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ABSTRACT 

The ability to recognise and classify objects in the environment is an important property of 
biological vision. It is highly desirable that artificial vision systems also have this ability. This thesis 
documents research into the use of artificial neural networks to implement a prototype model of visual 
object recognition. The prototype model, describing a computational architecture, is derived from 
relevant physiological and psychological data, and attempts to resolve the use of structural 
decomposition and invariant feature detection. 

To validate the research a partial implementation of the model has been constructed using 
multiple neural networks. A linear feed-forward network performs pre-processing after being trained 
to approximate a conventional statistical data compression algorithm. The output of this 
pre-processing forms a feature vector that is categorised using an Adaptive Resonance Theory 
network capable of recognising arbitrary analog patterns. 

The implementation has been applied to the task of recognising static images of human faces. 
Experimental results show that the implementation is able to achieve a 100% successful recognition 
rate with performance that degrades gracefully. The implementation is robust against facial changes, 
minor occlusions, and it is flexible enough to categorise data from any domain. 
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Section I: Introduction 

The ability to recognise objects is an important property of biological vision. It allows us to 

process, categorise, and interact with the patterns of our environment. It is highly desirable for 

artificial vision systems to have this ability. Although artificial neural networks are recognised as 

powerful pattern recognition devices, little effort appears to have been made to establish their part in 

sy.tems for object recognition. This section introduces these issues, containing: 

• A brief discussion of models of perception, especially the hwnan visual system.

• The motivation for modelling the computational behaviour of the visual system and

justification for using neural networks to implement the model. 

• The objectives that governed the direction of this research.

• An overview of the contents of the thesis.

1.1 Background 

Computational models are still a long way from capturing the flexibility and generality of 

biological visual processes. This is despite the wealth of physiological and psychological data, and the 

considerable research that has been invested over the last century. The impact of providing our 

machines with the means to directly perceive their environment is significant, and research efforts to 

this end can easily be justified. This thesis docwnents research into the use of artificial neural networks 

to implement a prototype model of visual object recognitwn. 

Discussion of more general problems in computational vision is provided by many authors. 

The influential monograph by Marr (1982) is probably required reading for research in this field. 

Other recommended surveys are Barrow and Tenenbawn (1986), Ballard and Brown (1982), and 

Hildreth and Ullman (1989). Inspiration for the approach taken during the review and the 

theoretical formulation is provided by Overington (1992). 
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1.1.1 Mollelsof Perception 

Two principles have, historically, guided models of the way we process visual patterns. The 

first, known as the (lrinciple of prii,gntmz, is based upon Gestalt laws of organisation and grouping 

(Pomerantz and Kubovy, 1986). The second, the (lrinciple of likelihood, is derived from the work of 

Helmholtz, Boring, and others, and describes perception as hypothesis testing and matching 

(Pomerantz and Kubovy, 1986; Bruce and Green, 1990). 

2 

The principle ofpragnanz states that the visual organisation we perceive will be the one with the 

least complexity, the organisation with the most stable geometrical arrangement. That is, perceptions 

are IJlobally organised "to simplify maximally the representation of holistic stimulus configurations" 

(Pomerantz and Kubovy, 1986, p.14). The organisational principles most often considered are 

{'roximity, similarity, common fate, continuation, closure, relative size, surroundedness, orientation, and 

symmetry (Bruce and Green, 1990). These properties were considered to mirror innate structures in 

the brain (Pomerantz and Kubovy, 1986). 

The principle of likelihood states that perceptions are organised "into the most (1r0bable [italics 

added] object or event . .. in the environment consistent with the sensory data" (Pomerantz and 

Kubovy, 1986, p.9). The likelihood principle describes perception as a process of hypothesis testing, 

rejection, and verification, i.e. reasoning. What is, perhaps, unique is the idea that this reasoning 

process is separate from conscious intelligence using what Helmholtz terms unconscious inference. 

The surveys by Pomerantz and Kubovy (1986) and Chase (1986) are recommended for a more 

thorough treatment than that given above. These works also describe more current approaches and 

provide reference to the work of Helmholtz, the Gestalt psychologists, and the structuralists. The 

ecological approach of Gibson provides a different view of perception, considering perception to be the 

passive detection of the invariant information in the environment (Gibson, 1966). 

Modern theories of perception generally lie between these two extremes, although it might be 

hypothesised that differences in current models arc similar to the differences between pragnanz and 

likelihood, sec, for example, the argument of Grossberg (1984/1987). Unfortunately, the data 

regarding perception is often contradictory and paradoxical (Grossberg, 1987), leading to an 

abundance of disparate models. This makes it difficult to determine an appropriate theoretical 

framework. Hildreth and Ullman conclude "that in object recognition, which is one of the most 

fundamental aspects of human vision, theories (as well as experimental work) still have a long way to 

go" (Hildreth and Ullman, 1989, p.40). 
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1.1.2 A Suitable Design Approach 

Research into neural networks has centred upon luw-level problems, for example, sufficiently 

powerful learning algorithms, which has sometimes been at the expense of higher level design issues 

(Mrsic-Flogel, 1991 ). Perhaps a more suitable approach is to consider perception as a process 

producing a description of the external world that is useful and not cluttered with irrelevant 

information (Marr, 1982). Thus vision can be described as a mapping from one representational 

domain to another - beginning with a two-dimensional array of sensor information that is 

transformed, through a hierarchy of processes, into a concise description of the objects in the image 

(Marr, 1982; Barrow and Tenenbaum, 1986). According to Marr (1982) vision must be described 

and understood at three distinct levels: 

1. As a computational model, defining the goals and the function of the activity.

2. As an algorithmic process, describing the representations appropriate to a computational

model. 

3 

3. As a description of the specific implementation of a computational model.

This strategy, typical of traditional artificial intelligence techniques, is concerned with explaining the 

abilities in question, thus postponing detailed empirical validation of the algorithms used in the model 

(Pylyshyn, 1989). 

1.1.3 ArtificiRl Neuml Networks 

A more detailed discussion of the networks used to implement the model can be found in later 

sections. Here it will suffice to justify their deliberate use to implement the model. Neural networks 

are recognised as powerful pattern recognition devices, capable of considerable functional adaption 

and generalisation (Pao, 1989). Perhaps their most attractive features are massive parallelism, simple 

computational units that are inherently brain-like, and algorithmic flexibility- properties that are 

highly desirable for artificial vision systems (Feldman, 1985; Uhr, 1987; Barrow and Tenenbaum, 

1986). Although it is possible for other techniques to exhibit these properties (Uhr, 1987; 

Overington, 1992) they are available, almost by definition, with neural networks. 

Some familiarity with general concepts of neural networks will be henceforth assumed, 

including knowledge of back-propagation (Rumelhart, Hinton, and Williams, 1986 ), competitive 

learning (Kohonen, 1982; Rumelhart and Zipser, 1985), Hebbian learning (Hebb, 1949), and 

Adaptive R£sonance Theory (Carpenter and Grossberg, 1987/199la). 
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1.2 Research Objecti-ves 

The objective ohhis research was to determine how a general model of object recognition could 

be implemented using neural networks. This objective was divided into four separate aims: 

1. The design of a computational model of object recognition.

2. The selection of neural networks appropriate to the task of object recognition.

3. The development of a prototype implementation using a number of simplifying

assumptions and limitations. 

4. Validation of the model, and the implementation, by testing classification ability.

To validate the model it was decided to use a single domain representing data similar to that found in 

real-world applications - in this case, images of human faces. 

The first aim, to design a computational model, was pursued with the intent of not explicitly 

contradicting known facts about biological systems. As biological vision is the best example we have 

that vision is possible it is wise not to ignore how these mechanisms perform the task: they may show 

how the· process should be modelled. 

The fourth aim, validation and testing, was designed to quantify the robustness, i.e. 

predicability, of the techniques used. The third aim obviously interacted with this goal, especially the 

limitations that were required. To minimise the impact of this interaction both the model and the 

implementation were designed to be portable, and as domain independent as possible. 

1.3 Hypothesis 

The hypothesis of the research can now be stated as follows: 

A general model of object recognition will, when implemented using 

artificial neural networks, reliably classify images with performance that 

degrades predictably as the recognition task becomes more difficult. 

The hypothesis has been verified by the prototype implementation and the validating application. 

