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ABSTRACT 

This thesis introduces a number of conditional simulation algorithms using wavelet 

bases. These make use of two orthogonal wavelet bases, the Haar and the Db2 bases. 

F!rstly, two single-level algorithms are introduced, HSIM: with the Haar basis and 

DB2SIM with the Db2 basis. HSIM reproduces the histogram and semivariogrnm 

model of isotropic samples but not the semivariogrnm model of anisotropic samples. 

DB2SIM reproduces the histogram and semivariogram model in both the isotropic 

and anisotropic cases but, because of the conditioning method employed, is not as 

computationally efflcient as we would wish. 

Because of the limitations of HSIM and Db2SIM two multi-level wavelet-based 

conditional simulation algorithms PWSIM: nnd DWSIM have then been developed. In 

PWSIM, the conditional realisations are obtained by post-proce.~sing non-conditional 

realisations generated via an available non-conditional simulntioo algorithm using 

kriging. In DWSJM the data are conditioned directly via properties of the discrete 

wavelet ttansform. Because of the conditioning method, DWSIM: is faster than 

PWSIM. 

The perfomumce of PWIM and DWSIM: with respect to the Haar and lhe Db2 wavelet 

bases is assessed via the local and global accuracy of the results. Both quantitative 

and visual assessments indicate that, for both wavelet bases, the realisations obtained 

via PWSIM have more variability than !bose obtained via DWSIM. If the Haar bnsis 

is used, PWSIM and DWSIM petform equally well. If the Db2 basis is used then 

PWSIM perfonnance is much bellerthan DWSIM: pcrfonnance. 

For both PWSIM and DWSIM, the use of the Db2 basis rather than the Haar basis 

increases the computational effort without producing a comparable increase in 
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algorithm performance. In PWSIM the use of the Db2 basis slightly improves 

algorithm perfonnance but the use of the Db2 basis in DWSIM decreases algorithm 

performance. 

A performance comparison between DWSIM using the Haar basis and the commonly 

used conditional simulation algorithm SGSIM shows that DWSIM produces results 

that are at least as good as those obtained by SGSIM but with less computational 

effort. The computational advantage of DWSIM over SGSIM is especially 

pronounced when a large number of realisations are simulmed. In addition, the result 

oblllined via DWSIM does not depend on user defined parameters as is the case in 

both SGSIM and PWSIM. 

The final result here is a (Hmrr) wavelet-based conditional simulation algorithm 

DWSIM that performs well in both the isotropic Wld the anisotropic cases and, 

particularly when simulating a large number of realisations, is much faster than the 

stllndard algorithm in common use. 
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1 INTRODUCTION 

Geoslatistical methods are now an essential tool in IISEessing the economic viability 

of a mineral deposit or an oil reservoir. The outcome of the geostatistical nnalj'!lis of 

a geological variable, for example gold grade in an ore body, determinffi whether a 

deposit will be mined. It is thus important to continuously develop improved gcosta.. 

tisticnl methods that enable more accurate prodiction of the attribute of interest. 

We begin with the assumption that spatial data cannot be considered to be in­

dependent. Therefore, from a sample taken in a region the experimental spatial 

continuity is measured and then modelled. This model is used for the prediction of 

the unknown values in that region by estimation or simulation. Estimation methods 

are based on generalised linear regression methods and predict an "expected value" 

at each location. Th(ly are known 1l.'l kriging techniques and produce smoothed im­

ages that, due to the nature of the input data, often under-estimate high grades and 

over-estimate low grades. 

BccaUBe of the smoothing effect, kriging is not an appropriate teclmique in appli­

cations that focUB on the extreme values. For example, in assessing the impact of lead 

in a polluted region ou health using kriging, the health costs can be underestimated 

because of the smoothing effect. In such cases, simulation is an alternative approach 

since unlike kriging, simulation methods reproduce the statistical fluctuations of the 

phenomenon and the simulated images are not necessarily smooth. 

Unlike kriging, from which the estimation is unique, a simulation algorithm gener­

ates a set of "equiprobable" realisations. Therefore, simulation is a useful tool in risk 

assessment or decision making. For example, in petroleum applications, gcostatistical 

simulation can be used to compute the distribution curves at well locations. These 

probability distributioltll allow one to evaluate the range of values at any potential 
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well location, rutd hence decide whether or not to drill a new well. 

The aim of geostatistiGal simulation algorithlllll is to model reality by generating 

equiprobable realisations that reproduce relevant properties of a given sample. Snell 

properties include variance, histogram and spatial correlation. If the simulated values 

at sample locations are equal to the actual sample values then the simulation is said 

to be conditional; otherwise it is called nonconditional. Becalllle the simulated values 

at sampled locations are equal to the actual data values, conditional simulation is of 

more interest than non-conditional simulation and can be applied in the modelling of 

ore deposits. 

All of the conditional simulation algorithms developed to date, for example the 

LU decomposition simulation, simulated annealing, sequential Gaussian simulation 

{Chilffi and Delfiner, 19g9) and conditional spectral simulation (Yao, 1g93) are sub­

ject to computational drawbacks. In the LU decomposition algorithm, simulated 

realisations are obtained by the decomposition of the associated covariance matrix. 

The limitation of the method is related to the sb:e of the covariance matrix to be 

handled. When it was first develop!!d, this algorithm could only simulate realisations 

with up to 700 points (Davi<l, 1987). Today, with the devt)!opmcnt of computer CPU, 

it can be us!!d to simulate realisatioJL~ of larger size. However, bcca.IISc of its costly 

computational effort tills is still a time consuming algorithm. 

The simulated annealing algorithm, from which simulated realisations are obtained 

by exploiting an optimisation method, is also a computationally exp!!llilivo algorithm. 

The result of the simulation also depends on the annealing schedule defined the ll!ler. 

The annealing schedule includes the initial temperature, the reduction factor, which is 

IISed to reduce the temperature and the maximum number of perturbations at a given 

temperature. The rate of convergence depends on the reduction factor, the smaller 
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the reduction factor the faster the temperature is reduced and, hence, the faster the 

rate of convergence. The Uller has l;o define a suitable reduction factor for the cooling 

process since an inappropriate choice of a high reduction factor will unnecl'ilSarily slow 

down the rate of convergence and an inappropriate choice of a low reduction factor 

can lead to a risk that the result is trapped in unacceptable sub-optima (Goovaerts, 

1997). 

The results obtained by the most frequently used method, sequential Gaussian 

simulation (SGSIM), which will be detailed in Chapter 2, also depend on many pa­

rameters selected by the user. In SGSIM the simulation is cnrried out sequentially 

o.long a random path that visit each grid node in the study region exactly once. At 

each location on the random path the simulated vnlue is drawn from a nonnal dis­

tribution with mean equal to the kriging estimate and variance equal to the kriging 

variance. The result of the simulation, therefore, depends on the kriging method 

selected by the user. In addition, the search radius or the number of original and pre. 

viously simulated data used fur simulating a value also impacts the outcome of the 

simulation. For example, the choice of too small a search radius may lead Lo a poor 

conditioning or an inappropriate reproduction of the spatial correlation. Therefore, 

to ensure a large enough search radius this algorithm requires that the size of the 

study region to be simulated be larger than the range of the semivariogram (Vann et 

al, 2001). 

The conditional spectral simulation algorithm by Yao (1998) is fast since it is 

based on the fast Fourier tnlnsform. However, the conditioning of the realisations 

using Yao's algorithm introduces artefacts in the neighbourhood of conditioning data. 

High data values lll:e surrounded by low simulated values and vice versa. In comparing 

the simulated values with jackknife data, tim point-to.point correlation bel;woon the 
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simulated values and the true values is close to wro. This algorithm also uses an 

optimisation method in conditioning the data; hence, there is a risk that the iterative 

process docs not converge if the spectral deusity is not consistent with the data. 

Therefore, it is necessary to develop a conditional simulation nlgorithm that re­

quires less computational effort and is not subject to the above disadvantages. ThiB 

thesis introduces two conditional simulation algorithms, called PWSIM and DWSIM, 

one of which, the conditionnl simulation algorithm DWSIM, satisfies both of the above 

requirements. Both PWSIM and DWSIM make use of the properties of wavelets to 

generate realisations of n random function. However, the method of obtaining con­

ditional simulated realisation!! in the two algorithms is different. In PWSIM the 

data are conditioned by a postprocessing step using kriging and in DWSIM the data 

arc conditioned directly using the discrete wavelet transform. Due to this method 

DWSIM is a very effective conditional simulation algorithm. 

Compactly supported wavelets are families of functioiL'l that take non-zero values 

only for a smllll value range. As in the case of Fburier analysis, there exists a fast al­

gorithm called the discrete wavelet transform which cnn be UBed to save the ~omputer 

storage space and computational time. The discrete wavelet transform computes the 

scaling nod wavelet coefficients at a coarser scale from the scaling coeflkients at the 

prcvioUB finer scale. It is initialised by regarding a set of evenly-spaced discrete values 

as scaling coefficients at the original scale. On each application of the discrete wavelet 

transform, the size of the set of scaling coefficients is compressed in one-dimensional 

space by a factor of two nnd in two-dimensional space by a factor of four. 

BecaUBe the discrete wavelet transform is fast, a simulation algorithm that makes 

use of this transformation is expected to be a fast algorithm. In addition, in com­

pressing the set of scaling coefficients, the discrete wavelet transform also compresses 
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the spatial correlation of these coefficients. Because of the localisation property of 

wavelets, the spatial correlation is limited only to a few scaling coefficients inn neigh· 

bourhood. Therefore, an algorithm based on the discrete wavelet transform does not 

require that the size of the simulated region be larger than the range of the semivnri­

ogram. The discrete wavelet transform is also independent of user-defined parameters 

and of the number of previously simulated values. 

Because of the properUes discussed above, wavelets are used as the bll!lis of the 

conditional simulation algorithm DWSIM. This is a multi-level wavelet-based cendi­

tional simulation algorithm since it starts the simulaLion nt some coarse scale then 

reconstructs the simulated realisations using the correlation muong the scaling coeffi­

cients. Two orthogonal wavelet bru;es can be used in DWSIM, the Haar and the Db2 

wavelet bases. Haar wavelets are discontinuous fuuctious whose filters have only two 

non-zero coefficients. Db2 wavelets are continuous functions whose filters have four 

nou-rero coefficients. Both wavelet bases require less computational effort compared 

with other families of orthogonal compactly supported wavelets. 

The Haar wavelets are chosen as the basis of DWSIM since the computation of 

the discrete wavelet trausform based on the Haar ffiters is not subject to the edge 

effect. However, because of the discontinuity of Haar wavelets, the Db2 basis is also 

introduced in this thesis for comparison purposes. The impact of the choice of wavelet 

basis used in DWSIM is investigated by comparing the results obtained from DWSIM 

using the Haar basis with those obtained by DWSIM using the Db2 basis. The results 

of the comparison show that DWS!M using the Haar bw;is is more efficient. 

Fbr comparison purposes, we implement a multi-level nonconditional simulation 

algorithm using wavelet analysis cnllcd WSIM introduced by Zeldin and Spanos 

(1995). The nonconditional realisations obtained using tills algorithm are postpro-
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cessed using kriging to obtain conditional simulations. The associated conditional 

simulation algc>:ithm that combines WSIM and the postprocessing step is called 

PWSIM. The performance of PWSIM then is compared with the performance of 

DWSIM using different measures to evaluate the effectiveness of the two wavelet­

based algorithms. 

The thesis consists of 12 Chapters. Chapters 2 and 3 give the background on 

geostatistics and wavelet analysis. In Chapter 2, the concept of the random function 

model on which geostatistical methods are ba.'led is introduced. Next, the measures 

of the spatiai continuity of sample data such as the experimcntnl covariance, experi­

mental correlation and experimental sernivariouam are presented. This leads into the 

modelling of the spatiai continuity based on the scm.ivariogram model which is then 

used to compute the covadance model used in the simulation. Finally, the kriging and 

simulation methods used to deduce the values at unknown locations are discussed. 

Two types of kriging are introduced: simple kriging and ordinary lrriging. Simple 

kriging is used in the sequential Gaussian simulation algorithm, also discussed in this 

Chapter, whose performance is compared with DWSIM performance in Chapter 10. 

Ordinary kriging is UBed in the postprocessing step to obtain conditional simulated 

realisations of PWSIM. 

Chapter 3 includes deterministic and stochastic wavelet analysis in one- and two­

dimensional spaces. The detcnninistic wavelet analysis consists of the construdion of 

wavelets and the formulation of the discrete and inverse discrete wavelet transfonns. 

The stochastic wavelet analysis consists of the computation of the covarianccs of 

pairs of scaling and wavelet coclficients. These covnriances are used to simulate tho 

unknown scaling and (or) wavelet coefficients from the known ones. In PWSIM these 

covariances are used to simnlate the scaling coefficients at some coarser scale and 
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to compute the wavelet coefficients at the same sca!c from those scaling coefficients. 

The inverse discrete wavelet transform is used to reconstruct the scaling coefficients 

at the finer scales. In DWSIM the discrete wavelet transform is used to condition the 

data and tho covarianoos of pairs of scnling coefficients are used to reconstruct scaling 

coefficients at a finer scnle from those at the next COOJ:Ser scale. In addition with 

the covariances, the wavelet spectnun and the scaling spectrum are also introduced. 

These spectra are applied in the single level simulation algorithms HSIM and DB2SIM 

introduced in Chapter 6. 

The performance of the simulations algorithms discussed in this thesis is assessed 

using the meusures presented in Chapter 4. These measures are both quantitative and 

visual. The quantitative measures are based on the accuracy, goodness and precision 

of the probability distribution of the simulated values, misclassification analysis, E­

type estimates, conditional variances and the tnca.'lures for the reproduction of the 

semivariograrn model and the histogram of the associated sample. Visunl merumres 

arc based on the mosaic plots of simulated realisations. 

Chapter 5 provides the description of two data sets, one isotropic and one anisotropic, 

their normal transformation and samples taken from these. In the isotropic case, 

five samples (one gridded and four ungdddcd) drawn from the normal scores of the 

isotropic data set are used to test the performance of the nlgorithms in the case that 

the undedyiag random function is multivariate standard normnl. Algorithm pilrfor­

mancc in practical applications (the data are not necessarily drawn from multivariate 

norma! distribution) is tested using an ungridded sample drawn from the attribute 

values o£ the isotropic data set. In the anisotropic case, in the case that the under­

lying random function is multivariate standard norma!, performance is tested using 

two samples, one gridded and the other is ungridded, drawn from the normnl scores 

7 



of the anisotropic data set. In practical applications, algorithm performance is tffited 

nsing an ungridded sample drawn from the attribute values of the anisotropic data 

set. 

Chapter 6 introduces two single level wavelet-based algorithms nsed to generate 

conditional realisations and discusses the perforlllllllces of these algorithms. Chap. 

ter 7 giVI'Jl the description, applications and general performance asscssment of the 

multi-level wavelet-based conditional simulation algorithms PWSIM and DWSIM. 

The algorithm description includes the fonnulation for the simulation step and the 

computation of the related weights. The applications of PWSIM and DWSIM using 

the Haa.r basis and the Db2 basis are carried out in both isotropic and anisotropic 

cases. In each case, algorithm perfo=ance is assessed visually via the mosaic plots 

and the plots of the experimental semivariograms and histograms of three typical 

realisations. 

A detailed perfonnance comparison between PWSIM and DWSIM nsing each of 

the wavelet ba.sffi in the case when the underlying random function is multivariate 

standard norma.! with regard to sampling method and data structure is discussed in 

Chnpte<· 8. The impact of choice of wavelet basis and computational effort are also 

compared. The performance measures used in this Chapter are the accuracy, good­

ness and precision of the distributions of simulated values and the reprOduction of 

the associated sernivnriogram models and sample histograms. The results of the com­

parison show that DWSIM using the Hnar bnsis is nn effective conditional simulation 

algorithm. Hence, we discard the algorithm PWSIM and focus only on till! influence 

of the sample size on DWSIM performance using Lhe Ha.ar basis in Chapter 9. 

Chapter 10 provides the performancecomparil;on between DWSIM using the Haar 

basis and SGSIM in practical applications, that is, in the case where the underlying 
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random function is not multivariato! stll.Ddard normal. Tim performance measures are 

the reproduction of the semivariogram models ll.lld sample histogra.ms, mi~Clll$Sifica· 

tion ll.llo.lysis, E-type estimates and conditional variances. 

Chapter 11 provides the concluding discussion and Chapter 12 consists of the ap­

pendices which include the ll.CCOmpanying CD thnt contains the executable programs 

WSIM and DWSIM and the data sets. 
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2 GEOSTATISTICAL BACKGROUND 

This Chapter introduces the throry of rnndom [unctions in goostatistirn wl!ieh pro.. 

vides the framework for the modelling of spatial data. Unless otherwise stated, the 

background given in this Chapter is adopted from Goovaerts, 1997. 

2.1 The Random Function Model 

One goal of goosta.tistica! methods is to model an attribute of interest at urummpled 

locutions. Most gcostatistical methods are based on the concept of the random func­

tion modul. In geostatistics, the value of an attribute at location u in a sLudy rllgion 

A ~lltn is denoted by z{u). Ore grade and soil type are examples of such attributes. 

In the random function model concept, the value z(u) is regarded as a particular 

value of an unknown random variable Z(u) at the point u. A random function Z 

thnn is defined ns the collection of all random variables in the study region 

Z: A__, {Z(u): u E A}. 

A random function Z can be cllarnctcriscd by its first- and second-order mnments. 

The first-order moment or eXpected vnlue, if it exists, of a random variable Z(u) is n 

function of u nnd is denoted by 

E{Z(u)} = m(u). (1) 

There nrc three second-order moments used in geostntistics: the variance, the 

covariance and the smnivariogram. 

I. The variance, if it exists, of n random variable Z(u) is defined hy 

Var[Z(u)] ,_ E{[Z{u) -m(u)j2}. 
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In general, the variance depends on the location u. Note also that we can write 

(3) 

2. Thecovru:ianee of two random variables Z(u) a.nd Z(u') is a function oflocations 

u a.nd u' and is given by 

G(u,u') = E([Z(u)- m(u)J[Z(u') -m(u')]}. (4) 

3. The scrnivariogra.m of random variables Z(u) and Z(u') is defined as 

1 
'l"(u, u') = 2VarjZ(u)- Z(u')] {5) 

and similar to the covariance, in general, the semivariogram depends on inca-

tions u and u'. 

A ra.ndom function Z is said to be slriclly stationary if the joint distribution of 

{ Z(uJ), ... , Z(u,)} is the same as the joint distribution o[ {Z(ul +h), ... , Z(un +h)} 

for all h. If the expected value of the random function is a constant and the covariance 

between two random variables Z(u) and Z{u +h) is finite a.nd depends only on the 

separation vector h, that is 

E{Z{u)} = m (6) 

'"' 
C(h) = E{Z(u + h)Z(u)}- m2 (7) 

for all u EA then the random function Z is said to be second-order stationary. A 

random function Z is said to be intrinsic stationary if the increments Z ( u + It) -

Z(u) are second-order stationary. A second-order stationary random function is also 
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intrinsic stationary but the converse is not true. The semivariogrnm "t(h) of a second-

order stationary random function is defined by 

"t(h) = ~E{(Z(u +h)- Z(u)J2}, (8) 

and it is related to the covariance C(h) by 

"t(h) = C(O) - C(h). (9) 

The standardised form of the coV!II"iance is called the corre/ogmm p{h) and is related 

to the semivnriogram by 

C(h) "/{h) 
p(h) = C(O) = I - C{O). (10) 

In this thesis we wi!\ assume that the underlying random function is second-order 

stationary. In other words, the correlation between two random variables Z(u +h) 

and Z(u) depends only on the separation vector h. 

2.2 Sample Spatial Correlation 

In gcostatistics the analY!Iis or the mapping of the spatial distribution of the values 

of an attribute z in a region A is based on a sample of n data z(u,), a = 1,2, ... , n 

taken from that region. The spatial continuity of the sample is measured and this 

measurement is then used for modelling the spatial continuity of the attribute over 

the whole region. The tools used to describe the spatial continuity of sample data 

include the experimental covariance, experimental comllation and experimental semi-

variogrnm functions. 

The experimental OOVllliance and the experimental r<.Jrrelation functions are mea-

surcs of the similarity between data separated by a vecWr h called a lag. The cxper-
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imental covariance function 8(h) is defined by 

(11) 

where N(h) is the number of data pllirs of separated by h; m_h and m.+lt respectively 

are the means of the tail z(u.,.) and the head z(u.,. +h) values corresponding to all 

pairs (z(u.,.), z(u" +h)) and are defined by 

"' 

The experimental correlation function f.i(h), taking vnlues in the interval [-1, 1], 

is the standardised form of the experimental covariance function given by 

-(h)- 8(h) 
p -- ~ ' "-Jt"+lt 

(12) 

where i7_h and O'+h are r!:'~pectively the standard deviations of the tail and the head 

values. They arc defined by 

1 
N(h) 

N(h) ~(z(u,))Z -m:.~o 

When the experimental covariance 8(h) iB a function of both the magnitude ]h[ 

and the direction of the vector h, the function iB said to be anisotropic. If this 

function depends only on ]h], then the random function is isotropic, that is, the 

spatial variability is identical in all directions of space. 
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The experimental semivariogram measures the average dissimilarity and is defined 

by 

1 
N(h) 

i'(h) = 2N(h) ~[z(ua +h)- z(ua)f (13) 

When the distance JhJ is sufficiently large, there may be no spatial correlation between 

data values at two locations separated by JhJ. A contour plot of the experimental 

semivariogram, called the variogram surface, may be used to visualise the spatial 

continuity in all directions. 

u 

Band width 
.A 

Lag tolerance 

~ 

I I 

Angular tolerance 

Figure 1: Pairing rule for irregular data in the direction of azimuth angle goo (modified 

from Deutsch and Journel, 1ggs). 

In practice, for irregularly-spaced data a certain lag tolerance and a certain angular 

tolerance are applied to ensure that there will be sufficient data pairs. In order 

to exclude points that lie in areas too far off the search direction, a bandwidth is 

introduced. The bandwidth is the maximum acceptable deviation in the direction 

perpendicular to the direction of vector h. For example, in Figure 1 all data lying 

within the fan are regarded as being in the direction of vector h (azimuth angle go0). 
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In calculating the spatial correlation in that direction with the distance equal to three 

Jag steps (3x), all sample points lying iu the shaded region are the associated heads 

of point u. 

Having obtained the experimental semivariogram (covariance, oorrelation) of the 

sample data, a model is fitted to these measurements. Since, when it exists, the 

covariance function of a random function can be obtained from the scmivariogrnm by 

(9), in this thesis we discuss only the modelling of the semivariogam. 

2.3 Semivariogram Models 

In order to interpolate the unknown values, we need n semivariogam function "t(h) 

that shows the dissimilarity for any possible scparntioa vector between data. Since 

the experimental scmivnriogrnm only gives values at discr~te lags, a smooth curve is 

fitted to the experimental semivariogram. This function is called the semivariogram 

model. 

2.3.1 Permissibility Condition 

Some estimation methodll require computations that ma.ke use of the variauce of some 

linear combination of random variables. HenCll, the semivariogram model must ensure 

the non-negativity of the variance. Let Z be a stationary random function in a region 

A specified by the covariance O(h). Suppose that Y is a linear combinat;, •Tl of the 

random variables Z(u,.),u = 1, 2, ... , n, then Y is a random variable a.nd it.~ variancJ 

must be non-negative. The expression (14) can be rewritten as 

" 
Var(Y) = :L:L . .\,,.\pC(u .. -up) 

<>=!P~I 
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or equivnlently in matrix form as 

Var(Y) = ( >.1 ,\2 ... ,\n )c«P ,a,{J=1,2, ... ,n. (15) 

In order for the variance to be non-negative, the covariance matrix {C«P} aJJ~1 ,2 , ••• ,n 

must be positive definite. 

Using the relation 'Y(h) = 0(0)- O(h), the variance in {14) =also be written 

n n n n 

Va.r(Y) =0(0) L\.L>.~- LL-',An(u,-up) ;::>: 0. (16) 
n-1 P~l "~' P~l 

In the cu:;e that 0(0) is not finite, the value of 0{0) is filtered hy letting 

(17) 

""' 
In this cu:;e the expression (16) becomre 

" . 
Var(Y) =- LL),.Ap/(u"- u~) 2': 0. (18) 

<t~I Jl-1 

With the condition in (17), the variance of random variable Y is non-negative if 

the semivuriogram model is negative dcl'mite. The semlvariogram model 1' is thea 

Baid to be conditionally negative definite since it is only negative definite with the 

condition in (17). 

2.3.2 Permissible Models 

A simple way to avoid checking the permissibility condition is to limit the semivar­

iogram model to functions that a.re known to be negative definite. In practice a 
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sernivariogram model is usua.\ly chosen to be a Jinoox combination of one or more of 

the five pennissible models described below. These models are expressed here in their 

isotropic form and are classified into bounded and unbounded modeLs. Both bounded 

and unbounded modeLs are monotonic. However, a bounded sernivariogram model 

approaches a plateau called the sill and tim dista.ncc at which the sill is approached 

is called the rnngs (Isaaks and SriVlllltnva, 1989}, whereas an unbounded model has 

no sill Md hence no range. 

Nugget effect model A nugget effect model is a bounded model used to model 

phenomena that show an obvious discontinuity at the origin. The semivariogram has 

value 0 at h = 0, then takes a non-zero, positive value at any distance greater than 

zero. This standardised model (the sill value is scaled to 1) is given by 

{ 

0 iflhi=O 
g(lhiJ ~ 

1 otherwise 

For a nugget model, tho sill is reached as soon as tho distance is greater than 0. 

(19) 

Spherical model Tho spherical model bas linear behaviour near tho origin; it is a 

commonly used bounded model. Its standardised form is 

{ 

1.51!!1_ 0.5 ("')
3 

if lhl <" 
o(lhiJ ~ • • -

1 otherwise 
(20) 

where a denotes the range which is the distance at which the scmivariogram model 

reaches the sill. 

Exponential model Anothru- commonly used bounded sernivariogram model is tha 

exponential model which also has linear behaviour near the origin. An exponential 
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semivariogram model approaches the sill asymptotically and its formula iB given by 

(21) 

where a iB the pmctical mnge, the distance at which the wmivnriogram reaches 95% 

of the sill value. 

Gaussian model The GallllSia- model is n bounded model that bas parabolic be-

baviour noor the origin. It is giveu by 

(
-3)h)') g(lhl)=l-exp ~ . (22) 

Similar to the exponential model, a Gaussian scmivariogrnm model approaches the 

sill asymptotically; its practical range iB the distance where the scmivariogram n:laches 

95% of the sill value. The spherical, exponential and Gaussian models arc illustrated 

in Figure 2. 
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Figure 2; Bounded scmivariogram models (modified from Goovaerts, 1997). 

Power model The power model iB an unbounded model given by 

g(lhl) = lhl'"' with 0 < w < 2. 
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It bas no sill and hence no range. The behaviour near the origin depends on the 

e;·.ponent w. It has linear behaviour when w = 1 and parabolic behaviour liS w 

approaches 2. This model is i!llllltrated in Figure 3 for three specific values of w. 

' / 
' I/ 

' 

' ' , 
' 

' " ,_, 

Figure 3: Power model with three values of w (modified from Goovaerts, 1997). 

Anisotropic semivariogram models As mentioned in Section 2.2, an cxperimen-

tal semivariogram is said to be isotropic if it depends only on the distance [h[. In the 

case when the semivariogram varies with direction, it is said to be anisotropic. De-

pending upon on the nature of the variation, anisotropic semivariograms are classified 

into two types; those with geometric anisotropy and those with zonal anisotropy. 

Geometric anisotropy When the sill value of the semivariogram is constant 

but; the range varies with direction we have geometric anisotropy. In two-dimensional 

space, geometric anisotropy can be identified by meanB of a rose diagram, which is the 

plot of the range values against the azimuth 0, by convention, measured in degrees 

clockwise from North. In two-dimensional space, if the rose diagram is an ellipse then 

the direction of the major axis is the direction of maximum continuity and has the 
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longest range. The direction of minimum continuity is the direction of the minor axis. 

Figure 4 gives an example of geomeLric anisotropy. In Figure 4A, the sill value of the 

spherical semivariogram models g(ho) and g(hq,) in the direction of azimuths 0 and 

,P, respectively, are identical. However, the range values 110 and ~~~ are different. The 

HBSociated rose diagram in Figure 4B is an e!Upse with the direction of the major axis 

in the direction of azimuth 0; the major ra.dius is equal to the maximum range au and 

the minor radius is equal to the minimum range £1.1>· /v; all pcnnissilllc semivariogram 

B. 

'"' •. , 
•• 

.. Oolhl 

Figure 4; Geometric anisotropy: A/. Scmivariogram mcdels; Bf. The rose diagram, 

modified from Goovacrt.s (1997). 

models introduced previously are iu isotropic form, a coordinate transformation has 

to be carried out to express the model that exhibits geometric anisotropy in isotropic 

form with respect to the new ooordinntes. The process is accomplished by, firstly, 

rotating the coordinate axes clock-wise so that the positive direction of the y-axis 

is idcntical with the major axis of the ellipse. Secondly, the y-coordinates in the 

new system arc rescaled by a value equnl to the anisotropy faclor >. = a4>jaq. The 

transforrnatior~ ca.n be written liS 

h' = D~!Wtuh. 
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where 

[ 

1 0 l [ =0 _,,,, l 
D~ = and Roto = 

0 ,\ sinO cosO 

Zanni anisotropy Wheu the sill value of the semivariogram varies with direo-

tion we have zonalMisotropy. In this ca.se, the sill value in the direction of minimum 

continuity is higher than that in the direction of maximum continuity. Let us denote 

by ¢ the azimuth angle specifying the direction that h!!S the highest sill value; zonal 

anisotropy can be modelled as a sum of an isotropic modelg1 and a zonal component 

92 as follows 

(24) 

Here h~ is the distance mcusured in the dire<:tion that hus the highest sill value. The 

zonal componeut is computed us follows. Firstly, the coordinate axes are rotated 

clock-wise so that the y-axis represents the direction of maximum continuity. Sec-

ondly, they-coordinates in the new system arc rescaled by setting the range in the 

direction of maximum continuity to a very large value so that the zonal component de-

pends only on the distance in the direction of minimum continuity. Consequently, the 

Misotropy factor A approaches 0 and the zonal component depends only on h.p. Figure 

5 gives an illustration for the smn.\varlogram models in the case of zonal anisotropy 

where 9t(]hl) denotes the semivariogram model in the direction of maximum continu-

ity and 9t(]hl)+g2(h~) denotes the semivariogram model in the direction of minimum 

spatial continuity. 
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Figure 5: Zonal anisotropy semivariogrnm. models (modified from Goovaerts, 1997). 

2.4 Kriging 

Kriging is an estimation method used to interpolate the unknown valuBS in a region 

using a sample of n data {z{u .. ),a = 1,2, ... ,n}. It was developed by Matheron 

and Krige (Journel and Huijbregts, 1978). There are many types of kriging, both 

linear and non-linear. Only linear kriging is discussed since it is the version used 

in the simulation algorithms we coru;ider. The basic principle of linear kriging is 

that the value at each unsampled location can be estimated from a subset of the 

values at the snm.pled locations using linear regression algorithms. Suppose that 

{z{u .. ), a= 1, 2, ... , n(u)} are the lwown values of the attribute in a suitably chosen 

neighbourhood of a location u where the value z(u) needs to be estimated. We denote 

by Zk(u) the kriging C.'ltimate of the value z(u). In tenus of random variab!C.'l the 

estimator is given by 

n(u) 

ZK(u)- m{u) = L>..(u.,.)jZ{u,,J- m(u.,.)] {25) -· 
where m(u} denotes the expected value of the random variable Z(u) at the location 

u. The values A .. (u.,.) arc the weights to be determined so that the expected value of 

the estimation error is equal to 0 and the variance of the error is minimised. In other 
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words, the weights A.,.(u.,.) are calculated by minimising 

a1(u) :=: Vor[ZK(u)- Z(u)] (26) 

with the constraint that 

E{ZK(u)- Z(u)} = 0. (27) 

In simple kriging, the random function 2 is assumed to be second-order stationary 

with a known constant mean m. Therefore, from (25), we have 

n(u) n(u) 

z;l((u) = LA.,.(u)Z(u,.) + [l- E>..,.{u)Jm (28) 

where the weights A.,(u.,) are determined by solving the system of n(u/ linear equa-

tions: 

n(u) 

:2::>1l(u)G(u.,.- ull) = G(u"- u) a= 1, .•. ,n(u). (29) 
I)~ I 

For onlinary kriging, the random function Z is only required to be intrinsic stationary, 

and (28) becomes 

n(u) n(u) 

ZC,J<{u} = LA.,(u)Z(u,.) + (1- L::A,.(u)]m'(u), (30) 

where m'(u) is assumed Lobe constant in a neighbourhood and usually unknown. 

