced 

similar improvement in endothelial function and increment in distensibility in the 

popiliteal artery [110]. It is likely that the unique feature of work – rest intervals allows 

for prolonged training periods at or near maximal oxygen consumption, thereby also 

partly explaining the greater improvement in aerobic capacity after AIT and SIT [145, 

146]. However, despite AIT being superior over CME in eliciting greater improvements 

in vascular function, both AIT and CME have similar blood pressure lowering effect 

[33, 94]. For example, Tjønna et al. (2008) reported that AIT (i.e. 4 min at 90% heart 

frequency max, 3 min at 70% heart frequency max) and CME (i.e. 47 min at 70% heart 

frequency max) reduced systolic (i.e. by ~ 10 mmHg), diastolic (i.e. by  ~ 6 mmHg) and 

mean arterial (i.e. by  ~ 7 mmHg) blood pressures, although reduction of diastolic blood 

pressure in the CME group did not reach statistical significance [33]. Also, Schjerve et 

al. (2008) observed a decrement in diastolic blood pressure in both AIT (i.e. 4 min at 85 

– 95% HRmax, 3 min at 50 – 60% HRmax) and CME (i.e. 47 min at 60 – 70% HRmax) 

groups by  6 mmHg and 8 mmHg respectively, with no change in systolic blood pressure 

[94]. Similarly, 7 weeks of either SIT (i.e. progressive increment from 4 sets of 20 
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maximal sprint running interspersed with 20 – 30 sec of active recovery, 3 sessions a 

week) or CME (i.e. 20 min of running at 70% VO2max) was reported to lower systolic 

blood pressure by ~ 5 mmHg in adolescents, although reduction in the CME did not 

reach statistical significance and there was no observable change in diastolic blood 

pressure in both protocols [119]. Therefore, extant studies demonstrated that AIT, SIT 

and CME can lower blood pressures however, reduction of blood pressure in CME 

usually does not reach statistical significance, hence comparison studies with greater 

statistical power may be needed to elucidate if CME in comparison to AIT and SIT can 

also significantly reduce blood pressure. 

2.6.3 Metabolic risk factors 

Besides cardiovascular parameters, 4 months of AIT (i.e. 4 min at 90% of HRmax, 

3 min at70% of HRmax, 3 sessions in a week) has been reported to be superior to CME 

(i.e. 47 min at 70% HRmax) in reducing overall metabolic risk factors (i.e. fasting 

glucose, HDL, triglycerides, body mass index, etc.), indicating that AIT is an effective 

intervention in reversing metabolic syndrome [33]. Furthermore, 3 - 4 months of AIT 

can attenuate lipogenesis in adipose tissue, while both AIT and CME are equal at 

reducing body weight and waist circumference [33, 94]. However, Tremblay et al. 

(1994) observed a more pronounced reduction in subcutaneous adiposity as assessed 

using skin fold measurements after AIT (i.e. 30 min at 70% heart rate reserve, 15 - 30 

sec at 60% of maximal aerobic power and 60 – 90 sec at 70% of maximal aerobic 

power) in comparison to CME (i.e. 30 – 45 min at 60 – 85% maximal heart rate reserve, 

4 – 5 sessions a week) [97]. Conversely, Nybo et al. (2010) observed that 3 months of 

AIT (i.e. 2 min at above 95% of HRmax, 1 min of passive rest, 2 sessions a week) was 

less effective than CME (60 min at 6     O2max, 2.5 times a week) in reducing overall 

body fat percentage when assessed using the DEXA [63]. Due to the difference in 

training protocols between studies, direct comparison cannot be made and may account 

for the difference in findings. Therefore, while AIT can attenuate lipogenesis in adipose 

tissue, its ability to reduce body weight and improve body composition may be similar 

or inferior to that of CME and more studies are needed to elucidate it further. In a 7 

week SIT (i.e. 20 m maximal sprints, 20 – 30 sec rest, 4 – 6 sets) and CME (i.e.  0 min 
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at  0    O2max) comparison study, while only BMI was improved after SIT, both BMI 

and body fat percentage were reduced after CME [119]. In another study, Macpherson, 

Hazell, Olver, Paterson and Lemon (2011) observed similar reduction in fat mass and 

increment in lean tissue mass after 6 weeks of either SIT (i.e. 30 sec maximal effort 

sprint, 4 min rest, 4 – 6 sets per session) or CME (i.e. 30 – 60 min at 6     O2max) in 

healthy individuals [73]. However, others have reported that 15 weeks of SIT is superior 

to CME in reducing both total body and fat masses and increasing trunk lean mass of 

sedentary but otherwise healthy women [111]. As such, it is likely that 6 – 7 weeks of 

SIT can elicit improvement to BMI and body composition, equal that observed after a 

similar period of CME. While, it is likely that SIT is superior to CME over longer 

training period of up to 15 weeks, more studies over the similar time frame are needed to 

substantiate it further.  

In comparison with CME, 3 months of AIT is observed to have similar effect 

with reducing blood glucose during OGTT in healthy individuals while in one other 

study [63], 4 months of AIT had a greater effect in reducing fasting blood glucose levels, 

resulting in an improvement in both insulin sensitivity and beta-cell function using the 

HOMA model in those with metabolic syndrome [33]. In a comparison study between 

SIT and CME in adolescents over 7 weeks, authors observed that only CME marked 

reduced fasting insulin levels [119]. However, Trapp et al. (2008) reported that after 15 

weeks of exercise intervention, only the SIT (i.e. progressive increment of 8 sec 

sprinting against 0.5kg followed by 12 sec of slow cycling over 15 weeks) group had a 

significant decrease in fasting insulin levels from the control group. These observations 

suggest AIT is superior if not similar to CME in improving glucose homeostasis. Few 

studies have compared the effect which both CME and SIT have on glucose and insulin 

homeostasis, the findings are equivocal, therefore further SIT and CME comparison 

studies are needed to investigate this further.  

Finally, 4 months of AIT and CME did not elicit any changes in lipid profile (i.e. 

triglycerides, total cholesterol and LDL) [33]. Similarly, in a study by Buchan et al. 

(2011), both SIT and CME did not elicit any changes in HDL, LDL and total cholesterol 

levels but elicited an increase in triglycerides level in adolescents [119]. The present of 
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elevated triglycerides level is uncommon, however considering that physiological 

responses to exercise may differ between adults and adolescents, this may be an isolated 

effect in adolescents. [147]. There are limited studies comparing the effects of both AIT 

and SIT with CME on lipid profile, however present studies show that in comparison to 

CME, both SIT and AIT elicit negligible changes to lipid profile, therefore more studies 

are warranted.  

In summary, both AIT and SIT are superior to CME in eliciting increment in 

both intramuscular glycolytic and oxidative capacities, despite marked difference in 

energy expenditure and time commitment. These enhancements can be attributed to the 

greater exercise intensity exposed during AIT and SIT. Furthermore, AIT is superior to 

CME in reducing overall metabolic risk factors. In fact, studies have demonstrated that 

both AIT and SIT have similar blood pressure lowering effect to CME. However, 

compared to CME, both AIT and SIT have divergent results on promoting weight loss 

and improvement to body composition. AIT seems to have similar if not inferior effects 

in these aspects as compared to CME while SIT is inferior to CME. In regards to glucose 

homeostasis, the literature indicates that AIT is superior to CME in maintaining fasting 

glucose levels and improving basal insulin sensitivity and beta-cell function. In addition, 

it is inconclusive if SIT is superior to CME in improving fasting plasma insulin levels or 

insulin sensitivity, since findings are equivocal; therefore more research is needed to 

ascertain it. Importantly, although isocaloric studies comparing between AIT and CME 

reported similar adaptations or improvements to health markers in both protocols, it 

must be highlighted that these favourable changes occurred over shorter exercise 

duration, meaning lower time commitment in the AIT protocols. These studies including 

those studies comparing between SIT and CME, underscores the time efficient quality of 

HIIT and that improvement to health, exercise tolerance and capacity can occur over 

shorter time using HIIT, as opposed to engaging in CME.  

2.7 Gaps in the research 

In the previous sections, we have discussed about the intramuscular adaptations 

and health benefits observed after both short and long term HIIT. Furthermore, we also 
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examined these observations in relation to the conventional continuous moderate-

intensity exercise in an attempt to determine its efficacy as a potential alternative 

exercise modal. However as mentioned previously, there are still gaps in the literature 

which call for more research before we can recommend its prescription to the general 

public. This study is designed to address some of these gaps and they will be discussed 

in the following sections. 

2.7.1 Comparison of acute responses to a single high-intensity interval session 

versus a single continuous moderate-intensity session  

Long term study of training adaptations and the resulting health improvements 

from long term adherence to an exercise intervention is important to establish its long 

term efficacy. However, the study of acute responses to a particular exercise intervention 

is just as important. These acute responses or termed “last exercise bout” effects can be 

defined as the immediate and transient physiological responses elicited by a single bout 

of exercise, which can occur during or over a short period of time after exercise and can 

have major positive health related implications [37].  urthermore, “last exercise bout” 

effects can confound results in long term training studies, making it difficult to 

distinguish them from training adaptations [148]. 

