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Abstract

In this thesis the expression digital morphometry collectively describes all those procedures
used to obtain quantitative measurcments of objects within a two-dimensional digital image.
Quantitative measurement is a two-step process: the application of geometrical transformations to
extract the features of interest, and then the actual measurement of these features. With regard to the
first step the morphological filters of mathematical morphology provide a wealth of suitable geometric
transformations. Traditional radiometric and spatial enhancement techniques provide an additional
source of transformations. The second step is more classical (e.g. Underwood, 1970; Bookstein, 1978;
and Weibull, 1980); yet here again mathematical morphology is applicable — morphologically derived
feature parameters. This thesis focuses on mathematical morphology for digital morphometry. In
particular it proffers a taxonomy of morphological filters and investigates the morphologically derived
feature parameters (Minkowski functicnals) for digital images sampled or a square grid. "As originally
conceived by Georges Matheron, mathematical morphelogy concerns the analysis of binary images by
means of probing with structuring elements [typically convex geometric shapes]” (Dougherty, 1993,
preface). Since its inception the theory has been extended to grey-level images and most recently to
complete lattices. Il is within the very general framework of the complete lattice that the taxonomy of
morphological filters is presented. Examples are provided to help illustrate the behaviour of each type of

filter.

This thesis also introduces DIMPAL (Mchnert, 1994) — a PC-based image processing and
analysis language suitable for rescarching and developing algorithms for a wide range of image
processing applications. Though DIMPAL was used to produce the majority of the images in this thesis
it was principally written to provide an environment in which to investigate the application of
mathematical morphology to Alzhcimer's discase research. Alzheimer's disease is a form of progressive
dementia associated with the degeneration of the brain. It “is the commonest type of dementia and
probably accounts for half the dementia of old age" (Forsythe, 1990, p. 21). Post mortem examination of
the brain reveals the presence of characteristic neuropathologic lesions, namely neuritic plaques and
neurofibrillary tangles. They occur predominantly in the cerebral cortex and hippocampus.
Quantitative studies of the distribution of plaques and tangles in normally aged and Alzheimer brains
are hampered by the enormous amount of time and cffort required to count and measure these lesions.
Herein a morphological aigorithm is proposed for the automatic segmentation and measurement of

neuritic plaques from light micrographs of post mortem brain tissue.
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CHAPTER 1.

INTRODUCTION

1.1. Thesis Rationale

I first developed an interest in the mathematics of digital image processing early in 1983 after
reading an article in the now defunct computing journal, Creative Computing. The article (Cook, 1983),
entitled Pixel Averaging Smooths Graphics Effects, detailed an elementary technique used by NASA to
enhance satellite and probe imagery. As part of my undergraduate studies in applied mathematics I
completed a small rescarch project that dealt with radiometric (contrast) enhancement, spatial
enhanccment, and Fourier transformation of two-dimensional digital images. For a period of ten weeks,
beginning in December 1989, I worked at the National Measurement Laboratory in Lindfield, NSW, on
a CSIRO vacation scholarship. My work in the Division of Mathematics and Statistics entailed adding
software routines to the division's developmental image processing package called Z. Some of these
routines implemented elementary spatial domain filters (such as the moving average filter) with which I
was alrcady familiar. However I was also required to implement clementary binary morphology
operators. This necessitated some preliminary background reading in mathematical morphology and
sparked my interest in the subject. Subsequently, in 1990, 1 completed my honours dissertation entitled
Digital Image Processing Using Mathematical Morphology. My honours paper provides a good

introduction to the operations of digital binary and grey-scale morphology.

During the course of my honours rescarch I realised that with the practical and theoretical
advances in mathematical morphology since Jean Serra’s milestone treatise, Image Analysis and
Mathematical Morphology (1982), there was a need for a comprehensive summary of the morphological
filters propounded in the literature. To this end this thesis proffers a taxonomy of morphological filters
for digital image processing; the development of this taxonomy is presented in the general setting of the
complete lattice (digital binary and grey-tone images are particular cases of this more general object
space). This then provides the practitioner of morphology with a veritable plethora of filters for solving
image analysis problems. This is much needed because although mathematical morphology provides an
algebraic framework for describing morphological filters and algorithms, the practitioner still needs 1o
rely heavily on experience and heuristic methods. With the provision of a taxonomy of filter types and
examples of their behaviour the practitivner's job is made that little bit easier. In addition the
Alzheimer's discase case study presented at the end of the thesis provides a practical example of the
development of a morphological algorithm (and in particular the choice of appropriate morphological

filters) to solve a real world image analysis problem.




Introductione 2

The mathematical representation of a two-dimensional grey-tone or binary digital image
{manifested on a square grid) by a bound matrix (see Appendix A) was introduced by Giardina and
Dougherty (1988). Image operations and transformations can be readily expressed in terms of thesc
matrices. This thesis introduces DIMPAL! (Mehnert, 1994); an acronym for digital image processing
and analysis language. It is an equation-like language in which variables are collections of one or more
bound matrices (images). and functions represent image operations. For example the morphological

dilation of ar image by a spherical structuring element of radius three 1s expressed as

result=dilate{image.sphere(3})).

DIMPAL is written in C for IBM's 08722 operating system. It is, 1 believe, :he only package ol its kind

available ror this platform. Most of the images hercin were produced using DIMPAL..

From my consultations with Dr Inta Adams (a neuroanatomist in the Department of Science,
Edith Cowan University) during my honours rescarch, | realised the possibility of applying
mathcmatical morphology to the field of Alzheimer’s discase research. Current research is hampered by
the enormous amount of human effort and time required to perform counts and measure the area and
other morphomerric quantities of various characteristic brain lesions.  This thesis presents an
investigation (using DIMPAL) oi the application of mathematical morphology to digitised light

micrographs of neuritic plagues in post mortem brain tissue from Alzheimer’s patients.

1.2. What is Digital Morphomeiry?

The word morphometry derives from the Greek words morphe . meaning structure or form, and
metrikés, meaning measure.  In this paper digita! morphometry describes all those procedures used to
obtain quantitative structural measuremenis of ohjects within a «wo-dimensional digital image.
Typically such measurements include arca, perimeter, and quantitztive shape measurements of image
features. Formally such measures arc termed feature parameters. This use of the word morphometry
contrasts sharply with its meaning n the biological context (Aherne & Dunhill, 982, preface).
Generally biologists use the word morphometry 1o describe thosc direct measurements, such as counts,
made using procedures such as serial sectioning. The word siereclogy is then used to describe those

geometrico-statistical procedures used to obtain quantitative measures.

! © Copyright 1991-1994 by Andrew Mehnert. All rights reserved.
2 ® IBM, Operating System/2 and OS/2 are registered trademarks of Internationat Business Machines

Corporation.
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In the context of digital imagery, morphomeltry necessarily encompasses the traditional
radiometric and spatial enhancement techniques as well as those techniques offered by mathematical

morphology. The application of these techniques is precursory to any mensuration of image features.

For thc uninitiated, mathematical morphology is a mathematical formalism pioneered by
Georges Matheron at the Paris School of Mines, Fontainebleau. France. in the laic i¥60s. In contrast to
conventional linear tilters, the sensible application of morphological filters preserves geometric structure
within an image. The mormhological approach involves the application of one or more geometric shapes
(structuring elemenis) o an image in what amounts 10 a fining operation. The internal geometry of the
image under investigation is in essence probed oy the chosen structuring elements. Hence mathematical
morphology is particularly suited 10 object recognition, the generation of size distributions, and the

generation of feature parameters (morphometrics) such as area and perimeter.

1.3. The Significance of This Research

This research is significant in the following respects:

o It provides a taxonomy of morphological filters.

s It provides a general-purpose digital image processing and aralysis language (DIMPAL) for IBM's
0S/2 operating system. Al the ime of writing no cquivalent software package is available for this
platform.

e [t details the investigation, implementation. and evaluation of morphological techniques apphied 1o
the computer recognition and measurement of brain lesions (neantic plagues) from digitised
photographs of conventional light microscope images of post mortem brain tissuc from Alzheimer's

patients.

1.4. Research Objectives

This rescarch addresses the following major questions:

e  What arc the fundamental classes of morphological filters. {e.g. opcning. closing. open-closing.
:lose-opening, alternating  scquential. multiple  structuring  clement) and  what  are  their
characteristics?

e  What are the elementary 2-D featurc parameters (morphometrics) that can be generated using
morphological operators for digital images manifested on the square grid?

o Can mathematical morphology be used as a tool for the morphometric investigation of neuritic

plaques, which arc onc of the microscopic hallmarks of Alzheimer's discase?
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1.6 Structure of This Thesis

This thesis comprises four parts:

PART 1
MORPHOLOGICAL FILTERS
Chapter 2. Theoretical Framework

Chapter 3. A Taxonomy of Morphological Filters

PART I
PLANAR DIGITAL MEASUREMENT
Chapter 4. Digital Morphometry

PART Il
A DIGITAL IMAGE PROCESSING AND ANALYSIS LANGUAGE
Chapter . DIMPAL.

PART 1V
ALZHEIMER'S DISEASE CASE STUDY

Chapter 6. Mathematical Morphology as a Tool for the Morphometnic Invesugaton of Neunitic

Plagues Associated with Alzheimer's Disease




PART .

MORPHOLOGICAL FILTERS




CHAPTER 2.

THEORETICAL FRAMEWORK

2.1. About This Chapter

This chapter begins with a brief account of the history of digital image processing and in
particular that of mathematical morphology. A formal definition of a signal (image) filter follows. The
definition is sufficiently general so that it includes linear, order statistic (also called rank order), and
morphological filters. Euclidean space and its digital derivatives are instances of a more general object
space known as the complete lattice. This structure gives rise to a single theory that unifies classical
Euclidean and digital morphology (for binary and grey-scale images). A review of mathematical
morphology for complete lattices appears in section 2.4. The review concludes with the definition of a
morphological filter. A treatment of Euclidean morpholtogy (both binary and grey-scale), including its
digital aralogues, follows. This then establishes the necessary theoretical framework for Chapter 3 - the
taxonomy of morphological filters; Chapter 4 — digital image measurement; and Chapter 6 - the
Alzheimer's discase case study. The chapter closes with a short discussion of the rationale behind
morphological filtering, and a classification of image filters based upon linearity and idempotence

properties.

2.2. The Morphological Paradigm

Digital image processing and analysis cvolved out of the space race begun in October 1957 with
the (former) Soviet Union's successful taunch of Sputnik 1 into orbit around the earth. The USA's
Explorer | matched this feat some threc months later. In October 1959, the Soviel probe Lunik 3
transmitted pictures of the dark side of the moon back to earth. The Soviets employed analogue methods
to enhance these images. However, even after enhancement, the images were noisy, distorted, and out of
focus. In comparison, when in July 1964 the American probe Ranger 7 began transmitting images of
the lunar surface, NASA employed computers and digital techniques to enhance them. These

techniques proved to be far more flexible and effective than the analogue methods used by the Soviets.

Linear filters, such as the mean (moving average) filter, are particularly good at removing noise
from an image. However they also have a tendency to degrade the spatial characteristics of the image by
blurring contours and edges. Whilst order statistic (also called ranked order) filters, such as the median

filter, redress this problem (see Figure 1) they have other drawbacks; e.g. in contrast to the mean filter,
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image to image transformation, the nature of the transformation being predetermined by the nature of
the image analysis problem; e.g. removal of additive noise — mean filter, correction of motion blur ~
deconvolution. Serra (1988) states that "when dealing with a signal in one- or multidimensional space,
the filter is commonly defined as any operator that is linear, continuous and invariant under translation”
(p. 102). A transformation V is said to be linear if y(f +g)=y(f)+y(g) where f and g are signals.
These transformations "preserve addition, and, beyond addition, the notion of group structure, thereby
making reversibility an important feature” (Serra, 1988, p. 10). For example, lincar methods are
required to restore blurred images (a blurred image is the sum of several non-blurred images; a linear
distortion). Morphological filters adopt the opposite tack. They preserve inclusion relationships
existing between pairs of abjects; i.e. they are increasing rather than linear transformations — in fact
these two notions are incompatible (Serra, 1986, p. 288). Serra's definition of a filter is a little too
restrictive.  To accommodate morphological and order statistic filters (i.c. non-linear filters), the

linearity requirement must be omilted; this leads to the following definition.

Definition 1.
With regard to one- or multidimensional signals (images), a filter is any continuous

and translation-invariant operator.

2.4. Mathematical Morphology for Complete Lattices
The most recent theoretical advance in mathematical morphology has been its reformulation
within the very general framework of the complete lattice. Classical Euclidean morphology is just a
particular case of the more general theory. "This new framework allows [us} to introduce Mathematical
Morphology in algebraic terms” (Vincent, 1989, p. 366). Through generalisation new insight is
attained. This scction begins with a review of some essential lattice theory. A review of mathematical
morphology for complete lattices follows. The section concludes with a formal definition of a

morphological filter. For a more complete exposé sce Serra (1988), and Heijmans and Ronsc (1990).

2.4.1. Complete lattices
The following definitions arc generalisations of those found in Hungerford (1974), and

Heijmans and Ronse (1990).

Definition 2: The partial order relation.
A binary relation R defined on a set £ is called a partial order relation if it is

(i) reflexive: for all Xe £, XRX (X is related to X);
(ii) antisymmetric: for all X,Ye £, XRY and YRX = X=Y;
(iii) transitive: for all X,Y,Zel, XRY and YRZ = XRZ.
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Example
Consider the partial order relation less than or equal to (<) defined on the set

A ={1,2,3}. The relation can be explicitly defined by the following set S of ordered pairs:

S= {(x.y)l xSyandx,ye A} ={(1,1),(1,2),(1,3),(2,2),(2.3).(3,3)}.

Definition 3: The poset.
A non-empty set £ together with a partial order relation R is called a partially ordered

sct, abbreviated to poset, and denoted (£,R).

Definition 4: The infimum.
Given the poset (£,R), and X c £, X # @, then a lower bound of X is an Le £ such that

LRX for every XeX. A greatest lower bound (infimum, inf, or A) of X is a lower bound L,

such that LRL,, for every other lower bound L of X.

Definition 5: The supremum.
Given the poset (£.R), and X c £, X =, then an upper bound of ¥ is a Ue £ such that

XRU for every XeX. A least upper bound (supremum, sup, or V) of X is an upper bound U,
such that UyRU for every other upper bound U of X.

Example

For the previous example, inf A=1. and sup A=3.

Definition 6: The lattice.

A poset (£,R) is a latrice if the set {X,Y} has both a supremum and an infimum for all

X, Yel

Definition 7: The complete lattice.
A lattice (£,R) is said to be complete if every X ¢ £, X # D, has both a supremum and

an infimum.

Remarks

(i) Implicit in this definition is the existence of the universal element and the null element,
respectively U=sup £ and O=inf £. It follows that VXe £, ORX and XRU.

(ii) "Any element of £ is both an upper and a lower bound of the empty subset & of £" and

consequently sup @=0 and inf D=U (Heijmans & Ronse, {990, p. 254). Thus all subsets

of £, including the empty set &, have a supremum and infimum.

T
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Examples
(i) The closed set of real numbers B =R {—co,+00} equipped with the usual ordering <, the

usual supremum and infimum operators, universal element +eo, and null element -eo, is a
complete iattice.

(ii) The set of subsets of any set S along with set inclusion ¢, set union U, set intersection N,
universal element S, and null element &, is a complete lattice.

(iii) The set of all upper semi-continuous? (u.s.c.) functions R" — R cquipped with the partial
order relation « defined | f«g & Vxe R", f(x) < g(x)) , is a complete lattice.

Proposition 1: The principle of duality.
Let < be the generic symbol for the partial order relation meaning is contained in or is
less than or equal to. Let > be the generic symbol for the partial order relation meaning

contains or is greater than or equal to. The inversc of the partial order relation < is the partial

order relation > and vice versa. It follows therefore that for the complete lattices (£,<) and

(2>). forany ¥ < £,

supX¥=inf ¥ and inf ¥X=sup¥X.
€< & CANIN A

The lattice (£,<) is said to be the dual of the lattice (£,>) and vice versa. Furthermore, any
statement of properties for (£,<) can be restated in terms of (£,>) by interchanging sup and inf,

the universal element and the null element, and < and »~.

Definitions 2 through 7 provide the most gencral framework in which the two rudimentary
mcrphological operators, the dilation and erosion, can be defined. Within this framework and using

thesc operators, the bascr operations and concepts of mathematical morphology can be defined.

2.4.2. Dilations and erosions for complete lattices
Dilations and crosions are increasing mappings of a complete lattice into itself that commute

with the supremum and the infimum rcspectively.

3 Let £ be a real function on a topological space. If {x[f(.r)Zu} is closed (i.c. the set contains its
boundary) for every real o, then fis said to be upper semi-continuous. The scts {x] Sz u}, for all real

a, are collectively called the threshold sets of f.
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Definition 8: Increasing mappings.
Let (£,R) be a complete lattice. A mapping [":£->4 is increasing or monotone if for all
X.Yel, XRY = I'(X)ORI(Y).

Definition 9: The dilation and the erosion.
Let (£,R) be a complete lattice, and I be a mapping from £ into £. For each subset of £

with clements X, i 1,

(i) Tis called a dilarion if it commutes with the supremum, that is

r( v x,.)= v T(X,), (h
iel iel

(ii) T is called an erosion if it commultes with the infimum, that is

r( N x,.]= A T(X;). (2)

iel iel

Remarks

(i) From the remarks accompanying Definition 7, it follows that I'(O)=0 for dilation, and
F(U)=U for erosion .

(ii) The dilation and the crosion are obviously increasing mappings.

(iii) The dilation and the crosion are duals of each other in the sense that if the partial order

relation of the lattice is reversed, a dilation becomes an erosion, and vice versa.

Example
Consider the mapping d:R — R defined

dix)=3x+].

For the complete lattice (ﬁ's), d defines a dilation (satisfying relation (1)), whilst for the dual

lattice (ﬁ,z). d defines an erosion (satisfying relation (2)). For example, consider the subset

{2,3} of R for which

B

sup {23} {= sup (d(2).d(3)}=10. and
(R,g) (R,<)

\
d inf {23} (= inf {d(2)d(3)=10.
(R ) ®R2)
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Theorem 1: (Serra, 1988, p. 17).
Let (£,R) be a complete lattice. Then to each dilation 8:£—£ there corresponds a

unique erosion £:£—Z£ and vice versa, such that
S(X)RY & XRe(Y), X,Yel 3

Furthermore, £ has the representation

e(X)=sup{B e | 5(B)RX}.

The pair (£,9) is called an adjunction for which € is called the upper adjoint and 8 is called the

lower adjoint (Heijmans & Ronse, 1990, p. 264).

Remarks
(i) If (€.8) is an adjunction in the lattice (£,<) then 3(X)<Y < X <&(Y), X.Y € £, where &

and € arc dilation and erosion respectively on the latlice, By duality
e(X)>Y & X>8(Y), X,Y e and hence (8,€) is an adjunction in the lattice (£,=). This

is still in agreement with relation (3) because frem the point of view of the lattice (£.>-), € is
a dilation and & is an crosion.

(ii) Setting X =¢8(Z) in relation (3) gives 8eS8(Z)RY < e8(Z)Re(Y). where Zel. For
Y = 8(Z), the right-hand side of the double implication becomes an equality. Consequently
the left-hand side must also be an equality, namely that 8e8(Z) = 8(Z). Similarly it can be
shown that £8¢(Z) = £(Z).

(iit) The duality implicit in the adjunction (€.8) is quite different from the duality w.r.t. order

viz.

8(X) & e(X) and &(X) & 8(X).
=<y (&> L=< (L)

Example
To the dilation on the complete lattice (ﬁ,s) defined in the previous example, therc

corresponds an erosion
e(x)=(x-1)/3
which clearly satisfies relation (3). For example,

d(x)S13 e xse(13).
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2.4.3. A representation theorem for increasing mappings

The following theorem states that increasing mappings from a complete lattice into itself can be
written as the supremum of erosions or by duality, the infimum of dilations. The theorem is a
generalisation of a more specific result for Euclidean morphology known as the Matheron
representation theorem for translation-invariant and increasing mappings — the theorem is discussed in

the following chapter where it is used to express a median filter as the union of a finite set of erosions.

Theorem 2. Representation theorem (Heijmans & Ronse, 1990, p. 262).
The mapping y:{—£ defined on the complete lattice (£,R) such that y(U)=U is

increasing iff it can be expressed as the supremum ot a non-cmpty set of crosions,

2.4.4. Morphological openings and closings for complete lattices

Under self composition a dilation 8 yiclds another dilation and an crosion € yields another
crosion. But what can be said of the products 3¢ and €6? Well, if (€.8) is an adjunction then the
products 8¢ and €8 define two very special operations — the morphological opening and the
morphological closing respectively. Like the dilation and the crosion, the opening and closing are both
increasing mappings. What makes them special, however, is their extensivity and idemportence

properties.

Definition 10. Exiensivity of mappings.

Let (£,R) be a complete lattice. A mapping y:£—4 is
(i) extensive if XRy(X) VX el or
(ii) anti-extensive if Y(X)RX VX el

Definition 11: Idempotent mappings.
Given a complete lattice (£,R), any mapping y:£—£ for which w(y(X)) = w(X) VXel

is said to be idempotent.

In general the dilation and the crosion are non-invertible operators (in contrast to the previous examole).
That is to say, if (£,R) is a complete lattice and XeZ, then in general one cannot reconstruct X from 8(X)
or &(X). By sctting Y =8(X) in relation (3) it follows that XRed(X) VX e £ (extensivity). Similarly it
follows that 8e(X)RX VX e £ (anti-extensivity).
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Definition 12: Morphological openings and closings.

Let (€,8) be an adjunction in the complete lattice (£,R). The products 8¢ and €8 are
idempotent operations called the morphological opening and the morphological closing
respectively. Moreover (see Definition 10) the opening is anti-cxtensive, whilst the closiny, is

extensive.

Proof of idempotence

Now XRed(X) because the closing is extensive. This implies that g(X)Rede(X). It
follows that (i) 8e(X)R8ede(X) (because 8 is increasing). However Se(X)RX, becausc the
opening is anti-extensive, which implies that (ii) 6ede(X)R6e(X). Comparing (i) and (ii) it
follows that 8e8e(X)=8g(X) and so the opening 8¢ (and by duality, the closing €8) is

idempotent.

Remarks

(i) The dilation & and the erosion £ are, in general, neither extensive nor anti-extensive.

(ii) Clearly because of the duality between dilation and erosion, cach opening (resp. closing)

w.r.1. the complete lattice (£,<) is a closing (resp. opening) w.r.L. the complete lattice (£,>).

2.4.5. Size distributions

Size distributions (resp. anti-size distributions) are families of openings (resp. closings) "that
are parameterized [sic] by a positive number (the size)" (Serra, 1988, p. 108). In the Euclidean context
the resulting measures (e.g. arca) from a series of such openings (or closings) provides "information on

the relative representation of particles at different size scales” (Grivas & Skolnick, 1989, p. 2i4).

Definition 13. Matheron's axioms for size distributions (Serra, 1988, p. 108).
A family of mappings {y;_} in the lattice (£.R) that depend upon a parameter A e R® is

a size distribution if the following pair of axioms are satisfied:

(i) v, is an opening VA >0

Remarks
(i) Axiom (ii) is equivalent to cither AZp>0=7,(X)Ry, (X)VXel or

Azp>0=8, < [B’m where B denotes domain of invai ‘ance (sce Proposition 6).

(ii) By duality a family of closings {‘Px} that depend upon a paramecter A € R* is an anri-size
distribution if the following property is satisfied: A0 >0= 0,9, =9,0; =@, This
property is  cquivalent 1o either A2u>0=¢, (X)Re,(X)VXed  or
Azp>0=>8, g,(BOH.
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2.4.6. Monotone continuity
Before formally introducing the complete boolean lattice, and in preparation for the discussion

on alternating sequential filters in Chapter 3, it is nccessary to define monotone continuity. Let (IR) be
a poset. Consider the family {X,»}. iel, of elements of the lattice (£,R). Note that for simplicity, R is

used to denote the partial order relation of the lattice as well as that of the index set I. The family {X,.}
is said to converge monotonically to X from beiow, written X, TX, if iRj= X,RX ; and X=VX,.
Similarly, one can define monotonic convergence from above, written X; 4 X. An increasing mapping
y:d—¢ is called T-continuous if X, TX=>w(X,)Tw(X) and is called l-continuous if
X; 4 X = w(X;)Lw(X). A mapping that is both T- and {-continuous is called continuous. From
Definition 9 it follows that dilations are T-continuous and erosions are {-continuous. The following
theorem (Serra, 1988, p. 25) characterises monotone continuity for morphological openings and

closings.

Theorem 3.
Let (£,8) be an adjunction in the lattice (£,R). The dilation § is a T-continuous

mapping of £ into itsclf and the crosion is a l-continuous mapping. Furthermore, if 8 is
L-continuous (and therefore continuous) then the opening O¢ and the closing €3 are also

d-continuous. Similarly, if £ is T-continuous then 8¢ and €5 are both T-continuous.

Remarks
(i) d-continuity for 8 docs not iv-cply T-continuity for ¢ (Serra, 1988, p. 25),
(ii) "In general, neither openings nor closings are continuous” (Serra, 1988, p. 25) in the sense

of monotone continuity.

2.4.7. Complete boolean lattices
Endowing a complete lattice with distributivity and complementation properties leads 10 a

complete boolean lattice, or complete boolean algebra.
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Definition 14: The complete boolean lattice.
If (£,R) is a complete lattice and also satisfies the following properties, it is said to be a

complete boolean lattice.

(i) distributivity:
VXY, Zel
XV(YAZ) = (XVY)A(XVZ), and by duality,
XA(YVZ) = (XAYYWV(XAZ),

(ii) complementation:
vXed, 3Xe L (called the complement of X) such that XV X®=U, and by duality, XAX®=0.

Remark
Any lattice (£,R) is said to be modularif v X, Y, Z e £,

YRX = XA(YVZ) = YV(XAZ).

Consequently "any distributive lattice is modular, but the converse is not true in general”
(Serra, 1988, p. 124).

The algebra of sets is a complele boolean algebra. Hence given a set S. the set of subsets (parts)

of S, denoted P(S). is a complete boolean lattice, having the inclusion (g) partial order relation,
operators union U (supremum), intersection N (infimum), null element &, and universal element S.

Binary (also called boolean) Euclidean morphology for two-dimensional digital images is founded on
0’(22); i.e. sets of points in discrete space. As Serra (1988) points out, "eew notions, such as

connectivity and the skeleton, . . . now come to light” (p. 40). Vincent (1989) states that "one can show
that the study of complete boolean lattices can be reduced by isomorphism* to the case of #(S)" (p. 369).

The dilation 8:P(S)—P(S) is a mapping from the complete boolean lattice #(S) into itself.

However it can also be conceived as being generated from a mapping (called a structuring function) of
the set S into £(S).

Definition 15: The structuring function.

Given an arbitrary set S, a structuring function is any mapping [:S—#(S).

4 Given two complete lattices (£,R) and (£',R) the mapping (bijection) y:£—2£' is an isomorphism if for
any X,Yel s.l. XRY = y(X)Ry(Y).
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Proposition 2: Equivalence between dilations and structuring functions.
Let S be an arbitrary set. The structuring function T:8—(S) uniquely determines a

dilation 8:P(8)—P(S) as follows:

8(x)= | r(x), vXef(s)
xeX

Conversely, to every dilation 8:(°(S)—P(S) there comresponds a unique structuring function

I:S—F(S).

Proof
Now §(X) = U I(x) is the set of points that descend from at least one point of the
xeX

set X and is thus unique. It is a dilation because

6(L‘Jx,,}=u{r(x)] xeX,}
=L'j5(x,).

Conversely, any dilation 3:P(S)—(S) induces a structuring function determined by all the

correspondences {x} — 8({x}) (Serra, 1988, p. 41).

Example
Consider the Euclidean planec R?. Let D(x.p) denote the closed disk of radius p and

centre x € R*. Now definc the structuring function I':x — D(x.p). From the above proposition

it follows that

(X)= I'(x)
.rLeJX

is a diiation. The reader already familiar with binary morphology will recognise this swelling
operation as nothing more than the binary dilation of X by a closed disk structuring clement,

centred at the origin, and of radius p.

Remark
The converse part of proposition 2 is very important because it establishes the ubiquity

of structuring functions.
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Proposition 3; Induced metrics.
(Vincent, 1989, p. 369), (Serra, 1988, p. 47).