Hence, for the unbiascdness constraint in (27) to be satisfied, the weights A,(u,.) arc 

determined by solving the system of (n(u) + 1) linear equations stated below: 

n(u) 

l:Ap(u)G(u,-up)+JJ{u) = G(u,-u), a=l, ... ,n(u) 
II .. I 

n(u) 

l:Ap(u) =I 
Il-l 

where J.!(u) is the Lagrange parameter, and the equation :LP~~ Ap(u) 1 is the 

unhinsedness condition. 
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Both simple and ordinary kriging estimators are exact interpolators. The estimate 

at a sample location is equa.l to the sample value 

(31) 

a.nd the kriging estimate at an Uilllamp\ed location, for a given covariance model, is 

unique. 

Kriging is a best linear unbiased estimation (BLUE) method. It is best in the 

seru;e that the vada.nce of the estimation error is minimised. It is unbiased since the 

expected value of the estimation error is equal to zero. However, due to the method of 

estimation, kriging does not reproduce the histogram and the variance of the sample 

data. In addition, because of the unbiasedm~s condition, the estimation by ordi­

nary kriging also exhibits conditional bias. The locations with high attribute values 

are underestimated and the locations with low attribute values are overestimated. 

Therefore, the map of the estimates is always smoother than the true map. 

In this thesit, simple kriging is used in the sequential Gaussian simulation de­

scribed in the following section. Ordinary kriging is used in the posprocessing step 

used to obtain conditional simulated realisations in the simulation a.!gorithm PWSIM 

described in Chapter 7. 

2.5 Simulation 

The aim of geostatistical simulation techniques is to apply the Monte Carlo simulation 

method to generate realisations z,(u) that reflect the properties of a random function 

Z. This random function is usually specified by the expectation m and the covarinnce 

O(h) which is inferred from the sample covariance computed from the associated 

sample {z(u.,.), o: = 1, 2 .... , n}. Two types of simulation are distinguished: if the 
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values at the sample locations in the simulated realisations are equal to the actual 

data, that is 

(32) 

for a = 1, 2, ... , n, the simulation is sa.id to be conditional; if condition (32) is not 

satllified, the simulation is said to he nonconditional. 

Conditional simulation is prefered to linear kriging in applications that focus on 

the fluctuation patterns of extreme values, for example, the pollution of heavy metnls. 

Because of the smoothing effect, linear kriging may underestimate the presence of 

high pollutant values leading to the inability to recognise potential health threats. 

Conditional simulation is also used to measure the spatial uncertainty of llll attribute 

in risk analYEis or in decision making. For example, in order to evn\uate the risk of 

classifying a region as safe with respect to some type of pollution, one can generate 

a set of conditional realisations then the risk can be visualised via the plots of these 

realisations or can be numerically quantified via a mathematical model. In this thesis 

we focus only on multiGaussinn simulation algorithins, that is, tim underlying random 

function is assumed to have a multivariate normal distribution. 

Conditional simulations can be obtained by using linear kriging to postprocess 

realisations simulated via a non-conditional simulation algorithm, for example, the 

turning band method (Journel and Huijbregts, 1978), the spectral simulation method 

(Chiles and Delfiner, 1999 and Pardo-IgUzquiza and Chica-Olmo, 1993) or by using 

a conditional simulation algorithm. In the first coso, at each grid node the simulated 

wluc is conditioned by the following steps. Firstly, obtain two kriging estimates at this 

location, one using the actual data and one using the nonconditional simulated values 

at dnta locations, respectively. Secondly, compute the difference of the two kriging 

values. Finally, add this error to the nonconditional simulated value a.t this location. 
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That is, suppose that z,(u) is an unconditional simulated vnlue, the postprocessing 

method computes the conditional simulated vnlue z,o(u) from z,(u) by putting 

z.,(u) = z,(u) +[zK(u)- z;K(u)J (33) 

where zK(u) is tbe simple biging estimate using the actual data and z;K(u) is the 

simple kriging estimate usiog the simulated vn.lues at the data locations (Journcl and 

Huijbregt;:l, 1978). In terms of tho random function model, (33) can be rewritten as: 

Z,0(u) = Z,(u) + [ZK(u)- z;K(u)]. (34) 

Since the coofiguration between data locations as well as the covariance model is 

the same for the two kriging images, equation (33} only involvfl! solving one kriging 

system at each location to be simulated 

In the second case, the data nrc conditioned directly during the simulation. The 

sequential Gaussian simulation method (Chi\~ and Delfincr, 1999) is an example. In 

the sequential Gaussian simulation algorithm (SGSIM), the simulation is carried out 

scquentia11y along a random path that visits each location in tho study region once 

and only once. At each location on the random path, the simulated vn.luc is draWTI 

from a parametric distribution constructed from the kriging estimate conditional to 

the original data and previous simulated vnlucs. Then the newly simulated value, in 

turn, becomes one of the conditioning values for all subsequent simulated vn.lues. Since 

the random path defines the order of locations to be simulated in the study region, 

for each diffcrcut path a different simulated realisation is obtained. The results of 

SGSIM depend on the search radius, the choice of the type of kriging estimate, the 

number of original data and previously simulated data used for simulating a value. 

The perfonnancc comparison between SGSIM and DWSIM, a multi· level wavelet... 

ba.sed conditional simulation algorithm developed in this thesis, wiU be carried out in 
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3 WAVELET ANALYSIS 

3.1 Wavelet Analysis in One Dimension 

In this Section, we first Bhow how wavclcts a.re constructed and then describe the fast 

algorithm which is used to compute the wavelet and scaling coofficients for a 8Ct of 

discrete values on a regular grid. 

3.1.1 Deterministic Wavelet Analysis 

Now consider the Hilbert space £2 (1R) (sec Rudin, 1991) of all square-integrable func­

tions defined on the real line lit, that is, a complex-valued function f belongs to £2(IR) 

if it satisfies 

(35) 

Finitely supported wavelets, denoted by {'li';,nh,nez, are families of well-localised func­

tions in £2(R) each member of which takes non-zero values on a finite interval only, 

and whose integral over its support is equal to zero (I<ahane and Lemru:ie-llieusscl, 

1995). These wavelets are obtained by a dilation and a tr!l.IISlntion of a mother uJllvelet 

• by 

..p1_,.(t) = z-i/21/J(Tit- n);j, n E Z. (30) 

If a wavelet family {1/J;,,.};,nEZ is an orthogonal basis for £2(JR), any function I in 

L2(1R) can be approximated by a linear combination of tho functiollS 1/J;,n· In the next 

Section we introduce the concept of mnltiresolution approximations, the tool that is 

used in the construction of orthogonal wavelet baBes. 

Wavelets and Multiresolution Approximations The approximation of a func­

tion I in L2(1R) at scale 2; (or at resolution 2-i) is an orthogonal projection of I 
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onto the subspace V;.;EZ of £2(IR). Thill approximation ill specified if tim associated 

subspace \5.;Ez and the basis klr th<>sui- .pa.ce are defined. A multiresoluiion llPPillX­

imaiion is used to compute the :ro.cimation of a function at different scales. It is 

COillltructed as f01lows: 

For ,P E £2(1!.), let </l;,n oe f~e family offunctions defined by 

(37) 

and let {\5};( z be the sequence of closed subspaces of nil linear combinations of </l;,n 

(including tho:..ir limit under the L2{IR) norm). The sequence {V;}JEZ is a mu!tireso/u­

lion approximation if the fol!owing conditioDS are met (Mnllat, IS98): 

l. The subspace-; arc nested: 

(38) 

2. For all (j, n) E Z2 , 

f(t) e V; <* J(t - 2in) e V;. (J9) 

3. The e\osure of the union of all Vj is L2 (1R) 

----
.Jim V; = U Vj = L2(IR). ,__,_"' . (40) 

,~-= 

4. The intersection of all V; is the r.ero subspace 

Jim Vj= n Vj={O}. 
J-00 -

(41) 
J~-oo 

5. The scaling property is satisfied: J(t) E V1 <= J(t/2) E V;tl· 

6. There exists a function </1 E V0 such that { ,P(t - n)} nez is an orthonormal basis 

of Vo. 
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In this case, the function </! is called the sco!ing fun~tirm or the fali!CT' wavelet. 

From conditions 5 nnd 6, it follows that, for each j, the set {</!;~,n : n E Z} is an 

orthonormal basis of the subspace V;. The space V; is also called the space of aU 

approximations of the function f at the scale 2;. Consequently, for a fixed j, a function 

f E £2(R) can be approximated by a function iJ in V; by 

-/;(t) = L C,,n</1(2-Jt- n). 

Since V; C Vi-h the scaling function</! satisfies 

-</J(t) = ../2 L: h[n]</!(2t- n), (42) 

with 

(43) 

where the over-bar stands for complex conjugation and by constntction (Dnubechics, 

1988) 

Lh[n]=v'2. (44) 

"" 
The next step is to show how orthogonal wavelets are defined using the multircs­

olution approximation. Iu L2(R) we defme a function '1/J by 

1/!(t) = J2,Eg[n)</J(2t- n), (45) 

"" where 

g[n) = (-l)nh[l-n]. (46) 

Then it can be prowd (Mallat, 1998) thnt for a fixed j, the family of functions 

{'1/Jj,n• n E Z} defined by 

1/l;,n(t) = 2-if2.p(2-it- n) 
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is a basis of the orthogonal complement W; of Vj and these subspaces satisfy 

(47) 

where Eil denotes the direct sum. The subspace W; is also called the detail spare.. Fbr 

all integers j and k where j # k, the subspaces Wi and Wk arc mutually orthogonal 

and their direct sum is dense in £2(1R}, that is 

(48} 

The family of functions { 1/Ji,n•j, n E Z} are called wevclc!s obtu.int'C! by dilating 

and shifting the moU1cr wavelet "' and these functions form a basis for £2 (IR}. 

Definition 1 The function h[n] in equation (43} is called the /owpass filter and the 

function g[n] in equation (46} i<; called 1/ic highpMs filter. 

Examples of Orthogonal Finitely Supported Wavelets The following sections 

give examples for orthogonal finitely supported wavelets constructed via multiresolu­

tion approximations tc,·• ·.nor with their filters. These wavelet fnmilics will be used 

as the bases for the simulation algorithms in this thesis. 

Haar Wavelets Haar wavelets arc the simplest ortbogonnl and finitely sup­

ported wavelets. They ru:e obtained by the dilation and translation of the Ha.ar 

mother wavelet 1/J11 , where 
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0St<0.5 

0.5:s;t<l 

otherwise 

(49) 



The Haar mother wavelet is constructed from the HaJU" father wavelet ,P11 given by 

.,(t) ~ { : 
OSt<l 

(50) 
otherwise 

with lowpass filter 

{ /2/2 n=O,l 
h[n] = 

0 otherwise 

and highpass filter 

{ /2/2 
n=O 

g[n]"' -~/2 n=l 

otherwise 

The Haar mother wavelet is the only orthogonal and finitcly supported wavelet thal 

has a closed form. 

Daubechies wavelets Daubeehies wavelets are orthogonal and finitely sup-

ported functiollli that have no explicit formulae but are characterised by their lowpass 

and highpass filters. Since they have finite support, their filters have finite length. 

The number of non-zero coclfidents of the filters depends on the number of vanishing 

moments of the wavelets. 

Definition 2 Let M ;::: 2 be a positive integr;r. A wavelet family is said to /wve M 

vanishing moments if 

L: l"t{.l{t)dt = D;k = 0, ... , M- l. 

For wavelets with M vanishing moments, the associated filters have 2M non-zero 

coefficients. Haar wavelets can be considered as wavelets with one vanishing moment. 
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The more non-zero coefficients the filters have, the smoother the Daubcchies mother 

wavelet and scaling functions become. The values of the filters are determined using 

the properties and restrictions of multiresolutton approximations a.nd orthonormality 

(see Daubechies, 1988). Depending on the number of non-zero coefficients of the 

filtern, we have different families of Daubechies wavelets, for example, Db2 denotes the 

family of orthogonal and compnctly supported wavelets with two vanishing moments; 

Db3 denotes the Daubcchies wavelets with three vanishing moments; Dbn denotes 

the Daubechies wavelets with n vanishing moments. The filter coefficients of Db2 

(correct to 10 decimal places) am listed in Table 1. 

n h[n] g[n] 

0 .4829529131 -.1294095225 

l .8355153037 -.2241438680 

2 .2241438580 .8355153037 

3 -.1294095226 -.4829629131 

Table 1: Db2 filter coefficients 

AJ. Mother wavelet Db2 , 
" 

"' 
,_, 
·• _, 

B/. Scaling function db2 

1,S ' 
1.4 ~ 

1.2 ~ 

" 0.8 J 
0.6 J 
OA ~ 
0.2 1 

D -·---······~------ ••• ,.,.~-,I 

Figure 6: Mother wavelet Db2 and scaling function db2. 
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Since Daubechies wavele!Ji have no explicit fonnulae, for each vnlne oft, the as-

sociated value of 1/J(t) is determined using the "cascade algorithm" (see Daubcchies, 

1992). Figure 6 shows the plots of the Daubechies mother wavelet Db2 a.nd of the 

associated sca.ling function db2 generated via MATLAB. 

The Discrete Wavelet Transform and Inverse Discrete Wavelet Transform 

The discrete wavelet transform is a fast algorithm that computes the scaling and 

wavelet coefficients at a coarser scale V+1 from the scaling coefficients at the finer 

scale 2i. Tht! inverse discrete wavelet transform is the operation that reconstructs 

the scaling coefficients at the finer scale 2i from the scaling and wavelet coefficients 

at the coarser scale 2itl. 

Fbr a set of uniformly-spaced values {c0fn]}nEN we define a function f E Vo by 

• 
f(t) = E c0jn],,l(t- n). (51) 

Using the orthononnality property of scaling functions { 1/Jo,n} neN' it follows that 

(52) 

where (., .) denotes the inner product in £2(IR) (see Rudin, 1991). The scaling coeffi­

cients dfn] and wavelet coefficients &l[n] of the set {t!l[n]},eN are defined by 

d[nJ = (/, <Jij,n) (53) 

(54) 

In this light, the set of discrete vnlues {t!l[nj}neN is identical with the set of scaling 

coefficients at scale 2° and rfl[n] = 0 for all n since f is a. function in Vo. 
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The following theorem (Mallat, 1998) allows the scaling coefficients at scale 2" to 

be decomposed into and recolllitructcd from the scaling and wavelet coefficients at 

sca.\e zH1. 

Theorem 3 Discrete wavelet trnnsform: Eac/1 scaling !Xlejficient at the !Xlar~er ~cale 

zi+l is computed from the scaling a;efficients at the finer scale 21 by 

• 
d+'[n]= L hfp-2n]dfpJ. (55) 

~-· 

Each wavelet coefficient at the coarser scale 2i+l is ~X~mputedfrom the scaling Cl!l'.j]i­

cien!s at the finer scale 2; by 

• 
<.~i+l[n] = L g[p- 2n]d[p]. (56) 

F-• 

Inverse discrete wavelet trnnsform: Eac/1 scaling a;eff~eicnt at tile finer scale 2i is 

~X~mputed from Ute scaling and wavelet ~X~Cfficients at the a;arser scale 2.i+l by 

• • 
dfp] = L hfp- 2n]d+1[n] + "E g[p- 2n]di+l[n]. (57) 

Here tim functiollli !J and h denote respectively the highpass and \owpass filters 

corresponding to the chosan wavelet bMis. Since the number of non-zero coefficients 

of the filters is 2M where M is the number of vanishing moments, putting u = p-2n, 

we may write (55) and (56) as finite sums: 

~M-1 

d+'[n]= L h[uJd[2n+uJ (58) 

""" 

~M-1 

di+ 1[nJ= "E g[u]c"[2n+u]. (59) 
~-o 
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3.1.2 Stochastic Wavelet Analysis 

In cases where only ~omc values on the rcgulN" grid are known, the wavelet a.nd 

scaling coefficients at the coarser scale cannot be obtained simply by applying the 

discrete wavelet trllll.Sfonn to the scaling coefficients at the finer scale. Likewise, the 

scaling coefficients at the liner scale cllllilot b11 computed from the scaling and wavelet 

coefficients at the coarser scale simply IL'iing the inverse discrete wavelet transform. 

Stochastic wavelet antl.lysis is !L'ied to handle such situations. 

In stochastic wavelet analysis, the attribute value at each grid noJtJ is regarded 

as a particular realisation of a random variable at this location. Then the scaling 

and wavelet coefficients, which arc linear combinations of random variables, are also 

random variables. Under the a.sswnptions that the underlying random function Z is 

second-order stationary and that it follows a multivariate standard nonnal distribu-

tion with covariance function C(]hl), the scaling coefficients and wavelet coclficicnts 

also follow a normal distribution with mean Ulro. In addition, if the attribute values 

are correlated, the scaling Md wavelet coefficients n.re also correlated. The correlation 

of scaling and wavelet coefficients can be Ullcd to simulate the unknown scaling and 

wavelet coefficients from the known ones. 

Covariance between Two Scaling Coefficients at the Same Scale Since the 

scaling coefficients dl].] at the original scale 2° arc identical with the correlated original 

values, the scaling coefficients at sca.le 2i, j > 0 are also correlated. Let us denote 

by If,· J the covariance betwecm two scaling coefficients d[m] and d[n],j > 0. Then 
"·" 
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using equation (58) and E{d[.]} = 0, we ca.n write 

(60) 
2M-I 2M-I 

E{',L h[u]cl-1[2m+u] L h[v]ci-1[2n+v]} (61) 
u-u .~u 

2M-I 

= L: h[u]h[v]E{ci-1[2m+u]ci-l[2n+v]} (62) 
u,tr-0 

2Af-l 

P[m,n) = L h[u]h[vJ/1[;.!,tu,2n+o)' (63) 
u,o~U 

It can be seen from equation (63) that tho covariance between two scaling cocfficionts 

nt the same scale is a linear combination of the covariance of the scaling coefficients 

at the previous finer scale. 

Covariance between Two Scaling Coefficients at Two Consecutive Scales 

In the previous Section we have shown that the covariance between two scaling coeffi-

cients at a coarse scale can be computed from the covariance of scaling cocftidents at 

the finer scale. In this Section we will give the formula for computing the covariance 

of two scaling coefficients at two consecutive scales. Denote by 

6fm,n) = E{d[m]d+l[m]}- E{d[m]}E{d+1[n]} (64) 

the covariance of two scaling cocllicients d[m] and d+1[n] where j <::: 0; with (58), 

equation (64) become5 

2M-1 

6[,,m) E{d[m] L h[u]d[2n+u]) 

2M-! 

L h[u]E{d[m]d[2n+ u]}. 
~o 

According to the defin'tion in (60), the covariance between two scaling coefficients 

at two consecutive sca!C5 is a linear combination of the covariance between scaling 
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coefficients at the finer scale 2; and is given by 

2!1-1 

5(m,n) = L h[uJIJ{m,2n+u)' 
u~o 

(65) 

Covariance between Two Wavelet Coefficients at the Same Scale The oo. 

variance of two wavelet coefficieut.s di[m] and di[n[,j > 0 is denoted by 

(66) 

Using equation (59), the covariance -rfm,n) is computed in terms of the scaling coeffi­

cients at the finer scale 2i-1 by 

2M-! 2M-I 

E{di[mjdi[n]} = E{ I; g[u]ci-1[2m +tt] L; g[v]d-1[2n+ v]} 
u~o u~o 

2M-! 

L g[u]g[v]E{cH[2m + u]d-1[2n + v]}. 
u,u-.{1 

So the covariance of two wavelet coefficieuts at scale 2i is a linear combination of the 

covariance of scaling coefficients at the finer scnle 2i-J and is given by 

2M-I 

-rfm,n) = I: g[u]g[vJ.B{~+u,2n+o)' 
u,o-0 

(67) 

Covnriance between a Wavelet Coefficient and a Scaling Coefficient at the 

Same Scale The covariance of a wavelet coefficient di[m] and a scaling coefficient 

d[n],j > 0 is denoted by 

ryfm,n) = E{di[m]d[n]} - E{di[m]}E{ d[n]}. (68) 

Using equations (58) and (59), the covariance 7l1...,n) is computed in t= of the 

scaling coeflicients at the finer scale W-1 by 

2M-I 2M-I 

E{di[m]d[n]} = E{ L g[u]d-1[2m+u] :E h[v]d-1[2n +v]} 

2M-I 

L g[u]h[v]E{ d-1[2m + u]d-1[2n + v]}. 
u,omO 
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In teriTL'l of the covariance of scaling coefficients at the finer scale, the covariance of a 

wavelet coefficient and a scaling coellicient at the same scale is computed by 

~M-1 

Tlim,n)"" L g[u]h[v]J3j~+u,2n+u)' (66) 

For stationary proci'Bilcs, the wlues J3i, r!, ria.nd if are independent of the indices 

of the scaling/wavelet coefficients. The following proposition verifies this property. 

Proposition 4 If tile mndam/undion2: A-> (Z(u): u E A} is a second-onler 

stationary Gaussian mndom function with zero mean thrm the valu~ j3i, 6i, rf and 

ri do not depend on the ir<lices of the scaling/ wavelet coefficients. 

Proof. We prove Proposition (4) for the caw of the covariance of two scaling 

coefficients only. The same argument is used for other cases. This proof is based on 

the Spectral Representation Theorem (sec Appendix 12.1). 

Let d> [k] be the scaling coefficient at scale 2i> and d'[m] be the scaling Coefficient 

at scale 2h. 

From equation (53), the scaling coefficient d>[k] is the inner product of Z and the 

scaling function 'hk• and because tfi},k is a real-valued function the scaling coefficient 

d> [k] is given by 

d'[k] "'1: Z(u),Pi,du)du = 1: Z(u)P;,k(u)dlt. (70) 

According to the first result of the Spectral Reprc.;enta.tion Theorem, the value Z(u) 

can lm written as 

Z(u) = 1: c""'"d.i(wt) (71) 

where Z denotes a complex random fundion. By substit\lting thn value Z(u) in (71) 

into equation (70) we have 

d'[k) = 1: (1: e""'"d.i(wL))P;,~(u)dt< = 1: (1: e~"'"ob1,k(u)du)d.i(w,) 
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(72) 

where ¢j,k is the Fburier trll.llSform (soo Mnllnt, 1995, page 23) of the function ¢M 

defined by 

¢j1k(w,) = 1: e-iw,u</JJ,k(u)du. 

Similarly, the scaling coefficient ch[m] cnn be expressed as 

(73) 

Since the scaling coefficients ru:e real, eq•Jation (73) can be rewritten by 

Next, by computing the covariance of the two scaling coefficients, wn have· 

(74) 

According to the third result of the Spectral Representation Throrem (Appendix 

12.1), we have frnrn (74) 

B{ci'[k)ch[m]} = [ ~;,k(w)¢n.,.(w)S(w)dw (75) 

whurc 

Using the properties of Fourier trlliiSfonn together with the definition of the func­

tion ¢;,k we have 

(76) 



~d 

(77) 

By substituting the values on the right hand side of equations (76) Md (77) into 

equation (75) and simplifing the re;u!t, we have 

E{d'[k]d'[m)} ""'1: zrMJoll2eiw'l1'(k-21'-lt"')~(2>'•w)'¢(2hw)S(w)dw. 

It can be seen tha.t the oovari!l.IICC between the two sca.ling coefficients d'[k] and d>[m] 

does not depend on the integer k and m but only on the different (k- 2i>-i•m). • 

We have proved that the c!IY!liiancc of two ~caling coefficients d 1[k] and ch[m] 

depends on (k- 2h-.i>m). In pnrticular, the covariance of two scaJing coefficients at 

the snme scale d[k) and d[m] dePends only on the difference of the indices k and m. 

3.2 Wavelet Analysis in Two Dimensions 

In this Section, the concepts used in dcterminisUc and stochii.Stic wavelet analysis in 

one-dimensional space are !!>:tended to two-dimeiL'lional space. 

3.2.1 Multiresolution Approximations of £2 (!R2 ) and Two-Dimensional 

Wavelet Bases 

In two-dimP.nsional space, wavelets a.re defined as products of one-dimensional wavelet 

and scaling functions. If¢ and¢ a.re the one-dimensional scaling function and mother 

wavelet, respectively, then the two-dimensional mother wavelets arc defined by 

¢ 1(.:, y) = ¢(x)¢(y); ¢ 2(x,y) = ¢{x)¢(y); ¢ 3(.:, y) = ¢(x)¢(y) (78) 

a!lf! the family {¢1,m,nJ given by 

¢1,m,n(x, y) = 2-J¢k(2-ix- n, 2-iy- m) (79) 
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with k = 1, 2,3 are functions obtained by the dilations and translation of the mother 

wavelets 'f//. The two.dimensional wavelets in (78) are obtained via the separoble 

multiresolution approximations in £2(R2) described ll.'l follows. 

For a fixed value of j,j E Z, the orthogonal projection of a function f in the 

Hilbert space £2(1R2 ) onto the subspace V/ of L2(JR2) is called the approximation of 

f at scale 21. If for each value of j the space Vf is defined by 

(SO) 

where® denotes Lhe tensor product and {Vj)JEZ is n multiresolution approximation of 

L(IR2) then the setofsubspaccs {l'J2)jez is a sepambie two-dimensional multiresolution 

approximation of L2(IR2). As a consequence, for any j E Z, the collection of the 

dilations and trllllslntions of the scaling function ¢(x, y) = ¢(x)¢(y) given by 

{¢;,m,n(x, y) = ¢j,n(x)¢j,on(Y) = 2-i¢j,n(2-ix- n)¢j,m(Tiy- m)}(m,n)e~• (81) 

forms an orthononnal basis of V}- Simllar to the multiresolution approximation in 

one-dimensional space, the subspace Vj:_ 1 can be decomposed into two mutually or­

thogonal subspnces of coarser resolution WJ and Vj2 by 

v?.1 = w; ® Vj2 • 

It can be proved (Mallat, 1998) that for a fixed value of j, the set 

{ .PJ,m,n (x, y), T/Jim,n(x, y), ¢J.m,n (x, y) }(m,n)eZ' 

(82) 

(83) 

is an orthonormal basis of W} and for j E Z the set of two dimensional wavelets in 

(83) forms an orthonormal basis for tim space £2(lR2). 

3.2.2 Tho Two-Dimensional Discrote Wavelet Transform 

The two-dimensional discrete wavelet transform is a fi!St algorithm, bw;ed on the mul­

tiresolution approximation of L2(R2) and the two-dimellllionalwavelet hBScs, used to 
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compute the scaling nnd wavelet coefficients of a set of discrete values { &(m, n] }(m,n)EZ' 

on a regular grid. 

As a result of the multiresolution approximation of L2(IR.2), the family of scaling 

functions {¢o,n,,n}(m,n)Ez2 is a. basis for YJI. Then the set ofdiscretevnlues {dl(m, n]}(m,n)EZ' 

can be considered the set of scaling coefficients at the scale 2° of a function f E VJ' 
defined by 

(84) 

where 

-f(x,y) = L c0[m,n]¢o,m,n(x,y). (85) 

and as in the one-dimensionnl cnse (., .) denotes the inner product. For j > 0 and 

k = I, 2, 3, the scaling and wavelet coefficients of the set {dl(m, n]}{m,n)EV are defined 

by 

d(m, n] = (!, ¢j,m,n) (86) 

'"' 
d~(m,n] = (J,1/J1.,m,n) (87) 

respectiVllly. 

Using the above properties, it cnn be proved (Malla.t, 1998) that the scaling and 

waveld coefficients at location (m, n) at scn.le 2i+1 can be computed from the scaling 

coefficients at the finer scnle 2i by 

-d+1(m, n] = L L h(k- 2m]h[l- 2n]d(k, 1], (88) 
1~-ook~-oo 

- -d{+1[m,n]= L L g[k-2m]II[l-2n]d[k,l], (89) 
~~-ook=-<» 

43 



-L: h[k-2mjg[l-2n]d[k,!J, (9G) 

-1W1[m,n]= L: :E g[k-2mjg[l-2njd[k,lj, (91) 
1~-ook=-oo 

and that the sce.ling coefficients at scale zi can be reconstructed from the acaling and 

wavelet coefficients at the coarser sGa!e PH by 

-d[m,n] = L :E h[m-2k]h[n-21]d+l[k,~ (92) 

- -+ L: [; g[m-2k]h[n-21Jd{+1[k,l] 

-+ L: L: h[m-2k]g[n-21]4+1[k,l] 

- -+ L L: g[m- 2k]g[n- 21jd~+ 1 [k,l]. 
k--ool=o-oo 

The decomposition in (88)-(91) is called the two-dimensionol discrete wavelet trans-

form and the reconstruction in (92) is called the inverse discrete wavelet transfonn. 

In image processing the two-dimensional discrete wavelet trausfonn is used to 

compress images to save computer stora.gc space. As the Hr~t step, the discrete 

wavelet trllllliform is applied to the original image { dl[m, nj : 0 ::;; m < P, 0 ::;; n < Q} 

where P = 2m•,Q = zn•, mh n 1 = 0, 1,2, ... to decompose it into one set of scaling 

coefficients {c1[m,nl} and three sets of wavelet coefficients {dl[m,n]h~L.~.3 where 

0::;; m < P/2,0 S n < Q/2. The set {c1[m,n]} is the compression of {dl[m,n]}. 

The three sets of wavelet coefficients (associated with three types of wavelets in two­

dimensional space) contain the detaillosL in the compression. Then the set of scaling 

coefficients can be further compressed by the discrete wavelet transform. Each move 

from a finer scale 2; to the next coarser scale 2i+1 leads to a reduction in the size of 

the scaling image by a factor of four. The process is illustrated in Figure 7 where the 
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discrete wavelet transform is applied to an original image of size 128 by 128 (Figure 

7 A). After one application of the discrete wavelet transform, one scaling and three 

wavelet images of size 64 by 64 at the coarser scale are obtained as shown in Figure 

7B. 

A B 

128 by 128 

IDWT2 

Figure 7: One application of the two-dimensional discrete wavelet transform to an 

original image of ::;ize 128 x 128. 

Similar t.o ihe one-dimensional case, putting u = k - 2m and v = l - 2n, the 

equations (88)-(91) can be rewritten as 

2M-12Af-1 

d+1 [m, n] = L L h[u]h[v]d[2m + u, 2n + v], (93) 
u=O v=O 

2M-12M-l 

d{+1[m, n] = L L g[u]h[v]d[2m + u, 2n + v], (94) 
u=O 'V=O 

2M-12M-l 

d~+ 1 {m, n] = L L h[u]g[u]d[2m + u, 2n + v], (95) 
u=O 'V=O 

2M-12JII-l 

d~+l[m, n] = L L g[u]g[v]d{2m + u, 2n + v]. (96) 
u=O v=O 
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Since in one-dimensiona.l space the sum of the lowpass filter coefficients L;~~0- 1 h[u] 

is equal to ,12, the sum of the lowpass filter coefficients in two dimensional space ill 

equal to 2, th!lt is 

2M-12M-I 

L: L: "i"ihl"l = '· (97) 
u..O =0 

3.2.3 Stochastic Wavelet Analysis in Two-Dimensional Space 

In this section, we introduce the formulae for computing the covariance of pairs of 

scaling coeflidents, the covariance hetw()(lll a scaling coefficient and a waveleL co-

efficient and the covariance of pairs of wavelet coefficients of the same type. These 

covariances are used in the simulation of realisations of two-dimensional random func-

tions using the algorithms presented in this thesis. In addition, the definition and the 

computation of the wavelet and scaling spectra are also introduced. 

Covariance between a Pair of Scaling Coefhcients In two-dimensional space, 

the covariance between two scaling coeffidents at the some scale d(p,q] and d[m, n],j > 

0 is denoted by 

Pt,m),(o,n) = E{d(p,q]d(m, n]}- E{d(p,q]}E{d[m,n]}, 

and the covariance between two scnling coefficients d[p,q] and &+1[m,n],j ~ 0 at 

two consecutive scales is denoted by 

6£,,m),(o,n) = E{d[p, q]d+l[m, n]} - E{d(p,q]}E{ ci+1[m, n]}. 

Using equation {93) one can prove that the covariance P[m;p),(n,o) can be computed 

from the covariance at the previous finer scale 2i-1by 

2M-I 2M-I 

P&,m),(q,Q) = L L h[ul]lt[vt]h[u2]h[vdP{;;,~u,,2m+u•),(2<!+v~o2n+"')' {98) 
u,,., .. o .. ,, ...... o 
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The covariance ll,_ J ( 1 between two scaling coefficients nt two consecutive scales is ..,,m, q,n 

computed from the covariance of scaling coefficients at the finer scaie by 

2M-! 