Although testing was limited, the results show that the hypothesis is tenable and should be subjected 

to further examination. 
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1.4 Thesis Structure 

The thesis is developed conventionally. Section two reviews the literature from a number of 

disciplines, describing relevant physiological, psychological, and computational data. Section three 

derives an appropriate computational model of object recognition, and describes the prototype 

instantiation used to test the model. Section four details the validating application, the experimental 

hypotheses, and the results of three simple experiments. Section five generalises from the results from 

section four, discussing their immediate implications, and some general observations derived from the 

experiments. The thesis concludes with section six, where the significance of the results, and the 

research generally, are discussed. At the end of the thesis can be found the list of references consulted 

during this research. 

1.5 Summary 

This section has described some preliminaries needed to place the thesis in an appropriate 

context, and refers to the ideas that have led to the research hypothesis. Objectives for the research 

were derived, implicitly and explicitly, from the background literature and they provide a series of 

goals that will be validated in the conclusion. Most importantly, a suitable approach has been 

identified and this has been used to structure both the research and the thesis, including the next 

section - a review of the relevant literature and data. 

5 



Section 2: Visual Recognition 

Biological vision has been the subject of research for over a century and it is the best known 

perceptual system. Vision can be described as a number of functionally distinct areas, with a definite 

hierarchy of processes and activities. In fact, it has been found that perceptual systems have a 

shallowly serial, massively parallel architecture and there are many computational descriptions of these 

processes. After a brief review of physiological constraints this section examines these issues further. 

2.1 Background 

Ram6n y Cajal, born in the 1850's, stands out in the field of neuroanatomy. His major 

contributions being to establish that neurons act independently and to show that, by using the Golgi 

staining method, they form extremely complicated, but orderly, networks of cells (Hubel, 1988). 

From these beginnings understanding of the physiology of the visual system has increased 

dramatically, and the process can be now described reasonably well (Hubel, 1988). 

Studies of cortical activity, especially in cases of brain lesions, have shown that there are two 

visual processing mechanisms (McCarthy and Warrington, 1990; Desimone and Ungerleider, 1989; 

Carpenter, 1984): 

• Spatial vision - associated with the posterior parietal cortex

• Pattern vision - associated with the inferior temporal cortex

Both mechanisms originate in striate cortex (primary visual cortex) and are made up of a number of 

distinct functional areas. 

Computational models of biological vision have improved, and there are now a number of 

strategies. The more popular approaches are based upon the detection of invariant features, or a 

representation derived from rtmaural decompontion (Hildreth and Ullman, 1989). 

Modelling visual recognition with artificial neural networks has a long history, beginning with 

the work of Pitts and McCulloch (1947/1988) through to more recent studies by Grossberg 
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(1983/1987) and Kohonen (1988). However, it has been recognised only recently that more global 

models of perception are required, resulting in a move towards perceptual rystems rather than isolated 

networks of neurons (Mrsic-Flogel, 1991). 

22 Physiological Vision 

221 The Retimi 

Light data enters the retina and is converted into a pattern of neural activity by the rods and 

cones (Carpenter, 1984). Retinal response is transmitted to the ganglion cells, which make up the 

optic fibres, through the activities of bipolar, horizontal, and amacrine cells. Bipolar cells have been 

divided into midget and diffuse types and it is hypothesised that high resolution visual information 

from the fovea is directed through the midget bipolars to the ganglions, with approximately one to 

one correspondence between foveal cones, midget bipolars, and ganglions (Hood and Finkelstein, 

1986; Overington, 1992; Hubel, 1988). Horizontal and amacrine cells are usually associated with 

lower resolution, achromatic vision and their function is species dependant (Carpenter, 1984). 

Receptors instantaneously adapt to the current level of illumination, filtering out irrelevant 

illumination changes (Carpenter, 1984; Abramov and Gordon, 1974). This field adaptwn occurs 

through the bleaching of photopigments and can be modelled, for a large range of luminance levels, 

by a Weber ratio (Falmagne, 1986; Hood and Finkelstein, 1986; Carpenter, 1984; Gonzalez and 

Wintz, 1987). 

Bipolar and ganglion cells are of two types - on-centre, off-surround and off-centre, on-surround 

- that occur in approximately equal numbers in the retina. This mechanism allows the retina to

respond to both the presence, and the absence, of light. 

222 fA.terRI Genicullite Nuclei (LGN) 

7 

The retinas send their output to the lateral geniculate nuclei through the optic fibres. The nuclei 

contain six layers, or laminae, each of which receives a retinotopic map of half the visual field 

(Abramov and Gordon, 1974; Hubel, 1988; Bruce and Green, 1990). In the macaque monkey three 

layers receive input from one eye, and three from the other eye (Hubel, 1988; Bruce and Green, 

1990) - and there are good reasons to suppose that the early stages of human vision are similar 

(Hubel, 1988). 

The LGN contain two distinct areas, the ventral, or lower, regions, and the dorsal, or upper, 

regions. In the two ventral layers are found mt:11Jnocellular cells, with large receptive fields 
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(topographic regions that evoke a response), high acuity, and a broad-band centre-surrom1d response 

to light. They are often thought to be colour blind and are assumed to be involved in form, depth, 

and movement perception (Hubel, 1988). 

In the four dorsal layers are fom1d parvocellular cells, with smaller receptive fields than the 

ventral cells, mixed acuity, and a complicated response to colour. Most cells have red-green opponent 

centre-surrom1d responses, i.e. Red+Green-, Red-Green+, Green+Red-, Green-Red+ (Hubel, 

1988). These cells seem to capture the information required for colour processing. 

Many cells in both the dorsal and ventral regions have small receptive field centres, of 

approximately two minutes of arc in diameter. This is about the same acuity as the fovea and it seems 

that a single cone provides information for these centres (Hubel, 1988). 

223 Struite Owtrx (VI) 

Axons from the LGN, see Figure 2.1, form the optic radiations that ascend and terminate in 

layer 4C of striate cortex (Vl or Area 17) - which contains a hierarchy of six separate layers (Hubel, 

1988). Those axons originating in the two ventral layers of the LGN synapse in layer 4Ca, while 

those from the parvocellular layers end in layers 4CP and 4A (Hubel, 1988; Desimone and 

Ungerleider, 1989). 

Layer 4Ca projects into layer 4B and, possibly, layers 2,3, and 6 (Desimone and Ungerleider, 

1989). Like cells in the ventral regions of the LGN the cells in 4Ca display broad-band spectral 

properties with sensitivity to low contrasts (Desimone and Ungerleider, 1989). The cells in layer 4B 

selectively respond to the direction of stimulus motion and are probably important for motion 

analysis (Desimone and Ungerleider, 1989). 

8 

Projections from layer 4CP terminate in layers 2 and 3 (Hubel, 1988). Cells in these areas 

show spectral sensitivity similar to that fom1d in the dorsal regions of the LGN, i.e. colour 

opponency. However, these cells have more varied and complex receptive field properties and often 

form homogenous fields (Desimone and Ungerleider, 1989). A class of cells in the striate cortex also 

have a double colour opponent (DCO) response (Desimone and Ungerleider, 1989). DCO cells, which 

occur in regions called blobs (Hubel, 1988), respond to small spots of light with their preferred stimuli 

- red-green and yellow-blue. It is now assumed that these cells are devoted to colour processing and

achieving colour constancy (providing colour information despite instantaneous illumination) (Hubel, 

1988; Desimone and Ungerleider, 1988). 
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Arca V3 
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Arca PG (Pmetal Lobe) 

Figure 2.1. Diagram of visual areas showing major functional regions and connections. Heavy 
arrowheads indicate forward neural projections, light arrowheads show that some information feeds 
back. 

Cells in striate cortex, except blobs and centre-surround cells in layer 4, selectively respond to 

visual stimuli at particular orientations (Hubel, 1988). Cells with similar orientation preference are 

grouped into columns that overlap with the ocular dominance columns. These complex cells all 

respond to properly oriented lines that occur within their receptive field (Hubel, 1988). 

It is generally accepted that cells in striate cortex function as "general-purpose spatial filters that 

transform the visual image in a number of useful ways", including colour, orientation, movement, 

size, and spatial frequency (Desimone and Ungerleider, 1989). Simple cells, which occur in layer 4 

and respond to properly oriented lines in particular positions, carry shading and three-dimensional 
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contour information, while complex cells carry information on fine surface textures (Desimone and 

Ungerleider, 1989). 

224AmiV2 

Area V2 in the visual cortex has not been studied as extensively as Vl but it appears that cells have 

many of the same properties (Desimone and Ungerleider, 1989). Area V2 is composed of three 

regions that, using staining techniques, appear as alternating thin and thick stripes separated by 

interstripe regions (Desimone and Ungerleider, 1989). 