One can induce a metric on the space S by considering families of structuring
functions {I",‘}, dependent on the parameter A e R*, that satisty the following axioms:

(i) A>0"=T1 L Ty; where T, is the identity mapping such that Ty(x)={x} VxeS§;
(i) 0spsA=T, gl

(i) LT, <Ny,

(iv) Vxe§, 3A, >0 such that I}_o(x) =8S.

S is then a metric space with distance relation

dix,y)=inf{M xe, () ye I‘l(x)}. x,y€S.

Example
Consider the Euclidean distance between two points in R?. This meltric can be
induced on the space R? by considering familics of closed disks. Let I';(x) denote the closed

disk of radius A eR, A>0, centred at x€R?. (In Euclidean morphology, I (x) is the binary

dilation of x by a closed disk structuring element, centred at the origin, and of radius A). The

distance relation of Proposition 3 is then clearly the Euclidean distance.

Endowing S with a metric makes it very easy to define granulometries (size distributions) and
makes possible the formulation of morphometric quantities (featurc parameters). Note "that size
distributions do not depend directly on metric analyses, although it is sometimes wrongly stated in the
literature that they do” (Serra, 1982, p. 165). The complete lattice structure is sufficient to define
granulometrics; however, with the investiture of a metric one can readily speak of measures such as arca
in relation to the granulometry. For instance, for the reader familiar with binary mathematical
morphology in the Euclidean plane. one can conceive of generating a distribution of image arca

remaining after successive openings by disks of increasing radii.

2.4.8. Morphological filters

Two different definitions for the morphological filter can be found in the general literature on
Euclidean morphology. These are considered in section 2.6. In the context of a complete lattice,
however, a morphological filter is an increasing and idempotent (see Definition 16) mapping of the
lattice into itself (Serra, 1988, p. 104). The reasons for considering this class of mappings are outlined

at the end of the chapter.
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Definition 16: The morphological filter.
Given a complete lattice (£,R), every mapping y:£~>Z that is bott increasing and

idempotent is called a morphological filter.

Remarks
(i) Openings and closings are the most elementary morphological filters.
(ii) Dilations and erosions do not constitute morphological filters because, although they are

increasing mappings, they are not in gencral, idempotent.

2.5. Euclidean Morphology
Mathematical morphology was initially formulated for binary signais (images), viewed as sets
of points in R", by Matheron and Serra (sce Serra, 1982). The extension of the theory to multilevel
{grey-scale) signals is duc mainly to Serra, who used cross-sections to generalise, and Sternberg, who
uscd umbrae to generalisc (see Serra, 1982; and Sternberg, 1986). A review of Euclidean morphology

follows.

2.5.1. Image representation theory

Consider an ink pen drawing on a picce of white paper. The image can be modelled by a set of
points in R? that locate the image foreground. "The concept of a sct, however, is more general than
needed to represent signals [binary images]” (Maragos & Schafer, 1987a, p. 1154). The topologically
closed sct. i.e. a set that contains its boundary, is sufficiently general to represent a binary image.
Furthermore, when dealing with granulometries and image-functionals {morphometrics), it is the class
of compact (i.c. closed and bounded) convex sets that are important (sec Chapter 4). Now consider a
black-and-white photograph. Black-and-white is a misnomer because the photograph actually consists
of grey tones. This image can be modelled by a real valued function of two variables with domain in
R?. The function describes the grey-level (brightness) surface of the image; i.c. the value of the function
at any point (x,y) in its domain is a measure of intensity. Once again, the model is more general than is
needed. Serra (1982), and Maragos and Schafer (1987a) deal with u.s.c. functions {sce Footnote 3).
“The notion of an upper semi-continuous function . . . defined on the planc corresponds to that of a
closed set” ‘Serra, 1982, p. 425); more on this later. As far as the definition of morphological operators
for binary and grey-scale images is concerned, one need not worry about closed sets and v.s.c. functions
respectively. It is only when “one wishes to deal with topological or probabilistic aspects . . . {that) such
functions [resp. sets] become very important” (Heijmans, 1991, p. 577). Moreover, when dealing with
discrete (sampled) images, upper semi-continuity and closed sets are no longer an issue. "Discrete-
domain signals are trivially upper semicontinuous because all their threshold sets [see Footnote 3] arc

subsets of Z" and hence closed” (Maragos, 1989, p. 591).
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Mathematical morphology for n-dimensional (n-D) binary images is founded on the complete
boolean lattice tP(E"), where E = R for continuous images and E = Z for discrete (sampled) images.
The lattice has the null element, &, universal element, E", the inclusion ¢ partial order relation, set
union v for supremum, and set intersection M for infimum. Mathematical morphology for n-D grey-
scale images is founded on the complete (but not boolean) lattice of all functions J:E" —E. The lattice
has the null clement, O s.t. O{x)=—oo, universal element, U s.t. U{x)=+oo, the usual supremum and
infimum (which reduce 1o maximum and minimum respectively when E = &), and the partial order

relation « defined (f«gaD,gD, and f(x)< g(x) VxeD,), where DycE" is the domain of f

Consider the following definitions of translation-invariant operators for binary and grey-scale images.

Definition 17. Translation-invariance for n-D binary images.
A mapping \p:@(E")—)lP(E") is said to be translation-invariang if \;!(A,,):[\;J(A)]h

for all AGIP(E"), heE", where A, denotes the translate of A along the vector h; i.c.

Ah={a+h|aeA}.

Definition 18. Translation-invariance for n-D grey-level images.

A mapping y.J —J is said to be spatially or horizontally translation-invariant if
w(f,,(x)):[q;(f(x))]h for all fed, heE", where f, denotes the translate of f(x) along the
vector k; ie. f,(x)= f(x—h). The mapping is said to be grey-level or vertically translation-
invariant if w(f(x)+i)=w(f(x))+i forall feJ, andicE.

Remarks

(i) In the general image processing literature the term translation-invariance usually refers to
spatia! translation-invariance only. This is precisely its meaning in Definition 1.

(ii) Grey-scalc dilation, crosion, opening, and closing arc horizontally and vertically
translation-invariant provided that the grey-level set (codomain) is closed under addition.

(iii) Heijmans and Ronsc (1990, p. 272) generalise the notion of translation-invariance by

considering certain automorphisms? on arbitrary complete lattices.

2.5.1.1. A general representation theory

A Tunifying theory for many concepts and operations encountered in or related o
morphological image and signal analysis" was developed by Maragos (1989, p. 586). His general theory
describes any system of signal-to-signal transformations that are “transiation-invariant, increasing
(preservs a signal ordering), and semicontinuous (insensitive to very fine signal details)” (p. 586). In

particulaf, the theory establishes a classification of filters according to the type of input required and the

3 An automorphism on the lattice (£,R) is an isomorphism £—Z.
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type of output produced. In the theory, binary images are exclusively represented by sets, and grey-scale
images by functions. Filters can then be placed into one of three categories: SP (set processing), FP
(function processing), and FSP (function and set processing). An SP filter is one whose input and output
are both binary images (sets); e.g. the set complement operation. An FP filter is one whose input and
output are both grey-scale images (functions); e.g. scalar multiplication of a function by negative one.
FSP filters are a hybrid of FP and SP filters as they produce binary output given a binary input, and
grey-scale output given a grey-scale input; e.g. 2 3x3 median filter for 2-D images. Now a binary image
can be equally represented as a flat grey-scale image (see Figure 2). Hence Maragos and Schafer
(1987a) refer to FSP filters as a subclass of FP filters. This is true in the sense that binary inputs and

outputs are subsumed by grey-tone inputs and outputs respectively.

Example
A 3x3 median filter is a FSP filter because its application to a binary image yiclds a
binary image, whilst its application to a grey-tone image yiclds a grey-tone image. In contrast a

3x3 moving average filter is not a FSP filter but rather a FP filter.

x 0 * x | *
f={0 0 0 A=|1 1 1
x g * ¥ ] x

Figure 2. A flat grey-tone image f can be equally represented as a binary image A (see Appendix A).

2.5.2. Dilation, erosion, opening, and closing

Recall that a morphological filter is defined to be both increasing and idempotent (Definition
16). Furthermore, in accordance with Definition 1, in the Euclidean sctting a morphological filter has to
be translation-invariant. These requirements naturally lead to the following definitions for dilation and
crosion, and by composition to opening and closing (see the remarks following Definition 19).

Appendix B lists some of the properties of thesec morphological operations.
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Definition 19. Dilation,
Given two binary images A,B e(P(E" ) the dilation of the image A by the structuring

element B is defined
5AB)=A®B=_] A, )
beB

Given two grey-level images f,g € with domains D,E c E" respectively, the dilation

of the image f by the structuring element g has domain S(D,E) and is defined point-wise as

follows

Hf.g)x)=(f®g)x)

= v {f.0+g)} (5)
(J-Z-z)ED

= ‘;/E {f(x-2)+g(2)}.
(I:Z)GD

Remarks

(i) The symbol @ denotes Minkowski addition which is defined to be the set of points formed
by the vector addition of all possible pairs of points ae A, and be B, where A,Be P(E"); ie.

A®B={at+blaecA, beB}=|]JA,=]B,.
heB

aeA

The symbol still remains valid for grey-level dilation because a grey-level dilation can be
resolved into a set of binary dilations (sce section 2.5.5.).

(ii) With respect to relation (4), Serra (1988) states that "the class of dilations . . . that are
invariant under translation coincides with the Minkowski additions . . . X ® B" (p. 73).
Moreover, "Minkowski addition and subtraction {sec the following definition] arc the only
transiation-invariant dilations and crosions of a Euclidean or digital space” (Heijmans &
Ronse, 1990, p. 252).

(iii) In relation {4) "the structuring function {see Proposition 2] at point & is deduced from that
of the origin by translation A. The function is thus reduced to only onc set, up to a

translation, which we call a structuring element” (Serra, 1988, p. 73).

(iv) Though both binary and grey-leve! dilation are commutative, i.c. J(A,B)=.58(B,A} and
.B( f,g) = ﬂ(g, f ), the first argument is generally referred to as the image, and the second as
the structuring element.

(v) Maragos (1989, p. 589) defines grey-scale dilation (restricted to u.s.c. functions) as follows:

Iy () = v ) C y n-
Hf.g)x) ) E(Sm(msmM)(f())+g(r v} xeE

where g(x)=g(—x), and Spt(f) is the support of f; i.c. Spt(f)={er]f(x):-—oo}.
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This is essentially equivalent to relation (5), keeping in mind that in practice, "by
convention, [we let] f(x)= g(x)=— for x ¢ support of f {(resp. g)" (Serra, 1982, p. 443).

The partial order relation « inherent in (5) reduces to < if this convention is adopted

(Dougherty, 1989, p. 174).

Definition 20. Erosion.
Given two binary images A.BeO’(E"), the erosion of the image A by the structuring

element B is defined

£(AB)=AGB=[]®&), . (6)

beB

where B = {—b |be B} is called the transposed or symmetric set of B w.r.i. the origin.

Given two grey-level images f,g €J with domains D,E cE” respectively, the erosion

of the image f by the structuring element g has domain £(D.E) and is defined point-wise as

follows

Efg)x)=(f8g )x)
/e\E {f.z(-r)—g(z)} N

Af(x+2)-g(D)}
€k

where g(x)=g(-x).

Remarks
(i) The symbol © denotes Minkowski subtraction which is defined A©@B= n A,. where
beB
ABePE").

(ii) The binary erosion defined in relation (6) is equivalent to 8(A.B)={.t| B, ;A} (Serra,
1982, p.43; Giardina & Dougherty, 1988, p. 6)

(iii) One needs to exercise discretion when consulting the literature as the symbol © is often
used to mean crosion rather than Minkowski subtraction (c.g. Sternberg, 1986; Haralick,

Sternberg, & Zhuang, 1987; Heijmans, 1991).

Openings and closings follow from Definition 12 viz.
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Morphological openings and closings.
Given two binary images A,Be @(E"),

(i) 6(A,B)=5(6(A,B),B) is the opening, and
(ii) C(A,B)=E&(5(A,B).B) is the closing

of the image A by the structuring element B.

Given two grey-level images f,g €J with domains D,E c E" respectively,

(i) 6(f.g)=SB(E(f.8).g) is the opening, and
(i) C(f.g)=E(B(f.g).g) is the closing

of the image f by the structuring clement g. 8(f ,g) has domain 8(D.E) and {(f ,g) has domain
C(D.E).

Binary dilations, crosions, openings. and closings arc SP filters, whilst their grey-level
counterparts are FP filters if the structuring clements are non-flat, and FSP filters otherwise. In the case

of flat structuring elements, relations (5) and (7) reduce to

K f.B)x)=(f®B)x)
{fix-b)} (8)

A\
beB
(x-b)cD

=SUP{f(.\‘)| ye B,}

E(f.BXx)=( fOB }x)
= A{f(x+b)} 9
bel

=inf{f(m|yeB,}

The SP, FP, and FSP classification of binary and grey-scale dilation, erosion, opening. and closing is

given in Table 1.




Theoretical Framework « 25

Table 1. SP, FP, and FSP filters.

SP Filters FP Filters | FSP Filters
A€ -f

A f

A —B (set difference) | f~g

Ay T

A®B f®g f®B
ASB fOg fOSB
5A.B) Kr.g) |Hf.B)
&(A,.B) &f.e) |¢(r.B)
6(A,B) 8(r.g) |6(.B)
G(A.B) C(s.g) | C(s.B)

2.5.3. Duality between dilations/erosions and openings/closings
It is easy lo show that the duality relationships expressed in the following two

propositions hold true.

Praposition 4. Duality between dilation and erosion.

Binary dilation and erosion satisfy the following duality w.r.t. complementation:

[

B(A,B):[E(A‘.B)]

8(;&,13):[8(;\“.1'3)}c
where A, Be®(E") and A° ={x|xeA}.

Grey-scale dilation and crosion satisfy the following duality w.r.t. negation:

B(f.8)(x) = ~E(~£.3)(x). Vx e HD,E)~E(D,E)
& g)(x) = =B~ £.5)x), Vx eE(D.E)~H(D.E)

where f,g € J with domains D.E c E" respectively, and g(x)=g(—x).

Remarks
(i) Comparing the binary and grey-scale dilation and crosion duality cxpressions, il might

appear that arithmetic ncgation is the grey-level analogue of the set complement operator
for binary images. However, it is clear that in general V{f(x),—f(x)}#U(x) and
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A{f(x),—f(x)} #0(x) for all feJ; hence (recall Definition 14) arithmetic negation is
not a complement operator for the lattice (,«), and furthermore, the lattice is not boolean.
(ii) When dealing with discrete space Z2, onc can encounter problems concerning duality if a

the grid underlying the space is square (sec section 2.5.9.).

Proposition 5. Duality between opening and closing.

Binary opening and closing satisfy the following duality w.r.t. complementation:

@(A,B)=[C’(A°,l§)}c

e(aB)=[o(a".B)]

3

where A,Be ﬂ’(E").

Grey-scale opening and closing satisfy the following duality w.r.t. negation:

8(f,8)(x) = —C(£,8)(x), Yx eO(D,E)E(D,E)
C(f.g)x) = ~B(£,&)(x). VxeC(D,E)n8(D,E)

where f.g € J with domains D,E c E” respectively.

2.5.4. Anamorphoses

When dealing with a grey-scale image, one often applies radiometric (contrast) cnhancement
operations. The chosen transformation serves to either correct contrast deficiencies or to reveal details
not apparent in the original image. The human vision system actually incorporates radiometric
transformation; the relationship between the intensity of light incident upon the photoreceptors in the
retina of the eye, and the intensity perceived by the brain is non-linear (perceived intensity turns out to
be the logarithm of the incident intensity). As a consequence in the dark regions of an image, a small
change in intensity is perceived as a large intensity change, whilst in bright regions it is perceived as a
very small intensity change. This sensitivity to detail in the darker regions can be cxploited. By

darkening the bright areas of an image, previously undetectable detail can be revealed. The more usual
contrast enhancements employed in image processing are: f(x)— af(x)+b (a.b>0); log(f(x)):

[f(x)]z; Jf(x) 1 f(x) for f(x) S A, A forf(x)2 A, and their various combinations (Serra, 1982, p. 435).

These transformations arc termed anamorphoses.

Definition 21. An anamorphosis.
An anamorphosis is any increasing and continuous mapping y:.J —J.
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An important feature of FSP filters is that they commute with anamorphoses (Serra, 1988, p. 188;
Heijmans, 1991, p. 573). So for example, 0(log( f).B)=log(0( f,B)). In contrast, convolutions and
tophat transformations (see section 6.4.3.) commute with linear anamorphoses only (Dougherty, 1993, p.
508).

2.5.5. Representing functions by sets

Two quite different, yet related methods of representing an n-dimensional (n-D) function by one
or more sets, are pertinent o the extension of binary mathematical morphology to the grey-scale domain.
Using threshold decomposition an n-D function can be resolved into a collection of n-D sets called
crass-sections or slices. Via the umbra rransform an n-D function can be 1epresented by a single (n+1)-
D sect called the umbra. Heijmans (1991) is quick to point out that "in the literature the extension of
dilations and erosions by means of the umbra transform has received disproportionally much attention”

(p. 568).

2.5.5.1. Threshold decomposition

Definition 22.
Consider a function f e J with domain DcE”. Its cross-section at grey-level 1€ E

(the threshold value) is defined

X(f)={xeD[fxr21}.

Remarks

(i) When E=Z and the range of f consists of m grey-levels, f can be decomposed into m sets
(cach of which is a subset of the domain D).

(ii) The cross-scction at level ¢ is said to have been obtained by thresholding f at t.

(i) If f is a us.c. function then its cross-sections are topologically closed sets that are
monotonically decreasing: i.c. s<t=> X, D X, (Serra, 1982, p. 426).

(iv) In the literature, cross-sections are also referred to as threshold sets (Heijmans, 1991) and
slices (Shih & Mitchell, 1989).

(v) The function f can be reconstructed from its cross-sections, point-wise, as follows:

fy=Vit|xe XN}
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2.5.5.2. The umbra transform

Umbra is a Latin word meaning shade or shadow. If the grey-level dimension of a 2-D grey-
level image f ed is viewed as a third spatial dimension, the image can be reinterpreted as a 3-D binary
image (a surface). If a point light source is located at an infinite distance along the positive z-axis, then
the light rays that strike the surface will necessarily be parallel. The umbra of the image is then all the

points of the image (surface) as well as all the points in its shadow (which cxtends infinitely downward).

Definition 23. The umbra transform.
Consider a function feJ with domain DcE". The umbra transform of f ,

U(f)c DXE, is defined
Ui ={en | 1< fo}

The function f can be reconstructed from its umbra AcE™, by taking the top-

surface of the set, T(A), point-wise as follows

fo=T(A)x)=V{t]| (x.neA}.

Remark

"To any real-valued [resp. integer-valued] u.s.c. function f(x), x€R™ {resp. Z7],

there corresponds a unique umbra U(f). This umbra U is a closed set in R™ [resp. Z™']"

{Maragos & Schafer, 1987a, p. 1155).

2.5.5.3. Relating the umbra to the cross-sections of a function

The following relationship exists between the umbra of a u.s.c. function and its cross-sections:

(xnel(f)ers fly=xe X ().

Example

Consider the following discrete function of onc variable:

Its umbra can be represented by the following binary bound matrix (sce Appendix A):
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u(H=|,

1.4

The umbra matrix is said to be minimal because each column contains at least one 1. Strictly speaking,

the umbra should extend infinitely downward. The cross-sections of f are:

xH=f 1 v 11,
xH=[-1 11111,
X(H=f--+ -1 11,
X(fr=f+ - - -1 ],

Hence,
U =X, (HuX(NHuX,(HuX ()

2.5.6. The umbra homomorphism theorem
This thcorem establishes the relationship between binary morphology and grey-scale
morphology via the umbra transform. The umbra transform is a homomorphism from grey-scale to

binary morphology (Haralick, Sternberg, & Zhuang, 1987, p. 546).

Theorem 4. Umbra homomorphism theorem.

Let f.g €7 be u.s.c. functions so that their umbrac are closed sets in E™'. Then

U(B f.8)) = BU(f),U(g)} and
U(E(f.8) = EU(f).U(g)).

Remarks
(1) It follows that (f,g) = T(.B(U(f).U(g))) and £(f.g)= T(C(U(f),U(g))). Hence grey-scale

dilation (resp. erosion) can be expressed in terms of binary dilation (resp. erosion).

(ii) "A pair (S,0) where S is a set and o is an associative binary operation on S is called a
semigroup” (Allenby, 1983, p. 194). Hungerford (1974, p. 30) states that if G and H are
semigroups then a function f:G--H is a homomorphism provided that
Sf(ab)= f(a)f(b) forall abeG (the products ab and f(a)f(b) denote the binary
operators of G and H respectively). Now, for example, consider the semigroups (J.EB) and

<P(E"“"),$) (note that @ is used to denote both grey-scale dilation and binary dilation).
Hence U:(J,@) - <0’(E"”),63) is a homomorphism because U(f @ g)=U(f)® U(g).
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2.5.7. Implementing dilation and erosion for digital grey-level images
Digital binary images are sets in 22 and digital grey-level images are discrete functions

f:22 Z. The implementation of binary dilation and erosion in software is straight forward. To date,

three methods for implementing their grey-scale analogues have been devised. Grey-level dilation for

instance can be implemented in any of the following ways:

(i) as a maximum of a set of sums, (Definition 19);
(ii) as binary dilation of umbrac; i.c. 8(f.g) = T(HU(F)U(g)):

(iii) as binary dilation of cross-sections; i.e.

i=0

Sfe= max{{i{ﬂ(xo(f ). X(2))

Li=0

${8x,(1).%(8))

Li=0

}}?.
S L), x,-(g))}].
}Jﬁ.

(TR

-y R
Z{'B(th(f)' Xi(g))}]'l'(M- 1)}.

where f has maximum grey-level M and g has maximum grey-level N and T denotes the sequence
i, i, 1, ..., 1 of arbitrary length (Shih & Mitchell, 1989, p.35).

Remarks

(i) Algorithms for grey-scale dilation and erosion based on the point-wise formulac can be found in
Mehnert (1990).

(ii) Though the umbra transform has been used to implement grey-scale dilation and crosion on a
computer (e.g. Stermberg’s cytocomputer), the fact that the umbra of a two-dimensional image is a
three-dimensional binary image means that such implementations arc not efficient both in terms of
storage and exccution timec.

(iii) Though the method of cross-scctions retains dimensionality, onc must perforrn as many binary
dilations or crosions as there are grey-levels. Shih and Mitchell (1989) have proposed a VLSI

architecture for implementing grey-scale dilation and crosion using threshold decomposition.
It is worthwhile to look ai an example to compare each of the methods.
Example

Consider the one-dimensional image (actually a signal) f defined in section 2.5.5.3. Also

consider the structuring element g defined as follows, along with its umbra and cross-sections:
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1 X
g
X X
0 1 2
X
U() {* ] *
g =
11 l.:o.!
=l 1 14
X‘z(‘ I ‘]O.I

Now f and g can be represented by the bound vectors f=[l 2 23 43 2] , and g =[0 1 O] 0

respectively.

(i)  Using the point-wise formuia,

108
S8

fo+g0)=[1 3432 % #]
fitgh=[* 2 3 3 4 5 4 3 *]
f2+g(2)=[* ¥ 2 2 3 4 3 2]1.

and the column maxima give

Kfre=[1 2 3 3 45 43 2]

(if)  Binary dilation of the umbrae yields the following minimal umbra matrix:

*x * * * x l * * *

* % x * [ [ | * x
HuHue)=l* * v 1 1 1 11+

A U IR HS S NN I B |

P11 1t 11111 1.

The top surface gives

Bfo=TBUNUE)=[1 2 3 3 4 5 4 3 2],

(iii) FinsYy, binary dilation of cross-sections, using the Shih and Mitchell formula, gives
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AX(NX@)=[1 1 11 1111 1]
B(NXE)=[0 1 111111 0]
Hx%(NX)=[o1 1 111111
K (NXxg)=[0o o1 111110
X (Nxp)=fo 0o o1 11 1 1 0]
(X% (Nxg)=[oooo1 11 00
KX, (). Xo(g)=[0o 0 001 1 1 0 0]
H(x(NX@)=[0 0 6001 00 0]

%)
(.
s
(.
(.
(.
N

.B(X,(f).Xﬂ(g))hB{X, f)Xl(S))+6 [ 2
=[0

HX2(1) Xo(@)+ B X, (£). X, (&) + T
KX, Xol@)+ B X,(1). X (9)) + 2 =[
.B(X4(f).X0(g ) B(X (f). X,(g))+§'

S ]
(¥
ot
(98
(¥
(98]
(98]
‘E‘

<

r)14443()]

[0ooo04 5 4 0 0

The column maxima give

Bfe=[t 2 3 3 4 54 3 2],

2.5.8. The genesis of mathematical morphology is more than just
dilations and erosions

Historically (Euclidean) mathematical morphology referred to all those mappings and methods
built up from the dilation and the erosion. Their various combinations give rise to "an infinite world of
new mappings, which can then be concatenated with each other: openings. closings, size distributions,
morphological filters, ultimate erosion, skeletons, conditional bisector, and many others” (Serra, 1988,
p. 5). In binary mathematical morphology Euclidean distance is inextricably linked with these
mappings, the distance transform can be used to obtain dilations, crosions, skelctons and so on (see
Mchnert, 1990, p. 81). The distance transform brings to the fore topological concepts such as convexity
and connectivity. From a practical standpoint, the mzain advantage of its usc is that "the complexity of
the corresponding algorithms is reduced to a constant independent of the size of the structuring element”
(Preteux & Merlet, 1991, p. 66). Unfortunately the interpretation of the binary operators in terms of the
distance transform cannot be directly transposed to the operators of grey-scale morphology. However,
Preteux and Merlet (1991) introduced the notions of topographical and differential distance functions to
cstablish "the equivalence between the two fundamental notions of skeleton by influence zones {SKIZ)
and watershed [WS]" (p. 66); these arc "two basic and fundamental operators in segmentation,

respectively in binary and grey-level images” (Dougherty, 1993, p. 324) (sce section 4.1.) It is important
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to realise that mathematical morphology embodies not only those operators and methods constructed
from dilations and erosions, but also a host of other methods including distance transforms, watershed

transformation, tophat transforms, and homotopy modification.

2.5.9. Topology for digital spaces

Imagine a two-dirnensional binary image manifested in the Euclidean plane and modelled by a
set of points that locate its foreground in RZ. To obtain a digital image (suitable for processing by
computer) it must be sampled at a discrete number of points using typically a square or hexagonal
sampling grid (though other tessellations can be used). The sampled (digitised) image now resides in
the space 22, It is an “unfortunate fact that the two spaces R? and Z2 arc not isomorphic, since there
are several cifferent ways to interpret the same module [i.c. Z?] in Euclidean space” (Serra, 1982, p.
207). Consider, for instance, rotations in Z2 (Figure 3). In contrast to RZ, the square grid admits only
four rotations; successive rotations through 90° (rotations 1, 3, 5, and 7). The hexagonal grid permits
six rotations; successive rotations through 60°. A more liberal interpretation of rotations on the square
grid leads to the eight rotations shown in Figure 3; however rotational symmelry is compromised. In
essence there exist two distinct sets of similar images; rotations ., 3, 5, and 7, and rotations 2, 4, 6, and
8. The number of permissible rotations is important when one tries to interpret say Crofton's formula for

perimeter estimation (see Chapter 4).
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Figure 3. Rotations on the square and hexagonal grids.

Now imagine a two-dimensional continuous grey-tone image that is niodelled by a function f:R®> - R

(which describes the grey-ievel surface of the image). Once again, a sampling grid is used to obtain a

digital image. The brightness values sampled at the grid points are constrained to a finite number of
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levels. Hence the digitised grey-scale image is the discrete-valued function f :Z2 5 Z. Asinthe binary
case, the grid underlying Z? affects Euclidean interpretations; e.g. the brightness gradient of a grey-level

image at a particular point in Z2,

Serra and his colleagues deal predominantly with the hexagonal grid. Clearly "the main
advantage of the hexagonal grid over the square grid is that it has more rotational symmetry"” (Heijmans,
1989, p. 20). In contrast, the chapters that follow deal exclusively with the squarc grid. Apart from
being the most widely used tessellation in image processing, images sampled on this grid are amenable
to representation by bound matrices (see Appendix A). Furthermore, the square grid mirrors the pixel

arrangement associated with computer raster graphics displays.