Research on acute responses to a single session of SI is scarce. A single SI 

session consisting of 4 sets of 30 seconds “all-out” sprints against 0.0  kp kg interposed 

with 4 min of active recovery with or without replacement of the energy deficit from the 

session has been reported to significantly reduce plasma level of triglycerides but not 

insulin and glucose levels in response to a high fat meal 24 h after the session; 

furthermore, fasting plasma triglycerides, insulin, glucose and NEFA levels were not 

affected [149]. Consistently, others have reported that a single bout of SI did not affect 

plasma glucose, insulin and NEFA levels between 12 h to 72 h post exercise [129, 150]. 

In comparison between a single  I (i.e.        O2peak for 30 seconds interposed with   

min of rest) versus CME (i.e.       O2peak for 15 min interposed with 2 min of rest) 

session, only the CME resulted in significant improvement to both fasting and OGTT 

insulin sensitivity indices, possibly resulting from the observed lower fasting and OGTT 

at 60 min insulin levels [150]. However it must be highlighted that long term SIT can 
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improve insulin sensitivity as mentioned previously [1, 128, 129].  In adolescents, a 

single  I session consisting of   sets of 30 seconds “all-out” sprints against  .   of their 

body mass, interposed with 4 min of passive recovery can significantly reduce systolic 

blood pressure 90 min post-exercise and also increase resting energy expenditure over 

30 min post exercise [151]. The health implication of “last exercise bout” effect can be 

illustrated using this finding, for example, we can posit that this protocol can be utilised 

by adolescents with pre-hypertension in accumulative daily 9 min bouts to regulate their 

daily average blood pressure. 

The implication of the “last exercise bout” effects on confounding “actual” 

training adaptations can be illustrated in the following example. In a 2-week SIT 

intervention on overweight/obese sedentary individuals by Whyte, Gill and Cathcart 

(2010), they reported transient decrease in plasma insulin levels under glucose loading, 

resting energy expenditure, carbohydrate oxidation rate and systolic blood pressure, 

increase in lipid oxidation rate and improvement in insulin sensitivity, all of which were 

no longer significant against baseline levels at 72 h post intervention [1]. The authors 

postulated that such a finding could be due to the acute response from the last training 

bout [1]. Furthermore, specific to insulin sensitivity, Richards et al. (2010) measured 

change in insulin sensitivity 72 h after a single SI session, reported no significant 

difference [129]. Therefore, it is possible that the significant improvement in insulin 

sensitivity observed by Whyte et al. (2010) is an acute response to the last exercise bout. 

Kessler, Sisson and Short (2012), emphasised the importance of defining the timing of 

post training tests to avoid confounding adaptive effects from exercise training with “last 

exercise bout” effects [70].  

In a recently published study, Bartlett et al. ( 0  ) reported that both a single 

aerobic interval (AI) session involving 6 sets of 3 min work to rest ratio using workloads 

corresponding to  0    O2max for work and  0    O2max for rest intervals and single 

CME session of cycling for  0 min at a workload corresponding to  0    O2max, when 

matched for average intensity, workload and duration, induced similar level of 

phosphorylation of the intracellular signalling pathways that elicit mitochondria 

biogenesis and consequentially matched level of PGC- α mRNA 3 hours post exercise 
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[152]. However, long term comparison studies have observed that long term AIT 

induced a greater increase in PGC- α protein content than CME [33, 94]. Despite this 

disparity, direct comparison cannot be made due to differences in the study designs, such 

as a longer work interval (i.e. 3 vs. 4 min) and the lack of control for both exercise 

duration and mean intensity in the long term studies. In fact, having a longer work 

interval means that the mean intensity for the AIT protocol in both the long term studies 

was greater than the CME protocol (i.e. ~80% vs. 70% of HRmax or heart frequency 

max) while in the Bartlett et al. ( 0  ), mean intensity ( 0  of   O2max) was similar 

between protocols. Since transcription of PGC- α mRNA is likely to be exercise-

intensity dependent and influenced by the increasing muscle fibres recruitment relative 

to exercise intensity limited at maximal exercise intensity, this could be a plausible 

explanation as to why Bartlett et al. (2012) did not find any difference in PGC- α 

mRNA content between both protocols while the long term comparison studies did [139, 

153, 154]. In addition, Bartlett et al. (2012) also noted that elevation in plasma levels of 

both glycerol and NEFA were significantly greater 3 hours after CME and attributed this 

finding to lactate-induced inhibition of lipolysis, which levels were more elevated during 

the AI, possibly due to differential muscle fibres recruitment (i.e. both type I and II 

fibres during AI) [152]. The difference in substrate appearance is consistent with 

previous findings that low – moderate intensities resulted in greater rate of appearance 

(Ra) of free fatty acids (FFA) with the Ra attenuating with increasing exercise intensity 

[155]. Interestingly, while increasing exercise intensity can enhance lipid oxidation and 

increase energy expenditure for over 90 min post exercise, an interval cycling session 

utilising 1:2, work to recovery ratio at 85% VO2max for work and 30% VO2max for 

recovery, in comparison with moderate-intensity cycling at 50% VO2max, with both 

protocols matched for mean exercise intensity, duration and total energy expenditure did 

not result in any significant difference in energy expenditure, RER kinetics or lipid 

oxidation rate over 90 min post exercise [74]. In addition, a single bout of CME can 

reduce 24 h systolic, diastolic blood pressures, night time systolic and diastolic blood 

pressures, while a single bout of AI can reduce 24 h systolic blood pressure and night 

time systolic blood pressure in medically treated hypertensive patients [156]. From this, 

it is clear that CME is superior to AI in eliciting favourable acute hemodynamic 
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responses however it also highlights that AI can be also used as an intervention to 

mitigate hypertension blood pressure.  

In summary, research on the “last exercise bout” effects from HIIT modalities is 

scant. Considering that AIT in comparison to SIT, is more widely prescribed to both the 

general and especially the clinical populations, the need for more research into these 

acute responses to a single AI session is twofold: it provides exercise physiologists with 

greater understanding so as to improve the prescription of AI as both prophylactic and 

auxiliary treatment for lifestyle-related chronic diseases and allows for better 

discrimination against “true” training adaptations against “last exercise bout” effects. At 

present, the literature has provided some insights on the acute responses to a single AI 

session: it activates intramuscular signalling pathways that promote mitochondrial 

biogenesis, attenuate appearance of glycerol and NEFA, enhance lipid oxidation rate and 

lower RER kinetics for up to 90 min post exercise and in hypertensive patients it 

improves 24 h average blood pressure. However, an interesting perspective observed is 

that when all three exercise variables, namely mean exercise intensity, duration and 

expenditure are controlled for, the acute intramuscular responses and post exercise 

metabolism after either a single AI or CME session are both similar. Notably, more 

research is needed to provide for a more comprehensive understanding of “last exercise 

bout effects” after an AI session on other metabolic and health markers such as insulin 

sensitivity, central hemodynamic parameters and cortisol responses. Furthermore, the 

extent of the duration of the effects if any at all, measured over 72 h after the AI session 

to allow future long term intervention studies to discriminate between “true” training 

adaptations from “last exercise bout” effects. 

2.7.2 Comparison of acute cortisol response immediately after a single session of 

AI versus CME 

Glucocorticoids, especially cortisol are part of the endocrine system adaptive 

response towards physiological and mental stress such as exercise or pre-competition 

anxiety [38]. In fact, literature suggests that cortisol may be responsible for several 

observed metabolic and physiological adaptations such as mitochondria biogenesis, 

improvement in beta-cell function and its proliferation resulting from exposure to stress 
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(i.e. exercise) and exercise induced enhance lipolytic action in adipose tissue  [41, 157, 

158]. During exercise, the stimulation of the hypothalamus-pituitary-adrenal, resulting in 

the secretion of glucocorticoids, plays an essential role in mobilising substrates for the 

increase metabolic demands [39, 159]. It is clear when individuals are placed under both 

emotional and physiological stress which can be elicited simultaneously through 

exercise, cortisol levels are raised, as seen during and after either exhaustive cycling at 

  6  of   O2max or prolonged cycling (i.e. 50 min) at anaerobic threshold with the latter 

having a more pronounced effect [160]. Therefore, both exercise duration and intensity 

mediate the secretion of glucocorticoids during and after exercise. Indeed when 

exercising at     of   O2max, a sustained duration of at least 80 min is required to elicit 

an elevation in cortisol levels during exercise [161]. Others have reported that a duration 

threshold of more than 40 min and high-intensity exercise at  6  of   O2peak is required 

to observe an elevation in cortisol levels during exercise [42]. Consistently, not only did 

60 min of cycling at  0  of   O2max not elicit an increase in cortisol levels but further 

decreased it, however 4 sets of 30 seconds “all-out” supramaximal cycling bouts 

separated by 5 min of rest after each set elicited an increase in cortisol levels at 10 and 

60 min post-exercise [44].  eparately, after a single 30 seconds “all-out” supramaximal 

cycling bout, cortisol levels were observed to be significantly higher than pre-exercise 

levels at  0 min post exercise, while cortisol levels were significantly increased 

immediately after 30 min of cycling at  0  of   O2max [43]. Taken together, we can infer 

that at low intensity (i.e.      of   O2max), exercise duration needs to be longer than  0 

min to elicit an increase in cortisol levels, however with increasing exercise intensity 

(i.e. ≥ 0  of   O2max), this exercise duration threshold becomes shorter (i.e. ≥30 min).  