10 

l. Thin stripes receive synapses from the blobs of striate cortex and project to area V4. C.ells

in this region may be selective for non-oriented colour information.

2. Thick stripes receive synapses from layer 4B of striate cortex, project to area MT, and are

selective for orientation, disparity, and direction of motion.

3. Interstripe regions receive synapses from the interblob areas of striate cortex, project to

area V4, and are selective to the length and orientation of stimuli.

Although there are some doubts about the functional classification it is generally agreed that the three 

regions perform different types of processing. 

225 The Occipi.tvtempoml P11thw,iy 

The impression that there are two separate physiological pathways, beginning with the 

magnocellular and parvocellular regions of the LGN, increases after area V2. Synapses from layer 4B 

of area Vl and the thick stripe region of V2 terminate in areas V3 and MT. Synapses from area MT 

project into the parietal lobe, which has been associated with motion analysis (Desimone and 

Ungerleider, 1989), localisation (Carpenter, 1984), geographical and spatial orientation, and 

coordination of multiple sensory modalities (Howard, 1974). This has led to this pathway being 

identified with the term spatial vision (Desimone and Ungerleider, 1989) and the neurophysiology is 

discussed in Goldberg and Colby (1989). 

Area V4 receives synapses from the interstripe and thin stripe regions ofV2, and synapses from 

area V3 and area MT. Projections from V4 terminate in areas MT and the parietal lobe, and, more 

importantly for this discussion, in inferior temporal cortex (IT). It is known that lesions in the IT 

area effect the ability to perform visual discrimination, visual recognition, and form and colour 

analysis (Desimone and Ungerleider, 1989; Carpenter, 1984; Bruce and Green, 1990; McCarthy and 
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Warrington, 1990). The term pattern vision has been used to describe the function of the 

occipitotemporal pathway (Desimone and Ungerleider, 1989). 

Cells in IT have much larger receptive fields than those fonnd in lower layers, and these have 

been associated with translational invariance (Desimone and Ungerleider, 1989). Most cells in IT 

have a selective response to stimuli based upon the features fonnd in the stimuli, for example, shape, 

colour, and texture (Desimone and Ungerleider, 1989). Physiological evidence suggests "that the 

neural code for objects in IT must be a population code [ response of multiple cells] based on object 

features" (Desimone and Ungerleider, 1989). 

Face Recognition. Cells that respond selectively to faces have been fonnd in IT regions of 

primates and, initially, were thought to be examples of cells that coded individual objects (i.e. 

(Jrandmother cells) (Bruce and Green, 1990; Mcuuthy and Warrington, 1990; Desimone and 

Ungerleider, 1989). It is now known that these cells respond to different faces, expressions, and 

orientations, and are probably parts of a larger population code (Desimone and Ungerleider, 1989). 

23 Models of Recognition 

11 

It has been suggested that object recognition be achieved by the formation of perceptual, or 

semantic, categories (Desimone and Ungerleider, 1989; McGu-thy and Warrington, 1990). This view 

is supported by lesion studies and various forms of visual agnosia. It has been shown that while 

localised brain damage can lead to a failure to discriminate specific attributes, the ability to identify 

objects within broad categories may be retained (McGu-thy and Warrington, 1990; Desimone and 

Ungerleider, 1989). 

23.1 Memory °'1Jsnisation 

In a general sense, the model described above can be considered as a continuously evolving 

associative memory. Such a memory would be distributed across the cortex with areas specifically 

associated with different sensory modalities (McGu-thy and Warrington, 1990). Such a model can be 

used to explain how recognition can occur when partial, or imperfect, cues are provided (Damasio, 

Tranel, and Damasio, 1989, p.10); 

The overall mapping of any entity and by extension, any event is the potential sum total 

of sub-representations available in sensory and motor cortices. It follows ... that the 

recognition of an object is determined by which feature, dimension and context is offered 

perceptually ... to the available representation [italics added]. 
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This view of memory and recognition emphasises the importance of both internal and perceived 

representation. Although the issue of representation does not describe a theory of recognition it is 

important because it influences the nature of such a theory. 

23.2 Stimulus EIJUimlence

12 

Before examining representation it is instructive to consider the problem of stim11lus equivalence, 

as described by Bruce and Green (1990, p.177); 

If the stimulus controlling behaviour is a pattern oflight, or image, on the retina, then an 

infinite number [possible distributions oflight] are equivalent in the effects, and different 

from other sets of images. 

This description can be extended to any sensory process where a sample of the continuous 

environment is made. The problem of describing the recognition of an infinite number of sensory 

patterns has led to different views of the internal representation constructed by biological systems. 

23.3 Stmctuml Representation 

Sutherland (1973) describes object recognition as involving the "formation, storage and 

retrieval of structural [italics added] descriptions. A description comprises a list of entities, the 

properties of those entities and the relationships obtaining between them" (Sutherland, 1973, p.2). 

Marr (1982) supports and expands this view, arguing that "object recognition demands a stable shape 

description that depends little, if at all, on the viewpoint" (Marr, 1982, p.295 ). Marr describes such a 

description, calling it the 3D representatwn, a representation describing objects hierarchically using 

both volumetric and surface primitives (Marr, 1982). 

The approach described by Sutherland (1973), and expanded by Marr (1982), Ballard and 

Brown (1982), and Barrow and Tenenbaum (1986), can be broadly described as structural 

decomposition, or decomposition into parts (Treisman, 1986). This is an analytical approach: objects 

are represented as conjunctions of symbolic primitives. The approach has widespread appeal and 

there is a wealth of psychological evidence for such a process (Treisman, 1986). Structural 

descriptions can be categorised using the techniques of syntactic pattern recognition, where the 

representation is parsed in much the same way that a sentence in a formal grammar is processed (Fu, 

1980; Fu, 1986; Rosenfeld, 1986). 
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23.4 Imwruint Faitures 

A problem with structural decomposition is that it is difficult to determine the structural 

primitives that should be used with a large range of naturally occurring stimuli, i.e. those that are not 

composed of straight lines and simple geometric shapes (Treisman, 1986). An alternate 

representation is based upon the detection, and recognition, of i,wariant features, as described by 

Gibson (Gibson, 1966, p.278); 

The judgement of "same" reflects the tuning of a perceptual system to the invariants of 

stimulus information that specify the same real place, the same real object, or the same 

real person. The judgement of "different" reflects the absence of invariants, or sometimes 

the failure of the system to pick up those that exist. 

13 

Recognition is achieved by the perceptual system resonating to the invariant features detected 

(Gibson, 1966). This is a holistic (Treisman, 1986), or ecological (Bruce and Green, 1990), approach 

that is based upon the assumption that an object is recognised as a whole, rather than a collection of 

parts. 

Unfortunately, it is difficult to decide (1) what invariant features are actually used, and (2) how 

the idea of invariant features can operate in view of the stimulus equivalence problem (Hildreth and 

Ullman, 1989; Bruce and Green, 1990; Marr, 1982). A very simple solution to the second problem, 

which is the most serious, is to store many different descriptions of an object, each description 

representing a different view of the object. Obviously such an approach will, eventually, require an 

infinite memory (Hildreth and Ullman, 1989; Treisman, 1986). 

A more flexible approach, with psychological validity (Treisman, 1986; Grossberg, 1983/1987; 

Rock, 1986), is described as perceptual learning (Treisman, 1986, p.47); 

Perceptual learning is seen as a process of (1) abstracting the central tendency, the most 

typical instances, rather than defining the boundary conditions, and (2) learning which 

transformations or dimensions of variation are acceptable without changing the identity 

of the object. 

This view fits very well with the idea of perceptual categories, or prototypes, and is particularly 

applicable when verbal descriptions are not available or required (Treisman, 1986). 

Unlike hierarchical structural descriptions, invariant features are usually captured within the 

form of a feature vector. Matching a feature vector with an internal description occurs in a high 

dimensional feature space (Pao, 1989), and can be viewed as a process of hypothesis testing (Grossberg, 

1984/1987), or top-down matching (Treisman, 1986). The techniques of statistical pattern 

f 
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recognition can be used to match feature vectors (Habibi, 1986; FukW1aga, 1990; Therrien, 1989). 

Category formation can be seen as a process of clustering similar vectors in feature space. 

23.5 Psmllel Processes 

14 

Physiological and psychological evidence suggests that two separate processes occur in the visual 

cortex, one concerned with spatial processing and movement, the other with semantic processing and 

object recognition. Both pathways originate from striate cortex, they appear to operate in parallel 

(Treisman, 1986 ), and it is possible that they commWlicate through cortical areas MT, V3, and, 

probably more importantly, V4 (see 2.2.5; Desimone and Ungerleider, 1989). 

