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ABSTRACT 

 

Football is the most widely played sport in the world and is thus associated with the highest 

total number of injuries of all sports. 12% of all football injuries are to the hamstrings, as this 

muscle group is subjected to constant stress during training and match play performance 

(Ekstrand, Hägglund, Waldén, 2011; Woods, Hawkins, Maltby, Hulse, Thomas & Hodson, 

2004). While the influence of limb dominance has been extensively examined as a risk factor 

for injury in upper limb-dominant sports (e.g. badminton, tennis and baseball), little research 

has focussed on the dominance in the lower limbs. Since almost all footballers show a limb 

preference for kicking, an example of limb dominance, it is possible to speculate that limb-

specific injury rates will vary between preferred and non-preferred legs (Brophy, Silvers, 

Gonzales and Mandelbaum, 2010). Previous research has also shown that injury rates 

increase with the accumulation of fatigue, and that inter-limb force production variation 

increases as fatigue progresses. Thus, the possibility exists that increases in inter-limb force 

production variability after fatiguing exercise would increase injury risk in football players. 

The purpose of the present research, therefore, was to examine changes in muscle force 

production and fatigue between preferred and non-preferred legs in football players with and 

without a history of unilateral hamstring injury (in the preferred kicking leg). In the single leg 

vertical jump, peak jump force of the preferred leg in the injured group changed by -12% 

whilst force in the non-preferred leg changed by -5%. Force in the non-injured preferred leg 

changed by -6% and changed by -8% in the non-preferred leg. These results indicate a clear 

difference in fatigue response between groups, and that the inter-limb difference in force 

production is greater in the preferred leg of the injured group. Decline in hamstring torque in 

the preferred leg of the injured group changed by 98%, and the non-preferred leg changed by 

67%. While in the non-injured group, decline in hamstring torque changed by 219% and 

852% respectively. The greater changes observed in the non-injured group was due to 
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minimal fatigue before the fatigue condition (repeated-sprint test). The injured group had a 

greater fatigue response both before and after the fatigue condition (26.1±18.4 to 51.7±20.9 

N preferred leg and 11.6±8.94 to 19.4±20.5 N non-preferred leg) suggesting previous injury 

has a different effect on fatigue response. Horizontal force production during the repeated-

sprint test changed by -14% in the preferred kicking leg and -3% in the non-preferred leg 

(injured group).  This represents the preferred kicking leg having a greater fatigue response. 

In conclusion, the present study has provided a foundation for comparing the injured and 

non-injured group and the preferred and non-preferred kicking legs during a single leg 

vertical jump, isokinetic endurance test and repeated-sprint test. These tests provided 

evidence that the non-preferred leg had greater force production, the preferred leg had greater 

fatigue response, and the inter-limb difference in force production after fatigue was greater in 

the injured group. It can be assumed that the preferred kicking leg of the injured group being 

the previously injured leg has attributed to these results. These results highlights the need for 

future research to further understanding of the differences in preferred and non-preferred 

kicking legs, why they occur, and the influence they have on injury. 
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CHAPTER ONE: INTRODUCTION 

1.1 Background  

Football is the most widely played sport in the world and is thus responsible for the most 

sport related injuries (Ekstrand & Gillquist, 1982). Hamstring injuries are a common 

occurrence in football, contributing to 12% of all injuries in the sport and accounting for an 

average of 90 days and 15 matches missed per club per season in the professional English 

football leagues (Woods et al., 2004). These injuries can be long standing and injured players 

are prone to injury recurrence even after rehabilitation; the re-injury rate for hamstrings has 

been reported to be 12-31% (Woods et al., 2004; Sherry & Best, 2004). Such proneness to 

recurrence suggests that mechanisms underlying hamstring re-injury differ to that of first-

time injury mechanisms (Askling, Tengvar, Saartok & Thorstensson, 2007).  

 

Hamstring anatomical arrangement  

Contributing to the susceptibility of hamstring muscles is their anatomical arrangement, being 

a biarticular muscle group flexing the knee and extending the hip. Many movements made 

during football require both simultaneous and sequential flexions of the knee and hip, 

resulting in complex lengthening-shortening load being imposed on the hamstrings (Petersen 

& Holmich, 2005). While such movements are required for optimal performance in football, 

Askling, Tengvar, Saartok and Thorstensson (2007) suggest that the variation in requirements 

and demands of different sports indicate an existence of hamstring injuries with different 

mechanisms.  

 

Physiological factors influencing injury risk  

Despite conflicting evidence as to the factors predisposing hamstring injuries, insufficient 

warm up, poor flexibility and strength, muscle imbalances, muscle weakness, fatigue, age, 
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dys-synergistic contractions, and incomplete rehabilitation of previous injuries are generally 

considered to be prominent (Agre, 1985; Worrell, 1994; Alemkinders, 1999; Hawkins & 

Fuller, 1999; Orchard, 2001). Injuries most often occur in the biceps femoris muscle of the 

hamstring muscle group with the muscle-tendon junction being the most common site of 

injury (Garrett, 1996; Garrett, Rich, Nikolaou & Vogler, 1989; Woods, Hawkins, Maltby, 

Hulse, Thomas & Hodson, 2004), however injury can also occur at the tendon origin, 

insertion or muscle belly (Garrett, 1996).  

Hamstring injuries are also most commonly associated with eccentric muscle contractions 

during sprinting or running when peak tension in the muscle is evident during lengthening 

(Stanton & Purdam, 1989). This is most apparent in the final stages of the swing phase in 

running, with the hamstring contracting eccentrically to decelerate knee extension to prepare 

for the foot strike (Stanton & Purdam, 1989). Such an action is also evident when kicking a 

football, with the load in tension exceeding the physiological limit which most often occurs 

in hamstring strains (Van Don, 1998). With such kicking actions so frequent in football, a 

significant research effort is required to prevent hamstring injuries in football players.  

 

Leg dominance and underlying asymmetry 

While it is assumed that recovery will continue until pre-injury capacity is reached (after the 

conclusion of an intensive rehabilitation phase), Holder-Powell and Rutherford (1999) 

concluded that full recovery is frequently not achieved and emphasise the importance of 

accurate and objective assessment of muscle strength. Through this assessment, decrements 

in strength of a unilateral lower-limb injury can be found, highlighting the prominence of 

inter-limb differences (Holder-Powell & Rutherford, 1999). However, while previous 

research recognises this as a predisposing factor for hamstring injuries, it fails to quantify the 
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difference in muscle force production and fatigue in relation to lower-limb dominance (i.e. 

preferred versus non-preferred kicking leg). 

While most footballers exhibit limb dominance during kicking (i.e. they have a preferred and 

non-preferred kicking leg), little is known about whether the degree of preference is a 

predisposing factor for hamstring injuries (Rahnama, Lees & Bambaecichi, 2007). Rahnama, 

Lees and Bambaecichi (2007) compared strength and flexibility between preferred and non-

preferred kicking legs and reported a clear difference in lower extremity strength, despite 

results showing no difference in flexibility. A clear difference in lower extremity strength 

would suggest that asymmetry are evident however, little research sought to determine how 

such asymmetry affect hamstring performance.  

 

Injury risk analysis in football  

An analysis of injury risk in outfield players by Rahnama, Reilly and Lees (2002) found that 

the risk of injury can be related to playing actions (players are most at risk when receiving or 

making a tackle), period of the game (the first and last 15 minutes of the game reflecting the 

high intensity levels at the start of the game, and the possible fatigue effects at the end of the 

game) and specific zones of the pitch (specific attacking and defending areas of the pitch 

where the ball is most contested). However, no data was provided as to the actions involved 

in the preferred and non-preferred legs. Given that most football players exhibit limb 

dominance during football-related skills, the preferred and non-preferred legs are subjected to 

different muscle activation patterns. This is particularly true during kicking, where one leg 

kicks the ball while the other acts to support the body’s weight (Brophy, Backus, Pansy, 

Lyman & Williams, 2007). 
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Fatigue in football  

Football requires the repetitive performance of a range of gross motor skills, including 

walking, jogging, jumping and sprinting over 90 min of a competitive football match. 

Effective performance of these skills then allows footballers to accurately perform other 

motor and technical skills such as passing, shooting, crossing and tackling (Svensson & 

Drust, 2007; Alghannam, 2012; Nikolaidis, 2014). The ability to repeatedly recover over the 

game duration is therefore of great importance (Svensson & Drust, 2007; Alghannam, 2012; 

Nikolaidis, 2014). The decline in muscle force caused by fatigue affects repeated skill 

performance and is considered to impair technical performance and increase lower-limb 

injury risk (Reilly, Drust & Clarke, 2008). 

Such evidence of a relationship between fatigue, the duration of a competitive football match 

and injury risk is highlighted by Woods et al., (2004) who found that 47% of all hamstring 

strains during a professional English football match occurred in the final 15 min of each half 

(with a half lasting 45 min). Thus, with nearly every second hamstring strain occurring in the 

latter stages of a football match fatigue can be considered a major contributing factor to these 

injuries. Gibson and Edwards (1985) define fatigue as the failure to maintain the required or 

expected force or power output. This reduction in force or power output is more prominent 

towards the end of a half of football, and in particular the second half (Reilly, Drust & 

Clarke, 2008). 

With players being most susceptible to hamstring injuries towards the end of a competitive 

football match, Greig (2008) proposed that muscle strength deficiency due to fatigue can 

cause such injury. The fatigue results in decreased hamstring force, reducing energy 

absorption capabilities and increasing the injury risk. However, little is known about the 

effect on game-specific fatigue in muscle force making it unclear whether there is an 
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association with injury. Thus there is a need to further research the effect of muscular fatigue 

on hamstring injury risk. 

 

Running biomechanical changes due to fatigue  

Benjaminse, Habu, Sell, Abt, Fu, Myers and Lephart (2008) suggest that an environment is 

created during the onset of fatigue in which lower extremity landing strategies are altered to 

combat fatigue in an attempt to continue effort and performance. Importantly, as the control 

of body movement decreases during fatigue, non-contact injury rates increase (Chappell, 

Herman, Knight, Kirkendall, Garrett & Yu, 2008). Sprague and Mann (1983) and Tupa, 

Gusenov and Mironenko (1995) clearly show biomechanical alterations accompanying 

fatigue during sprint running, including a decrease in hip flexion and thigh angular velocity 

and an increase in knee extension during the swing phase of the stride cycle. However, 

despite such biomechanical alterations being shown in straight-line sprints, possession of a 

football and frequent jumping and cutting manoeuvres can change the dynamics of a sprint  

and thus increase the  physiological stress further (Hoff, Wisloff, Engen, Kemi and Helgerud, 

2002; Askling, Karlsson and Thorstensson, 2003). What is not known, however, is whether 

potential differences in the rates of fatigue between legs (e.g. preferred versus non-preferred 

legs in football players) increase injury risk.  

 

Methods of testing muscle function in hamstring injury research  

Isokinetic testing is commonly used in the detection of bilateral strength deficits. However, 

these tests are not specific with regards to movement patterns in football, which are typically 

open kinetic chain, of  high-velocity and stretch-shortening cycle based (Brughelli, Cronin, 

Mendiguchia, Kinsella, & Nosaka, 2010; Newton, Gerber, Nimphius, Shim, Doan, 

Robertson, Pearson, Craig, Hakkinen and Kraemer, 2006). Despite this, isokinetic 
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dynamometers have been validated for the study of fatigue, making this an important tool for 

testing (Sangnier & Tourny-Chollet, 2008). While there are many ways to quantify bilateral 

strength deficiency, testing that is most similar in movement pattern to the tasks performed in 

football, such as jumping and running, could be considered more relevant. Thus, research is 

required that examines bilateral strength, and the resulting change with fatigue, using football 

specific tests. The relationship between strength deficit, fatigue and injury risk could then be 

explored. 