6!_ - E{d(p,q) "h[u]h[v]d[2m+u,2n+v]} "',m),(q,n) - L.., 

2M-I 

L: h[u[h[v]E{d(p,q]d[2m + u,2n+v]} . . ~ 
According to equation (98), we have 

2M-I 

6&,m),(q,n) = L; h[u]h[vJ/J&,2m+u),(q,2n+")' (99) 
"•"mO 

Covariance between Two Wavelet Coefficients of the Same Type at the 

Same Scale In two-dimensional space, there are three types of wavelet covariance. 

For each k, k = 1, 2 or 3 the covariance between two wavelet coclficients d{[m,n] and 

d~(p,q],j > 0 is denoted by 

. . . . I 
~(rn,p),(n,q) = E{dt[m, n]dt[p, q]} - E{di[m, n]}E(dk(p,q)}. 

Using equations (94), (95) and (96;, for each value of k, the covariance r{(m,p),(n,q) is 

computed in terms of the covariance of scaling coefficients at the finer scale by 

r{(m.p),(n,q) 

~(m.p),(n,q) 

" -
3(m,p),(n,q) -

2M-I 2M-I 

L I: h[ut]g[vt]h[u2]9[V:!].8/:i"~+u,2p-tu,),(2n+v,,2<j-+..,)' (100) 
u 1 ,u 1 ~o .. ,,..,~o 
2M-I 2M-I 

L I: g[u,]h[v,)g[U:!]h[v2[.8/;~+u1 ,2p-tu,),(2n+••·2<1+"')' (101) 
.. ,,,,-o..,,..,~o 
2M-I 2M-I 

L I: g[ul]g[v,]g[u2[g[v2].8/;~+u1 ,2pi·u,),(2n+o,2<J+"')" (102} 
.. , .• ,-o..,,..,-o 

Covariance between a Wavelet Coefficient and a Scaling Coefficient at 

the Same Scale Since there are three types of wavelet coefficients {4[p, q1Jk-i,2,.J 

in two-dimensional space, there are also three l;ypes of covariance between scaling 

coefficients and wavelet coefficients associated with each value of k. Fork= 1, 2, 3, the 
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covariance between a Bca.ling coefficient d[n, m] and a wavelet coefficient t4[p,q), k = 

l, 2, 3 the same scale is denoted by 

~(m,p),(n,~) = E{d{n,mJ4(p,q]},k = 1,2,3. 

Using equations (93) - (96), for k = 1,2,3 the covariance 1/{(m,p),(n,~) is computed in 

terms of the covariance of scaling coefficients at the finer scale 2;-! by 

~M-1 2M-I 

'l{(m,p),(n,q) = I: I: h(u,]h(v,]h(u-.jg[V:!]Pf;~..,,,2p+,.,),(2n+o,,2q+">)' (103) 
u1,v1-o.,.,..,=O 

~M-1 ~M-l 

~(m,p),(n/1) = I: I: h[u,)h[v!]g[u2]h[V:!]Bt;~+u,,2pi·.,.),f2n+v,,2.)·l·V,)' (104) 
.. , ... ,~o .. ,,..,-o 

~M-1 ~M-1 

~(m,~,(n.~) = I: I: h[ut]h[t!J]g[u2]Y[V:!]P{;!+ut,2!'+"o),l_~,+o,,~~+v,)• (105) 
,.,,.,-o,.,,,_o 

Similar to the crum of one-dimensiona.l space, the covariance f3;, 6i, 1{ and 'I{ are 

independent of the indices of the sca.ling and wavelet coefficients. This property is 

generalised from Proposition 4 as follows: 

Proposition 5 If Z: A_, {Z(u~otl-.i): (u~ou2 ) E A} is a secDnd-ordcr ~lationa71J 

Gaussian mndom function with zero mean U1cr. the wvariances fli, {), Ti and 'I{ do 

not depend on the indices of the ~caling and wavelet coefficients. 

Proof. Agnlu we provide the proof for the Cllll!! of the covariance of two scaling 

cocllicients only. In two-dimensional space, let d•[p,q] be the scaling coefficient at 

scale 2i• and d•[m, n] be the scaling coefficient a.t scale 2h. 

From equation {86) and since the scaling function ¢ is a real-valued function, the 

scaling coefficient d•[p,q) is expressed by 
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By substituting 

into (106), we have 

using 

Similarly 

Since &>[m, n} is real, it is equal to its complex conjugation 

N!!Xt, by computing the covariance of the two scaling coefficients, we have 

E{ rf'[p, q]d•[m, n]} 

E([ [ .P;,p(w,J"¢;,0(w2)d.Z(w,,w2) [ [ ¢.nm(wJ)"¢1,n(w~)d.i{w'1 ,wfJ}. 
Using the third result of the Spoctral Representation Theorem 

E(d' [p, q]rfo[m, n]} = 1:1: "¢i>P(w,J"¢;, 0 (w2)"¢_;,m(wi)¢io,(w2)S(wJ,~ )dw1dw2, 

(107) 
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wh~ 

Using the properties of Fourier transform together with the definition of the function 

¢;,p we have 

(108) 

(109) 

By substituting (108) and (109) into equation (107) and simplifying the result, we 

have 

E{d' [p, q[d•[m, n]} = K1 [ 1: K2"¢(2i>wJ)¢(2itwz)\1(2i>w1)"¢(21>w2)S(wbw2)ifw!dw2, 

(110) 

where 

Md 

It eM be seen that the covariance between the two scaling coclliciunts d• [p, q] and 

d•[m, nJ depends only on (p- 2h-i'm,q- 2i>-i•n). In particular, the covariance of 

two scaling coefficients at the same scale d[p, qJ and d[m, n; depends on the difference 

of the indices (p- m, q- n). • 

These properties are used to simulate a scaling coefficient at one scale from scaling 

cocfficiant(s) at other scale. 
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3.2.4 Wavelet Spectrum - Scaling Spectrum and Distributions of the 

Wavelet and Scaling Coefficients 

The wavelet spectrum, denoted by({, and the scaling spectrum, denoted by ei, axe 

defined as the expected values of the squares of the wavelet coefficients and scaling 

coefficients, respectively. The wavelet spectrum and the scaling spectrum obtained by 

the discrete wavelet transform of a realisation of a second order stationary random 

function Z are independent of location (Sachs et al, 2000). If Z is a zero mean 

Gaussian random function, the wavelet coefficients and scaling coefficients follow zero 

mean normal distributions with vari(lllCe ({, k = J, 2,3, and e, respectively that is 

(111) 

~d 

c'[n,m] ~ N(o,e'l· (112) 

The scaling spectrum ei and the wavelet spectrum ({ can be approximated via equa-

tions (98) and (100)-(102) respectively, by replacing p with m and q with n. That is, 

the scaling spectrum is approximated by 

2M-I 2M-I 

e = :L L h[uiJh!vdh!Ulllhlll;ll/3(;~+ .. ,,2m+u•).(2n+u.,2n+t12)' (u3) 
"•·••=ou,,.,=O 

and the wavelet spectra are approximated by 

2M-I 2M-I 

L 'E h[uJ]g[vl]h[u2]9[1-'l]l3/;~+u,,lm+uo),(2n+u,,2n+t12)' (114) 
,,,o,=Ou,,.,-o 
2M-I 2M-I 

'E 'E g[ul]h[v,]g[D:!]h[v2]/3(;~+u,2m+uo),(2n+u1 ,2n+t~>)' (115) 
u,,.,-o,.,,.,-o 
2M-I 2M-I 

L L o!udolvdo[u.,JolvMf;;!+ .. ,.~m+ ... ).(2n+u,2n+tl>)' (116) 
u,,.,-o,,,.,=O 
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3.3 Applications of the Discrete Wavelet Transform in Multi-

level Wavelet based Sb11,1,dation Algorithms 

Equations (93) a.nd (97) indicate that each scaling coefficient at a coarser scale is equal 

to twice tho weighted average of scaling coefficients in an US!lociated square window 

whose width is equal to the wavelet filter length. In addition, as ca.n be seen in Figure 

7, the size of the scaling image at the coarser scale is equal only to a quarter ofthe size 

of the scaling image at the finer scale, yet it preserves ell features ofthis scaling image. 

Therefore, the discrete wavelet transform can be used to shrink a study region whose 

attribute values nrc known only at some locations to a region whose attribute values 

at all locatiollS are known without distorting the spatial structure of the original 

ro;Jgion. 

Equations (98)-(105) allow unknown scaling or wavelet coefficients to be computed 

from the known ones. The correlation between pairs of wavelet and scaling coefficients 

at the same coarser seale makes it possible to deduce the wavelet coefficients from tim 

scaling coefficients at the Sl.lme scale. Having both scaling and wavelet coefficients at 

a coarser scale, the scaling image at the previous finer scale can be suitably recon­

structed from the scaling image at the coarner scale using the inverse discrete wavelet 

trnnsfonn. This property is used in the algorithm PWSIM introduced in Chapter 7.1. 

The correlation between pairs of scaling coefficients at twn consecutive scales can 

be used to compute the scaling coefficients at the finer scale from those at the coarser 

scale and vice verna. Therefore, the simulation of the scaling image at the original 

scale from the scaling image at the coarser scales can be carried out using the scal­

ing coefficients alone. This property a.nd the method o£ shrinking the stndy region 

lllling the discrete Wllvelet tr!U!Sform ILl'(! used in the algorithm DWSIM introduced in 



Chapter 7.2. 

Scaling and wavc!oot spoctra together with their prnplrlies are usOO in the singlc­

lcvcl wa.vclct-basod simulation algoritlu:m; HSIM and DB2SIM in Ch!ipter 6. 
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4 PERFORMANCE & EVALUATION MEASURES 

In this Chapter we describe the criteria uood to assess tha perfonnanca of the simu-

]ation nlgorithms in tills thesis. The criteria used nrc both quantitative and visuaL 

Quantitative assCilllmcnt consists of measures for local accuracy and global accuracy; 

visual assessment is cnrried out via the mosa.ic plots of the simulated real.iBntions. 

For the assessment of the local accuracy of the results, we use misc!assification ruull-

ysis, E-typc estimates and the absolute errors between th!l E-type estimates and the 

true values and conditional variances, computed for the attribute values. In addition, 

the accumcy, precision and goodness (Deutsch, 1997), computed in tim normal score 

spncc, of the results obtained via simulation are also considered. For the assessment 

of the global accuracy, we focus on the reproduction of the sn.mplc histogram and the 

semivnriogram model computed in the normal score space. 

4.1 Misclassification Analysis 

Millclassification ll.!lalysis can be used llB a ml.!llSurcofth.o local nccuracy of astochnslic 

or deterministic model. For example, in soil science applications, ench location iu the 

study region cnn be classified into two cntcgories: n locution u is safe from some type 

of pollution if the vnlue at that location lies below a predefined tolerance z., and a 

location is unsafe if the value lies above the tolerance. That is 

{ 

0 if •(u) S•, 
J(u) = 

I if z(u) >z. 

where the value 0 denot!l5 a Hnfe locnLion ruul I denotes an unsafe location. 

In compnri:lg the category ;<t ca.ch location obto.iued from u. simulated realisation 

with the ll.dnal one, four cllll!l5 occur; a safe location is correctly classified, nn unsnfll 

54 



location is correctly classified, a safe location is wrongly classified as unsafe and an 

unsafe location is wrongly classified as safe. The probability that a safe location u is 

misclassified us UIL'lafe is given by 

o:(u) = Prob(Z(u) :S: z0 lzl.(u) > z.,, (n)} (117) 

where z£(u) denotes the simulated value at location u. The probability that an unsafe 

location u is misclassified as safe is given by 

fj(u) Prob{ Z(u) > z,lzl.(u) S z.,, (n)} 

1- a{u). 

At a given location either (117) or (118) is defined, but not both. 

4.2 E-type Estimate and Absolute Error 

(118) 

Another measure of local accuracy used in this thesis is the E-type estimate and the 

absolute average error computed at each unsampled location. TheE-type estimate at 

location u is the aV(!rage of L simulated values at lhis location obtained by running 

a simulation algorithm L times. The absolute aV(!rage error AAE(u) at location u 

is the absolute difference between the true value z(u) and theE-type estimate at 

location u. This merumrc is computed by 

AAE{•) ~ I'{•)- ±t<{•)l 
where z1(u),l = I, 2, .. L are simulated values at u. 

4.3 Conditional Variance 

Let L be the number of simulated realisatioru; obtained by nmning a simulation 

algorithm L times, where L is llll"ge. At each location u, we obtain a set of L condi-
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tiona! simulated valurn {>d{u;), l = 1, 2, ... , L) that de(lne a local frequency dilltribu-

tion. The conditional variance at location u; is the variance of tLe simulated values 

(zf(u1),1 = 1,2, ... ,£). 

4.4 Sample Histogram Reproduction 

A quantitative measure fo. sample histogram reproduction is the mean of the absolute 

deviation (MAD) between the sample quantil!'S and the quantil!'S of an individual 

realisation. This measure is computed by 

l " 
MAD=-LJz:-z;j 

n ~~~ 
(119) 

where zt and z; are the quantiles for th" real.isation IUid the sample in the normal 

score space, respectively and n is the nnmbm- of quantilcs. 

4.5 Semivariogram Reproduction 

For semivariogram reproduction we use the mean of the absolute relative errors 

(MAE) between the directional experimental semivariogram of the normal scores of 

!.Lil individual realisation and the scmivariogram model fitted to the normal scores of 

the associated sample. The formula for MAE in the isotropic case is 

(120) 

where g' denotes the experimental semivariogram for the realisation, g denotes the 

semivariogra.m modcl, n1 is the number of lags used to compute the errors !.Lild jh;j 

is the distance satisfying 0 < jh;j ..:::_range. Note that in equation (120), the value 

associated with lhd = 0 is excluded for the case of a semivariogram model that has 

a nugget effect component. The sum is computed only up to tim range since only 



the spatial continuity a.nd the crrom at distances smaller or equal to the range are 

regarded as important. The division by the V<lluc of the $Cmivariogram model will 

give more weight to the spatial continuity at short d.i.'ltances. 

In the anisotropic case, for simplification, the measure for semivariogram model 

reproduction is based on the average of MAE values computed in the directions of 

maximum and minimum spatial continuity. 

4.6 Accuracy - Goodness - Precision 

LcL 1..l.'l conside• a sat of L simulated realisations obtained by running a conditional 

simulation lllgorithm L times. The results obtained by the application of a trans-

fer function (for example a flow simulator) to each of these L realisations model a 

probability distribution. This outcome probability d.i.'ltribution is accurate if the true 

result obtained by applying the same transfer function to the true values lies within 

some predefined symmetric probability interval of thiB probability distribution. The 

prec:ision of the outcome distribution is defined by its spread; the more spread the less 

precise. The accuracy of the outcome distribution can only be evaluated based on the 

known values. These known values can be the sample data us<..>d in the modelling, the 

data held back before the modelling Uackknife data) or some additional information 

about the phenomenon. 

The adequacy of the algorithm can also be assessed directly using symmetric 

coverage probabilities as outlined by Deutsch (1!197). According to this method a 

stochastic model is accurate if e(p), the proportion of the true values lying in an 

interval (Piow,P~p] of length p, is greater than or equal top, where 

1-p l+p 
Plow= -

2
- and Pup= -

2
-
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and p E [0, 1]. It can be seen that (pJ.,..,p""] is symmetric about the value 0.5. The 

goodness of tho outcome distribution is determined by the closeness of the value e(p) 

to,. 

To save computational time, in tills thesis the true values used to compute the 

accuracy and goodness of a stochastic model are the jackknife data, which will be 

described in Chapter 5. Based on this jackknife approach the computation of e(v) is 

carriL'<i out as follows. 

Consider a sample of n values taken at locations u,, o = 1, ... , n denoted by 

{z(u,),o = 1, ... ,n} (121) 

which is used in the modelling and conditioning of realisations of a random function 

Z in some study region A. Let u;, i = 1,2, ... , Q, where Q is the number of jackknife 

dntn, be the locatious where the knmvn values arc held back. By running a simulation 

algorithm L times, where£ is large, at each location u; we obtain a set of L conditionul 

simulated values {zl(u;),l = 1,2, ... , L} which define a local probability <listributiou. 

lf F(u;; zj(n)) is the conditional cumulative probability distribution function al 

locatiou u;, defined by 

f(u;;zj(n)) = Prob{Z(u;) :5 zl(n)} 

the conditional cumulative probability for the true value z(u;} at location u; is 

F(u;; z(u;)j(n)} = Prob{Z(u;} :5 z(u;}l(n)}. 

The proportion e(p) of the true values that lie wilhin the probability intcrwl for all 

unsnmplcd locations then is computed by 

(122) 
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where 

(123) 
otherwise 

Definition 6 A stochastic model is said to be accurate if ~(p) 2': p for all p. 

The accuracy of a stm:hlllltic model can be visualised by the plot of ~(p) against p 

nnd a stochastic model is accurate if all of the points (p,~(p)) lie above or on the line 

that bisects the first quo.drnnt (the 45o line). This plot is called the accuracy plot. 

In order to assess the performance of a simulation algoriLhm, Lwo measums arc 

defined, one for the accuracy nnd one for the 9oodness. The measure for the accurw:y 

is computed by 

A= [ a(p)dp (124) 

where 

'~)={: 
otherwise 

for p E (0, 1]. If all tha pairs (p,~(p)) in the accuracy plot lie abova or on the line that 

bisects the first quadrant, that is ~(p) 2': p for all p, then the coefficient A attains its 

maximum value of l. If all the pairs (p, ~(p)) lie below that line, that is ~(p) < p for all 

p, then A attailiB its minimum value of 0. In practice, to compute (124) the interval 

(0, 1] is partitioned into K evenly-spaced interwls of length 1/ K and the value A is 

obtained numerically by the discrete sum 

where Pk = kf 1(. 
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The goodness measure is computed by 

G = 1 - [ [3a(p) - 2][€(p}- p]dp. (125) 

Similar to the case of the accuracy coefficient A, in practice, the computation of G is 

carried out numerically via discrete summations. 

According to equation (125), if aU tile points (p,€(p)) lie on the 45° line, that is 

€(p) = p, the value G takes its maximum value of 1. The coefficient G gets smalle1 

as the departure ef the pairs (p,e(p)) from the 45° line incrcas~. In addition, the 

penalty is weighted twice for the case e(p) < p. The goodn~s coefficient G can be 

used to deduce the location of the result obtained by applying a transfer function to 

the true values in relation with the median of the probability distribution modelled 

from the values obtained by applying the same transfer function to the realisations. 

The closer the value G is to 1, the closer is the median to the tme result. If G is too 

smnU, the true result may fall outside the intci<Juw:tiles or even outside tile range of 

the results obtained by the ~imulation. This wi!llead to a wrong prediction. 

The precision of a. stocba.'ltic model can be determined via the average of the local 

probability distribution variances denoted by V. The larger the average variance V, 

the l!'BS precise is the result obtained by lhe simulation. Let o2(u1) be the conditional 

variance (defined in section 4.3) of the simulated values at location u; and Q be the 

number of jackknife data, the average variance denoted by V is computed by 

(126) 

Since the a.vcrng<J variance V only provides the global spread of the conditional 

cummulativc distribution, another measure of the precision based on the width of the 

local probability intervals has been introduced. This measure is the average width of 

the probability intervals that contain the trne values and is denoted by W(p). For a 
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given probability p, the average width W is computed by (Goovaerts,2003) 

Q 

W(p) = Q;(p) 2)e(u1:p)[F-1(u1: (I+ v)/2) - F-1(u;: (1 - r)/2)]) ,,, 
where F-1 denotes the inverse of the conditional cummulative probability function 

at location u1• 

4. 7 Mosaic Plots 

The performance of the algorithms Is assessed visually by comparing a mosaic plot of 

the simulated realisation with the corresponding post plot of the IISSOciated sample 

and tlm corresponding mosaic plot of the exhaustive data set (since here the exhaus­

tive data set is available). By observing the mosaic plot o[ a simulated realisation, 

one can detect any unusual behaviour, for example w.tefacts, or can verify that some 

particular feature seen in the post plot of the sample and / or in the moonie plot of 

the exhaustive data set is also found in the simulated realisation. The mosnic plot of 

a realisation ca.n also reveal whether or not the spatial continuity is reproduced. 

4.8 Applications and Case Studies 

The measures discussed in this Chapter will be used to evaluate the performance of 

the algorithms developed in this thesis through their applications to samples that 

have different spatial structures and that have been obtained using different sam!"lling 

methods. In the case when the underlying function is multivariate normal, these 

algoritluns are applied t.o scvcu samples with different sample si1.es and ~nmpling 

methods drawn from tlm normal scores of two exhaustive data sets, one isotropic 

and one anisotropic, as illustrated in the ellS(! stndiffi in Chapters 6, 7, 8 nnd 9. In 

ordr.r to identify artefacts nnd the reproduction of global statistics, the performance 
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measures used in this case arc the mosaic plots of typical realisations, the measures 

for the reproduction of the sample histogram and semivariogrnm model {the MAD 

and MAE values). Since tha results in this case are in normal scores, the a.ssessment 

of the local accuracy and the variability of the simulation is based on the accuracy, 

goodness and precision coefficients. 

In the case when the underlying random function is not necessarily multivariate 

standard normal, the algorithms will be applied to two samples drawn from the 

attribute values of the above data sets, as illustrated in Chapter 10. In this case, 

the samples hava Lo be transformed into the normal scores before the application of 

the algorithms. The realisations then have to be back-transformed inLo the attribute 

values after the conclusion of the algorithms. The performance measures to identify 

the artefacts and the reproduction of global statistics are also the mosaic plots of 

typical realisations and the MAD and MAE values. Since the results now are the 

attribute values, with the pre!ience of the exhaustive data sets, the local accuracy is 

assessed via misclnssification analysis and E-type estimates. The variability of the 

simulation is IISS!lSSed via conditional variancC!I 
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5 DATA SETS AND SAMPLES 

The performances of the simulation algorithms in this thesis are ll.'lSCSSCd w;ing nine 

samples and seven sets of jackknife data. In the cnse where the underlying random 

function is multivariate standard normal, the main samples used for the performance 

assessment in Chapters 6, 7 and 8 are pHlOOn and pHlOOIRn in the isotropic case 

and B64n and 864/Rn in the an.isotropic case. In addition, the samples pH501Rn, 

pHJOO!Rn, pH25DIRn and pH500!Rn will be used to assess the impact of the sam­

ple size in Chapter 9 nnd the jackknife data JackpHlOOn, JackpHlOOIRn, JackB64n, 

JackB64IRn, Jackplf50n, JackpH250n and JadpH500n arc used in Chapters 8 and £1 

for accuracy a.ssessme.Jt. The above 14 samples am taken from the normal tr!U!sfor­

mation of two exhaustive data sets; one is isotropic and the other is anillotropic. In 

the case where the random function is not multivru:iate normal, the samples wmd in 

the performance assessment in Chapter 10 for the isotropic and anisotropic cases arc 

pHsamp and Bersamp respectively. These two samples are drawn from the attribute 

values of the two cxhalllltive data sets discussed above. A detailed description of the 

data sets and the samples is given below. 

5.1 The Data Set pHsoil 

The !!Xhaustive data set pHsail contaillll 3721 pH values on a 61 x 61 regular grid. It 

has been obtained by sequential Gaussian simulation of soil samples taken originally 

in an uncropped field in an investigation of soil salinity and acidity in the Jimperding 

Brook catchment area in Western Australia (Bloom and Kentv.-ell, 1999). Summary 

statistics and the histogram of this data set in Figure SA, together with the normal 

probability plot in Figure8B, indicate that the dataset pHsDil is not standard normal. 
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AJ. SummaiY statistics for pHsoll 
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Figure 8. Summary statistics and normaltJroLability plot fur pHsoil. 

Since pHsoil is not standard normal and the simulation algorithms investigated 

in this thesis require that the underlying random function be multivariate standard 

normal, the pH values have been transformed into the normal score space and the data 

set that contains these standard normal scores is denoted by pHsoiln. The mosaic 

plot. of pH soil using the left legend (or of pHsoiln using the right. legend) and the 

variogram surface of pHsoiln in Figure 9 show that the spatial continuity is slightly 

stronger in the direction of azimuth 135°. To avoid the influence of the choice of the 

parameters in the backtransformation on the result of the algorithms, the data set 

pHsoiln together with its associated samples, described later iu this Chapter, will be 

used to test the performance of the algorithms presented in this thesis in the case 

when the underlying random function is multivariate standard normal. The data set 
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pHsoil and an associated sample are used as test data in the case when the underlying 

random function is not necessarily multivariate standard normal. 

pHsoil _ pHsoiln "'Variogram surface ofpHsoiln 
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F igure 9: Mosaic plot of pH soil (pHsoiln) and variog1·am surface of pHsoiln. 

To lest the performance of the simulation algorithms in the case when the ran-

dom function is multivariate standard normal, we use one gtidded sample, denoted 

by pHI DOn, and four nested tmgridded samples, denoted by p!I50IRn, pHJ OOIRn, 

pH250IRn and p!I500IRn, from pHsoiln. Samples plllOOn and p!IlOOIRn are used 

in Chapters 6, 7 and 8 to test the performance of the simula tion algorithms with regard 

to the sampling method. Samples pii500IRn, pH250IRn, pHl OOIRn and pH50IRn 

are used in Chapter 9 to assess the impact. of the sample size. Tn Chapter 10, to 

test the perf01mance of the algorithms in practice, we usc sample pHsamp which was 

randomly drawn from the exhaustive data set pHsoil. 

5.1 .1 Sample pH100n 

The g~idded sample pHlOOn consists of 100 values at 6u~ node of pHsoiln star ting 

fTom x = 2, y = 2 with gtid spacing 6 units of mea.sw·ement . Stunmary statistics for 

plil DOn are shown in Figw-es 10. 

The post plot and the va1i ogram smface for pHlOOn in Figures llA and liB show 

65 



Summary statist ics for pH100n 

Venable: Normal scores 

Mean 0 .037 
Variance 1 .022 
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N 100 
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FigUI'e 10: Summary statistics for pHJ DOn. 

that pHJ OOn is an isotropic sample, with both maps indicating that spatial continuity 

is the same in all directions. As pH1 00n is isotropic, only the omnidirectional ex-

perimental semivariograrn is modelled and the standard exponential semivariogram 

model we have fitted Lo the experimental semivariogram with lag spacing lhl = 6.0 is 

shown in Fig;w:e llC. This semivariogram model has nugget 0.15, sill 0.85 and range 

18.00. 
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Figure 11: Post plot of pHJ DOn and its variography. 
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5.1.2 The Ungridded Snmples 

The fcur ungriddcd samples from pHsoiln are nested. Sample pilSOOJRn cow;ist.s of 

500 values randomly drawn from the data S!'t pi!soiln; sample pH250IRn consists of 

250 values randomly drawu from pHSOOIRn; sample pllJOO!Rn cow;ists of 100 values 

randomly drawn from pH2501Rn and o1arnple pHSOIRn consists of 50 values randomly 

drawn from pHJOO!Rn. In summwy, the four ungridded samples satisfy 

pH50!Rn C pHJOOJRn c pH2501Rn C pHSOO!Rn C pHsoi/n. 

Summary ~tatisLics and the histograms for the nested samples !lTC shown in Figure 

12. 

The post plots, variogram surfaces and semlvariogram models for the four nested 

samples are shown lo! Figure 13. The variograrn surfaces of the nested samples in the 

middle colunm indicate that all four samples are isotropic since the spr.tial continuity 

is the same in all directions. The omnidirectional experimental scmivariogram, com" 

put-cd using lag spacing lhl "' 4.0, for sampln pll50IRn and its associated model nrc 

shown on the right of row 1 in Figure 13·, the omnidirectional experimental semiv-Mi­

ograms for the uthcr thmn samples, computed using lag spacing I hi"' 1.5, and thnir 

associated models arc shown on the right of rows 2, 3 and 4. The standardised expo­

nential semivariograrn models for all four nested samples have the same parameterr: 

with nugget 0.15, sill 0.85 and range 18.00. 
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Figure 12: Summary statistics for nested samples. 
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Figure 13: Post plots and the variography of ungridded samples from pHsoiln. 
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5.1.3 Jackknife Data for the Samples of pHsoiln 

Associated with th~samples described above are five sets of jackknife data. The jack­

knife data set for each sample consists of all values of the data set pHsoiln excluding 

the sample values. These jackknife data sets will be used only in Chapl;em 8 a.nd 9 

in the perfonna.nce !IS.'iessment bnscd on the ac<:uracy plots described in Chapter 4. 

Swnmary statistics for the jackknife data arc shown in Table 2. 

Statistics jack- jack- jack- jack- jack-

plilOOn pHSOIRn pHlOO,IRn pH2501Rn pHSOOIRn 

N 3621 3671 3621 3471 3221 

Me~ ·0.001 0.000 0.003 0.005 0.001 

Variance 1.000 1.000 1.1}(10 1.000 1.000 

Mie -3.644 -3.644 -3.644 -3.644 -3.644 

Ql -0.670 -0.674 -0.673 -0.667 -0.675 

Median 0.001 -0.001 0.003 0.001 -0.002 

Q3 0.672 0.676 0.678 0.678 0.681 

M~ 3.644 3.644 3.644 3.644 3.644 

Table 2: Summary statistics for jackknife data of samples from pHsoUn. 

5.1.4 Sample pH.samp 

Sample pHsamp consists of 100 pH values randomly drawn from the exhaustive data 

set pH~oil. It is used in Chapter 10 to test the practical usefulness of the algorithm 

DWSIM compared with the sequential Gaussian simulation algorithm (SGSIM). Sum­

mary statistics a.nd the cumulative probability distribution function for sample plf­

samp are shown in Figure 111. 
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AJ Summary statistics for pHsamp 
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Figure 14: Summary statistics and cumulative distribution function of pHsamp. 

Since pHsamp is not standard normal and since the algorithms used in this thesis 

are based on the assumption that the underlying random function is multivariate 

standard normal, the pH values, shown in the post plot on the left of Figure 15, 

were transformed into normal scores before the computation of the variography. The 

isotropic exponential sernivariogram model fitted to the omnidirectional e.'<perimental 

semivariogram for the uonnal scores. computed using lag spacing 3.5. ts shown on the 

right of Figure 15. Tt has nugget 0.15, sill 0.85 and range 18.00. 

71 
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Figure 15: Post plot of pHsamp and semivariogram model fitted to experimental 

semivariogTam for no1mal scores. 

5.2 The Data Set Berea 

Berea is a real two-dimensional exhaustive data seL. It contains 1600 permeability 

measurements (in millidarcies) on a 40 X 40 regular g1i.d. These measm·ements were 

taken from a 2 foot x 2 foot vertical slab of Berea sandstone (Giordano et al, 1985) 

using an air petmeameter. T he petmeability measurements in Berea do not follow a 

normal distribution. This can be seen from the summary statisLics and the normal 

probabilit-y plot in Figures 16A and 16B, respectively. 

As in the isotropic case, the permeability measurements arc transformed into 

the normal score space and this data set is denoted by Ber-ean. The mosaic plot 

of Berea if the legend on the left is used (or of Ber-ean if the legend on the right 

is used) and lhe va1i.ogram sw'face of Berean in Figme 17 show that the spatial 

continuity in the direction N55°W is stronger than lhc spatial continuity in any 

other direction. H means that the data set Ber-ea (or Ber·ean) is anisotropic with 

Lhe maximum spatial continuity at the direction N55°W. Because of this spatial 

structw·e, Berean is used in Chapters 6, 7 and 8 and Berea is used in Chapter 10 to test 

the performance of om simulation algor-ithms in the anisotropic case. Performance 
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AI. Summary Statistics for Berea 
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Figure 16: Surrrmary statistics for B erea and nonnal probability plot. 

assessment of the algorithm DWSIM, which will be discussed in Chapters 7.2, for 

highly skewed anisotropic samples can be found in 'nan et al, 2002a. 
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Fig1.u e 17: Mosaic plot of Berea (Berean) and vruiogram sw{ace of Berean. 
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5.2.1 Samples B64n and B641Rn 

To test the performance of the algorithms with regard to anisotropic data in the case 

where the underlying random function is multivaTiate standard normal in Chapters 6, 

7, and 8, two samples, each of which contains 64 values, were drawn from Berean. In 

AI. Sununary statistics for B64n 
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Figme 18: Summary statistics for B64n and B641Rn. 

order to investigate the impact of the sampling method, one sample is gridded and the 

other is ungriddcd. These samples are denoted by B64n and B641Rn, respectively. 

The values of the gridded sample B64n have been selected on every 5th node of Berean 

while t hose of B641Rn are randomly drawn from t.his data set. Summary statistics 
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for the two samples are shown in Figure 18A and Figure 18B respectively. 
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Figure 19: Post plots of B64n, B64IRn and variog,Taphy. 