Topological notions such as connectivity and convexity also have several interpretations for 22,
depending on the underlying grid. For the square grid, every pixel has the 3x3 neighbourhood
illustrated in Figure 4. Pixels p;, p;, ps, and p, are the direct neighbours of p and are considered to be
connected to it. The question arises — are p,, py, P, and pg, the indirecr neighbours of p. connected to
p? Consider Figure S; is this one object or several disparate particles? Even if one concludes that the
image is a square, how does one interpret the background? Assigning the same connectivity to the
background induces the paradox that the hole within the square is connected to the rest of the

background.

Ps { Pr | Px
Pl PP
Py Pri Py

Figure 4. The 3%3 neighbourhood of p for the square grid.

Figure 5. Is this a square or several disparate particles?

Conventionally, connectivity for the square grid is defined as follows. The direct neighbours of p are
termed its 4-neighbours. Collectively, the direct and indirect neighbours of p are called its 8-
neighbours. A pair of foreground pixels p,g € Z% arc 4-connected (resp. 8-connected) if there exists a
path p,p,,...,p,» where p=p andg=p,, such that p,andp,, are 4-neighbours (resp. 8-
neighbours), and the p,; are also foreground pixels, for i=1,2,...,n—1. A binary image X 60’(22) is
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said to be a 4-connected (resp. 8-connected) region if every pair of pixels in X are 4-connected (resp. 8-
connected). Clearly if Figure 5 is considered to be an 8-connected square, then to avoid any ambiguity,
the background must have 4-connectivity. As a result of having to adopt opposite types of connectivity
for the foreground and background, "X and X°¢ play asymmetric roles” (Serra, 1982, p. 180). Figure 5
represents cither a single object or several particles depending on whether it is interpreted as X or X¢
respectively. It is worth noting that for the hexagonal grid, X and X° play symmetric roles because there

is no inherent ambiguity of connectivity between pixels.

In binary Euclidean morphology, set (image) convexity is a property that is invariant under the
basic morphological transformations; difation, erosion, opening, and closing. Furthermore, "convex sets
play a significant role in Euclidean morphology, from both a granulometric and an image-functional
point of view" (Giardina & Dougherty, 1988, p. 27). Giardina and Dougherty dcfine convexity for the
square grid as follows. A binary image is said to be vertically convex if for any two foreground pixels in
a given column, all of the pixels vertically between them are also foreground pixels. The image is said
to be horizontally convex if for any two foreground pixels in a given row, all of the pixels horizontally

between them are also foreground pixels. This leads to the following pair of definitions.

Definition 24.
A binary digital image AetP(Zz) is said to be strongly grid convex if the following
conditions are satisfied:
(1) Ais 4-connccted,
(2) A is vertically convex, and

(3) A is horizontally convex.

Definition 25.
A binary digital image Ae(P(Zz) is said to be weakly grid convex if the following
conditions are satisficd:
(1) A is 8-connected but not 4-connected,
(2) A is vertically convex and

(3) A is horizontally convex.

Although digital convexity is not, strictly spcaking, the same thing as Euclidean convexity, "there is one
sense in which they are the same. If P and @ arc any two activated [foreground] pixels of a grid convex
image that lic in the same column or row, then all pixels between them are activated” (Giardina &

Dougherty, 1988, p.115).
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Strongly Weakly
convex convex

Figure 6. Digital convexity.

2.6. Linear Versus NMorphological Filtering

The perceived geometric detail in an image is inherent in the spatial interdependence of
neighbouring pixels. A rapid change in brightness in an image corresponds to high spatial frequency
and is synonymous with noise and object edges within the image. Gradual intensity changes within an
image correspond to low spatial frequency. The low-pass filter attenuates high spatial frequency,
leaving low frequencies intact. The high-pass filter has the opposite effect. Band-pass filters remove all
but a selected band of spatial frequencies from an image. Every lincar "filter turns out to be the
convolution product f* ¢ of a signal [image] f by a (generalized) [sic] function ¢" (Serra, 1986, p. 288).
In practice, linear filters are often considered to be "band-pass devices, even if this is not exactly true”
(Serra, 1988, p. 102). "A high frequency signal cut off above 400 kHz by a first filter should
theoretically not be modified by a second filter identical to the first” (Serra, 1986, p. 288). Linear filters
that are truly idempotent are termed ideal. Early in the history of image filtering it was supposed “"that
the global structure of an image would be derived from a low-pass filtering and the finer details from a
high-pass filtering” (Heijmans & Ronse, 1990, p. 247). The predisposition to this way of thinking can
be attributed to the theory of filtering already established for sound signals. Sound signals combine in a
linear fashion. A sound reproduction system, such as a stereo or radio, must reproduce individual
sounds in proportion to their original intensitics. When listening to a broadcast or reproduction of an
orchestral performance, the human ear sums the sound intensities, or their logarithms (Serra, 1986, p.
288), cmanating from the individual instruments. Many distortions in images are attributed to physical
phenomena that are linear in nature. Camera movement manifests itself in a photograph as essentially
the sum of several pictures (Serra 1988, p. 102). NASA's Ranger 7 lunar probe was equipped with the
most technologically advanced video cameras available at the time. The Vidicon cameras used,
however, induced interference patterns in the transmitted images because of the oscillation inherent in
the electronics. This additive noise was successfully removed using lincar methods. Lack of focus in an

image can also be improved using linear filters. Clearly such situations justify employing linear filters.

Serra (1988) points out that "although acoustic signals are summed, visual signals arc not
compounded in this manner" (p. 102). He argues the case for morphological filtering along the
following lines. The world around us is composed of opaque objects that hide one another. When one

object is placed in front of another, the light rays reflected from both objects do not sum. On the
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contrary, the covering object blocks the light emanating from the object behind it. This notion of
inclusion justifies the requirement that a morphological filter be an increasing mapping (Definition 8).
The second requirement of a morphological filter is that it be idempotent (Definition 11). This can be
justified as follows. Lincarity can imply that there is no loss of information. For instance, imagine a
two-dimensional grey-level image, described by the real-valued function g:R® - R, that exhibits
blurriness. The blur might be modeiled as a convolution with some function /1 as follows (in the absence

of noise):

gle,y)= Hh(x =X, y=¥Y)f(x,y¥)dx dy,

where g is the blurred image, h is the blur, and f is the original image. Taking the Fourier transform of

both sides and applying the convolution thcorem (Rosenfeld & Kak, 1982, p. 269) yiclds

G(u,v) = H(u,v)F(u,v)
= F(u,v) = G(u,v){ H(u,v),

where G(u,v), H(u,v), and F{u,v) arc the Fourier transforms of g(x,¥) h(x.y). and flx,y) respectively.
Provided that the nature of the blur is known, and hence H(u,v) is known (e.g. motion blur), f{x,y) can be
reconstructed via the inverse Fourier transform. Clearly, the underlying assumption is that the
convolution that produced the blur did not result in a loss of information. In comparison, “an increasing
transformation generally produces a loss of information” (Serra, 1988, p. 104). It s for this very reason

that a morphological filter needs to be idempotent; to control this loss of information.

Heijmans and Ronse (1990) acknowledge Serra's arguments but believe that the reason why
non-linear methods in image analysis are generally better suited than linear methods is fundamentally
because "the two human senses of vision and audition have not the same purpose” (p. 247). It is a
question of indirection. Audition is the analysis of sound waves. Vision is not the analysis of light
waves; rather it is the recognition of objects within a three-dimensional space from the light waves they

reflect.

A number of authors choose to define morphological filters in a broader sense than Serra. Most
notably, Giardina and Dougherty (1988) state that "mappings that are both increasing and translation
invariant are called morphological filters” (p. 134). This definition then admits dilations and crosions
as morphological filters. Furthermore a host of other operations are admitted, including "order statistics
and [spatial] convolutions with nonnegative [sic] mask weights summing to unity” (Dougherty, 1990,
p-179). The case for this characterisation of a morphological filter can be argued on theoretical grounds
in respect of the Matheron representation theorem for translation-invariant and increasing mappings
{sce Chapter 3). The theorem essentially states that any increasing and translation-invariant mapping

can be cxpressed as the supremum of erosions or equivalently as the infimum of dilations. In practice,
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however, onc seldom applies a dilation or an erosion on its own; to the contrary, they are usually applied
in pairs producing openings and closings. For this reason, and more importantly because of the
desirability of idempotence, the author prefers Serra's definition of a morphological filter. From the
practitioner's standpoint, idempotence cnsures that the filtering process can be carefully controlied.
After the application of a morphological filter, one has necessarily to decide upon some other course of
action. This is in stark contrast to the application of non-idempotent filters such as the mean and
median filters, whereupon one has to decide whether or not to repeat the application. Figure 7 illustrates
a simple hierarchical classification of traditional image filters and morphological operations, according

to lincarity and idempotence.

Image to image mapping

under some operalor

Continuous and translation

invanant operators (filters)

Lapear filters

Non-lincar filters

Idempotent

Ideal low-pass, Spatial and Morphological

frequency domain

high-pass, and
band-pass filters

filters
low-pass. high-pass,
and band-pass

filters

Figure 7. A classification of traditional filters and morphological operators based on

linearity and idempotence.




CHAPTER 3.

MGQPH@LOGECAL FILTERS

3.1. About This Chapter

This chapter begins with a brief history of morphological filters — section 3.2. Section 3.3 then
introduces algebraic openings and closings. These operations, which gencralise morphological openings
and closings respectively, constitute the building blocks for all morphological filters. The section also
examines the various methods used 1o construct (algebraic) openings and closings. In this regard
products of dilations and erosions represent but one way of constructing them. The remaining sections
establish the taxonomy of morphological filters that begins with the (algebraic) openings and closings,
and encompasses open-closings, closc-openings, general composition of filters, self-dual filters,
alternating sequential filters, multiple structuring element filters, thc generalised morphological filter,

soft morphological filters, and Dolby morphological filters.

3.2. A Brief History of Morphological Filters

Matheron originally devised the opening for the purposc of generating size distributions
(granulometries) for binary images. The opening, however, found much wider use as a noise
suppression filter. Rescarch done in the late 1970s, predominantly by Serra and Stemberg, the latter
conceiving of the idea of combining openings and algebraic differences, led to the extension of
mathematical morphology to grey-tone functions (Serra, 1988, p. 101). “"Around the same time,
morphologists realized {sic] that combinatory effects of an opening followed by a closing led to an
idempotent operation” (p. 101). Note that in general the composition of two morphological filters is not
a morphological filter. Sternberg (1986) introduced the iterative morphological filter — sequences of
alternating openings and closings, which employ successively larger spherical structuring clements
{(SEs), used for noise suppression. Stevenson and Arce (1986) introduced the 2D CO filter —
combinations of several openings and closings employing multiple SEs. Matheron and Serra (in Serra,
1988) defined and studied morphological filtering for compleie lattices; Sternberg's iterative filter turns
out to be just one of a class of filters called alternating sequential filters. Song and Delp (1989)
introduced the generalised morphological filter; the 2D CO filter is just a particular case of this more

general filter. More recently Song and Delp (1990) have introduced noise suppression filters consisting
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of suprema of openings and infima of closings employing multiple SEs. Ronse and Heijmans (1991)
made an algebraic study of openings and closings on the complete lattice; they generalised the Euclidean
notion of operators invariant under translations by considering operators invariant under certain abelian
(i.e. commutative) groups of automorphisms on the lattice. Koskinen, Astola, and Neuvo (1991)
generalised the definitions for digital dilation and erosion by replacing the maximum and minimum
operations with general weighted order statistics. They refer to these new operators as soft dilation and
erosion respectively. This leads to soft openings and closings and more generally to soft morphological
filters. Unfortunately soft morphological filters are not necessarily idempotent.  Dougherty (1992a,
1992b) placed morphological operators into the framework of statistical estimation to develop a theory of
mean-square optimisation. This leads to the possibility of determining from amongst all possible filters
the one that optimally restores a noise corrupted image. A discussion of this approach and related
studies is provided in section 7.2. Serra (in Dougherty, 1993) introduced the Dolby morphological
opening and derived morphological filters. Though these filters are not based on the actual Dolby

algorithm for audio signals, they have a similar purpose.

3.3. Algebraic Openings and Closings

To begin with let the complete lattice (£,<) be a model for the object space; this might be the set
of all grey-tone digital images for instance. 1f 8 denotes the set of all increasing mappings from £ into

itself then (8,<) is also a complete lattice (Serra, 1988, p. 104) with order relation
v <y if wX)<wX) ¥Xed,

and supremum and infimum defined as

(V\p,—)(X)=\([\p,-(X)] and (Ay,)J(X) = /\[\u;(x)] respectively, wherey, € 6.
supin{8<)}  supin(L=) inf in (8,<) infin (2,<)

For simplicity the symbols denoting supremum, infimum, and the order relation for the lattice of

operators (0,<) remain the same as those for the lattice of operands (£,<).

Recal] that for the complete lattice (£,<) the morphological filter is any increasing and
idempotent mapping y:£—>Z (Definition 16). Now if w.{ € @ arc morphological filters it is an
unfortunate fact that in general yvi, YAL, wol, and Loy are not. This motivates the introduction of two

classes of mappings: underfilters and overfilters (Serra, 1988, p. 105).
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Definition 26. Underfilters and overfilters.
A mapping ye 8 such that ywy~w is called an underfilter. A mapping ye @ such that

y-<yny is called an overfilter.

Remarks

(i) The inequality yy~w is equivalent to writing y=(Ivy)oy. Likewise, the inequality
Y=<y is equivalent to writing y=(IAy)oy.

(ii) In general neither dilations nor crosions are underfilters or overfilters. However,
(conditionally) extensive dilations and (conditionally) anti-extensive erosions are overfilters
and underfilters respectively. In Euclidean morphology, such dilations and erosions

correspond to dilation and crosion by origin-containing SEs .

Example
The identity operator Ie 8 is defined I:X—X for all Xe£. Given any ye 0 then clearly,

Ivy is an overfilter and Iay is an underfilter. For instance, consider Ivy. If y is anti-
extensive, i.e. y=I, then Iviy=I and hence (Ivy)<(Ivy)o(lvy). If on the other hand, vy is
extensive, i.e. I<y, then Iviy=y and hence once again (Ivy)=<(Ivy)o(Ivy)=yy. Therefore Ivy
must be an overfilter; this is true regardless of whether y is extensive, anti-extensive, or

neither.

As the examplc above shows under- and overfilters are very common. Now if ye ® is both an underfilter
and overfilter then yy~<y and yw=<yy which implies that yy=vy; i.c. ¥ is idempotent. Therefore a

morphological filter is necessarily both an underfilter and overfilter.

Like their morphological counterparts algebraic openings and closings are morphological filters

because they are increasing and idempotent. They are defined as follows.

Definition 27
Let ys= @ be a morphelogical filter. If w1 then it is called an opening (anti-extensive).

If I<y then it: s called a closing (extensive).

Remarks
(i) Haralick (1989) refers to these operators as generalised openings and closings.

(i) The morphological openings and closings of Chapter 2 clearly satisfy Definition 27.

Hercinafter the terms opening and closing refer to generalised openings and closings respectively. The
openings 8¢ and closings €6 for adjunctions (€,8) in the lattice (£,<) arc qualified as morphological

openings and closings. Heijmans (1989), and Heijmans and Ronse (1990) qualify the translation-
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invariant morphological openings and closings, which are constructed from Minkowski addition and
subtraction (and their grey-level extension) employing a SE, as structural openings and closings. Some

important results concerning openings and closings follow.

Proposition 6. (Serra, 1988, p. 105)
Associated with every opening y:Z—Z (resp. closing @:£—Z£) there exists a domain of

invariance B such that Y(B)=B (resp. ¢(B)=B) for all Be 8. Furthermore 8 is the image of £
under y (resp. @).

Theorem 5. (Serra, 1988, p. 106)
The supremum (resp. infimum) of a family of openings y, (resp. closings ¢}, with
corresponding domains of invariance 8;, is again an opening (resp. closing) whose domain of

invariance is given by the union (resp. intersection) of the ;.

Theorem 6. (Serra, 1988, p. 22).
Any opening ye8 (resp. closing ¢e@) can be decomposed into a supremum of

morphological openings (resp. infimum of morphological closings).

3.3.1. The Matheron representation theorem for translation-invariant
openings and closings

Theorem 6 is a generalisation of the following result, due to Matheron (1975), for the complete
lattice #(R") (cited in Serra, 1988, p. 106).

Theorem 7. Matheron reprezentation theorem for translation-invariant openings.
The mapping W:P(E")—) O)(E")is a translation-invariant opening if and only if there

exists a class of sets £ C D‘(E") such that

w(A)= ] 8(A.B).
Bel
The domain of invariance of y is then all those sets that are generated as the unions and

translations of the Bs.

Remark
Clearly, by duality any translation-invariant closing can be represented as the

intersection of morphological closings.

Giardina and Dougherty (1988) extended the theorem to grey-tone images.
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Theorem 8. Grey-scale Matheron representation theorem for translation-invariant openings.
The mapping ¥ € is a translation-invariant opening if and only if there exists a class

of mappings 8 C J such that

v(f)=V06(f.8)
zeff

Remark

Clearly, by duality any translation-invariant closing can be represented as the infimum

of morphological closings.

3.3.2. How to construct openings and closings

“Pedagogically speaking, openings and closings represent the basic material that is constantly
used 10 generate all other {morphological] filters” (Serra, 1988, p. 105). Therefore it is necessary to
know how ta construct them. In this regard morphological openings (resp. closings) and suprema (resp.
infima) thereof are but one way of constructing openings (resp. closings). Figure 8 shows an inventory

of scveral techniques detailed in the literature.

Morphological openings and closings

ie. products 8 and €8

Annular openings and closings

Iaty isanopening when g isa a-overfilier

Algebraic (generalised)

openings and closings lvy isaclosing when y isa v-underfilter

(Iay)" isan opening when v is an increasing digital mapping

(lvy)" isaclosing when w is an increasing digital mapping

) Suprema and cross-suprema of openings of types (1) to (4) are openings

Infima and cross-infima of closings of types (1) to (4) arc closings

Figure 8. An inventory of methods for generating openings and closings.
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3.3.2.1. Annular openings and closings
Serra (1988, p. 107) introduced another type of Euclidean binary opening called the annular

opening. ltis defined as follows.

Definition 28. The annular opening
Given A,Be 0’(E") such that B is a symmetric SE, i.e. B= B, the mapping

TA->(AGB)NA
is an opening with domain of invariance 8= {A |AcA @B}.

To prove that y:A - (A@®B)NA is indeed an opening it is necessary to show that it is
increasing, anti-extensive and idempotent (Definition 27). Serra's proof (1988, p. 107),
however, is not correct. In particular his arguments supporting idempotence are in error.

Consider the following proof.

Proof
(i) 7vis increasing because it is the intersection of @ and I which are both increasing operators.

(1) vis anti-extensive by design

ceB = y(A)=A

0€B = y(A)cA} A A

where e denotes the origin.
(iit) For idempotence consider yoy

(A =[((A®B)NA)®B]((A®B)NA)
M )

(1) has representation

(UA,,mA)@B = U Ulayna), « U UlAnynAg):
bB

KeB beB beB heB
(2) has representation | ] (A, nA);
b'eB
For each b'e B there exists a b€ B s.l. b'+b=0 (because B is symmetric). Hence the family
{AnA,,., b'eB} is a subfamily of {A,”,,.nA,,.. b eB, be B}: i.e. (2) is a subset of (1).

Hence 7y(A)=Y(A), i.e. yis idempotent.

.~ 'y must be an opening.
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Remarks

(i) When B is a ring-shaped (annular) SE centred about the origin "this opening removes
isolated particles in a set" (Ronse & Heijmans, 1991, p.82).

(ii) The annular opening removes particles from A "as a function of their environment, and
does not consider their size or shape [in contrast to the structural opening]” (Serra, 1988, p.
108).

Ronse and Heijmans (1991, p. 84) extended the annular opening to grey-scale images and more
generally to complete distributive lattices (see section 2.4.7.). For a flat symmetric SE g centred about
the origin f AJS(f,g) is an opening. Oddly enough neither Ronse and Heijmans (1991) nor Serra
(1988) mention the dual operator; the annular closing. For that matter, the notion of an annular closing

docs not appear anywhere in the literature. Consider the following definition for the complete lattice

#er).

Definition 29. The annular closing
Given A.B EP(E”) such that B is a symmetric SE, i.c. B= B, the mapping

»A—>(AGB)UA

is a closing with domain of invariance 8={A| AGBcA }.

To prove that ¢:A — (A©B)UA is a closing it is necessary to show that it is increasing,

extensive and idempotent. This necessarily follows by duality from the preceding proof.

Proof
(i) @ is increasing because it is the union of two increasing operators.

(ii) @ is extensive by design

0eB = @QlA)=A

0eB = (p(A):A} PAI2A.

(iii) For idempotence consider Qo@

9o(A)=[((A®B)UA)EB |U((AGB)UA)
R} ’ &)

(1) has representation

[ﬂAbuA}eB e ) Na,ua), & N NAnsvag)

beB beB heB beB

{2) has representation ﬂ(Ah- UA);
b'eB
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For each b'eB there exists a be B s.t. b'+b=0 (because B is symmetric). Hence the family
{aAuA,, b’ eB} is a subfamily of {A,,y WAy b'eB b eB}. Thus the intersection of

all the translates in (1) must equal the intersection of all the translates in (2). Hence

PP(A)=@(A); i.e. @ is idempotent.
~. @ must be a closing.
Remark

This closing fills holes in the foreground of an image as a function of their

environment and not size or shape (see Figure 9).

(a) (b) (c)

0 1
00
01

Figure 9. (a) Original image X. (b) Annular opening by B. (c¢) Annular closing by B.

3.3.2.2. Generating openings from inf-overfilters and closings from sup-
underfilters
In general the operator Ay is an opening whenever y is an inf-overfilter and the operator vy

is a closing whenever vy is a sup-underfilter.

Definition 30. Inf-overfilters and sup-underfilters (Matheron).
A mapping e 0 is an inf-overfilter (a-overfilter) if Wo(Iay)=y. A mapping {efis a

sup-underfilter (v-underfilter) if Lo(IvD)=L.
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Remark
"Any v-underfilter is an underfilter, any a-overfilter is an overfilter . . . . But the

converse is not true: there are underfilters that are not v-underfilters” (Serra, 1988, p. 123).

Though the annular opening has the form IAy, y =(A ®B) is not an inf-overfilter in general. When B
contains the origin though, ¥ is a conditionally cxtensive dilation and is both an inf-overfilter (because
[An(AeBB)]QB:A@B. o€ B) and an overfilter (seec the remarks under Definition 26). Thus
annular openings are not examples of openings constructed from inf-overfilters. Furthermore annular
closings are not examples of closings constructed from sup-underfilters. The following result, due to
Matheron (in Serra, 1988, p. 129), characterises under- and overfilters, and inf-overfilters and sup-

underfilters.

Preposition 7.
Given 1,9,7¢ 8 where @ is a closing such that n<¢, and v is an opening such that y<n
then
v is an underfilter if and only if y=0n,
vy is a sup-underfilier if and only if y=ne,
y is an overfilter if and only if y=yn, and
v is an inf-overfilter if and only if y=ny.

Remark
Trivially when 7 is the identity operator I then y<l<g (recall Definition 27) and hence

vy is an inf-overfilter and @ is a sup-underfiter. In fact Iay=y and lvip=e.

Example
Consider the lattice 03(22 ) Let 8p=8(-.B) and eg=£(-.B). The composition d4ep for

BcA and A,B eﬂ’(Zz) is an inf-overfilter (Ronse & Heijmans, 1991, p. 87). To prove this put

y=dgep and N=35€p. According to Proposition 7 the product nY=0,¢gdpep=0a¢€p (scc the
remarks under Theorem 1) is an int-overfilter if and only if y<n. This incquality is satisfied
because 6 < 84 => Ogep < O e for BCA. Therefore S ep is an inf-overfilter and it follows
that the operator IAndpeg must be an opening. By duality e58p is a sup-underfilter and so

Ive 5 g must be a closing.
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(a) (b) (c) (d)

1
A=l1 11 B=[1 1 1],
!

11

Figure 10. An opening constructed from an inf-overfilter. (a) Original image X.
(b) eg. (c) 5A€B- (d) XGSAEB.

A formal definition of the domain of invariance of openings generated from inf-overfilters on
complete distributive lattices can be found in Ronse and Heijmans (1991, p. 87). In the case of
XNdpeg the domain of invariance is the family of translates of the sets enclosed between B
and A (p. 88). In particular the family consists of unions of translates of B, and the subsets of
A each generated by adding a single point from the set difference A —B to the set B (see Figure
).

Figure 11/. The domain of invariance of Xn3daepg consists of all the sets

generated by unions of translates of the sets in the family {B,Ai} .

Consequently the opening depicted in Figure 10 can be decomposed into the union of seven
morphological openings; one for cach SE in the family {B,A,} (see Theorem 7).
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3.3.2.3. The Matheron representation theorem for increasing and translation-
invariant mappings

In the Euclidean setting therc exists a more specific result than Theorem 2 conceming
increasing mappings. Matheron (1975) proved that all mappings P(E")——-)P(E") that are translation-
invariant and increasing can be represented as a union of (structural) erosions or alternatively as an
intersection of (structural) dilations (cited in Heijmans, 1991, p. 569). This class of mappings includes
not only dilations, erosions, openings, and closings, but also order statistic filters and spatial
convolutions with non-negative mask weights (see the Giardina and Dougherty definition of a
morphological filter — last paragraph of section 2.6.). Though the Matheron theorem does not offer a
direct means of generating openings or closings it is pertinent to the theory of rank-openings (section
3.3.2.5.) and is also relevant to the generation of openings and closings from increasing digital

mappings (section 3.3.2.4.).

Theorem 9. Matheron representation theorem for increasing translation-invariant

mappings.
if w:lP(E")—) {P(E") is an increasing and translation-invariant mapping, then for any

Aeff’(E"),
ya)= |J&aB)= [5AB)

BeKerfy] BeKer{y*)

where Ker[w]:{BeP(E") oe\y(B)} is the kernel of y, w* is the dual of y defined

v *(A) =[w(A°)]c and o is the origin.

Remarks
(i) Ker[y] is the collection of ali subsets B of E" such that w(B) contains the origin.
(il Giardina and Dougherty (1988) point out that "while the kernel is in general uncountably

infinite, there is a great redundancy in the expansion as given by Matheron" (p. 136).

"As it stands, the Matheron representation is computationally intractable” (Dougherty & Kraus, 1990b,
p. 15). It turns out that the Matheron expansion "need only be taken over a subcollection of the kernel,
called the basis [italics added]" (Dougherty & Kraus, 1990a, p. 161.). "The . . . basis [representation]
was introduced independently by Maragos . . . and Dougherty and Giardina" {(Dougherty & Kraus,
1990b, p. 15). The basis is a subset of the kernel for which

(i) given any Ke Ker[y] there cxists a Be Bas[wy] such that BEK, and
(ii) B,-,Bj €Bas[y] & B, a:Bj, for all pairsi, j.
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“If the underlying space is discrete (i.e. E=Z] and if the transformation y is locally defined . . . then
. . - {the basis] can be chosen finite" (Heijmans, 1989, p. 23). Note that a transformation y (e.g. a 3x3
median filter) is said to be locally defined (or to have local knowledge) if for any bounded set Z (e.g. a
video frame) within which one wishes to know y(X), y(X) can be determined at each point in XNZ

from some mask M (e.g. a 3x3 moving window) strictly within Z (Serra, 1982, p. 11).

Example

Figure 12. (a) Original image X. (b) 4-median of X.

The 4-median filter is a variant of the 3x3 moving window median filter. It differs in that a cross-
shaped window (the central pixel and its direct neighbours in the 3x3 window) is employed rather than a
square window. At cach new window position the five image pixels are sorted and the median value
replaces the central pixel in the filtered image. Figure 12 shows a binary image X and the result after
applying the 4-median filter. This is the same example used by Heijmans (1989, p. 24). However
although Heijmans proves that the 4-median filter has a basis representation consisting of 10 erosions,
he does not derive them. For any given position the sequence of pixels in the cross-window, after
sorting, must be one of: 00000, 00001, 00011, 00111,01111, 11111, The last three configurations lead
to an output value of I. The number of possible window configurations for which the median is a 1 is as

follows:

C; = 10 possible configurations of threels and two Os,
C: =5 possible configurations of fourls and one 0, and

C: =1 possible configuration of fivels and no 0s.

Figure 13 shows ecach of the 16 configurations. Now binary erosion can be cxpressed as
8(A,B)={x' B, gA} (see the remarks under Definition 20). If the configurations in Figure 13 are

interpreted to be SEs with the origin at the centre, then the 4-median filter W(A) has the representation

16
Y(A)= US(A,B,-), where the B; are the SEs in Figure 13.

i=l
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In fact because the last 6 cuniigurations (SEs) are supersets of the first 10 configurations, the 4-median

filter has the basis representation

10
y(A)=|_JE(A,B,), where the B are the first ten SEs in Figure 13.

i=1

Figure 13. The 16 possible pixel configurations for the 4-median filter that lead to a binary 1.