There is compelling evidence that visual stimuli are described analytically, i.e. decomposed into 

structural components. The resulting description appears to use a canonical coordinate frame that is 

updated as objects move and change. The evidence for structural decomposition seems to conflict 

with evidence suggesting a more holistic approach, where the total configuration of features in an 

object is important. Treisman (1986) suggests that, after initial sensory processing, a holistic analysis 

may take precedence over decomposition. The existence of two methods of recognition is evidenced 

by the ability of some face agnosic patients to perform fragmentary recognition, i.e. recognise parts of 

an object rather than the whole object (Damasio et al., 1989). 

From the above, it seems reasonable to assert that spatial vision requires the construction of a 

representation similar to the one described by Marr (1982), while pattern vision may operate on a set 

of invariant features. Although little is known about the mechanisms used for pattern vision, it is 

clear that spatial vision occurs in the parietal lobe, which is involved in spatial processing. 

Computational approaches usually assume that structural decomposition and feature analysis are 

mutually exclusive. This is not necessarily so, the evidence suggests that structural decomposition and 

feature analysis should both be used and performed in parallel. 

24 Recognition Using Neural Networks 

Neural networks are usually viewed as massively parallel machines composed of simple 

computational elements, called neurons. Neurons commWlicate state information through weighted 

Wli-directional (or bi-directional) links called synapses. Thus a neural network can be considered to 

form a tJraph, and many architectures, learning algorithms, and neuron models have been described. 

Neural networks have been applied to many problem domains but since their first practical 

description (McCulloch and Pitts, 1943/1988; Pitts and McCulloch, 1947 /1988) they have been used 



Visual Recognition Using Neural Networks 

to model low level sensory processes (Kohonen, 1982), particularly vision (Linsker, 1988; Azencott, 

Doutriauz, and Younes, 1990; Rybak, Shevtsovam and Sandler, 1992; Kollias, Tirakis, and Milios, 

1991). However, perhaps the most comprehensive description of neural networks as sensory 

processors is by Stephen Grossberg and Gail Oupenter (Oupenter, 1989/1991; Carpenter and 

Grossberg, 1987/199la, 1987/199lb; Grossberg. 1983/1987, 1987/1988a, 1989, 1988/1990, 

1976/199la, 1976, 1991a, 1976, 1991b, 1988/198lc). 

15 

The association process can be viewed as a mapping from a high dimensional input space to an 

output space of lower dimensions, or dimensionality reduction. Specialised architectures and learning 

algorithms (Oja, 1982; Sanger, 1989; Baldi and Hornik, 1989; Linsker, 1988; Rumelhart, Hinton, 

and Williams, 1986) have been described and investigated, the general result being that the network 

learns to perform an eigenvector transformation and hence extract the principal components of the 

input data (Oja, 1982; Gonzalez and Wintz, 1989). 

24.2 Associative Memory 

Neural networks can be considered to operate as associative memories, i.e. associating similar 

groups of input patterns to desired output patterns. Appropriate architectures and algorithms are 

presented by Hopfield (1982), Hinton, Sejnowski, and Ackley (1984), Peterson and Anderson 

(1987), and Kohonen (1988). In effect, neural networks perform a clustering operation using 

significant features in the input vectors, i.e. they are performing pattern recognition. 

Kohonen (1988) and Weiss and Kapouleas (1989/1992) have both shown that neural networks 

can perform as well as, or better than, conventional statistical and syntactic techniques. However, 

although they have been used to classify structural descriptions (Sabbah, 1988; Feldman, 1985) they 

are not particularly suited to processing hierarchical symbolic information. 

24.3 SystemModels 

Mrsic-Flogel argues that there is an increased need for research into "high-level systems design 

of neural architectures" (Mrsic-Flogel, 1991, p.l). He describes an architecture suitable for perceptual 

processing, consisting of three layers; 

1. A sensory level dedicated to input/output processing.
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2. A cognitive layer performing the transformation and normalisation required for cognitive

functions.

3. A layer monitoring and controlling the other layers.

As previously identified, biological sensory processes are shallowly serial yet massively parallel, a 

model not matched by single neural network architectures. It seems obvious that a neural network 

embedded within a serial system architecture is required. It is interesting that conventional processing 

models, for example, Marr (1982), follow this systematic approach. 

2.5 Summary 

A review of the physiological processes reveals that vision can be viewed as a series of distinct 

processes. Importantly, two parallel biological processes can be identified in spatial and pattern vision 

- which may be hypothesised to use different representations and mechanisms. This hypothesis would

account for conflicting psychological data, and provides a framework for the use for existing 

computational theory. 

Neural networks have been found to be efficient statistical classifiers and can be used to perform 

pattern recognition and, hence, pattern vision. However, a single neural network cannot perform the 

functions attributed to biological vision. It is suggested that the use of a serial system model with 

multiple processing stages is more suitable. 



Section 3: Computational Model 

The physiological model identified in the last section has been used to derive a computational 

architecture. This section details this model, containing: 

• A description of the functional architecture for the model.

• A description of the implementation constructed for this research.

• A discussion of the neural networks used for the implementation of the model.

3.1 A Proto'type Mode/. 

Input to the model is a two-dimensional array of spatially sampled attributes. Output is an 

appropriate semantic classification and a structural description, allowing further syntactic processing 

of an object. 

It is known that the retina samples a scene several times per second (Hubel, 1988), implying 

that the visual system operates in discrete time steps with an object undergoing a number of distinct 

transformations before recognition occurs. Finally, it is assumed that only high-resolution foveal 

information is important for object recognition. 

3.1.1 Design Cnterm 

The following criteria were used during design of the model: 

• The model must be clearly delineated from any implementation, i.e. processing stages

must be specified in terms ofinputs, outputs, and general function only. 

• The model must be suitable for parallel implementation, although a shallow hierarchy of

processing steps is desirable. 

' 
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Sense Data 

Sensory Processing 

Spatial Analysis 

Feature Selection .. 

Structural Filtering .. 

Semantic Encoding Structural Encoding 
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Shared Memory/ Association Area 

Other Systems 

�, 

Response 

Figure 3.1. Prototype computational model of object recognition showing processing hierarchy. 

• It must be possible to enhance the architecture of the model without disturbing existing

processes. 

Due to the limited nature of this research it is also asswned that a partial implementation of the model 

is valid. It is hoped that such an implementation can be used for future research. 
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3.1.2 Sensory Processing 

Sensory processing is intended to capture some of the functionality of the retina and the LGN. 

Input to the process is a two dimensional array of tri-chromatic coefficients. The primary purpose of 

sensory processing is to capture absolute variations in the input data. Secondary purposes are to 

prepare the data for later processing, to preserve essential features in the image, and to reduce the 

dimensionality of the image without degrading the quality of the information. Output from this 

processing retains the form of the original input. 

3.1.3 SpatuilAnalysis 

19 

Spatial analysis requires several distinct processes that, like the first levels of striate cortex, 

characterise the image along spatial dimensions - for example, contour and textural information, 

colour, and intensity change. It is possible that illusory and obscured information is filled-in at this 

stage. Output retains the form of the input data; textural and colour information is highlighted for 

the feature selection, while contour, edge, and depth information is highlighted for structural filtering. 

3.1.4 Structuml Filtering 

Structural filtering uses conventional techniques to extract the information required to form a 

structural description. This can be considered similar to Marr's 21/2-D sketch where orientation, 

surface depth, and contour information is made explicit (Marr, 1982). Generally this stage is 

associated with describing the properties of the surfaces found in an image. A top-down signal from 

the shared memory / association area indicates whether more intensive processing needs to be applied 

to the input data, for example, a rotation transformation. 

3.1.5 Featun Selection 

Description of feature selection and detection is problematic, requiring definition for the term 

feature. Simon defines a feature in terms of the detection operation, i.e. "a feature is the operator 

itself' (Simon, 1989, p.2). Feature detection operations usually operate upon the statistical properties 

of an image, and this was the approach used here. However, any definition resulting in a set of 

features, or feature vector, that uniquely describes an image is sufficient. 
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3.1. 6 S'tnlctuml Encoding 

Structural encoding uses the structural elements extracted by structural filtering to derive a 

hierarchical description of the surfaces and volumes present in an object. Description is in a canonical 

coordinate frame, i.e. object-centred, rather than viewer-centred, coordinates. As representation is 

hierarchical the resulting description will be graph-like and it may be matched against previously 

derived descriptions using conventional graph-matching, or the techniques developed for syntactic 

pattern recognition. Output of the process will be an identifier that may, or may not be, unique to an 

object, allowing access to information stored in the association layer. 