To ensure that the effect of fatigue is reliable, a sprint-based running performance test is 

required. The repeated sprints test is used to assess the physical performance of football 

players in which repeated maximal bouts of short duration (~6s) sprints are performed with 

brief recovery periods (Rampinini, Bishop, Marcora, Ferrari Bravo, Sassi & Impellizzeri, 

2006; Bangsbo, Norregaard & Thorso, 1991; Bangbso, 1994). The repeated sprints test elicits 

physiological responses similar to the responses that occur during a competitive football 

match (Wragg, Maxwell & Doust, 2000; Svensson & Drust, 2005; Spencer, Bishop, Dawson 

& Goodman, 2005).  Repeated sprint ability is an important factor influencing football 

performance and can be used for monitoring footballers’ physical fitness and performances. 

By testing subjects on a treadmill with a repeated sprints test, subjects could be fatigued in a 

similar manner as they are during a competitive football match. Using data obtained during 

the test non-injured versus previously-injured subjects could be compared to indicate a link 

hamstring injuries. 

A repeated sprints test can be performed on a non-motorised treadmill, allowing for close 

replication of physiological and running demands of a competitive football match (Sirotic & 

Coutts, 2007). By monitoring these demands in a controlled environment, real-time measures 

of force production, power output and running kinematics can be obtained through 

instantaneous feedback (Sirotic & Coutts, 2007). A reliability study by Sirotic and Coutts 
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(2007) found that a 6-s sprint is best for assessing sprint performance on a non-motorised 

treadmill in team-sport athletes. By using this 6-s sprint in a repeated-sprint test protocol, 

repeated-sprint performance can be measured in order to partly replicate the repeated-sprint 

demands in football. 

 

Conclusion 

While fatigue and muscle imbalances are clearly defined as physiological factors that 

increase hamstring injury risk, the combination of both as a risk factor has previously been 

ignored. The possibility of differing rates of fatigue between muscles groups, preferred and 

non-preferred kicking legs and injured and non-injured groups have not been thoroughly 

explored. The present thesis project was designed to compare hamstring muscle function in 

previously injured and non-injured footballers over a series of tests. Within these tests the 

quantification of the preferred and non-preferred kicking legs can be made. By comparing the 

injured and non-injured groups, and the preferred and non-preferred kicking legs within the 

groups, this study is the first to explore the possibility of the legs fatiguing at different rates. 

Deficits between the injured and non-injured groups will provide an indication of the effect of 

previous injury on hamstring muscle function in both fatigued and non-fatigued states.  

 

1.2 Purpose of the Study  

The key purpose of this study was to determine whether the injured and non-injured groups 

show different fatigue magnitudes during a series of tests in which the hamstring muscles are 

highly active. By examining this, it was possible to explore that the preferred and non-

preferred kicking legs fatigue at different rates and also to compare the rates of unilateral 

strength and performance decrement between previously injured and non-injured subjects 

(i.e. control). The force production and fatigue profile in the preferred and non-preferred legs of 
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West Australian State League footballers with (injured group; preferred kicking leg as the previously 

injured leg) and without prior hamstring injuries (non-injury group) were tested.  Fatigue was 

induced using a repeated-sprint protocol, and lower-limb dynamics and kinematics were 

monitored to quantify muscle fatigue in a sport-specific manner. The results from this study 

will help determine whether the preferred and non-preferred legs fatigue differently in 

football-specific movements (jumping and repeated sprints) and, more importantly, whether 

the legs of previously injured players fatigue more rapidly (i.e. with an increased bilateral 

difference). A clearer understanding of this may help to uncover strategies that could reduce 

the risk of injury in footballers. 

 

1.3 Significance of the Study   

No previous research has examined lower limb asymmetry with respect to fatigue in football 

players. This is also the first study, to the researcher’s knowledge, to test the hypothesis that a 

preference in kicking leg is a risk factor for hamstring injury. Previous research (Brughelli et 

al., 2010) focussed on lower-limb leg deficiencies in running at 80% of maximum velocity 

(vmax), whereas the present research was designed to test repeated sprint ability at 100% vmax 

attained in 6-s. With most hamstring injuries occurring during the late swing phase of vmax 

running, a repeated-sprint test at such a velocity will mimic normal running performance 

(Stanton & Purdam, 1989).  While a prospective study is ideal, this retrospective study 

provides the first data potentially linking inter-limb fatigue to hamstring injury risk. 
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1.4 Research Questions  

1. Is there a difference between the preferred and non-preferred legs in (i) peak jump 

force and height during a single leg vertical jump (SLVJ); (ii) mean knee extensor and 

flexor torque and change (percent) in quadriceps and hamstring torque during an 

isokinetic endurance test (IET); and (iii) mean vertical and horizontal force 

production, power output, contact time, flight time, stride frequency and stride length 

in a repeated-sprint test (RST)? 

2. Is there evidence that the preferred and non-preferred legs fatigue at different rates 

during a repeated-sprint running protocol?  

3. Do previously injured players display a greater fatigue response in the preferred 

kicking leg (in all cases, this is the previously injured leg), when compared to the non-

preferred kicking leg, and is the inter-limb difference in force production after fatigue 

greater than in non-injured subjects?  

 

1.5 Research Hypotheses 

1. There will be a difference between the preferred and non-preferred legs in which the 

non-preferred leg will be established as the stronger leg; the force and power is 

expected to be greater than that of the preferred leg. In turn, the preferred leg is 

expected to fatigue at a greater rate. 

2. The preferred leg will fatigue at a greater rate during a repeated-sprint running 

protocol. 

3. The previously injured players are expected to have a greater fatigue response in the 

preferred kicking leg and a greater inter-limb force production difference. 
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CHAPTER TWO: LITERATURE REVIEW 

2.1 Hamstring anatomy  

The hamstring muscle group consists of biceps femoris (long and short head), 

semimembranosus and semitendinosus (Kumazaki, Ehara, Sakai, 2012; Abebe, Moorman, 

Garrett, 2012). The long head of biceps femoris originates from the lateral portion of the 

ischial tuberosity and the sacrotuberous ligament and attaches distally at the fibular head, 

shared with the short head (Carlson, 2008). The short head originates from the lateral 

intermuscular septum and the distal third of the lateral femoral cortex (Carlson, 2008). The 

semimembranosus and semitendinosus share both origins and attachments originating from 

the mid-portion of the ischial tuberosity and attaching distally at the posteromedial tibia 

(Carlson, 2008), thus there are three biarticular heads and one unilateral head.  

 

2.2 Hamstring injury classification 

The degree to which the muscle fibres have been injured classifies the degree of muscle strain 

that has occurred (Agre, 1985). At one end of the scale, first degree strains occur through the 

stretching of the musculotendinous units resulting in minimal loss of strength and function 

with only minor swelling and discomfort. At the other end of the scale, third degree strains 

present as a complete rupture across the musculotendinous unit resulting in total functional 

disability (Kujala, Orava & Jarvinen, 1997; Drezner, 2003; Petersen & Holmich, 2005). The 

degree of classification dictates the functional disability and rehabilitation time, highlighting 

the importance of testing previously significant hamstring injuries.  

 

2.3 Hamstring injury risk factors  

Risk factors associated with hamstring injury include competition participation (versus 
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practice), decreased quadriceps flexibility, older age (which has been shown to be  associated 

with increased hip flexor tightness and increased body weight), over-striding during sprint 

acceleration, imbalances between muscle groups (especially the hamstring to quadriceps 

ratio), muscle fatigue, hamstring tightness and decreased tendon compliance and muscular 

fatigue. Additionally, previous injury is consistently rated as one of the strongest predictors 

of injury risk (Petersen & Homlich, 2005; Carlson, 2008); the incidence of recurrent injury 

runs between 12 and 14% in football players (Petersen & Homlich, 2005; Carlson, 2008). 

 

2.4 Anatomy of the hamstring 

Having multiple attachments allows the hamstring to impact function throughout the pelvis 

and lower extremities; flexion and extension of the knee, pelvic tilt and rotation, sacral 

rotation and extension and rotation of the hip (Carlson, 2008; Thelen, Chumanov, Sherry, 

Heiderschiet, 2006). Hip extension and knee flexion are the two primary activities of the 

hamstring group, however the muscles also function to control hip flexion and knee 

extension, emphasising the eccentric action of the hamstring (Abebe, Moorman, Garrett, 

2012). The biarticular structure of the hamstring muscles enables the ability to localise 

contractions to one joint by allowing movement to occur at the other, if either antagonists 

contract (Koulouris & Connell, 2003).  

 

2.5 Hamstring injury rates and severity  

Repeated hamstring injury rates have ranged from 16-60% in a number of sports including; 

football, rugby union, American football, track and field and Australian rules football 

(Brooks et al., 2006). Injury recurrence is arguably the most troubling aspect of hamstring 

injuries, as recurring injuries often result in a greater loss in playing time than the original 

injury (Brooks et al., 2006; Ekstrand et al., 2011; Koulouris and Connell, 2006). This is 
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particularly true of hamstrings as after injury the hamstrings remain at an elevated risk of 

injury recurrence for longer than any other muscle strained (Orchard and Best, 2002). 

Previous research highlights this, providing evidence of a significant rate of recurrence of 

hamstring injuries over consecutive seasons (Carling et al., 2011; Hagglund et al., 2006; 

Verrall et al., 2006). This previous research would suggest that injury prevention and 

rehabilitation practices are not as effective as athletes and coaches require them to be, 

highlighting the need to further research the understanding of hamstring injuries. 

 

More than 90% of all muscle injuries in football occur in the four major lower limb muscle 

groups: hamstrings, adductors, quadriceps and gastrocnemius (Ekstrand, Healy, Waldén, Lee, 

English, & Hägglund, 2011; Ekstrand, Hägglund, Waldén, 2011). Hamstring injuries have 

been reported to be the most common injury subtype, representing 12% of all injuries 

recorded (Ekstrand et al., 2011; Ekstrand, Hägglund, Waldén, 2011). An epidemiological 

study conducted by Ekstrand et al. (2011) estimated that each professional football team (25 

players in a squad) would average approximately 5 hamstring injuries per season, totalling 

over 80 days lost to injury.   
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Figure 1. The role of the hamstring in; actions in football, risk factors and injury grades. 

2.6 Hamstring injury mechanism  

Hamstring injuries occur when the force applied to the contracted muscle exceeds the 

physiological limit of the muscle-tendon unit (Abebe, Moorman, Garrett, 2012). This occurs 

when the muscle group resists a powerful eccentric load when contraction combined with the 

lengthening of the muscle takes place (Abebe, Moorman, Garrett, 2012). It is at this time 

when the muscle lengthens and the resulting force applied to the muscle contraction exceeds 

physiological limit that an injury will occur (Speer, Lohnes, Garrett, 1993; Abebe, Moorman, 

Garrett, 2012). From this it is clear as to why hamstring are particularly vulnerable to injury 

during eccentric loading (Heiderscheit, Hoerth, Chumanov, Swanson, Thelen, Thelen, 2005; 

Carlson, 2008; Abebe, Moorman, Garrett, 2012).   

 

Previous research suggests that there are at least two different injury mechanisms, with the 

predominant type occurring during high-speed running and the other occurring during 

movements resulting in extensive lengthening of the hamstring (Askling, Tengvar, Saartok & 
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Thorstensson, 2000; Askling, Saartok & Thorstensson, 2006; Askling, Tengvar, Saartok & 

Thorstensson, 2007; Askling, Tengvar, Saartok & Thorstensson, 2008). Movements causing 

extensive lengthening of the hamstring include kicking and slide tackling, both frequently 

used while playing football (Askling, Tengvar, Saartok & Thorstensson, 2000; Askling, 

Saartok & Thorstensson, 2006; Askling, Tengvar, Saartok & Thorstensson, 2007; Askling, 

Tengvar, Saartok & Thorstensson, 2008). High-speed running requires a high intensity of 

stretch-shortening cycles in order to perform rapid changes of direction and jumping and 

landing tasks (Croisier, Ganteaume, Binet, Genty & Ferret, 2008). Performance of these 

movements can cause a sudden forcible contraction of the muscles to take place against 

resistance, causing excessive eccentric overloaded resulting in injury to the hamstring 

(Gidwani & Bircher, 2007). Epidemiological studies show that a higher rate of injury occurs 

in the biceps femoris during high-speed running (Thelen, Chumanov, Sherry & Heiderschiet, 

2006; Thelen, Chumanov, Hoerth, Best, Swanson, Li, Young & Heiderscheit, 2005; Brooks, 

Fuller, Kemp & Reddin, 2006; Woods, Hawkins, Maltby, Hulse, Thomas & Hodson, 2004). 