The first ten configurations are unique and satisfy the basis requirements that (i) no element of the basis
is a subset of any other and that (ii) the 4-median of each configuration contains the origin. Figure 14
illustrates the ten erosions of the original image, depicted in Figure 12, by the SEs in the basis set.

Clearly their union gives the 4-median depicted in Figure 12. In comparison to the 4-median filter, the
basis set of the more familiar 3x3 median filter consists of C;’ =126 SEs.
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g o4

B
ol
g
6 7 8 9 10
Figure 14. The 10 erosions whose union yields the 4-median filter.
The grey-scale version of Matheron's theorem "was first discovered by Maragos . . . under the

condition that f [in ()] is upper semicontinuous” (Dougherty & Kraus, 1990b, p. 16). Giardina and
Dougherty (1988) arrived at the same representation without the u.s.c. requirement (although like
Maragos they employ umbrae in their proof). The most general proof is that proffered by Crombez

(1990) — the proof doesn't use the umbra transform or the binary representation theorem.

Theorem 10. Grey-scale Matheron representation theorem.
If v is a translation-invariant and increasing mapping between bounded, real-valued

functions with domains in R? then for any such function f,

Domain[w(f)]= U Domair{&( f,g)], and

geKer{y]

W= N ELe)

xeDomain{?(f.¢)]

Remarks

(i) The Matheron representation theorem for binary images is a special case of the grey-scale
theorem; the case where functions only take on the value 0.

(ii) By duality a grey-scale translation-invariant and increasing mapping can be cxpressed as

the infimum of dilations.




A Taxonomy of Morphological Filters « 53

(iii) Giardina and Dougherty (1988) extended the theorem to the digital setting. Dougherty
(1989) established the dual result.

Once again the representation has theoretical relevance "but its practicality is rather small becausc, in
general, it is not a simple task to analytically find and describe all the (infinite in number) kernel
functions” (Maragos & Schafer, 1987a, p. 1166). Studies apropos to the basis representation have been
done by Dougherty and Giardina, and Maragos and Schafer; e.g. Dougherty and Giardina (1986),
Maragos and Schafer (1987a, 1987b), Giardina and Dougherty (1988), and Maragos (1989).

3.3.2.4. Generating openings and closings from increasing digital mappings
For any increasing mapping W defined on a finite complete lattice (£,<), the iteration of the

operator IAy a certain number of times leads to an opening (Serra, 1988, p.110).

Proposition 8
If (£,<) is a finite complete lattice then for every we @ there exists an opening ¥, such
that y<y, given by
y=(lay)

for some large n. Similarly there exists a closing Y= given by

o=(Ivy)"

for some large m.

Remarks

(i) Digital grey-tone images (and by subsumption digital binary images) have finite spatial and
radiometric (brightness) extent (resolution). The set of all digital images therefore
constitutes a finite lattice.

(ii) Matheron (cited in Serra, 1988, p. 113) has shown tha! Proposition 8 does not hold true in

the infinite case.

Example
Heijmans (1989, p. 35) introduced the median opening ¥(X) = (X~ y(X))" where y

is a median filter. By Proposition 8, ¢(X)=(Xww(X))” is a (median) closing. Figures 15

and 16 illustrate the 4-median opening and the 4-median closing respectively.
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Figure 15. From left to right, top to bottom: original image X, (X ny(X)), (Xn\u(X))z. e

(X (X)), where w is the 4-median filter. In this case, y(X)=(X (X)) is an opening for

n=10 (i.e. sequence converges after 10 itcrations).

Figure 16. For the original image X depicted in Figure 15, @¢(X)=(Xuw(X))" is a closing for m=3.

3.3.2.5. Rank-openings

The median filter belongs to the more general class of order statistic filters otherwise known as
ranked order filters. These filters "are a class of nonlinear and translation-invariant discrete filters that
have become popular in digital speech and image processing, and also in statistical or econometric time
series analysis" (Maragos & Schafer, 1987b, p. 1170). Furthermore they are easy to implement and have
the desirable property that "they very effectively reduce high frequency and impulsive noisc in digital

images without the extensive blurring and edge destruction associated with linear filters” (Fitch, Coyle
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& Gallagher, 1985, p. 445). Ranked order fiiters are not morphological filters because, although they
are increasing, they are not, in general, idempotent. A median filter, for example, has the undesirable

property that its iteration may produce oscillations (Serra, 1988, p.160).

Figure 17. This image oscillates when a 3x3 median filter is applied to it iteratively (adapted from

Serra, 1988, p. 160).

For a discrete function f:Z" — Z and a finite window W < Z" containing the origin, the rank

operator of rank &, also called the k-th order statistic filter, is defined pointwise as follows:

[Rankk(f.W)](x) = k th order statistic of {f(y) i y€ WX} wherexeZ".

Effectively the origin of the window W is moved to each point x of f(x), the points of f(x) within the
window are sorted, and f(x) is replaced by the &-th order statistic. If W comprises # points then for
(i)  k=n the operator is identically f & W (see relation (8) of section 2.5.2.),

(ii) k=1 the operator is identically f© W (see relation (9) of section 2.5.2.), and

(iii) k=(n+1)/2, and n is odd, the operator is the median filter.

The window W is actually a flat (binary) SE that can be of any shape as long as it has finite extent.
Serra (1988, p. 193) points out that the rank operator is increasing because it can be represented as the

supremum of erosions (sec Theorem 10) viz.

Rank(f,W)=sup{ fOW,| W, W, Card W, 24 }

{See the example of section 3.3.2.3.)

The operator 3y Rank,( f.W):Sw(\/sw', ). where W, ¢ W, is an inf-overfilter. Therefore
i

18y Rank,(f, W) is an opening (called a rank-opening; sce section 3.3.2.2.). To show this recall that

the dilation commutes with the supremum (Definition 9) so that sw(“/ew,)=\/(5w€w‘)- Therefore
i i '

IA8yRank(f .W)=l/\(\_/(8WEWi )) This can be written as \_/(I/\Gwz-:\.,‘F ) The expression in the
f L3
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brackets is the opening [ A ,&5, for BC A, introduced in section 3.3.2.2. It is possible to replace the

W in 3, with any set C that contains W, and "to obtain another opening that is less active [i.e. closer to

the identity mapping] as C is large" (Serra, 1988, p. 193).

The arithmetic difference I -7y, where y is a morphological opening by a structuring element, is

known as the tophat transform (see section 6.4.3.). Replacing the structural opening with a rank-
opening reduces the sensitivity of the difference 1 -y to noise and artefacts (Ronse & Heijmans, 1991, p.
89). Figure 18 illustrates this type of tophat transform. The aim is to enhance the surface blood vessels
in a digitised infrared image of the back of a hand (the original image in its entirety is depicted in Figure
20). Here the transform is actually applied to the negative of the image f (thereby converting valleys to
peaks and vice versa) so that the subcutaneous vascular network (which is darker than the background)

is highlighted.

(a) (b) (c)

Figure 18. The sensitivity of the tophat transform to noise and artefacts can be reduced by

replacing the structural opening with a rank-opening.

(a) A thermographic image, f, of a section of the subcutaneous vascular network on the back of a
hand (see Figure 20).

(b) Histogram equalisation of the tophat transform (—f)— min{— £,8(Rank, (- £.B), B)], where B is
a 45x45 square SE. Here the rank operator is identically an erosion by the symmetric SE B
(origin at centre) and hence the tophat transform simplifies to (- f)—0(-£,B).

(c) Histogram equalisation of the tophat transform (—f)- min[— i1 ..B( Rank (- f B)B)] Here the

rank operator is identically the 45x45 median filter.

3.4. Composite Morphological Filters
The fact that, in general, the composition of two morphological filters is not a morphological

filter motivated the introduction of two classes of mappings: overfilters and underfilters (Definition 26).

Recall that a morphological filter ywe 0 is necessarily both an under- and overfilter (section 3.3.) so that

(Ivy)oy=y and (IAny)oy=y. Reversing the order of composition, however, leads only to the




A Taxonomy of Morphologiml Filters ¢ 57

inequalities y~<yo(Ivy) and yo(Iay)<y (Serra, 1988, p. 115). These two inequalities motivate the

definition of sup- and inf-filters.

Definition 31. Sup- and inf-filters.
Let ye @ be a morphological filter. If wo(Ivy)=y then v is called a sup-filter. If

Yo(Iay)=y then v is called an inf-filter.

Remark
An inf-filter must be an inf-overfilter and at the same time an underfilter. Likewise, a

sup-filter must be a sup-underfilter and at the same time an overfilter (Serra, 1988, p. 123).

Definition 32. Strong filters.

A morphological filter that is both an inf-filter and a sup-filter is called a strong filter.

Remarks

(i) The definition is equivalent to saying that a strong filter is both an inf-overfilter and a sup-
underfilter.

(i) Openings and closings are strong filters. For example, consider an opening ye 8. By
definition, y is anti-extensive; i.e. y<I. Therefore (Ivy)=l and (Iny)=y. Hence

Yo(Ivy)=vol=Y and Yo(Iny)=Yoy=y and so y must be a stroag filter,

3.4.1. Open-closings and close-openings

"In contrast to the case of dilations [and by duality erosions], the composition of two openings
is generally not an opening. This composition is anti-extensive and increasing, but not necessarily
idempotent" (Ronse & Heijmans, 1991, p. 77). By duality the product of two closings does not
necessarily yield another closing. But what can be said of the compositions y¢p and ¢y for an arbitrary
opening y and closing ¢?7 In his 1986 paper on grey-scale morphology (originally submitted for
publication in 1983) Sternberg states "the product of an opcning and a closing is increasing and
idempotent. Similarly, a transformation consisting of a closing followed by an opening is increasing and
idempotent” (p. 346). A formal introduction to open-closings and clos-openings [sic] for sets and u.s.c.
functions can be found in Maragos' PhD thesis (cited in Maragos & Schafer, 1987a, p. 1161). In
Maragos' terminology an open-closing is an opening followed by a closing using the same SE. Other
authors (e.g. Chmirny & Lehtosky, 1990) refer to an open-closing as the opening of a closing; i.e. the
product v using a single SE, which is a closc-opening in Maragos' terminology. It turns out that in the
more general setting of the laiiice of increasing operatars 0, Y is a sup-filter and @y is an inf-filter
(Note: v need not be the dual of @). In fact Serra (1988, p. 116) proves that the converse (see the

following proposition) is true.
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Proposition 9
The transform we® is a sup-filter (resp. inf-filter) if and only if it has the

representation y=y@ (resp. y=¢y), for an opening y and a closing ¢.

Remark

In the literature, the abbreviations OC and CO are used by some authors (e.g.
Chmirny & Lehtosky, 1990) to denote opening of a closing and closing of an opening
respectively. Unfortunately the same abbreviations arc also used to denote the multiple SE

filters (section 3.8.) of Stevenson and Arce (1986, 1987).

An open-closing generally produces a result different to that of a close-opening when applied to the
same grey-scale image. The extensivity of the closing and the anti-extensivity of the opening induces

grey-scale bias.

3.4.2. General composition
The following two propositions, due to Matheron (in Serra, 1988, p. 119), characterise

compositions of morphological filters.

Proposition 10.
Given any two morphological filters y,{e 0 such that y<C, then

() w=<yly <ylaly <ylviy <Lyl <L:
(ii) Cy, CyC are morphological filters with the same domain of invariance &, and y{, yQy

are morphological filters with the same domain of invariance [Bv;;
(iii) CyC is the smallest morphological filter greater than Ww{vCy, and yly is the greatest
morphological filter smaller than wlAQwy;

(iv) the following equivalences hold:

bry =B, < B, =6, NB, =B, =6 NB,
@yl =yl o yly =Ly
< Ly < yi.

Proposition 11.
Given any two morphological filters y,le 8 such that y={, then
(i) if £ is a sup-filter, yC and {y( are sup-filters;
(ii) if y is an inf-filter, Ly and Yyl are inf-filters;
(iii) if wg is an inf-filter, Ly is an inf-filter;
(iv) if Ly is a sup-filter, Wy is a sup-filter.
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3.5. The Nidd!e Filter

If the Iattice of operands (£,<) is modular (see the remark under Definition 14) then for an

arbitrary pair comprising an inf-overfilter and a larger (w.r.t. the ordering on the lattice of operators
(8,=<)) sup-underfilter there exists a strong filter, called the middle element, between them. From a

practical standpoint the modularity requirement is inconsequential because the complete lattice of all
u.s.c. functions J:E" — E and the complete lattice O’(E")are both distributive and hence modular.

Theorem 11. The middle filter (Serra, 1988, p. 133).
If € is a sup-underfilter and { is an inf-overfilter on the complete modular lattice (£,<)

and L~<E then there exists a strong filter o, called the middle element of & and {, such that
L=o<E.

The domain of invariance of « is given by B, =(3§f\fﬂg where ‘g\v ={X |Xel X< \y(X)}

denotes the domain of extensivity of y and ﬂw = {X [ Xed w(X)< X} denotes the domain of

anti-extensivity of y.

Corollary
The middle element o is the only strong filter y, with domain of invariance 8, such

that {<y<E,.

It turns out that the middle element is the idempotent limit of the successive powers of a mapping called

the morphological centre which is defined in the next section.

3.6. Self Dual Filtering - The Morphological Centre

‘The most striking difference between morphological filters and more conventional filters, such
as convolutions (weighted moving averages with positive weights) and order statistic filters, is that they
have the ability to treat the positive and negative features of an image differently. "In practice this
selectivity is often found to be an advantage; it allows us to extract light details on a dark background (or
the opposite), and to fit the filter very accurately to the type of image under study” (Serra, 1988, p. 159).
Convolutions and order statistic filters are self-dual; i.c. W(~f)=-y(f) where W represents the filter
and f is a real-valued function with domain in R". Self-duality is not an intrinsic property of
morphological filters however. For example the grey-scale opening is clearly not self-dual, i.e.
8(-f.8)=-0(f.g), because in fact B(-f,g)=—C(f.Z) (Proposition 5). In situations where image
features are sometimes darker than the background and sometimes lighter, self-dual filtering is desirable

(e.g. to attenuate salt-and-pepper noise). The morphological centre is a sclf-dual mapping that retains
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the advantages of morphological filtering, such as compatibility with anamorphoses (for FSP

morphological filters - see section 2.5.4.); a property not shared by convolution (Serra, 1988, p. 159).
Definition of the morphological centre requires that the underlying object space (£,<) be a complete

distributive lattice. It follows that if the lattice of operands (£,<) is a complete distributive lattice then so

is the lattice of operators (8,<) (Serra, 1988, p. 164). The following proposition establishes a new kind
of partial order relation, denoted -l<. that permits the comparison of two morphological filters on the

basis of closeness (w.r.t. the ordering <) to the identity mapping. The relation <y, indicates that

the mapping v, is closer to the identity mapping than y,. The poset (0.-|<) defines an inf semilattice®

with the identity operator I as the null element. For a family of mappings in 6 the morphological centre
is defined to be the infimum w.r.t. the ordering nt

Proposition 12. The morphological centre.
If (8,<) is a complete distributive fattice then for the ordering -|< defined

Iny, <lay,

Tvy, <Ivy, for all pairsy,,y, €6,

wl—,ﬂvz@{

(@.-l<) is a complete inf semnilattice. For a family {w,—}. y; €0, in this semilattice the infimum

B is called the morphological centre and is given by

B=inf y;
6.0

for sup and inf in the lattice(8, <).

Definition 33. The morphological centre (Serra, 1988, p. 164).
If (8,<) is a complete distributive lattice and £',.{'e 6 such that £'<I<{’ then there exists

a unique mapping e 8 called the morphological centre determined by
B=(Ag)vE=(1vE)at,

provided there exist £,Ce 8 with
G<€,  &=(IAL),  {=(IvQ).

6 An inf (resp. sup ) semilattice is a poset (£,R) for which the set {X,Y} has an infimum (resp.

supremum) for all X,YeZ. A poset that is both an inf and sup semilattice is therefore a lattice.
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The domain of invariance of B is given by & = lggﬂlﬂc.
Remarks
(i) In proposition 12, E = vy, and{ = Ay,.

(ii) The following system of inequalities can be deduced from Definition 33:

IAE <P <E,
{C%B-dv?;,

Hence P is a central mapping in the sense that it is between £ and &; i.e. {<fB~E.

Though B is a selt-dual mapping it is not necessarily idempotent. The quest for idempotence leads to the

following criterion (Serra, 1988, p. 166) that cnsures that as » increases the successive powers
B?=PoB,...,B" =P"'of become more and more active’; i.c. they form an increasing sequence
w.r.(. the ordering < viz. B? ~I<B3...~l<ﬁ".

Proposition 13.
Let {\y,»} be a family of filters in 8, €= Vvy,, {=Ay,, and f§ be the centre of the v,
then the sequence of successive powers B” is increasing for the ordering < if for all integers n,

such that 0 < 1 < o0, we have
Co= "V LoBt <E, = A Eopt
= V (o - = Ao .
" k=0 " k=0

" is then given by
B =(1ng,) VL,

In addition the domain of invariance of B" is the same as that for P.

Remark

"There always exists an ny << such that B""” =B™ and this maximal itcration is a

[morphological] filter" (Serra, 1988, p. 168).

The preceding theory can be generalised by considering an arbitrary mapping 8e 8 in licu of the identity
mapping I. This leads to the ordering -; defined

{BAW2-<9A\p,

vy, <6vy, for all pairsy,, y, €8.

ViZ¥ <

7 Given y,{e 8 the mapping V is said to be more active than { if C'f y.
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The preceding definition and propositions remain valid provided 6 is substituted for I. So for instance

the niorphological centre of the family {\pi}, y; €, w.r.t. the mapping 6, is given by

Bs =(0AE)vE=(8vL)AE, where £ = vy, and { = Ay,

Note, however, that the domain of invariance of B, must be expressed differently viz.

Q(Bo ) = m9 En lge (©),

where B, (y)={X | X e 2, 8(X)<w(X)} and B,(y)={X | X e £, w(X)<6(X)}.

Examples

)

(ii)

Let y be an arbitrary opening and @ be an arbitrary closing on the complete distributive lattice (£,<).
Letting E=@ and {=y, then {<E is true (because y<I<@ by definition). Furthermore £'=(Ing) and

{'=(Ivy) and so &'<I<{’ is satisfied. Hence Definition 33 is applicable and the morphological centre
is given by P=(IAE)vi=(Ingp)vy=Ivy=1. So trvially the identity mapping is the

morphological centre between ¥y and ¢.

Let € be an inf-overfilter so that E=E(IAE) implying that E<EE. Let { be a sup-underfilter so that
{=L(1v{) implying that {{<C. Recall that IAE <P <1v{ (sce the remarks under Definition 33)

which implies {Serra, 1988, p. 170) that
L GE=<EB=<C=L(IvE) < E=E(IAE)<EP<EE ...
This satisfies the requirements of Proposition 13. For n=1,
B=(1nE)vL, becausel, = a{EB’}=E1=E, and{, = v{tp°}=Ci=¢.
For n=2,

&= AL = A[EEB) =& and T, = v EB* = VILLB} =C. S0 B =(1AE;)vE, =(1AE)VE.

in this case P is idempotent and is therefore a morphological filter. As an illustration (see Figure
19), let E=g@yp and {=ypy where y is a grey-scale opening by the unit square SE (i.e. 3x3 pixels),
and ¢ is the dual closing. Now because openings and closings are strong filters they are at the same
time inf-filters and sup-filters. By way of Propositions 10 and 11 the composition @yg is a sup-filter

and the composition ygy is an inf-filter, and furthermore ypy<@yp; i.e. {<€. Now an inf-filter is
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also an inf-overfilter and a sup-filter is also a sup-underfilter (see the remark under Definition 31).
Consequently the centre is given by B=(InQyp)vygy. Moreover the middle filter ¢ between & and {
is the idempotent limit of B". In this case idempotence is reached at the first step so that
o=B=(Ir@yp)vypy. In Figure 19, B is compared with a 333 moving average, and a 3x3 median
filter. To facilitate visual comparison the morphological gradient is displayed for each of the
methods of filtering. The gradient is defined to be [49( 5 B)—C( f,B)],where B is the unit cross SE
(i.e. consisting of 5 pixels). (Note: to produce grey on a white background the grey-maps for each of
the gradient images have been reversed). For the gradient image of the moving average, contours
are blurred. The gradient image of the median filter is much better though some noise is still
cvident top right. The gradient image of the morphological centre, however, is the best; it exkibits

sharply defined contours and the best noise attenuation.
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(a)

(b) ©

(d) )

Figure 19. The morphological centre.

(a) Original image f of the Mona Lisa.

(b) Morphological gradient of f.

(c) Morphological gradient of the 3x3 mean filtering of f.
(d) Morphological gradient of the 3x3 median filtering of f.

(e) Morphological gradient of the morphological centre B=(IA@y®)vy¢y, where
v=0(f,B) and ¢ =C(f,B) and B is the unit square (i.e. 3x3 pixels).
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3.7. Alternating Sequential Filters

Sternberg (1986) introduced the iterative morphological filter for the purpose of attenuating
*image noise without adding grayscale [sic] bias" (Sternberg, 1986, p. 345). It is an unfortunate fact
that the application of an opening followed by a closing generally produces different results to the
product of a closing followed by an opening. The iterative morphological filter consists of iterations of
grey-scale open-closings or close-openings using an increasing family of homothetic convex SEs such as
spheres of increasing radii. Sternberg's iterative morphological filter has been generalised by Serra
(1988) in his theory of alternating sequential filters. The alternating sequential filter (ASF) is defined

as follows.

Definition 34. The alternating sequential filter.
Let {yl} <@ be a family of openings and {(pl}C@ be a family of closings dependent

on the parameter A e R” such that A2p =y, <y,and ¢, <9,. Furthermore, assume that

both y, and @, are d-continuous for all A. Next, define

Mk(k,k')=ml... Ly,

Mhsig-ant
where X'2A 20, m, =v,9, and 0<i<2". The operator

M =M} =/‘\M,(X,7L'),

is a morphological filter called an alternating sequential filter of primitives y and ¢ and with

bounds A and A'.

Remarks
(i) {Yx} is a size distribution and {q)l} is an anti-size distribution (sce section 2.4.5.). The

two familics are chosen independently of each other and hence v, and @, arc not

necessarily duals;
(ii) The ASF M is {-continuous (Serra, 1988, p. 206) (see Theorem 3);

(iii) For A >yt = my my, < m, and my <mymy .

proof
Y, <1 becausc any opening is anti-cxtensive

= YuPu <Py

= 0, Y, Py < 0,9, because @, is increasing

= 0¥,y < ¢, because 9, ¢, =9, (property of anti-size distributions)
= YVaPa Y@y < Y29, because v, is increasing

s m)‘mu < ml.

I=< ¢, because any closing is extensive
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= Y, < Y,9, because v, is increasing

= TuYa < TpPuVa

= Ty < VuPuTa becanse Yu¥a =Y (property of size distributions)
= Y20 2 Y@ Y0

Y = muml '

It follows therefore that X2k =M, <M,. Hence for increasing &, M, decfines a

decreasing sequence of morphological filters; “therefore we naturally introduce the
infimum w.r.t. Xk of the M, " in the definition of M;_" (Serra, 1988, p. 205).

(iv) Using the relations in (iii) it is casy to show that M,M, =M, ; i.e. idempotence.

(v) When A'=A then teivially M’f =m,.

(vi) In the Euclidean context if the primitives y and @ are u.s.c. then the ASF M is also u.s.c.
provided that M, is the product of a finite number of factors m (Serra, 1988, p. 206). In
addition "any division pracedure performed on the segment [AX'] leads 1o the same ASF

M;" . .. pravided that the set of indices associated with the procedure is dense on [AMN']"

(Serra, 1988, p. 207).

Properties of ASFs (Serra, 1988, p. 208)
Provided the primitives v, and ¢, arc u.s.c. it follows that

(i) IfA”2A"24>0 then M} M} = MY M} = MY M} =M} (absorption laws);
The absorption laws are generally not commutative so that M;_"Mf # M;:ﬁ; it is only true
that M} <MYM;}

(ii) In general the product Mi‘fM%: is not a morphological filter unless two of the four values
of A are fixed as in (i);

i) A" 2A2A>0= M;‘-"M"' = Mf (transitivity law);

(iv) For any A between zero and A, v, < M} <7¥,@, . Furthermore the ASF converges t0
¥, @, as A—A' (Serra, 1988, p. 210).

3.7.1. Derivates of the ASF

Replacing m, by one of the other three elementary products ny, =@,Y,, 1 =¢,Y,@,. or

5, =Y,9,Y, in the definition for M, (A, X'} (Definition 34) leads to the derivative morphological filters

Ny, R),f, and Si" respectively.  Serra (1988, p. 209) has shown that as k—ec the factors in the

expressions for these derived filters can regrouped so as to reveal a direct relationship with Mf. For

instance as k—eo the filter Nf converges to (p;‘.M;‘"yl. Consequently

NY =Miv, RY =M}, and § =My,
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Other types of derived filters are obtained by reversing the order of the factors m, in M (A, 1');
i.e. let A’SA and hence the indices now decrease. This produces a new type of ASF with different
properties to those of the ASF of Definition 34. M k(l, l‘) no longer defines a decreasing sequence of
morphological filters. However Serra (1988, p. 209) shows that if one begins with the factors n, then
A>p=>m <mn, andmym <n, and so K2k =N, <N, (the derivation is similar to that described in
the previous remarks). Definition 34 is now applicable and hence for O<A'<A, N;" is an ASF.
Furthermore the definition also extends to the derived filters Mf =71.N§'(pl, Ri' = N%'(pl,

and Sf =yl.N§f (as before). The properties accompanying Definition 34 still hold true; however the

inequalities for A must be reversed; i.e. A” 21’2 X >0 becomes 0 <A” <A< A.

Consider now the composition M’}‘.Mf of two u.s.c. ASFs when either A or A’ is fixed; i.c. the
product of two ASFs such that one is defined for increasing indices and the other for decreasing indices.
Serra (1988, p. 210) shows that whilst it is only true that m, «M?,‘Mg {by convention he sets A'=0), the

reverse composition I('Il = M({Mé‘ is in fact idempotent and a morphological filter. Moreover <l\~dl,o> is

a commutative semigroup (sce the remarks following Theorem 4) of morphological filters. In summary:

Theorem 12
For the u.s.c. primitives ¥, and @, the product M, = M’{“M’i“. Ain [ko.m). defines a

commutative semigroup of morphological filters that satisfies the following law of composition:

M;‘Mu = MSU[‘LM)’ k'“‘ in [ko,oo)A

Moreover M, is also u.s.c.

3.7.2. Digital ASFs

For digitisation purposes consider the ASF M;" for which onc of the bounds is zero and the
primitives are the digital openings and closings of Chapter 2. The digital versions of the ASFs Mg and
M% are the ASFs M; = m,...m; and M’ =m;,...m, respectively. Following the notation of Serra (1988)

the ASF M, (A) = mymy, ,my,o4...m; and MY(A) = mm,_ym;_y,...m,.

Examples:
o M, (2)=mmy...m_ym; and M(2)=num_,...mym
Y 7
M,(2) =M, (2)M’(2)
= mymymsmymymgmymn,
= nymsmsim, nighly iy

=1101Y3P3Y sPsY7P7YsPsV P17 1P

R;(3)=N;(3)y, and R'(3)= (PiMi(3)

=mny.. m_3n0; = @ ny_y...myny
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Ry(3)=R;(3R7(3)
= Mty QqPormynt i,
= @1Y194Y497Y7{9797)Y797Y 494 Y19y
= 0,Y19474(97Y797Y7)9,7494Y,9, (idempotence of closing
= @1Y194Y4P7Y797Y4Q4Y @, (idempotence of open-closing)

Remarks
(i) Sternberg's iterative filters have the form
M) =Y,0,-..7,0,7,9, and  N(1)=07,...0,7,9,,
where vy, is an opening by sphere of radius { and ¢; is a closing by a sphere of radius i.
(i} Schonfeld and Goutsias (1991, p. 22) have developed a procedure for choosing the optimal

parameterisation of an ASF for removing noise from a corrupted binary image.