T he variogram surfaces in Figure 19 show that the spatial continuity in the di-

rection N55°W is much stronger than the spatial continuity in other directions. In 

addition, the experimental semivariograms for B64n, with lag spacing lhl = 5.0, and 

for B64IRn, with lag spacing lhl = 3.0, reveal that the sill values in the direction of 

maximum spatial continuity are lower than that in the cfu·ection of minimmn spatial 

continuity N35° E. Therefore, t he semivariog,l'am model in this case is the sum of 

an isotropic model and a zonal component in the direction N35° E , as discussed in 
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Chapter 2. The same sta.nda.rdised spherical semivariogrom model is 11Eed for both 

samples. Thill modcl hill! nugget, sill a.nd range of 0.0, 0.6, and 9.0 in the direction 

of maximum spatial continuity (N55"W) a.nd nugget, sii! a.nd range of 0.0, l.O a.nd 

9.0 in the direction of minimmn spatial continuity (N35"E). This model is shoWII in 

Figures 19A and 19B. 

5.2.2 Jackknife Data for the SamplCB ofBerean 

Similar to the case of il·otropic samples, the jackknife data used in Chap..er 8 io the 

performance a.sscssmcnt via the accur(l.f;y plot of each sample are the values of the data 

set Beman excluding the sample values. For samples B64n and B641Rn, summary 

statistics for the jackknife data arc shown in Table 3. 

Statistics jackB64n jackB64ffin 

N 1536 1536 

Mean -0.008 o.ou:t 

Variance 0.998 1.000 

'"'" -3.421 -3.421 

Ql -0.683 -0.6ti9 

Median -0.011 -0.005 

Q3 0.663 0.675 

M~ 3.421 3.421 

Table 3: Summary statistics for jackknife data of B64n and B641Rn. 
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5.2.3 Sample Bersamp 

In order to compare the performance in practice of the algorithm DWSIM, described 

in Chapter 7, with the performance of the sequential Gaussian simulation algorithm 

(SGSIM) in the anisotropic case in Chapter 10, a random sample of 64 permeability 

values denoted by Bersamp was drawn from the exhaustive data set Ber·ea. Summary 

statistics, together with the cumulative probability distribution function for Bersamp, 

are shown in Figure 20. 

AI. Summary statistics for Bersamp 
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Figure 20: Summary statistics and cumulative probability plot of Bersamp. 

Since the permeability measurements do not follow a standard normal distribu-

77 



tion, these values were transformed into the normal score space. The post plot of the 

permeability values and the semivariogram models fitted to the experimental semi-

variogTams for the normal scores in the direction of maximum and minimum spatial 

continuity, computed using lag spacing 3.5, are shown in Figure 21. The nugget, sill 

and range of these standardised spherical semivariogram models in the direction of 

max.irmm1 spatial continuity N55°W and in the direction of minirmun spatial conti-

nuity N35°E are 0.0, 0.6, 9.0 and 0.0, 1.0 and 9.0 respectively. 
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F igure 21: Post plot of Bersamp and sernivariogram models fitted to experimental 

sernivariogTarns for normal scores. 

The normality of the samples discussed in this Chapter is necessary but not suf-

ficient to ensme that the underlying random function follows a multivariate normal 

distribution. Therefore, before applying the algorithms to the above samples, the 

multiGaussian assumption is checked for the standard nmmal scores. Since it is not 

possible to fully check the nmmality of more than two-point cumulative distribution 

functions, in pradice one can only check the biGaussian assumption. If the biGaus-

sian assumption is valid, then the multiGaussian assumption is taken to be satisfied. 

The checking of the biGaussian assumption is shown in Appendix 12.2. 

In the isotropic case the results do not indicate any violation of the biGaussian 
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assumption. In the anisotropic case, the hypothesis on the biGaussian is not strictly 

satisfied since the sernivnriogrMIS in Fi~ 67 and 68 indicate that the high valued 

data are more correlated than the low values. However, since the violation is not too 

severe, we do not rejeet the biGaussian hypothesis and assume that the anisotropic 

samples come from a multivariate standard normal distribution. 
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6 SINGLE-LEVEL WAVELET-BASED CONDI­

TIONAL SIMULATION 

In this Chapter we describe our first twu ..;onditional simulation algorithms that make 

use of wavelets. They are both Bingle-level conditional simulation algorithms and a.re 

named HSTh-I (using the Ha.nr basis) and DB2SIM (using the Db2 basis). In both 

algorithms, the oonditioning data and the values to be simulated in a study region 

am regarded as the scaling coefficients at the original scale 2°. HSIM and DB2SIM 

then make use of the location independence of wavelet and scaling spectra to simulate 

the wavelet and (or) scaling coefficients at the finest scale 21. The simulated values 

arc computed from the simulated scaling and wavelet coellicients using the iuversc 

discrete wavelet transform. Both algorithms are based on the assumptions that the 

underlying random function is second order stationary and that the sample is from 

a standard uonnal distributiou. Therefore, if the assumption of normality is not 

satisfied, the application of each algorithm needs to be preceded by the transformation 

of the conditioning data into st!Uidard nonnal scores before the modelling of the 

smnivariogram. The covariance model is then computed from the semivariogram 

model UBing C(h) = 1-g(h). The results in normal score space nre then transformed 

back into the attribute values after the conclUllion of ~h-; u.lgorithms. 

6.1 The Algorithm HSIM 

The algori~hm HSIM is a sequential single level wavelet-based conditional simulation 

algorithm based on Haar wavelets. The simulation at each location in the study 

region is carried ant in a window whose si~e is determined by the filter length with 

the movement on a random path. Since the Haar filters contain only two non-zero 
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coefficients, in the two-dimensional C(l.Se the size of the window is 2 x 2. At each 

location of the window the wa.velet coefficients at the finest scale 21 are simulated 

and the associo.ted scaling coefficient is computed in terrus of the simulated wavelet 

coefficients and the concJtionin~ va.lue(s) within the window. The simulated values in 

the window are obtained vio. the inverse discrete wavelet transform. The rl!a.'lon for 

starting the simulation at the finest scale is to llSSocintc the inverne rliscrete wavelet 

transform, the wavelet and scaling coefficients at the finer scale 21 with the data at 

the original scale 2°. 

6.1.1 Description of the Algorithm HSII\II 

The algorithm is carried out ns follows. Given a window of si~e 2 x 2 thn method 

proceeds by first determining the number of sample values and their locations within 

the window and then simulating the wavelet coefficients. If there nre l values, where 

l = 1, 2 or 3, within the window then wesimulate4-1 wavelet coefficients, compute the 

associated scaling coefficient and then calculate the values at the I<lmnining locations 

in the window. The algorithm is outlined as follows: 

Step 1: Given a sample that is normally distributed with mean 0 and variance I 

and with covariance function C(h), we compute each Ha.nr wavelet spectrum 

according to equations {114)-{116) for j = 1. 

Step 2: Generate a random path visiting all grid nodes in the study region exactly 

once. 

Step 3: Move to the first grid node. 

Step 4: Construct a window of size 2 x 2 containing the node. If the node does not 

lie on the right or on the bottom boundary of the study region, it is located a.t 
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row l and column 1 of the window. If the node lies on the right boundary, it is 

locaWd llt row 1 and colullUI i! or the window. If the node liC-'1 on the bottom 

boundary, the node is located at row 2 column l, and if the node lies on the 

right nnd bottom boundary, the node is located at row 2 and column 2 of the 

window. Denote the vulucs, Which are regarded as the scaling coefficients at 

scale 2°, at these locations by a[u, v], with u, v = 0, I. If the window does not 

contain nny sample locatioas or previously simulated nodes, or if all nodes in 

the window have already been a<;Signed values, move to the next node. If the 

window contains I, where I= 1,2 or 3, known valucs then denote the three 

wavelet coefficients and the scaling coclficienl at scale 21 assodated with the 

window by dl,d~,di and c1 respectively. Hence, each value in the window is 

expressed as a linear combination of the wa·;elet and scaling coef!icients via the 

inverse discrete wavelcl transform using equation (02). Here, in thccnse of Hoar 

wavelets, the system of linear equations is expressed as 

.5 .5 .5 .5 ,, n[O,O] 

.5 .5 -.5 -.5 ,, n[O, 1] ' (127) • 

.5 -.5 .5 -.5 dj n[1,0] 

.5 -.5 -.5 .5 dj a[ I, 1] 

Since the number of sample and previously simulated locations is I, where l = 

1,2 or 3 then, in (127), I values of a[.,.] are known. The remaining 4 -I 

nnknown values of a[.,.] are those lhat need to be simulated. By putting the 

known wlues a[.,.] into their assodated rows on ~he right hand sidQ of (127), 

two syslcms of linear equations are extracted. The firsl system consists of I 

equations that exprll!S the known va\nes in the window in terms of one scaling 

and three wavelet coefficients c1 and df.k~l.2W This system is used to simulate 

82 



the scaling ll.lld wavelet coefficients c1 and 4.l<•l.2,3. The second system consists 

of 4 - l linear equations that ClCpt!'SS the unlwown values to be simulated in 

terms of c1 and d);,kDJ,I,J' This system is used to compute the simulated values 

in the window after c1 a.nd d!p.!,I,J are obtained using the fust system. Fbr 

example, if l = 2 and a[O, 0] and a\1, 1] are known then, according to locations or 

these nodes in the window, from system (127) the first a.nd the second li,Yllterns 

~' 

.5c1 + .5dt + .5d~ + .5d~ n\0,0] 

.5c1 - .5dJ- .5d~ + .5d~ a\1,1] (128) 

,,, 

.5c1 + .5dl- .5~ - .5dj a[0,1] 

.5c1 - .5dl + .5~ - .5dj a[1,0]. (129) 

Step 5: Use the first system to obtain the wavelet coefficients dh-1,2,3 a.nd the scal­

ing coefficient c1• Since this system consists or /linear equations in 4 unknowns, 

we simulate 4- / wavelet coeJlcients d1, k = 1, 2,3 from N(O, Ck) as defined in 

(111) to reduce the first system to a system of/ equations in/ unknowns. The 

reduction is achieved by substituting the simulated wavelet coefficients into their 

associated locations in the first system and rearranging these equations. The 

scaling coefficient c1 and the remaining (l-1) wavelet coefficients are obtained 

by solving the sy~l.cm. ![ l = I, then nil three wavelet coclficients are simulated 

and the scaling coefficient cl is computed in terms of the simulated wavelet 

coefficients a.nd the conditioning value. If I = 3, only one wavelet coefficient 

is simulated. The scaling coefficient and the other two wavelet coefficients are 
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computed in terms of the simulated wavelet coefficient and the conditioning 

values. Since there are three types of wavelet coefficients but only one is drawn, 

the wavelet cocllicient which needs to be simulated is chosen at random. If l = 2 

as in the case of the given example, because the system (128) has 2linear equa­

tions in 4 unknowns, two wavelet coefficients are simulated. ThesC two wavelet 

coefficients are chosen so that the coefficient matrix of the reduced system is 

not singular. For tills particular example dJ and d~ are drawn and by substitut­

ing the values of the two simulated coefficients into (128} and rearranging the 

equations, the system (128) becomes 

.5e1 +.54 

. 5c1
- .54 

a[O,O)- .5dJ- .5d~ 

n[l, I)+ .5dl- .5d~ . (130) 

The coefficients c1 and d~ then are computed by solving the reduced system 

(130). 

Step 6: Substitu(.e the values of c1 and 4.<-!,2,3 into the second syst.em to compute 

the 4 - I simulated values nt unknown locations. In the above example, this 

sl.ep is carried out by substituting the values c1 ,dJ,4 and <f5 into system (129) 

to compute the simulated values a[O, 1[ and n[l,O]. 

Step 7: Add the newly simulated values to the conditioning values and the window 

moves to next location in the random path 

Step 8: Repeat steps 4-7 until the window reaches the end of the path. 

Step 9: Go back to step 3 until all locations have been simulated. 
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6.1.2 Applications of HSIM 

T he performance of HSIM is tested for isotropic and anisotropic data by using the 

samples pH1 OOIRn and B641Rn respectively. T he result of the simulation is visually 

assessed by comparing the mosaic plots of the resulting realisations with the mosaic 

plots of the exhaustive data sets pHsoiln and Berean. In each case the mosaic plots 

of the realisations gi ve some sharp-edged patches as shown in the middle column of 

Figure 22. This ar tefact is more pronounced in the anisotropic case. Spatial continuity 

is assessed by comparing the experimental semivariog1:'ams of the realisations with 

the associated semivariogram models. For the isotropic sample, the experimental 

sernivati ogram for the realisation is similar to the semivariogram model, however, 

with a shorter range. For the anisotropic sample, the semivruiogram model is not 

adequately reproduced. 
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Figure 22: Reference images (left), realisations and associated expe1imental sernivar-

iograms (middle and right). 
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Our conjecture is that the artefact found in the mosaic maps IU!d the poor repro­

duction of the spatial continuity in HSIM arc caused by the nature of the Haar fllters. 

Since the Haar filters contain only two non-zero coefficients, the siw of the window 

may simply be too small to capture the spatial continuity. Excluding the proviollllly 

simulated values, the window usually contaillll at most one conditioning value. In 

addition, in HSIM, the covari!Ulce model is only used to compute the variances of 

wavelet coefficients (the wavelet spectra). Any correlation betw!!Cll the locations of 

the simulated values and data locations in the neighbourhood is ignored. The result is 

that the simulated values in a window USUitlly depend only on one conditioning valuH 

in this window. If tills value is large, the simulated values are large and conversely 

small values typically !cud to small simulated values. Therefore, discontinuity and 

patchiness arc produced when the window moV!!S from a high value location to a low 

value location. 

As the window of size 2 x 2 docs not contain enough data to fully capture the 

spatial continuity, we have attempted to expand the window size to a multiple of the 

Haar filter length, for example 4 x 4, 6 x 6, 8 x 8 and so on, to include more nodes. 

However, because of the discontinuity of Hnnr wavelets, tills attempt increases the 

computational effort but the outcome of Um simulation is similar to that in the cn..~e 

the window of size 2 x 2. Therefore, we deduce that the result of single level wavelet­

based conditional simulation can only be improved if a different wnvclet h!l!!is is used 

or the wavelet method is used in combination with other methods. 

6.2 The Algorithm DB2SIM 

In order to overcome the problem with HSIM detailed in Section 6.1, we moved to 

develop the algorithm ca.lled DI32SIM (Tran eta!, 2001). In DI32SIM, the Hnar bll.'lis 
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is rcpla.ccd by the Db2 basis and the location independence of the scaling spectrum 

and the wavelet spectrum is used in combination with kriging to capture the spatial 

continuity. The simulation is again =icd out sequentially in a window moving along 

a random path. 

Although the Db2 filters contain four non-r.ero coefficients, the size of the window 

in this algorithm is not determined bru:cd on the filter length. We have attempted 

to use a window of sir.e 4 x 4, however, bec!.luse of • lm uature of the Db2 lilters this 

attempt has led to problems through ill-conditioning of the rC'lulting mntrice:;. In 

addition, if the wavelet method is uscd alene, the Bpntial continuity is still not fully 

captured since the size of Lhe window is still small compared with the study region. 

Therefore, in DB281M thesizeoftlm window used is 2x2 as in the case of the Hna.r 

wavelets. In cad1 window the a.ssociated wavelet and scaliag coefficients at the finest 

scale 21 nrc simulated and the simulated values nrc computed via the inverse discrete 

wavelet transform. 'Ib capture the spatial continuity, the ordinary kriging C'ltimates 

using the sample (assume that the data follow a Btandnrd normal distribution) nrc 

used as the training image for the simulation. 

6.2.1 Description of the Algorithm DB2SIM 

The conditional simulation algoritlun DB2SIM comprises thtl following steps. 

Step 1: Given a sample from a standard normal random function (if this condition 

is not met then the sample needs to be transformed into normal score space), 

obtain the covariance function C(h) from the semlvariogrrun model via the 

exprffillion g(h) e=C{O)-C(h) and compute the scaling and wavelet ~pectrn at 

the !lnest scale 21 lllling equations (113)-(116) for j = l. 

Step 2: Compnte the kriging estimatl':s at all unestirnnted nodes from the sample 

87 



using the same semivariogram model. That ill, if the conditioning data follow a 

standard normal distribution then the kriging estimates are obtained using the 

da.ta and thesemivariogrnrn model fitted to the experimental semiva.riogram for 

the data. If the crmditioning data do not follow a standard normal distribu­

tion then the kriging estimates are obtained using the normal scores and the 

semivariogram model fitted to the experimental scmiva.riogram fo"l: the normal 

scores. 

Step 3: Generate a random path visiting each grid node in the study region exactly 

once. 

Step 4: Move to the first grid node on the path. 

Step 5: Construct a window of size 2 x 2 containing the node. The location of the 

node in the window is determined in the same way as for HSIM. Denote the 

va.\ues nt these nodes by a[u, v], with u, v = 0, 1. If allloca.tious in the window 

arc lrnown, move to the next location on the path. If the window contains 

unestimated values then the location to be simulated is the first Ullestimated 

location in the window acoordir.g to row-nsoonding order. The kriging estimates 

are assigned to the other I, where I= 0,1,2 or 3 unknown locations in the 

window so that the node whose value to be simulated is the only unknown 

location in the window. Each value a[u,vJ in the window can be expressed as 

a linear combination nf scaling and wavelet coefficient-s via the inverse discrete 

waVI)\ct transform in equation (92). Here, for Db2 wavelets, because of the edge 

effect each value in the window is expr=ed in terrus of 16 wavelet and scaling 
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coefficients by 

" " a[u,v] 2: :£ h[u- 2m]h[v- 2n]c[m, n] 
m~-ln~-1 

" " + L L g[u- 2m)h[v- 2n.]d1[m, n) 
m=-ln=-1 

" " + L L h[u- 2m)g[v- 2n]d2[m, n) 

" " + L L g[u-2k)g[v-2n]dJ[k,n). (131) 
l~-\nc-1 

Since three vulues in the window are known, by putting Lhcse values into (131), 

two SY!Items of linear equations are extracted. The fust SY!Item consists of 

tlm~e linear equations that express the known values in terms of 16 scaling and 

wavelet coefficients c(m,n] and dk[m,n), where m,n = -1,0 and k = 1,2,3. 

These three equations are uscd to simulate and then to compute the scaling 

and wavelet coefficients c[.,.] a""\d dk[.,.J. The second SY!Item consists of one 

linear equation that expresses the unknown value in terms of c[., .) and d~:[., .]. 

This eqnation is used to compute the unknown value after all 16 coefficients 

c[., .] and dk[., .) are obtained. 

Step 6: Simulate 13 scaling and wavelet coefficients of c[.,.) and dk[.,.),k'" 1,2,3 

in the first system from the distributions described in (111) and (112). Since 

there are three equations in 16 unknowns, 13 coefficients arc simulated and the 

other three are calculated in terms of the known values and simulated ooeffi-

dents. The three coefficients, which need to be calculated, are selected so that 

the matrix of the filter coefficients corresponding to thesg coefficients Is not iU­

conditioning or singular. For !lXample, if the three coefficients to be calculated 

are c[-1,-l),dJ[O,O] and di[0,-1], and K11 i = 1,2,3 are the sums computed 
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by substituting the values of the 13 simulated coc!ficienl:s into their correspoad­

io.g locations in each equation of system (131), then by rearranging the three 

equations we obtain a system of three linear equations in three unknowns 

h[u + 2]h[v + 2]c[-l, -1] + g[u]h[vjd![O, Dj + h[uJgfv + 2]d:![D, -1] = a[u, vJ - K;. 

(132) 

Hence, the three coefficients c[-1,-l],d![D,O] and a':i[0,-1] are obtained by 

solving system (132). As the krit,>ing estimates implicitly carry the spatial cor­

relation of the simulated process, the simulated wavelet and scaling coefficients, 

which honour the kriging estimates, also implicitly capture this spatial corre­

lation. Having obtained all ll3 wavelet and scaling coefficients, the unlmown 

value in the window is computed by substituting these coefficients into the sec­

ond system. The kriging estimates are discarded before the next location is 

simulated. 

Stop 7: Move to the next location in the random path and repeat steps 5 and 6 

until all locations have been simulated. 

6.2.2 Applications of DB2SIM 

Four samples are used to assess the performance of DB2SIM, pH lOOn and pHJOO!Rn 

for the isotropic case and B64n and B641Rn for the anisotropic case. The mosaic 

plots of the realisations from the four samples together with the associated semi­

variograms and the quantile-quantile plots of the realisations agalnst the associated 

samples are shown in Figure 23. In each case, DB2SIM approximately reproduces the 

histograms and the scmivariogram models of the associated samples, regardless of the 

sampling method, even though the minimum of each realisation is slightly lower tha.n 
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Figure 23: Mosaic plots of typical realisations simulated v1a DB2SIM, Q-Q plots, 

experimental sernivariog;rams and mosaic plots of associated exhaustive data sets and 

pos t plols of corresponding samples. 
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the corresponding sample minimum aod the maximum is higher than the correspond­

ing sample maximum. It cao be seen from the mosaic plots that the rca.lisatlollS have 

captured the features of the corresponding exhaustive data set pHsoi/n and Bereo.n 

and the associated samples. No artefacts are found in the mosaic plots. 

Even though DB2SIM reproduces the sample histogram Md the semivariogram 

model with any spatial struclum, it has to millie use of tbe kriging estimates to do 

so. Therefore, the r!'Sult of the algorithm will depend on the parameters used to 

obtain the kriging estimates. In addition with the estimation of the training image, 

although carried out only once, DB2SIM requires the solving of one systcnJ of three 

linear equations with 16 unknowns for each simulated value. Because of this, the 

computational efficiency of using the wavelet method is diminished. 

6.3 Comments on HSIM and DB2SIM 

Based on the performance assessment in this Chapter, both HSIM and DB2SIM 

possess some drawbacks. In HSIM, the simulated rea.\i.satiollll approximately repro­

duce thCl associated sample histogram and somivariogram model in the isotropic case 

but fail to adequately reproduce the semivariogm.m model in the anisotropic case. 

In addition, artefacts may be found in the mosaic plots of the realisations. For 

DB2SIM, even though the realisations reproduce the sample histogram and semivar­

iogram model regardless of spatial structure and sampling method, this achievement 

comes with some loss of the speed advantage of using the wavelet method. In ad­

dition, over-conditioning by using the kriging estimates twice reduces the differences 

among realisations. 

Despite the shortcomings ofHSIM and DB2SIM, the re:m\ts from these algorithms 

indicate that one can USCl the wavelet metbod to obtain reasonable conditional simn-
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lations. Fbr both algorithms the drawbacks nrc caused by the fact that the window 

used to r.a.pl;urc the conditioning data is small compnro:! with the study region. If 

the window Cllll contain more iuformntion from the study region, the problems cnn 

be overcome. However, due to the lm:alisation property of wavelets, increasing the 

window size is not a feasible solution. 

Therefore, instca..: 1creasing the window size so that it is lnrge enough compared 

with the study region one can compress the study region so that it is small enough 

compared with the wiadow. Then the window can capture spatial continuity of tho 

study region. In order to do so, tho discrete wavelet transform must be applied 

several times. Hence, the simulation must start at some scale coarser than scale 21 

and the process of rcconstructiug the original scaling image is not carried out in just 

one level but via many levels. This approach is used in the multi-level wavelet-based 

conditional simulation algorithms in Chapter 7. 
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7 MULTI-LEVEL CONDITIONAL SIMULATION 

ALGORITHMS 

The Bingle level simulation algorithms using the WRVIliet bllSCS diSCU&'led in Chapter 

6 stnrt the simulation at scale 21, one level coarser thH.Il the originnl image. These al­

gorithrru; did not exploit the fact that the scaling ima.ge at the coarser scale, obtained 

via the discrete wavelet triUlllform, i.E a compression of the scaling image at the previ­

ous liner scale. On compmiSing tha study region, the discrete wavelet trnnsform also 

compresses the spatial continuity. Hence, if the discrete wavelet transform is applied 

several times, the study region and tha corresponding spatiaJ continuity in tills region 

will be compressed to a level from which the sille of the window, determined by the 

corresponding wavelet filter length, C£Ul capture the spatial continuity. 

Therefore, in order to improve the results and to save computational time, we ex­

plored the possibility of starting tile simulation at some scale coarser tha.n 21• Our two 

approaches for an effective a.nd efficient multi-levcl simulation algorithm are PWSIM 

and DWSIM both of which are detailed in this C!mpter. All of the assumptions a.nd 

preparation steps made in the case of single-level simulation algorithms remain ap­

plicable for these multi-love] algorithms. That is, PWSIM and DWSIM arc based on 

tlmassumptionll that the data are from a multivariate standard normal distribution 

and that the underlying random function is second-order stationary. If the IISSump­

tion of normality is not sutisfied, the normal score transformation is applied to the 

conditionh· c data bcfow modelling the semivariogram. 



7.1 The Algoritlun PWSIM 

Our multi·lcvel wavelet-based conditional simulation a.lgoritlun PWSIM is obtained 

by post-conditioning a multi-level nonconditional simulation algorithm. The noncon· 

ditional simulation method exploited here is that introduced by Zeldin and Spanos 

(1995). This method hM been applied in engineering context to simulate Gaussian 

stationary random functions. Zeldin and Spanos used it to simulate realisations of a. 

one-dimensional random function whose autocorrclation function is 

or of a two-dimensional random function whose autocorrelation function is of tho form 

_}<•• ·••l'+<••-"''' 
p(xt,x2,Yi,Jh)=e u 

where cr and w arc scalars. We shall denote this algorithm by WSIM. For two-

dimensional random functions, the wavelet bBSis used in WSIM can be either Haw: 

wavelets or Daubechics wavelets with up to three vanishing moments. This non-

conditional simulation algorithm starts the simulat.ion at some coarse scale then re-

cursively builds up the simulated realisations (at the ori!9nal scale) via tho inverse 

discrete wavelet transform. 

7.1.1 Description of the Algorithm PWSJM: 

The algorithm WSIM makes nsc of the fact that after each application of the discrcLc 

wavclet transform the si~c of a s~t of evenly-spaced discrete values is reduced, in one 

dimension by a factor of two and in two dimensions by a factor of four. Therefore, 

after the discrete wavelet transform hBS been applied a nwnber of times, at some 

coan;e scale the size of the scaling coefficient image is small. Consequently, the size 
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of the covariance matrix for the associated scaling coefficients is also small enough to 

be d!lCornpoocd into ll product or an upper l).jjd n lower triangular ID<J.trices, 

& the initial step, the covariance matrix K of the associated scaling coefficients 

at the scale 21 is decomposed into lower and upper trinngular matrices using the 

Choles~d decomposition (Gerald and Wheatley, 1994), that is 

J(e=LU 

L'r =U. 

Then the associated scaling coefficients arc simulated by setting 

(133) 

where w is a vector of random numbers drawn from a standard normal distribution. 

The wavelet coefficients at this oca.Ie arc simulated using the correlation between 

wavelet and scaling cocffi.cients at the sanm scale. In order to do so, each wavelet 

coeffident at scale 2; is expressed as a linear combination of scaling coefficicnt.s at 

the same scale plus a noise. In two-dimnnsiona! space, each wavelet coefficient of a 

stationary random function is simulated in terms of scaling coefficients at the same 

scale by 

d{/m,n] = L nick,,l>)d[m+k~,n+l2]+r{Ro(m,n) (134) 
~~he-; 

for k = I, 2, 3, i = 1, 2 ... where for each k the noise ~(m,n) is randomly drawn from 

a standard nonnal distribution and is statistically independent of d[., .), and since 

the covariance of two scaling and or wavelet coefficients at the same scale decreases in 

a.n inverse proportion with the difference of the indices of these coefficients (Va.nnucci 



and Corradi, 1997), we cl1oose i = M, the number of vanishing moments to save 

computational effort. Based on (134), each wavelet coefficient .f.Jm, m] is a linear 

combination of {2i + 1)2 scaling coefficients d(., .] centered at d[m, n) pliL'i a random 

noise. 

It can be shown, by multiplying both sides of equation (134) by d[m+ k"n+ /!], 

where k"/1 = -i, ... ,O, ... ,i and taking the CJc:pected value of each side, that the 

weights ut(k:.hl are the solutions of the system 

(135) 

By squaring both sides of equation (134) and taking the expected value of each side, 

the value n is computed by 

(136) 

Having simulated the wavelet coeiiicients associated with the scaling image at scale 

2i, the scaling image at the finer scale zH is reconstructed via the inverse discrete 

wavelet transform. The process is carried out recursively by computing the associated 

wavelet coefficients at scale 2i-l and applying the inverse discrete wavelet trnnsform 

to obtain the scaling coefficicuts at scale 2;-2 until the original scale is reached. 

Note that, since WSIM is based on the inver8c discrete wavelet trau.sform, the size 

of the simulated realisation must be a power of 2. 

The algorithm WSIM Is summarised in Figure 24 and an illustration for the sim· 

ulation of the wavelet coefficient d{[m, n] form = 2,n = 3 and i = 2 with the scaling 

image of size 8 x 8 is given iu Figure 25. Tim location of the wavelet coefficient di[2,3) 

is indicated by the shaded cell in Figure 25A. This coefficient will be simulated by a 

linear combination of 25 scaling coefficients (at the same scale) in the shaded cells in 
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-
Chnleski decumporitiun: Linear combinations of cl"+noin: ... d,l .. ,dt ... ~ .. 

IDWT2: Linear combinations of .,1"-1 +noise: 
.,~ ... , d~• .. l, oif'"·l, oJjto-1 

IDWI2: 

I 
Linaarcombinatiunsof ol"~+noiso: 

··~ 
d,l•>-'l, dt"'"~, ,W ... 3 

' 
rnwn, I Linear combinations of cl+noise: ,. d111 d111 ol;)l 

IDWT2: I ,. 

Figure 24: Summary of WSIJVL 

Figure 25B plus a noise. The weights of the linear combination are the solutions of 

system (135) and the standard deviation of the noise is computed via equation (136). 

Since the covariance of two scaling or wavelet coefficients is independent of the 

coefficient indices, each move from a coarse scale to the previous fmer scale involves 

the solving of the system (135) and equation (136) once for evmy k, that is, Lhr~ 

systems of {2i + 1)2 linear equations plus three cquatious. 

The computation of the v.1lights must be preceded by the computation of the 

covariance tables at the coru:scr scales. If the size of the study region to be simulated 
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Figure 25: A/. vVavelet coefficient to be simulated (shaded); T3/. Scaling coefficients 

used to simulate wavelet coefficient in A (shaded). 

is P x Q, the computation of the covariance tabl~ fm the coar·ser scales is initialised 

by computing l.hc covariance table at the original scale of size (2P + 1) x (2Q + 1 ). 

Then the <'Ovariauce table at ~cale 2i,j > 0 is computetl flow the covariance at the 

previous fin<'r scale 2r1 Upon movmg from one. seale to the uc.>..i coarse1 scale, the 

size of thf' covariance table reduces. In general, at scale 2i, j > 0 the size of the 

covariance table is 

The number of algebraic operations used to compute the covariance values for the 

coarser scales depends on the wavelet basis. In two dimensional space, according to 

formula (99), for wavelets with !vi vanishing moments, in order to compute each value 

in a covariance table at the coar·ser scale one needs to carry out 4 x (2M)4 multi-

plications ru1d (2M)·1 - 1 additions. Therefore, the higher the number of vanishing 

mornents, the more computat10n t ime is requrred. Detail on the computational effort 

will be given in Appendix 12.3. 
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We then condition the non-conditional simulated realisation obtained by WSlM by 

adding to each non-conditional simulated value z,(u) the error between the ordin!II)' 

kriging estimate zK(u) using the actual data and the ordinary kriging estimate z;K(u) 

using the simulated values at data locations, that is 

(137) 

Since the configuration between data locations as well as the covariance model is the 

same for the two kriging images, this step involves solving one kriging system for 

each simulated value. PWSIM is our final result, combining WSIM with the post 

conditioning described above. 

7.1.2 Case Study 1: Applications of PWSJM: to the hotropic Case 

Tho performance of PWSIM in the isotropic case was tested by npplying PWSIM to 

samples pHJOOn and pHJOOIRn, using each of tho Haw: and the Db2 bases. Since 

PWSIM requires that the size of the simulated map be a power of2, and since the size 

of tho study region in this cose is 61 x 61, the size of the region to be simulated was 

extended to a size of 64 x 64. By starting the simulation at scale 2~ with the initial 

scaling image of size 4 x4, for each wavelet basis an:l each sample 1000 nonconditional 

realisations were simulated. The dimensions of each simulated realisation were then 

trimmed to 61 x 61 before the application of ordinary kriging to condition the data. 