As football can reduce induce injury through both mechanisms (high-speed running and 

movements resulting in extensive lengthening of the hamstring), the performance of both 

modes of injury the need to further research hamstring injuries and test during movements 

that may induce both modes of injury is of great importance. 

2.7 Effect of activation pattern on hamstring injury  

 

The hamstring muscle group is recruited differently depending on the activity performed, 

which has implications for injury propensity (Carlson, 2008). Dancers are frequently injured 

during partner-assisted static stretches (Askling, Saartok & Thorstensson, 2006). Ice hockey 

players are thought to develop hamstring problems from poor core muscle strength (Carlson, 

2008); such core weakness allows an anterior pelvic tilt which places the hamstrings at a 

mechanical disadvantage, due to reduced moment arm, that can lead to overuse injury 

http://www.ncbi.nlm.nih.gov/pubmed?term=Thorstensson%20A%5BAuthor%5D&cauthor=true&cauthor_uid=11001399
http://www.ncbi.nlm.nih.gov/pubmed?term=Askling%20C%5BAuthor%5D&cauthor=true&cauthor_uid=11001399
http://www.ncbi.nlm.nih.gov/pubmed?term=Tengvar%20M%5BAuthor%5D&cauthor=true&cauthor_uid=11001399
http://www.ncbi.nlm.nih.gov/pubmed?term=Thorstensson%20A%5BAuthor%5D&cauthor=true&cauthor_uid=11001399
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(Carlson, 2008). Hamstring fatigue, measured as a decrease in maximum eccentric force, has 

been shown in marathon runners over the course of a race resulting in an increased risk of 

injury (Koller, Sumann, Schobersberger, Hoertnagl & Haid, 2006). Football and Australian 

Rules football are the two most frequently epidemiologically researched sports regarding 

hamstring strains (Brooks, Fuller, Kemp & Reddin, 2006; Woods, Hawkins, Maltby, Hulse, 

Thomas & Hodson, 2004; Gabbe, Finch, Bennell & Wajwelner, 2005; Gabbe, 2006; Volpi, 

2004). Both sports demand frequent bursts of sprinting over prolonged periods of time, 

resulting in a higher incidence of muscular fatigue. The kicking action involved in both sports 

also predispose to muscle injury as forces driving the hip into flexion during the acceleration 

phase of kicking is relatively greater. Likewise, the eccentric braking action of the hamstrings 

is greater during the kicking action. While some previous research has examined such effects 

of the kicking action (generally associated with a preferred kicking leg), no previous research 

has investigated differences between the preferred and non-preferred kicking legs.  

 

2.8 Hamstring action during running  

While sprinting, the hamstring lengthens maximally during the end of the swing phase of gait 

just prior to foot contact when the hip is flexed and the knee flexion moment is decreasing 

(Thelen, Chumanov, Best, Swanson & Heiderscheit, 2005). The rapid lengthening of the 

hamstring muscle group at this point allows the muscle to become vulnerable to injury. The 

initial swing phase in sprinting allows the hip flexors to generate power to propel the thigh 

forward (Lee, Reid, Elliot & Lloyd, 2009). This provides for the transfer of thigh angular 

momentum to the shank resulting in rapid knee extension during the second half of the swing 

phase (Lee, Reid, Elliot & Lloyd, 2009). From this point the hamstrings act eccentrically, 

absorbing power to control knee extension (Lee, Reid, Elliot & Lloyd, 2009). The hamstring 

also acts as a spring, lengthening under load and reusing the swing through stance 
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(Malliaropoulos, Mendiguchia, Pehlivanidis, Papadopoulou, Valle, Malliaras & Maffulli, 

2012).  

 

2.9 Physiological demands in football  

During an elite competitive 90-min football match players are physically challenged, 

averaging 10-13 km in total distance covered, 220 high speed runs and frequent changing of 

activity and direction (Vigne, Dellal, Gaudino, Chamari, Rogowski, Alloatti, Wong, Owen & 

Hautier, 2013; Greco, da Silva, Camarda & Denadai, 2013). The demand for such physical 

performance induces fatigue resulting in impaired performance, which becomes more 

prominent in the second half and particularly in the final 15-min (Greco, da Silva, Camarda 

& Denadai, 2013).  Impaired performance is particularly evident in decreased eccentric 

strength, which is thought to increase hamstring injury risk (Greig, 2008; Small, 

MacNaughton, Greig & Lovell, 2008). Previous research has detailed the levels of fatigue 

after a competitive match, with jump ability, sprint ability (Magalhaes, Rebelo, Oliveira, 

Silva, Marques & Ascensao, 2013) and repeated sprint performance (Krustrup, Zebis, Jensen 

& Mohr, 2010) being found to be significantly reduced. No previous research, however, has 

compared these deficits between the preferred and non-preferred kicking legs. 

 

2.10 Muscular fatigue and decline in knee flexor and extensor torque 

High incidences of hamstring injury in all levels of football have been linked to muscular 

fatigue (Steffen, Myklebust, Olsen, Holme and Bahr, 2008; Arnason, Andersen, Holme, 

Engebretsen and Bahr, 2008; Petersen, Thorborg, Nielsen, Budtz-Jørgensen and Holmich, 

2011). Previous research have reported reductions in knee flexor (hamstring) and knee 

extensor (quadriceps) maximal torque during and after actual and simulated football match 

play (Delextrat, Gregory and Cohen, 2010). Gray and Chandler (1989) reported a 47.7% 
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decline in concentric hamstring and quadriceps torque highlighting the importance of 

continued testing in the decline of torque. Previous research has yet to compare the preferred 

and non-preferred kicking legs and the difference in the decline in torque between legs. 

 

2.11 Inter-limb difference in function and fatigue  

Rahnama, Lees and Bambaecichi (2007) compared strength and flexibility between preferred 

and non-preferred kicking legs and reported a clear difference in lower extremity strength, 

despite showing no difference in flexibility. The authors suggested that the performance of 

skills with a limb preference during football training and match play was a cause of the 

difference in strength between limbs. This could result in asymmetry in the lower limb 

extremities as functional discrepancies increase (Rahnama, Lees & Bambaecichi, 2007). The 

possibility of asymmetry has yet to be fully explored and could give insight into hamstring 

injuries in team sports that require particular use of the lower limbs such as football. 

 

Most footballers have a clear preference in the leg they use to kick the ball. During kicking 

the non-preferred kicking leg is used to support the body, providing the platform of support 

for the preferred kicking leg to swing through and make contact with the ball (Ball, 2013). 

Lees, Asai and Andersen (2010) suggest that a stronger support leg (non-preferred kicking 

leg) can provide greater stabilisation for the kick and enabling greater forces to be generated. 

Consideration needs to be given to the effects of the resulting inter-limb asymmetries 

between the preferred and non-preferred kicking legs. At this stage, there is no consensus as 

to the quantification of difference between the legs that is needed to be considered an injury 

risk. Thus, there is a need to determine asymmetries in both previously injured and a healthy 

control group and comparing such asymmetries in taking the first step in identifying the 

kicking legs as an injury risk factor. 
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2.12 The importance of treadmill testing  

Before treadmill running tests could be reliably conducted, researchers had great difficulties 

in conducting accurate and specific running tests. Comparisons of vertical ground reaction 

forces made between overground running and treadmill running by Kluitenberg, Bredeweg, 

Zijlstra and Buist (2012) validated the use of treadmills in measuring ground reaction forces. 

One difficulty for researchers is the difficulty in getting representative ground reaction force 

measurements of a repeated-sprint test with a traditional force platform. While traditional 

force platforms only allow for limited measurements of kinetic and kinematic patterns, 

treadmill testing provides a continuous analysis of such patterns (Kluitenberg, Bredeweg, 

Zijlstra & Buist, 2012; Riley, Dicharry, Franz, Della Croce, Wilder & Kerrigan, 2008), 

particularly important while conducting a repeated-sprint test. This provides more accurate 

data results and allows researchers to provide greater analysis of running kinetic and 

kinematic patterns. 

 

To further improve testing environments, the use of non-motorised treadmills has increased 

in order to replicate the running performance and physiological changes specific to a 

particular sport (Sirotic & Coutts, 2006; Riley, Dicharry, Franz, Della Croce, Wilder & 

Kerrigan, 2008). Non-motorised treadmills allow near maximal velocities to be obtained, 

instantaneous changes in running velocity, and provide real-time measures of power output 

(Sirotic & Coutts, 2006). From this, simulation of physiological demands and running 

kinetics specific to particular sports can be achieved (Sirotic & Coutts, 2006). Several studies 

have already described the reliability and validity of the use of non-motorised treadmills in 

the simulation of team-sports and running performance (Tong, Bell, Ball & Winter, 2001; 

Hughes, Doherty, Tong, Reilly & Cable, 2006; Sirotic and Coutts 2006).  
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2.13 Conclusion  

The importance of further hamstring injury research is highlighted by the fact that it is the 

most common injury subtype in football (12%; Ekstrand et al., 2011). The hamstring muscle 

group also has the highest re-injury rate, suggesting that proper rehabilitation is of great 

importance (Brooks et al., 2006). Continued research into hamstring injury risk factors could 

potentially further our understanding of why hamstring injuries occur. Such research could 

help attribute to reducing hamstring injury and re-injury rates in the future. While an 

extensive research effort has shown that lower- limb asymmetry and fatigue are risk factors 

for hamstring injuries (Petersen & Homlich, 2005; Carlson, 2008), consideration of the 

interplay between asymmetry and fatigue rates has in relation to hamstrings injury has not 

been published. By testing injured and non-injured subjects and comparing the differences in 

leg asymmetry and fatigue, the first steps of examining lower-limb fatigue asymmetry are 

taken. 
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CHAPTER THREE: METHODOLOGY 
 

3.1 Approach to the Problem  

To assess leg fatigue asymmetry in both healthy and previously injured Western Australian 

State League footballers, players were asked to perform a single leg vertical jump (SLVJ) and 

an isokinetic knee extension/flexion endurance test (IET) before and after a repeated-sprint 

test (RST) on a non-motorised treadmill. Comparisons were made between preferred and 

non-preferred legs as well as between the injured and non-injured groups. Leg asymmetry 

was quantified before and after a RST in which mean jump force, height and impulse during 

the SLVJ and both mean knee extension and flexion torque and the percent decline in knee 

extension and knee flexor torque during the IET was assessed. The resulting decreases in 

force and power production were calculated as a percent change to index fatigue rates. 

Ground reaction force production was also measured on the non-motorised treadmill during 

the RST, and changes in horizontal force production, vertical force production, power output, 

contact time, flight time, stride frequency and stride length were recorded as indicators of 

fatigue and running technique. 