Example

Mehnert, Cross, and Smith (1993) employ a simple ASF in an algorithm designed to extract
(segment) the subcutaneous vascular network from a digitised thermograph of the back of a hand. The
first stage of the algorithm (see Figurc 20) involves clipping the original image (to isofate the region on

the back of the hand containing the venous network) and normalising its background (using the tophat

transform). The second stage of the algorithm employs the ASF M'(1) = y,9,...Y20,7,9,. where v, is
an opening and ¢, is a closing by a sphere of radius /, to eliminate noise and artefacts including hair,
skin pores, and pigmentation. The final stage of the algorithm involves thresholding the ASF filtered

image to obtain a binary image of the vascular network.
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(a) (b)

(c) (d)

() )

Figure 20. Segmentation of the vascular network on the back of the hand.

(a) Digitised thermograph of the back of a hand.

(b) Distance map (measuring distance from a foreground point, i.e. part of the hand, to
the nearest background point) of (a).

(c) Image (a) clipped according to distance.

(d) Tophat transform of (c).

(e) The result after applying a close-opening alternating sequential filter (ASF),
employing spherical structuring elements, to the image in (d).

(f) Grey-level thresholding of (e).
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3.8. Multiple Structuring Element Filters

Though "morphological openings were originally devised for size distributions . . . at first their
main use was in image cleaning [i.e. noisc removal}” (Serr«, 1988, p. 101). A geometric interpretation
can be given to the opening or closing of an image by a SI3. For binary images the opening can be
visualised as the sliding of the SE around the interior of the image (i.c. within foreground features).
Those parts of the foreground into which the SE is unable to fit, e.g. sharp corners and particles smaller
in size than the SE, are removed (i.c. replaced by background). Similarly the closing can be visualised
as the sliding of the SE around the exterior of the image (i.e. within the background). Those parts of the
background into which the SE is unable to fit are removed (i.e. replaced by foreground). For grey-scale
images the opening can be visualised as the sliding of the SE along the underside of the brightness
surface of the image. Wherever the SE is unable to penetrate, the surface is smoothed over. Similarly
the closing can be visualised as the sliding of the SE over the top of the brightness surface. Once again
wherever the SE is unablie to penetrate, the surface is smoothed over. In summary, for binary images the
opening removes features too small to contain the SE. The closing performs in exactly the same way but
acts instead on the image complement; i.c. the background. For grey-scale images the opening has the
propensity to remove positive structures (peaks) whilst the closing tends to remove negative structures
(pits and ruts). The opening or closing employed in the tophat transform for instance, suppresses all the
positive respectively negative details smaller than the SE. The use of a single structural opening or
closing to remove noise is effective only when the noise to be attenuated is significantly smaller than the

important image details. However

when an image contains very fine detaii it is neccssary to suppress the noise without blurring or
removing the fine image detail. Unfortunately, the use of one structuring element will seldom
meet this requirement. A small structuring clement will not remove the noise effectively. a
larger structuring clement will eliminate finc details along with noise (Song, Stevenson, &

Delp, 1990, p. €8).

If the final goal of the image processing is pattern recognition then this loss of detail is intolerable.
Song and Delp (1990, p. 308) state that "combinations of morphological operators with other set
operations as well as the utilization [sic) of multiple structuring elements can enhance the performance
of morphological-based fiiters”. Sternberg’s itcrative filter is one of the carliest examples of multiple-SE
filtering. Stevenson and Arce (1986) introduced the 2D CO filter consisting of "a combination of
openings and closing [sic] with one dimensional lines as its structuring elements" {p. 358). Specifically

the 2D CO filter of order n is defined:

y'(a)= |0 ( N f(A,B?)}B} for binary images, and

Bjer” |\ Bfes
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v (f)(x) = max ﬂ(( min ( B} )),B; }(x) for grey-scale images,

e \\pfe)"

where A eMZ?), f:Z* 5 2Z, and the B eMZ?) are the linear SEs, comprising n+1 adjacent and
p

identically valued points, depicted in Figure 21.

B,

n n
B, eooooeoooo0e B,
06000®00080
00@00B00800
000QO0®OB000
00008©8®0000

00000060000 B

Figure 21. The SEs (for the square grid) used by the 2D CO filter.

Stevenson and Arce (1986, 1987) have analytically derived the output density function for the first-order
2D CO filter and have used Monte Carlo trials to derive output distributions for higher order 2D CO
filters. The authors have compared the 2D CO filter with equivalent-order median-type filters and have
concluded that it does "not have as much noise suppression as any of the median-type filters . . .
examined [square median, cross median, max/median]” (1987, p. 1304). However "since the structure
(i.e. edges and geometry] preserving characteristics of the 2D CO filter are much better than any of the
other filters, it is possible to use higher order 2D CO filters, to obtain higher noise suppression, without

significant structore loss" (1987, p. 1304).

Recall that the supremum of several openings is yct another opening and that the infimum of
several clesings is yet another closing (Theorem 5). The 2D CO filter thus has the form ¢ (see section
3.4.1.). The filter generalises to what shall be called the generalised CO filter (Figure 22). From
Theorem 5 it is evident that a generalised OC filter can also be deflined (Figure 23). Note that Stevenson
and Arce (1986, 1987) definc only a 1D OC filter. Even a later paper by Song, Stevenson, and Delp
(1990) fails to acknowledge let alone define a 2D OC filter. The generalised OC and CO filters are

defined as follows:
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Definition 35. The generalised OC and CO filters.
Let {y,} <0 be an indexed family of openings and {(p j} c @ be an indexed family of

closings, where i, jel. Then

i)y {X)= /]\cp ](\{yi(X)) is a morphological filter called the generalised OC filter, and
!

(ii) w(X)= \_/y,-(/l\ ® ](X)) is a morphological filter called the generalised CO filter,

where Xel.

sup V)

Figure 22. The generalised CO filter.

X — @ inf }F—>5X)

— 7, — @

n

Figure 23. The gencralised OC filter.

A generalised OC filter is used in the segmentation algorithm detailed in the Alzheimer's discase case

study of Chapter 6.
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Several ou:cr filters introduced by Song and Delp (1990) are just particular cases of Theorem 5,
or the generalised OC filter. For example they have proposed the following two filters for noise

reduction:

y(A)= U 8(A.K;) gAa)=) {A,K;), and the composition {oy for binary images, and

W(f)=max 8(f.K;), Z(f)=minC(f,K;), and the composition Zo ¥ for grey-scale images,
I !

where the {K;} are the eight SEs:
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3.9. Generalised Morphological Filters

Openings, closings, open-closings, close-openings, and the generalised OC and CO filters very
effectively remove impulse noise. Impulse noise is characterised by "isolated clusters of pixels whose
values are cither much higher or lower than values of neighboring [sic) image pixels” (Song, Stevenson,
and Delp, 1990, p. 68). When it comes to removing non-impulse noise these filters do not perform very
well.  Linear filters on the other hand arc effective though they tend to blur edges and contours.
Motivated by the desire to combine the noise attenuation properties of linear filters and the geometry
preserving properties of morphological filters, Song and Delp (1989) devised the generalised
morphological filter. The filter “consists of a cascade of two stages, each of which involves linear
combinations of the outputs from one type of basic mcrphological operator using multiple structuring

elements” (p. 992).

Definition 36. The generalised morphological filter
Given an  image f:ZZ-;E, a family of structuring elements

J824-e s } st g1 22 - Z, and a set of real constants {0, et,...., " o =1},the output
81-82 &n i H 2 n jp o d p

y from the first stage of the filter is given pointwise by

y(x)= Zaiym(x), where y;;,(x) is i - th largest value of the scl{ﬁ(f,gj )(x) lj = 1.2,---,)1}.

For another sct of real constants {B,,Bz...‘,Bn Z;B,- = 1}, and the output y from the first

stage, the output of the second stage of the filter is given pointwise by
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[1
2(x)= Zﬁiz(i)(x)’ where z;;, (x) is i - th largest value of the sct{@(y.g, )(x) }j = 1,2.-»-,n}.

i=1
A block diagram of the filter is shown in Figure 24,

Remarks

(i) The generalised morphological filter is not a morphological fiiter because, in general, it is not
idempotent.

(i) The 2D CO filter of Stevenson and Arce (1986, 1987) corresponds 1o the case where

1 fori=n 1 fori=1 L. L. .
o = L. Bi= .. Inthis instance the filter is idempotent and is therefore a
0 otherwise 0 otherwise

morphological filter.

(iii) Setting «; =B; =—, Vi, "an averaging version of the filter is obtained. Since the outputs of
n

morphological operators contain structural information, the averaging process applied to these
outputs will result in reduced blurring of geometrical image features” (Song, Stevenson, & Delp,
1990, p. 68).

{(iv) Another type of gencralised morphological filter is obtained by changing the order of the two stages;
i.e. performing openings in the first stage, and closings in the second. "The choice of the order of
the two stages is problem dependent” (Song & Delp, 1989, p. 992). Naturally the 2D OC filter turns
out to be a particular case of this new filter.

(v) The result of an opening followed by a closing is generally not the same as that of a closing followed
by an opening. Grey-scale bias exists in both these compositions as a result of the anti-extensivity
and extensivity properties of the opening and the closing respectively. Consequently the generalised
morphological filter is also biased. However, "since the sizes of the multiple structuring elements
used are usually smaller than the single structuring clement used in traditional morphological
filters, the bias problem for the filters is not as significant as with the traditional [close-opening or

open-closing] filter" (Song, Stevenson, « Delp, 1990, p. 68).

) closl;g by r*>m:>enigng by
1 1
closing by S | _\jopening by s
f%_i % o ! % o]
R R
T T
| closing by opening by
1 e, 4,

Figure 24, The generalised morphological filter.
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3.10. Soft Morphological Filters

Koskinen et al. (1991) have modified the definitions for (discrete) FSP morphological operators
to creatc a morc general class of operators, called soft morphological operators, that includes the
standard definitions as a special case. These new operators maintain most of the properties of their
standard counterparts but "are less sensitive to additive noise and to small variations in the shape of the
objects to be filtered" (p. 262). The behaviour of the soft operators can best be described as that of the
standard operators where the usual SE has been replaced by a seft SE comprising a solid core and a soft
or yielding boundary. "The key idea of soft morphological filters is that the structuring set is divided
into two parts: the 'hard centre' which behaves like the ordinary structuring set and the 'soft boundary'
where maximum or minimum are replaced by other order statistics" (Koskinen et al., 1991, p. 263).

Soft dilation and erosion are defined as follows.

Definition 37. Soft dilation and erosion.
Let O denote the repetition operator defined k0A =4, ...,A. For A,Be 0’(22 ) AcCB,
k-times

and f:Z% - Z soft dilation and erosion are defined pointwise:

soft dilation
H(f[B,A.k])(x) = k- th largest value of{kOf(y) l y€ /-\,}u{f(z)

ce(B-4) |

X

soft erosion
E(f.[B,A,k])(x) =k - th smallest value of{kO fO)]ye A,}u { f(2)|ze(B- A)I}

where [ <k < min{[B|/2,]B- Al}, B-A denotes set difference (i.e. points belonging to B but

not to A), and {B] is the cardinality of B.

Remarks
(i) When k=1 and ecither A=B or A=(J then the definitions for soft dilation and erosion are
identically FSP dilation and erosion (sec Relations (8) and (9) of Chapter 2) respectively;

i.e.

51.B)= 8f,[B.B,1])= &f.[B.@.1]) and
&(f.B)=£(f.[B.B.1})=&(f.[B.@.1]).

(ii) Koskinen et al. (1991) actually defined soft dilation as follows:
B(f.[B,A,k])(x) = k- th largest value of{kOf(y) lye A,}u{f(z) |ze(B- A);}'

When k=1 and either A=B or A= this definition reduces to the Minkowski addition
fOB. It is this operator that Serra (1982) refers to as dilation by the SE B. Other

authors, including Haralick et al. (1987), Giardina and Dougherty (1988), and Hecijmans
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(1991) define the dilation of f by the SE B to be exactly the Minkowski addition f®B
(Relation (8)). Obviously for symmetric SEs B, i.e. B=B, the two definitions are
equivalent. Note that Koskinen et al. (1991, p. 264) incorrectly state that soft dilation
(their definition) by [B,A,k] is the morphological dual of soft erosion by [E,.Zx,k]; this is

does hold true for the definition of dilation given in Definition 37.

Properties
(i) Like the standard dilation and crosion soft dilation and erosion are duals viz.

5(£[B.AK) =—E[-1[B.AK]).

(ii) When A contains the origin soft dilation is extensive and soft erosion is anti-cxtensive and
the following is true: £(f,B)<E(f.[B,Ak]) < B(f.[B,A,k]) S 8(f.B) (Koskinen et al.,
1991, p. 264).

(iii) Soft opening and closing are defined in the usual way. Soft openings and closings are
neither extensive nor anti-extensive; in this respect they are more akin to open-closings and
close-openings (p. 265).

(iv) The soft operators are increasing and translation-invariant (p. 264).

(v) Soft openings and closings are less sensitive to impulse noisc than the standard structural
openings and closings (p. 266).

(vi) Soft openings and closings are not in general idemptotent (p. 268).

Examples

(1)

(if)

Figure 25 illustrates the difference between soft and siructural opening and closing respectively. It
is the example given by Kuskinen et al. (191, p. 270) but with a minor correction. In their
cxample the authors correctly derived the soft - :pening and closing, and the structural opening, but
incorrectly derived the structural closing.

Figure 26 compares the result of a standard close-opening with that of a soft close-opening when
applied to an image corrupted with additive noise. The reduced sensitivity of the soft operators to

impulse noise leads to improved noise attenuation.
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Figure 25. A comparison of soft opening and closing with SP opening and
closing respectively. (a) Original image X. (b) 8(X,B). (c) 6(X,[B, A,2]). (d)
G(X, B). (e) C(X,[B,A,2]).

(a)

(b)

©)

Figure 26. Soft openings and closings are less sensitive to impulse noise than FSP openings and
closings. (a) An image f corrupted with additive noise. (b) O(G(f,B), B). (c) O(C(f,[B, A2]).[B, A,2]).

The structuring elements A and B are those of Figure 25.
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3.11. Dolby Morphological Filters
Many audio cassette decks are equipped with Dolby circuits that attenuate the sound reproduced
from the magnetic tape by applying "a severe filter to the high frequencies when the amplitude is low
and a weak one when it is high" (Dougherty, 1993, p. 509). Serra (in Dougherty, 1993) defined a
special type of opening called the Dolby opening. Though this opening is not based on the actual Dolby

algorithm it has a similar purpose — hence the adoption of the name Dolby.

Definition 38. The upper and lower thresholded versions of a function.
Let f:R" —[0,1]. For a given threshold value 4 the lower-thresholded version of f is

defined

{ﬂ(x) = f(x) whenf(x)21,
f(x)=0 when f(x) <1,

and the upper-thresholded version of f is defined

{fu(x)=1 when f(x) > 1,
f(x)= f(x) whenf(x)<t.

Definition 39. Dolby opening.
Let f:R" —=[0,1] and f, denote its lower-thresholded version. Also let y, andy, be

openings by flat SEs such that y, <y, (i.c. the former is more severe than the latter). The

operator
1) =1V 1(£)
is an opening (Theorem 5) zalled a Dolby opening.

Remarks
(i) The opening v,(f) attenuates the positive structures of f (e.g. peaks). The opening yz( j})

less severely attenuates those positive structures of f above ¢;,. Consequently the Dolby

opening (i.c. the maximum of the two aforementioned openings) more severely attenuates
values below #, than those above. In other words detail darker than ¢, is removed whilst

detail lighter than ¢, (and possessing the same geometric characteristics) is retained.

(ii) The Dolby opening and closing (following definition) commute with all anamorphoses
for which \p(fo)= to (Dougherty, 1993, p. 509).
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Definition 40. Dalby closing.
Let f:R" —[0,1] and £, denote its upper-thresholded version. Also let ¢, and ¢, be
closings by flat SEs such that ¢, <¢,. The operator

o(f) =(P|(f)’\‘<P2(f;¢)
is a closing called a Dolby closing.

Remark

The closing @,(f) attenuates negative structures of f (e.g. pits and ruts). The closing

(Y ( f,,) less severely attenuates those negative structures of f below r,. Consequently the Dolby

closing (i.c. the minimum of the two aforementioned closings) more severely attenuates values

above 1; than those below. Hence if ¢ modifies geometric detail lighter than ¢, the same detail

below 1, will be modified to a lesser extent. An example of this type of closing is illustrated in

Figure 27.

Two other variants of the thresholds defined in Definition 38 are:

f(x)=f(x) whenf(x)>1t, .
f(x) =1, when f(x)<1,’

{.ﬂ,’(x) =1,  whenf(x)<1t,
£i{x)=f(x) whenf(x)>1,.

This gives rise to the opening Y'(f) =Y,(f) vV y,(f/). and the closing () =,(f) A,(f,). Openings

and closings of this type act in an opposite manner to the Dolby openings and closings, respectively,
already defined. "For example, the action of ¢’ is fine above ¢, and coarse below” (Dougherty, 1993, p.

510).
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(a) (b)

(©)
Figure 27. Dolby closing.

(a) Original image f — a digitised light micrograph of post mortem brain tissue from an Alzheimer's

patient (8-bit grey-scale). Electronic noise introduced during image acquisition is clearly evident.
(b) The threshold set {xlf(x)Sto} (black values) where £, =120. This value was determined

manually from the intensity histogram of f.
(c) The Dolby closing ¢ = min[@(f, B),(f(f,,,C)], where
{ £f,(x)=255 whenf(x)>120

, B is a disk of radius 3 pixels, and C is a disk of radius | pixel
f,(x)=f(x) whenf(x)<120 P p

(see Figure 44).
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CHAPTER 4.

DIGITAL MORPHOMETRY

4.1. About This Chapter

The quantitative measurement of image features, digital morphometry, is in fact a two-step
process: “geometrical transformations and then measurements” (Serra, 1986, p. 292). The goal of the
first step is to partition the domain of the (grey-scale) image into subsets representing the features to be
measured. This is classically referred to as segmemtation.  When the grey-levels of the objects to te
measured are quite different from those present in the rest of the image, thresholding is used.
Thresholding is the process of obtaining the threshold sets (see Footnote 3) of the image f for several
chosen values of o, Often these values are chosen manually using the histogram of the grey-levels in f.
The minima of the histogram correspond to possible threshold values. In situations where the accurate
location of minima proves difficult, the contrast of f can be improved by morphological filtering and/or
the application of traditional radiometric and spatial enhancement techniques. Additional information
can be used in conjunction with the grey-level histogram to assist with the choice of threshold values.
For instance the grey-level histogram of the gradient of f (sce section 6.4.4.) can be superimposed on the
grey-level histogram of £ Another more elaborate technique, applicable when the histogram is bimodal
(one peak representing the objects of interest and the other the background), involves choosing the
threshold value for which the entropy (measure of information content) of the grey-level histograms for
the foreground and background is maximised (Abutaleb, 1989, p. 23).  "Unfortunately, all these
methods fail when the same phase [feature] exhibits different [grey] levels at different places" (Serra,
1982, p. 458). One then has to resort to topological features of f — this leads to morphological
segmentation using the watershed transform and homotopy modification (see Meyer & Beucher, 1990;

and Dougherty, 1993).

After segmentation the connected components (objects or features) of the resulting binary image
can be counted and measured. This chapter examines the elementary featurc parameters
(morphometrics) that can be derived using binary morphological opcrators. In particular the
connectivity number, area, and perimetric measures are defined for images digitised on the square grid.
We most naturally associate these quantitics with convex shapes. Hence the chapter begins with an

examination of the convex set as a model for isolated particles or objects within an image.
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4.2. The Convex Set Model

It is important to realise that we do not "want to force convexity on natural objects (they are
often too complicated)" (Serra, 1982, p. 93). We choose to work with the class of compact convex sets,
called ovoids, because if X and B are ovoids then AX forA eR, AnB, and X®B are ovoids. Indeed
set convexity is preserved for all of the basic morphological operations: dilation, erosion, opening, and
closing. Though in general the union of two ovoids does not yield another ovoid, their dilation does
(Serra, 1982, p. 96). The failure of the union operator to uphold set convexity turns out to be a most
useful property. The convex ring, i.e. the class of sets that can be decomposed into the union of a finite

number of ovoids, is an archetype binary image (set) for random collections of particles.

4.2.1. Minkowski functionals
The morphometric quantitics that can be associated with ovoids are termed ovoid functionals.

A non-negative ovoid functional m:R" — R has the following properties:

@) isomerry invariance: m{(t(X)) = m(X) where :R" — R" is an isometry$,
(i) increasing: if X 'Y thenm(X) < m(Y),
(iii) C-additivity: m(X)+m(Y)=m(XuY)+m(XnY),

where X and Y are ovoids in R".

Hadwiger (1957) showed that all ovoid functionals can in fact be written as linear combinations of only
a small subset of them called Minkowski functionals (cited in Serra, 1982, p. 102). Every ovoid X eR"
has n+1 Minkowski functionals. The i-th order Minkowski functional of R" is denoted W". The
functionals are defined according to a recurrence relation on sub-dimensions of the space (sece Appendix

C). Table 2 lists the morphometrics generated by the Minkowski functionals for R° to R®.

8 An isometry of R" is a distance preserving mapping of R" into itself. Translations, rotations, and

reflections (in lines) are examples of isometries in R%(Allenby, 1983, p. 233).
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Table 2. The morphometric quantities generated by the Minkowski functionals W™,

Minkowski
functional W n-dimensional space
of order i
0 1 2 3
0 N (X) L(X) A(X) Vex)
1 N (X) Ux) SX)
2 NPX) MX)
3 NI (X)

N denotes connectivity number, L length, A area, U perimeter, V volume, S surface area, and M

norm.

4.3. The Hit-or-Miss Transform
All of the algorithms, transformations, and feature parameters (morphometrics) stemming from
binary mathematical morphology can be traced back to a single ancestor: the hit-or-miss transform of

Serra (1982), The following definition characterises the transform.

Definition 41. The hit-or-miss transform.
Given A,B,,B, elP(E"), where E = R or E = Z, the hit-or-miss transform of A by the

disjoint structuring elements B, and B, is defined

HMT(A;B,,B,)=E8(A.B,)&(A°,B,).

Remarks
(i) Recall that £(A,B) ={x|BJr c A} (see remarks following Definition 20). Consequently the

HMT(A;B,,BZ) is the set of all pixels {x} such that the translates (B,)r arc subsets of A
(i.c. they hit A) and the translates (Bz)Jr are subsets of A® (i.c. they miss A).

(ii) Serra (1982) introduced the transform as the fir-or-miss transform though perhaps it
should have been called more appropriately the hit-and-miss transform; indeed Giardina

and Dougherty (1988) refer to it as such.
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hit-or-miss transform

eroslon

parameter estimation
Minkowski functionals

homotopic skeletons
morphological filtering

Figure 28. The hit-or-miss transform is the common ancestor of all of the
algorithms and criteria of mathematical morphology. The dual operators

are not shown {adapted from Serra, 1986, p. 290).

As Figure 28 shows, the definition of the hit-or-miss transform leads directly to sequential thinning
algorithms, the erosion operation, and parameter estimation. The thinning of A by the disjoint
structuring elements B, and B, is dcfined: THIN(A;B,,BZ)= An(HMT(A;Bl,Bz))C; i.e. the set
difference between the original image and its hit-or-miss transformn. Sequential thinning using a
sequence of pairs of disjoint structuring elements can be used to obtain homotopic (connectivity relations
are preserved) skelerons (see Mehnert, 1990, p. 86). The crosion operation is a special case of the hit-or-
miss transform; the case when B, is the empty set, i.e. £(A,B)= HMT(A;B,D). This follows from the
fact that the empty set is a subset of every set and hence £(A,@) = {xl@, c A} =E". By duality w.r.t.
complementation, one obtains thickenings from thinnings and the dilation from the erosion. Finally the

hit-or-miss transform leads to the estimation of the parameters defined by the Minkowski functionals.

4.4. Connectivity Number

The number of connected components in a binary image constitutcs the simplest morphometric
quantity. Connected component labelling algorithms (e.g. Manohar & Ramapriyan, 1989) individually
label each connected component with a unique value. Effectively this transforms the binary image into a
grey-tone image such that each connected component of the original binary image is uniquely identified
by a grey value. This not only yields the number of connected components but also makes it possible to
deal with each component scparately. Generally such labelling algorithms are interative and are thus
computationally expensive. Mechnert (1990, p. 142) introduced a two-pass algorithm; numeric labelling
of 4- or 8-connected components and the construction of equivalence trees takes place in the first pass,
and a relabelling (using the equivalences established in the first pass) of the components takes place in
the second pass. Though this algorithm is relatively fast, it requires additional memory and overhead to
support and maintain the cquivalence trees. If a particle count is all that is required then it is more

sensible to calculate the connectivity number (requires only a single pass).
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Proposition 14. Connectivity number

The connectivity number N of the binary image A < Z? is given by

N(A—nl0+n10 n]1f04 tivit d
)= 0 0 0 1 |0 r 4-connectivity, an

I 0 1
N(A)=ﬂ{ }-n{l O} for 8-connectivity,

00

where 7{*} denotes the number of configurations of type * in the image A (blank entry matches

both 0 and 1).

These expressions (Serra, 1982, p. 201) derive from Euler's formula for finite planar graphs. A "graph
is planar if it can be embedded in the plane; that is if it can be drawn in the plane so that edges intersect

only at endpoints” (Townsend, 1987, p. 216). Euler's formula is
V-E+F=1+N

where  V is the number of vertices,
E is the number of edges,
F is the number of faces (i.e. the number of regions the plane is divided into by the graph)

N is the number of connected components.

A finite planar graph can be constructed for a binary digital image by joining foreground pixcls

(vertices) with edges to denote connectivity.

Example

Consider Figure 29. The original image, (a), represents either two 8-connected regions or five
4-connected regions. The connectivity graphs for these two interpretations are (b) and (c) respectively.
For (b) V=38, E=57, F=22 = N=2, and for (c) V=38, E=42, F=10 = N=5.
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Figure 29. (a) Original image X; (b) 8-connected graph of X; (c) 4-connected graph of X.

Proof of Proposition 14 (4-connected case)

For a 4-connected binary image Euler's formula has the form

N(A) =7LE’1_1 —{n{:} +1{1 1}} +n{: :}

E F-1

The fifteen elementary configurations for a 4-connected graph are:

I D S O
2 3 4
e - . e

5 6 7 8

9 10 11 12 13 14 15

First, note that for configurations 1 to 13, V-E+F-1=1  For configurations 14 and 15,

1 0
V-E+F-1=2. Now n{o O} will match configurations 1 to 4 and 6 to 14 ecxactly once, and

configurations 5 and 15, twice. The overcount for configuration 5 can be comrected by subtracting

11
71.{l O} (which only matches configuration 5). The undercount for configuration 14 can be corrected

1 0
by adding 71{0 l} (which only matches -configuration 14). Hence Serra's formula

1 0 1 0 11
N(A):Yl{o O}+n{0 1}—7!{1 O} is obtained. The proof for the 8-connected case is left to the

reader.
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Proposition 14 can be expressed in terms of the hit-or-miss transform as follows:

(i) for 4-connectivity,

SR
N(A)Y=|HMT{A . [
0.0 1 l(].0

HMT{A:‘:: XLO{: jo.o}'
NN

where | % | denotes the cardinality of *; i.e. the number of foreground pixels (1s) in *.

(ii) for 8-connectivity,

N(A)=

4.5. Area

The digitisation process can be visualised as the superimposition of a sampling grid on an
image in R? and the subsequent sampling of intensities at grid points (Chapter 2). In essence, each grid
point constitutes the centre of a square pixel in the digitised image. This implies therefore that a
sampled pixel must necessarily have measurable area. For a square sampling grid with spacing a units
between grid points (Figure 30), cach pixel has area a®. Therefore the area of an image A Z2 is given

by the total number of pixels in A multiplied by a®. In terms of the hit-or-miss transform this can be
HMT{A;[I]O_O,@H.az. This estimator is unbiased (Serra, 1982, p. 220).

expressed as A =1{1}.a’ =

L] A L]
a
®
a
a
L] [}

Figure 30. The spacing between direct and indirect neighbours on the square grid.

4.6. Perimeter
Using results from integral geometry the Minkowski functionals of an ovoid can be related to
either its projections or sections. The following result, due to Cauchy, shows that the perimeter of an

ovoid XcR? is equal to 7 times its average projection length:
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2r
lU (X) =L IL(XIA(x, o)) da (Cauchy relation)
T 21 °

where XIA(x,0t) is the projection of X onto the straight line A(x,a) with direction o and passing
through some test point x (Serra, 1982, p. 105). An cquivalent result, known as Crofton's formula,

relates the perimeter of X to its sections:

n +oo
?L-U(X) = %Ida IN‘”[X e A(x,(x)] dx (Crofton's formula)
0

where N% is the connectivity number and A(x,¢) is a test line in direction o and passing through a
point x. Crofton's formula proves to be conducive to digital interpretation. The first step in obtaining a
digital interpretation of Crofton's formula is to translate the notions of line segments and intercepts in

R? to the space z2.