Based on the rant,rc of our semivnriogram models nnd the size of the study region, a 

search radius of 20 for the data with maximnm of 16 data is used in the !JStimation. 

The performance of the simulation, in general, is visualised by comparing the mo­

saic plots of three realisations, randomly selected from the sets of 1000 realisations 

from pH lOOn and pHlOOlRn Bimulated via each of the wavelet bases, with the mosaic 

plot of the data set plfsoiln and the post plots of the corresponding samples. The 
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spatial continuity reproduction is visualised by comparing the experimental semivar­

iograms of these realisations with the.Je~ivrtiogram models. The sample histogram 

reproduction is visualised via the quantilG-qU(I.tltile plots of the realisations against 

the corresponding samples. The mosaic plots for these realisations, together with the 

mosaic plot of pHsoiln ll.tld the post plots of pH100n and pH100IRn, are ahown in 

Figure 26. Realisations from pHJOCJn simulated using the Haar basis nnd the Db2 

basis are shown in co\umru; 1 and 2, respectively, while those from pHJOOIRn are 

shown in columns 3 and 4. 

The mosaic plots for the simulated realisations in Figure 26 indicate that, regard­

less of the wavelet basis used, the main features of the data set pHsoi/n and of the 

associated samples have been captured. At locations where pHsoiln and the samples 

have low values the simulated ro:mlisations also have low values. At locatioru; where 

pHsoiJn and the samples have high values the simulated realisations also have high 

values. No artefncts are seen in any of the mosaic plots for the realisations. 

Experimental semivariograms of these realisations in Figure 27 show that for both 

wavelet basE'S the semivariogram models of both samples are reproduced. The exper­

imental semivariograrns of the realisation.'l from sample pHJOCJn in columns 1 and 

2 and those for realisations from pHlOO!Rn in columns 3 and 4 of Figure 27 have 

captured the behaviour of the associated scmivariogram model. In particular, the 

scmivariogram of Realisation #2 from pHlOCJn, simulated using the Db2 ba.;is, in 

column 2 ftts the model very well. 

The sununary datistics and the quunti!G-quanlile plots in Figure 28 show that 

the histograms of the two samples arc approximately reproduced. The means and 

variances of the realisations arc close to those of pH100n and plflOOIRn. Fbr all real­

isations the extreme values fail outside the range of the corresponding samples. This 
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with three randomly selected realisations simulated via PWSIM. 
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Figure 27: Experimental semivariograms of the three randomly selected realisations 

from pH100n and pH100IRn simulated via PWSIM. 
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Summary Statistics 
pH10fhl. pHIOOIRn 

Sample Realisations Sample Reallntiont 
Hut DIU Hau Db2 

Slats 1 2 3 I 2 3 I 2 3 I 2 3 
Mun 0.1)4 0.18 0.04 0.01 0.02 .0.07 0.03 ·0.12 0.09 0.04 ·0.04 0.01 ·0.02 ·0.12 
Vu 1.02 1.04 1.10 1.01 1.10 l.l)(i 1.16 1.00 1.03 1.01 t.ro 0.99 0.97 0.119 
Max 2.:$4 3.60 3.42 3.59 4.19 3.41 3.39 2.62 4.03 3.48 3.52 HI 4.69 3.12 
Ql 0.72 0.87 0.77 0.69 0.71 0.61 0.78 0.50 0.77 0.73 0.64 0.65 0.61 0.54 
Mtd 0.05 0.18 0.05 0.00 0.01 .0.06 ·0.02 -0.18 0.05 0.00 -0.02 -O.ot -0.04 -0.16 
Ql .0.82 -0.56 -0.68 -0.69 .0.62 .0.81 .0.15 -0.85 0.61 -0.66 -0.71 -0.65 ..0.68 -0.79 
Min -1.96 .3.17 -3.32 ·3.16 -2.21 ·4.37 ·3.16 ·2.23 2.84 ·3.04 ·4.14 ·3.66 ·3.44 ·3.50 
Sktw 0.22 0.02 -O.oJ 0.17 0.26 0.1)4 0.15 0.30 0.21 0.13 -0.06 0.06 0.23 0.14 

Q-Q Plots 
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Figure 28: Summary statistics and Q-Q plots of three randomly selected realisations 

from pHlOOn and pHlOOIRn (simulated via PWSIM) against corresponding samples. 
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feature of the simulation a.lgorithm merely reflects the fad that Monte Carlo simula­

tion is used and no range restrictions are made. In fuct, in most cases a restriction to 

the range implied by the sample is avoided and to ensure that the extreme values of 

the rca.lisations fall outside the range. Except for those ri teal.isaGions from pHlOOn 

simulated using the Db2 hMis, which fluctuate about tbe sample skewness coefficient, 

the skewness coefficients of the other realisations are lower than the skewness coeffi­

cient of the associated sample. Compared with those in the case of the Haar basis, 

the realisations obtained via the Db2 basis have more low values. 

7.1.3 Case Study 2: Applications of PWSIM to the Anisotropic Case 

We now investigate the performance ofPWSIM in the case of the anisotropic samples 

B64n and B641Rn. By starting the simulation at scale 2t with the initial scaling 

images of size 4 X 4, for each sample and each wavelet bcsis 1000 realisatioiL'l of size 

64 x 64 were simulated and then trimmed io size 40 x 40. Ordinary kriging has been 

used in the postprocessing step with a search radius of 20 and the maximum num­

ber of 16 data used. Mosaic plots for three randomly selected realisations obtalned 

from each sample via each wavelet bcsis are shown in Figure 29 and the associated 

experimental semivariograms and quantile-quantile plots of the realisations agalnst 

the corresponding srunples are shown in Figures 30 and 31 respectively. 

The mooalc maps of the realisations in rows 2-4 of Figure 29 indicate that the 

rea.J.isations from B64n and B64IRn have captured all features and spatia.] structure 

of their corresponding samples and of the data set Bm-ean. For example, the lof:!ltion 

of high vnlues in the right top corner of the two samples and the exhaustive are seen 

in all realisations. For sample B64n, the mosaic maps of the realisations simulated via 

both wavelet bases are consistent with the sample. Locations of low vnlues associated 
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Figure 29: Mosaic plots of three randomly selected realisations from B64n and 

B641Rn simulated via PWSIM. 
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Figure 30: Sernivariograms of three randomly selected realisations from B64n and 

B64IRn simulated via PWSIM. 
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Semple 

Stats l 
Mean 0.19 0.18 
Var 1.03 1.03 
Mu 2.36 3.06 
Q3 0.91 0.87 
Mtd O.IJ 0.1$ 
Ql -0.42 -0.41 
Min -2.42 -2.96 
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0.97 0.97 0.9(i 1.08 0.9(i 1.02 0.91 1.07 1.36 l.ll 1.20 1.00 
3.00 3.06 3.64 3.41 3.20 2.t5 2.16 3.76 3.14 3.11 2.91 U1 
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Figure 31: Summary statistics and Q-Q plots of three randomly selected realisations 

from B64n and B64IRn (simulated via PWSIM) against corresponding samples. 

108 



with the banding, in the right middle and c!OS!l to the right bottom of the post plot of 

the sample are reproduced in the simulated realisations. The dark blue pixels indicate 

that the low extreme values in of the realisations are lower than the corresponding 

sample minimum and the piuk pbi:els show that the high extreme values are higher 

than the corresponiling snmple maximum. For snmple B641Rn, the banding in the 

direction N55•W seen in the mosaic map of the exhaustive data set is reproduced 

consistently with the snmple. 

The experimental semivnriograms of the realisations in Figme 30 show that the 

semivnriogram models of both samples are reproduced regardless of the wavelet ba­

sis. The sill values in the direction of maximum continuity N55°W and minimum 

continuity N35°E are clearly distinguished in the sernivariogra.Illll of the realisations. 

These semivariograms are also close to the l!llsociated semi=iogra.m models. 

The summary statistics and the quantiiP.-quantile plots in Figure 31 indicate that 

the histograms of B64n and B64IRn are approximately reproduced. The mearu; and 

variances of the realisations are dose to the associated sample means and variances. 

The skewness oocliicients of the realisations are also close to those of the samples, 

albeit with some fluctuation. Similar to the cl!lle oftlm isotropic samples, as a feature 

of the simulation, the minima of the realisations are lower than the corresponding 

sample minimum and the maxima of the realisations are higher than the corresponding 

sample maximum. 

7.1.4 General Comments on PWSIM 

Throughout the two case studies, we can see that PWSIM performs well in both 

isotropic and anisotropic cl!lles. Regardless of the wavelet basis and the sampling 

method, realisations obtained via PWSIM capture the spatial Btructure of the asso-
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dated sample. The associated sample histograms nrc also reproduced. However, it 

should be noted that the result of the simulation depeud:! on the kriging parame­

ters in the postproCCS!ling step. In addition, since PWSIM requires solving as many 

kl:iging systems as the number of unknown locations to condition the data, it is not 

computationally efficient. 
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7.2 The Direct Multi-level Wavelet-Based Conditional Sim­

ulation Algorithm DWSIM 

Th avoid the impact of user-defined parameters and to improve the computational 

efficiency of our wavelet simulation, we have proceeded to develop our direct wavelet­

based conditional simulation algorithm DWSIM. 

7.2.1 Description of the Algorithm DWSTh1 

In general, our direct multi-level wa.velet-based conditional simulation algorithm DWSIM 

consists of two main sta.goo, Ute estimation ~tage and tile ~k timuiation stage, each 

of which is carried out in a moving window. 

The estimation stage uses deterministic wavelet analysis, in particular the two­

dimensional discrete wavelet transform, to recursively compute conditioning values 

at the coarser scale 2i,j > 0 from the conditioning values at the original scale 2°. 

The buck simulation stage liJ.!I.ke"; ru;e of stoci•astic wavelet analysis in which the 

scaling coefficients are regarded as correlated random variables. As a consequence, 

the covariance of pairs of scaling coefficients can be used to simulate unknown scaling 

coefficients from the already known coefficients. 

The estimation stage is based on formula (93) which indicates that the scaling 

coefficients nt:e computed by means of a moving window whose size equa.ls the shm 

of the aswciatcd wavelet filter. This window moves on every second row and column 

index: in ascending order on the scaling image at scale 2;. At each stopping location, 

the scaling coefficient at the coarser scale 2i+1 sssociatcd with the window is equal 

to twice the weighted average of the valueg within the window. If the filter length is 

equal to two, there is no overlap in the movement of the window; if the filter length is 

larger than two, the succeeding window will overlap the previoUB one from the right 
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and the bottom 2M ~ 2 grid nodes. 

13y imitating the discrete wavelet transform, the estimation of the conditioning 

values at the coarse scale 2Hl ,j 2: 0 is also carried out in a window moving in the 

Bame manner. However, since only values at sa.mpl!.l locatiollll arc known, not all 

values in the window at scale 2; are known. In many cases, the window contains no 

known values. Thcrclorc, if the window contains known values, the associated scaling 

coefficient at the coarser level 2i+l is set equal to twice the weighted average of the 

.bwwn values within the window. If the window contains no data, the associated 

scaling coefficient ol tim coarser scale is left unestimatcd. Since the two-dimensional 

discrete wavelet transform compresses the scaling image by a factor of 4, at some 

coarne scale, the values at all grid nodes of the associated scaling image are knowu. 

The estimation stage is completed and tWs scaling image is used liS the initial scaling 

image for the back simulation stage. 

In the back simulation stage, the scaling image at the finer scale is recoru;tructed 

from the scnling image at the next coarser sca.le. Since the size of the scnli.ng image 

at the coa.rse scale zi+1 equals one quarter of that of the scaling image at the finer 

scale 2;, the reoonstruction stage has t.o guarantee that the size of the scaling image 

at the finer scale equals four times tbe sire of the scaling image at the coa.rsc scale. 

In order to do so, DWSIM makes use of the scaling coefficients and the covariance 

of the scaling coclll.cients at the same scale as well as at two consecutive scales. The 

expansion is also carried out by mearu; of non-overlapping windows of size 2 x 2. In 

the exparu;ion, each unknown value in the window moving on the scaling image at 

the finer scale 2i is expressed as a linear combination of the scaling coefficients a.t the 

coarser scale z.H1 plus a. normnlly distributed random noise. The weights of the linear 

combination and the standard deviation of the noise are determined in such a wny 
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that the correlation among the scaling coclllcients at tho coarse scale 2i+1 and the 

correlation between the scaling coefficients at scale 2; and scale 2i+1 are maintained. 

The wavelet coefficients nrc ignored since they contain very little information of the 

scaling image at the previous scale. 

The estimation and back simulation stages are detailed in the following Sections in 

which the method of obtaining the conditioning values at the coarse scales is applied 

for Hoar wavelets and then generalisOO to Daubechies wavelets with M vanishing 

moments. The back simulation stage is the same for all wavelet bll.'lcs, 

Estimation Stage for Hnnr Wavelets 

Let A £;;1R.2 be the study region of size P x Q where P = zm• and Q = zn• with 

m 1, n1 = 1, 2, 3 ... then at scale zi+l, the size oft he scaling image is (Pj')}+1) x (Qj2i+'J 

where j = 0, 1, ... , min(m~o n,). The estimation stage is preceded by computing the 

covariance tables for the coarser scales 2; ,j > 0. The computational effort for the 

computation of the covariance tables will be discussed in Appendix 12.3. 

For Haar wavelets, since the flltcrs hava only two non-zero coefficients, the es­

timation of the conditioning values at scale ')}+1 ,j ;:>: 0 is carried out by means -r 

non-overlapping windows of size 2 x 2. Each window contaius four values denoted !•y 

d[2m +u, 2n +v] where u,v = 0,1 and 0 S: m < Pj2i+1,0::; n < Q/2i+1• 

According to formula (93) and since for Haar wavelets the values of tha lowpass 

filter h ore defined by 

{ 
12/2 

hjn] = 
0 

n = 0, I 

othcrwi~e 

the scaling coefficient d+1jm, n] at the coarser scale 2H1 is equal to twica the averag.: 

of the scaling coefficients d[2m + u, 2n + v], t<,v = 0, 1 at the finer scale. For th•s 
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reason, each scaling cocllicieut at the coarser scale is set equal to twice the average 

of the known values within tho associated window at the previous finer scale. When 

moving from the original scale to the next conrs& scale, n random noise, drawn from 

a standard normal d..i.'ltribution and independent of (m, n), is added to the estimated 

scaling coefficient c1[., .]. The purpose of adding this noise is to avoid uniqueness in 

the estimation in order to improll(! the variability of the simulation. Once all scaling 

coefficients IISSOciated with the windows that contain conditioning data have been 

estimated, the variance of the newly estimated conditioning values is computed. If 

this vn.rinnce is different from the variance of thCl associated scaling image (rend from 

the precomputed covariance table), the estimated conditioning values for each coarse 

scale are re-scaled by a factor f, where 
,--c"---cc--~~~­

varian~e of the associated scaling image 
I ~ tl:m:,i;,:,:,:,c,;,o,ih:,:ffio,o,:m:,;,"':;c:oo:,:,~,c"c,c,"1,:,c::mc1c,cffi:· {138) 

so that their vnrinncCl is equal to the variance of the associated scaling image before 

moving to the next coarser scale. 

The process is illustrated in Figure 32 for the case of an original image of size 

8 x 8. In Figure 32Al the sample locatioiJS nrc indicated by dots and the windows 

that contain conditioning values are shaded. After the first estimation, four locations 

that have estimated conditioning values at scale 21 are shown in Figure 32A2. Then 

the windows that C<JII(!r these locations are indicated by thCl shaded areas in Figure 

32Bl. After the two-dimensional discrete wnvclc~ transform has been applied one 

more time, the image with all of grid locations estimated is obtained as shown in 

Figure 3282. In the case of Haar wavelets, since the filter lcngl.h is equal to two 

and the dimensions of the s~udy regions are n power of two, there is uo edge clfect. 

The estimated scaling image in which the values at all grid nodes nrc known together 

with all intcrmadiate conditioning values obtained in the estimation stage arc used 
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to simulate the original image in the back simulation stage. 

A1. 

B1 . 

0 

2 
3 
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oGGJ 
1~ 

r? 

Figure 32: illustration of estimation stage in the Haar basis case. 

Estimation Stage for Daubechies wavelets 

l-or DauhC'cbie5 wavelets with 2M non-zero cocftirtcnts. the cst.imnl ion st ·tgc is 

carried out by means of overlapping windows of size (2M) x (2111). A window, whose 

values arc denoted by d[2m + u, 2n + v] where n, v = 0, 1, ... , 2M - 1 and 0 ~ 

m < f'j2i+\ 0 ~ n. < Qj2i+l , starts only at. even indices and moves across the 

finer scaling image in row and column ascending order ro search for data. At each 

~toppmg location, the scaling coefficient &+ 1 [ 771. n] associ at e<.l wi t.lt the win dow is 

esti1nated by twice the weighted average of the known values in the window. A 

random noise drawn from a standard normal distribution is added to Lbe c->.stiruated 

scaling coefficient c1 [m, n] when moving from the original scale to the ue:>..'t coarser 

srale to unprove the variability of the simulation. In other words. let 

h' [u]h'[v] = { h[u]

0

h[·u] if 

if d[2rn + u, 2n + v] is unknown 

d[2nl + 11., 2n + v] IS known 
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then the sealing coeffideut associated with a window containing conditioning value(s) 

is e:ltimated by 

ciH[m "] = z::~o- 1 z::~o- 1 
h'[uJh'[v]d[2m + u, 2n + vJ X 2 R (l30] 

' "2M-1--2M-Ih'[ ]I'[ I + 
L.,u-0 L,u-0 U I V 

where R is drawn from N(O, 1} if j = 0 and R = 0.0 if otherwise ;;nd is independent 

of [m, n]. Due to the negative values of the lowpass filter coefficients, the sum 

2M-12M-I 

I; I; "WI•l 
u-o to=C 

in equation (139) cun take values vcr:y close to or equal to zero. In the case where 

the absolute value of the denomiuator in (139) is smaller than a predefined tolerance, 

the estimation in the associated window is modified by 

1. Computing the average of the known values in the window. 

2. Assigning the average to the locations io the window whose values are unknown. 

3. Computing the scaling coefficient &+1[m,n] using fonnula (93) then adding a 

random noise drawn from N(O, l) if j = 0. 

Theoretically, the estimation can be applied to Daubochies wavelets with M van-

ishing moments. However, the larger the sl~e of the window, the less accurate the 

above estimation becomes. In addition, as will be shown in Chapter 8, the higher the 

number of vanishing moments, the more computation is required in the simulation. 

Therefore, only the Ha.'lr and the Db2 wavelet bases arc used in DWSIM. 
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Similar to the case of the Haar wavelet basis, the estimated conditioning values 

at each coarse scale are also rescaled so that their variance is equal to the variance of 

associated scaling coefficients. 
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Figlli'e 33: Illustration of estimation stage in the case of Db2 wavelets. 

The estimation of the scaling coefficients used as conditioning values at scale 

2i , j > 0 for the Db2 wavelet basis is illustrated in Figure 33 for an original image of 

size 8 x 8. Unlike the case of the Haar basis, in the estimation of scaling coefficients 

at scale 2i , j > 0, for the Daubechies wavelet basis one has to take into account the 

edge effect. At the right and bottom boundaries, the scaling image at the finer scale 

117 



has to be extended two grid nodes further so that the window size is always equal to 

the filter length. In Figure 33Al sample locations at the original level j"" 0 arc indj, 

cated by dots and the windows that contain conditioning values arefiladed in Figure 

33A2. The locatiollS of the estimated conditioning values after the first application 

of the two-dimensional discrete wavelet transform and the associated windows that 

cover these locations are shown in Figure 3381 and Figure 3382, respectively. After 

applying the two.dimensionnl discrete wavelet trllilllform one more time, a scaling 

image with all grid locatioru; estimated is obtained as shown in Figure 330. 

The Back Simulation Stage 

In the back simulation stage, the scaling image at scale 2i,j;::: 0 is simulated by 

expll.llding the scaling image at the coarser scale :zi+l by a factor of 4. The exp!Uision 

mnkes use of the cova.rillllcc of scaling cocffici(l]]ts within the snme scale as well as 

the covariMce of scaling cocllicients across two consecutive scales. It is carried out 

by means of non-overlapping windows of size 2 x 2 in which each unknown Vll.lue is 

simulated in lcrms of the known scaling coefficients at the next coarser scale. The 

following Sections provide the formula for the expansion and the computation of the 

related clements used in the expansion. 

The expansion of the scaling image frotn one scale to the next finer scale is ac­

cornpftshed by expressing each unknown scnling coefficient in the moving window as 

a linear combination of scaling coefficients at the coarser level plus a random noise. 

The basis for the formula lies in the fact that, the scaling coefficient d+'[m, n] at 

aca.lc 2i+1 is a linear combination of the scaling coefficients d(2m + u,2n + v), where 

u,v = 1, 2, ... ,2M and M is the number of vanishing moments. Sinoo the coefficients 

d at scale zi are correlated, the coefficients d+l arc aiso correlated. The correlation 

ll8 



is not confined only to the coefUcients in the same scale, it also occurs among scaling 

coefficients at different scales. Because of the correlation, a scaling coefficient at one 

scale can be simulated from the coefUcients at another scale. 

'lb expand the whole scaling image at a coarser scale to the previOUB finer scale by 

a factor offour, each scaling coefficient ofthe scaling image { d+l} has to be expanded 

into four scaling coefficients of the previous finer scale 2i. 1b optimise the expansion, 

for a given scaling coefficient d+l[m, n] at location (m, n), it is necessary to identify 

four scaling coefficients at the finer scale 2i that have the strongest correlation with 

d+1[m, n). Then these four scaling coefficients are simulated in tenns of oi+1[m, nj. 

Proposition 7 For a given location (m, n) in the scaling image at scale 2Hl, there 

exists an associated 'Window of size 2 by 2 in the scaling image at scale 2i that contnill8 

four sco/ing coefficients denoted by d[2m + u,2n + vJ where u, v = 0,1 and 0 ::; m < 

Pj2i+l, 0 ::; n < Q/'2/+1 that have the slmngrut co~/ation Vlith d+1[m, n]. 

Proof. For Ha.nr wavelets, according to formula (93), only the four values d[2m+ 

u,2n+v], u, v = 0, 1 are used to computed+l[m,n]. Therefore the correlation between 

d+1[m, n] and eacl1 scaling coefUcient in the 2 x 2 window (2m+u, 2n+v), u, v = 0,1 

is stronger than the correlation between dH[m, n] and any scaling coefUcient that 

lies outside the window. 

For Db2 wavelets, using formula (93), the weights h[u]h[v] associated with &[2m+ 

u,2n + v], u, v = 0,1,2, 3 used to compute ci+l [m, nj in the linear combination are 

shown in Table 4. 

Since the weights h[u]h[v] associated with four values d[2m+u, 2n+v], u, v = 0, 1, 

defined by 

I![O]h[O] = .2333, 
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u\v 0 1 2 3 

0 0.2333 0.4040 0.1083 -O.Oii25 

1 0.4040 0.6998 0.1875 -0.1083 

2 0.1083 0.1875 0.0502 -0.0290 

3 -0.0625 -0.1083 -0.0290 0.0167 

Table 4; Weights used to compute e. scaling coefficient from scaling coefficients at 

previous finer scale. 

h[O]h[l] = .4040, 

h[l)li[Oj = .4040, 

li[l]h[l] = .6998, 

respectively, are larger than the rest of the weights, the scaling coefficients d[2m + 

u,2n + v], u, v = 0, 1 have stronger correlation with of+1[m, n] compared to other 

scaling coclficicots at scale 2i. • 

Because the correlation between of+l[m, n] and d[2m + u, 2n + vJ, u, v = 0, 1, 

is strangar than the correlation between &+1[m, n] and any other scaling coefficient 

outside the window, it is more efficient to simulate these scaling coefficients from the 

scaling coefficient ci+1[m, n] than to simulate nny other scaling coefficients outside the 

window from d+1[m, n]. In addition, to take into account the correlation between the 

scaling coefficients d and the scaling coefficients &+1 in the neighbourhood centred 

at d+l[m, nj, we propose a formula for simulating each or the scaling coefficient d in 
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the window by putting 

d[2m+u,'in+v]"' 

(140) 

In (140) R...,n[u, vj is a random number drawn from a standard normal distribution 

and by COill3truction is uncorre!ated with d+1; o!~}, are called the weighta; ;i+l[u, vJ 

is called the standard deviation of the noise and the index i 2': 1 in the summation is 

called the radius of the estimation. It can be seen from (140) that each d is a linear 

combination of (2i + l)~ scaling coefficients centered at d+l[m, n]. 

Unlike in the case of WSIM, where wavelet coefficienta are computed in terms 

of the scaling coefficienta at the same scale, here we compnte the scaling ooefficienta 

directly in terms of the scaling coefficients at the coarser scale and so avoid the use 

of wavelet coefficients completely. By propcrly defining the weights and the standard 

deviation of the noise, simulated realisatiollll will reproduce the global statistics of 

the sample. 

Defining the Value of the Estimation Radius From equation (140) it can 

be seen that the number of scaling coefficients centred at d+1[m,n] is determined 

by the estimation rad.ins i. Hence, it is necessary to define an appropriate value for 

i to avoid unnecessary computation and to ellllure that no important information 

is ignored. According to Vannucci and Corradi (1997) the covariance between two 

scaling coefficients at two consecutive scales d+1[p, q] and d[k,J] vanishes when 

jk-2pj>2M-lor jl-2qj>'2M-l (141) 

where M is the number of va.nishing moments. 

In our case, we focns on the covariance between the scaling coefficienta in the 
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window d[2m + u, 2n + v] and the scaling cocllicients d+'[m ± i, n ± i] centered at 

d+1[m,n]. 

By letting k =2m+ u,p = m ±i,l = 2r. + v and q = n ± i, we have from (141) 

j2m+u- 2(m±i)] >2M- 1 or j2n+v- 2(n±i)j >2M -1. (142) 

Since u, v = 0, 1, the left inequation in (142) gives 

u+2i > 2M-loru-2i<l-2M 

' > 
l+u 1-u 

M--
2
-ori>M--

2
-. 

Similw:ly, the right inequation in (142) can be simplified a.s 

. l+v 1-v 
t > M--

2
- ori > M --

2
-. 

(143) 

(144) 

From (143) and (144) for a.ll u, v the corrcla.tion between d[2m + u,2n + v] and 

d+']m±i, n±i] vanishes when i > M. Therefore, only the sca.ling coefficients d+1 jm± 

M, n ± M] need to he included in equation (140). That is, i is equal to M. This 

choice of i wa.s also verified ~ISing trial a.nd error in the ca.se of the Haar wavelets in 

'Iran et a! (2002a). 

Since the covariance between two grid nodes of the scaling image at scale 2i+' is 

read from a precomputed covariance table, to ensure that the value is listed in the 

table, the index i must also not exceed S.,/2 where 

Computation of the Weights The procesE of computing the weights a!~}, in 

this part will ensnre that the simulated realisations at the original level preserve the 

spatial correlation of the initial scaling image estimated from the sample. 
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In order to determine the weights we fust multiply equation (140) by d+l[m + 

k1, n +h), where k1, 11 = -i, ... , 0, ... , i, to have a system of (2i + 1]2 equations 

d[2m+u,2n+v]d+l[m+ k1,n+ 11] 

I 

d+l[m+k!,n+ll] :E ci~l,[u,v]d+l[m+k2,n+'.] 

The correlation of the scaling coefficients d+l with the coefficients to be simulated 

d[2m + u, 2n + v[ is taken into account by taking the expected values for both sides 

of the above equations. Hence, the covarinnces between the scaling coefficient to be 

simulated at the finer scale 2; and the scaling coefficients at the coa.rne scale PH are 

related by 

,, 
(m+k,,2m+u),(n+lo ,2nH) 

E Lt_
1 

ci~},[u, v]dH[m + k1, n + h]d+1[m + ~. n + 12]} 

+E{-f+1[u,v]d+l[m+ k1,n +11]Rm,n[u,v]} (145) 

Since Rm,n[u, 11) and d+l[., .] are uncorrelated, the second term on the right baud side 

of system (145) equals zero. Therefore, from (145) we have a system of (2i+ 1)2 linear 

equations 

(146) 

whore ti1!~ , .. J 1 , ~· } denotes the covariance of scaling coefficients at scale 
,,

0
,m,", nT.,,n.,,, 

2i+1• ThUll the weights d.:},[u, v[ are the solution of system (146). 

Usiug matrix notation, system {146) can be written as 

Ba=h. (147) 
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with 

a= [d~},[u,vJ]T 

where T denotes the matrix transpose, and t:.. is the vector 

Computation of the Standard Deviation The standru:d deviation of the 

simulated scaling image at scale 2>,j:;: 0 is reproduced by suitably defining the 

standru:d deviation li+l[u,v) ofthc random noise. This standard deviation is com-

puted by cnlculating the standard deviation of the simulated values in the window 

&[2m+ u, 2n + v). By squaring both sides of (140), we have 

[d[2m + u, 2n + v]]
2 

= Lt_; «';],[u, vjd+l[m + k2, n + 12) + --,J+I[u, v)R,..,.[u;v)] 

2 

(148) 

and as R,..,,,.[u, v) and ci+1 are uncorrelated, by taking the expected values for both 

sides equation (148) becomes 

E {&[2m+ u, 2n +vi} 2 E{,t_
1 

cJ..;,:,[u,vJd+1[m+ lv.,n + h]} 2 

+E {-fH[u, v)R.n,,.[u, vi} 2 (149) 

Since R,,,.[u, v) are drawn from the standard normal distribution 

E(R[u,v]}2 = 1 
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we have that 

P&m+u,2m+u),(2n+o,2n+v) 

+ [;'H[u, v]j 2 
(150) 

The value IJ{.J in the len hand side of equation (150) is the standard deviation of the 

scaling coefficients at scn!e 2i. 

In matrix fonn, equation (150) is rewritten as 

Hence the standard deviation 1'J+I(u, vJ is determined by 

"I J r u, vJ = !3(2m+u,2m+t>),(2n+v,2n+v) c;TBa. (151) 

Because the configuration of locations of scnling coeilicients on the left hand side 

of (l•lO) is independent oflocation (m, n) (see Proposition 5), the covariance matrix B 

in (147) and (151) is also independent of (m, n). In addition, since the configuration 

between the window and the locations of scnling coefficients on the right hand side 

of (140) does not depend on (m, n), the vector 6. on the right hand side of (147) also 

does not depend on (m, n). Therefore, the weights rl~.J,[u, v] and the value -/+1[u,v] 

do not depend on the location of the window but only on (u, v), the location in the 

window of the sc:nling coefficient to be simulated. Therefore, for each pair (u,v), 

system (147) and equation (151) need to be solved once. In other words, to move 

from a coarse level to the previous finer level, system (147) and equation (151) are 

solved a total of four times. 

Since the value of index i depends on the. number of vanishing moments, the higher 

the number of vanishing moments the finitely supported mother wavelet basis has, 
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the larger the system {147) is. The system (147) contains nine linear equations with 

nine unknowns if the basis used is the Haar wavelets and (21\1 + 1)2 equations with 

(2JU + 1)2 unknowns for Db~I wavelets. The larger the system, the more computation 

1s required. Therefore, to save computation time, we limit the bases in DWSIM only 

tn the Ilaar wavelets and the Db2 wavelets. 

A1 . A2. 

,.,n 0 I l 3 4 l 6 7 

~- ·-l ·- -

91. 82. 

Figure 34: A1 &Bl/ Scaling images with windows containing values to be simulated: 

A2 & B2: locations of scaling coefficients used to simulate values in associated window. 

Figlll'e 34 gives an illustration of the simulation of four coefficients d [2m+u, 2n+vJ 

in the c:ase (m, n) = (1, 1) and (m. n) = (1, 2). Figures 34A1 and 34B1 show locations 

of the windows that rontain the coefficient d to he simulated (slladed regions). Loca­

tiollS of d in the window a.c;;sociated with ( u, v) = (0, 0); ( u, v) = (0, 1 ); ( u, v) = (1, 0) 

and (u,u) = ( l , 1) are denoted by 1,2,3 and 4, respectively. Figures 34A2 and 34B2 

show locations of the associated coefficients &+1 in the case i = 1. The elements of 
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matrix B in equation (147) are the covariance of the scaling coefficients whose loca-

tions are shaded. It is obvious that matrix B does not depend on (m , n); however, the 

covariances between coefficients cJ in the shaded windows in Figures 34Al and 34B1 

and the coefficients & + t in the shaded areas in Figures 34A2 and 34B2 arc functions 

of (11. a). 