Therefore, the observation of cortisol levels after an acute bout of exercise 

provides information on the extent of physiological stress induced by that particular 

exercise protocol. It is consistent from the extant studies on healthy young males in the 

literature that a delayed spike in cortisol levels occurring 10 – 20 min can be observed 

after a SI protocol [43, 44]. Furthermore, while cortisol responses after a CME protocol 

involving cycling at  0  of   O2max for 30 min is similar to a single sprint, cycling at 

 0  of   O2max for 1 hour is unable to elicit greater post exercise cortisol levels in 

comparison to after a SI session consisting of 4 maximal “all-out sprints” interposed 
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with 5 min of passive rest [44]. Unlike the SIT, the influence of a single AI on cortisol 

response has not been extensively studied. Furthermore, cortisol response towards 

exercise stress in obese individuals has been shown to be different to lean individuals, 

usually more pronounced [45]. In fact, overweight and obese individuals have been 

characterised with elevated basal cortisol than their lean counterparts [45, 162], 

however, it can also be lower than their counterparts as observed by others [163]. 

However, study has shown that 12 weeks of moderate intensity exercise (i.e. 60 – 65% 

HRR) reduced cortisol levels [164]. In fact, it has been shown that multiple bouts of high 

intensity interval exercise (i.e. 4 – 5 sets of 2 min at 100 – 110% of   O2max,   min at 

40    O2max) during the day resulted in lower night cortisol levels than multiple bouts of 

continuous moderate-intensity exercise (i.e. 4  min and 60 min at 6   of   O2max) [165]. 

Accordingly, it is likely AIT which can be greater in exercise intensity may be used to 

reduce elevated cortisol levels found in obese individuals. Therefore, in consideration 

that AIT is commonly advocated for both the general and clinical populations as it is 

better tolerated in comparison to SIT and that overweight and obese individuals who 

tend to be physically inactive and are at risk of developing metabolic diseases would be 

likely candidates for exercise prescription, more research is required to understand the 

cortisol response in these individuals elicited after a single AI session. 

 2.7.3 Comparison of exercise preference between HIIT versus CME 

HIIT is a time efficient exercise modality with the potential to be an alternative 

against the traditionally recommended CME. As mentioned previously, “lack of time” 

has been consistently proposed as a barrier against the engagement of physical activity 

and while HIIT can circumvent it, there are other barriers to be considered. Both 

perceived enjoyment of physical activity and physical activity preference are factors 

which have been frequently reported to influence physical activity participation and 

adherence [20, 166, 167]. Taken together, it is imperative that for any exercise modality 

to be successfully introduced to the general population, it has to be able to overcome 

these barriers. Drawing insights from the literature, HIIT may receive less aversion as 

compared to other forms of long-period type vigorous intensity activities, since the 

interposed low-intensity active or passive recovery bouts may attenuate the 
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unpleasantness from each high-intensity bouts [168]. At present, not much research has 

been done towards determining whether HIIT may be perceived as an enjoyable exercise 

intervention while extant reports are mostly anecdotal evidence.   For example, in a 

previously mentioned SIT study, Richards et al. (2010) evaluated that compliance rate 

for the study was high due to two contributing factors, mainly the substantial verbal 

encouragement given and supervision during every training session [129]. In an AIT 

intervention study on patients with metabolic syndrome, Tjønna et al. (2008) reported 

informal comments that participants performing AIT found the varying intensity to be 

motivating while those performing CME found it “quite boring” to walk continuously 

[33]. A study by Bartlett et al. (2011) comparing the perceived enjoyment of performing 

either high-intensity interval (i.e. 3 min at  0    O2max, 3 min at  0    O2max) or 

continuous moderate-intensity (i.e.  0 min at  0    O2max) running using a previously 

validated “Physical Activity Enjoyment  cale” reported that recreationally active men 

experienced greater enjoyment performing the former to the latter [2]. However, one 

must be cautioned against applying this finding to other populations such as those who 

are morbidly overweight or obese. For example, Sim et al. (2014) found that overweight 

individuals perceived similar enjoyment from both AI (i.e.   min at  00    O2peak, 4 min 

at  0    O2peak) and CME (60    O2peak). This disparity in reported perceived 

enjoyment between recreationally active and overweight individuals suggests that 

perception of enjoyment from AIT cannot be generalised between both cohorts. Studies 

have indicated overweight individuals find physical activity less pleasurable and their 

level of enjoyment can be further diminished if exercise intensity is above which that 

they prefer [47]. Therefore, it is imperative that research be invested into determining 

the optimal AIT protocol such that perceived enjoyment is not compromised for these at 

risk individuals.  

2.7.4 Conclusion: Addressing the gaps 

Physical activity is a modifiable risk factor for obesity and its accompanying co-

morbidities. It also augments other risk factors which are consequences of unfavourable 

metabolic changes from adopting a sedentary lifestyle. The clustering of these risk 

factors is associated with the term “metabolic syndrome”. Recently, HIIT has been 
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proposed as an alternative exercise modality to the conventional CME. The work to rest 

intervals, a hallmark feature of HIIT forms the premise for its use in individuals with 

reduced capacity to exercise since it allows sustained exposure to increase cellular stress, 

thereby allowing greater physiological adaptations which otherwise would require 

greater volume and duration for the similar effect to be achieved in convention CME. 

Importantly, both AIT and SIT have been safely prescribed to various clinical 

populations despite the increased risk of cardiovascular accident that accompanies the 

participation of vigorous physical activity. In fact among the different HIIT protocols, 

reviews in the literature advocates the prescription of AIT to both the general and 

especially clinical populations. However, there are several gaps pertaining to AIT which 

need to be addressed. There is an exigency for studies to look at the acute physiological 

effects from a single AI session to allow for better understanding and discrimination 

between the “last exercise bout effects” versus training adaptations.  urthermore, 

comparison between a single AI and CME session is required to highlight the difference, 

if any on the acute physiological effects on health and metabolic markers, especially 

since single bout of exercise accumulated over several sessions is just as important as 

long term adherence to an exercise programme on health. In addition, the observation of 

cortisol response can provide an illustration of the extent of physiological and emotional 

stress elicited by an exercise protocol. In fact, the literature indicates that both exercise 

intensity and duration play important role in mediating cortisol response during and after 

an exercise bout. Extant studies have examined and compared the effects from a single 

SI session and CME session on cortisol response; however, the influence from a single 

AI session and in comparison to a single CME session on cortisol response has not been 

examined. Further to that, the acute cortisol responses elicited by overweight or obese 

individuals after a single AI session has not been examined, which is important since 

this population group is at risk of developing metabolic diseases and thus are prime 

targets for exercise prescription. Lastly, both exercise intensity and exercise preference 

play important roles in determining exercise adherence. For overweight or obese 

individuals, the prescription of a pre-determined exercise intensity that is above their 

preferred exercise intensity threshold can have negatively affect exercise preference and 

consequentially reduce exercise adherence. Overweight and obese individuals are prime 
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targets for exercise prescription as prophylactic measure against metabolic diseases 

since they are usually physically inactive, however AIT involves brief escalation into 

high exercise intensities and therefore may affect exercise preference, thus exercise 

preference for AIT needs to be examined in this particular group of individuals and 

comparison to be made against CME to determine which exercise modality is more 

preferred.  

In conclusion, we can confidently prescribe AIT to both the general and clinical 

populations; some of these gaps need to be addressed. By closing these gaps, there can 

be positive implications for both the research and clinical communities.  

 

 

 

 

 

 

 

 

 

 

 



 34 

CHAPTER THREE METHODS 

3.1 Subjects 

Twelve overweight/obese sedentary males were recruited to participate in this 

study, however, four dropped out for personal reasons (n = 8). Participants were 

recruited on the basis that they were sedentary (i.e. engaging in less than 1 h/week of 

structured exercise), aged between 19 to 55 years and had a BMI greater than 25 kg/m
2
. 

Each participant readiness to participate in physical activity was assessed using the 

“Physical Activity Readiness Questionnaire” (PAR-Q), created by the Canadian Society 

for Exercise Physiology [169]. Participants who answered positively to any questions in 

the PAR-Q were required to fill out a medical questionnaire and obtain medical 

clearance from a medical practitioner before inclusion into the study. Participants were 

excluded if they were smokers, currently taking medications that could confound the 

results of the study and were unable to receive medical clearance from a medical 

practitioner. The study protocol and procedures were approved by Edith Cowan 

University’s human research ethics committee. Participants provided written informed 

consent prior to participation in the study. Throughout the study, participants were 

requested to maintain their sedentary lifestyle and to refrain from participating in any 

strenuous physical activity.  Furthermore, participants were asked to avoid the 

consumption of caffeinated and alcoholic beverages 6 h prior to all trials.  