4.6.1. Line segments and intercepts in 2°

Let p denote the position vector of the point peZ2. This vector is the line segment consisting
of the origin, the point p, and all those (discrete) points on the line joining the origin to p. Similarly,
given p,q €22, the vector ﬁ]) is the line segment comprising p and ¢, and all those (discrete) points on
the line joining pto q. 1If ;3?}) consists of the points p and 4 only then it is a unit vector. In Crofton's
formula the intercepts of XN A(x,a), for a given o, are all those line segments and isolated points

resulting from the superposition of X on the line A (see Figure 31).

Figure 31. The 10 intercepts of XA for the line A indicated.
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4.6.2. Principal directions
In section 2.5.9. it was shown that the square grid admits only four rotations in Z2 (ie.

successive rotations through 90°) and hence there are only two cardinal directions. A more liberal

interpretation of rotations leads to the three principal direct’ons illustrated in Figure 32 (this is not the
only possibility). The unit vectors & and [_3 constitute a basis for Z2. The unit vector ¥, as illustrated, is

the linear combination § = -&~B. The triple (&,ﬁ,?) defines a set of principal directions for Z%. Each
pair ( B) (ﬁ y) and (&,7) is a basis for Z2. Morcover there can be no more than three principal

directions. For instance if §=0&+p were chosen as a possible fourth principal direction then (75)

would not constitutc a basis for Z2 because the vectors are linearly dependent.

Y

Figure 32. Principal directions &, J and 7 for the square grid.

4.6.3. A digital interpretation of Crofton's formula
Serra (1982, p. 221) proffers a digital interpretation of Crofton's formula for the hexagonal

grid. The following is an interpretation for the square grid:

lim _ »
U(X)‘:"’:jazﬂk[“u, 1}].

where P is thc number of test directions, o, is the p-th test direction. ﬂup{*} is the number of

configurations of type * in the direction ¢ p

_ja2t for test dircctions & and fi
p = - .
J2.a.27%  for the test dircction

and « is the distance between direct neighbours of the square grid (see Figure 30).

Note
(i) the o, must be uniformly distributed on the unit circle, and

(ii) the 1 notation can be expressed using the hit-or-miss transform as before.
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Restricting the o, to the principal directions &, B and ¥, it follows from above that

U'(X)=1;-[a(‘na{0 1}+15{0 1})+vZan, {0 1}]

=13£Hn{o 1}+n{(')}]+ﬁ“”{o IH
A

A possible refinement to this estimate, suggested by Serra (1982, p.222), is to double the number of test

directions by taking perpendiculars to @, B and ¥, viz.

Ut [2a(n{o 1}+n ]*ﬁ“(“{o +n{0 '})]
=.’%[ (n{o |}+n }* (”{o *"{0 Jﬂ
za{n{o ;}+n{(')”+7“-5[n0 l}*”{o lH

and 1o average U” and U™ ; iec. J_,-(U'(X)+U"(X)). However "we cannot always be certain that the

t:l s

iy

quality of estimation can be improved by adding U™ (X); the bias carried by U™ is worse than that of

U (due to a larger elementary step)” (Serra, 1982, p. 222).

4.7. Aspect Ratio Correction
When a rectangular sampling grid rather than a square grid is used to digitise an image it is
necessary 1o adjust the area and perimetric formulae to accommodate the change in aspect ratio. The
connectivity number formulae remain unchanged. If the intergrid spacing is as depicted in Figure 33

then an individual pixel in the digitised image is a rectangle with area ab. Consequently the area

esiimator of section 4.5. becomes A =0{1}.ab. The perimeter estimators U’ and U™ become

U™ (X) = aB{0 |}+bn{(l)}+«/;2—:b—2n{0 I}.
U™ (X)=an{0 |}+bn{;}+—§§—éz—[n{o l}+n{0 ‘H
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Figure 33. Intergrid spacing for the rectangular grid.

Directional bias is introduced into both the area and perimetric estimators because pixels are non-square.
In particular, for the perimetric estimators the o, are no longer uniformly distributed on the unit circle.
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CHAPTER 5.

D.L.M.P.A.L.

5.1. About This Chapter
DIMPAL is an acronym for Digital Image Processing and Analysis Language. DIMPAL was
developed as a research tool for the Alzheimer's discase case study documented in the next chapter.
Most of the images in the preceding chapters were produced using DIMPAL. This chapter describes

DIMPAL, its construction, and grammar.

5.2. Introduction
DIMPAL fulfils the need for a PC-based image processing and analysis language suitable for
researching and developing algorithms for a wide range of image processing applications. The typical

shortcomings of commercially available PC-based image processing software are:

° an inability to fully exploit the 32-bit architecture of the PC's 80386 or 80486 microprocessor
because of the underlying operating system, i.c. DOS , or DOS with Windows?;

o an inability to display multiple images and other graphics objects (c.g. histograms and intensity
profiles) simultancously;

° an inability to encode missing values needed to represent non-rectangular images;

e provision of only a limited set of binary and grey-scale morphological operators, ¢.g. only FSP
morphological operators;

° limited or no support for multiple data types;

° limited or no support for user defined operations.

DIMPAL redresses each of these deficiencies.

DIMPAL is a general purpose image processing and analysis language. Strictly speaking it is a

line interpreter capable of understanding and executing equation-like statements. Variables are used to

represent images — or more precisely bound matrices (Appendix A). Functions are used to represent

9 Windows is a trademark of Microsoft Corporation.
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image operations such as histogram equalisation. DIMPAL provides a suite of tunctions for performing
operations including mxn window filtering, contrast stretching, connected component labelling and
measurement, binary and grey-scale dilation and erosion, distance transformation, and skeletonisation
(see Appendix D). Statements are entered at the keyboard and are executed one at a time. Alternatively
a statement can be generated automatically by interacting with the menu bar and dialogue boxes.
DIMPAL also accepts input from ASCII script files containing multiple statements. These files are

created using a conventional text editor such as OS8/2's system editor.

DIMPAL understands two types of statements: assignment statements and command
statements. The right-hand side of an assignment statement, and the actual parameters of a function or
command can be complex expressions consisting of variables, functions, constants. and arithmetic and
logic operators. Assignment statements arc used to create new variables or to overwrite old ones.
DIMPAL offers a varicty of commands (Appendix D) for displaying monochrome and RGB images,
viewing image row and column intensity profiles, generating image histograms, calculating image
statistics, creating GIF (CompuServe’s graphics interchange format) and ILBM (Electronic Arts'

interleaved bitmap) image files, and declaring, listing, merging, and discarding variables.

DIMPAL is written in ANSI C for IBM's Operating Systern/2 (OS/2) version 2.x.  This
operating systerm was chosen because it provides a flat linear 32-bit memory address space (4 gigabytes
of virtual memory of which 512 megabyltes are available for access by user applications), a 32-hit
graphics engine, and pre-emptive multitasking. As DIMPAL is written in ANSI C it can be ported to
other opcrating systems with relative ease; of course operating system dependent routines (e.g. image
display functions) have to be rewritten. At the time of writing DIMPAL has been partially ported to
AIX!0,

DIMPAL comprises several distinct software components (objects). The relationship between

cach of thesc objects is illustrated in Fi qurc 34.

° console window — the primary interface to DIMPAL - behaves like a teletype termiinal (TTY) and

accepts common ANSI TTY control sequences (sec Petzold, 1989, p. 311):

o file manager ~ handles all image I/0 between sccondary storage and memory;

o lexical analyser — extracts tokens such as variable names, operators, and constants from user
input;

° parser — processcs both command and assignment statements (recursive descent parsing);

° symbol table manager — maintains a list of variable names and descriptions (implemented as a
binary tree);

10 ® AIX is » registered trademark of International Business Machines Corporation.



DIMPAL - 96

° command dictionary — list of commands and associated syntax;

° Sunction dictionary — list of functions and associated syntax;

° commands — actual implementations of DIMPAL standard, and user defined commands (c.g.
display);

° functions — actual implementations of DIMPAL standard, and user defined functions (e.g. dilate);

lookup variable

.
SYMBOL. TABLE PARSER ~ LEXICAL
MANAGER _» add/remove variable statement N ANALYSER
COMMAND lookup command statement
DICTIONARY
function call operator call command call
un functi
FUNCTION | fookup function FUNCTIONS OPERATOR COMMANDEJ
DICTIONARY
rexd/write layer rexd layer
s text
/
Coivis f
CONSOLE WINDOW, 1 FiLC MA?!AGER,
N

text

Figure 34. DIMPAL softwarc components.

5.3. Lexical Conventions
A DIMPAL statement is fundamentally a collection of small syntactic units called tokens. In
DIMPAL there are four types of tokens: identifiers, constants, operators, and separators. Particular
instances of tokens arc called lexemes. For example, image and new_picture are instances of the token
identifier. 1t is the task of the lexical analyser to resolve a stalement into its constituent tokens. It
ignores any spaces and tabs (with the exception of spaces between double quotes) in a statement. as well
as anything following a semicolon (which is deemed to be a comment). A formal description of each

type of token follows,

5.3.1. Ildentifiers

An identificr is defined to be a letter followed by a mixed sequence of letters, numbers, and
underscores (_). Upper and lower case letters constitute different letters. Some examples of valid
identifiers are: Plagues, Senile_Plagues, and plaque_23. There are no restrictions on the length of an
identifier. However the Iength of the identifier (name) for a variable is governed by the underlying file

system because each DIMPAL variable is stored as a file with the same name as the variable and the
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extension ./ay (meaning layers). Consequently, under OS/2 variable names are limited to 8 characters
for FAT (file allocation table) partitions, and 254 characters for HPFS (high performance file system)

partitions.

5.3.2. Constants

An integer (constant) is defined to be a sequence of one or more digits (no sign). A real
(constant) is defined to be an integer followed by a period followed by another integer. Alternatively 2
real constant is defined as an integer, optionally followed by a period and another integer, followed by
the fetter e (upper or lower casc), followed by an integer (possibly signed). In extended Backus-Naur

form (EBNF), a real constant has the production:

<real>::=<integer> . <integer> |
<integer> [.<integer>) (E | e) {+ | -] <integer>

Some examples of real conslants are: /23.2, 5.2e-2, and /7e+2. A string (constant) is defined to be any
sequence of alphanumeric characters surrounded by double quotes. The string may not contain the "

character itself.

5.3.3. Operators

All of the DIMPAL operators, except », are a subset of the C language operators. {n DIMPAL
the symbol # represents exponentiation. Table 3 lists the DIMPAL operators in order of decreasing
precedence; e.g. when cvaluating an expression DIMPAL will perform multiplication before addition.

Parcntheses can of course be used 1o override precedence.

Table 3. DIMPAL operators in decreasing order of precedence (top to botiom).

Operator Associativity Description
- ! right to left unary minus, logical negation
* ! % left 1o right multiplication, division, modulus
+ - left to right addition, subtraction
< > <= >= left to right relational operators
== = left to right equal to, not equal to
» left 1o right exponentiation
&& left to right logical AND
1 left 1o right logical OR
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5.3.4. Separators
When an identifier is followed by a left-hand round bracket it is deemed to be a function name.
Double quotes delimit string constants. The comma separates actual parameters in functions and

commands that require arguments. The semicolon marks the beginning of a comment.

5.4. Language Grammar

DIMPAL statements are parsed using a mecthod known as recursive descent parsing (sce
Hunter, 1981; Cockshott, 1990). A collection of recursive procedurcs, which in total constitute the
parser, determine the syntactic validity of a statement based upon the sequence of lexemes gencrated by
the lexical analyser. For instance the sequence resulr, =, imagel, +, image2 determines a syntactically
correct assignment statement.  If the statement is also semantically correct (sce section 5.6.) then it is
evaluated as the recursion unwinds. DIMPAL statements can be described by a Class 2, also called
contexi-free, grammar (see Cockshott, 1990, p. 53). Such grammars are amenable to representation in

EBNF notation. Appendix E lists the production rules for a DIMPAL statement.

5.5. Variables

A variable is a collection of one or more bound matrices (Appendix A). The matrices can be of
differing sizes and data types. Typically the bound matrices represent binary and grey-scale images
sampled on the square grid; but they can be used (o represent any spatial data arranged on a square grid.
In DIMPAL these bound matrices are referred 1o as layers. The describe command prints the details of
each layer of a variable including data type, size, and location in Z°. DIMPAL supports the following
data types: byte. boolean, integer, long, floar, and deuble. These data types reflect those of the C
language. The data types byte and boolean are actually unsigned char. A variable of type byte can store
values in the range [0,255]. A boolean variablc can store only 0 and 1. The sizes of the other data types
arc implementation dependent. For example under OS/2 1.3, integers are stored as 16-bits whilst under
0S/2 2.1 they are stored as 32-bits. Missing value sentinels are provided for integer, long, float, and
double variables. This makes it possible to encode non-rectangular images such as disks and grey-level

spheres.

During a DIMPAL session variables may be introduced in any of the following ways:
o declaration — a variable defined in a previous session may be declared to the system using the
declare command, e.g. declare ("plaques.lay");
= importation ~ several functions permit data stored in other formats to be imported into DIMPAL
and assigned to a variable, e.g. new_variable=ASCII_file("stelts.txt");
e assignment

¢.g. tophat=image[-}dilate({erode{image,disk (5)),disk(5)).
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The command /ist prints all of the variables known to DIMPAL. The bound matrices represented by a
variable are stored in a file on disk (secondary storage); e.g. the variable tophat would be physically
stored in the file rophar.lay. The symbol table manager maintains a binary tree of descriptors for each
variable including associated file paths and names. A disadvantage of this arrangement is that files can
be erased by other processes without DIMPAL knowing. There are two significant advantages however.
The first is that data is not lost when a DIMPAL session is terminated. The second is that a layer of a
variable is loaded intuv memory only when an operation or function is applied to it; this minimises
memory usage (many DIMPAL functions load layers into memory one line at a time — hence very large

images can be processed).

The layers (bound matrices) of a variable are sequentially numbered from 1 to n. o addition
each layer has its own unique identificr. In an expression or function call, a single layer can be
referenced by appending the variable name with a period and then the layer identifier or number.
Example

Suppose that RGB_picture is a variable that has threc layers: red, green, and blwe. The
command

describe (RGB_picture}
would then provide information about each of the layers. The command
describe (RGB_picture. 2) orequivalently describe (RGB_picture.green)
would print information for only the second layer. Commands ard fuections deal with multiple lav -~ in
different ways. For instance, if the layers of RGB_picture arc all of type byte and have the same
dimensions and spatial location, then the command
display(RGB_picture,colour_map(“grey"))
would display three separate grey-scale images. On the other hand the command

composite (RGB_picture)

would display only a single colour composite picture.
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5.6. Expression Evaluation
A DIMPAL expression (i.e. <disjunction> — see Appendix E) is a combination of variables,
layer references, functions, and arithmetic and logic operators. When DIMPAL cvaluates an expression
it evaluates functions and anything in parentheses first, and then performs operations in order of

precedence — highest to lowest (sec Table 3).

When applying operators to scalars (i.c. integer and real constants) the data type of the result is
the highest (i.e. the most general) data type of all of the operands. For example, the resuit of /3 is of
type integer, and the result of 3 + 2.2 is of type double. When the resvlt of an integer constant or the

result of an integer expression exceeds the range of the integer data type then it is promioted to type long.

When applying operators to layers DIMPAL first determines the number of layers that will be
produced. For the monadic operators ! and - the number of layers produced is cqual to the number of
layers in the operand. For example, if picrure is a variable with three layers then the result of ipicrure

also has three layers. In the case of dyadic operators only the following combinations are permissible:

n layers <aperator> | layer
1 layer <operator> n layers

n layers <operator> n layers.

In each case DIMPAL determines that the result also has n layers. For the first case, the second operand
(single layer) is applied to each of the layers of the first operand in scquence thus producing an n layer
result. For the second case, the first operand is applied to each of the layers of the sccond operand in
scquence also producing an n layer result. For the last case, the operator is applied pairwisc:
layer | <operator> layer 1, layer 2 <operator> layer 2, and 5o on. Next DIMPAL determines the data
types of the layers of the result. For logical operators the result alv ays has layers of type boolean. For
example if image! and image2 are single layer variables then the expression image! < image2 yields a
variable with a single layer of type boolean that contains Is wherever imagel is less than image2 and Os

elsewhere. For arithmetic operators the data types of the layers of the result are determined as follows:

unary minus
boolcan and byte layers are promoted to integer

all other types are preserved

layer <operator> integer_constant or integer_constant <operator> layer

result inherits the highest of the data types of layer and integer_constant
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layer <operator> real_constant or real_constant <operator> layer

result has type double

layer <operator> layer

result inherits the highest of the data types ot the two layers

When two layers are added, multiplied elc., the operation is performed entry-wise. Hence
multiplication is not matrix multiplication. A dyadic operation involving a scalar (i.e. a numeric
constant or expression) and a layer implies that the scalar is applied to each element of the layer. For
example if the variable image has one layer then the operation image + 3 * 2 results in the value 6 being
added to each element of image. Whenever a missing value is encountered the result is always a missing

value.

An operalion on a pair of layers is only valid if they have the same dimensions and spatial
location. However DIMPAL can be forced to perform the operation on the intersection of the layers if
the clipping operator is invoked. This is an operator that can be applied to dyadic operators and to
functions. The clipped version of addition, for cxample, is denoted [+]. A clipped function has the
syntax [funcrion)(. . .). At the time of writing nonc of the DIMPAL functions (Appendix D) utilise
clipping. An example of a function that might utilise clipping is a function that performs matrix

multiplication.
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CHAPTER 6.

MATHEMATICAL MORPHOLOGY AS A TOOL
FOR THE MORPHOMETRIC INVESTIGATION
OF NEURITIC PLAQUES ASSOCIATED
WITH ALZHEIMER'S DISEASE

6.1. About This Chapter

This chapter details an investigation of the application of mathematical morphology to the
study of Alzheimer's discase. In particular an image processing algorithm is proffered for the automatic
segmentation and measurement of neuritic plaques (microscopic lesions associated with Alzheimer's
disease) from light micrographs of post mortem brain tissue. The chapter begins with an introduction to
Alzheimer's discase and a description of the hallmark ncuropathologic lesions. This is followed by a
review of a previous investigation undertaken by Bartoo, Kim, Haralick. Nochlin, and Sumi (1988), into
the application of mathematical morphology to the segmentation of these tesions from digitised light

micrographs. Finaily the proposcd digital image processing algorithm is described and evaluated.

6.2. Alzheimer's Disease

Special nerve cells called neurones "arc the fundamental units or building blocks of the brain”
(Kuffier, Nicholis, & Martin, 1984, p. 2). The human brain contains some 10" neurones. The body of
a neuronc is approximately pyramidal or sphernicai in shape. A single long fibre, called the avon,
extends away from the cell body. Numerous smaller fibres, called dendrires, branch out from the surface
of the neurone. If the axon is imagined to be the trunk of a trec. with the neurone sitting atop, then the
dendrites constitute the branches. A single neurone transmits nerve impulscs over the axon and receives
them over the dendrites (Stevens, 1979, p. 15). In this way a ncurone is able to communicate with other
neuroncs. Special chemicals called neurotransmiriers facilitate the transmission of these clectrical
signals across the intervening space between neurones. The neurotransmitter acervicholine is known 10
be deficient in the brains of people with Alzacimer's discase (Farsythe, 1990, p. 32). Acetylcholine is
thought to play a role in the formation of memory. The underlying process that manages the production

of this neurotransmitter is very complex and is not yet completely understood.
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Alzheimer's disease is a form of progressive dementia associated with the degeneration of the
brain. Confirmation of a diagnosis of Alzheimer's disease can only be made post mortem. Microscopic
neuropathologic lesions called neurofibrillary tangles (NFT) and neuritic (senile) plagues (NP) are
found in abundance in the Alzheimer brain. These lesions were “first described by the Bavarian
psychiatrist Alois Alzheimer in 1907—senile plaques and neurofibrillary tangles—are the most common
basis for late-life dementia in many developed countries” (Selkoe, 1991, p. 40). NFT are accumulations
of abnormal fibres (arranged as paired helical filaments) within affected neurones. NP are circular
clusters of abnormal nerve tissuc that replace normal ncurones. NP contain "a protein fragment,
approximately 40 amino acids long, referred to as the amyloid beta-protein [also referred to as the fA4
amyloid protein]” (Selkoe, 1991, p. 40). Both of these lesions occur primarily in the cerebral cortex and
in the hippocampus of the brain (see Figure 35). Their presence is not indicative of the disease because
they may also be found in normally aged brains in smaller numbers. However, "the number of NFT and
NP is strongly [positively] correlated with the degree of dementia . . . and therefore may be of value as a
quantitative measure of the dementia” (Adams & Jones, 1987, p. 51). "Most pathoanatomic studies of
Alzheimer's disease have been done on advanced, severely demented cases, [and consequently] there is
relatively little published information on the distribution of tangles or plaques in normal aging or in
mild dementia" (Price, Davis, Morris, & White. 1991, p. 295). Current research is hampered by the
enormous amount of human effort and time required to perform counts and measure the area and other
morphometric quantities of these lesions. As a result, to date there have been relatively few quantitative
studies. Clearly there is a need fo: an image analysis tcol to automate the counting and measurement

procedures.

6.3. Previous Research

Bartoo ct al. (1988) investigated the application of mathematical morphology to the
segmentation of NP and NFT associated with Alzheimer's disease. They dealt with coronal tissue
sections of the hippocampus and amygdala (sec Figure 35) stained with thioflavin-S. Thioflavin-S is a
fluorescent stain that highlights NP, NFT, and blood vessels containing the BA4 amyloid protein. In
addition the stain detects lipofuscin particles. These particles accumulate in the cytoplasm of neurones;
their "size, complexity, and distribution within the neuronal cytoplasm arc age-dependent” (Adams &
Jones, 1987, p. 26). When viewed through a conventional light microscope the NP and NFT appear
yellow, and the lipofuscin particles appear orange, against a dark green background. Bartoo ct al.
(1988) used a monochrome frame-grabber to capture images, at 200x magnification, from a RS170
video camera mounted on an Olympus BH-2 microscope equipped with a fluorescent attachment
(exciting wavelength of 490 nm and barrier filter at 455 nm). Digitised images had a spatial resolution

of 512 x 512 pixels and a grey-scale resolution of 8-bits (i.e. 256 shades of grey).
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Figure 35. Brain of an Alzheimer patient. Neuritic plaques are indicated by stippling. (Adapted from
Selkoe, 1991, p. 42.).

The NP and NFT detection algorithm developed by Bartoo et al. (1988) employs grey-level
thresholding and binary morphological openings and closings. The algorithm is as follows:

(i) Acquire a grey-tone image from the microscope.

(ii) Globally threshold this image to produce a binary image. The threshold point is determined
manually.

(iii) Close the binary image with the gamma SE depicted in Figure 36. This operation joins together
objects (particles) within a senile plaque to form one large region. The dimensions of the SE are
chosen to minimise the number of occurrences of two plaques, in close proximity, being joined.
Bartoo et al. stated that they had devised "a routine based on the Bayesian decision making method"
(1988, p. 472) to determine the optimal dimensions of the gamma SE for each image — no details
were given.

(iv) Perform a closing by a disk of radius 2 to fill in any remaining holes and gaps.

(v) Perform an opening by a disk of radius 7 to remove all objects "too small” to be NP. This leaves
only the NP.

(vi) Subtract (set difference) the image containing the NP from the original binary image in (ii).

(vii)Open this new image by a suitably sized disk to remove all objects "too small" to be NFT. This

leaves only the NFT.
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Figure 36. Gamma SE cmployed in the NP and NFT segmentation algorithm
devised by Bartoo et . (1958).

Bartoo et al. (1988) compared the results of their algorithm with independent manual counts of
senile plaques in fifty images. The aigorithm achicved 81% correlation. They gave no similar

comparison for NFT detection. The algorithm has several major drawbacks:

(i) The choice of an initial threshold value is determined manually. This value is critical because "the
detection algorithm is fairly sensitive to the binary threshold" (Bartoo ct al., 1988, p. 474).

(ii) "There is overlap in the sizes of the NFT and SP [i.e. NP]. . . . [such that] a large globoid NFT can
be mistaken for a very small SP" (Bartoo et al., 1988, p. 474).

(iii) As a consequence of using a monochrome camera, large accumulations of lipofuscin particles in
normal neurones can be mistaken for a NFT. (Recall that lipofuscin particles stain orange whilst

NP and NFT stain yellow).

Though Bartoo et al. stated that "further improvements such as local adaptive thresholding, border count
correction, and perhaps different staining techniques are currently being investigated” (1988, p. 475),

they do not appear to have published any further results.

6.4. The Investigation

The approach taken by Bartoo et al. (1988) is fundamentally flawed because of their choice of
stain. Thioflavin-S is a non-specific stain that highlights features in addition to NP and NFT. The more
conventional Bielschowsky silver method is also non-specific.  Although the method is very successful
in staining NP and NET (Price et al., 1991, p. 305) it may also stain normal ncurones and ncuropil'!
just as darkly (Bartoo et al., 1988, p. 471). To specifically stain amyloid deposits (NP) or paired helical
filaments (NFT) antibody staining techniques must be used. "Neurofibrillary tangles are a relatively
common finding in several unrelated disorders in which senile plaques do not occur” (Pappolla, 1989, p.

869). Consequently in this investigation only NP were dealt with, This section describes the algorithm

Y Neuropil is an old-fashioned term used to describe the nerve tissue structure containing specialised

points of contact (synapses) between nerve cells (Kuffler et al., 1984, p. 469).
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developed to segment the NP from digitised photomicrographs of tissue sections stained with
monoclonal or polyclonal antibodies against BA4 amyloid (i.c. NP). The results of an experiment that
compared manual and computer measurements of NP are also presented. Finally a method for

comparing the spatial distributions of plaques in different images is described.

6.4.1. Classifying neuritic plaques

It is possible to classify the maturity of NP according to the relative concentrations of fA4
amyloid protein they contain. For example, Adams and Jones (1987, p.53) classify plaques as: primitive
plagues containing only small wisps of amyloid; mature (classical) plagues displaying a central, often
star-shaped mass of amyloid; and compact or burnt out plaques consisting almost entirely of amyloid.
“The senile plaque is a complex, slowly evolving structure, and the time required to generate fully

formed, 'mature’ plaques may be years or even decades” (Selkoe, 1991, p. 42).

6.4.2. Staining and image acquisition

Bartoo et al. (1988, p. 471) argued that thioflavin-S is preferable to antibody staining for
quantitative analysis because for antibody staining the number of objects highlighted depends upon the
concentration and level of exposure to the stain. This may be true for the primitive plaques but because
thioflavin-S itself lacks sensitivity to primitive plaques and amorphous amyloid deposits (Price ct al..
1991, p. 305) the argument is not very sound. The works of Majocha, Benes, Reifel, Rodenrys, and
Marotta (1988), and Price ct al. (1991) are examples of quantitative studies that have used antibody

staining.

Tissue used in this study was obtained from several post mortem brains: each with a
neuropathologically confirmed diagnosis of Alzheimer's disease. All tissuc sections originate from the
cortex of the inferior temporal lobe (sce Figure 35) and arc twenty to thirty micrometres {(um) thick.
The sections were immunochemically stained with polyclonal antibodies against A4 amyloid. The
stain is specific to A4 amyloid and consequently does not stain neurones or NFT. A Leitz Laborlux S
optical microscope fitted with a JVC colour CCD camcra was used to image the tissuc sections at 200x
magnification. When viewed through the microscope the NP appear as yellow-brown circular clusters of
amyloid fibrils against a yellow background (sece Appendix F). A monochrome frame-grabber
(chrominance filter enabled) was uscd to digitise the images at a spatial resolution of 640H x 480V
pixels and at a grey-scale resolution of 8-bits. Figures 37 and 38 are examples of digitised micrographs
of tissuc sections. There can be a lot of variability in the range of grey-tones present in different images.
This is primarily influenced by the maturity of the plaques present although some variaticn in
concentration and length of exposure to the stain may also contribute. Other factors include the age of

the brain and the post mortem time that the tissue is processed (in this case, approximately 12 hours).
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Figure 37. Light micrograph of a tissue section stained with polyclonal antibodies against
BA4 amyloid.