 

3.2 Subjects 

40 footballers currently playing in the Western Australia State League (semi-professional) 

volunteered for the study. All footballers have had at least 2 years of playing experience in 

the State League, and playing experience in football for at least 5 years. Players were 

assigned to either an injured group (IG) or non-injured group (NG) based on the following 

criteria: (a) injury history of one or multiple hamstring injuries to one leg only (a unilateral 

hamstring injury); (b) the injury caused the athlete to miss at least 1 week of training (the 

injury was significant): (c) the injury occurred less than 2 years prior to testing (the injury 
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was recent enough for some deficiencies to potentially remain). All subjects in the injured 

group experienced their unilateral hamstring injury on the preferred kicking leg. Before data 

collection, each subject completed a questionnaire to determine their suitability for inclusion 

in the study. The questionnaire was used to determine whether or not the inclusion criteria 

were met for injured and non-injured groups and provide the subject’s playing history, 

preferred and non-preferred legs and contact details. Following the completion of the 

questionnaire, anthropometric measurements of standing height (cm) (Detecto, United States 

of America) and body mass (kg) (Tanita, United States of America) as well as performance in 

a sit and reach test (cm) (Sanming, China) were recorded.  

 

3.3 Experimental Procedure 

Familiarisation of the SLVJ, IET and RST tests were completed over two familiarisation 

sessions, as suggested by Martin, Diedrich and Coyle (2000). This ensured that subjects 

understood what was expected of them in order to produce stable and consistent results. The 

seating position of each subject on the isokinetic dynamometer was recorded during 

familiarisation and repeated during testing. Testing was performed over three sessions 

separated by a week at the same time of day to allow for sufficient recovery. The subjects 

were asked to maintain a normal diet and refrain from participating in any strenuous exercise 

48 h prior to testing. Before the commencement of testing a 5-min warm-up on a non-

motorised treadmill at 2 m.s
-1

 (i.e. jog) was completed with the subjects given the opportunity 

to perform dynamic stretches after the warm up for a total of 2 min. Once the warm-up and 

dynamic stretching were completed the subjects followed one of three protocols, as described 

below. 
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3.4 Protocol 1: Isokinetic Endurance Test (non-fatigued condition)  

The subject was seated on the isokinetic dynamometer (System 3; Biodex Medical Systems, 

Shirley, NY) with a hip joint angle of 85° (0° = full extension). To minimise any extraneous 

movement, two diagonal straps were secured across the chest and a seatbelt applied across 

the hips. Alignment of each knee was maintained visually by altering the dynamometer chair 

position allowing for the knee axis of rotation (tibio-femoral joint) to be aligned with the axis 

of rotation of the dynamometer’s attachment arm. The subject’s legs were secured to the 

attachment arm (2.5 cm above the lateral malleolus of the ankle) using wide velcro straps. 

The contralateral leg was not secured in order to prevent any influence on the development of 

strength on the leg being tested. For the maximal strength test the subject performed three 

maximal concentric contractions (concentric contractions are used so this test protocol can be 

used in-season with minimal delayed onset muscle soreness) using both the preferred and 

non-preferred legs as described by Sangnier and Tourny-Chollet (2008). The dynamometer 

velocity was calibrated to an angular velocity of 180°·s
-1

, through a 90° range of motion. 

Sangnier and Tourny-Chollet (2007) showed a divergence in fatigue between the quadriceps 

and hamstrings using 180°·s
-1

, so this speed was used in the present study. The starting test 

leg order was randomised between subjects and the mean of the three trials for each leg was 

recorded and used as the subject’s maximal strength. (Sangnier & Tourny-Chollet, 2008). 

 

The subjects remained seated on the dynamometer for 3 min before a fatigue test was 

performed. Subjects performed 50 consecutive knee extension and flexion concentric 

contractions with maximal force. The fatigue test was performed on each leg with a 1-min 

rest between the tests. The subjects were instructed to exert the greatest force possible during 
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the test; if 95% of maximal strength was not achieved during one of the first 5 repetitions the 

test was stopped and then repeated after a 3-min rest (Sangnier & Tourny-Chollet, 2008). The 

loss of strength in the hamstrings and quadriceps was measured over the 50 repetitions and 

the decline in torque production (as a percentage) over 50 contractions was calculated by 

using the following equation: D% = ([MT1-5 - MT46-50]/MT1-5) × 100, where MT1-5 represents 

the MT of the 1
st
 to 5

th
 repetitions and MT46-50 represents the MT of the 46

th
 to 50

th
 

repetitions. The rate of decline in strength was compared between muscle groups of the same 

leg and between the preferred and non-preferred legs (Sangnier & Tourny-Chollet, 2008). 

The subjects were not informed of their results during testing in order to prevent feedback 

effects.  

 

3.5 Protocol 2: Isokinetic Endurance Test (fatigued condition)  

Each subject completed the RST followed by the IET. This testing was designed to use the 

RST to fatigue the subject before completing the IET in a fatigued state. As repeated sprints 

are prominent in football, the RST is designed to replicate fatigue in replicating a competitive 

football match. The subjects completed the same warm up conducted in Protocol 1 and 

completed the RST on a non-motorised treadmill (Curve Treadmill Dynamometer, 

Woodway, Waukesha, Winconsin, USA). The test required ten 6-s running bouts to be 

performed at maximum velocity with 25 s of active recovery (jog at 2 m.s
-1

) between each 

sprint. Feedback of running speed and time was provided by the Pacer Performance System 

software (Innervations Solutions, Joondalup, Australia). The subject was instructed to build 

to their maximum velocity as quickly as possible as the acceleration phase of the sprint was 

included in the 6-s sprint data collection period. The subject was given verbal encouragement 

to perform maximally throughout the repeated sprints. Calibration of the non-motorised 
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treadmill was conducted before each testing session using a range of known loads according 

to the manufactures guidelines.  

After 3-min of recovery from the RST, the subject followed the same IET protocol as 

followed in Protocol 1. The declines in force and power during the IET resulting from the 

RST when compared to the non-fatigued condition (Protocol 1) were used as measures of 

fatigue. 

 

3.6 Protocol 3: Jump Test (fatigued and non-fatigued conditions)  

The subject followed the SLVJ protocol designed by Ceroni, Martin, Delhumeau and 

Farpour-Lambert (2012). The subject placed their foot of the designated test leg, in a 

randomised order, on a portable force platform (400 Series Performance Plate, Fitness 

Technology, Adelaide, Australia) and squatted approximately to a 70-80° knee angle (0° = 

full extension) as quickly as possible and then explosively jumped with maximal effort as 

high as possible. The subject was asked to keep their hands on their hips to minimise 

potential contribution from their arms, and to flex the opposing knee as parallel as possible 

with the ground to keep balance during the descent of the jump. In the familiarisation session, 

the subject was to perform the SLVJ on each leg as many times as deemed necessary until 

they felt comfortable with the technique and proper form had been demonstrated. During 

testing, the SLVJ was performed three times on each leg, alternating between preferred and 

non-preferred legs with a 10-s passive rest between. The three SLVJ heights for each leg 

were performed before and after the RST to determine the magnitude of fatigue (ie. decrease 

in jump height), and also averaged to provide an individual subject mean. Jump height (JH) 

was calculated as ½ g(t/2)
2
, where g = 9.81 m.s

-1
 and t = time in the air. Time in the air was 

defined as the period between take-off and contact after flight (Moir, 2008). 
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Three minutes after the SLVJ test the subject performed the RST as described in Protocol 2, 

then recovered for 3 min before again completing the SLVJ test protocol. The decline in force 

and power during the SLVJ resulting from the RST was used as a measure of fatigue. 

3.7 Statistical Analysis 

Data was analysed using SPSS statistical software (SPSS 19, Chicago, I11). Means and standard 

deviations were calculated as measures of centrality and spread of data for all dependent 

variables. Outcome measures were analysed using a repeated measures ANOVA, with ‘leg’ 

(preferred and non-preferred kicking leg), ‘time’ (before and after the isokinetic endurance test 

and single leg vertical jump) or ‘sprint’ (sprint number during the repeated-sprint test) as between 

subject variables with the between-group factor of ‘group’ (with two levels; injured and non-

injured). Intra-class Correlation Coefficients (ICC) were conducted to confirm reliability of the 

Woodway Curve non-motorised treadmill. Statistical significance was accepted at an alpha level 

of 0.05. 
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CHAPTER 4: RESULTS 

4.1 Single Leg Vertical Jump 

4.1.1 Peak Jump Force   

A significant difference was observed in the injured group (p = 0.003) and the non-injured 

group (p = 0.005) in peak jump force of the preferred and non-preferred kicking legs during 

the single leg vertical jump test (before and after the repeated-sprint test) (Table 1). In the 

injured group, force production in the preferred kicking leg decreased from 3371±370 to 

3000±374 N (-12% change), and decreased in the non-preferred kicking leg from 3907±516 

to 3717±677 N (-5% change). In the non-injured group, force production in the preferred 

kicking leg decreased from 3037±354 to 2863±322 N (-6% change), and decreased in the 

non-preferred kicking leg from 3379±410 to 3117±380 N (-8% change). A significant 

difference was also observed when comparing between groups (injured and non-injured) (p = 

0.014). 

4.1.2 Peak Jump Height  

A significant difference was observed in the injured group (p = 0.004) in peak jump height of 

the preferred and non-preferred kicking legs during the single leg vertical jump (before and 

after the repeated-sprint test) (Table 1). In the injured group, jump height in the preferred 

kicking leg decreased from 0.105±0.012 to 0.091±0.013 N (-15% change), and decreased in 

the non-preferred kicking leg from 0.129±0.024 to 0.116±0.019 N (-11% change). In the non-

injured group, jump height in the preferred kicking leg decreased from 0.095±0.014 to 

0.088±0.013 N (-7% change), and decreased in the non-preferred kicking leg from 

0.110±0.015 to 0.101±0.014 N (-8% change). A significant difference was also observed 

when comparing between groups (injured and non-injured) (p = 0. 038).  
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Table 1. Mean (+ SD) and percent change in peak jump force and height of preferred and 

non-preferred kicking legs in injured and non-injured groups during the single leg vertical 

jump.  

 Before After % Change 

Peak Jump Force (N) 

Injured Group  

Preferred Leg 

Injured Group 

Non-Preferred Leg 

Non-Injured Group 

Preferred Leg 

Non-Injured Group 

Non-Preferred Leg 

     

 

3371±370* 

 

3907±516* 

 

3037±354* 

 

3379±410* 

 

 

3000±374* 

 

3717±677* 

 

2863±322* 

 

3117±380* 

 

 

-12% 

 

-5% 

 

-6% 

 

-8% 

Peak Jump Height (m) 

Injured Group  

Preferred Leg 

Injured Group 

Non-Preferred Leg 

Non-Injured Group 

Preferred Leg 

Non-Injured Group 

Non-Preferred Leg 

 

 

0.105±0.012*
 
 

 

0.129±0.024*
 
 

 

0.095±0.014 

 

0.110±0.015 

 

 

0.091±0.013*
 
 

 

0.116±0.019* 

 

0.088±0.013 

 

0.101±0.014
 
 

 

 

-15% 

 

-11% 

 

-7% 

 

-8% 
 

* = p < 0.05, ** = p < 0.001; N = newtons; m = metres. 

 

4.2 Isokinetic Endurance Test 

 

4.2.1 Knee Extensor Torque 

A significant difference was observed in the injured group (p = 0.001) and the non-injured 

group (p = 0.025) in knee extensor torque of the preferred and non-preferred kicking legs 

during the isokinetic endurance test (before and after the repeated-sprint test) (Table 2). In the 

injured group, torque production in the preferred kicking leg decreased from 85.2±7.4 to 

77.4±8.4 N (-10% change), and decreased in the non-preferred kicking leg from 87.8±8.4 

before to 84.3±6.6 N (-4% change). In the non-injured group, torque production in the 

preferred kicking leg increased from 81.0±13.1 to 82.9±12.8 N (2% change), and decreased 

in the non-preferred kicking leg from 94.3±14.6 to 85.3±16.5 N (-10% change). A significant 

difference was also observed when comparing between groups (injured and non-injured) (p = 

0. 000). 
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Table 2. Mean (+ SD) and percent change in knee extensor and flexor torque of preferred and 

non-preferred kicking legs in injured and non-injured groups during the isokinetic endurance 

test.  