3.2 Study design 

Participants attended the laboratory on 11 separate occasions to perform, two 

maximal aerobic capacity tests, two exercise trials and seven measurement sessions 

(Figure 1). On the first and second visits, participants performed two incremental 

exercise tests to exhaustion, interposed by 2 days for determination of their peak aerobic 

capacity. On the third visit, anthropometric and baseline measurements were assessed 

(described below) and dietary intake 24 h prior was recorded by participants and 

replicated in the subsequent measurement sessions. In a randomised and 



 35 

counterbalanced order, participants then performed two exercise trials with a seven days 

washout period interposed between each trial. These exercise trials involved an AI 

session and a CME session (described below). After the completion of each exercise 

trial, participants completed a “Physical Activity Enjoyment  cale (PACE )” 

questionnaire, to evaluate their perceived level of enjoyment of the exercise trial. The 

PACES is a valid [170] 18-item questionnaire with each item having a 7-point scale (see 

appendix 2). Saliva samples were also collected prior to, at 10 and 30 min post exercise 

trial. At 24 h, 48 h and 72 h following each trial, participants returned to the laboratory 

for measurements which were similar to that performed at baseline (described below). 

Anthropometric measurements (only DEXA assessments) were taken again at post 72 h 

of the last exercise trial. 

 

Figure 1. Schematic illustration of the study design. 
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3.2.1 Incremental exercise test 

Participants performed the incremental cycling tests on an electronically braked 

cycle ergometer (Velotron Pro, RacerMate, Seattle, WA). Each participant performed 

the test twice and the highest power output elicited between both tests was used to 

determine the workloads for both exercise trials (described below). The test commenced 

at a workload of 30 W which gradually increased by 3 W every 12 s (i.e. 15 W every 

min). Participants continued cycling against the increasing workload until either 

volitional exhaustion or a cadence greater than 50 rpm could no longer be maintained. 

Verbal encouragement was given throughout the protocol. Gas exchange was assessed 

throughout the test using a TrueOne® gas analyser (Parvo Medics, Sandy, Utah USA) 

which was previously verified [171]. Before all testing sessions, the gas analyser was 

calibrated using alpha gases of known concentration and the volume transducer was 

calibrated using a 3   syringe (Hans Rudolph,  ansas, MO).   O2peak was established as 

the highest   O2 value recorded over    s average. The peak power output (PPO) was 

defined as the workload corresponding   O2peak. Heart rate (HR) (Polar S610, Polar, 

 inland) and rating of whole body perceived exertion (RPE) (Borg’s RPE scale, 6 - 20) 

were recorded at 2 min intervals during the test.  

3.2.2 Exercise trials 

Participants performed the two exercise trials on the Velotron cycle ergometer. 

Both were designed to match for trial duration (CME: 40 vs. AI: 42 min) and total work 

(CME: 256.5 ± 42.6 vs. AI: 253.3 ± 42.1 kJ), while allowing differences in exercise 

intensity between trials. Briefly, in the CME bout; participants cycled for 40 min at 50% 

of their individual PPO, determined during the incremental exercise test. The intensity 

and duration for this trial was based on previous research and chosen to mirror the 

minimum intensity and duration of conventional exercise prescription guidelines [74]. 

During the AI bout, participants completed a total of 13 interval repetitions of 1 min at 

85% of their individual PPO. Each repetition was interposed with 2 min of low intensity 

cycling at 30% of their individual PPO. Prior to the high-intensity efforts participants 

performed a 3 min warm up at 30% of their individual PPO. The total exercise time for 

this trial was 42 min. 



 37 

Total work performed during each trial was calculated based upon the following 

formula:  

               

Where P is the power output calculated from the percentage of the PPO (W) and 

t (min) is the total time during which the power output was elicited. Total energy 

expenditure for the high-intensity bout included the warm-up.  

Throughout both exercise trials, HR (Polar S610, Polar, Finland) and RPE 

(Borg’s RPE scale, 6-20) were recorded at rest, 4 min and every 6 min thereafter (i.e. the 

end of every second interval). Throughout both trials, participants were provided with 

continuous feedback on time and their power output. Participants were also allowed to 

consume water ad libitum. 

3.2.3 Measurements 

 

 3.2.3.1 Blood sampling and analysis 

Venous blood samples were collected by certified phlebotomist at a commercial 

pathology laboratory following a 12 h fast. Fasting blood samples were collected 

between 8:00am and 10:00am. During blood sampling, blood was drawn into fluoride 

oxalate and serum separator vacutainers (Vacutainer; BD, Oxford, United Kingdom). 

Serum separating tubes were left to clot for 30 min at room temperature. All samples 

were centrifuged at 3000 rev/min for 10 min at ambient temperature. Plasma and serum 

samples were immediately analysed for glucose, triglycerides and cholesterol, while 

additional serum samples were frozen at -80°C and later analysed for insulin. 

Commercially available kits were used for the analysis for triglycerides, total cholesterol 

and HDL (ADVIA Chemistry; Siemens, Munich, Germany) on an automatic analyser 

(ADVIA Chemistry 2400; Siemens, Munich, Germany). LDL was estimated from 

measured triglycerides and total cholesterol levels using the Friedewald equation, 

however where triglycerides are > 4.5 mmol/L, derived values are unreliable and 

therefore were omitted as was for one participant [172]. Insulin was determined using an 
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enzyme-linked immunoassay (EIA) (Immulite® 2000 Insulin, Siemens, Munich, 

Germany) on an automatic analyser (Immulite XPI, Siemens, Munich, Germany). 

Insulin values below the instrument limits of detection were reported as the lowest 

possible level of detection (2 mU/L). All analyses for each sample were performed in 

duplicate. 

3.2.3.2 Saliva collection and analysis 

 

 Participants did not have any dental surgery or wearing gum shields 48 hrs prior 

to saliva collection and refrained from brushing or flossing their teeth, 45 min prior to 

their arrival at the exercise laboratory [173-175]. There were no oral lesions present 

during the time of testing [173]. At least 10 min before sampling, participants rinsed 

their mouth with water and swallowed the first pool of accumulated saliva [173]. The 

passive drool method was utilised to collect unstimulated saliva, which involved 

directing pooled saliva through a polypropylene drinking straw into 2 mL cryovials 

(Salimetrics, State College, PA, USA) by getting participants to tilt their head slightly 

forward with eye open while making minimal orofacial movement [176]. Collected 

saliva samples were immediately stored at -80°C until further analysis [173-177]. 

Salivary cortisol was analysed using commercially available EIA kits (Salimetrics, State 

College, PA, USA).  

 3.2.3.3 Insulin resistance  

Insulin resistance (IR) was estimated using the HOMA2-IR. Assuming healthy 

normal-weight subjects who are  3  years old, with  00  β-cell function and an insulin-

resistance of  , approximation of the insulin resistance and β-cell function in a patient can be 

calculated using the plasma concentration of both glucose and insulin at fasting basal level 

using the following formulas [178]: 

        
                 

    
 

The model has been previously validated against euglycaemic hyperinsulinaemic 

clamp protocol and has been shown to correlate with insulin sensitivity in both healthy 
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(RS=0.83, p<0.01) and diabetic individuals (RS=0.92, p<0.01) [178]. Similarly, the HOMA-

IR index also correlates well with the euglycaemic hyperinsulinaemic clamp protocol in 

obese and older (i.e. 57 years old) individuals [179]. The coefficient of variation for HOMA-

IR function has previously been reported to be 34% [178]. The HOMA2 model provides 

non-linear solutions, accounts for variations in hepatic and peripheral glucose resistance, 

with the insulin secretion curve modified to allow for an increase in insulin secretion in 

response to a plasma glucose concentration of >10 mmol/L and allows for use with newer 

assays [180]. 

 3.2.3.4 Anthropometric assessment 

Both body mass (measured to the nearest 0.01 kg) and height (measured to the 

nearest 1.0 cm) were measured using an electronic scale and stadiometer (seca763, seca, 

Germany). Waist circumference was measured in a horizontal plane, midway between 

the inferior margin of the ribs and the superior border of the iliac crest [127]. Waist 

circumference was measured to the nearest 1.0 cm. Body fat percentage, lean tissue 

mass and body fat mass were determined from a whole body scan using dual-energy X-

Ray absorptiometry (DEXA) (Hologic Discovery A, Waltham, MA). 

 3.2.3.5 Resting metabolism and substrate utilisation 

Participants rested in a supine position on a bed, in a private and dimly 

illuminated room with temperature maintained between 22°C to 25°C for 10 min. 

Thereafter, pulmonary gas exchange was continuously measured and averaged each min 

over 20 to 40 min using a TrueOne® gas analyser (Parvo Medics, Sandy, Utah USA) [1, 

181]. A 5 min steady state interval was used for the determination of energy 

expenditure. Only data with respiratory quotient within the physiological range of 0.67 

to 1.3 was used [182]. Heart rate was measured simultaneously using telemetry (Polar 

S610, Polar, Finland). Resting metabolic rate (RMR), estimated resting energy 

expenditure (REE), CHO oxidation rate (MCHO) and lipid oxidation rate (Mlipid) were 

derived from the following equations [181-184]: 

RMR (kcal/min) = (3.941 x VO2) + (1.106 x VCO2) – (2.17 x uN2) 



 40 

REE (kcal/day) = RMR x 1440 min/day 

MCHO = (4.55 x VCO2) – (3.21 x VO2) – (2.87 x uN2) 

MLipid = (1.67 x VO2) – (1.67 x VCO2) – (1.92 x uN2) 

Urinary nitrogen (uN2) was assumed to be 0.11 mg/kg/min for all metabolic 

calculations, with reference to previous studies [183, 185]. 