3.1.7 Semantic Encoding 

The purpose of semantic encoding is to derive a unique identifier for an object. As input to the 

process is a feature vector the encoding process will require some form of clustering operation in 

feature space. Thus an identifier is a cluster label, and identification will depend upon the distance 

between a cluster centre and the input vector. It is essential that cluster centres can be moved to 

accommodate changes in the appearance, or state, of objects (see 2.3.4). 

3.1.8 Shared Memory Area 

The shared memory area forms a database with indexes generated by structural and semantic 

encoding, and any other connected sensory systems. The database is local to the object recognition 

system and output might be directed to a global memory area. The association area matches the 

descriptions generated by structural encoding with those generated by semantic encoding. In the case 

of a mismatch it may request further processing - a request for a particular transformation of the input 

data or refinement of the encoding processes. 

3.2 Implementation 

3.21 Limimtwns 

Because only a partial implementation of the model was possible some limitations and 

assumptions were required: 

• It was assumed that structural encoding is not necessary for recognition in a controlled

environment. 

• Only achromatic information would be required.
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• Objects of interest were centralised and isolated in the data source, i.e. fixation and

figure-ground separation operations were not required. 

• Only objects from a single domain - perceptual category - would be presented.

Sensory processing, feature selection, semantic encoding, and a simple association area were 

implemented. 

3.22 Sensory Processing 

21 

Input consisted of two dimensional RGB images from a video camera. The image was 

converted into a grey scale image by retaining the magnitude of each RGB vector. Image size was 

standardised to 128xl28 pixels using a median filter - there is some plausibility for assuming the fovea 

has similar spatial resolution (Overington, 1992). 

Variation of luminance within each input image was determined using the Weber law shown in 

(3.1) where !!..I measures the instantaneous intensity increment, I is the background adapting 

intensity, and C is the constant contrast ratio. 

lil 
C = - (3.1) 

This law provided the means to find the required ratios, resulting in a reflectance pattern invariant to 

fluctuations in background intensity. The variation used for the implementation is shown in (3.2) 

(Freeman and Skapura, 1991)1, where 8; describes the reflectance value for pixel location i, I;

describes the measured intensity at pixel location i, and N describes the size of the pixel 

neighbourhood. 

8 = 
i 

(3.2) 

Olzak and Thomas ( 1986) suggest that this model is only suitable for patterns consisting of a single 

intensity change over a uniform background. However, for the purposes of the implementation it 

was found sufficiently powerful and it is a well known technique in neural network processing 

(Freeman and Skapura, 1991). The implementation used a neighbourhood of eight pixels 

(Overington, 1992), although other values could be justified. 

1 For notational convenience only the one-dimensional case is presented, the two-dimensional 
notation is obvious. 
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3.23 Fe11ture Selection 

The use of the discrete Karhunen-Loeve transformation (KLT) is well known in statistical pattern 

recognition (Gonzalez and Wintz, 1987). The transformation is optimal in the sense that it captures 

significant statistical features and achieves large reductions in data dimensionality, while minimising 

the mean-square error (Habibi, 1986). 

If it is valid to assume that the input data is stationary with a Gaussian-like distribution then it is 

possible to use an approximation to conventional KLT methods. This is a linear, feed-forward, neural 

network trained using Generalised Hebbian Learning (Sanger, 1989), referred to here as the KLTNa. 

The KLTNet can approximate the KLT to a reasonable level of accuracy (Sanger, 1989), and it has 

shown sufficient generalisation from its training data to serve as an arbitrary encoding mechanism 

(Phillips, 1993). 

Consider the feed-forward network shown in Figure 3.2. When a vector (x1, ... ,xN) is presented 

to the network, the output neurons (y1, ... ,yM) update their state using the linear summation function 

shown in (3.3). Thus the output vector is the linear transformation y=Ax, where A is the matrix of 

synaptic_ weights, y is the output vector [y1, ... ,yM], ,c is the input vector [xw··,XN], and M <N for a 

reduction transformation. 

N 

:, ; = E "/11';; 
j•l 

"',;(t+ 1) = "',,(r) + y (t):,
1
(t) ( ", (r) - E :,

1
(f)w,11

(f)) - y (r),i'(t)w,11(t)
t<I 

(3.3) 

(3.4) 
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Figure 3.2. A single-layer neural network where each 
output neuron takes the linear sum ofits input as its current 
level of activity. 
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The network learns using the 

algorithm shown in (3.4), where the 

gain parameter, y, describes the rate 

of change in the synaptic weights over 

discrete time t . Each output neuron 

updates it state serially, with the 

available input energy reduced in 

proportion to the activity of 

previously updated neurons. 

The summation term in (3.4) 

provides a feedback mechanism; 

changing the efficacy of synaptic 

transmission and normalising weight 

changes such that the squared value of 

the synaptic matrix is bounded with 

probability equal to one. 

Sanger (1989) proves that the 

synaptic matrix will converge upon the eigenvectors of the input data in eigenvalue order. When the 

input data is masked by the synaptic matrix the results are very similar to the KLT, eigenvector 

transformation, principal components analysis (PCA), or the Hotelling transformation. As the output 

vector is ordered by decreasing variance it is a simple matter to specify a suitable level of compression, 

i.e. only coefficients (output of the transformation) deemed to be significant are retained.

For the implementation a block sixe of8x8 pixels was used as input to the network with 8 

neurons representing the output of the transformation. During training the learning rate, y, was 

initialised to a value of 0.01 and decayed towards zero at a rate inversely proportional to the number 

of presentations made (Sanger, 1989). The 256 input vectors provided by each input image were 

transformed into a single 2048 element vector containing the block quantised coefficients. This 

transformation represents a gross compression ratio of 13.5 with a reconstruction error less than 10% 

(26 shades of grey). The results of training and using this approach are described in Phillips ( 1993 ), 

while Sanger provides more general and more extensive results. The algorithm is derived from the 

work of Oja (1982) and the approach is discussed in Oja (1991). 
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3.24 Smuintic Bneod.ing 

Adaptive Resonance Theory (ART) was formally identified by Grossberg (1976/199lb), 

although Grossberg began deriving computational models for pattern recognition much earlier 

(Grossberg, 1970). Adaptive Resonance Theory is a mature technology, and deserves a more 

extensive review than presented here. 

24 

Justification for the use of an ART network, in preference to other self-organising neural 

networks, is provided by Grossberg (1987/1988b) where it is shown that ART is a encompasses other 

models of competitive learning and that it has properties not available with any other neural network 

models. Unfortunately, it is difficult to obtain descriptions of the application of ART networks. 

Carpenter and Grossberg (1987/199lb) indicate that ART has been used for the recognition of range 

sensor data but no real results are presented. It should also be noted that hardware implementations 

of ART are patented to Grossberg and, as ART is a complex device best simulated in hardware, may 

restrict the commercial development of applications using the technology. There are indications that 

ART has been used extensively in computer music applications, however it was well outside the scope 

of this research to examine these sources. 

ART was described to solve the problems of the rtabiHty-plasticity dilemma and of temporally 

unrtable learning2 (Grossberg, 1987/1988b). Grossberg describes the problem with a set of questions

(Grossberg, 1987/1988b, p.6); 

How can a learning system be designed to remain plastic in response to significant new 

events, yet also remain stable in response to irrelevant events? How does the system 

know how to switch between its stable and its plastic modes in order to prevent the 

relentless degradation of its learned codes by the "blooming buzzing confusion" of 

irrelevant experience? How can it do so without using a teacher? 

Grossberg developed the ART circuit, shown of Figure 3.3, in response to these questions. 

The theory describes two recurrent on-centre off-surround networks - two competitive learning 

networks - embedded within a control structure that stabilises the network against recoding by 

irrelevant patterns. The architecture allows Grossberg to argue for a unifying principle in sensory 

processing, that ART can be seen "as a general organizational principle in vivo" (Grossberg, 

1976/199lb, p.7). Of more pragmatic importance is the fact that ART "places no orthogonality or 

linear predictability constraints" on learnable patterns (Carpenter and Grossberg, 1987/199la, p.3). 

2 Carpenter and Grossberg (1987/199la) show that presentation of four input patterns can 
destabilise competitive learning algorithms. 
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The theory makes no asswnption about the environment other than that there will be critical features 

available (Grossberg, 1987/1988b). 