 Before After % Change 

Knee Extensor Torque (N)   

Injured Group 

Preferred Leg 

Injured Group 

Non-Preferred Leg 

Non-Injured Group 

Preferred Leg 

Non-Injured Group 

Non-Preferred Leg 

 

85.2±7.4** 

 

87.8±8.4** 

 

81.0±13.1* 

 

94.3±14.6* 

 

77.4±8.4** 

 

84.3±6.6** 

 

82.9±12.8* 

 

85.3±16.5* 

 

-10% 

 

-4% 

 

2% 

 

-10% 

Knee Flexor Torque (N)   

Injured Group 

Preferred Leg 

Injured Group 

Non-Preferred Leg 

Non-Injured Group 

Preferred Leg 

Non-Injured Group 

Non-Preferred Leg 

 

35.1±9.1** 

 

54.2±6.0** 

 

43.1±10.2* 

 

44.8±10.2* 

 

23.3±12.5** 

 

50.5±11.7** 

 

28.5±12.7* 

 

33.5±11.1* 

 

-50% 

 

-7% 

 

-51% 

 

-33% 

* = p < 0.05, ** = p < 0.001; N = newtons. 

 

4.2.2 Knee Flexor Torque 

A significant difference was observed in the injured group (p = 0.000) and the non-injured 

group (p = 0.005) in knee flexor torque of the preferred and non-preferred kicking legs during 

the isokinetic endurance test (before and after the repeated-sprint test) (Table 2). In the 

injured group, torque production in the preferred kicking leg decreased from 35.1±9.1 to 

23.3±12.5 N (-50% change), and decreased in the non-preferred kicking leg from 54.2±6.0 to 

50.5±11.7 N (-7% change). In the non-injured group, torque production in the preferred 

kicking leg decreased from 43.1±10.2 to 28.5±12.7 N (-51% change), and decreased in the 

non-preferred kicking leg from 44.8±10.2 to 33.5±11.1 N (-33% change). A significant 

difference was also observed when comparing between groups (injured and non-injured) (p = 

0. 019).  
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4.2.3 Decline in Quadriceps Torque (%) 

A significant difference was only observed in the injured group (p = 0.006) in the decline in 

quadriceps torque of the preferred and non-preferred kicking legs during the isokinetic 

endurance test (before and after the repeated-sprint test) (Table 3). In the injured group, 

percent decline in torque production in the preferred kicking leg increased from 6.5±7.41 to 

19.6±17.7 N (201% change), and decreased in the non-preferred kicking leg from 11.4±10.7 

to 6.3±16.5 N (-44% change). In the non-injured group, percent decline in torque production 

in the preferred kicking leg decreased from 20.5±6.9 to 16.4±10.4 N (-20% change), and 

decreased in the non-preferred kicking leg from 16.2±4.2 to 11.1±17.3 N (-32% change). A 

significant difference was also observed when comparing between groups (injured and non-

injured) (p = 0. 012).  

Table 3. Mean (+ SD) and percent change in decline in quadriceps torque in preferred and 

non-preferred kicking legs in injured and non-injured groups during the isokinetic endurance 

test.  

 Before After % Change 

Decline in Quadriceps Torque (%) 

Injured Group  

Preferred Leg 

Injured Group 

Non-Preferred Leg 

Non-Injured Group 

Preferred Leg 

Non-Injured Group 

Non-Preferred Leg 

     

6.5±7.1*  

 

11.4±10.7* 

 

20.5±6.9 

 

16.2±4.2 

 

19.6±17.7*  

 

6.3±16.5* 

 

16.4±10.4 

 

11.1±17.3 

 

201% 

 

44% 

 

20% 

 

32% 

 

* = p < 0.05, ** = p < 0.001; % = percent. 

 

4.2.4 Decline in Hamstring Torque (%) 

A significant difference was only observed in the injured group (p = 0.006) in the decline in 

hamstring torque of the preferred and non-preferred kicking legs during the isokinetic 

endurance test (before and after the repeated-sprint test) (Figure 2). In the injured group, 

percent decline in torque production in the preferred kicking leg increased from 26.1±18.4 to 
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51.7±20.9 N (98% change), and increased in the non-preferred kicking leg from 11.6±8.94 to 

19.4±20.5 N (67% change). In the non-injured group, percent decline in torque production in 

the preferred kicking leg increased from 7.3±4.34 to 23.3±13.4 N (219% change), and 

increased in the non-preferred kicking leg from 2.1±8.0 before to 20.0±35.7 N (852% 

change). A significant difference was also observed when comparing between groups (injured 

and non-injured) (p = 0.046).  

Figure 2. Decline in hamstring torque in preferred and non-preferred kicking legs in injured 

and non-injured groups during the isokinetic endurance test. 

 

 



 

31 
 

4.3 Repeated-Sprint Test  

4.3.1 Vertical Force  

A significant difference was only observed in the injured group (p = 0.000) in mean vertical 

force production in the preferred and non-preferred kicking legs during the repeated-sprint 

test (Figure 3). In the injured group, mean vertical force production in the preferred kicking 

leg decreased from 2043±167 to 1979±104 N (-3% change), and decreased in the non-

preferred kicking leg from 2000±145 to 1974±108 N (-1% change). In the non-injured group, 

mean vertical force production in the preferred kicking leg decreased from 1669±104 to 

1658±73 N (-0% change), and decreased in the non-preferred kicking leg from 1714±81 to 

1710±73 N (-0% change). 
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A) 

 

 

 

 

 

 

 

 

 

 

 

 

B) 

 

 

 

 

 

 

 

 

 

 

Figure 3. Changes in mean vertical ground reaction force of the preferred and non-preferred 

kicking legs in the A) injured group (p < 0.001) and B) non-injured group during the 

repeated-sprint test. * = p < 0.05, ** = p < 0.001.  
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4.3.2 Horizontal Force  

A significant difference was observed in the injured group (p = 0.000) and the non-injured 

group (p = 0.001) in mean horizontal force production in the preferred and non-preferred 

kicking legs during the repeated-sprint test (Figure 4). In the injured group, mean horizontal 

force production in the preferred kicking leg decreased from 165.9±11.7 to 145.1±7.8 N (-

14% change), and decreased in the non-preferred kicking leg from 159.8±18.8 to 154.8±11.3 

N (-3% change). In the non-injured group, mean horizontal force production in the preferred 

kicking leg decreased from 124.1±10.3 to 119.4±6.5 N (-3% change), and decreased in the 

non-preferred kicking leg from 123.1±354 to 120.6±322 N (-2% change). A significant 

difference was also observed when comparing between groups (injured and non-injured) (p = 

0. 000).  
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A) 

 

 

 

 

 

 

 

  

B) 

 

 

 

 

 

 

 

Figure 4. Changes in mean horizontal ground reaction force of the preferred and non-

preferred kicking legs in the A) injured group and B) non-injured group during the repeated-

sprint test. * = p < 0.05, ** = p < 0.001. 

* 
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4.3.3 Power Output  

A significant difference was observed in the injured group (p = 0.000) and the non-injured 

group (p = 0.004) in mean power output (of each sprint number) in the preferred and non-

preferred kicking legs during the repeated-sprint test (Figure 5). In the injured group, mean 

power output in the preferred kicking leg decreased from 728.7±105.6 to 702.7±48.8 N (-3% 

change), and decreased in the non-preferred kicking leg from 736.3±62.6 to 725.6±73.3 N (-

1% change). In the non-injured group, mean power output in the preferred kicking leg 

decreased from 618.0±48.8 to 606.5±25.7 N (-1% change), and decreased in the non-

preferred kicking leg from 636.4±29.1 to 635.6±26.4 N (-0% change). A significant 

difference was also observed when comparing between groups (injured and non-injured) (p = 

0. 026).  
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A) 

 

 

 

 

 

 

 

 

 

 

 

B) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Changes in mean power output of the preferred and non-preferred kicking legs in 

the A) injured and B) non-injured group during the repeated-sprint test. * = p < 0.05, ** = p < 

0.001. 
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4.3.4 Contact Time  

A significant difference was observed in the injured group (p = 0.000) and the non-injured 

group (p = 0.002) in mean contact time in the preferred and non-preferred kicking legs during 

the repeated-sprint test (Figure 6). In the injured group, mean contact time in the preferred 

kicking leg increased from 0.247±0.031 to 0.254±0.011-s (2% change), and increased in the 

non-preferred kicking leg from 0.260±0.012 to 0.247±0.029-s (-5% change). In the non-

injured group, mean contact time in the preferred kicking leg increased from 0.147±0.008 to 

0.150±0.007-s (2% change), and increased in the non-preferred kicking leg from 0.147±0.009 

to 0.148±0.008-s (0% change). A significant difference was also observed when comparing 

between groups (injured and non-injured) (p = 0. 000).  
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A) 

 

 

 

 

 

 

 

 

 

 

 

 

B)  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Changes in mean contact time of the preferred and non-preferred kicking legs in 

the A) injured and B) non-injured group during the repeated-sprint test. * = p < 0.05, ** = p < 

0.001. 
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4.3.5 Flight Time  

Flight time was differentiated by the time of the end of foot contact to the start of foot contact 

of the same leg. A significant difference was only observed in the injured group (p = 0.000) 

in comparing mean flight time in the preferred and non-preferred kicking legs during the 

repeated-sprint test (Figure 7). In the injured group, mean flight time in the preferred kicking 

leg increased from 0.092±0.016 to 0.099±0.008-s (7% change), and increased in the non-

preferred kicking leg from 0.088±0.015 to 0.091±0.005-s (3% change). In the non-injured 

group, mean flight time in the preferred kicking leg increased from 0.065±0.006 to 

0.066±0.004-s (1% change), and increased in the non-preferred kicking leg from 0.060±0.004 

to 0.062±0.005-s (3% change). A significant difference was also observed when comparing 

between groups (injured and non-injured) (p = 0. 004).  
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A)  

 

 

 

 

 

 

B)  

 

 

 

 

 

 

  

Figure 7. Changes in mean flight time of the preferred and non-preferred kicking legs in the 

A) injured and B) non-injured group during the repeated-sprint test. * = p < 0.05, ** = p < 

0.001. 
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4.3.6 Stride Frequency 

A significant difference was observed in the injured group (p = 0.000) and the non-injured 

group (p = 0.000) in mean stride frequency in the preferred and non-preferred kicking legs 

during the repeated-sprint test (Figure 8). In the injured group, mean stride frequency in the 

preferred kicking leg increased from 3.7±0.156 to 3.9±0.693 N (5% change), and increased in 

the non-preferred kicking leg from 3.6±0.219 to 3.8±0.353 N (5% change). In the non-injured 

group, mean stride frequency in the preferred kicking leg increased from 6.2±0.397 to 

6.4±0.504 N (3% change), and decreased in the non-preferred kicking leg from 6.4±0.595 to 

6.3±0.435 N (-1% change). A significant difference was also observed when comparing 

between groups (injured and non-injured) (p = 0. 000).  
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A) 

 

 

 

 

 

 

 

B)  

Figure 8. Changes in mean stride frequency of the preferred and non-preferred kicking legs 

in the A) injured and B) non-injured group during the repeated-sprint test. * = p < 0.05, ** = 

p < 0.001. 
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4.3.7 Stride Length  

A significant difference was observed in the injured group (p = 0.000) and the non-injured 

group (p = 0.041) in mean stride length in the preferred and non-preferred kicking legs during 

the repeated-sprint test (Figure 9). In the injured group, mean stride length in the preferred 

kicking leg decreased from 1.43±0.178 to 1.39±0.116 N (-2% change), and decreased in the 

non-preferred kicking leg from 1.40±0.162 to 1.40±0.125 N (-0% change). In the non-injured 

group, mean stride length in the preferred kicking leg increased from 0.899±0.128 to 

0.893±0.076 N (-0% change), and decreased in the non-preferred kicking leg from 

0.869±0.105 to 0.864±0.084 N (-0% change). A significant difference was also observed 

when comparing between groups (injured and non-injured) (p = 0. 000).  
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A) 

 

 

 

 

 

 

 

B) 

 

 

 

 

 

 

 

 

 

 

Figure 9. Changes in mean stride length of the preferred and non-preferred kicking legs in 

the A) injured and B) non-injured group during the repeated-sprint test. * = p < 0.05, ** = p < 

0.001. 
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4.4 Reliability 

4.4.1 Repeated-Sprint Test on the Woodway Curve Non-Motorised Treadmill 

Intraclass correlation coefficients (ICC) were computed to determine the reliability of vertical 

and horizontal ground reaction forces, power output, contact time, flight time, stride 

frequency and stride length measured on the Woodway Curve non-motorised treadmill during 

a repeated-sprint test. The ICC for stride frequency was very good (0.8-0.9) while vertical 

and horizontal forces, power output, contact time, flight time and stride length were excellent 

(> 0.9). These results support the use of the Woodway Curve non-motorised treadmill during 

the repeated-sprint test. 