3.2.3.6 Resting hemodynamic parameters  

Following the resting energy expenditure measurement, blood pressure (BP) was 

measured while participants were still in a supine position. Blood pressure was measured 

using a cuff sphygmomanometer (Medical Industries Australia, Land Cove, NSW) twice 

on the right arm with a 5 min interval between assessments, during which pulse wave 

analysis was performed [186]. Pulse wave analysis was performed using a 

sphygmocardiogram (SphygmoCor; AtCor Medical, Sydney) and involved the 

derivation of the central aortic BP through the non-invasive reconstruction of the aortic 

pulse wave from the radial pulse wave. The radial pulse wave was recorded using a 

handheld high fidelity tonometer (SPT-301B; Millar Instruments, Houston, TX) placed 

on the surface of the skin superficial to the radial artery with the application of a light 

pressure to applanate the radial artery against the radius bone [187, 188]. Both brachial 

BP measurement and pulse wave analysis were performed twice and the average was 

reported. The indices generated from the estimated central aortic pulse wave provide an 

illustration of the hemodynamics between the ventricle-vascular interaction [187]. 

Briefly, the central augmentation index is adjusted to a HR of 75 beats per min (bpm) 

(Alx@HR75) is calculated as the difference between the area under the late systolic 

peak and early systolic peak of the aortic pulse wave as a percentage of the pulse 

pressure [186]. The subendocardial viability ratio (SEVR) is defined as the percentage of 

the ratio between the area under during diastole and systole [187]. Derived aortic 

pressure and augmentation index using SphygmoCor has been previously validated 

[189-192] and measurements have been shown to be highly reproducible [188, 193, 

194].  
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3.3 Statistical analysis 

Statistical analysis was performed using the Predictive Analytic Software (PASW) 

version 19 (Chicago, IL, USA). All results are presented as mean ± standard deviation (SD), 

unless otherwise stated. Significant differences between exercise trials (CME and AI) and 

over time were assessed using a two-way repeated measures analysis of variance (ANOVA). 

 here significance between main effects interaction were identified, the  isher’s   D post-

hoc test was performed.  A dependent student’s t-test was used to assess for significance in 

the PACES scores and total work performed between exercise trials. Significance was 

defined as p < 0.05 for all analyses.  
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CHAPTER FOUR RESULTS 

4.1 Exercise responses during trials 

The demographics for the 8 overweight/obese participants are presented in Table 

1. There was a significant difference in the total work performed between exercise trial 

(CME: 256.5 ± 42.6 vs. AI: 253.3 ± 42.1 kJ, p < 0.05), however, the difference is 3.2 ± 

0.5 kJ. The RPE was only higher in the AI trial, compared with the CME trial, only at 

the 28 min time point (p < 0.05) (Figure 2A). The HR response to exercise was higher 

during the AI trial, compared with the CME trial (p < 0.05) (Figure 2B). 

Table 1.  Demographics of participants (n = 8)  

 Baseline Post study 

 
 

 
Mean ± SD Mean ± SD 

Age (y) 
 

37 ± 12 - 

Height (cm) 
 

174 ± 6 - 

Weight (kg) 
 

94 ± 12 - 

BMI (kg/m
2
) 

 
31 ± 3 - 

Waist circumference (cm) 
 

103 ± 10 - 

Hip circumference (cm) 
 

105 ± 6 - 

Waist-hip ratio 0.99 ± 0.06 - 

Lean tissue mass (kg) 65 ± 8 65 ± 8 

Fat mass (kg) 27 ± 6 27 ± 6 

Fat-free mass (kg) 68 ± 8 67 ± 8 

Bone mineral content (g) 2.66 ± 0.46 2.65 ± 0.46 

Body fat percentage (%) 28 ± 4 28 ± 4 
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Figure 2. Whole body rating of perceived exertion (RPE; A) and heart rate (HR; B) measured during bouts of continuous 

moderate-intensity (CME) and aerobic interval (AI) exercise. * denotes significant difference (p < 0.05) between trials. 
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  CME AI 

 
Baseline 24 h post 48 h post 72 h post 24 h post 48 h post 72 h post 

Blood metabolites 

and insulin 

       

Fasting plasma 
glucose (mmol/L) 

5.36 ± 0.75 5.26 ± 0.54 5.29 ± 0.53 5.56 ± 0.72 5.33 ± 0.54 5.40 ± 0.60 5.34 ± 0.57 

Fasting plasma 

insulin (mU/L) 
10.13 ± 6.53 9.75 ± 6.56 7.63 ± 5.18 9.88 ± 8.44 8.88 ± 6.10 10.00 ± 5.71 9.38 ± 5.24 

Fasting plasma 
triglycerides 

(mmol/L) (n = 7) 

1.87 ± 0.91 1.91 ± 1.03 1.66 ± 0.93 1.71 ± 0.93 1.76 ± 0.75 1.51 ± 0.72 1.60 ± 0.75 

Fasting plasma 

total cholesterol 
(mmol/L) 

5.09 ± 0.92 5.31 ± 1.24 5.24 ± 1.03 5.25 ± 1.04 5.16 ± 0.93 5.11 ± 1.04 5.34 ± 1.03 

Fasting plasma 
HDL (mmol/L) 

1.25 ± 0.64 1.43 ± 0.71 1.33 ± 0.64 1.16 ± 0.26 1.14 ± 0.28 1.18 ± 0.29 1.16 ± 0.28 

Fasting plasma 
LDL (mmol/L)  

(n = 7) 

3.21 ± 0.84 3.36 ± 1.19 3.39 ± 1.02 3.33 ± 0.90 3.19 ± 0.81 3.26 ± 1.09 3.46 ± 1.02 

HOMA2-IR 1.3 ± 0.9 1.3 ± 0.8 1.0 ± 0.7 1.3 ± 1.1 1.2 ± 0.8 1.3 ± 0.7 1.2 ± 0.7 

Hemodynamic 

parameters 
       

Brachial systolic 
pressure (mmHg) 

133 ± 17 132 ± 19 131 ± 17 131 ± 20 131 ± 20 130 ± 18 130 ± 16 

Central aortic 
systolic pressure 

(mmHg) 

120 ± 20 118 ± 22 118 ± 20 118 ± 23 118 ± 23 116 ± 22 117 ± 21 

Subendocardial 

viability ratio 
index (%) 

173 ± 16 168 ± 19 174 ± 26 170 ± 16 176 ± 21 172 ± 25 172 ± 24 

Augmentation 
index @HR75 (%) 

9 ± 12 5 ± 14 8 ± 13 6 ± 14 5 ± 14 4 ± 15 8 ± 11 

Resting 

metabolism 
       

Resting metabolic 

rate (kcal/min) 
1.24 ± 0.17 1.29 ± 0.07 1.35 ± 0.11 1.35 ± 0.16 1.36 ± 0.11 1.38 ± 0.16 1.36 ± 0.13 

Resting energy 

expenditure 
(kcal/day) 

1787 ± 252 1852 ± 105 1945 ± 151 1949 ± 224 1952 ± 161 1983 ± 237 1959 ± 193 

Lipid oxidation 
rate (g/min) 

0.06 ± 0.03 0.06 ± 0.02 0.07 ± 0.02 0.06 ± 0.03 0.07 ± 0.03 0.07 ± 0.03 0.04 ± 0.02 

 

Table 2. Blood metabolites and insulin, hemodynamic parameters and resting metabolism measured at baseline, 

post 24, 48 and 72 h after both aerobic interval (AI) and continuous moderate-intensity (CME) exercise trials. No 

significant differences in these variables were detected after either trial. 
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4.2 Anthropometric measurements 

Participants’ body composition remained similar to baseline at the end of the 

study. Lean mass, fat mass, fat-free mass, body fat percentage and bone mineral content 

were similar to baseline (Table 1). 

Both exercise trials did not elicit any statistically significant effect on 

anthropometrical measurements or body composition (Table 1). 

4.3 Blood metabolites and insulin resistance 

Both exercise trials did not significantly change fasting plasma glucose, insulin, 

triglycerides, total cholesterol, HDL and LDL. Furthermore, HOMA2-IR index was not 

significantly different after either exercise trials. The data for these variables is presented 

in Table 2. 