\Vhcn the. window comes close to the bow1dary, in many cases some scaling coef-

ficicuts iu the coarser scale lie outside the scaling image. In this situation, the edge 

problem is handled by setting the associated weights equal to zero. Figures 35A2 and 

35B2 show lhe coefficients used in the linear combinations in equation (140) when 

( rn , n) = (0, 0) ::tnd ( m n) = (1 3) in the case i = 1 for a coarser scaling image of size 

·1 .-: 4. 

A1. A2. 

~:) 
1 • ) 6 1 

-
1 

I 

• 
J 

• , 

81. 82. 

Figure 35: A1&Bl/ Scaling images and windows containing values to lJc simulated. 

A2&B2/ Locations of scaling coefficients (shaded) used to simulate values in windows 

in Al& Bl. 
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Summary of thll Algorithm DWSTh1 After fitting a semivariogram model to 

the experimental semivariogrn.m of the data and computing the covariance model from 

the semivariogrn.m model using O(h) = 1 - g(h), the DWSIM algorithm is carried 

out by the following steps: 

1. For j = 0. Compute the covariance table for the covariance model. 

2. Compute the covariance table for scale 2i+1, Compute the coefficients (the 

weights and the standard deviation) in (140) associated with the scale. Store 

the coefficients. 

3. Extend the scaling image at scale 2i to the right and to the bottom (2M - 2) 

grid nodes. 

4. Colllltruct a window of size (2M) x (2M) whose first row and first column 

overlap the first row and the first column of the scaling image. If the window 

contains conditioning vnlue(s), estimate the associated conrlitioning value for 

the scale 2i+1 and store this value; if not move to the next window location, 

defined at every second row and column index in row-llScending: order. The 

process is continued until all grid node values of the scaling ima!((l at scale 2;+! 

associated with windows that contain known va.lue(s) at scuie '},i arc estimated. 

5. Rescale the estimated values so that the variance of the estimated values equal 

to the target variance. 

6. If all grid nodes at scale 2i+1 arc estimated, the scaling image at this scale is 

the initial scaling image, if NOT let j = j + I and go back to step (2). 

7. Letj=j-1. 
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B. In the scaling image at scale 2i, construct a window of size 2 x 2 whose first 

row and first column overlap the first row lllld the fust column of the scaling 

image. 

9. Calculate the unknown values in the window in teflrul of scaling coefficients at 

scale 2H1 via formula (140) using the weights computed in step 2. 

10. Move to the next window location and repeat step (9) until the values at all 

grid nodes in this scaling image is simulated. 

11. Repeat step {7)-{10) until j < 0. 

In the algorithm, the estimation stage includes steps (1)-(6). and the back simu­

latiou stage consists of steps (7)-(11). The Wllights used in the back simulation stage 

are computed in step (2) to avoid storing the covariance tables. 

In the case where the sample is not st!llldard normal, the dato. ho.ve to be trans­

formed into normal scores before the modelling of the spatial continuity. 'l'he results 

of the simulation then have to be back-transformed into the attribute values. The 

summary of the algoritlun DWSIM is shown in Figure 36. 
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Estimation stage Back simulation stage 

I Conditiuningvaluesat I Simulated realisation at I 
l-"":•,•:n:·o,·,~~l"'"''":"c'""-J"'-.,.._ the nrig:iual scale 2° 

~, 
~, 

{,,•IJ: Scaling 
coafficionts at all 

locations are estimated. 

I 

"-------._ .. 

Scalingimage {~} 

[.,I•IJ 
Initial scaling 

image. 

Figure 36: Summnry of DWSIM. 
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7.2.2 Case Study 3: Applications of DWSIM to Isotropic Samples 

The isotropic samples used to test the performance of DWSIM nrc pHlOOn and 

pHJOOIRn. All DWSIM require; the dimensions of the study rcgi<>n to be power of 2, 

the study region was extended to size 64 x 64 and after the condnsion of the simula­

tion, the simulated realisations were trimmed to 61 x 61. For each wavelet basis, 1000 

realisations from each somple were simulated. The mosaic maps of three randomly 

selected realisations for each case were plotted to compare with the mosaic plot of the 

exhaustive data set pHsoiln and the post plots of the associated samples. Sample his­

togram reproduction was visualised via the quantile-quantile plots of the realisations 

against the associated samples. Spatial continuity reproduction was visualised via 

the plots of the experimental semivariograms of the simulated realisations together 

with the associated semivariogram models. The mosaic plots of the realisations from 

pH100n and pH100IRn arc shown in Figure 37 while the associated semivru:iograms 

and the quantile-quantile plots are shown in Figures 38 and 39 respectively. 

The mosaic plots for the realisations in rows 2, 3 and 4 of Figure 37 indicate that 

the simulated realisations have captured all features of the samples, regardless of the 

wavelet basis and of the sampling method. No artefacts have been detected in these 

mosaic plots. Locations with high and low values in the data set pHsoiln and the 

samples nrc reproduced in the simulated realisations. 

The spatial continuity is also reproduced since all of the experimental semivnri­

ograms in Figure 38 nrc similar to the associated semivnriogram models. The sum­

mary statistics and the quantile-quantile plots in Figure 39 show that the histograms 

of both samples a.re approximately reproduced. The means, variances and quartiles 

o( the simulated realisations arc close to those of the samples with the variances 

of all realisations from B64n simulated using the Haar b!!Sis being lower than the 

131 



m 
pH100n 

~ 

pHsoiln 
ID 

ID ID <;t . . <:!" 

0 
-+-- ~ (Y) 

Ill Ill 
~ 

~ 

0 0 

0 15 30 46 61 0 15 30 

DWSIM 

Haar basis Db2 basis 

R J. # l 
ea 1sat10n 1 Realisation #1 ..-

~ 
ID ID 

ID ID 
<:!" <:!" 

0 0 (Y) (Y) 

1/) 
~ 

1/) 

0 0 

0 15 30 4 6 61 0 15 30 46 61 

Realisation #2 Realisation #2 
m ~ 

ID 

ID ID 
<;t <:!" 

0 0 
(Y) (Y) 

1/) 
~ 

0 0 

0 15 30 4 6 61 0 15 30 46 6 1 

Reali sation #3 Realisation #3 
~ m ID 

ID ID 
<;t <:r 

0 0 
(Y) (Y) 

1/) 1/) 
~ ~ 

0 0 

0 15 30 46 61 0 15 30 4 6 6 1 

46 61 

-e.o 

pH1001Rn 
m~------------. 

-3.0 
·:l.O ID • 
•1 .6 <;t 
· 1 .0 
-0.5 0 
o .o _.(Y) 
0.0 
1 .0 
1 .6 

.. 
. "'' . : 

.• 

.. . ' . . . . 
, :' . . 
. .. 

0 -+----..--------.-----1 
0 15 30 46 61 

DWSIM 

Haar basis Db2 basis 

I l 
Realisation #1 Realisation #1 

~ ..-
ID ID 

ID ID 
<:!" <:!" 

0 0 
(Y) (Y) 

1/) 1/) 
~ ..-

0 0 

0 15 30 46 61 0 15 3 0 46 61 

Realisation #2 Realisation #2 ..- ~ 

ID ID 

ID ID 
<:r <:!" 

0 0 
(Y) (Y) 

1/) Ill 
~ ~ 

0 0 

0 15 30 46 61 0 15 30 46 6 1 

Realisation #3 Realisation #3 
..- ..-
ID ID 

ID ID 
<;t <1 

0 0 
(Y) (Y) 

1/) 1/) 
~ -
0 0 

0 15 30 46 61 0 15 30 46 6 1 

Figure 37: Mosaic plots of three randomly selected realisations from pHlOOn and 

pHl OOIRn simulated by DWSIM. 
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Figure 38: Semivariograms of the three randomly selected realisations from pH1 OOn 

and pH100IRn simulated by DWSIM. 
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Summary Statistics 
lHlUOn lHIQOlRn. 

Sample Relllise.tions Sample Realisations 
Hut Db2 Hur Db2 

Slats I 2 3 1 2 3 I 2 3 I 2 3 
Mew 0.04 0.04 0.04 -0.04 0.02 0.02 0.01 -0.12 0.03 -0.02 0.01 0.00 0.07 0.01 
Vss: L02 1.0~ 1.02 1.04 0.98 0.96 0.118 1.00 1.04 1.0.5 !.OS 1.01 1.(16 1.03 
Max 254 3.1.5 U6 3.30 3.19 3,17 3.68 2.fl2 3.70 4.10 3.77 4.09 U3 3.6.5 
Q3 0.72 0.73 0.13 0.66 0.65 0.71 0.67 0.50 0.72 0.62 0.61 0.63 0.79 0.67 
Med o.o.s 0.04 O.O.S -0.04 -0.05 -0.01 -0.02 -0.18 0.03 -0.06 -0.03 -0.03 0.12 -0.01 
Ql -0.82 -0.68 -0.65 -0.76 -0.73 -0.68 .0.70 -0.8) -0.6.5 -0.72 -0.67 -0.69 .0 . .56 -0.68 
Min -1.9fl .3.09 .3.20 -4.13 -3.12 .2.89 -3.07 -2.23 -3.01 -3.50 -2.96 -3.41 -4.12 .3.18 
Skew 0.22 0.04 0.02 0.01 0.12 0.10 0.18 0.30 0.07 0.2.S 0.21 0.23 .0.37 0.16 

Q-Q Plots 
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Figure 39: Summary statistics and Q-Q plots of three randomly selected realisations 

from pHJOOn and pHJOOIRn (simulated by DWSIM) against corresponding samples. 
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sample vminnce. The maxima/minima of all realisations are higher/lower than the 

corresponding sample maximum/minimum since this is a feature of Monte Carlo sim­

ulation and since the sample iE ouly an approximate representative of the population. 

However, the sloowness coefficients of ull realisatioiL'l are lower than the COITI!llpondlng 

sample skewness coefficients. 

7.2.3 CnBe Study 4: Applications of DWSIM to Anisotropic Samples 

As in Cnso Study 2 in Chapter 7.1.3, the samples used to test the performance of 

DWSIM in the anisotropic c!ISe are B64n and B64IRn. Since the dimcngions of the 

simulated realisatioiL'l arc required to be a power of 2, the aimnlations were carried 

out in a study region of size 64 x 64 then ca.ch realisation Wllll trimmed to size 40x 40. 

For each wavelet basis, three realisations were randomly selected from a set of 1000 

realisations from each sample. The mosaic plots, semivariograms and the quantllG­

qnantile plots of the realisationg are shown in Figures 40, 41 and 42, respectively. 

It can be seen from the mosaic plots in Figure 40 that the realisations simulated 

via the Hnar basis have captured the features ofbothsumples and the exhaustive data 

set Berean. Locations having high values at the top right corner of the study region 

can be seen in all of the realisations in columns 1 and 3 of Figure 40. The locations 

with low values associated 1\-lth the b~nding in the direction N55W at the middle left 

and near the bottom right comer. of the samples B64n and B641Rn are reproduced. 

No artefacts are found in the mosaic maps of the rcn.lisations. In the case of the Db2 

bllllis, locutions associated with low and high values arc also reproduced. However, the 

locations associated with the banding are better reproduced in the case of realisations 

from the ungridded sample B64IRn in column 4 than in the CBSC of realisations from 

the gridded sample B64n in column 2. In both bases, the low extreme values of the 
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realisations are lower than the corresponding sample minimum and the high extreme 

values of the realisations are higher than the corresponding sample maximum. 

Semivariogram models of both samples are reproduced in the Haar basis case. The 

experimeutal semivariogre.rns for the normal scores of the realisations in col= 1 

and 3 of Figure 41 are similar to the associated scmivnrlogram modt>ls. The sill values 

in the directions of me.ximum continuity N55W and minimum continuity N35E are 

clearly distinguished. However, for the Db2 basis, only the semivariogram model 

of the ungridded sample B64[Rn is approximately reproduced. The ranges in the 

direction of maximum spatial continuity N55W of all semivariograms of realisations 

from B64n in column~ are smaller than that of the associated model. 

In ter!llll of sample histogram reproduction, the summnry statistics !llld the qua.ntile­

quantilc plots in Figure 42 show that the means and variances of both samples are 

reproduced. Except for the variances of the realisations from B64n simulated using 

the Db2 bnsis, which are allloWI!f than the sample variance, the variances of the other 

realisations fluctuate above and below the corresponding sample vnrian.:c. For both 

wavelet b!ISes, the minima (maxima) of all realisations are lmver (higher) than the 

corresponding sample minimum (m!IJ(imum). However, the medians and quartiles arc 

close to the corresponding sample median a.nd quartiles. The skewness coefficients of 

all realisations arc close to the corresponding sample skeW!less coefficients, except for 

the case of Realisations #1 and #3 from B64IRn simulated using the Db2 basis. In 

genCJ:al, in the anisotropic caae, DWSIM reproduces sample histograms regardless of 

the wavelet basis and the sampling method. 
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Figure 40: Mosaic plots of three randomly selected realisations from B64n and 

B641Rn simulated via DWSIM. 
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Figure 41: Semivariograms the three randomly selected realisations from B64n and 

B641Rn simulated via DWSIM. 
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Srunmary Statistics 

B64n. BU/Rn. 

Sample Realisations Sample Realisations 
Hur Db2 Hur Db2 

SWs I 2 3 l 2 3 I 2 3 I 2 3 
Mean 0.19 lllO -0.02 0.14 0.12 0.19 0.17 -0.05 -0.01 0.09 0.17 0.06 0.00 0.07 
Vu 1.03 1.03 1.02 1.09 0.94 0.92 0.92 1.02 0.8~ 1.02 0.98 0.97 0.93 1.06 
Max 2.36 2.93 :un 3.14 2.44 3.18 2.9~ :us 2.42 3.1!1 3.24 2.66 2.76 2.73 
Q3 0.91 0.80 0.72 0.86 0.79 0.87 0.84 0.64 0.6.S 0.76 0.85 0.11 0.68 0.79 
Med 0.12 0.10 -0.04 0.17 0.18 0.18 0.18 0.09 -0.03 0.13 0.19 0.08 0.01 0.12 
Ql ·0.42 -0.59 -0.67 -0.58 -0.49 ·0.41 ..().49 -0.87 -0.63 -0.52 -0.~0 ·0.53 ..(),69 ·!156 
Min -2.42 -3.38 -3.61 -3.12 -3.40 ·2.71 -3.39 -2.29 -2.88 -3.03 -3.04 -3.62 -2.68 -4.12 
Skew -0.13 -0.04 -0.21 -0.15 -0.15 -0.20 .0.10 -0.09 -0.03 -0.23 -0.07 -0.28 .0.04 -0.37 
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Figure 42: Summary statistics and Q-Q plots of three randomly selected realisations 

from B64n and B64IRn (simulated via DWSIM) against corresponding samples. 
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7.2.4 General Comments on DWSIM 

We have seen in case studies 3 and 4 that DWSIM using the Haar basis reproduces 

the scmivariogram model and sample histogram in both isotropic and anisotropic 

ca.se; regardless of the sampling method. Even though DWSIM using the Dh2 basis 

reproduces the histogrlll!L'l of all Sll!llples, it fails to appropriately reproduce the spatial 

continuity of thn anisotropic gridded sample Bli4n. In the next Chapter, we will 

investigate the perfonnant:ll of DWSIM in more detail by quantitatively compilring 

the global and local accuracy of the simulated realillatiollll obtained via DWf.:IM 

with those of realiBations simulated via PWSIM. The computational effort for these 

algorithrru; is also discussed to compare the computational efficiency of two algorithrru;, 

The results of the comparison will be tmed to dltcrminethe appropriate wavelet basis 

forDWSIM. 
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8 COMPARISON OF PWSIM AND DWSIM 

DWSIM and PWSIM nrc similar in that they nrc both multi-level wavelet-based 

simulation algorithms and both exploit the serond-order stationarity property of the 

underlying random function. Both algorithms start the simulation from an initial 

scaling imago at some coarse scale and then reconstruct the scaling image at the finer 

scale using the correlation of scalingjwave!et coefficients. 

However, the algorithms differ in the methods us!!d to obtnin the conditional 

simulated rca.lisa.Uons. Firstly, the initial scaling image in DWSIM is estimated from 

the conditioning data via the discrete wavelet transform whiltl in PWSIM the initial 

scaling image is simulated using the Choleski decomposition. Secondly, in DWSIM 

only the scallng coefficients at the coarser scale are used to simulate the scaling 

coefficients at the finer scale while in PWSIM the scnling coefficients at the finer scale 

are computed from the simulated scaling and wavelet coefficients at the coarser scale 

llBing the inverse discrete wavelet tra.Jlllform. The method llSed to estimate the initial 

scaling image and to simulate the scaling coefficients at the fmer scale in DWSIM 

makes it possible to condition the data directly. 

In Chapter 7, we illustrated briclly the performance of PWSIM and DWSIM. 

In this Chapter W\l will quantitatively assess the performance of the two algorithms 

for each wavelet ba:lis. The performance measures used include the accuracy and 

goodness coefficients A a.nd G, the average variance V of the local distributious, and 

MAD and MAE values described in Chapter 4. The realisatiollll llSed to compute 

these measures are those from pHJOOn and pHJOOIRn in the isotropic case and those 

from B64n and B64IRn the anisotropic case. 
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8.1 Accuracy, Goodness and Precision 

The ar.cumcy, goodnws 1111d preci.rion of the simulation are visually asse:;sed via. the 

at:euracy plots and quantitatively assessed via the accuracy coefficient A and the 

goodness coefficient Gin conjunction with the average variance V. 

Using formula (122), for each sample the computation of the accuracy, goodness 

and precision coefficients are based on the local conditional cumulative probability 

distribution functioDB modelled from 1000 realisations with the jackknife data from 

Chapter 5. The accuracy plots for each se.mple, together with the coefficients, are 

showu in Figure 43 with the plots in tho case or PWSIM in rows 1 IUld 2 and Lhoso 

in the Calle of DWSIM in rows 3 and 4. 

In the isotropic Calle, since the accuracy coefficients A and goodness coefficients 

G computed from rcalisntio!IS simulated via PWSIM in row l, column 1 and row 2, 

column 2 are higher than those computed from realisations simulated via DWSIM 

in row 3, column 1 and row 4, column 2, PWSIM performs better than DWSIM for 

both wavelet bases. For the Haar ballia, in both samples, PWSIM performance is 

only slightly better than DWSIM performanoo because the accuracy and goodness 

coefficients in the Calle of PWSIM are only slightly higher than those in the case 

of DWSIM. For the Db2 basis, PWSIM performance is much better than DWSIM 

performance because the accuracy and goodness coefficients computed in the case of 

PWSIM are mud1. higher than those computed in the case of DWSIM. 

The setback for the higher accuracy and goodness coefficients in tho cnse of 

PWSIM is that. tho average variances V computed from realisations simulated via 

PWSIM are higher than those computed from realisations simulated via. DWSIM. 

Similar to the ca.se of the accuracy and goodness coefficients, the differences between 

tho average variances computed from realisatioiL'i simulated via the two algorithms 

142 



PWSIM 

Isotropic + Anisotropic 

Gridded + Ungridded Gridded ~ Ungridded 

! ~ ~ ~ 
~(p) ~(p) ~(p) ~(p) 
1 pH100n 1 pH1001Rn 1 

B64n 4 B641Rn / (I) 0.8 08 0.8 0.8 ·r;; 
~ ctl 0.6 0.6 0.6 0.6 /:.~ .Q 

I... 
0.4 0.4 /~ A=.01 0.4 ctl 0.4 

A=.02 ctl A= .78 A=.54 
G=.87 :r:: 0.2 G=.99 02 G=.99 0.2 0.2 G=.91 

v= .59 P v=.61 v v=.3D v=.38 p 
0 0 0 p 0 

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 

~(p) ~(p) ~(p) ~(p) 
1 pH100n 1 pH1001Rn 1 B64n ~/.. 

1 B641Rn 
0.8 08 0.8 0.8 

(I) 

,4/.,J{J ·-(I) 0.6 0.6 06 0.6 
ctl 
.Q 

0.4 0.4 " 0.4 
C"f A=.84 0.4 

A=.88 A=.DD A=.03 .Q 
Q 02 G=.98 02 G=.99 0.2 G =.91 0.2 G=.93 

0 
v=.61 P 

0 
v= .66 P 

0 
v=.35 P v=.42p 

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 

DWSIM 

Isotropic + Anisotropic 

Gridded + Ungridded Gridded ~ Ungridded 

! ~ ~ ~ 
~(p) ~(p) ~(p) ~(p) 
1 pH100n 1 pH1001Rn 1 B641Rn / 

(I) 0.8 0.8 ,i 0.8 0.8 /./ ·r;; 
ctl 0.6 0.6 0.6 0.6 

#A=.01 

.Q 
I... 

0.4 0.4 0.4 ctl 0.4 
ctl A=.01 A= .01 :r:: 0.2 G =.98 0.2 G=.96 0.2 0.2 G=.87 

0 v=.53 P 0 
v= .56 P 0 V=.38p 

0 0.2 0.4 0.6 0.8 1 0 02 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 

~(p) ~(p) ~(p) ~(p) 
1 pH100n /. 1 pH1001Rn 1 B64n 1 B641Rn / 

/ 

a: 
0.8 

//. 0.8 0.8 0.8 
(I) ·-(I) 0.6 0.6 0.6 0.6 
ctl /.' .Q 

0.4 0.4 0.4 
C"f ~,i- A=.DD 0.4 

A=.DD .Q 
Q 0.2 G =.81 02 G=.72 0.2 .64 

0 
v= .34 P 

0 v=.37 P 0 
' v= .22 

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 

Figure 43: Accuracy plots obtained using PWSIM and DWSIM. 
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are negligible for the Haar basis and considerable for the Db2 basis. This indicates 

that the results of the simulation using PWSIM nrc less precise than those in the case 

ofDWSIM. 

In 1.he anisotropic case, the accuracy plots in columns 3 and 4 of Figure 43 indicate 

that the performance of PWSIM and DWSIM are approximately equivalent if the 

Haar basis is used. Since the accuracy coefficients A nrc close to 0, we focus only 

on the goodness coefficient G and the average variance V. For the gridded snrnplc 

B64n, the goodness coefficient G, in row 1, computed from realisations simulated via 

PWSIM nrc loiVIlr than that computed from realisations simulated via DWSIM in row 

3. The opposite is true for the average variance. For the ungridded sample B64IRn, 

the coefficient A is higher in the case of PWSIM while the coefficient Vis the surnc. 

Similar to the isotropic c=, the performance of PWSIM is much better than the 

performance of DWSIM if the Db2 basis is used. The co~Jlcicnts G in both snrnplcs 

in the case of DWSIM in row 4 are much lower than those in row 2 in the case of 

PWSIM. The nverage variances V in the case of DWSIM are also much lower than 

those in the case of PWSIM. 

In comparing the impact of wavclel basis with regard to the same algorithm, 

PWSIM using the Db2 basis performs slightly better than PWSTM using the Haar 

basis since the coefficients A and G in the case of the Db2 basis nrc slightly higher 

than those in the case of the Haar basis. The increase of these coefficients is traded 

by the increase of the average vnri!lllccs. On the other band, DWSIM using the Hanr 

basis performs much better thun DWSIM using tlm Db2 basis. 

The precision of DWS!M and PWSIM with regard to the two wavelet bases is vi­

sualised via the plots of the average width W of the probability intervals that contain 

the true values against the probability p in Figure 44. It can be seen that for both 
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isotropic and anisotropic ca!lCS the widths of the probability intervnl.s model!ed by 

realiso.tiow; simulated via PWSIM we wider than those in the case o[ DWSIM. Since 

the wider the probability widths the more true vn!uffi they ca.n contain, the accuracy 

coefficients in the case of PWSIM are higher than those in the case of DWSIM. Sim· 

ilarly, since the widths of probability int.erva.l modelled by realisatious simulated via 

PWSIM using the Db2 basis are larger than those modelled by realisations simulated 

using the Haar basis, the accuracy coefficients obtained via PWSIM using the Db2 

hllSiS are higher. The opposite is true for DWSIM. 

8.2 Sample Histogram and Semivariogram Model Reproduc­

tion 

The reproduction of the histogram and semivariogram model of each sample will be 

assessed via the MAD and MAE values of lOOO conditional realisations. The MAD is 

the mean of the absolute deviations between the quantiles of a simulated realih~tion 

nod the quantiles of the associated sample. The MAE is the mean of the relative error 

between the experimental semivariogram of a simulated realisation and the llSSOCiatcd 

sernivariogram model. Summary statistics for the MAD values, computed using 20 

qunntiles, and the MAE values, computed from 18 lags in the isotropic case and 9 

lags in the aniBotropic crum using lag spacing of 1 measurement uni\ are displayed 

by means of the boxplots in Figures 45 and 46 respectively. The bcxplots for the 

MAD and the MAE of rcnlisatioOB simulated using the Db2 bllSiS are on the right 

of the Figures with those for the MAD nnd MAE values computed from realiBations 

simu1 <~.ted via. PWSIM being shaded. 

Since the medianB of the MAD vnlues shown by the boxplots in Figure 45 a.re 

close to 0 for all C!>.Ses, for each algorithm the hiBtogram of each sample is reproduced 
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regu.rdless of the wavelet basis used. By comparing the boxplots in two algorithms, 

one can see that except for the median of the MAD values computed for realisations 

from pHJOOIRn simulated using the Hoar basis, the medians of the MAD values in 

the ease ofDWSIM are lower than those in the =e of PWSIM. Therefore, in general, 

in terms of sample histogram reproduction DWSIM performs better than PWSIM. 

With regard to the wavelet basis used, the sample histogram is better reproduced 

in the case of the Db2 basis than in the case of the Haar basis for DWSIM. All the 

medians on the right of Figure 45 are smn.llcr than those on the left. Fbr PWSIM, 

on average the use of the wavelet basis does not have a clear impact on sample 

histogram reproduction. In the isotropic case, the histogram of the gridded sample 

is better reproduced in the case of the Db2 basis than in the cn.se of the Haar basis. 

The opposite is true for the histogram of the ungridded sample. In the anisotropic 

case, the usc of the Db2 basis worsens sample histogram reproduction regardle:;s of 

the sampling method. 

In terms of semivariogram model reproduction, in the isotropic case, for both 

wavelet bases DWSIM perfonns better than PWSIM for the gridded sample pH lOOn, 

and the opposite is true for the uugridded sample pHJOOIRn. In the an..i.sotropic 

case, PWSIM performs better than DWSIM in the anisotropic eliSe regardless of the 

wavelet basis a.nd sampling method. In fact, for DWSIM using the Db2 basis, the 

scmivariogram model of anisotropic sample B64n is not appropriately reproduced. It 

cnn be seen on the right of Figure 46 that the minimum a.nd median of the MAE 

values computed for realisations simulated via DWSIM (from sample 864n) using 

the Db2 basis is considerately higher than 0.0. 

With regard to the impact of the wavelet basis on each algoritlun, in the isotropic 

case the usc of the Db2 basis slightly improves the performance of both algorithms 
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Figure 45; Boxplots for ~lAD values comput cd from reali~Sation:s simulated via 

PWSIM (shaded) and DWSI11. 

in the case of the gridded sample pHl OOn. The opposite is Lrue for the ungridded 

sample pHlOOIRn. In the anisotropic case, PWSIM using the Db2 basis performs 

better than PWSIM using the Haar basis, regardless of the sampling method. The 

opposite applies for DWSIM. 

We have shown from the summary statistics for the MAE values that PWSIM, 

using either the Ha.ru: or the Db2 basis, and DWSir-.1 using the Haar basis reproduce 

the spatial continuity of the corresponding sample regardles::, of the salllplillg method 

and t he spat ial structure. D\VSn-I using the Db2 basis only appropriately reproduces 

the semivariogram models in the isotropic case. \Newill now visualise the reproduction 

of spatial continuity by plotting the experimental semivariograms for the realisations 

simulated v1a the two algorithms, together with the semivariogram models. 
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PWSIM (shaded) and D\VSI.\1. 

For readability, only the experimental selllivariograms of the first 200 realisations 

from each sample are plotted. The experimental semivariograms and the associated 

scmivariogTam models in the isotropic case are shown in Figure 47 and those in the 

anisotropic case in Figure 48. The plots in Figure 47 indicate that, in both algorithms 

the semivaTiograllls for the realisations from pHJOOn and pfl1001Rn an~ similar to 

the corresponding semivariogram models. They fan out about the models with those 

associated with the maximum errors lying far auovc or below the ruodeb and those 

w1th minimum errors overlapping the models. In the case of PWSJ.\<1 the range of 

the fluctuation is similar for both bases. In the case of DvVSIM, lhe variability of the 

sernivariograms for realisatwns simulated via the Db2 basis is much lower tllau that 

in the case of the HaaT basis. 
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Figure 48: Experimental semivariograms for realisations from anisotropic samples 
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In the anisotropic C!!Se, the plots in Figure 48 show that, for both wavelet bnses, 

the spatial continuity is better reproduced for realisations simulated via PWSIM than 

for those simulated via DWSIM. The scmivariogrrun modelB of B64n and B64IRn are 

mvered completely by the experimental semivariograms of the realisf!.tions simulated 

via PWSIM. For DWSIM, the spatial continuity is better reproduced in the case 

of sample B64IRn than in the case of B64n. Regardless of the wavelet basis, the 

sill vnlues of the experimental sernivariograms of the realisations from B6.jn in the 

direction of maximum continuity N55W are higher than the sill value of the model 

(in that direction). One reMan for the better performance of PWSIM compared with 

DWSIM in terms of spatial continuity reproduction is that realisations generated 

using PWSIM have larger local variances. This leads to the larger fluctuation of 

the semivariograms of the realisations; hence, these semivariograms better cover the 

associated semivariogrrun modeL The plots in Figure 48 also show that the variability 

among the experimental semivariograms for rcalisntioJtB simulated via PWSIM is 

similar for both wavelet bases. For DWSIM, the variability nmong the experimental 

scmivariograms of realisations simulated via DWSIM using the Haar basis is higher 

than the variability among those of realisations simulnted via DWSIM using the Db2 

bnsis. 

In summary, if tha Hnar bnsis is used, in terms of accuracy and goodness co­

afficients, PWSIM performs better than DWSIM in the isotropic ease and DWSIM 

perforiiiS ns well ns PWSIM in the anisotropic case. Tho drawback for tho higher 

accuracy and goodness coefficients in tho case of PWSIM compared with the case 

of DWSIM is Um bigger nvamge vuri11.nce. Since tlm average vnriuncc is bigger, tim 

spread of the local probability distrihutioJtB is larger; therefore, the proportion of 

the true values falling within the probability intervals becomes higher. In terms of 
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histogram and semivariogram reproduction, the performances of the two algorit!uns 

a.rQ equivalent in the isotropic case. In the anisotropic case, DWSIM perfo= bett~ 

than PWSIM if the MAD wlues are compared aod tha opposite is true if the MAE 

values arc compared. 

If the Db2 basis is used, PWSIM performs better than DWSIM for both isotropic 

and e.nisotropic cases if the accuracy !LIId goodncss ooclficicnts nre compared and the 

opposite is true if the MAD wlues are compared. In terms of semivnriogram model 

reproduction, the DWSIM performance is equivalent to PWSIM performance in the 

isotropic case and PWSIM performance is betLcr than DWSIM performance in the 

anisotropic case. 

The performance comparison between PWSIM and DWSIM, with regard to the 

same wavelet basis and spatial structure, that is, PWSIM using the Haar (Db2) basis 

compared with DWSIM lJ.;ing the Hn.'!I (Db2) basis n.nd PWSIM applied to isotropic 

(anisotropic) sample compared with DWSIM applied to isotropic (anisotropic) sam· 

pic, is shown in Thblc 5. The + in the table indicate the more efficient algoritlun 

whereas ~he "' indicate an equivalent performance. 

PWSIM DWSIM 

Db2 Db2 

!so. Ani. !so. Ani. lso. Ani. Iso. Ani. 

Accuracy/Goodness + + + 
Average vnriru1ce + + + 

MAD + + + 

MAE + + 

Table 5: Performance comparison betw()Cln PWSIM and DWSIM. 
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With regard to the impact of wavelet bBEis used in each algorithm, PWSIM using 

the Db2 baBis performs better tha.n PWSIM usinl;:" the Ha.ar basis if the prforma.nce 

measure is based on the a.ccuracy and goodnffifl coefficients. There is no clear trend 

for other measure<J. For DWSIM, except for tl:te performnnce measure based on the 

MAD values, DWSIM using the Haar basis performs better than DWSIM using the 

Db2 basis. 

8.3 The Impact of Trimming the Simulation Grid on His­

togram Reproduction 

In this section we investigate the impact of trimming the simulation grid on histogram 

reproduction. Since both DWSIM and PWSIM require that the dimensions of the 

study region be a power of 2, the simnla.tion is u~ually carried out in a region that 

is larger than the actual one. At the conclusion of the simulation, both DWSIM 

nnd PWSIM report only the simulated values within the study region. k; data nro 

only available within the study region, one can expect that trimming the realisa­

tions improves the performance of the a.lgorithms bnsed on the reproduction of the 

corresponding sample histogram. 