· ····· ········ · •········· 
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The two layers in an ART network encode 

short term memory (STM) within their patterns 

of activation. Long term memory (LTM) traces 

are held by the synaptic pathways between the 

two layers, with the two layers fully connected. 

Non-specific arousal from a (Jain control nucleus 

allows the Fl layer to distinguish between 

top-down (template) and bottom-up (sensory)_ 

patterns, and primes F2 to respond sttpraliminally 

to input signals. The orienting subsystem 

generates a reset wave to F2 in response to 

pattern mismatches at F l. A reset wave inhibits 

active F2 neurons until the current input is 

removed. 

L'l'II L'l'II 

GahCcntml 

Bl'JI 

Jl..e 

·-

Figure 3.3. General architecture of an ART 
network showing network layers and control 
systems. Derived from Carpenter and Grossberg 
(1987/199lb). 

Recognition, see Figure 3.4, is comprised of four stages: 

A. The input pattern causes an STM pattern in Fl and arouses both the orienting subsystem

and the gain control nucleus, called the attentional gain co,m·ol, which in turn sends 

a non-specific arousal signal to Fl. The STM pattern at Fl causes an inhibitory 

signal to be sent to the orienting subsystem cancelling the effect of the excitatory 

signal from the input pattern, therefore no reset wave is sent to F2. The STM 

pattern at Fl is 'fated via the LTM pathway before it arrives at F2. 

B. The current STM at F2 is gated via the top-down pathway to Fl, with an inhibitory

signal to the gain control nucleus. 

C. If a mismatch occurs between the top-down signal from F2 and the bottom-up input at

Fl then the inhibitory signal to the orienting subsystem will be insufficient to 

prevent a reset wave being generated. The reset wave inhibits the currently active 

pattern at F2, therefore removing the inhibitory signal to the gain control nucleus. 

D. The original STM pattern at Fl is reinstated and a new processing cycle begins. As the

mismatched F2 pattern is enduringly inhibited, it can no longer respond to the Fl 

signal. 
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Searching continues until an adequate match is found, or when no further stored patterns can be 

found. A discussion of the computational properties resulting from the ART architecture, and a 

critical comparison with other network models, can be found in Grossberg (1987/1988b). 

A. B. 

F2 F2 

c. D. 

F2 
F2 

• 
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Figure 3.4. The recognition process in an ART network. Inhibited gain control and inhibitory 
signals are dark, excited gain control and excitatory signals are light. Diagram derived from Carpenter 
and Grossberg (1987/199lb). 

The ART network used for the implementation is called ART2, a variation of the original ART 

network, designed to encode arbitrary binary and analog patterns. To accommodate analog patterns 

additional processing is required within the Fl layer, as shown in Figure 3.3. A complete description 

of the design goals and performance features of the network architecture can be found in Carpenter 

and Grossberg (1987/199lb). 

SIM p11tterns in the Fl layer. The behaviour of an ART network is defined by a set of self

regulating differential equations. For the AR T2 network the activation state of any neuron in the F l 

layer depends upon the current target node (see Figure 3.3). For i = l...M equations (3.5) - (3.10) 

describe the STM activities (activation states) computed for Fl (Carpenter and Grossberg, 

1987/199lb): 
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Figure 3.5. ART2 architecture (Carpenter and 
Grossberg, 1987/199lb). Dark arrows are specific 
inputs, open arrows are non-specific. Large circles 
are gain control nuclei, small ones are target nodes. 
Subscripts are not shown, see text. 
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(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

where IIPII is the L
2
-norm (magnitude) of 

vector p, Z;; is the synaptic weight between 

the ;th neuron in F2 and the ith neuron in 

Fl, I; is the ith element in the input vector, 

and A,B,C,D,E are user-specified control 

parameters. The function fin equation (3.8) 

is usually chosen from a continuously 

differentiable function or piecewise linear 

function. The continuous function shown in 

(3.11) was used for the implementation. 

(3.11) 

The function IJ in equation (3.9) is given by (3.12). Since 1j(y) evaluates to either O or D equation 

(3.12) reduces to the form shown in (3.13). Sec Carpenter and Grossberg (1987b/1991b) for the 

computational properties that result from these equations. 
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(3.13) 

STM p11tterns in the F21Ryer. F2 performs contrast enhancement via a competitive process, i.e.

F2 "makes a choice when the node [neuron] receiving the largest total input quenches activity in all 

other nodes" (Carpenter and Grossberg, 1987/199lb, p.15). This process occurs for all neurons, 

except those inhibited because of a reset event, calculating the dot product between the vector arriving

from the p target node and the LTM pathway. This is shown in (3.14) and (3.15) (Carpenter and 

Grossberg, 1987/199lb, p.15), i.e. the ;th neuron in F2 is selected when it is maximally active.

tl
1 

= mn:1 tl
1 

:j =M + l..N,

(3.14) 

(3.15) 

Mismatch 11,u/. reset conditions. The r target node (see Figure 3.3) calculates the degree of 

match between the top-down pattern and the bottom-up input, this is shown in (3.16). Oncer has 

been calculated, the orienting subsystem wiH generate a reset wave if the condition shown in (3.17), 

where p - the vigilance parameter - is set between O and 1, is not satisfied. 

,. = I 

__ P_ > l 
B + 1,.1 

", + c,, 
(3.16) 

B + I • I + I Cp I

(3.17) 

Ch11nging the LTM weights. An ART network only learns in a resonant state, i.e. when a 

top-down pattern _adequately represents the current input pattern. Once the appropriate ;th F2 

neuron is selected, the top-down and bottom-up synaptic pathways are updated according to (3.18) 
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and (3.19), with O < D < 1. This results in the weights incrementally moving towards their 

asymptotic values, i.e. they will converge to the average of the exemplar patterns. An alternative 

called fast learning will move the weights to their asymptotic values when a resonant state is achieved. 

" 1 ·1 l-• = (1-D) ---•. 

"' JI 
1 - D 

JI 

-•11 = D(/1- •11( 
,, 

3.25 Association 

(3.18) 

(3.19) 

The output of an ART network is a single index, indicating the F2 node that is maximally active 

to an input pattern. This index can be used to provide access to an external database. The 

implementation used this index to access a simple linear database containing syntactic information. 

3.26 Environment 

A mixture of special purpose hardware and software simulation was used for the 

implementation. The median filter and the calculation of the reflectance pattern, used for sensory 

processing, was implemented in ANSI C and included code to perform conversion between the 

different image formats used. The KLT network used for feature selection was also constructed in 

ANSI C using a variation of a feed-forward network simulation. All training of the network was off

line due to the nature of the learning algorithm. 

An HNC Anza Plus neurocomputer was used to simulate the ART network with ANSI C code 

providing communication with a flat database of association information. Information on the 

neurocomputer and the details how ART is implemented can be found in the HNC Techical reference 

manual (HNC Neurosoftware Manual, 1989). 

3.3 Summary 

This section describes a model of visual object recognition. It is noted that the three stages 

implemented, sensory processing, feature extraction, and semantic encoding, form a conventional 

pattern recognition hierarchy (Simon, 1989). Although only a partial implementation has been 

described it formed a suitable environment for the application described in the next section - the 

recognition of frontal images of human faces. 



Section 4: Prototype Application 

To establish the validity of the model and the implementation described in previous sections it is 

necessary to examine recognition performance for a specific application. This section: 

• Derives hypotheses to validate the thesis of this research.

4.1 Background 

It has been identified that certain visual stimuli may be difficult to describe using simple, 

geometric structural descriptions. Human faces are examples of natural objects that have this property 

and it is known that they are recognised on the basis of con.figurations of features. It has been 

identified that "the most powerful means of recognition is by perceiving, storing and retrieving aspects 

of facial configuration" (Qifford and Bull, 1978, p.71). Recognition performance of individuals 

using facial information alone is approximately eighty percent (Clifford and Bull, 1978). 

The upper areas of the face seem the most useful for identification, although recognition can 

certainly occur using information from below the eyes. It is known that two areas are important for 

correct identification (Qifford and Bull, 1978; Bruce and Green, 1990); 

1. The eyes and their immediate context.

2. The mouth and its expression.

It has been suggested that the eyes and the mouth convey more information about expression, which 

is important for social interaction. This suggestion has some correlation with lesion data indicating 

that face agnosic patients can identify faces when able to observe facial expressions evolving over time 

(Qifford and Bull, 1978; Bruce and Green, 1990; McCarthy and Warrington, 1990). 
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4.2 &perimental Hypotheses 

4.21 Definitions 

A face represents the unique identification for an individual, and the terms can be considered 

interchangeable in the context of this research. It is asswned that a face can be represented using a 

collection of discretely valued features in a high dimensional feature space. The implementation uses a 

2048 element feature vector (representing the output of the KLTNet - see 3.2.3). 