4.4 Salivary Cortisol  

Preliminary examination of absolute salivary cortisol response (Figure 3A) 

showed there was a main effect of trial on salivary cortisol with greater concentration 

observed in the AI trial compared to CME trial (10.06 ± 1.4 vs. 6.17 ± 1.0 nmol/L, p < 

0.05). There was also a main effect of time with absolute salivary cortisol increasing 

from baseline in both trials (Baseline: 6.05 ± 0.67, post 10: 8.71 ± 1.36, and post 30: 

9.59 ± 1.39, p < 0.05). There was no significant interaction between both exercise trials 

and time points. However, when salivary cortisol was expressed as a percentage relative 

to baseline level (Figure 3B); it was greater than baseline at 30 post exercise trial (189 ± 

35%, p < 0.05) however no significant trial or interaction effects were observed.   
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Figure 3. Absolute salivary cortisol (A) and salivary cortisol presented as percentage change from 

baseline (B) measured at post 10 and post 30 min after bouts of aerobic interval, (AI) and continuous 

moderate-intensity (CME) exercise. No significant interaction effects between trials and time points were 

observed in both A and B. 
*
 denotes significance (p   0.0 ) between trials. † denotes significance (p < 

0.05) between time points. (see text for further illustrations) 
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4.5 Resting hemodynamic parameters 

There was a main effect for trial and time in resting brachial diastolic BP (DBP). 

Resting brachial DBP was lower in the AI trial, compared with the CME trial (AI: 82 ± 5 

vs. CME: 84 ± 5 mmHg, p < 0.05) (Figure 4A). Compared with baseline, resting 

brachial DBP was lower at 24 h (baseline vs. 24 h: 86 ± 4 vs. 83 ± 5 mmHg, p < 0.05) 

and 72 h (baseline vs. 72 h: 86 ± 4 vs. 82 ± 5 mmHg, p < 0.05) post exercise, in both AI 

and CME trials. No significant interaction effects were observed for resting brachial 

DBP (p = 0.07). There was a main effect for trial and time for resting brachial mean 

arterial pressure (MAP). Resting brachial MAP was lower in the AI trial, compared with 

the CME trial (AI: 98 ± 6 vs. CME: 100 ± 5 mmHg, p < 0.05) (Figure 4B). Resting 

brachial MAP was lower compared with baseline at 24 h (baseline vs. 24 h: 102 ± 5 vs. 

99 ± 6  mmHg, p < 0.05), 48 h (baseline vs. 48 h: 102 ± 5 vs. 98 ± 6 mmHg, p < 0.05) 

and 72 h (baseline vs. 72 h: 102 ± 5 vs. 98 ± 6 mmHg, p < 0.05) post exercise, in both 

AI and CME trials. No significant interaction effects were observed for resting brachial 

MAP (p = 0.07). There was a main effect for trial and time for derived resting aortic 

diastolic BP (CDBP). Derived resting CDBP was lower in the AI trial, compared with 

the CME trial (AI: 83 ± 5 vs. CME: 85 ± 5 mmHg, p < 0.05) (Figure 4C). Compared 

with baseline, derived resting CDBP was lower at 24 h (baseline vs. 24 h: 87 ± 4 vs. 83 

± 5 mmHg, p < 0.05) and 72 h (baseline vs. 72 h: 87 ± 4 vs. 82 ± 5 mmHg, p < 0.05) 

post exercise, in both AI and CME trials. No significant interaction effects were 

observed for resting CDBP (p = 0.10). There was a main effect for trial and time for 

derived resting mean aortic pressure (CMAP). Derived resting CMAP was lower in the 

AI trial, compared with the CME trial (AI: 98 ± 6 vs. CME: 100 ± 5 mmHg, p < 0.05) 

(Figure 4D). Compared with baseline, derived resting CMAP was lower at 24 h 

(baseline vs. 24 h: 102 ± 5 vs. 99 ± 6  mmHg, p < 0.05), 48 h (baseline vs. 48 h: 102 ± 5 

vs. 98 ± 6 mmHg, p < 0.05), 72 h (baseline vs. 72 h: 102 ± 5 vs. 98 ± 6 mmHg, p < 0.05) 

post exercise, in both AI and CME trials. There was a trend towards interaction effects 

for derived resting CMAP, however significance was not reached (p = 0.063). There 

were no significant changes to other resting hemodynamic parameters such as resting 
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HR, both resting brachial and derived central systolic blood pressure and both SEVR 

and Alx@HR75 indexes (Table 2).  
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Figure 4. Resting brachial diastolic blood pressure (DBP; A), resting brachial mean arterial pressure (MAP; B), 

derived resting aortic diastolic BP (CDBP; C), derived resting mean aortic pressure (CMAP; D) measured at 

baseline, 24 h, 48 h and 72 h post exercise after bouts of aerobic interval, (AI) and continuous moderate-intensity 

(CME) exercise. No significant interaction effects between trials and time points were observed in A, B, C and D. * 

denotes significance (p   0.0 ) between trials. † denotes significance (p   0.0 ) at time point vs. baseline. (see text 

for further illustrations) 



 49 

4.6 Resting metabolism and substrate utilisation 

Compared with baseline and 24 h post exercise, fasted state MCHO was higher at 

72 h post exercise (baseline vs. 72 h: 0.10 ± 0.02 vs. 0.16 ± 0.02 g/min, 24 h vs. 72 h: 

0.11 ± 0.01 vs. 0.16 ± 0.02 g/min, p < 0.05) in both trials (Figure 5). No significant 

interaction effects were observed for fasted state MCHO. There were no significant 

changes to resting metabolic rate, resting energy expenditure and lipid oxidation rate 

(Table 2). 
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Figure 5.  Fasted state resting CHO oxidation rate (MCHO) measured at baseline, 24 h, 48 

h and 72 h post exercise after bouts of aerobic interval, (AI) and continuous moderate-

intensity (CME) exercise, no significant trials and interaction effects were observed. † 

denotes significance (p < 0.05) at time point vs. baseline and post 24 h. 
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4.7 PACES scores 

Participants perceived greater enjoyment in the AI trial as reflected by the higher 

PACES score, compared with the CME trial (109 ± 13 vs. 96 ± 10, p < 0.05) (Figure 6) 
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Figure 6. The physical activity enjoyment scale (PACES) score awarded by participants 

immediately after bouts of bouts of aerobic interval, (AI) and continuous moderate-

intensity (CME) exercise. * denotes significance (P < 0.05) between trials. 
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CHAPTER FIVE  DISCUSSION 

There is currently an increase in the incidence of overweight and obesity in 

developed nations. Obesity can lead to an undesirable clustering of cardiometabolic risk 

factors leading to metabolic syndrome, which increases the risk of type 2 diabetes and 

cardiovascular diseases [127, 195]. Aerobic interval training has been suggested to be a 

prospective alternative to the time intensive continuous moderate-intensity exercise. 

While the health benefits conferred by long term aerobic interval exercise has been 

established in both the general and certain clinical populations, its acute physiological 

effects in overweight and obese individuals is not well known. Understanding these 

effects is important in the discrimination between training effects and/or the effects of 

the last/final exercise bout. Furthermore, while recreationally active individuals perceive 

greater enjoyment from an aerobic interval session compared to continuous moderate-

intensity exercise, perceived enjoyment between the two exercise modals does not differ 

in overweight individuals [2, 48]. In fact, recovery duration between work intervals may 

also negatively influence perceived enjoyment as previously reported [196]. Such 

information is likely to be important in improving exercise program adherence and 

further research is warranted on defining an optimal AIT protocol that does not 

compromise perceived enjoyment in this population.  

5.1 Study objectives and primary findings 

The main objectives of this study were to examine and compare: i) the acute 

physiological effects after a single bout of AI session versus a single bout of matched 

work and duration CME session on cardiometabolic risk factors such as anthropometric 

variables, blood metabolites and insulin levels and resting hemodynamic parameters and 

metabolism and substrate utilisation and finally, ii) the immediate cortisol response after 

a single AI session versus a single CME session and iii) to determine which of the two 

exercise modalities is perceived more enjoyable by overweight and obese individuals. 
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The primary findings from this study are as follows. While we found a difference 

in total work performed between exercise trials, it was an extremely small (i.e. 3.2 kJ) 

and therefore unlikely to be responsible for the observed physiological differences 

between conditions. Both AI and CME trials reduced resting brachial DBP, at post 24 h 

and 72 h after an acute session. The AI trial elicited a greater reduction in resting 

brachial DBP. Similarly, derived resting CDBP was lower at post 24 h and 72 h than 

baseline following AI and CME, however; AI had a more pronounced effect. Both 

resting brachial MAP and derived resting CMAP were reduced over post 24 h, 48 h and 

72 h following both CME and AI trials, however the effect was greater following the AI 

trial. Fasted-state MCHO was higher post 72 h versus baseline and post 24 h in both CME 

and AI trials. Despite HR being higher during the AI trial, RPE scores were similar 

throughout the trials, except at the 28 min time point. The increase in salivary cortisol at 

30 min post exercise was not different between AI and CME trials. Finally, PACES 

scores were significantly higher in the AI trial, indicating that overweight/obese 

individuals found the AI session to be more “enjoyable”. 