The left and middle columns of Figure 49 show the mosaic plots of the realisa­

tions from B641Rn after and before trimming the Rimulation grid, rtl!lpectively. The 

realisation obtained via DWSIM is shown in Um second row whereas the realisation 

obtained via PWSIM is shown in the third row. The study region in this case is a 

40 x 40 grid whereas lhc simulation hn<l to be carried out in a 64 x 64 grid. The 

boxplots in column 3 of Figure 49 show the su!Iliiiary statistics of the MAD values 

computed from 1000 realisations simulated using DWSIM (in the second row) and 

PWSIM (in the third row) with the shaded boxplots indicating summary statistics 

1M 



N B641Rn 
1/) 

-<r 

0 
(") 

0 
N 

~ ' .. •• 
'";" 

.. 
N 

'7 
-12- 1 10 20 

0 
;; 

(") 
0 
(") 

0 0 
N 1'1 

0 
e - -' 

0 
N 

' 0 10 20 30 40 - 12-1 10 20 

-0 ocr 
("\ 

0 
(0') 

0 0 
N N 

0 -0 -
' 

0 
N -' 0 10 20 30 4u ·12-1 10 20 

30 4 1 

30 41 

30 41 

52 

52 

52 

·6 .,. 
·2 ., ., 
·0 
0 
0 

2 

4 

5 

DWSIM 

--rn-
n4 04 

-1JJ-· 
·10 < ~, J 

00 o'1 02 OJ o.: 0 s 06 0. 0.8 0.9 

PWSIM 

-[]---
t14 X64 

-ill-·· 
.,---,--.--
00 0 I 02 0 3 04 o.s 06 0.1 oa 09 

Figm·e 49: Mosaic maps and boxplots illustrating the impact of trimming simulation grid 

on histogram reproduction. 

for MAD values after t.he simulation grid is trimmed to the grid size of 40 x 40. It 

is clear t.ha t the sample lllstogram is better reproduced after trimming. In the case 

of PWSIM, the MAD values before trimming are only slightly larger than the MAD 

values after the trimming. However , in t he case of DWSIM the MAD values before 

trimming are signific.:1.ntly larger than those after trimming. T he reason for the dif-

ference in the impact of trimming the simulation grid on the two algorithms comes 

from the method used to condition the data. In PWSIM, a larger search radius and 

number of conditioning data have to be used in the kriging s tep to allow the grid 
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nodes outside the study region to be simulated in terms of sufficiently many condi­

tioning values within the study region. The cost for this is a his:her computational 

effort. In DWSIM, dne to the sim of the filter length and the conditioning method, 

the simulated values at the nodes outside the study region usually depend only on a 

very small number of conditioning values close to the edges. Therefore, if these nodes 

are included in the rcnlisations, the deviation of the realisation histogram and the 

sample histogram is larger. 

8.4 The Impact of the Size of the Initial Scaling Image in 

PWSIM 

In DWSlM, the reconstruction of the original scaling image is started at the scaling 

image all of whose grid nodes are estimated. PWSIM, on the contrury, can start tlm 

reconstruction at any coarse SGale as long as the covariance matrix for the scaling 

coefficients is small enough to mnke the Cholcski decomposition feasible. Dif'~renl 

starting scales result in diffment sizes of the initial scaling image. In the comparison 

we have carried out previously, as discussed in Chapter 7, the simulation is started al 

an scaling image of size 4 x 4 but thme is no reason that PWSlM cannot begin wilh 

an initial scaling image of smallm or of lr~rgm size. Now we invcstignle the impact of 

the size of the scaling image on the performance of PWSlM in the isotropic case. 

Since the size of the exhaustive dataset pH$oil is 61 x 61, the size of original scaling 

image (j = 0) for the simulation is ext011ded to 61\ x 64. At the end of the simulation, 

the progrnrn trims off the simulaled realisation back to si'le 61 x 61. Since: lhe size 

of the original scaling image for the simulation is 64 x 64, lhe maximum numbllf of 

times the discrete wnvelet transform can be applied to this image is log1(64) = 6. In 

other words, the coarsest scale ut which PWSIM can start is scnlo 26 wheu the si:w of 
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the initial scaling image is 1 x 1. In this case, the initial scaling image is t.oo small to 

carry enough the information of the original scaling im!l.gc, Therefore, the simulation 

has to start at some finer scale w that the size of the covariance matrix for the scaling 

coefficients is small enough so that the decomposition can he feasibly applied and the 

size of the scaling image is large enough to contain the correlation from the original 

scale. 

/u; discussed, the results we have obtained in this Case Study so far are bused 

on the initial scaling image of size 4 by 4, that is the simulation starts at scale 24• 

The results may be worse or better if the simulation starts at some different scale. 

Therefore, we wiU investigate tho performance of PWSIM using the Haar b'l.'lis when 

the simulation starts at one scale coarser 25 (the size of the initial scaling imago is 

2x2) and at one scale finer 23 (the sille of tho initial scaliug is 8x8). In each eliSe 1000 

realisations from each sample were generated. The mosaic plots of throe randomly 

selected realisatiollll from each sample in the caso when the starting scale is ZS arc 

shl>wn in Figure 50B while those for wlum tlw starting scale is 23 arc shown in Figure 

50C. The maps in Figures 50B and 500 indicate that the realisations have captured 

the features of the exhaustive data sot lllld of the associated samples regardless of 

the starting scale. The regions of high and low values scen from the mosaic ploL~ of 

the exhaustive data set pHsoiin and of the samples pH lOOn and I'Hl(JOJRn in Figure 

50A arc reproduced in these mosaic plots. No indication of nrtifacts is apparcut in 

the plot of any realisation. 

We have investigated visually three typical realisations Si!!lulatcd via PWSIM 

corresponding to di!feren~ starting scales. We uow explore the impact of the size 

of the initial scaliug image on the performance of the algorithm using quuntita.tivc 

measurll.'J. Them me.1sures include the MAD und MAE values and the coefficients for 
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Figure 50: Mosaic plots of randomly selected realisations fi·om pH100n and pH100IRn 

associated with initial scaling image of size 2 x 2 and 8 x 8. 
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eva.lua.tiog the a.ccuracy and goodness of the simulation. 
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Figure 51: Boxplots for MAD nnd MAE vulucs nssocifltcd with different initial scaling 

image size. 

It can be seen from Figure 51 that the size of the initial scaling image has little 

impact on the reproduction of the sample histograms and scmi,"ariogram models. For 

sample histogram reproduction, the summary statistics for MAD values (computed 

using 20 quantiles} of 1000 realisations of each sample shown in Figure 51 A show that 

these values vary with the starting scale. However, there is no trend of improvement: 
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the reproduction of the sample histogram docs not improve in accordance with the size 

of the initial scaling image. In fact, only the range of the MAD values changes. The 

medians of MAD values associated with the initial scaling image of size 2 x 2, 4 x 4 and 

8 x 8 in the case of sample pHJOCh1 are approximately cqunl to 0.130, 0.140 and 0.125; 

and those in the case of S!ll!lple pHJOOIRn arc 0.150, 0.130 and 0.140, re;pcctively. 

The differences among these medians are small. Similarly, regarding BGmivnriogram 

model reproduction, the summary statistics for 1000 MAE values (computed from 

18 lagE IL'ling a lag spacing of 1 unit) of both samples in Figure 51B indicate that 

increasing the size of the initial scaling image has little impact on the MAE values. 

The accuracy plots in Figure 52 show that the size of the initial scaling image has 

only n small impact on the accuracy, goodnes:J and precision of the simulation. The 

accuracy plots obtained from realisations of pHJOOn in Figure 52A nod of pHJOOIRn 

in Figure 52B show that, in general, increasmg the size of the initial scaling image 

slightly reduces the spread of the local distributions, in other words reduces the 

uncertainty of thn results. There is no trend for Um accuracy or thn goodmss of the 

distributions. As can be seen from the accuracy plots for realisations of pHJOOIRn, 

Lhn average variance V slightly decmases when the sir.e of the initial scaling image 

increases. However, this change is not very great. For sample pH lOOn, the coefficient 

V equals 0.54 for the initial scaling image of size 2 x 2, then increiiScs to 0.59 for the 

initial scaling image of size 4 x 4 and reduces to 0.53 for the initial scaling image of 

size 8 x 8. For sample pHJOOIRn, the coefficient V dccreMes from 0.62 for the initial 

scaling image of size 2 x 2, then 0.61 for the initial scaling image of size 4 x 4 and 

0.60 for the initial scaling image of size 8 x 8. If we disregard the middle graph in the 

first row of Figure 52A, the precision of the sinulation increases with the size of the 

initial scaling image. 
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In summary, aincc the starting level of PWSIM has little impact on the perfor­

mance of PWSIM, it can be ignored. 

8.5 Computational Effort for PWSIM and DWSIM 

In thiB Section we compute the computational effort needed by PWSIM and DWSIM 

in the simulation of one realisation. As D.ll illustration we couot the number of al­

gebraic operations used to simulate one realisation of the snmple pHlOOn. From a 

debug file created by the computer program, the size of initial sce.ling image in the 

case of DWSIM for this exnmple is 8 x 8, therefore, for consistency we assume that 

PWSIM ulso starts the simulation with the it..itial scaling image of size 8 x 8 that is 

nssociated with j = 3. 

8.5.1. Computational Effort for PWSIM 

Let M he the number of van..isbing moments of the wavelet basis used, the computa­

tional effort used in PWSIM includ(!S 

1. The computation of the covariance tables reqWres (561}3- 46DM +12M2) x 

(SDMt - l) + 66564 operatious. 

2. The simulation of the initial scaling image requires 93472 algebraic operatious. 

3. The computation of the weights requires 3 x (!(2M+ 1)6 +¥(2M+ 1)4
-

~(2M+ 1)2 + 3) operations. 

4. The simulation of the wavelet coefficients requires 81}64 (2M+ 1)2 +4032 oper-

ations. 

5. The inverse discrete wavelet transform requires 64512M2 - 5376 additons nnd 

multiplications. 
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6. Conditioning the data: assume that 16 conditioning data are used to compute 

the kriging esti!Dll.te at one unknown location this step requires 1.154 x 107 

additions and multiplications. 

Step Nil of operations 

1 (5603- 460M +12M'} (80M4 - 1) + 66564. 

2 93472 

3 3 X(~ (2M+ l)G +~(2M+ 1)
4

- ~(2M+ 1/ +3j 

4 8064 (2M+ 1)2 + 4032 

5 64512M2- 5376 

6 U54x W 

Total 1024/vp;- 36608M5 + 4.4908 x 105M4 

+!360M3+ 97705M•+33018M + l.I702 X 107 

Table 6: Number of a.lgebra.ic operations for simulating one realisation using PWSIM. 

In summary, the number of algebraic operntio!l.'l required for simulating one cou­

ditiounl realisation using PWSIM is summarised in Table 6. Detail for the compu­

tation can be seen in Appendix 12.3. According to this table, for Haar wavelets 

1.224 8 x 107 algebraic operations have to ho curried out to simulate one realisation. 

For Db2 wavelets the number of multiplications and additions goes up to 1.824 9x 107. 

However, when a set of realisations is simulated, the computation of the covariance 

tables is only carried out once. Therefore, suppose that 100 realisations need to be 

simulated the number of additions and multiplications needed arc 1.1774 x 10~ in the 

case of the Haar basis and 1.2153 x 10~ in the cBBe of the Db2 basis. 
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8.5.2 Computational Effort for DWSIM 

The computational effort used in DWSIM includes 

1. The computation of the covariance tablP..'l requires the same number of algebraic 

operations as in the case of PWSlM. 

2. Estimation of the initial scalio.g image requires 2799 additions and multiplica­

tions. 

3. The computation of tho weights requires 3 x (!(2M+ 1)6 + 'f (2M+ 1)4
-

~(2M+ 1)2 + 4) algebraic operations. 

4. The simulation of the scaling coefficients at the finer st:ale via the scaling coef­

ficicnt at the coarser scale requires 43008M2 + 43008M + 16128 additions nnd 

multiplicatious. 

Step N1l of operations 

1 (5503- 460M +12M2) (SOM4- 1) +66564 

2 2799 

3 3 x (i (2M+ 1)
6 
+¥(2M+ rt- ~(2M+ t)2 + 4) 

4 43008M2 + 43008M + 16121! 

Thtw l024M6 - 36608M5 + 4.4898 x I05M4+ 

1168M3 + 4383IM2 + 43751M + 79937 

Table 7: Number of algebraic operations for simulating- one realisntion using DWSIM. 

The number of algebraic operations required for simulating one coud.itiona\ re­

alisation using DWSIM is summarised in Table 7. Detail for the computation can 
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be seen in Appendix 12.4. Hence, 5.4309 x 10~ a.lgebraic opcratious have t.o be per­

formed t.o simulate one conditiona.l realisation from pHJOOu in the case of the Haar 

bllSis whereas iu the cnsc of the Db2 basis the number of a.lgebraic operations is 

6.2771 x 106• 1vl in the case of PWSIM, since the covariance tables are computed 

only once, if 100 real.isations are to be obtained, the number of algebraic operations 

needed in the case of the Haar and the Db2 bases arc 1.0973 x 107 and 3.3862 x 107 , 

r~pectively. 

8.~.3 Comparison of the Computationnl Effort of PWSil\1[ and DWSil\1[ 

By comparing the computational clfort for tLe two !llgorithms, one can see that 

D\VSIM is much faster than PWSIM. Exclur"ing the postprocessing step, PWSIM 

and DWSIM require approximately the sa:rnc computational elforl even thougl1 the 

methods nsed to obtain Jlonconditional realisations in PWSIM nnd couditional reai­

isations in DWSIM arc different. HoW<lver, while in DWSIM conditiouai simulated 

rc;llisations arc obtained directly, PWSIM needs au additioual postprocessing step 

to ad1ieve the conditional realisations. Because of this step, PWSIM is sloW<lr than 

DWSIM.IhsOO on the simulation of one rea.lisation, in the case of the Haar W1Lvclcl 

basis, DWSlM is 21 tim"" ns f<~St as PWSIM; however, in tlic cn.se of the Db2 basis 

DWSIM is only approxilllately throo times as fast {15 PWSIM. Based on tho simula­

tion of a set of 100 rea.lisations, DWSIM ill 107 times as fast liS PWSIM if tim Hnar 

h;l~is is u;ed and :}5 times as fast as PWSIM if the Db2 basis is m;orl. 

Bclw~n the two wnvdet bases, bns~><:! on tlm simulation of one rcalis:ttiou, PWSIM 

using the Hn.ar basi~ is !.5 timco; as fast ns in the case of the Db2 basis, and hasud 

on the simulation of lOO realisations, the computationnl effort using the two bases 

is approximately the same. On the other hand, DWSIM using the Hnar basis is 11 
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times ns fllSt as DWSIM using the Db2 basis if one realisation is simulated and t!Jro(! 

times as fa;;t !IS DWSIM using the Db2 basis if 100 reall'lations are simulated. 

Since the Db2 basis requires more computational effort than the Haar basis, the 

result obtained via DWSIM using the Db2 basis is expected to be better than that 

in the case where the Haar basis is med. However, contrary to the expectation and 

unlike the case ofPWSIM, the n~ult of the simulation ming DWSlM is better in the 

• case of the Haar basis than in the case of the Db2 basis. A£, caD be seen from Sections 

8.1 aud 8.2, the goodness coefficients obtained using DWSIM with the Db2 basis in 

the anisotropic case are very low and the semivlll"iogram model of the anisotropic 

sample B64n is not adequately reproduced. 

The inappropriate reproduction of the semivariogram model can be caused by 

the method of obtaining the conditioning values for the coarser scales. Since the 

covariance among the locations of Ute known values in the window is not taken into 

account in the estimation, the larger the window size the less accurate the estimation 

is, especially for strongly anisotropic srunples. Errors in tim estimation are propagated 

and the compression of the study reg"ton to the initial scaling image does not strictly 

preserve the spatial continuity of the sample. As the consequence, even though the 

back simulation captures the spatial structure of the inttial scaling image, this spatial 

structwe departs from the target spatial continuity. 

Since DWSIM using the Haar basis is much more e(ficient lhan DWSIM using 

the Db2 bru;is and also more eillcieat than PWSIM, from now on we focus only on 

DWSIM with the Haar basis. 
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9 CASE STUDY 5: THE IMPACT OF SAMPLE 

SIZE ON DWSIM 

In this Chapter we investigate the impact of sample size on the perfonnance of 

DWSIM in the case of the Haar basis. To do so, DWSIM is applied to tho nested 

samples piiSOIRn, pH250lRn and pHSOO!Rn of the exhaustive data set pH~oiln. The 

results obtained by applying DWSIM using the Haar basis to pHJOOIRn, discussed 

in Chapters 7 and 8, are also shown for the purpose of comparison. The performance 

of DWSIM with regard to sample si7.e is ~~&~ed visually and quantitatively. Visual 

assessment is carried out by comparing the mosaic plots of three typical realisations 

from each sample with the posL plots of the corresponding sample and the mosaic plot 

of pHsoiln. The quantile-quantile plots of the realisations against the corresponding 

samples and semivariograms associated with the typical realisations are also plotted in 

order to visualise the reproduction of the a.ssociated sample hilltograms and semivar­

iogra.m models. Quantitative assessment is carried out by the measures of accuracy, 

goodness and precision and the merumrcs lor sample histogram and semivariograrn 

model reproduction using MAD and MAE. 

9.1 Typical Realisations 

The p~rformance of DWSIM with regard to sample size is first visually assessed 

via mosaic plots of typical realisations, the quantile-quautile plots and experimental 

semivariograms. For each sample, three rea\isatioru; are randomly selected from the 

set of !UOO realisations. In Figure 53 mosaic maps for these realisations are shown 

together with tho post plots of the sam ph~ and the mosaic map of the corresponding 

exhaustive data set. 
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Figure 53: Mosaic plot of pHsoiln , post plots of nested samples and mosaic plots of 

three randomly selected realisations from each sample. 
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Summary Statistics 
PH.501Rn pltJOOIRn 11HJSO!Rn pH.SOOIRn 

Sample RealisMioM Semple Realis<~tions Sample Realisations Sample Realiutiont 
Stais I 2 3 I 2 3 I 2 3 I 2 3 
Moon 0.00 -0.07 0.02 0.04 .0.12 0.03 .0.02 0.01 -0.07 .om 0,00 0.02 0.00 0.00 .0.03 O.Dl 
Vat 1.02 1.10 1.01 1.08 1.00 1.04 1.05 1.05 1.01 1.10 1.01 1.00 1.00 1.03 1.03 1.02 
M~ 2.62 4.04 3.19 4.19 2.62 3.71) 4.10 3.71 2.62 4.07 3.08 3.72 2.62 3.:llJ 3.38 3.96 
Q3 0 . .59 0.62 0.63 o.n 0.50 0.72 0.62 0.67 0.62 0.62 0.68 0.71 0.61 0.69 O.&S 0.67 
Mod -0.01 -0.10 -0.01 -0.01 .0.18 o.ro .0.06 .0.03 .o.ot .0.10 0.02 0.03 0.01 0.01 -0.03 O.o! 
Ql -0.71 -0.76 -0.67 -0.67 -0.8j -0.65 -0.72 -0.67 -0.84 -0.76 -0.68 -0.66 -0.67 -0.67 -0.71 -0.72 
Min -U!3 -3.28 -3.19 -3.01 -2.23 -3.01 -3 . .50 -2.96 -2.39 ·3.28 ·2.97 -3.87 -2.84 -3 .. H -3.12 -3.03 
Skaw 0.44 0.16 0.32 0.07 0.30 0.07 O.l5 0.21 ·O.ol 0.16 0.02 0.00 0.00 .o.oa -O.Ol O.ll 
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Figure 54: Summary statistics and Q-Q plots of typical realisations (from nested 

samples) against corresponding samples. 
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Figure 55: Experimental semivariograms of typical realisations from nested samples. 
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It can be soou from Figure 53 that the m!l'laic maps of the realisations capture 

all the featureE in the po~t plots of the associated sa.mp!eE. The more data the closer 

is the sample to the exhaustive data set. Therefore, as one can expect, the mosaic 

plots of the realisations get closer to the ruosaic plot of the exhaustive data set when 

the sample siw im:reascs. For example, locatit>llll of high vclucs near the left top 

corner and near the right bottom corner in the mosaic plot of the exhaustive data set 

are better reproduced iu the cMe of realisations from pH500!Rn than in the case of 

ma.lisatious from the other samples. No unusual features or artefacts arc apparent in 

the maps. 

The summary statistics together with the quantile-quantile plots of the rwlisa­

tions again!lt the corresponding samples and the experimental scmivuriograms of the 

realisations in Figure 53 are shown in Figures 54 and 55, respectively. The quantiln­

'JUantilc plots in Figure 54 reveal that thr. more data the bettor the sample histogram 

is reproduced. By comparing the summary statist.ics of the realisations in Figu~ 54 

with those of the assuciated sample, one CIUl sec that all reolisations approximately 

reproduce the associated sample means, variances, skewness co~ffici,~nts, mediaus and 

[]Uartilcs. As&. feature of th<.> simulation, the minimum (maximum) of all realisations 

being lower (higher) than the corresponding sample minimum (maximum). 

The experimental semivariograms in Figure 55 also indicate that the semivar­

iogram model is reproduced regardless of s;unple size. All experimental sornivuri­

ograms are similar to their associated semivariogram models with some fluctuation. 

llowever, the experimental smuivariograms of realisations from sample j>/1500/Ru 

show Jess lluclu<>tion than those of re<>lisations from other sample,;. 

The reproduction of the sample hi~togrmn and semivariogran: model is qmmtitt•­

tivcly assessed using the MAD aud MAE valuP.S of the sets of 1000 realisations in the 
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following section. 

9.2 Sample Histogram and Semivariogram Model Reproduc-

tion 

The MAD and MAE values are uood to quantitatively nssess sample histogram and 

scmivariogram model reproduction. They ar<'- calculated from 1000 re3.lisa.tions from 

eaclJ sample. Each of the MAD va\~es is computed using 20 quantile; and each of 

the MAE values is computed from 18 lags using spacing of I. The boxp!ots for these 

values nrc shown in Figures 56A 1md 56B. 
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ro . 0.12 

' . 

~ 
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~ 
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~ 
. ,, ,. 

$ + 
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000 I 
,, $ $ 0.01 ~ ,, 
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pll.IOIR pfllOOIR pHllO!R pl!lOOIR p!!lOI!! pl!llliiR plllllliR pl!5001R 

Figure 56: Box plots of the MAD and MAE mlucs for the four smn1;'~-

In general, the sample histogram and scmivariogram model of m•ch sumple an~ 

reproduced since the medians of the MAD <1ud the MAE values arc small. In the lw.<l 

case, the MAD and the MAE v:thws :tm dosn to zero and in the worst case the 11.1AD 

value i& approxinmtcly equid to 0.:1 1uod the MAE vahw i~ ltppwximalcly equal tu 

0.12. For Sltmple histogram roprodudiOit, exc\udiug the Cl~~~ of sam pi" pffJOOIR, Lhn 

boxplots in Figure 56A show that l!m MAD values become smaller when llw s:mople 
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Figure 57: Experim('utal semivanngram.s nf 100 r<'lllisatiou:- from th~ ne~tc>d samp}Ps 

size increases. In other words. the more data the closer arc tlw histograms of the 

realisat ions to the sample histogram. For scmivariograru reproduction. the boxplors 

iu Figurf' 56B fihow that.. <~xclnding thf' casP of sampl0 pH2.50fR, t.hc MAE values 

are inversely proportional to the sample size, t he ruore data the less deviation. The 

maximum error MAE decreases from approximately 0.11 , in the case of pHSOJR, to 

0.10, in the case of pHi OOIR. to 0.09, in the case of 1JH500IR; and the median for tile 

:MAE also decreases from 0.04, in the case of pHSOIR, to 0.03, in the case of pHSOOJR. 

The convergence of the c..xperimental semivariograms for the realisations of the 

four samples to the associated semivariogralll uwdel is illustrated via the plots in 

Figure 57. For readability, we only plot experimental semivariograms of t he first 100 

realisations from each sample. The plots show that the deviations from the model of 

these semivariograms decrease when the size of the sample increasP.s. The deviations 

a.re largest in the case of pH501Rn and are smallest in the case of pH5001Rn, excluding 

the case of pH250IRn. 
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9.3 Accuracy, Goodness and Precision of a Simulation 

The increase in s'Unplc size leads to the slight improvement in the performance of a 

simulation assessed via the accuracy plots. Since in Figure 58 all the pairs (p,((p)) 

fall below the 45~ line, only the goodness coefficients and the average variances nre 

considered. It can be seeu that while the goodness coefficient G goes from 0.96 in 

the case of pH50IR, 0.96 for pHJOOIR, 0.9G for pH250IR and 0.99 for pH500IR, the 

associated average variance V decreMcs from 0.64 to 0.56,0.51 and 0.49, rmpectively. 

Even though the increase of the goodness coeffidcnt G is ~mall, the decrease of tim 

average variance is quite corn;idewble. Therefore, the performance of the algorithm 

improves with the sample size since the results nre more reliable. 

~HSOIRn pH1001Rn pH2501Rn pHSOOIRn 

~' @J @ 

'~j; .. .. .. .. .. .. .. .. .. A•0.02 .. Am~OI .. A•OOl •• A~~rs .. ~"" .. ~,. 

" ~'" 
p ";k: ~~-~~ ~ V-o.114 ' v~o.s6 P v~o.1r 

"'"'"'" "'""""" ' ., ...... """""" ' 

Figure 58: Accuracy plots for the nested sRmplcs. 

9.4 Summary on the Impact of Sample Size 

AR ClLn be seen in this Chapter, if the performance evaluation is basctl Oll the mosaic 

plots or the accuracy plots then increasing the ~ample sir-e will increase the porfor-

mance of DWSIM. If the performance evaluation is bru;cd on the reproduction of the 

sample histogram and smnivariognun model then increasing the sample si?.e will not 

strictly increase the performance of the algorithm. However, for all measures, the 

results obtained via DWS[M are adequate regardless of the $EUI1ple size. 
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10 DWSIM IN COMPARISON WITH SGSIM 

In this Chapte• we use a practical application to compare the pp_rforma.nce of DWSIM 

(using the Haar OOsis) with that of the sequential Gaussian simulation nlgorithr.; 

SGSIM (Deutsch and Journel, 1998). SGSIM is the most commonly used condi­

tional simulation algorithm based on the assumption thnt the random function to 

be simulated follows a multivariate standard nonnal distribution. Because of this 

assumption, the isotropic sample pflsamp and the anisotropic sample Ber~amp have 

to be transformed into normal score; before the application of the algori~ hms SGSIM 

and DWSIM. 

For each sMJple, 1000 realisations in the normal score space w:e simulated. TheJe 

realisations then are backtmnsformcd to attribute va.\ues. The panunelcr ftie for 

SGSIM L~ shown in Figure 71 in Appendix 12.6.3. For the sample pHsam/!, bru;ed 

on the shape of the cumulative distribution function in Figure 14, tim power and 

hyperbolic models, each with parameter 1.5, m:e used for the extrapolation at tim 

lower IUld upper tail~, respectively. For the Sllillple Bersmnp, iJMed on the shape 

of the cumulative distribution function in Figure 20, a linear model is used in the 

extrapolation at both tails. The parameter files for the backtransf·Jrm are shown in 

Figures 72 and 73 in Appendix 12.6.4. Tlw purpose of the extrapolation at the two 

tails is to allow the extreme Vlllncs to lie out.side the range of the corresponding sumplc, 

as the sample is only regarded as approximately repffficntntive of the population. 

Therefore, even lheugh the MAD valu!JS measure thc reproduction of the sample 

histogram, we allow the minimn/maximt• of the rcalisatimL~ lo he loWilr/higher th;ut 

the corresponding snmple minimum/mllxhnum. Since here, the exhaustive dat.a sets 

are available, we set the minimum/maximum variables in the parameter file CQIH!I 

to the minimum/maximum of the corresponding exhaiL~tivc data set. In the cuse 
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of, pHsamp, the minimum and maximum pH level nre set equal to 4.00 and 6.00 

raspcctivcly. In tha ease of Bersamp, tha minimum and maximum permeability are 

set equal to 19.5 a.nd 111.5. For both isotropic a.nd anisotropic cases, the performance 

oompw:ison is based on the reproduction of the associated semivariogram models 

and sample histograms, the absolute errors between the average of 1000 realisations 

from each sample and the corresponding exha.Uiltive data sets und the conditional 

variances. In addition, in the isotropic case, misclassilkation nnalysis is also carried 

out to compare the local accuracy of the simulated realisations obtained by the two 

algorithms. 

10.1 Typical Realisations 

We Hrst visualise the performance of DWSIM and SGS[M by plotting the mosaic 

maps of the backtransform of two selected realisations from each sample together with 

their scm.ivnriograms and histograms. In Chapters 7, 8 and 9 the realisations were 

randomly selected. However, in this Chapter to visualise the reproduction of spatial 

continuity based on the MAE measure, the selected renlisations are those that have 

cxperimcntalsemivariogrnms that best IUld worst Ht tlmsemivatiograrn models. These 

experimental semivarkgrams are computed from the normal scores of the realisations 

whilst the histograms are computed in terms of the nttribute values. The mosaic plots 

for the realisations ;rom pH8amp and Bersamp simulated via. DWSIM together with 

the summary statistia;, the qunntile-qU!Uitile plots and semivnriognuns are shown in 

oolumm l and 2 nud tho:<e for realisations simulal.cd via SGSIM in c"lumn.~ 3 nnd 1\ 

of Figures 59 and 60, respectively. 

The mosaic plots, the suuunary statistics, quantile-quantile plots !Uid seruivar­

iograms in Figures 59 a11d 60 show that both DWSIM and SGSlM maintain the 
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fe~tures, histograms and semivariogram model!; of the IISSOCiated samples. Locations 

that have low and high values in the corresponding exhaustive data sets and sam­

ples are captured by the realisations. In both algorithins, the minimum/maximum 

of the realisath1ns nre lowar/higher the corresponding sample minimum/maximum, 

and this is a direct consequence of the choice of the extrapolation parametars in the 

backtransform. In the caoo of sample Bcrsamp, the reproduction of the anisotropy 

is soon both via the banding in the mosaic maps of the realisations and from the 

experimental semivariogrruru;. 

10.2 Sample Histogram and Semivariograrn Model Repro­

duction 

Similar to the previous case studies, the reproduction of the sample histograms and 

semivariogram model!; is quatitatively assessed via the MAD and MAE vnlut'S. These 

are computed from the nonnal scort'S of 1000 realisations simulated from each sample 

via DWSIM and SGSIM. The MAD valut'S are computed using 20 quantiles and the 

MAE values are computed from 18 lags in the cose of the isotropic sample and 9 lags 

in the case of the anisotropic sample, with lag spacing I. Summary stati~tics for these 

values are shown by the boxplots in Figure 61 with thooe for the SGSIM realisations 

being shaded. 

These boxplots reveal that, on average, in both the isotropic and the anisotropic 

case the snrnple histogram and the semivariogram model arc better reproduced with 

DWSIM. It can be seen that the medians in the case of DWSlM are lower than those 

in the case of SGSIM. With regard to spatial structure of the data, DWSIM performs 

bettar in the isotropic case than in the anisotropic case whereas SGSIM performs 

equally well for both cnses. In the case of SGSIM, the medians of the MAE values 
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Figure 61: Boxplots of MAD and lV1AE values of 1000 rcultsations simulated via 

SGSThi and D\VSU.L 

arP approxilllately <•qual for both isotropic and anismrop1r :3aruplcs whilst in the case 

()f D\VSIM thP lll(ldian of the l\IAE values for the ic;ohopil: ~<nnple 1s much lowe1 

t'Orupa.ted wit.b t bat fm the anisotropic t>amplt-' \Vith regard t.u the V'clriability of the 

deviations, in terms of histogram reproduction (the MAD values), the variability of 

the deviations in the case of DWSIM is smaller than that in the case of SGSIM for 

both samples. In terms of semivariogram model reproduction (the MAE values), the 

variability in the isotropic case for realisations simulated via DWSIM is lower than 

the vanability among realisations simulated via SGSIM. The opposite applies for the 

anisotropic case. 
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Figure 62: Mosaic maps of E-type estimates and condit ional variances obtained from 

1000 realisations simulated via DWSIM and SGSIM. 
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10.3 E-Type Estimates - Absolute Errors and Conditional 

Variances 

E-type estimates of the realisationB from pHsamp !llld Bersamp are obtained by av. 

eraging the backtransfonn of 1000 realisatiollli simulated using DWSIM: !llld SGSIM. 