Figure 38. Amyloid can also be found surrounding blood vessels of the cerebral cortex as this

light micrograph shows.
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Figure 40. Bound matrices representing digital spheres, satisfying

2 +y 4+ =1, for r=1, 2, and 3 respectively.

The ASF comprises three consecutive open-closings by spheres of radii 1 through 3. A geometrical
interpretation of this filter is obtained by visualising the brightness surface of the digitised image. f, as a
topographic landscape (Sternberg, 1986). A single iteration (i.e. an open-closing) of the ASF can be
likened 1o the rolling of a sphere across the underside of the surface of the landscape and then across the
top of the landscape. Wherever the sphere is unable to penetrate, e.g. small crevices, the brightness

surface is smoothed over (see Figure 41).
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brightness profile depicted in Figure 39.

Figure 39 shows that individual plaques are not simple homogeneous regions. They often resemble

agglomerations of smaller particles. In the case of the more mature plaques the particles appear to
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accumulate around a darker mass (the core). The following generalised OC filter was used to improve

connectivity within plaques and to suppress artefacts larger than those attenuated by the ASF:
w_ 3 4 ¢ 10y Q1o
fr= mm[@(max[@(f .B; )].B, )}
j=1 i=1

where f’ is the ASF filtered image and the B} arc the lincar SEs depicted in Figure 21. The choice of
value for 1 dictates the size of the smallest plaques that can be detected. For this study a value of 10 was
chosen based upon size criteria established in conjunction with Dr Inta Adams, a neuroanatornist in the
Department of Science, Edith Cowan University. Lincar rather than disk SEs were chosen so that the
irregular boundaries of the plaques could be accurately detected. Furthermore the linear SEs preserve
any blood vessels that may be present. One might think that a disk SE could be used to eliminate blood
vessels. However, as Figure 38 shows, blood vessels can be associated with amorphous amyloid deposits
that are larger in size than the vessel walls. Therefore it is necessary to segment the blood vessels along

with the plaques and to reject them forthwith.

i
|
|
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i

Figure 42. The brightness profile for the row in the OC filtered image

corresponding to the row originally depicted in Figure 39.

The trend apparent in the brightness profile shown in Figure 42 is a result of both the non-uniform
staining of the tissue section and the uneven illumination across the microscope stage. This background
non-uniformity was a feature of all of the images digitised (in varying degrees). This meant that plaques
could not be segmented by simple global thresholding. The following tophat transform (Meyer, 1986)

was used to normalise the background after OC-filtering:
G(f”.B)"'f”.

where f“ is the OC filtered image, and B is a flat octagonal SE larger than the largest plaque. Of the
images analysed in this study the micrograph depicted in Figure 43 contained the largest plaque.
Consequently an octagon of width 145 pixels was used in the tophat transform. An octagonal rather
than a disk-shaped SE was chosen because it can be decomposed into a sequence of simple dilations.

“The problem with a sequence of digital disks is that, unlike digital octagons, squares, diamonds, lines,
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and even Euclidean [i.e. R?] disks, such a sequence does not satisfy the condition of similarity up to a
dilation for all successive pairs" (Vogt, 1988, p. 390). Consider the digital disks of radii 1 to 3 shown in
Figure 44. D, can be obtained from the dilation of D, by itself. However D; cannot be obtained from
the dilation of D, by D,. Similarly D, cannot be obtained from the dilation of D, by itself though it

can be obtained from the dilation of D4 by D,.

Figure 43. Light micrograph (not to scale) and the octagonal SE (actual size relative to the
micrograph) used in the tophat transform for background normalisation. The SE must be

larger than the largest plaque.
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Figure 44. Bound matrices representing digital disks, satisfying x* + y* < r?, for

r=1, 2, and 3 respectively.

The octagonal SE depicted in Figure 43 has the dilation decomposition:
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24 times

It is a crude approximation to a disk of radius 75 pixels. A brute force closing using this large SE would
require 15101 translations and a maximum operation (dilation) followed by 15101 translations and a
minimum operation (erosion). Using dilation decomposition the closing reduces to 120 translations (i.e.
24x5) and 24 maximum operations followed by 120 translations and 24 minimum operations. The
closing of an OC-filtered image by the octagonal SE can be visualised as the sliding of an octagonal
prism (or more colloquially, an octagonal cylinder) over the top of the brightness surface of the image.
Wherever the prism is unable to penetrate, e.g. troughs corresponding to plaques and blood vessels, the
surface is smoothed over. Effectively only artefacts larger than the plaques, such as large accumulations
of stain and areas of constant background brightness, remain. Subtraction of the OC-filtered image from
the closing (which must yield a positive image because the closing is extensive) leaves only the plaques

and blood vesscls; the background has been removed, i.e. normalised (Figure 45).

Figure 45. The brightness profile for the row in the tophat transformed

image corresponding to the row depicted in Figure 39.

6.4.4. Segmentation

The plaques can now bc segmented by simple grey-level thresholding.  After tophat
transformation the image histogram looks much like that shown Figure 46. By inspection a suitable
threshold value, i.e. an intensity value separating foreground (plaques) and background, lies somewhere
in the valley between the two peaks. An algorithm to automatically determine the threshold point was

developed based on Beucher’s gradient.
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Figure 46. Typical image histogram after tophat transformation of an OC-filtered

image.

6.4.4.1. Beucher's gradient
gy

By definition the gradient of a function f(x.y) is the vector Vf =[ D
x oy

]. For a given point

P(x,y). the norm of the vector gives the value of the maximal directional derivative of f at P:

o 31)-81)

Beucher (1978) proposed the following algorithm for calculating the norm of Vf (cited in Serra, 1982,
p. 441):

(f®AB)-(fOAB)
2

lVfI = lim
-0t

.

where B is the unit disk. The digital version of Beucher's gradient (Serra, 1988, p. 312) is given by:

(f©B)-(fOB)
2

where, for the square grid, B is either the unit square, or D, of Figure 44,
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6.4.4.2. Selection of the threshold value

After tophat transformation the image background is very nearly zero (see Figure 45).
Consequently the maximum rate of change of brightness, which occurs at the edges of the plagues (and
possibly blood vessels), provides the required threshold value for grey-level thresholding. Specifically

the threshold value ¢ is given by

t= Jz-[r(nzu)(( (fP®B)-(fOB) )], where f represents the tophat-transformed image.

The NP and possibly blood vessels are then given by the threshold set {(.r. y)[ flx,yv)2 t}.

6.4.4.3. Connected component labelling

The next step involves individually labelling each of the connected components in the threshold
set with a unique numeric label. The segmentation algorithm implemented in DIMPAL (Appendix G)
utilises the connected component labeiling algorithm of Manohar and Ramapriyan (1989). The
algorithm individually labels each of the 8-connected components, in scan order (i.c. feft to right and top

to bottom).

6.4.4.4. Border correction

A digitised micrograph represents only part of a larger tissue section that is in turn part of a
brain. If the set X denotes the domain of this larger image (be it the tissue section or brain) then the
digitised micrograph represents that part of X seen through a rectangular mask Z corresponding to the
vidco frame captured by the frame-grabber, i.c. XNZ. One must determine, however, the size of the
mask in which all of the transformations used to obtain the threshold set are known without error. From
Chapter 2 recall that dilation commutes with the supremum and that erosion commutes with the

infimum (Definition 9). Conscquently
.é{uxi.a)=u.se(xi.3), and
S(rj X, B) =n&(X,,B).

Therefore E{X NZ,B)=E(X,B)ME(Z,B), i.c. the erosion of a digitised tissue section represents what is

seen of the croded image f through the eroded mask Z. To obtain a similar relation for dilation first
consider that X UZ® =(XNZ)UZ°. It follows then that

B(Xuzc.B)=.B(X,B)U.B(ZC.B)=.B(X,B)U[E(Z.B)]c.
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MNow the largest mask whose intersection with [S(Z.E)]c is the empty set is 8(2. fB). Thus (Serra, 1982,

p. 49)

Z.B)
B)
)
)

Nxnz)uzs,B)ng
(

[.B(XmZ,B)u[S z.8)| ] &(z.B
(

mrm

5x,B)o[e(z.B)] ]n& z.B)

[8x ~Z.B)L Hz<,B)|~E(z.B) = (X, B)~E(Z. B)

il

B(X.B)&(z.B)

(
KXNZB)NEZ B)=8X,B)nE(Z.B).

This last relation states that the size of the mask in which both the dilation on the set X and that on
XAZ are known is 8(2,f3)= ZOB. In summary "ZOB is the zone in which X©B, and . . . X®B, are
known without error” (Serra, 1986, p. 295). In particular if XnZ is successively dilated or eroded by the
symmetric SEs B, B,, ..., B, then the final mask in which ali of the transformations are known

n

without error is Z&(B, ®B,®...®B, ).

For the proposed segmentation algorithm the zone in the threshold set for which the
transformations arc known without error is that defined by removing 44 rows from the top. 44 from the

bottom, 44 columns from the ieft, and 44 columns from the right. The value 44 derives from:

ASF: 4 x (1 +2 +3) =24 -3 open-closings with spheres of radii (in pixels) I to 3,

OC filter: 4 x 5 = 20 - 1 open-closing; union of linear SEs is approximately a 11 x [ square.

"Note that the eroded masks ZOB are not the largest possible in general. In the case of dilation for
example, it may happen that some points x, located out of Z, . . . belong to the dilate (similariy for
erosion). Nevertheless the mask ZOB is the largest that is independent of X and in which the transform

is known for each point” (Serra, 1982, p. 49).

In practice though, an edge correction of 11 pixels suffices. The scgmentation algorithm
already described involves four open-closings. For a given open-closing the initial erosion reduces Z to
its smallest dimensions and the subsequent dilations and final erosion increase its size again. If the
mask were to remain at the size dictated by the first erosion, then at the end of the ASF filtering the
mask would be diminished by 6 pixels along all borders. After applying the OC filter the mask would be
further diminished by 5 pixels along all borders. The segmentation algorithm implemented in DIMPAL
(Appendix G) incorporates the following edge correction strategy:

(i) the threshold set is stripped of 11 rows top and bottom, and 11 columns left and right;

(ii) any connected components touching the border of this reduced mask are discarded.
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6.4.4.5. Eliminating primitive plaques, and bleod vessels
Primitive plaques are characterised by lower concentrations of amyloid protein and thus are
composed of lighter grey-tones than the more mature plaques. The method implemented for eliminating

primitive plaques is as rollows:

(i) the maximum grey-value of the tophat ransform is determined (this must correspond to a mature
plaque or a blood vessel cantaining amyloid);
(ii) all plaques containing grey-values (w.r.t. the tophat transform) greater than or equal to 75%

(heuristic) of the maximum value are retained.
The method employed to eliminate blood vessels is as follows:

(i} for each of the remaining connccted components calculate the connectivity number (using the 8-
connectivity relation given in Proposition 14), area, and perimeter (relfations of sections 4.5., 4.6.,
and 4.7.);

(ii} for each connected component calculate the P2A shape factor (sce Danielsson, 1978, p. 292) viz.

2

P2A= P . where P = perimeter, and A = area:
4nA

(iii) discard those connected components that have connectivity number O (i.e. contain a hole) and a
shape factor (which is 1 for a circle) greater than 2 (which is invariably the case for blood vessels

because they have a total perimeter that is the sum of the inner and outer perimeters).

6.4.4.6. Boundary smoothing, and elimination of small plaques

After the primitive plaques and blood vessels have been removed only the mature plaques
remain. As Figure 47 illustrates, the lincar SEs used in the gencralised OC filter preserve the irregular
plaque boundaries. A binary opening by a suitably sized disk (a disk of radius 10 pixels was used in this
study) smooths these boundaries and eliminates plaques considered to be too small (sce Appendix H.
image (k)). This smoothing is analogous to that performed manually when plaque boundarics are traced

by hand (plaques arc gencrally modelled by disks and cllipses).
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Figure 47. Segmentation of the mature plaques in the micrograph depicted in Figure 43. Boundaries

have been accurately detected.

6.4.5. Counts, area, and perimeter
The segmentation algorithm (Appendix G) was applied to 1S5 images arbitrarily selected from
two tissue sections acquired from the frame-grabber and microscope (four of these are shown in Figure

51). The algorithm successfully segmented the mature plaques in all of these images (Appendix H).

In the initial stages of this study only half a dozen colour prints, reproduced from 35 mm slides,
of tissue sections (originating from the cerebral cortical region) stained with monoclonal antibodies
against BA4 amyloid, were available for processing. These prints were scanned, using a 300dpi colour
scanner, for processing by DIMPAL. In contrast to the later images acquired from the frame-grabber
and microscope these digitised images did not have a 1:1 pixel aspect ratio. Dr Adams arranged for a
research assistant to count and measure the mature plaques present in the colour prints. For each print

this involved

(i) manually tracing the outlines of the plaques onto tracing paper and then determining the radius of a
circle of best fit, with the aid of a ruler, for each plaque — thereby yielding area and perimeter
estimates, and

(ii) using a semi-automatic measuring device to provide area and perimeter estimates — this entailed
tracing around each plaque on a graphics tablet using a stylus — after tracing the boundary of an

individual plaque its area and perimeter estimates appear in a liquid crystal display.

Each RGB colour image was transformed into a grey-tone image in preparation for
segmentation and measurement by DIMPAL. In DIMPAL this transformation was achieved using the

statement
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image=integer ( (plaques.red”2+plaques.green~2+plaques.blue~2)~0.5),

where plaques is a three layer variable — R layer, G layer, and B layer, i.e. each grey-tone pixel is the
norm of the corresponding RGB colour vector. (Note that this represents only one possible approach.
Pei and Chen (1991), for instance, transform an RGB image into the HLS colour space and then apply
morphological operations to the L (lightness) component). To exactly match the size criterion used by

the research assistant and to adjust for the lower resolution of these images (i.e. 494H x 385V), the
following two statements:

plaques=dilate {erode (components>0,disk{10}),disk(10)), and

components=border_correct (separate_components (clip(threshold(tophat, th

reshold_value),11,-11,628,~468),8})

of the script file segment.prg (Appendix G) had to be changed to

plaques=dilate (ercde (components>0,disk(7)),disk(7)), and

components=border_correct (separate_components(clip(threshold(tophat, th

reshold_value),11,-11,482,-373),8))

respectively. Manual registration with the original colour print revealed that a single pixel had width
0.36 mm and height 0.30 mm (to two decimal places) at 200x magnification. After segmentation the
plaques were measured using

show (measure_components (separate_components (plaques, 8),0.36,0.30}).

Table 4 lists the measurements made manually and those made by DIMPAL for the plaques shown in

Figure 48.
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Table 4. Measurements of the plaques shown in Figure 48.

Tablet and Stylus | Circle of Best Fit DIMPAL Measurements
Plaque A U A 0 A v U o=Huv +U")

(mm?) | (mm) | (mm?) | (mm) | (mm?) | (mm) | (mm) (mm)
1 71.27 30.86 63.59 28.26 64.80 37.713 37.96 37.84
2 69.40 29.90 70.85 29.83 68.04 37.78 38.24 38.01
3 51.24 26.89 50.24 25.12 58.21 3343 36.00 34.72
4 17.15 14.68 19.63 15.70 19.66 20.29 20.76 20.53
5 45.22 24.52 44.16 23.55 49.90 32.86 33.57 33.22
6 48.44 26.95 56.72 26.69 59.72 34.56 36.53 35.59
7 57.26 26.58 56.72 26.69 60.16 38.06 37.13 37.60
8 22.88 17.58 23.75 17.27 26.24 22.85 23.79 23.32

The resulits clearly show that in this instance the perimeter cstimator 0=-2L(U'+U") (using the

formulae with aspect ratio comection ~ section 4.7.) is positively biased. An unbiased estimator
(heuristic) is d}-}(U +U“)=§-(U' +U™) (sec Figurcs 49 and 50). If the pixel aspect ratio was I:1
then the area estimator (section 4.7.) would be unbiased. Even so, for the aspect ratio 6:5 (i.c 0.36:0.3),
Figures 49 and 50 show no significant bias. Morcover because the aspect ratio is very close to 1:1 it is
difficult to distinguish estimator bias from discrepancics due to human subjectivity ~ the boundaries of

plagues are not distinct and so subjective error is intreduced when the plaques are manually traced.

Remarks

(i) The positive bias associated with the perimeter estimator leads to positive bias in the P2A shape
factor. Effectively the factor is (1.25)° =1.5625 for a circle rather than 1. Consequently in the
DIMPAL algorithm (Appendix G) a value of 3 (approximately 1.5625 x 2) is used in place of 2 in
step (iii) of the blood vessel elimination procedure described in section 6.4.4.5.

(ii) The bias exhibited by the perimeter estimator is influenced by the degree of smoothing of the
boundaries of the plaques. The estimator is in cssence a measure of the length of the smoothed
boundary of a given plaque. Boundary smoothness therefore influences the quality of the estimator.

In the extreme case, a fractal boundary would yicld infinite perimeter.
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Figure 49. Measurements of the plaques shown in Figure 48.
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Figure 50. Measurements of plagues in two other images; one containing 7 plaques and the other 2.

6.4.6. Cluster analysis

This scction bricefly describes a method for characterising the spatial distribution of plaques in a
given micrograph. This makes it possible, for example, to compare the clustering of NP in tissue
sections obtained from different parts of the cerebral cortex and hippocampus or in different cortical
layers. One way of characterising the spatial distribution of plaques in a micrograph is to record the
spatial coordinates of the centroid of each plaque. The frequencies of the nearest neighbour centre-to-
centre distances then produce a characteristic distribution. Russ (1992, p. 336) points out that this
approach "“requires measuring individual features . . . [and] is aiso bascd on center-to-center {sic]
distances, and not the distance between feature boundaries”. An alternative approach, described by
Russ, involves finding the Euclidean distance map (EDM) of the background surrounding the segmented
plaques. The EDM is a binary to grey-levei image mapping. Finding the EDM of the background
entails assigning cach background pixel (binary 0) a value that is the distance from that pixel to the
nearest foreground pixel. The cumufative number of pixels at each brightness (distance) level is
recorded. A signature of the spatiai distribution of the plaques is then given by a plot of the cumulative

number of pixels (or percent of background) against brightness (distance from the boundary). Figure 51
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shows four such curves for images that have been segmented using DIMPAL (Appendix G). Note that
to produce these curves a digital approximation to the EDM was used (see Borgefors, 1986). A straight
line fitted to the straight portion of this curve will have slope units/length. This length “is a measure of
how far from a feature boundary a randomly placed point on the image is expected to lie” (Russ, 1992, p.
337). Russ' procedure is a rough-and-ready method of characterising plague spatial distribution because

it imglicitly assumes that there are no objects (plaques) beyond the frame of the image!2.

6.5. Discussion

The proposed segmentation algorithm represents a vast improvement over that devised by
Bartoo et al. (1988). Firstly, the algorithm is completely automated - thresholds are determined
automatically. Secondly, because this study focused on NP and dealt with tissue sections specifically
stained with antibodies against BA4 amyloid, the problems Bartoo et al. (1988) encountered with regard
to the misclassification of NFT as NP were avoided. Finally the algorithm incorporates border count
correction. In an experiment consisting of 18 arbitrary images (including three colour prints) the
algorithm was able to successfully segment the mature NP in each image. The proposed algorithm
essentially requires two paramelers:
(i) the minimum grey-level needed for a nlaque to be classified as mature — currently

75% of the maximum value in the tophat image, and

(i1) the radius of the disk SE used to eliminate plaques that are too small ~ the radius must be greater

than or equal to half the length of the digital line segments used in the generalised OC filter.

As it stands, the algorithm implicitly assumes the existence of at least one dark object (i.e. a mature

plaque or blood vessel) in an image. A fixed threshold value could be substituted for the first parameter

for sets of photomicrographs stained at the same time (equal exposure). Possible refinements to the
algorithm include:

(i) the classification of plaques as either primitive, mature, or burnt out by way of the textural
information contained in the grey levels for cach plague;

(i) implementing the van Herk (1992) algorithm for octagonal dilations and erosions — this reduces the
computational complexity of the closing in the tophat transform used for background normalisation
to only 12 maximum and 12 minimum operations per pixel;

(iii) the automatic separation of overlapping plagues - either via cluster fast segmentation (Serra, 1982,
p. 413) or the application of the watershed transform to the inverted distance map of the segmented

plaques (Dougherty, 1993, p. 467).

12 The K-functional method (Diggle, 1983) offers a more informative and reliable way of characterising

plaque spatial distribution.
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Further research is required to develop a similar segmentation algorithm for NFT.

In an experiment that compared manual and computer measurements for 17 segmented plagues
{from three images), the area and perimeter measurements obtained using the estimators of Chapter 4,
attained strong positive correlation with the corresponding manual measurements (see section 7.1.).
Whilst the arca estimator did not exhibit any significant bias, the perimeter estimator was consistently
positively biased. A heuristic correction factor was proposed for the perimeter estimator and was

experimentally shown to produce unbiased estimates.
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CHAPTER 7.

CONCLUSION

7.1. Summary

Chapter 2 reviewed mathematical morphology for complete lattices. Therein it was shown that
classical binary and grey-scale Euclidean morphology are instances of this more general morphology -
complete boolean lattices, and compleiz function lattices respectively. The complete lattice framework
facilitated the establishment of the taxonomy of morphological filters presented in Chapter 3. The
discussion at the end of Chapter 2 provided a rationale for focussing on all increasing and idempotent
(and translation invariant in the case of Euclidean morphology) mappings from a complete lattice into
itself. Whilst the list of such mappings — morphological filters — is infinite they can be grouped into
various classes. To this end the taxonomy of morphological filters was established. The need for such a
summary is justified when one considers the substantial theoretical advances in mathematical
morphology in recent years and the proliferation of papers presented at conferences and published in

journals. The key features of the taxonomy are:

(i) it highlights links between related filter types (e.g. gencralised morphological filter and the OC and
CO filters),

(ii) it provides examples illustrating cither the application or behaviour of each of the different types of
filters,

(111) it addresses omissions in the literature (e.g. annular closings and 2D OC filters), and

(iv) it generalises filter types, whercver possible, lo the complete lattice (e.g. gencralised OC and CO

filters).

Chapter 4 introduced the hit-or-miss transform of Serra (1982) and the role that it plays in
defining morphologically derived feature parameters (morphometrics). The chapter derived formulac
for determining the connectivity number, arca, and perimeter of binary images digitised on the square
grid. In addition the subject of aspect ratio correction was addressed for images digitised on rectangular
sampling grids for which pixels are non-square. In Chapter 6 the results of an experiment that
compared the quality of these estimators with measurements made manually were presented. It was
noted that the digital version of Crofton's formula for perimeter estimation, for the set of micrographs
studied, was consistently positively biased. A heuristic correction factor was proposed and

demonstrated, experimentally, to provide unbiascd perimeter estimates.
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Chapter 5 introduced DIMPAL; a gencral purposc digital image processing and analysis
language developed as a research tool for the Alzheimer's disease case study documented in Chapter 6.
Moreover DIMPAL was used to create or verify the examples presented in carlier chapters and in

particular Chapter 3.

Finally in Chapter 6 the ideas introduced in the preceding chapters were applied to the problem
of segmenting and mecasuring neuritic plaques, a :uicroscopic hallmark of Alzheimer's discase, from
digitised light micrographs of post mortem brain tissue. The chapter described an automated
segmentation algorithm, developed in DIMPAL, that incorporates an ASF and a generalised OC filter
(Chapter 3). Using DIMPAL the algorithm was applied to a sample of 15 images acquired from two
tissue sections stained with polyclonal antibodies against BA4 amyloid. The algorithm successfully
segmented the mature plaques. In addition the algorithm was applied to another three images obtained
from colour prints made from 35 mm slides of tissue sections stained with monoclonal antibodics
against PA4 amyloid. Once again the algorithm correctly segmented the neuritic plaques. For these
latter images, indecpendent manual measurements (stylus and tablet, and circle of best fit) of plaques
were compared with measurements made by DIMPAL (which uscs the estimators of Chapter 4). The

correlation matrices for the area and perimeler measurements respectively are:

area | stylus and 1ablet circle of best fit
circle of best fit 0.998 1
DIMPAL l 0.997 0.998
perimeter | stylus and tablet circle of hest fit
circle of best fit 0.997 I
DIMPAL , 0.995 0.995

It was noted that, in this instance, the perimeter estimator is positively biased and a heuristic correction
faclor was proposed and cxperimentally validated. The segmentation algorithm and underlying
methodology presented in Chapter 6 represents a vast improvement over those devised by Bartoo et al.
(1988).

In short each of the rescarch objectives outlined in Chapter | have been fulifilled.

7.2. Discussion
Serra's classic treatise Image Analysis and Mathematical Morphology, 1982, introduced the
world to an image processing paradigm that had cvolved out research at the Paris School of Mines by

Matheron and Serra in the mid to late 60s. Though Matheron originally devised the (binary) opening to
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generate size distributions practitioners ostensively used it for noise filtering. A number of novel
filtering techniques, most notably the iterative filter of Sternberg (1986), were developed by
morphological practitioners in lieu of any theoretical foundations. "The clarification of the theory of
morphological filtering opened the way to new types of filters that could never have been discovered by
experimentation” (Serra, 1988, p. 101).

Dougherty (1992a, 1992b) placed morphological operators (both binary and grey-scale) into the
framework of statistical estimation with the aim of developing a theory of mean-square (MS)
optimisation. In image processing one often secks to restore an image that has been corrupted or
degraded in some manner (e.g. by impulse noise). A slatistical analysis of the underlying signal (image)
and noise processes leads to the development of a statistical estimator (an image filter) that takes the
observed image as an input and produces an estimate of the uncorrupted image as an output (Loce &
Dougherty, 1992, p. 412). The uncorrupled image, the corrupted image, and the noisc are modelled as
random processes and thus the statistical estimator is a function of random inputs. In reality the
estimator (filter) is applied to a realisation of the image-noise process. Some criterion is then used to
measure the cffectiveness of the restoration. This gives risc to the possibility of finding amongst all
possible filters the one that optimally restores the corrupted image. "Historically. the most commonly
employed filter has been the optimal lincar MS estimator” (Dougherty, 1992a, p. 37). This filier is
defined in terms of linecar combinations of the observed variables. Dougherty (1992a) interprets the
classical binary morphological erosion as a statistical estimator that is a function of a vector of » binary
observation random variables (corresponding to the pixels of the input binary image); "optimization {sic}
is achieved by finding the structuring clement that minimizes [sic] MS crror” (p. 36). Using the
Matheron representation theorem for increasing and translation invariant mappings, Dougheny
generalised the procedure to morphological filters given by unions of erosions. In an analogous fashion
Dougherty (1992b) defined optimal mean-square n-observation grey-scale morphological filters. Wang
and Ncuvo (1992) developed "an adaptive algorithm . . . for determining, from a given class of grayscale
[sic] morphological filters, a filter which minimizes [sic] the mean square error between its output and a
desired process” (p. 588). Loce and Dougherty (in Dougherty, 1993) have investigated a "suboptimal
design methodology for binary filters {i.e. morphological opcrators} based on the imposition of various
constraints and small (but well-chosen} libraries [of SEs]. the goal being to facilitate computationally

tractable design” (p. 44).

The formuiation of mathematical morphology in terms of complete lattices (Serra, 1988)
represented an cxtension of classical Euclidean morphology through a generalisation of the underlying
object space. Heijmans and Ronse (1990) generalised Euclidean translation invariance 1o complete
lattices by considering certain abelian groups of automorphisms on the lattice. This gives rise to another
method of generalising Euclidean morphology — by replacing the translation group with another

commutative group of automorphisms. In Serra's book (1982, p. 17) "a photograph is shown of trees in
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a forest, taken by putting the camera at ground level and aiming toward the sky. Such phulographs are
used to measure the amount of sunshine in the woods. The resulting image shows clear radial symmetry
with intrinsic origin (the projection point of the zenith)" (Dougherty, 1993, p. 207). In this case the
image points should be indexed by polar co-ordinates and then the "group generated by rotations and
multiplications with respect to the origin” (Dougherty, 1993, p. 207) constitutes the commutative group
of automorphisms (see Heijmans and Ronse, 1990, p. 283). Roerdink (in Dougherty, 1993) has
generalised mathematical morphology in still another way by dropping the assumption that the

invariance group is commutative.