Table 4. Intraclass correlation coefficients (ICC) for variables derived from the Woodway 

Curve non-motorised treadmill during the repeated-sprint test. 

Variables Intraclass Correlation Coefficient (r) 

Vertical Force (N) 

Horizontal Force (N) 

Power Output (W) 

Contact Time (s) 

Flight Time (s) 

Stride Frequency (S/s) 

Stride Length (m) 

0.965** 

0.960** 

0.962** 

0.984** 

0.988** 

0.818* 

0.932** 

* = very good correlation (0.8-0.9), ** = excellent correlation (> 0.9). 
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CHAPTER FIVE: DISCUSSION, DIRECTIONS FOR FUTURE 

RESEARCH AND CONCLUSIONS 

5.1 Discussion 

This is the first study, to the researcher’s knowledge, that has compared injured and non-

injured subjects and the effect of fatigue on force production in preferred and non-preferred 

kicking legs in footballers. The purpose of this study was to (1) compare the preferred and 

non-preferred kicking legs from kinetic and kinematic data obtained during the repeated-

sprint test, peak torque and the fatigue related decrease in torque measured during the 

isokinetic endurance test, and force production and jump height measured during the single 

leg vertical jump; (2) compare the fatigue profiles of the injured and non-injured group 

through a repeated-sprint protocol; and (3) compare the fatigue response of the injured and 

non-injured groups and the resulting inter-limb force production. A main finding from this 

study was that a greater significant difference was observed in the injured group when 

comparing the preferred and non-preferred kicking legs. This provided evidence that the non-

preferred kicking leg had greater force production, the preferred kicking leg (previously 

injured leg) had a greater fatigue response and the inter-limb difference in force production 

after fatigue was greater in the injured group. Investigation into this could help to uncover 

new strategies to reduce the risk of hamstring injuries in particular in football. 

 

5.2 Single Leg Vertical Jump  

The single leg vertical jump test was designed to imitate a footballer jumping for a header. A 

single leg is often used during take-off in the jump to head the ball; such preference is also 

seen in other sports as well (Stephens, Lawson & Reiser, 2005). By testing before and after 

fatiguing exercise, examination of the effect of fatigue on each leg can be undertaken. Single-
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leg vertical jumps are also considered the most sensitive tool to detect muscle strength 

imbalance (Ceroni, Martin, Delhumeau & Farpour-Lambert, 2012).  

 

5.2.1 Peak jump height and force  

The fatigue response between the preferred and non-preferred kicking legs of the non-injured 

group differed to that of the injured group in both peak jump height and force. While the non-

injured group demonstrated greater peak jump force and height, the injured group displayed a 

greater fatigue response in the preferred kicking leg (see Table 1). This suggests that the 

previous injury to the preferred kicking leg has resulted in a different fatiguing mechanism as 

deficiencies are evident directly due to the injury. As these results show an obvious 

difference in fatigue response (the injured group’s force production reduced while the non-

injured group’s force production increased), whether this is evidence of this particular test 

potentially detecting injury risk in footballers due to such a different response is unknown. 

Potential future retrospective designs would be able to see clear differences between before 

and after injury and whether the fatigue response functions have changed due to injury. 

 

5.3 Isokinetic Endurance Test  

The use of isokinetic dynamometry is a validated test of fatigue (Eichner, 1995). This testing 

can target specific muscles of limbs to test strength and fatigability; of which the isokinetic 

endurance test in the present study tested the quadriceps and hamstrings of the preferred and 

non-preferred kicking legs. Previous epidemiological studies (Chomiak, Junge, Peterson & 

Dvorak, 2000; Hawkins, Hulse, Wilkinson, Hodson, & Gibson 2001; Woods et al., 2004) 

have documented a rise in number of injuries occurring at the end of a competitive fixture 

suggesting that fatigue is a major risk factor of injury (Eichner, 1995).  
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5.3.1 Knee extensor and flexor torque  

The present research, concentric knee extension and knee flexion testing was completed 

before and after the repeated-sprint test, where subjects were to be fatigued in a football-

specific manner in a way that could be used in-season. The change in knee extensor torque 

was similar between the preferred kicking leg of the injured group and the non-preferred 

kicking leg of the non-injured group (10%) (see Table 2). Change in knee flexor torque was 

greater in the preferred kicking leg of both the injured and non-injured group (50 and 51% 

respectively). While knee flexor torque of the preferred kicking leg in the non-injured group 

was slightly greater than the injured group, an imbalance in fatigue response between each 

leg was significantly greater in the injured group (50% change in the preferred leg and 7% 

change in the non-preferred leg (43% imbalance) compared to the non-injured group (51% 

change in the preferred and 33% in the non-preferred leg (18% imbalance)). It can be 

assumed that such variation between groups is due to the previously injured status of the 

subjects in the injured group.  

 

5.3.2 Decline in quadriceps and hamstring torque  

Decline in quadriceps and hamstring torque was analysed by comparing the last 5 repetitions 

with the first 5 repetitions during knee flexion and extension. The greatest decline in 

quadriceps torque was observed in the preferred kicking leg of the injured group (201%) (see 

Table 3). While the greatest decline in hamstring torque was observed in the non-injured 

group in the non-preferred kicking leg (32%), the preferred kicking leg of the injured group 

produced the greatest decline in hamstring torque both before and after the repeated-sprint 

test (26.1±18.4 to 51.7±20.9 N) (see Figure 2). This represents the preferred kicking leg of 

the injured group having a greater fatigue response over the course of the 50 repetitions in the 

isokinetic endurance test both before and after the fatigue condition (repeated-sprint test). 
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While the non-preferred leg had a considerably greater change (2.1±8.0 to 20.0±35.7 N), this 

was due to the fact that there was little fatigue before the fatigue condition. This would 

suggest that the preferred kicking leg in the injured group had a greater fatigue response 

during the isokinetic endurance test both before and after the fatigue condition. 

 

Such findings in the present research suggest that previous injury could have affected knee 

extensor and knee flexion torque production and fatigue response (the decline in quadriceps 

and hamstring torque) in the preferred kicking leg. Such a suggestion is supported by 

previous research by Opar, Williams, Timmins, Dear and Shield (2013) where rates of force 

development were reduced in previously strained hamstrings, even after rehabilitation, in 

comparison to the uninjured limb. This shows that previous hamstring injury may affect 

function and that underlying differences between lower limbs exist after injury. This 

highlights the importance of furthering research into the comparisons between injured and 

non-injured groups, and their differences in preferred and non-preferred kicking legs. 

 

5.3.3 Loss in hamstring strength  

It is believed that a lack of sufficient hamstring strength is considered to be a major cause of 

injury (Sangnier & Tourny-Chollet, 2007). As apparent in the present study, muscle 

imbalances induced by fatigue because of the greater loss in hamstring strength reduces the 

regulatory capacity of the hamstring muscles, in turn resulting in greater vulnerability to non-

contact injury (Sangnier & Tourny-Chollet, 2008). Such decreases in hamstring strength 

could also explain the increased number of muscle injuries, particularly of the hamstrings, at 

the end of matches (Sangnier & Tourny-Chollet, 2008). Discrepancies specifically between 

the preferred and non-preferred kicking legs however have not been previously examined. As 
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the preferred kicking leg (previously injured leg) arguably has a greater fatigability within the 

present study; that particular leg could potentially be at greater risk to injury as a greater loss 

in hamstring strength is apparent. With a greater vulnerability to injury the preferred kicking 

leg in itself could potentially be a risk factor if the loss in muscular strength is great enough. 

 

5.4 Repeated-Sprint Test  

Subjects performed the repeated-sprint test on a non-motorised treadmill (Woodway Curve), 

which allows for the quantification of running kinetics and kinematics. Previous research has 

confirmed the validity of measurements on overground running  by comparing data obtained 

to that obtained during overground running (Kluitenberg, Bredeweg, Zijlstra, Zijlstra & 

Buist, 2012), and reliability of kinetic and kinematic variables on non-motorised treadmills 

has been presented previously (Hughes, Doherty, Tong, Reilly & Cable, 2006). While a 

previous study confirmed the reliability of anaerobic performance (using mean and peak 

velocity, mean and peak power and relative mean and peak power) on the Woodway Curve 

treadmill (Gonzalez, Emerson, Robinson, Edward, Wells, Hoffman, Stout, Fragala, Mangine, 

McCormack, Townsend & Jajtner 2013) little research has explored the reliability of running 

kinetics and kinematics on the Woodway Curve treadmill. In the present study, intraclass 

correlation coefficient values ranging from 0.818 to 0.988 were obtained across a spectrum of 

kinetic and kinematic variables (see Table 4), which suggests that highly reliable data can be 

obtained using the Woodway Curve treadmill. 

 

5.4.1 Vertical force  

Previous research has investigated the running velocity effect on vertical force production, 

and have broadly found that vertical forces remain constant for speeds greater than 
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approximately 60% maximum velocity (Brughelli, Cronin & Chaouachi, 2011). The present 

study observed similar findings as velocity force production over the course of the repeated-

sprint tests remained consistent (Figure 3). A fatigue response is evident in the previously 

injured group (3% change in the preferred kicking leg and 1% change in the non-preferred 

kicking leg, compared to a 0% change in both preferred and non-preferred legs in the non-

injured group) which suggests that injury to the preferred kicking leg has effected vertical 

force production. With vertical force production being the predominant mechanism used to 

attain faster maximum velocity (Weyand, Sternlight, Bellizzi & Wright, 2000), variation in 

the vertical force production seen in the injured group (Figure 3) suggests a potential cause of 

injury as the non-injured subjects were unable to maintain their vertical force production 

consistently. While there is some variation in the literature regarding the point at which 

vertical forces remain constant (Brughelli, Cronin & Chaouachi, 2011), being around 60% of 

maximum velocity in Australian rules footballers and starting at 70% in sprinters (Kuitunen, 

Komi & Kyrolainen, 2002), the increase in vertical force production to the point of it 

becoming consistent is evident throughout the literature. This could be due to variation in 

vertical force production between individuals dictating the degree of maximum velocities 

obtained. The present study however tested maximum velocity attained in 6-s (acceleration) 

of which a greater discrepancy was found in the injured group compared to the non-injured 

group (conforming to the discrepancy of injured and non-injured legs in Brughelli, Cronin 

and Chaouachi (2010)). However, it is not clear how the discrepancy affects causes of injury, 

an important area for future study. 

 

5.4.2 Horizontal force  

The present data indicated that horizontal forces were significantly different between legs 

during the repeated-sprint test (Figure 4). The preferred kicking leg in both injured and non-
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injured groups produced the greatest change in horizontal force (14% and 3% respectively). 