It is asswned that individual instances, or images, of a face form a cluster of feature vectors. The 

central point of this cluster is taken to represent an identity (perceptual category). Recognition means 

selecting the appropriate category and, for an unknown face, the allocation of a new perceptual 

category. 

The study was conducted as three separate experiments. Although these experiments are not 

exhaustive they do demonstrate that the research can be used to develop real applications. Three aims 

were pursued; 

l. To quantify recognition performance for the implementation.

2. To quantify recognition performance when images are partially obscured.

3. To quantify recognition performance when images are transformed due to changes in

facial expression.

In all experiments the testing sample was applied for vigilance values (see 3.2.4) of 0.96, 0.97, 0.98, 

and 0.99; for each vigilance value the rate of correct classification for the entire test sample was 

recorded. All other parameters were set to the values described in the previous section. 

Ten images were sampled from ten different faces to form the training set. All images were 

centred and frontal. The KLTNet was trained upon a single image representative of the training set. 

Training for the ART network simply required the presentation of the training set to establish 

perceptual categories. 
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4.3 &periment One 

The misclassification rate of the application was determined for novel images of known, and 

unknown, faces. Ten test images, involving minor facial changes, were sampled. To determine the 

ability of the network to correctly identify unknown faces only half the training images were presented 

to the ART network. The rate of misclassification upon presentation of the entire test set was then 

recorded. 

4.3.1 Results 

The application recognised all known images, and identified all unknown images as unknown, 

when the ART network was set to a vigilance level of0.96. Misclassification of unknown faces occurs 

until the vigilance is set to 0.96, and continues when the vigilance is set lower than this. Errors for 

known faces consisted of identifying the images as unknown. The average RMS error between the 

images in the training set and those in the test set was approximately 27.3 shades of grey, i.e. an 

average 10.7% difference. 

Table 4.1. Results for F,xperiment One (Known and Unknuivn Faces). 

Vigilance Identify Known / Identify Unknown/ 5 
5 

0.99 0 4 

0.98 3 4 

0.97 5 4 

0.96 5 5 

0.95 5 4 

4.3.2 Discussion 

The image from the test set, misclassified when the vigilance was set to 0.95, is shown below, 

see Figure 4.1, next to the image from the training set that formed the category to which the test 

image was assigned. Both subjective and objective measures of difference indicate that the images are 

very different, with an RMS error of approximately 40.3 shades of grey, or an average 15 .8% 

difference. It is interesting that the two images are offemales, although this is probably a 

coincidence. 
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Figure 4.1. Image misclassified in 
experiment one. 

Figure 4.2. Training image that 
formed category resulting in the 
mismatch of Figure 4.1 in experiment 
one. 
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4.4 &periment Two 

It was hypothesised that the application would make fewer classification errors when d1e moud1 

area of an image was masked compared to the number of errors made when the eyes were masked. 

The ART network was trained by presenting all ten training images (with no masking applied). 

Classification rates were then collected for when the same images were presented with the mouth area 

masked, and for when the eye area was masked. 

4.4.1 Resitlts 

The application recognised all test images with masked eye areas at a vigilance level of 0.95, and 

at a vigilance level of 0.96 for images with masked moud1 areas. Differences in performance between 

the two data sets are probably insigniftcant.3 

3 The size of the data set used in these experiments is quite small; thus, statistical generalisation is 
difficult. 
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Table 4.2. Results for F,xperiment Two (masking m011th and eyes). 

Eyes Masked Mouth Masked 
Vigilance 

Identified Identified 

0.99 2 3 

0.98 8 8 

0.97 8 9 
0.96 9 10 

0.95 10 10 

The average RMS error between images with masked eyes and the original images was approximately 

23.9 shades of grey, or an average 9.4% difference. For images with masked mouths the average 

RMS error was approximately 18.9 shades of grey, or a 7.4% difference. The difference in error 

levels was probably caused by the predominance of bearded men in the images. Note that the results 

for images with masked mouths are comparable to the results of experiment one, where subjects were 

asked to smile gently for the test images. 

4.4.2 Discussion 

These results are inconclusive and do not demonstrate that the implementation is making 

greater use of the eye area. More extensive masking experiments failed to isolate the area being used 

for recognition. Further experimentation is required to determine whether the implementation uses 

an area common to all faces for identification, the combination of a number of areas, or an area 

determined by the features present in an individual face. 
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4.5 P.xperiment Three 

It was hypothesised that the application would be able to recognise a face despite changes in

expression between training image and test image. The implementation was trained upon the

complete training set and a further ten images were sampled for the test set, with each test image

representing a significant change in facial expression. Misclassification of the test set was recorded.

4..5.1 &suits 

The application achieved 100% recognition performance with a vigilance level of0.95,

comparable to the eye masking results of experiment two. Subjects were asked to pull a face for the 

test images > involving changes to the eyes and the mouth and, possibly, more significant structural 

change. 

Table 4.3. Results f<ff ExperimentThree (chaii.ge in expression). 

Vi ilance Identified 

0.99 0 

0.98 1 

0.97 5 

0.96 9 

0.95 10 

The average RMS error between the test images and the training images was approximately 
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41.2 shades of grey, an average 20% diffeccnce. The RMS 

Figure 4.3. Image most difficult to 
classify in experiment three. Note that 
there are major changes to mouth and 
eye areas. 

error for the image most difficult to classity) see Figure 

4.3, was approximately 76.8 s_hades of grey, an 30%

difference. The RMS error for the image classified at a 

vigilance level of 0.98, i.e. easiest to classify, see Figure 

4.4, was approximately 27.l shades of grey, a 10.6%

difference. 
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Figure 4.4. Image easiest to classify in 
experiment three. Note that although 
there are major changes to both the eye 
and mouth areas, there is probably little 
structural change. 

4.5.2 Discussion 

These results are surprising, with little variation 

between this task and the previous experiments. Increased 

difficultly seems to be represented by poorer performance 

at higher vigilance levels, yet reaching 100% performance 

at a level only slightly lower than that recorded for 

experiment one, and at the same level as that found for eye 

masking in experiment two. 

4. 6 Summary

To validate the implementation, and hence parts of the model, a number of simple 

experiments have been performed. The results of these experiments confirm that the implementation 

can perform as required, yet they do not support some of the assw11ptions made in regard to the 

performance of the ART network. These issues are discussed in the next section. 



Section 5: Discussion 

This section generalises the experimental results presented in the previous section, and discusses 

some observations of the performance of the implementation. A summary of the results of the 

experimental hypotheses is also presented. 

5.1 Observations and Problems 

5.1.1 Vigik,,nee 

Performance is sensitive to the vigilance level, with small changes in the vigilance resulting in 

large ch:mges in performance. The results suggest that vigilance approaches a critical value between 

0.96 and 0.95 - indicating that the values used for the experiments may have been too coarse. At 

these values the ART network is able to correctly assign categories to most, if not all, of the test data. 

It must be determined whether this value remains constant when the network is trained upon a larger 

number of images. 

5.1.2 Recognition Time 

Successful recognition was rapid, approaching real-time performance (search times in the order 

of one-two seconds). In contrast, images that were not recognised required an extended search by the 

ART network resulting in significantly slower processing (search times in the order of minutes). 

ART retains linear growth in search times for known categories, but the poor performance when 

recognition was not successful has serious scaling implications. Setting the vigilance to an initially 

high level and gradually reducing it until recognition occurs would seem to be a sensible approach, 

however, the problem with search times for unknown images would make this a tedious and time

consuming activity. 
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5.1.3 &Rling 

The experiments were performed using a 2048 element feature vector. This size was chosen 

because of the potential of reconstructing the images using the KLTNet. It is possible that a smaller 

feature vector would suffice, resulting in a smaller ART network and a number of benefits. 

Reducing the size of the feature vector would alleviate problems with the connectivity of the 

ART network. Because the two layers of the network are fully connected, in both directions, making 

another category available at the F2 layer currently requires an additional 4096 connections. 

Unfortunately, this level of connectivity is inherent to ART networks and cannot be totally avoided. 

This change is likely to lead to faster searching by ART, possibly alleviating some of the 

problems associated with extended search times for unknown categories. However, it is also possible 

that ART may require a very different set of vigilance values to perform successfully. 