5.2 Hemodynamic parameters 

Raised blood pressure has been attributed to 13% of global mortality [4]. Indeed 

mortality from both stroke and ischemic heart disease doubles with every 20 mmHg 

increase in systolic or 10 mmHg increase in diastolic BP [197]. The pathophysiological 

link between abdominal obesity and cardiovascular diseases is well established. Obesity 

causes left ventricle remodelling, leading to ventricular dysfunction [198]. This can 

result in diastolic dysfunction (i.e. elevation of diastolic BP) which can happen 

independently, simultaneous or prior to systolic failure [198]. Indeed, it has been found 

that mean arterial, systolic and diastolic BP are robust predictors of cardiovascular 

disease in young men below the age of 50 years old [199, 200]. The cohort in our study 

had baseline brachial systolic and diastolic BP of 133 ± 17 mmHg and 86 ± 12 mmHg, 

respectively. Accordingly, they can be classified as pre-hypertensive (i.e. systolic BP: 

120 – 139 mmHg, diastolic BP: 80 – 89 mmHg) and are predisposed towards a greater 

risk of developing cardiovascular diseases [200]. 
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Within the present study we found that a single session of CME or AI can 

acutely reduce resting DBP, MAP, derived resting CDBP and CMAP for up to 72 h 

following exercise. Post exercise hypotension can be described by a transient decreased 

in blood pressure following an acute bout of exercise, which underlying mechanisms 

have yet to be determined [201]. The magnitude of this phenomenon is more 

pronounced and consistent in borderline hypertensive [202, 203] and hypertensive [156, 

204, 205] than in normotensive [206, 207] individuals [201]. While studies have found 

that such post exercise hypotension which can last up to more than 12 h [156, 201, 206, 

208], this is the first study to our knowledge that has observed such changes for up to 72 

h. However, since there was an absence of post exercise hypotension observed at 48 h 

post exercise, caution should be taken when interpreting these findings. Indeed, the 

variability of diastolic BP can be mediated by the participants’ emotional state [209]. It 

is also possible that participants may have intermittently slept during resting metabolic 

measurements, which could have lowered their BP [210-212].  

Previously, Ciolac et al. (2009) found that CME (i.e. 40 min at 60% of heart rate 

reserve) reduced both mean 24 h systolic (i.e. -2.6 ± 6.6 mmHg) and diastolic (i.e. -2.3 ± 

4.6 mmHg) BP post exercise and night time systolic and diastolic BP (i.e. -4.8 ± 6.4 

mmHg and -4.6 ± 5.2 mmHg, respectively). However, AI (i.e. 40 min of 1 min at 80% 

of heart rate reserve, 2 min at 50% of heart rate reserve) only reduced 24 h mean systolic 

BP post exercise and night time systolic BP (i.e. -2.8 ± 6.5 mmHg and -3.4 ± 7.2 mmHg, 

respectively) without any significant change in diastolic BP [156]. Within the present 

study both CME and AI were found to reduce BP. However, we observed a significant 

reduction in diastolic and mean arterial and aortic BP and not in resting systolic and 

derived systolic BP, which is somewhat contrary to previous studies [156, 206, 213]. 

Indeed, studies have reported an average reduction in systolic BP by 14 mmHg in 

borderline hypertensive populations [201]. However, since post-exercise hypotension is 

negatively correlated with BMI [214], the discrepancies between our study and others 

may partially be explained by difference in the sampled populations. Our participants 

had a mean BMI of 31 ± 3 kg/m
2
 while other studies have recruited participants with 

BMI of < 25 kg/m
2
 [206, 213]. Although, Taylor Tolbert et al. (2000) observed a 

decrease in 24 h mean systolic BP (i.e. -7.4 ± 1.8 mmHg) and which was lower up to  6 
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h after 4  min of running at     of   2max in older obese males [205]. Alternatively, a 

small sample size of 8 could have limited the ability to detect significance in the present 

study. Further research is needed to better understand the factors that influence post 

exercise alterations in BP in overweight and obese individuals. 

Results of the present study indicate that AI elicited a greater reduction in BP. 

These findings are supported by the study of Jones, Taylor, Lewis, George and Atkinson 

(2009) who reported that intermittent exercises exerts a more pronounced post-exercise 

hypotension effect compared with a single bout of isocaloric CME [213].  This suggests 

that AI may be considered as an alternative exercise intervention to CME in mitigating 

hypertension on a daily basis. However, more studies are required to examine blood 

pressure changes during AI and further substantiate our findings before 

recommendation. Taken together, these results have implications for the measurement 

and interpretation of post training changes in BP and exercise prescription for reducing 

risk for cardiovascular diseases. 

5.3 Blood metabolites, insulin, HOMA2-IR and resting metabolism 

Metabolic syndrome is usually characterised by dyslipidaemia and impaired 

glucose homeostasis, all of which increases cardiometabolic risks. Exercise is a cost-

effective intervention that can mitigate hyperglycaemia. In the present study however, 

we did not observe a significant change in HOMA2-IR, fasting insulin and glucose 

following either the AI or CME trials. These data indicate that both exercise protocols 

had little influence on acute insulin resistance fasting glucose homeostasis. Jarmurtas et 

al. (2006) reported that in overweight males, glucose, insulin and insulin resistance were 

not different from baseline at 24 h and 48 h after an acute bout of aerobic exercise (i.e. 

6   of   O2max for 45 min) [215]. Despite the difference in exercise intensity, our 

findings are also similar. Interestingly, Jarmurtas et al. (2006) detected a significant 

decrease in insulin and insulin resistance immediately post exercise [215]. Together with 

our findings, we can infer that while an acute bout of exercise can immediately reduce 

insulin and insulin resistance, both these variables will likely return to pre-exercise 

levels within 24 to 48 h after exercise. Contrary to this, a previous study found that 
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aerobic exercise (i.e.     of   O2peak for 45 min with two bouts of 2 min rest 

interspersed after every 15 min) is superior to an acute bout of sprint interval session in 

eliciting significant improvement in both the HOMA and composite whole-body insulin 

sensitivity indexes, 24 h after exercise [150]. Similarly, Whyte et al. (2010) found 

significant improvement in whole-body insulin sensitivity index following 2 weeks of 

SIT in overweight and obese participants. However, in this study this change did not 

persist beyond 24 h and therefore is likely to be associated with an acute change in 

insulin sensitivity resulting from the ‘last exercise bout’ effect. It is possible that 

differences between the present study and the findings of previous research are the result 

of differences in exercise protocols. In the present study participants performed matched 

work and duration bouts of AI and CME, whereas the aforementioned studies have 

performed exercise for longer durations at a high-intensity or shorter but at 

supramaximal intensities. As such, further research is needed in order to understand the 

acute effects of exercise intensity and duration on insulin sensitivity. 

In addition to improving insulin sensitivity, it has also been found that acute 

exercise can alter blood lipid profile. For instance, it was previously observed that in 

men with hypercholesterolemia, following acute bouts of isocaloric high (i.e.  0  of 

  O2max) and moderate (i.e.  0  of   O2max) intensity exercise bout, total and LDL (i.e. 

4%) dropped and subsequently rose (i.e. 5 – 8%) by 48 h [216]. In the similar study, 

triglycerides were lower at 24 h (i.e. -18%) and 48 h (i.e. -15%) and HDL rose (i.e. 8 – 

9%) following exercise bouts [216]. In another study, Cullinane, Siconolfi, Saritelli and 

Thompson (1982) also reported a decrease in triglycerides levels in both trained and 

sedentary individuals, although values did not reach statistical significance, after 1 h of 

exercise bout [217]. In our study, after removal of an outlier, triglycerides decreased 

over 24 to 72 h (Table 2), however, changes were not statistically significant. Likewise, 

neither AI nor CME significantly influenced HDL, LDL or total cholesterol. The small 

sample size in our study, could have limit the power to detect significance. Therefore, 

future study would need to take into account a larger sample population if they are 

examining the influence of exercise on lipid metabolites. 
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Impaired lipid oxidation is typically observed in obese individuals and exercise 

has been postulated to be an effective way in improving lipid oxidation in these 

individuals since previous studies have demonstrated increase lipid oxidation during 

post-exercise recovery in healthy adults [218, 219]. Indeed, two weeks of sprint interval 

training in obese individuals has been shown to increase lipid and decrease carbohydrate 

oxidation rates, however changes did not persist past 24 h, therefore, authors alluded that 

it may be due to the “last exercise bout” effect as opposed to being a training adaptation 

[1]. Therefore, if assuming that the change in substrate oxidation rates observed by 

Whyte et al. (2010) were “last exercise bout” effects, then their observations are contrary 

to our findings since we observed a significant increase in carbohydrate oxidation rate 

only at 72 h after the last exercise bout with no effect on lipid oxidation rate [1]. 