This suggests that the fatigue response in horizontal force is greater in the preferred kicking 

leg and significantly greater in the injured group. It can be assumed that the preferred kicking 

leg had the greatest change in horizontal force due to previous injury however; no previous 

research has examined the differences between the preferred and non-preferred kicking legs 

during a repeated-sprint test to determine whether such fatigue is a common response 

regardless of previous injury. This makes it difficult to determine why the fatigue response of 

the preferred kicking leg was greater than the non-preferred kicking leg in both previously 

injured and uninjured subjects in a repeated-sprint test. 

 

One possibility is because the non-preferred kicking leg is stressed more in football 

supporting body weight during kicking action it has built a greater resistance to fatigue 

mechanisms. Brughelli et al. (2010) reported significantly less (46%) horizontal force 

production in the injured leg in comparison to the uninjured leg. The differences between 

preferred and non-preferred kicking legs were not considerable in the present study possibly 

due to the differences in the stage of running data was collected. In the present study, data 

were collected from the first 6 s of the sprint (the acceleration phase) whereas Brughelli et al. 

(2010) collected data from 3-8 s in the sprint (80% of maximum velocity) and thus minimised 

data collection during acceleration. However, the findings of Brughelli et al. (2010) findings 

are similar to those of the present study in that the greatest change in horizontal force was due 

to previous injury in a particular leg. Force production and fatigue response mechanisms have 

shown to differ between legs and the fact that the fatigue response is greater in the previously 

injured leg (preferred kicking leg) would suggest it is due to previous injury. 
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5.4.3 Power output  

The effect of power output on repeated-sprint ability has previously been difficult to 

investigate. To the researcher’s knowledge, little information is available on the importance 

of power output on repeated-sprint ability due to the difficulty in obtaining power output 

profiles during repeated-sprints. However the use of non-motorised treadmills would remove 

such difficulty and allow power output performance to be recorded during repeated-sprints. 

While several studies have confirmed the reliability of such testing on non-motorised 

treadmills (Lim & Chia, 2007; Tong, Bell, Ball & Winter, 2001), power output performance 

in repeated-sprint ability has yet to be investigated in depth.  

 

While previous research reported a decrease of 21% in mean power output after ten 

(Holymard, Cheetham, Lakomy, & Williams, 1988) and five (Wootton & Williams, 1983) 6 s 

sprints with 30 s recovery, the greatest fatigue response found in the present study was 3% 

(Figure 5) in the preferred kicking leg of the injured group. Discrepancy in results between 

different research could be explained by differences in training status of participants and also 

in protocols. This is particularly true in comparison with Mendez-Villanueva, Hamer and 

Bishop (2008) where results showed a 28% decrease in mean power output the participants 

were recreationally active in various sports. With the preferred kicking leg producing less 

power over the 10 sprints, the non-preferred kicking leg could potentially be producing 

greater power to compensate for the preferred kicking leg. This is also seen in horizontal 

force production, particularly of the injured group (Figure 4A), as there is a significant 

decrease in force production of the preferred leg there is a small increase in force production 

of the non-preferred leg. Whether or not these factors attribute to injury is unknown as the 

present study is the first to investigate power output leg asymmetry between the preferred and 

non-preferred kicking legs. 
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5.4.4 Contact and flight time  

The injured group displayed greater variance between preferred and non-preferred kicking 

legs in contact and flight times (see Figure 6 and 7). This suggests that previous injury could 

have potentially affected contact and flight times while running. While the non-preferred 

kicking leg in the injured group had the greatest change in contact time (5%), the preferred 

kicking leg of the injured group had the greater change in flight time (7%). These findings 

could potentially interplay with each other, as contact time should affect flight time as 

velocity increases (as contact time decreases, flight time should increase in order to increase 

velocity). However if there is a greater change in a particular leg in contact time, a greater 

change should be evident in the opposite leg for flight time (as one leg should dictate the time 

of the other leg) as seen in the present study. The greater changes in the injured group in 

contact and flight times could suggest that previous injury to the preferred kicking leg 

effected resulting times.  Figure 6 also shows a great increase in contact time of the preferred 

kicking leg of the injured group on the 9
th

 repeated sprint (sprint number 10) suggesting a 

significant fatigue effect. While this is the only evidence of an increase in contact time of 

fatigue in both groups, this could suggest that the preferred and non-preferred kicking legs 

have different fatigue responses and the resulting inter-limb force production is reduced in 

the preferred kicking leg when fatigued. 

 

While contact and flight time data from the curved treadmill were strongly correlated (Table 

4), no previous research has examined the difference in contact or flight time between the 

curved belt on the non-motorised treadmill and a flat treadmill belt. With foot contact being 

made at a higher point on the treadmill belt in comparison to a flat treadmill it could be 

possible that times are affected. Seneli, Edlbeck, Myatt, Reynolds and Snyder (2011) 

examined the same theory with stride length and found no differences. With no differences in 



 

55 
 

the length of the stride it could be assumed that there would be no difference in contact and 

flight time also. Brughelli, Cronin and Chaouachi (2011) reported that as running velocity 

increased from 40% to 100% maximum, contact times decreased with it. This is explained as 

during the increment of velocity foot contact time decreases while flight time increases in 

order to build velocity (Brughelli Cronin & Chaouachi, 2011).  

 

5.4.5 Stride length and frequency  

During running there is never an overlap between the stance phases of the right and left legs, 

instead, there are periods when both feet are off the ground (flight phase) (Schubert, Kempf 

and Heiderscheit, 2014). Previous research has failed to explore the importance of comparing 

the preferred and non-preferred kicking legs from the stance phase to flight phase during 

running. Findings from the present study showed that stride length of the preferred kicking 

leg in the injured group reduced by 2% while the non-preferred kicking leg failed to fatigue 

(0%). Both preferred and non-preferred kicking legs also failed to show any representations 

of fatigue (0%). This could be a representation of the fact that the previously injured leg 

(preferred kicking leg) having a greater fatigability. Stride frequency increased by 5% in both 

preferred and non-preferred kicking legs in the injured group while stride frequency in the 

non-injured group increased by 3% in the preferred kicking leg and reduced by 1% in the 

non-preferred kicking leg. As little is known as to why such differences are apparent between 

preferred and non-preferred kicking legs, these findings highlight the importance for further 

investigation into the difference between the preferred and non-preferred kicking legs during 

stride length and frequency. 

The present study suggests that there is interplay between stride length and stride frequency 

as the injured group demonstrates less stride frequency and a longer stride length and (Figure 
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8 and 9 respectively). The non-injured group had the opposite effect, with less stride length 

and greater stride frequency. This could be best explained as a greater stride length results in 

a lesser stride per second while running. It is also important to note that these results are 

reflective of an individual’s acceleration as acceleration requires a decreased stride length and 

increased stride frequency to build running velocity up. While running velocity increases it 

can be assumed that stride length would increase while stride frequency would decrease (a 

decrease in stride frequency with an increase in stride length is used to increase velocity). 

This is supported by Schubert, Kempf and Heiderscheit (2014) who found that increased 

stride rate resulted in decreased stride length affecting impact peak, kinematics and kinetics 

and therefore could be considered as a mechanism to influence injury risk and recovery in a 

runner. Significant variations in both stride length and frequency evident in the injured group 

suggests that injury could have potentially caused such variations.  

 

The present study observed that the injured group had greater stride length. With the ability to 

potentially produce force rapidly reduced due to the preference in greater stride length, the 

ability to maintain force could be questioned. The horizontal force of the preferred kicking 

leg in the injured group in particular had the greatest change (14%), with a great decrement in 

force production undertaken during the last sprint. The interplay between the reduction in 

horizontal force producing capabilities and stride length could lead to injury, or increase the 

susceptibility to re-injury. However as before injury capabilities are unknown it can only be 

speculated that these could be potential reasons for injury or re-injury. 

 

No previous research has examined the dribbling capabilities between legs in relation to 

stride length. This is something that future research could examine through manipulation of 
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stride lengths in football players. It is unknown whether or not the resulted stride lengths of 

the injured group are greater in the non-preferred kicking leg due to injury. Variance is also 

apparent in stride length as initially the preferred kicking leg is greater than the non-preferred 

kicking leg until the first repeated sprint (sprint number 2). While it can be assumed that this 

is a result of fatigue, again it is difficult to make substantial claims as stride frequency and 

length before injury is unknown.  

 

5.5 Football related reasons for differences in kicking legs  

It can be assumed that the workload of football training has attributed to musculoskeletal 

modification (Sangnier & Tourny-Chollet, 2008). Football training can have athletic and 

technical-tactical components of which athletic preparations develop strength and aerobic and 

anaerobic capacities which place similar demands on both preferred and non-preferred 

kicking legs (Sangnier & Tourny-Chollet, 2008).  Technical-tactical training prompts specific 

actions of which the load on preferred and non-preferred kicking legs differs. Such actions 

include tackling, jumping, dribbling, changing direction and striking the ball (Sangnier & 

Tourny-Chollet, 2008). Over years of training such actions are repeated countless times and 

as a consequence results in a divergent load between the preferred and non-preferred kicking 

legs (Sangnier & Tourny-Chollet, 2008). The present study shows examples of such 

divergent loads of which the repetitions of technical-tactical actions have potentially affected 

the capacity of muscle resistance (Sangnier & Tourny-Chollet, 2008). This prompts the 

notion of imbalance between not only muscle groups but also the preferred and non-preferred 

kicking leg, as seen when comparing injured and non-injured groups in the present study 
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5.6 Limitations  

Limitations exist within this study, the most prominent being the fact that this study is of 

retrospective design. Without lower-limb leg asymmetry measurements taken before injury, it 

is difficult to determine whether or not resulting asymmetries are the result of hamstring 

injury or not. Also, by not measuring different levels of football the study can only be true of 

the level of football played within this study. As previously discussed, due to technical-

tactical training within football, different levels of football warrant different levels of training 

intensity. This could further impose lower limb asymmetry at a higher level due to the greater 

intensity and frequency in training of technical-tactical training which in most cases warrant 

different movements and activations between the preferred and non-preferred kicking leg 

depending on the activity. 

 

5.7 Conclusion  

In conclusion, the present study has provided a basis for comparing the injured and non-

injured group and the preferred and non-preferred kicking legs during a single leg vertical 

jump, isokinetic endurance test and repeated-sprint test. From the battery of tests, evidence of 

the non-preferred leg having greater force production, the preferred kicking leg having a 

greater fatigue response (more prominently in the injured group of which the preferred 

kicking leg was the previously injured leg), and the inter-limb difference in force production 

after fatigue was greater in the injured group. As the preferred kicking leg displayed a greater 

magnitude of fatigue and the non-preferred kicking leg showed greater unilateral strength and 

performance, lower limb asymmetry as a potential risk factor for hamstring injury should not 

be ignored. Future research could help further understanding of the differences between the 

preferred and non-preferred kicking legs, why they occur, and the influence they have on 

injury. This could possibly be done through a prospective study following a particular 
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football team over a period of time and taking note of any hamstring injuries in particular and 

comparing hamstring function mechanisms in both preferred and non-preferred kicking legs 

from before injury to after full recovery. This would investigate the players more susceptible 

to injury through their lower leg asymmetry and resulting differences before and after injury 

of hamstring function mechanisms. Continuing to research hamstring injuries could 

potentially go a long way in reducing the number of the most common lower limb injury in 

football. 
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APPENDIX TWO 

Subject Eligibility Form 

Name: ________________________________________   Age: _____  Gender: M / F 

 

Contact Mobile Number: _________________________   

 

Contact E-Mail: ______________________________________________________________ 

 

Preferred kicking leg: Left / Right 

 

Currently fully fit?: Yes / No 

 

Preferred playing position: _________________________ 

 

Current State League club (and division): __________________________________________ 

 

Number of years’ experience in the State League: _____   

 

Club history in the State League (and division):  

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________ 

 

Previous injury history (if applicable, please be specific as to what was injured and the 

period of time injured for):  

___________________________________________________________________________

___________________________________________________________________ 

___________________________________________________________________________

___________________________________________________________________________

_______________________________________________________________ 

 

Rehab history (if applicable, please be specific as to what rehab, if any, was performed for 

each injury/how long the rehabilitation program went for): 

_______________________________________________________________________ 
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APPENDIX THREE 

Subject Consent Form 

LOWER LIMB FATIGUE ASYMMETRY OF PREFERRED AND NON-PREFERRED 

LEGS AFTER A REPEATED-SPRINT TEST IN FOOTBALL PLAYERS WITH 

PREVIOUS HAMSTRING INJURY 

I ______________________________ (the participant) have been informed about all aspects 

of the research project and agree to participate in the project, realising that I can withdraw at 

any time. 