5.1.4 Measuring Recognition Di,fficulty 

The differences between training and test images are presented above in terms ofRMS error, 

used because it proved useful when measuring the performance of the KLTNet. However, the results 

presented in the previous section suggest that RMS is a misleading measure of difficulty, especially in 

the case of experiment three. This may be due to RMS being a measure of average difference, while 

the both the KLTNet and ART network use local differences during processing. In this case, peak 

RMS may have proved to be a more appropriate measure. 

5.2 &penmental Hypotheses 

Recognition performance for minor transformations is reliable. However, pursuing 100% 

performance may lead to misclassification errors. The vigilance parameter can be tuned to include or 

reject misclassification - this is obviously a domain dependant decision. It appears that the range of 

vigilance values used in the experiments may have been too coarse. Further experimentation is 

required to a) determine a more suitable range of values, b) whether the range of values remains 

constant as the number of categories is increased, and c) whether the range of values remains constant 

when the implementation is applied to a different data set. 

The differences in recognition performance for eye and mouth masking, as shown in experiment 

two, do not seem significant. The immediate conclusion is that the implementation does not rely 

upon features isolated in either the eye or mouth area. More extensive experimentation (results not 

presented) failed to determine whether a particular area was used and further experimentation is 
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required to determine if a particular set of features is required for reliable recognition. Although the 

experiments failed to locate the features being used in recognition they demonstrate that the 

implementation is able to perform recognition despite minor occlusion of the images (approximately 

20% occlusion). 

The results of experiment three show that recognition can occur despite significant changes in 

the training and the test images. The RMS measures would suggest that this task is more difficult 

than that performed in experiment two, however, performance is only affected when using higher 

vigilance values. This implies that the changes in expression found in the test set did not significantly 

alter the features being used by the ART network. This reinforces the need to determine the set of 

features being used for recognition, and to determine the amount of transformation that can be 

tolerated before significant performance degradation occurs. 

5.3 Summary 

The application can recognise novel images of previously categorised faces, and identify faces 

that are unknown. Recognition is reliable and robust, with levels of performance directly related to 

the vigilance setting. The application continues to perform well when images are transformed, 

although the limits of this performance have yet to be learned. Masking has only a minor influence 

upon performance and it appears that the application does not depend solely upon the eye or mouth 

area. The wider implications of these results are discussed in the next section. 
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Section 6: Conclusions 

This section concludes the thesis. It contains a summary of the contents, generalises the results 

of the experiments and the theoretical development, identifies some limitations of the model, and 

suggests directions for future research. 

6.1 Summary of the Thesis 

Section two of this thesis introduces the theory that has influenced this research, including a 

review of relevant physiological and psychological information. The major computational approaches, 

structural decomposition and invariant feature detection, are described and an attempt is made to 

resolve their conceptual differences. Section two also contains a brief discussion of neural networks, 

and their role in modelling biological perceptual systems. 

The review of section two provides the background for the computational model developed in 

section three. Although this model is incomplete, requiring further study and development, it forms a 

suitable framework for the partial implementation described. The two neural networks used for the 

implementation are introduced and their major features are identified. 

Section four discusses some aspects of human face recognition, and describes the methodology 

used to stage three simple experiments. Results of these experiments are presented in section five, as 

is a discussion of their immediate implications and the results of the experimental hypotheses. 

6.2 Generalisation of Results 

The implementation reliably classifies frontal images of human faces. Oassification performance 

is related to the parameter settings used to control the implementation. Performance degrades 

gracefully as the classification task becomes more difficult, although quantifying task difficulty has not 

been satisfactorily achieved. It is suggested that peak and average RMS error may more suitably 

measure the task difficulty. 
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The computational model provides a theoretical foundation for the implementation, and it has 

been partially validated by the experimental results. Complete validation, which was beyond the scope 

of this research, would require more extensive implementation and testing. The model also allows for 

fundamental issues not directly addressed in this thesis, for example, rotation and translation 

invariance. 

6.21 Limimtions of the lmplemenmtion 

Rotation invariance can be handled by top-down control signals indicating that a rotation 

transformation should be performed upon the input data. Although this is not a conceptually 

satisfying solution, i.e. the process is cumbersome and probably requires global knowledge, it provides 

the necessary mechanisms to handle rotated input data. A more suitable approach may be provided 

by a mechanism that detects an object's centre of gravity and performs a rotation until this is in the 

appropriate position. It is interesting that humans normally perform poorly with complicated objects 

that have been rotated, although the skill can be learned (Rock, 1986 ). 

Ti:anslation invariance is assumed to be handled by a separate mechanism that coordinates 

fixation and focusing tasks. A related problem, that of figure-ground separation, would be partially 

solved by such a mechanism. 

Size, or scale, invariance has not been addressed and a solution has yet to be found. Hubel 

(1988) suggests that biological vision systems solve this problem by converging and diverging neural 

connections in visual cortex, such a process resulting in receptive fields invariant to size. This is an 

important problem that requires further research. 

Object occlusion, which received only a cursory examination in the experiments, is a difficult 

problem requiring the ability to derive, and retain, geometric structure. Although no such process 

was performed for the implementation - it is suggested that this process is part of spatial analysis - the 

ART network can perform recognition despite minor occlusions. Further research is required to find 

performance limits of the implementation and to investigate more thorough solutions to the problem. 

6.22 Summ11ry of Hypothens 

Although not completely validated, it does appear that the hypothesis is appropriate. The use of 

a suitable system model, multiple neural networks with clearly defined tasks, and conventional 

algorithms where necessary, has resulted in a successful implementation. The results of the 

experiments are positive and suggest that these techniques deserve further examination. 
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6.3 Future Research 

Any study of object recognition, and vision generally, raises more problems than it solves and 

the scope for future research is unlimited. Besides the limitations described above and the issues 

discussed in the previous section, further research is required into the following; 

• Structural processing for spatial vision

• Selection off eature detection operations for pattern vision

• Controlling category searches

• Real-time implementation

• Improving accuracy and detail of the model

6.3.1 Implementing Structuml Processing 

42 

The implementation would be greatly improved by providing the means to extract structural 

descriptions of the objects in an image. This would allow the performance of object extraction, object 

description, and provide guidance for object transformation operations, for example, scaling and 

rotating. 

6.3.2 &le&tion of Feature &traction Opewitions 

The KLTNet, see 3.2.3, is not sufficiently powerful for a truly comprehensive implementation. 

The transformation learnt by the network requires that the statistics of the input data do not change 

over time, i.e. the KLTNet learns a static statistical transformation. Although not examined in this 

thesis it is likely that the technique would not generalise to images captured under different 

environmental conditions. Habibi (1986) dismisses the transformation learnt by the KLTNet as 

obsolete, suggesting that there are more appropriate techniques, such as the discrete conne

transformation. As such techniques are adaptive they should generalise to all input data. 

Unfortunately, the KLTNet is not the only neural network that suffers the above problem. It is 

demonstrated by many of the network types trained to perform encoding, including the back

propagation networks of Cottrell and Fleming (1990), the Boltzmann Machine (Hinton, Sejnowski, 

and Ackley, 1984), and self-organising maps (Ritter, Martinez, and Schulten, 1991). 
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As identified in 5.1.2, the search time for the ART network is high when a category cannot be 

fotu1d. A complete implementation would require a self-adjusting vigilance level, beginning with a 

high value and decreasing automatically as the category search is expanded. This means that, tu1less 

the category was known, identification would be a lengthy process with the only information gained 

being that the category is not known. The only solution that suggests itself is to use something other 

than an ART network. 

6.3.4 Real-Time Implementation 

Although not implemented as such, the techniques and the model are designed to operate in 

real-time (after training of the KLTNet). It is likely that a real-time implementation would suggest 

many issues that need to be addressed. 

6.3.5 Imprwi,ng the Model 

The discussion of biological vision in section two is highly simplified. This simplified 

information has not been captured by the model, for example, the issue of colour information has 

been ignored. The model needs refinement and completion, and a more extensive review of 

physiological and psychological data tu1dertaken. It was assumed for this thesis that the 

implementation would be required to recognise static images, which has some biological plausibility 

(see 3.1), however, it is llllknown how the model would cope with dynamic images and how the 

model fits into a machine vision architecture. 

6.4 Summary 

The research has been successful, although many questions remain to be answered. The central 

thrust of the thesis, that a model of object recognition can be successfully developed using artificial 

neural networks, has been satisfactorily verified. The results of this study will be used for future 

research into object recognition and they demonstrate the advantages of developing a systematic 

framework for machine interpretation. Although the experimental data is limited, it is suggested that 

the approach taken in this study has resulted in an implementation superior to what may have been 

achieved with a single, isolated technique. 
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