7.3. Future Directions

The underlying theory of morphological filtering presented in Chapters 2 and 3 (and morc
extensively covered in Maragos & Schafer 1987a, 1987b; Serra, 1988; Heijmans & Ronse, 1990; Ronse
& Heijmans, 1991) establishes the “good” mappings but "does not give any indication as to how we
should manage a sequence of morphological operations with a given aim in view” (Serra, 1988, p. 5).
Algorithm development still relics heavily on heuristic methods and geometrical interpretations —
particularly in rclation to the choice of transformations and the types of SEs used. Whilst an algorithm
such as that described in Chapter 6 follows a logical scquence of steps. there does not exist any theory

for synthesising them. To quote Vogt (1989, preface):

the process of [morphological} image algorithm development is more time consuming and less
motivating than it perhaps could be, becausc it typically requires repeating the same aigorithm
scquences over many different images. It is also mentailly taxing because the developer has to
visually evaluate and mentally integrate how well each algorithm performs over the entirc
image sct, and from this propose changes in parameters of operator sequences which will

improve the overall performance.

With regard to the "good” mappings it is sobering to note that "therec are many practical consequences

and useful algorithms that remain to be discovered” (Serra, 1988. p. 101).

My ongoing research interests include:

(i) the application of mathematical morphology to the segmentation of the vascular network from the

back of a hand for identification purposes (Mehnert, Cross, & Smith, 1993)*,

* Rescarch project funded by the Institute of Security and Applicd Technology (ISAT), Edith Cowan

University.
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(i) the development of imaging tools to enhance and analyse markings on bullet casings — these tools
will assist ballistic experts in identifying the firearm from which a bullet was fired”,

(iii) the continued development of DIMPAL, and

(iv) the continuation of the Alzheimer's disease research with the possibility of commercial

development.
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Appendix A

The Bound Matrix
The bound matrix, introduced by Giardina and Dougherty (1988), is a special kind of matrix
used to represent two-dimensional digital images that have been sampled on a rectangular grid. The
elements of the matrix correspond to pixel values in the digital image. The term bound derives from the

fact that the matrix has a fixed Jocation within the discrete plane Z2. For example, the bound matrix

34 12 )
f=|12 233 127
255 255 28 ,

represents a grey-scale digital image comprising nine pixels. The top left pixel of the matrix is located
at (3,-2) in 22; ie. f(3,-2)=34 (in “unctiona: notation). The locations of the remaining pixels arc
determined relative to the top left «icment of the ‘bound matrix; hence using a conventional x-y co-

ordinate system, the pixel with value: 127 has spatial -ocation (5,-3).

Finite digital images with recingular diynains in 22 are readily expressed as bound matrices.
Pixcl values outside the bound matrix are said 1o be undefined and are represented by asterisks, The

previous bound rratrix can also be written as

* * * * *
* 34 12 1 *
f={* 12 233 127 *
+ 255 255 28 *

* * * * *
2.-1

The former bound matrix is said to be minimal because it contains no extraneous asterisks. For digital
images with non-rectanguiar domains or with missing valucs (¢.g. due to a sensor malfunction during
digitisation), the asterisk is used to pad our the bound matrix. For instance, if the pixel with value 127

in the original bound matrix was actually undefined, then the minimal bound matrix would be written

M4 12 1
f={12 233 =
255 255 28],
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In practice, the asterisk is treated as though it is a pixel with value negative infinity. This simplifics the
definitions of the basic morphological operations expressed using bound matrices (see Mehnert, 1990,

section 4).

Conventionally, binary digital images are represented by Is and 0s. The Is represent the
foreground points, and the Os the background. However for grey-scale images, 0 actually represents a
grey-level value. To resolve this conflict, 1s and asterisks are used to define the bound matrix of a

binary image.
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Table B-1. Properties of the basic morphological operators.

Dilation Erosion Opening Closing

Commutative J
Associative v N v N

Extensive *

Antiextensive *
Increasing w.r.t. image M v v v
Decreasing w.r.t. SE

Idempotent \i v

* only if the domain of the SE includes the origin
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Minkowski Functionals in R"
The Minkowski functionals in R" are defined by a recurrence relation on the sub-dirnensions of

the space as follows (Serra, 1982, p. 104):

forn=1 WM=LX); WIO(X)=2
forn>1 W™ =Vv"(Xy,

1
nb,_,

n

W(X) =

L WX de  1<k<n

where X is a compact convex set (an ovoid) in R"; L means length; V'™(X) is the n-volume of X, b, is
the n-volume of the unit ball; w is a direction and €, is a set of directions (i.e. unit sphere) in R"; and

I}, is an n-dimensional test plane normal to w.
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DIMPAL Commands

composite

composite(variable)

variable must have three layers each of type byte and all of the same dimensions and spatial

location

Displays a colour composite picture in a window. Layer | corresponds to red, layer 2 to green,
and layer 3 to blue. The window can be resized using the mouse. Clicking the right mouse
button anywhere within the window causes it to return (o its original size. When the window is
at normal sjze and it gains focus, cross-hairs are displayed; the coordinates of the pixel at the
centre of the cross-hairs are displayed above the menu bar of the DIMPAL parent window. As
the mousc is moved the coordinates are updated. When the left mouse button is clicked
anywhere within the window, the coordinates and RGB values of the pixel at the centre of the

cross-hairs are written to the console window.

declare

declare(string)

string is the filename and path (delimited by double quotes) of a .lay file

Adds a new variable (o the symbol table. In subscquent statements the variable is referenced by

its identifier which is identically the filename without the extension ./ay.

e.g. declare("c:\variables\pictures.lay”)

describe

describe(variable)

variable is any variable or valid layer reference; layers can be of any data type
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discard

display

end

execute

Displays the data type, dimensions, identifier, and spatial location in Z? for each layer of
variable. DIMPAL uses a coordinate system for which values of the horizontal (or x) axis
increase to the right and values of the vertical (or y) axis increase going up.

discard(variable)

variable must be a variable and nol a layer reference

Removes the specified variable from the symbol table. This command does not affect the file

variable.lay however.

display(variable! variable2)
variablel is any variable or valid layer reference; layers must be of type byte or integer
variable2 is a single layer variable or a valid layer reference; the layer must define a colour-
map consistent with that produced by the function colour_map
Displays each layer in a secparate window. Each window responds to the mouse in exactly the
same manner as a window generated by the composite command (sce the comments under the
compaosite command).
e.g. grey=colour_map("grey")

display(pictures,grey)

display{pictures.2,colour_map("heat"))

end

Terminates a DIMPAL session. This is equivalent to choosing exir from the file menu.

execute(string)

string is the filename and path (delimited by double quotes) of an ASCII text file containing
DIMPAL statements
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Executes the statements in batch.

e.g. execute("c:\programs\segment.prg"”)
histogram
histogram(variable)

list

overlay

variable must be a single layer variable or a valid layer reference; layer must be of type byte

Displays an intensity histogram, i.c. the percentage of pixels at cach intensity level, in a
window. When the window gains focus a vertical line cursor is activated; the intensity value
for the histogram bar bencath the cursor is displayed above the menu bar of the DIMPAL
parent window. The curser can be moved along the horizontal axis (intensities O to 255) using

the mouse.

list

Writes the list of variables known to DIMPAL to the console window.

overlay(variable { variable2.integer! integer2.integer3)

variable ! must be a single layer variabie or a valid layer reference; jayer must be of type byte
variable2 must be a single layer variable or a valid layer reference; layer must be of type
boolcan

integer! must be in the interval [0,255]

integer2 must be in the interval |0,255)

integer3 must be in the interval {0.255]

Displays variable!, using a grey-scale colour-map, with the binary image variable2
superimposed. The two layers need only intersect. Boolean s are displayed as pixels of the
colour specified by the integer parameters (RGB). Boolean Os are transparent. An overlay
window responds to the mousc in exactly the same manner as a window generated by the

composite command (see¢ the comments under the composite command).



Appendix D « 146

profiles

profiles(variabie,integerl integer?)
variable must be a single layer variable or a valid layer reference; layer must be of type byte
integer] must be a valid row number

integer? must be a valid column number

Displays two separate windows; one showing the profile of the brightness surface along the

chosen row; the other showing the profile of the brightness surface down the chosen column.

e.g. profiles(picturcs.Mona_lL.isa,23,44)

save_ASCII
save_ASCl(variable,string)

variable must be a single layer variable or a valid layer reference; layer can be of any data type

string is the filename and path (delimited by double quotes) of the destination file

Writes the elements of the bound matrix to an ASCII file.

save_GIF

save_GIF(variable,string)

variable must be a single layer variable or a valid layer reference; layer must be of type byte

string is the filename and path (delimited by double quotes) of the destination file

Saves variable as a GIF (Compuserve's graphics interchange format) file.

save_IFF

save_IFF(variable,string)

variable must be a single layer variable or a valid layer reference; layer must be of type byte

string is the filenarne and path (delimited by double quotes) of the destination file

Saves variable as an IFF ILBM (Electronic Arts’ interleaved bitmap) file.

e.g. save_IFF(pictures.Mona_Lisa,"c:\mona.iff")
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show
show(variable)
variable must be a single layer variable or a valid layer reference; layer can be of any data type
Displays the layer in the console window as a matrix of numbers. Missing values are indicated
by asterisks.

show_value
show_value(variable,integerl integer2)
variable must be a single layer variable or a valid layer reference; layer can be of any data type
integer! must be a valid row number
integer2 must be a valid column number
Displays entry (inregerl, integer2) of the layer (bound matrix) in the console window.

statistics
statistics(variable)
variable must be a single layer variable or a valid layer reference; layer can be of any data type
Displays statistics for variable in the console window. These include the number of missing
values, mean, sample standard deviation, and maximum and minimum values.

text

text(string)

string is any sequence of characters delimited by doublc quotes; the string cannot contain the

double quote character " itself

Prints string to the console window.
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DIMPAL Functions

add_noise

add_noise(variable,integerl integer2,integer3)

variable must be a single layer variable or a valid layer reference; layer must be of type integer
integer! an arbitrary value
integer2 must be greater than integer!

integer3 a value in the interval [0,10}

Corrupts the layer with additive noise from a discrete uniform distribution on

[integerl,integer2]. Only integer3 x 10 percent of values in the image are affected.

e.g. corrupted_image=add_noise(integer(pictures.1),-10,10,3)

ASCII_file
ASCII_file(string)

string is the filename and path (delimited by double quotes) of an ASCII text file containing

descriptions of several layers followed by the actual data

Converts the specified ASCII file into a DIMPAL variable.

e.g. steltis=ASCII_file("c:\templatesi\cubeoct.txt")

dilation_by_cubeoctahedron=max(dilate(image,stelts. I ) dilate(image,stelts.2))
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FILE: cubeoct.txt

LAYERS: 2

IDENTIFIER: first_plane
TYPE: INTEGER

LOCATION: (-1,1)

SIZE: 3 x 3

IDENTIFIER: second_plane
TYPE: INTEGER

LOCATION: (-1,1)

SIZE: 3 x 3

bmp_file

bmp_file(string,integerl integer?)

string is the filename and path (delimited by double quotes) of an uncompressed monochrome
.bmp file
integer! number of rows

integer2 number of columns

Imports the specified .bmp file as a DIMPAL variable.
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border_correct

byte

clip

border_correct(variable)

variable must be a single layer variable or a valid layer reference; layer must be of type long
Eliminates connected components along the borders of the layer (image); the layer is assumed
to contain connected components cach with a scparate numeric label, e.g. first connected
component consists of all Is, the second all 2s etc. (as produced by the function

separate_components).

e.g. result=border_correct(separate_components(binary_image,8))

byte(variable)

variable is any variable or valid layer reference; layers can be of any data type

Recasts the layers to type byte. Missing values are mapped to zero.

c.g. histogram(byte(pictures/2))

clip(variable,integeri integer2,integer3,integerd)

variable is any variable or valid layer reference; layers can be of any data type
integer! 1op left x coordinate

integer2 top left y coordinate

integer3 bottom right x coordinate

integer4 bottom right y coordinate

Clips variable to the rectangular region defined by the coordinates (integer!,integer2) and

(integer3.integerd). Individual layers necd only intersect with the clipping region.
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colour_map

cone

colour_map(string)

string must be either "grey" or "heat”

The specified colour-map is displayed in an edit window. Individual colours can be changed
using RGB sliders. When the window is closed the function returns the colour-map as a

DIMPAL variable.

e.g. heat_map=colour_map("heat")

cone(integer)
integer muslt be in the interval {0,255]
Generates a conical structuring element of specified radius. Missing values are used to encode

those elements of the resulting layer that are not part of the circular domain of the structuring

clement. The new layer is of type integer.

convolve

convolve(variablel variable2)

variable] is any variable or valid layer reference; layers can be of any data type
variable? must be a single layer variable or a valid layer reference; layer must be of type

integer; layer must have odd dimensions and be smaller than each of the layers of variable!

This function moves a dy X dx (dimensions of variable2) window across the layer(s) of
variablel in scan order and applies the specified kernel (variable2). At each window position
template entries are multiplied by the corresponding layer entries and the sum of products then
replaces the central entry in the output layer. To counter edge effects the output layers are
reduced by (dy-/) rows and (dx-7) columns. For cxample the application of a 3 x 5 template to
a particular layer produces a ncw layer with one row removed from both the top and bottom,

and two columns removed from both the left and right.
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cylinder

dilate

disk

cylinder(integerl integer2)

integer!/ must be in the interval {0,255]

integer? an arbitrary value

Generates a cylindrical structuring element of specified radius and height. Missing values are
used to encode those elements of the resulting layer that are not part of the circular domain of

the structuring clement. The new layer is of type integer.

dilate(variablel,variable2)

variable! is any variable or valid layer reference; layers must all be of type intcger, or all of
type boolean

variable2 is any variable or valid layer reference; if the layers of variable! are all of type
boolean then the layers of variable2 must all be of type boolean (i.c. SP dilation); if the layers
of variablel arc all of type integer then the layers of variable2 can be either of type integer or

type boolean (i.e. FP dilation or FSP dilation respectively)

This function conforms {o the multiple layer processing conventions implemented for the

dyadic operators in DIMPAL.

disk(integer)

integer must be in the interval {0,255]

Generates a disk structuring element of specified radius. Boolean 0Os arc used to encode those

clements of the resulting layer that arc not part of the circular domain of the structuring

clement. The new layer is of type boolcan.
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distance_map

equalise

erode

distance_map(variable,string)

variable must be a single layer variable or a valid layer reference; layer must be of type boolcan

string must be one of “cityblock" or "chamfer57"

Produces a layer of type long such that entry (i, j) is the value of the shortest distance between
entry (i,j) of variable and a boolean | in variable. For the city-block metric the direct
neighbours of a pixel p are decmed to be a distance of | unit from p, and the indirect
neighbours of p are deemed to be a distance of 2 units from p. For the chamfer 5-7 metric the
direct neighbours of p are deeined to be a distance of 5 units from p, and the indirect
neighbours of p are deemed to be a distance of 7 units from p. This metric approximates five

times the Euclidean distance because 5° +5° = 7°.

cqualise(variable)

variable is any variabie or valid layer reference; layers must all be of type byte

Applies histogram cqualisation to cach of the layers.

crode(variable | variable2)

variable! is any variable or valid layer reference; layers must all be of type integer or all of type
boolean

variable2 is any variable or valid layer reference; if the layers of variable! are all of type
bootean then the layers of variable2 must all be of type boolean (i.e. SP erosion); if the layers of
variable ! are all of type integer then the layers of variable2 can be cither of type integer or type

boolean (i.c. FP erosion or FSP erosion respectively)

This function conforms lo the multiple layer processing convention implemented for the dyadic
operators in DIMPAL. The images to be eroded correspond to variable!. The structuring

clements correspond to variable2.
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filter

filler(variable,string,integer| integer?)

variable is any variable or valid layer reference; layers can be of any data type
string must be one of "mean”, "median”, "max", or “min"
integer{ must be odd and positive (number of window rows)

integer2 must be odd and positive (number of window columns)

This function moves an integer! x integer2 window across the layer(s) of variable in scan
order. At each window position the specified operation is applied to the entries within the
window and the result then replaces the central entry in the output layer. To counter edge

effects the output layers are reduced by (integer!-1) rows and (integer2-1) columns.

Gaussian_stretch

Gaussian_stretch(variable,real)

variable is any variable or valid layer reference; layers must all be of type byie

real specifies the number of standard deviations from the mean

Modifies the shape of the intensity histogram to match as closely as possible that of the

standard normil curve defined by +real standard deviations.

e.g. coatrast_enhanced=Gaussian_stretch(pictures,2.5)

group

group(variable ! variable2)

variablel is any variable or valid layer reference; layers can be of any data type

variable? is any variable or valid layer reference; layers can be of any data type

Appends the fayers of variable? to those of variable].

c.g. new_variable=group(pictures,equalise(pictures))



Appendix D « 155

histogram

integer

mask

max

histogram(variable)

variable must be a single layer variable or a valid layer reference; layer must be of type byte

Produces a row vector with 256 elements of type long. The first element represents the number

of pixels of variable that have grey-level 0, the second grey-level 1, etc.

c.g save_ASCII(histogram(pictures.1),"c:\minitab.dat")

integer(variable)

variable is any variable or valid layer reference; layers can be of any data type

Recasts the layers to type integer. Missing values arc unaffected.

mask(variablel variable2)

variable! must be a single fayer variable or a valid fayer reference; layers must be of type byte
variable2 must be a single layer variable or a valid layer reference; layers must be of type

boolecan

The boolean layer variable2 is superimposed on the layer variable! (the two layers need 1mly
intersect). A new layer is created that contains the elements of variable! wherever variable2 is

a boolean 1, and missing values otherwise.

max(variablel variable2)

variuble! is any variable or valid layer reference; layers must be of type integer
variable? is any variable or valid layer reference; layers must be of type integer; variable2 must

have as many layers as variableI; corresponding layers must have the same dimensions

Produces a new variable such that for a particular layer, entry (i,j) is the .saimum of the

corresponding entries in the corresponding layers of variable] and variable2.
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max_value

max_value(variable)
variable must be a single layer variable or a valid layer reference; layer must be of type integer

Produces an integer layer containing a single value; the maximum of all of the elements of

variable.
e.g. result=threshold(pictures.1,maximum(gradient))

measure_components

measurc_components{variable,reall real?)

variable is any variable or valid layer reference; layers must be of type long
reall is the width of a pixel (c.g. 0.15 mm)
real? is the height of a pixel

Produces a variable with layers of type double. Each layer has 6 rows and as many columns as
there are connected components in the corresponding layer of variable; each layer of variable is
assumed to contain connected components with separate numeric labels, c.g. first connected
component consists of all Is, the second all 2s etc. (as produced by the function
separate_components). For each new layer, the first row contains area mecasurcments; the
second perimeter measurements calculated using the U estimator of Section 4.7.; the third
perimeter measurements calculated using the U™ estimator of Section 4.7.; the fourth

perimeter measurements calculated using the estimator %(U'(X)+U"(X)); the fifth

connectivity numbers; and the sixth P24 shape numbers.

min{variable! variable2)

variable! is any variable or valid layer reference; layers must be of type integer
variable?2 is any variable or valid layer reference; layers must be of type integer; variable2 must

have as many layers as variable!; corresponding layers must have the same dimensions

Produces a new variable such that for a particular layer, entry (i,j) is the minimum of the

corresponding entries in the corresponding layers of variable! and variable2.
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retain_components

retain_components(variable] variable2)

variable] must be a single layer variable or a valid layer reference; layer must be of type long
variable2 must be a single layer variable or a valid layer reference; layer must be of type

boolcan

The layer variablel is assumed to contain connected components each with a separate numeric
label, e.g. first connected component consists of all s, the second all 2s etc. (as produced by the
function separate_components). The layer of variable? is assumed to be a row vector (even if
this is not the case only the first row is used by the function). The first element of the vector
corresponds to component 1, the second component 2, ctc. If an element is a boolcan 1 then the

corresponding connected component is retained in the output layer.

saturate

saturate(variable)

variable is any variable or valid layer reference; layers can be of any data type

Fits the values of variable 1o the interval [0,255] using linear interpolation.

e.g. display(saturate{pictures),grey)

separate_components

scparate_components(variable, integer)

variable is any variable or valid layer reference; layers must be of type boolean

integer must be ecither 4 or §

Used to individually label the connected components (integer determines the type of
connectivity to be used) in cach layer of variable. The resulting variable has layers of type

long. Numeric labels begin at 1 for each layer.
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skeleton

sphere

skeleton(variable,integer)

variable is any variable or valid layer reference; layers must be of type boolean

integer must be either O or |

Thins each of the layers to produce 8~connected homotopic skeletons. This function utilises the

parallel thinning algorithm devised by Zhang and Suen (1984). The value of integer indicates

whether values exterior to the layers are to be treated as binary 1 or 0.

sphere(integer}

integer must be in the interval {0,255]

Generates a spherical structuring clement of specified radius. Missing values are used to

encode those elements of the resulting layer that are not part of the circular domain of the

structuring clement, The new layer is of type integer.

threshold

threshold(variablei ,variable2)
variable! must be a single layer variabie or a valid layer reference; layer must be of type integer
variable2 must be a single layer variable or a valid layer reference; layer must be of type

integer; layer must contain only onc value

Produces a boolean image with 1s everywhere variablel is greater than or equal to the value in

variable2.

c.g. result=threshold(image,max_value(gradient))
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translate

translate(variable,integerl integer?)

variable is any variable or valid layer reference; layers can be of any data type
integer] an arbitrary value

integer2 an arbitrary value

Translates each layer by integer! pixels in the x direction and integer2 pixels in the y direction.
This function only adjusts the spatial coordinates of each bound matrix. If the top left entry of a
particular bound matrix has coordinates (x,y) then this function returns a layer with coordinates

(x + imtegerl, y + integer2).
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The Syntax of a DIMPAL Statement

<statement>::=<identif

<identif

<identifier>{{<parameter>}{, <parameter>})

ier> =

ier> |

<disjunction>::=<conjunction> |

<disjunction> |

<conjunction> |} <disjunction>

<conjunction> [|]|] <disjunction>
<conjunction>::=<expression> |

<expression> && <conjunction>

<expression> [&&] <conjunction>

<expression>::=<simple
<simple
<simple
<simple
<simple
<simple
<simple
<simple
<simple
<simple
<simple
<simple

<simple

<simple expression>::=

expression>
expression>
expression>
expression>
expression>
expression>
expression>
expression>
expression>
expression>
expression>
expression>

expression>

<term> |

<term> +
<term>
<term> -

<term>

<expression>
<expression>
<expression>
<expression>
<expression>
<expression>
<expression>
<expression>
<expression>
<expression>
<expression>

<expression>

<simple_expression>
<simple_expression>
<simple_expression>

<simple_expression>
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<term>::=<factor> |

<factor> * <term> |

<factor> [*] <term> |

<factor> / <term> |

<factor> [/} <term>

<factor>: :=<subfactor> |

<subfactor> ~ <factor> |

<subfactor> (] <factor>

<subfactor>: :=<constant> }

<constant>:

<variable>:

<function>:

<variable> |
<function> |
(<disjunction>) |
-<subfactor> |

t<gubfactor>

:=<integer> |

<real>

:=<identifier> |
<identifier> . <identifier>

<identifier> . <integer>

:=<identifier> ({<parameter>}{,<parameter>}) |

[<identifier>] ({<parameter>}{,<narameter>})

<parameter>: :=<string> |

<disjunction>
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DIMPAL Script Files Used to Segment and Measure Neuritic Plaques

segment.prg

;SYNOPSIS: Segment mature neuritic plaques from an image
; INPUT: image (INTEGER 480V x 640H)
; OUTPUT: plagques (BOOLEAN 458V x 618H)

; DEFINE LINEAR STELTS FOR OC FILTER

lines=ASCII_file("c:\dimpal\templates\lines.txt")

; ASF
text ("Removing electronic noise and small artefacts")

execute("c:\dimpal\programs\rollball.prg")

; GENERALISED OC FILTER
text ("Improving connectivity within plaques and suppressing larger

artefacts")

opening=dilate(erode(opclos3,lines.1), lines.1)
opening=max (opening,dilate(erode{opclos3,lines.2),lines.2))
opening=max(opening,dilate{erocde(opclos3,lines.3),lines.3))

opening=max{opening,dilate(ercde({opclos3,lines.4),lines.4))

opclos=.'rode(dilate(opening,lines.1),lines.1)
opclos=min (opclos,erode{dilate (opening, lines.2),lines.2))
opclos=min(opclos, erode{dilate(opening,lines.3),lines.3))

opclos=min{opclos, erode{dilate (opening, lines.4),lines.4))

; TOPHAT TRANSFORM
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text (*Normalising the background")

stelt=disk(3)

closing=dilate(dilate(dilate(dilate(dilate(dilate(dilate(dilate(opclos
,stelt),stelt),stelt),stelt),stelt),stelt),stelt),stelt)
closing=dilate{dilate(dilate(dilate(dilate(dilate(dilate(dilate{closin
g,stelt),stelt),stelt),stelt),stelt),stelt),stelt),stelt)
closing=dilate(dilate(dilate{dilate(dilate(dilate(dilate{dilate(closin

g,stelt),stelt),stelt),stelt),stelt),stelt),stelt),stelt)

closing=erode (erode(erode (erode (erode (erode (erode (erode (closing,stelt)
,stelt),stelt),stelt),stelt),stelt),stelt),stelt)
closing=erode (erode(erode (erode (erode (erode (erode (erode (closing, stelt)
,stelt),stelt),stelt),stelt),stelt),stelt), stelt)
closing=erode (erode (erode{erode (erode (erode (erode (erode (closing, stelt)

,stelt),stelt),stelt),stelt),stelt),stelt), stelt)

text ("Performing the tophat transform")

tophat=closing[~]opclos

; MORPHOLOGICAL GRADIENT
text ("Calculating morphological gradient for automatic thresholding")

gradient=dilate(tophat,disk(1l)) (-]erode({tophat,disk (1))

; LABEL CONNECTED COMPONENTS AND PERFORM BORDER CORRECTION

text("Find connected components and perform border correction")
threshold_value=max_value(gradient) /2

components=border_correct (separate_components (clip(threshold(tophat, th

reshold_value),11,-11,628,-468),8))

; RETAIN ONLY MATURE PLAQUES

text ("Keep only mature plaques")
to_be_retained=threshold(tophat, integer (max_value(tophat)*0.75)) (*]com
ponents
to_be_retained=clip(histogram(byte(to_be_retained)),1,0,640,0)>0

components=retain_components (components, to_be_retained)

text ("Remove components with connectivity # = 0 and shape factor > 3")
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measure=measure_components (components, 1, 1)
to_be_retained=clip(measure,0,-4,640,-4)1=0
to_be_retained=(translate(clip{measure,0, -5, 640, -
5),0,1)<=3) | |to_be_retained

components=retain_components (components, to_be_retained)

; REJECT SMALL PLAQUES
text ("Eliminate plagues that are too small")

plaques=dilate (erode (components>0,disk(10)),disk(10))

; OUTLINE MATURE PLAQUES

text ("Overlay outline of plaques on original image")
ocutline=dilate(plaques,disk (1)) [&&] lerode (plaques,disk(l))
image=saturate (byte (image) )

overlay (image,outline, 255,255, 255)




Appendix G ¢ 166

lines.txt

LAYERS: 4
IDENTIFIER: line_135
TYPE: BOOLEAN
LOCATION: (-5,5)
SIZE: 11 x 11

IDENTIFIER: line_45
TYPE: BOOLEAN
LOCATION: (-5,5)
SIZE: 11 x 11

IDENTIFIER: line_ S0
TYPE: BOOLEAN
LOCATION: (-5,5)
SIZE: 11 x 11

IDENTIFIER: line_0
TYPE: BOOLEAN
LOCATION: (-5,5)
SIZE: 11 x 11

10000000000
01000000000
00100000000
00010000000
00001000000
00000100000
00000010000
00000001000
00000000100
00000000010
00000000001

00000000001
00000000010
00000000100
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00000001000
00000010000
00000100000
00001000000
00010000000
00100000000
01000000000
10000000000

00000100000
00000100000
00000100000
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roliball.prg

Bt A i e S e e e e o - v - - - e e e e et S A e e e A -

; SYNOPSIS: ASF -- sequence of open-closings using
; spheres of radii 1 to 3
H INPUT: image (INTEGER)
; OUTPUT: opclos3 (INTEGER)

text ("Performing open-closing with sphere of radius 1")
stelt=sphere(l)
opening=dilate(erode(integer (image),stelt),stelt)

opclosl=erode(dilate(opening, stelt),stelt)

text ("Performing open-closing with sphere of radius 2")
stelt=sphere(2)
opening=dilate(erode{opclosl, stelt),stelt)

opclos2=erode(dilate(opening, stelt),stelt)

text {"Performing open-closing with sphere of radius 3")
stelt=sphere(3)
opening=dilate (erode (opclos2, stelt), stelt)

opclos3=erode (dilate (opening, stelt), stelt)
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