I have been informed that some fatigue and delayed onset of muscle soreness (DOMS) could 

be a result of performing this test. 

I agree that research data gathered for this project may be published provided I am not 

identifiable. 

 

Participant Signature: ____________________ Date: _______________ 

 

Researcher Signature: ____________________ Date: _______________ 
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APPENDIX FOUR 

Medical Questionnaire 

Pre-exercise Medical Questionnaire 

The following questionnaire is designed to establish a background of your medical history, and 

identify any injury and/ or illness that may influence your testing and performance.  If you are under 

18 then a parent or guardian should complete the questionnaire on your behalf or check your 

answers and then sign in the appropriate section to verify that they are satisfied the answers to all 

questions are correct to the best of their knowledge. 

Please answer all questions as accurately as possible, and if you are unsure about anything please 

ask for clarification.  All information provided is strictly confidential.   

Personal Details 
Name:______________________________________________ 

Date of Birth (DD/MM/YYYY):__________________ Gender: Female/ Male 

PART A 

1.  Are you a male over 45 yr, or female over 55 yr or who has had a hysterectomy or are 

postmenopausal?  

      Y     N      If YES, please provide details 

 

2.  Are you a regular smoker or have you Y     N     _______________ 

quit in the last 6 months? 

3.  Did a close family member have heart Y     N     Unsure _______________ 

disease or surgery, or stroke before the age  

of 60 years?  

4.  Do you have, or have you ever been  Y     N     Unsure _______________ 

told you have blood pressure above  

140/90 mmHg, or do you current take  

blood pressure medication?  

5.  Do you have, or have you ever been  Y     N     Unsure _______________ 

told you have, a total cholesterol level  

above 5.2 mmol/L (200 mg/dL)?  
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6.  Is your BMI (weight/height2) greater   Y     N     Unsure _______________ 

than 30 kg/m2?   

PART B 

1.  Have you ever had a serious asthma   Y N _____________________ 

attack during exercise? 

2.  Do you have asthma that requires   Y N _____________________ 

medication? 

3.  Have you had an epileptic seizure in   Y N _____________________ 

the last 5 years? 

4.  Do you have any moderate or severe  Y N _____________________  

allergies? 

5.  Do you, or could you reasonably, have  Y N _____________________ 

an infectious disease? 

6.  Do you, or could you reasonably, have  Y N _____________________ 

an infection or disease that might be  

aggravated by exercise? 

7.  Are you, or could you reasonably be,  Y N _____________________ 

pregnant? 

PART C 

1.  Are you currently taking any prescribed or non-prescribed medications? 

      Y N _____________________ 

2.  Have you had, or do you currently have, any of the following? 

             If YES, please provide details 

 

Rheumatic fever    Y N _____________________ 

Heart abnormalities    Y N _____________________ 

Diabetes     Y N _____________________ 
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Epilepsy     Y N _____________________ 

Recurring back pain that would make  Y N _____________________ 

exercise problematic, or where exercise  

may aggravate the pain .   

Recurring neck pain that would make  Y N _____________________ 

exercise problematic, or where exercise  

may aggravate the pain 

Any neurological disorders that would   Y N _____________________ 

make exercise problematic, or where  

exercise may aggravate the condition 

Any neuromuscular disorders that would  Y N _____________________ 

make exercise problematic, or where  

exercise may aggravate the condition 

Recurring muscle or joint injuries that  Y N _____________________ 

would make exercise problematic, or  

where exercise may aggravate the condition  

A burning or cramping sensation in your  Y N _____________________ 

legs when walking short distances 

Chest discomfort, unreasonable   Y N _____________________ 

breathlessness, dizziness or fainting, 

or blackouts during exercise 

PART D 

Have you had flu in the last week?  Y N _____________________ 

 

Do you currently have an injury that might  Y N _____________________ 

affect, or be affected by, exercise?   

*Is there any other condition not previously mentioned that may affect your ability to participate in 

this study? 
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Y N _________________________________________________________ 

Medical Questions that are directly related to the research 

techniques: 
Have you ever experienced injury to   Y N _____________________ 

the hamstrings? 

Have you ever experienced injury to   Y N _____________________ 

the quadriceps? 

Have you ever experienced injury  Y N _____________________ 

while running? 

Have you ever experienced injury  Y N _____________________ 

while squatting? 

Are you currently fully fit?              Y N _____________________ 

Declaration (to be signed in the presence of the researcher) 
I acknowledge that the information provided on this form, is to the best of my knowledge, a true and 

accurate indication of my current state of health. 

Participant 
Name:________________________ Date (DD/MM/YYYY):_______________ 

Signature:____________________________ 

Researcher: 

Signature:_____________________________ 

Date (DD/MM/YYYY):_________________ 

 

_________________________________________ 

 

Parent/ Guardian (only if applicable) 

I, ______________________________________________, as parent / guardian of Mr/ Miss 

_____________________________________________, acknowledge that I have checked the 
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answers provided to all questions in the medical questionnaire and verify that they are correct to the 

best of my knowledge. 

Signature: ____________________________________ 

Date (DD/MM/YYYY): _________________________ 

Practitioner (only if applicable) 

I, Dr _______________________________________ have read the medical questionnaire 

and information/ consent form provided to my patient Mr/Miss/ 

Ms____________________________________, and clear him/ her medically for 

involvement in exercise testing. 

Signature:____________________________________ 

Date (DD/MM/YYYY):_________________________ 
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APPENDIX FIVE 

Information Letter 

Edith Cowan University  
School of Exercise and Health Sciences 
270 Joondalup Drive  
JOONDALUP WA 6027  
Phone: 6304 2170  
Fax: 6304 2661  
 

LOWER LIMB FATIGUE ASYMMETRY OF PREFERRED AND NON-PREFERRED LEGS AFTER A 

REPEATED-SPRINT TEST IN FOOTBALL PLAYERS WITH PREVIOUS HAMSTRING INJURY. 

The purpose of this research is to examine changes in muscle force production and fatigue 

between preferred and non-preferred kicking legs in Western Australian State League 

football players with and without a history of unilateral hamstring injury. In particular, force 

production and resulting fatigue will be measured during a single leg vertical jump and 

isokinetic endurance test before and after a repeated-sprint test on a non-motorised 

treadmill. Not only is this study the first to examine differences in fatigue between preferred 

and non-preferred kicking legs in footballers, but could also be the first protocol to allow 

footballers to have their hamstring functions tested during a competitive season, allowing 

them to train and play the same week of any testing. 

This study will involve volunteering State League footballers to first complete a short 

questionnaire to determine eligibility for this study. Eligible participants will be determined 

based on previous injury history; divided between a lack of injury history for a ‘non-injured 

group’ and a sufficient injury history of the hamstring within 2 years of the study for an 

‘injured group’. Rehabilitation of the injury will also come into consideration when selecting 

participants. It is a necessity that all participants are currently fully fit to complete the study. 

Eligible participants will conduct two familiarisation sessions to give them an understanding 

of testing protocols before testing commences; over three sessions separated by a week at 

the same time of day to allow for sufficient recovery. Days of testing sessions will be worked 

around the footballer’s schedule to ensure that they will be able to continue to train at least 

once a week and play on the Saturday. It is anticipated that this study will enable more in-

season testing which in turn could aid injury prevention. 
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Testing will vary between each session to meet the protocol for the study. The first session 

will involve participants completing an isokinetic endurance test on an isokinetic 

dynamometer. The second session will involve participants completing a repeated-sprints 

test on a non-motorised treadmill followed by the same isokinetic endurance test. The third 

and final session will involve participants completing single leg vertical jumps before and 

after the same repeated-sprint test as in session 2. Each session will take a maximum of 1 

hour. Participants are expected to experience some fatigue during testing, and it is possible 

delayed onset of muscle soreness could be experienced after. If by chance any pain or injury 

is experienced during testing emergency procedures are in place to stop testing immediately 

for all participants’ safety.  

This study is beneficial to provide a protocol to allow for hamstring functional testing during 

a competitive football season. It will also provide potential insight into the different 

mechanisms in preferred and non-preferred kicking legs in relation to hamstring injuries. 

Information gained from testing participants will provide insight to these benefits. All testing 

results will only be accessed by the principal investigator which will be password protected. 

Subjects will be coded to ensure confidentiality and that the use of any personal details or 

information will not be used due to legal limits. Data will be stored at Edith Cowan 

University and by the principal investigator; data will remain coded however to ensure 

confidentiality throughout the minimum 5 year storage period. 

Results of the study will be published for the thesis of this Masters study and also presented 

at conferences. All results will remain coded and all personal details and information will not 

be presented to ensure confidentiality. Participants will have their test results readily 

available. While all results will be coded, through this coding results can be re-identifiable to 

provide individual feedback for all involved in testing. 

This testing is voluntary and will remain voluntary throughout. Participants are free to 

withdraw their consent for further involvement in the study at any time. By withdrawing 

from the research any testing information already collected will be withdrawn also.  

If there are any more questions please e-mail the principal investigator Cameron Lord: 

clord0@our.ecu.edu.au for quickest response. 

mailto:clord0@our.ecu.edu.au
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If you have any concerns or complaints about the research project and wish to talk to an 
independent person, you may contact: 
  
Research Ethics Officer  
Edith Cowan University  
270 Joondalup Drive  
JOONDALUP WA 6027  
Phone: (08) 6304 2170  
Email: research.ethics@ecu.edu.au 
 
This study has been approved by the ECU Human Research Ethics Committee.  
 

Thank you for your time, 

Principal Investigator: Cameron Lord. 

0433499694 

clord0@our.ecu.edu.au 

Supervisor: Dr Fadi Ma’ayah 

6304 2596 

f.maayah@ecu.edu.au 

School of Exercise and Health Sciences 

Sports Science and Football (Soccer) 

 

 

 

 

 

 

 

 

 

mailto:research.ethics@ecu.edu.au
mailto:clord0@our.ecu.edu.au
mailto:f.maayah@ecu.edu.au
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APPENDIX SIX 

Final Checklist 

Final Checklist for Participant Sheet 

 Please circle one 

1. Are you aware that if you feel uncomfortable with any 
testing procedure you should tell the researcher 
immediately, and that YOU CAN STOP your 
participation at any time? 

 

YES NO 

1. Are you aware that, although very rare, maximal exercise 
can result in fainting, severe exhaustion or cardiac events 
leading to death? 

 

YES NO 

2. Are you aware that the fatigue caused by the exercise can 
impair your ability to perform tasks such as driving for a 
short while after the cessation of exercise? 

 

YES NO 

3. Have you been given the opportunity to view the photos 
outlining the maximal exercise testing techniques? 

 

YES NO 

4. Have you fasted for longer than 6 hours? 
 

YES NO 

  
 
 

 
 
 

  

  

  

  
Name of volunteer: __________________________ 

 

Signature of volunteer: _______________________ Date: ______________ 

 

 

Name of witness: __________________________ 

 

Signature of witness: _______________________ Date: ______________ 
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APPENDIX SEVEN 

Emergency Contact Form 

Participant’s Name: _________________________ 

In case of an emergency please contact: 

1) 

Emergency Contact Name: _________________________ 

Emergency Contact Number: _________________________ 

Relationship to Participant: _________________________ 

2) 

Emergency Contact Name: _________________________ 

Emergency Contact Number: _________________________ 

Relationship to Participant: _________________________ 
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