Exercise can acutely increase lipid oxidation rate. For instance, Warren, Howden, 

Williams, Fell and Johnson (2009) observed similar increase in lipid oxidation rate (i.e. 

over 90 min) and total fat oxidation between CME (i.e.  0 min at  0  of   2max) and 

AI (i.e.   min at       2max,   min at 30  of   2max) [74]. Our findings indicate that 

any increment in lipid oxidation rate will not last up to 24 h. In addition, previous 

studies have observed a significant shift towards greater carbohydrate oxidation rate,    

to  0 min post exercise (i.e.  0  of   O2max) in overweight boys and a pronounced 

increase in carbohydrate oxidation rate but not lipid oxidation after 16 weeks of aerobic 

(i.e.  0  of   O2max, 3 days per week) in obese women [220, 221]. Together with our 

findings, which are somewhat similar, it is plausible that in overweight and obese 

individuals, there is an exercise induced shift towards preferential carbohydrate 

utilisation which is independent of exercise intensity. Furthermore, we have shown that 

this can occur after an acute bout of exercise and can become evident 72 h later. Future 

studies examining exercise induce changes in substrate utilisation in overweight and 

obese individuals should take into account a longer observation period. 

Our observation that neither a single session of AI or CME has a significant 

effect on resting energy expenditure over 72 h is consistent with that observed in the 

study by Saris and Schrauwen (2004), who reported that either isocaloric low (i.e. 60 

min at 38% maximal aerobic power) or high (i.e. 2.5 min of 80% and 50% maximal 

aerobic power using 1:1 work to rest intervals) intensity protocols did not significantly 
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affect 24 h energy expenditure or respiratory quotient in obese men [222]. Together, 

these findings indicate that despite the high intensity bouts in AI, compared with a 

matched work and duration bout of CME, both exercise modalities do not affect energy 

expenditure and respiratory quotient 24 h following exercise in overweight and obese 

individuals. 

5.4 Cortisol response  

Glucocorticoids play an important role in facilitating substrate utilisation as an 

adaptive response when under either physical or emotional stress [39]. In this study, we 

examined and compared cortisol response over 30 min post exercise in overweight and 

obese individuals after they have performed a single bout of AI and CME on separate 

occasions. We measured cortisol response using salivary cortisol as it detects 

biologically active free fraction cortisol and is not limited by the saturation point of 

cortisol binding globulin (CBG), since exercise stress can raise absolute cortisol above 

CBG saturation point [223, 224]. Absolute cortisol was significantly greater in the AI 

trial and was significantly greater than baseline at 10 and 30 min post exercise in both 

AI and CME. However, since baseline cortisol in the AI trial was greater than the CME 

trial, we decided to analyse the change in cortisol relative to the baseline of each 

respective trial. We then observed that both an acute bout of CME and AI similarly 

elicited pronounced elevation of cortisol 30 min post exercise with no difference 

between protocols. It should also be noted that cortisol level was not significantly 

elevated at 10 min post exercise. Jamurtas et al. ( 006) reported that an acute bout of 

CME bout (i.e. 6   of   O2max for 45 min) in overweight males did not significantly 

affect cortisol levels immediately post exercise [215]. The CME protocol used in our 

study involved a lower intensity and shorter duration (i.e. 50% of PPO for 40 min) 

compared to the protocol employed by Jamurtas et al. (2006), yet we found significant 

increase in salivary cortisol levels 30 min post exercise. While it is plausible that 

measuring for serum cortisol may have affected the likelihood of detecting any 

significant changes due to its lower sensitivity, it is also likely that if cortisol was 

measured over a longer time period post exercise, the authors would have detected 
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significant fluctuations in cortisol levels. Furthermore, the findings from our study is 

consistent with that observed by Wong and Harber (2006) who reported that cortisol 

levels in obese individuals after performing an acute exercise bout (i.e. 30 min CME at 

power output corresponding to ventilatory threshold) were elevated over time, peaking 

significantly between approximately 30 to 50 min post exercise [45]. Therefore, we 

suggest that studies intending to examine exercise induced cortisol response should 

consider measuring for cortisol fluctuation over a time course of up to 30 min at least to 

allow for the delayed spike in cortisol response immediately post exercise. 

Exercise-induced cortisol response is predominantly mediated by exercise 

intensity and duration, specifically over extended duration [42]. When matched for work 

output (i.e. 120 – 180 kJ) and duration (i.e. 20 min) between exercise types, Vanhelder, 

Radomski, Goode and Casey (1985) reported that only both resistance exercise and 

intermittent cycling elicited pronounced increase in cortisol levels, while cortisol levels 

were not affected after continuous cycling [225]. Our findings are contrary to that of 

Vanhelder et al. (1985) such that both CME and AI trials elicited similar increases in 

cortisol levels [225]. Rudolph and Mcauley (2010) reported that RPE and post exercise 

cortisol responses are positively correlated while McGuigan, Egan and Foster (2004) 

observed that both salivary cortisol and RPE responses correctly reflect the prescribed 

exercise intensity of resistance training protocols [226, 227]. In our study, participants 

reported almost similar RPE responses except at the 28 min time point in both CME and 

AI trials. From this alternative perspective, we examined the mean exercise intensity of 

the AI trial, in accordance to Saltin, Essen and Pedersen (1976), and found that it is 48% 

of PPO [228]. This is close to the exercise intensity we prescribed for the CME (i.e. 50% 

of PPO) trial. Therefore, if exercise intensity modulates cortisol levels, the similarity in 

exercise intensity between protocols could explain why we did not find any difference in 

post exercise cortisol response between both trials.  

5.5 Perceived “enjoyment” of the exercise trials 

It is clear that despite significant differences in HR responses between CME and 

AI trials in the present study (Figure 2), participants’ ratings of perceived exertion did 
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not differ throughout the majority of the trials. Therefore, we can infer that the AI trial is 

well tolerated in obese or overweight individuals despite eliciting greater HR response in 

these individuals. Thereby, AI may provide an exercise mode that allows overweight or 

obese participants to train “comfortably” at higher exercise intensity intermittently. 

Furthermore, perceived enjoyment of activity collected from PACES questionnaire was 

significantly higher for the AI trial, indicating a preference for it over the CME trial. 

This is consistent with a recently published study, which also reported that recreationally 

active men preferred high-intensity interval (i.e. 3 min at  0    O2max, 3 min at  0  

  O2max) over continuous moderate-intensity (i.e.  0 min at  0    O2max) [2]. However 

in a study by Sim et al. (2014), authors reported that perceived enjoyment in overweight 

individuals did not differ between either AI (i.e.   min at  00    O2peak, 4 min at  0  

  O2peak) or CME (60    O2peak) [48]. We postulate that the disparity in findings could 

be due to the difference in mean exercise intensity between our AI protocol and that of 

Sim et al. (2014) (i.e. 48% PPO vs. 60%   O2peak), however further research is warranted 

to determine to AI protocols with different mean exercise intensities have a negative 

influence on perceived enjoyment in overweight and obese individuals [48]. 

Indeed, adherence to physical activity can be reduced in overweight or obese 

individuals when exercising at higher than preferred exercise intensity; however this 

study has corroborated with a previous finding that having lower intensity recover bouts 

interspersed between high-intensity work bouts can reduce perceived aversion of 

exercise [168]. The finding from this contributes to the literature by suggesting that AI is 

well tolerated in overweight and obese individuals and further substantiates previous 

anecdotal reports that high-intensity interval exercise is more preferred. These results 

have implications for the prescription of exercise in such populations. 

5.6 Limitations 

A major limitation of this study is its small sample size. A small sample due to 

pragmatic considerations such as both budget and time constraints would have decreased 

the power of the study. This holds true especially for blood metabolites and HOMA-IR2 

measured in this study, most of which the observed powers were less than 0.1 for 
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between trials analysis, which could partly explain the inconsistencies in detecting 

significant changes compared to previous studies. Furthermore, it has also resulting in 

the inability to detect interaction between the main effects, making interpretation of the 

results challenging. Therefore, future prospective studies should consider the use of a 

larger sample size.  In addition, the rationale for employing the AI protocol used in our 

study was so that it is tolerable and safe, since we recruited untrained and sedentary 

overweight and obese individuals to perform an acute bout of exercise. However as 

mentioned previously, this resulted in the mean exercise intensity of the AI and exercise 

intensity of the CME trials to be somewhat similar. This could have partly contributed to 

why we did not detect significant differences in many of the metabolic and health 

markers we measured. It is possible that greater differences in exercise intensity 

resulting from SI interval training or higher intensity AI are needed in order to observe 

substantial differences in physiological response compared to CME. As such, further 

research is warranted to determine if a higher mean exercise intensity in the AI trial 

could elicit greater changes in both health and metabolic markers in comparison to a 

lower exercise intensity CME protocol. 

5.7 Practical implications 

This study has attempted to elucidate the “last exercise bout” effect arising from 

a single session of CME and AI. Pertaining to the findings from this study, either CME 

or AI can elicit a “last exercise bout” effect on both diastolic or its derived central 

parameters and carbohydrate oxidation rate up to 72 h, therefore, future training studies 

should consider scheduling more than 72 h for post training measurements especially if 

both the abovementioned variables are measured. In addition, cortisol responses should 

be sampled over a time period of at least 30 min for an accurate determination of post 

exercise cortisol response. Furthermore, the findings in our study have corroborated with 

extant studies that RPE and post exercise salivary cortisol response can be used to 

determine the intensity of an exercise protocol. Most importantly, we have demonstrated 

that aerobic interval cycling is preferred over continuous moderate-intensity cycling and 
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thus can be prescribed as an alternative to these individuals, with the likelihood of 

possibly higher adherence rate. 
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