The results are then compared with the values of the corresponding exhaustive data 

sets pH soil and Beret~. The mosaic plots of the exhaustive data sets, theE-type esti­

mates and the conditional variances are shown in Figure 62. In the isotropic case, the 

mosaic maps in the middle column show that theE-type estimates from the two algo­

rithms equally capture the features of the corresponding data set. In the anisotropic 

case the E-type estimate map obtained by realisations simulated via SGSIM looks 

closer to the mosaic map of the exlmustivc data set Berea. The banding in the di­

rection N55°W in the mosaic map in row 4, column 2 looks clearer compared with 

that in the mosaic map in row 3, column 2. The conditional variance maps in column 

3 reveal that in the isotropic case the result obtained via DWSIM: is more precise 

than that obtained via SGSIM since the local conditional variances are lower. The 

opposite applies for the anisotropic cnsc. One can see from the mosaic map in row 

4, column 3 that the conditional variances at locations associated with the banding 

and at the top right corner are lower compared with those at the same locatio!L'l in 

the mosaic map in row 3, column 3. 

The boxplots for the errors obtained by taking the absolute values of the differences 

between the estimates shown in Figure 62 and the true values of the corresponding 

exhaustive data sets pHsoi! and Berro are shown in Figure 63. On average, for the 

isotropic sample, the median of the errorn in the case of DWSIM is slightly lower 

than that in the cas~ of SGSIM. The opposite is true for the nnisotropic sample. In 
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Figure 63: Boxplots for absolute of errors computed from the E-type estimates by 

DWSIM and SGSIM. 

both lliotrupu.: a.tu.l a..u..lliotwpic cases, cuwpa1eu w1th the waxuuuw error::. uLtarned 

via realisations ::.1mulated via SGSLlV{, the ma.xi.mum errors in the case of DWSlM are 

higher-

10.4 Misclassification Analysis 

Now we compare the performance of the two algorithms in the isotropic case using 

misclassification analysis. In practice, for example in barley cropping, the acidity in 

soil is criticaJ if the pH value is lower than 4.5. Soil acidity can lead to poor root 

growth which then causes poor crop yield because of nutrient deficiencies. Therefore, 

if the pH value drops below 4.5, some treatment, for example the application of lime 

to soil, needs to be carried out to reduce the acidity level For this reason, we have 

taken 4 5 as the threshold for the classification. The regions where the pH values are 

lower than the thrc::,hold are classified as highly acidic whereas the location::. where 

the pH values are higher than the threshold are classified as moderately acidic. An 
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indicator function used to classify the study region is defined as follows: 

{ 

1 if :(u) <4.5 
J(u) = 

0 if z(u) ~4.5 
(152) 

Misclassifiration analysts is earned out for the pH values. Because of the limitation 

of computer :,pace only 500 realisations are used in this perfmmanco assessment. 

Using the indicator function in (152). the data set 11Hsoil ami the backtransformation 

of each of 500 realisa.t.ions from sample pH'3amp, general cd by D\~SIM and PWSIM, 

were classified into modemtely ac~dic and highly acidir. categories. The smnmary 

statistics for the percentage of t.he misclassificat10n at unsampled locatiOns, obtained 

by comparing the true categories with those obtained from the realisations, arc shown 

by means of the boxplots m Figure 64, in whlch the boxplots for the rnisclassifiration 

obtained from realbations simulated via SGSI~l are shaded. 

Tdal mtsclasstficat.tm 
20 Alpha typemtsclassificatioo 

Beta tjpe rrusdasslltcatloo 

10 

5 

I I -, I 
DWSIM SGSIM DWSJM SGSIM 

Figure 64: Boxplots for percentage misclassified locations obtained via SGSThi and 

DWSL\11. 
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Based on misc!assifica.tion analysis, DWSIM performs better than SGSIM since 

the boxplots in Figure G.![ reveal that the classification using rea.lisations simulated vin 

DWSIM results in lower percentage of misdnssificd locations than the classification 

using realisations simulated via SGSIM. In tota.l, the boxplots on the left of this figure 

show that a.ll of the summary statistics for the percentage of misclnssified locations 

obtained by realisations simulated via SGSIM arc higher than those in the case of 

DWSIM. For alpha typu errors (modemtely ncidic misclassified as highly ncidic), on 

average DWSIM performs better than SGSIM. Fbr beta type errors (highly acidic 

misclassifiod IL~ nwdcmtcly acidic), on average SGSIM performs slightly better than 

DWSIM. 

Tho mosaic maps of the misdnssilied locatioas in Figure ll5 reveal that locations 

that iir<.! prone to be misdassified arc those that have low pH values. The mosaic 

plots for the total misclnssification and the alpha type misclnssification show that 

SGSIM produces more misclassified locations than DWSIM. For !lXample, the region 

ncar the top right corner of the mosaic plots in the case of SGSIM are larger thnu 

the corresponding regions in the mosaic plots in the case of DWSIM. The dilfercnccs 

between the mosaic nmps for the beta type misclnssification arc negligible. 

In summary, realisations simulated by DWSIM using the Haar basis aml SGSIM 

Ctl.pturc the features of the associated samples and llXhaustive data sets. The result 

of the comparison based on histogram and semivariogram model reproduction shows 

that the performnnce of the two algorithms is equivalent. Each algorithm reproduces 

the histograms and spatial continuity of the corresponding samples. The result of the 

comparison based on misclnssification analysis shows that DWSIM performs slightly 

better than SGSIM. Fina.lly, perfommncc comparison based on &type estimates and 

conditional variances shows that DWSIM performance aud SGSIM performance are 
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equivalent in the isotropic case a.nd SGSIM perfonns slightly better than DWSIM in 

the anisotropic case. 
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11 CONCLUDING DISCUSSION 

In this Chapter we discllSS the efficiency of PWSIM and DWSIM, the impact of the 

wavelet basis lllied in the two algorithms and the re'lult of the performance comparison 

between DWSIM and PWSIM and between DWSIM using the Haar basis and SGSIM. 

The results obtained from the assessment of PWSIM in the case where the under­

lying random function is standard multivariate Gaussian in Chapters 7 and 8 show 

that PWSIM perfor!llB well with both wavelet bases. In general, the investigation 

of the mosaic maps of the simulations does not reveal any particular feature that 

can distinguish the differences between the mosaic plots for individual realisations 

simulated via the Haar basis from those simulated via the Db2 basis. All of tho main 

features seen in the mosaic plots of the associated exhaustive data sets and samples 

are found in the mosllic plots of the realisations regardless of the sampling method 

and the spatial structure of the data.. In the cn.se of the Haar basis, even though 

PWSIJvi can start the simulation at different initial scales, as illustrated in Chapter 

8, the choice of the initial scaling image size does not have a. major impact ou the 

results. 

In terms of the measures of accuracy, goodness and precision, in the isotropic 

case where the accuracy coefficients arc larger than 50%, the goodness coefficients 

are very close to the maximum value. In the anisotropic case where the accuracy 

coefficients are close to zero, the goodness coefficients arc greater than 0.90. Between 

the two bases, the performance of PWSIM is better in the case of Db2 wavelets since 

the accuracy, goodness coefficients arc higher, however, with the drawback that the 

results of the simulation arc less precise. 

For global accuracy, the sample histograms and oornivariogram models are repro­

duced for each wavelet basis in both isotropic and anisotropic cases. On average, the 
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deviations between the histograms and the experimental scmivariograms of the real­

isations with the associated sample histograms and semivariognun models are small. 

Between the two bases, this fluctuation ill highet in the case of the Db2 basis. For 

a given wavclet basis, the fluctuation about the semivariogram model is generally 

higher in the case of the ungriddcd sample. 

Based on the computational effort for one rca.lisation, PWSIM using the Haar basis 

is faster; however, based on the computational effort for a set of 100 rcal.isations the 

difference in the speed of the simulation is not crucial. Since the computational effort 

of PWSIM using the two bases is approximately similar if a S!lt of many reallsations 

is simulated as indicated in Chapters 7 and 8, PWSIM using the Db2 basis should be 

preferable to PWSIM nsing the Haar basis. 

However, because of the postprocessing step, if compared with other conditional 

simulation algorithms, for example the sequential Gaussiun simulation algorithm 

SGSIJVl:, PWSIJVl: requires more computation. Yet it is ll.'l complicated as SGSIM in 

terms of user defined parameters. In using icriging to condition the data. in PWSIM, 

the user must determine the appropriate kriging method (ordinary or simple kriging), 

the search radius and the number of data to be used in the estimation. 

DWSIM, on the other hand, is free from user defined parameters and is faster than 

PWSIJVl:. Since DWSIJVl: makes use of the discrete wavelet transform and its properties 

to obtain the conditional realisations, only the filter of the wavelet basis impacts on 

the result. Therefore, for a given wavelet bllSis the only parameters that need to be 

defined are those of the semivariogram model. In addition, as discussOO in Chapter 

8, because of the conditioning method, DWSIM is faster than PWSIM regardless of 

the wavelet basis used. 

In the CllSC whero the underlying random function is multivariate normal, the 
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performance evaluation in Chapters 7, 8 and 9 shows that DWSIM using the Haar 

basis, is a very effective conditional simulation algorithm. The mosaic plots of the 

realisations simulated via DWSIM using Haar wavelets capture all relevant features of 

the associated exhaustive data sets and samples in both the isotropic and anisotropic 

cases. The sample histogram and the semivariogram model nrc reproduced for all 

cnses. The goodness cocllidents lliC dose to I (the maximum value). Thl:! goodness 

coefficient is used to deduce the location of tlm actual outcome obtained by applying 

a transfer frmction to the true values compared with the median of the probability 

distribution modelled from the outcomes obtained by applying the same transfer 

function to a set of simulated realisations. The closer the value of the goodn= 

coefficient is to I, the closer to the median is the actual outcome. Since thl:! goodness 

coefficient is close to I, the predictions based on realisations simulated via DWSIM 

using the Ha.ar basis are reliable. 

The performance of DWSIM IL'iing the Haar basis is approximately equal to the 

performance of PWSIM. In terms of accuracy, goodness and precision the results 

obtained via DWSIM using the Haar basi~ are slightly more precise than thooc in the 

case of PWSIM. A drawback is that the accuracy and goodness coefficients in the case 

of DWSIM arc slightly lower than those in the case of PWSIM. In terms of histogram 

and semivariogram reproduction, DWSIM using the Haar basis performs better than 

PWSIM. Because the performauccs of the two algorithms arc approximately equal yet 

DWSIM is faster and is free from user-defined parameters, it is more efficient than 

PWSJM. 

In this thesis, the samples we use for the performance assessmenl in the case 

where the underlying raodom function is not multivariate normal in both isotropic 

and anisotropic cases only slightly depart from the normal distibution. The perfor-
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mancc llSScssment in the case of anisotropic samp~ffi from highly skewed data sets in 

'fran et nl, 2002a, shows that DWSIM using the HB& basis has reproduced the asso­

ciated sample histogram and scmiva.riograrn models for both gridded and ungridded 

samples. The investigation of the mosai~ maps of the renlisatioru; also reveals that 

the renllsatim ·.vc reproduced the spatial structure of the associated samples. No 

nrtefncts have b~-cn found in the realisations. 

The performance comparison between DWSIM and PWSIM using the H!Utr basis 

in the CllSe of a highly skewed isotropic sample in 1'ran et al, 2002b, indicate; that 

realisations obtained using DWSIM have less variability than those obtnined using 

PWSIM. In tenru; of sample histogram and spnti;Ll continuity reproduction DWSIM 

performnncc nnd PWSIM performance arc approximately equivalent. In terms of 

misd!ISSilkation annlysis, the performance assa5Sment was carried out by comparing 

the accurncy of realisations associated with the minimum, median and maximum 

MAE. In order to do so, the study region is divided into 2 x 2 blocks. The realisations 

that havc minimum, median and minimum MAE obtained from PWSIM and DWSIM 

nrc back-transformed (using the same parameters) and arc dassifiOO into ore or wMtc 

blocks using three cut-offs nssociatcd with the 2511' , 5011' and 75'h percentiles of the 

exhaustive data set. The category of each block then ls compared with tim true 

category obtained by classifying the cxhnustivc data set using the same cut-olfs. The 

results of the comparison show that in the cosc of the realisation that has minimum 

MAE DWSIM i~ more llCCuratc thnn PWSIM: it bllll a smaller number ofmisclllSSificd 

blocks. For othur realisations, PWSIM ls more accurate than DWSIM. 

However, if tim Db2 b!L'lis is used, DWSIM is less elfeotive especially in the 

anisotropic case. If the Db2 biiSiS is used, DWSIM rcq11ircs more con,pul;ationnl e(fort, 

but the result of the simulation is no better than the result obtained if the Hanr basis 
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is used. Th~ semivariogram model ofth~ gridded sample in the a.nisotropic case is not 

adequately reproduced and the good.nrns oocflidcnt is low, If the goodness coefficient 

is too low, the actual value may fall oul off the range ofth~ outcomes obtained by 

the simulation. In other words, the prediction besed on the simulated realisatio!IB is 

not reliable. 

The unexpected poorer pcrforma.ncc of DWSIM using the Db2 basis in th~ anisotropic 

case is due to the method used to estimate the initial scnling image. In the estimation 

stage, the o.wariancc of the scaling coefllcients within the window in the finer scale 

is ignored. As discussed in Chapter 8, because the. number of nonzero coefficients of 

the Db2 filter is larger than that in the case of the Ha.ar filter, the window in the 

case of the Db2 basis is larger than that in the cnse of the Haar basis. Hence the 

estimation of the scaling coefficients ut the coarser scale in the case of the Db2 basis is 

not as appropriate as in tho case of the Haar basis, especially in the anisotropic case. 

Therefore, in tho anisotropic case the Hoar basis is more appropriate for DWSIM. 

In the case when the underlying random function does not follow a multivnriate 

normal distribution, the performance comparison between DWS!M (using the Haar 

basis) and SGSIM in Chnpter 10 shows that DWSIM performs slightly better than 

SGSJM in Um isotropic case but the opposite is true in the anisotropic case. In the 

isotropic case, the histograms and experimental semivariograms of the realisations 

simulated via OWSIM nrc closer to the associated sample histograms a.nd semivari­

ogram modeis thnll when the realisations are simulated viaSGSIM. Fbr loco\ accuracy, 

DWSIM performance and SGSIM performance ore cquivnleot if the :&type estirn<1tcs 

nod conditional vnrianccs oro comparod and DWSIM performa.ncc is slightly bet­

ter than SGSIM performance if the results obtained by miscii!SSifieation analysis arc 

compared. As discnssed in Chapter 10, the modian of the absolute errors and the con-
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ditional variances computed from the realisations simulated using the two algorithms 

are approximately the same; but the percentage of misclnssilied locations in the case 

on SGSIM is higher than in the case of DWSIM. In the an.i.sotropic case, the perfor­

mance of the two algorithms is equivallint in terms of histogram and semivnriogram 

reproduction. In terms ofE-type estimetes and conditional variances, SGSIM perfor­

mance is better than DWSIM performance since the absolute errors and conditional 

variances arc lower in the case of SGSIM than in the cuse of DWSIM. 

In terms of computational eifort, compared with SGSIM, DWSIM using the Haar 

basis is more efficient. Firstly, DWSIM is free from u~er defined parameters such as 

the kriging method and the number of data used in the kriging. Secondly, DWSIM 

does not require that the size of the study region be larger than the range of the 

semivariogram model. It only requires that the size of the study region be a power of 

2. Thirdly, DWSIM is computationally cffic!Cnt. As discussed in the end of Chapter 

8, DWSIM only requires approximately 5.8209 x 105 algebraic operations to simulate 

one realisation from pHJDOn. For SGSIM, the number of algebraic operations used 

to solve for the kriging weights alone is 1.154 x 107, which is approximately 20 times 

the number of algebraic operations used in the case of DWSIM. If one takes into 

account the number of additions and multiplicationB used to compute the covariance 

among the conditioning data in the kriging system and those used Lo compute the 

error variance of the kriging estimates, the difference between the number of algebraic 

operations used in SGSIM and that used in DWSIM would be larger. In addition, in 

simulation methods 11sually a large number of realisations are simulated, rather than 

just a single realisation. If 100 realisations are required, DWSIM uses approximately 

only 1.0971 x l07 additions and multiplications while for SGSIM more thllll l.l54 x l09 

~lgcbraic operations arc needed, which is 105 times as many 'lS the number of algebraic 
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operations in the case of DWSIM. 

In the CXI!lllp!e discussed above, the si:re of the region to be simulated by DWSIM 

is 64 x 64 which is approximately 61 x 61, the size of the study region. When the 

dimensions of tbe study region are much smaller than those of the region that DWSIM 

has to simula.t(l, the computational adVllDtage for simulating one realisation obtained 

using DWSIM: may not be as great as in the case of the cxnmple. For example, in 

the anisotropic case the size of the study region is of 40 x 40, but the region to be 

simulated by DWSIM must be of size 64 x 64, a power of 2. Therefor(!, the number of 

grid locations to be simulated by DWSIM is much larger than the actual one whereas 

this reqnir=ent does not apply for SGSIM. In this cas(!, the computational advantage 

of DWSIM over SGSIM is based on the large number of realisations simulated. 

SGSIM is the most commonly used conditional algorithm that is based on the 

same assumptions n.s those in the case of DWSIM. This algorithm can simulat(l, con­

dition the data and handle the anisotropy at the same time. However, one of the 

disadvantages of this algorithm over other algorithms, for example the LU decom­

position simulation algorithm, is the number of user-defined parameters. In defining 

these parameters, one needs to validate that the choice is appropriate. 

The purpose of the comparison between SGSIM and DWSIM is to find out whether 

or not the performance of this newly-developed algorithm DWSIM, which apart from 

the semivariogram model is free from user-defined parameters and which is also com­

putationally efficient, is equivalent to that ofSGSlM. Balled on the example in Chap­

ter 10, it is obvious that DWSIM performance is slightly better than SGSIM perfor­

mance in the isotropic ciiSe. However, in the anisotropic cnse SGS[M perrorm!lllce is 

slightly better than DWSIM performance. 

In summary, in this thesis we bave first introduced two single-level wavelet-bnscd 
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conditional simulation algorithlll!l HSIM and DB2SIM and then moved to develop 

two multi-level wavelet-based conditional simulation algorithlll!l called PWSIM and 

DWSIM. Both multi-level algorithms recursively recolllitruct the simulated realisa­

tiollli from an initial scaling image at a coarse scale. While in PWSJM the remit of 

the recoUBtruction is a nonconditional simulation which needs an additional postpro­

cessing step to condition the data, in DWSIM a conditional simulation is obtained 

directly. Because of this, DWSIM is a very fast conditional simulation algorithm. 

The performance evaluation shows that DWSIM using the Haar basis performs 

well based on different performance measures for both isotropic and anisotropic data. 

The results of the simulation obtained by DWSIM using the Haar basis arc as good 

as those obtained via PWSIM and SGSIM yet DWSIM is more efficient than PWSIM 

and SGSIM. While both PWSIM and DWSIM rely on loiging, DWSIM uses the 

discrete wavelet transform to condition the data. This is the rcllSOn why, unlike 

PWSIM and SGSIM, DWSIM is fll!lt and free from user-defined parameters. Because 

of these advantages, it can save a great amount of user clfort in computational time 

and in validating the parameters. 

One limitation of DWSIM is that the conditioning data have to coincide with the 

simulation nodes. In the Cll!le when the data do not lie on grid nodes, the application 

of the algorithm has to be preceded by a relocation of the data to the nearest grid 

nodes. In addition, DWSIM can only be applied in the case where the underlying 

random function is second-order station!UJ'. Fbr non-stationary random functions, 

the covariance depends on locations. The computation of the weights used in the 

reconstruction of the scaling image then will also depend on the locations of the 

simulated nodes. Hence, the method of computing the weights used in DWSIM is 

no longer appropriate. Therefore, more research needs to be carried out to find a 
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suitable approach for computing these wcights so that the algorithm is still fast nnd 

effective. 
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12 APPENDICES 

12.1 The Spectral Representation Theorem 

Theorem 8 Let X(t) be a second order stationar>J proce8Si S(w) is the spectml den­

sit.J associated with X(t) given by 

Then there exists a uniqw complex stocluu;tic process i(w) satisfying (see Koapmans, 

1974): 

1. 

X(t) = L: c""'di'(w) (153) 

2. 

E[di(w)] = 0, for ail w 

3. 

E[d.i(wl)di(w2)] = { 
0 

S{w)dw 
(154) 

where the over-bar denotes the complu: ronjugate. 

12.2 Checking the BiGaussian Assumption 

The checking is based on the properties of a slnndard multivariate Gaussian random 

function. 
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Let Y ; A -> {Y(u}: u E A} be a sta.ndard multivariate Gaussian ra.ndom 

function. Suppose that C~(h} is the oorrclognun obtained from the semiva.riogrnm 

model'Yu(h} of a sample from the random function Y(u) by letting 

Then the two-point distribution of any pairs of the random variables Y(u) and 

Y(u +h) follows normal distribution and is determined by (Goovaerts, 1997) 

Prob(Y(u) S: yp, Y(u +h) S: Yl") 

, '/.""";nc,(b) [ y2+y}-2y1,yl"sin0] 
pp+-, "''' 2 ,, dO ~ 0 cos 

(155) 

(156) 

for all p,p' E [0, 1], where Yp is the standard normal p-quantilc. By setting Yr = w 

equation (155) becomes 

Prob(Y(u) S: Yr,Y(u+h) S: Yrl 

' r-'"'·'"' [ if. ] r+2,; }
0 

exp -l+sinO dO. 

The two-point probability distribution in (157) can also be written as 

where 

Prob(Y(u) S: 11r• Y(u +h) S: Yr) 

E{I(u,p}J(u + h,p)} =p -1'1(h;p) 

{ 

1 ifY(u) S: Yp 
I(u,p) = 

0 if otherwise 

(157) 

(158) 

and 1 1(h;p) is the indic.1tor semivariogram for the threshold Yr· Therefore, the th()­

orctica.l indicator scmiva.riogram corresponding to the threshold Yr can be computed 

by 

"11(h;p) = P- G(h;yp,Yp)· (159) 
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Based on equations (157) and (159), the checking for two-point Gaussian distri­

bution is carried out by: 

1. Computiog the theoretical indicator scmivnriograms for several thi:esholds. This 

is carried out using the program BIGAUS.EXE in the GSLIB library. 

2. Computiog the experimental indicator scmivariogra.ms for those associated thresh­

olds. 

3. Fbr each threshold, superimposing the experimental indicator semivariograrn 

onto the plot of the theoretical indicator st!mivariogrum and observing the fit. If 

for all thresholds, thll theoretical and cxperimentalsemivnriograms are similar, 

the biGaussian assumption is satisfied. 

The checking Gaussian distribution of the sa.mples used io this thesis is curried 

out by computing the theoretical and experimental indicator semivariograms for the 

25-, 50- and 75-perccnti\e of c.1ci1 sample. fn the isotropic case, the plots of the 

isotropic theoretical and experimental indicator st!mivnriograms arc shown in Figure 

66. In the anisotropic ease, the theoretical and experimental indicator omnidirectional 

semivariogra.ms arc shown in Figure 67 whereas the theoretical and experimental 

indicator scmivnriogrnms in the directions of maximum and minimum continuity arc 

shown in Figure 68. Based on the scmiva.riognuns, the biGaussiEUI assumption is 

valid. 
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Figure 67: Theoretical and omnidirectional experimental indicator semivariob<rams 

for 25-, 50- and 75-pcrcentile thresholds of anisotropic samples. 

201 



25 percenUio 00 porconlllo 76 porconlllo 

~·~;e_ :~ /r . • . . ~ r /~-'·-· __ · ~ ( /. 
···r ""' -u.... .~ / -M··~ ""' 11 · -t.r .... 

~" ;~!'r-.,--;~;:':':""":~ ;,!·'r--,,,-;;':~~"':~·,~~~ :;'!.r'--,,-''\;c::;o7';· "'\~ 
lm~·~ ".:;11_.._--'--'---: •• v · · tw• at u; 'ot ' 

no; ;-•• ~•'\" __ ,_, 0:\: -M""' oo; -Mo•ol 
0 ...--o- 0 ° ............ 0 1'---,,---•;•,~,-,. ,.,.~ 

0 0 D~lli 20 0 ' Dlhl11 :0 0 ' Dlhll'l aJ 

" r •• • .~ r • u r . . ., . . . •• 

, '"'"'""""'" 005 -Modo! <Ull ' -Mo<ol 
=~.· .. ~ /' 0

MoUI o:, /''~'---- 00 
/ . . ......... ...., .......... ..., 

BGoliRn ~~'r.' lllhlli ~ ~:'~' DIOI~ "'~;b';,; 1 Dtill~ lO 

,., .. ~·· • • u. •• 
"'''" o:, OJ • o • Ol 

!.{ '" ., "' • no; ;:-...,:....... 01 -,!:!'<lot..,., 01 o -M""!I 
a 0 ,,_.,.. a •• """"''" 
o l "~I'll "' o , Dlhlli ,. o 5 Dtl>lli ,. 

~m~.:~G· .. ·;!b;· ~~~r . 
N,JW"';_., -Modol " 

0 0 
• ~ ' 

j 0 • .............. ·; ::-"''"'' •'!! --:·~-,----;;-,.,~:,:..,·.'··-~ 
e,,.,.,mp • • "till" "' o ' " 1•1" "' ·;; ' o lhl" ,. 

~~.~~l6·· . ~~b· .. -~~~r .. . '' . ., . ., 
01 -Mo~l 01 -M•<_d • .05 -Modo! , • · ""'"""' , · .............. , v._,,---; .. ~~, .• ,. '"''o 

o 5 Dlhl~ 20 o 5 u~~ 20 0 5 l)IM" 10 

Figure G8: Theoretical and experimental indicator semivariogriDl!.'l for 25-, 50- and 75-

percentile thresholds in directionB of maximum and minimum continuity of anisotropic 

samples. 
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12.3 Computational Effort for PWSJJ\.1 in Detail 

1. The computation of the covariance tables: The computation of one value in 

the covariance table at the coarser scale from the covariance at the finer scale 

requires 4 x (2M) 4 multiplications and (2M)4 -1 additions, in total80M4 -I 

operations. For a simulated realisation of size 64 x 64, as in our example, the 

number of covariance values that have to be computed in this step is shown 

in Table 8. Theoretically, for j > 0, the size of the covariance table asso-

j Scaling image size Covariance table size 

0 64 X 64 I29 x 129 (Not counted) 

1 32 X 32 (66- 2M) x (6~ -2M) 

2 16 X I6 (33-2M) x (33 -2M) 

3 ,,, (I7-2M)x(17-2M) 

Total cova.riance values: 6603- 460M + 12M2 

Table 8: The number of covariance values at j>O to be computed. 

ciated with a scaling image of size P x Q is (2P +I} x (2Q + 1). However, 

bccall.'le of the edge effect, only (2P + 1 - 2M) x (2Q + I - 2M) covariance 

values can be computed. Hence, for this particular example, the number of 

algebraic operations required for the computation of the covariance tables for 

j >. 0 is (5603- 460M +12M2) {80M4 -I). In addition, each value of thu 

covariance table at j = 0 requires 3 multiplications and I addition. There­

fore, in total the oornputaUon of the covariance tables for j = 0, .. ,3 requires 

(6603- 460M + 12)\(l) (80M4 -1) + 66664 operations. 

2. The simulation of the initial scaling image: The simulation of the initial scaling 

image involves the Choleski decomposition of the covariance matrix and the 
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simulation of the associated scaling coefficients. For the covariance matrix of 

size m x m, the decomposition requires "t +'f -:If multiplica.tioiiS and 'f -!f} 
additions (Burden l!lld Faires, 1997, page 411). The simulation of !ISSOciated 

scaling coefficients according to formula (133) needs m(~+l) multiplications and 

<m-;tlm additions. In this special example, since the size of the initial scaling 

image is 8 x 8, the sir,e of the covariance matrix is 64 x 64, that ism = 64. The 

decomposition of this matrix costs 89376 algebraic operations and the simulation 

requires 2080 multiplications and 2016 additions. In total, 93472 algebraic 

operations must be carried out for this step. 

3. The computation of the weights: The computation of the weights in equation 

(134) involves: 

• The solving for the weights cx;i :There nrc three sets of weights to be solved: 

one for each type ef wavelet coefficients. Tho solving for the weights is 

carried out using the Choleski decomposition of the oocllicient matrix and 

the back-substitution metbod. The decomposition of a covariance matrix 

of size m x m requires ~m~ + ~m2 - ~m multiplications nnd additions. 'Ib 

obtain tho solutions of the system of m equatioiiS, m2 multiplications and 

m2 - m additions have to be C!lfried out (Burden and Faires, 1997, page 

412). Since the cocffici~nt matrix is the same for three wavelet coefficient 

types, the Cholcski dcoornposition is ooly c!U"ried out on~:c. Therefore, in 

total, the computation of three sets of weights for the three types of wavelet 

coefficient.~ involves 

la1 2 5 2 1 3 13 2 23 
-m +-m --m+3(2m -m)=-m +-m --m 
3 2 6 3 2 6 

algebraic operations. 



• Thu computation of the stnndiU'd deviation "( of the noise: For a system 

of m equations, the computation of the standw:d deviation"( in equation 

136, rcquir~ m2 +m+ 1 multiplications and m2 additions. Hence, (2m2+ 

m + l} x 3 algebraic operations w:e required for computing three standrud 

deviations associated with the three sets of weights. 

• Hence, to move from one coarse scale to the next finer scale, in total 

!m3 + ~m2 - ~m + 3 algebraic operations have to be carried out. In 

our case, for wavelets with M vanishing moments, by rep\e.cing m with 

(2M+ 1)2 on moving from a scaling image at j = 3 to a scaling image 

at j = 0, the number of algebraic operations required for computing the 

weights is 

3(~ (2M+ 1)
6 
+¥(2M+ 1)4 - ~(2M+ 1)2 +3). 

4. The ~imulation of the wavelet coefficients: According to formula (134), ti.~ 

simulation of each wavelet cocllident involves (2M+ 1)2 +I multiplications 

and (2M+ 1)2 additions. In total, 2(2M + 1)2 + l algebraic operations hallll 

to be carried out for one wavelet coefficients. The number of additions and 

multiplications required to obtain ail of three types of wavelet coefficients during 

a simulation is listed in Tables 9. 

5. The inverse discretu wavelet transform: According to formula (92), the compu­

tation of each scaling coefficient at the finer scale from the scaling and wavelet 

coefficients at Lhc nexL coarser scale via the inver!le discrete wavelet transform 

involve 2 x (2M) 2 multiplication and (2M)2 - 1 additions: in total 12M2 
- I 

operations. The number of algebraic operations for the inverse discrete wavelet 

transform is computed in Table 10. 
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j Scaling image size Nil of operations 

0 64 X 64 0 

1 32 X 32 3 X 32 X 32 X (2(2M + 1)2 + 1) 

2 16 X 16 3 X 16x 16X (2(2M +1)2 +1) 

3 sxs 3 X 8 X 8 X (2(2M + 1)2 + 1) 

'Ibtal operations: 80G4 (2M+ 1)~ + 4032 

Thblo 9: The number of operations used to compute aU wavelet coefficients. 

j Scaling image size N'l Operations 

0 64 X 64 G4x64x(12M2 -l) 

1 32 X 32 32x32x(12M2-1) 

2 16 X 16 16 X 16 X (12M2- 1) 

3 sxs 0 

'lbtal operations: 64512M2 - 5376 

Table 10: The number of operations used in the inverse discrete wavelet transform. 

6. Conditioning the data. Assume that 16 conditioning data are used to compute 

the kriging c:slimate at one unknown location, in this example, for a study 

region of size 61 x 61 with a sample of 100 data, this step involves the solving 

of 3721 - 100 = 3621 systems of 16 linear equations in 16 unknowns. Assume 

that the solutions are obtained by the Gaussian elimination method, according 

to Burden and Faires (1997) to solve a system of m equations 

(160) 

algebraic operations arc required. In uur example, m = 16, therefore, 3123 alge-

braic operatiollS are needed for solving one set of kriging weights. In additioru;, 

to obtain condition (33) one has to carry out 2 x (16 multiplications + 15 addi-
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tions} and 2 more additions (subtractions) In total, 3187 algebraic operations 

are required to condition one location. Therefore, in total the postprocessing 

step requir~ 3187 x 3521 = 1.154 x 107 algebraic oparations. 

12.4 Computational Effort for DWSIM in Detail 

1. Computation of the covariance table is the same as step 1 in S~tion 12.3. 

2. Estimation of the initial scaling image: The uumber of multiplications and ad­

ditions in this step depends on the number of conditioning data and their con­

figuration. Fbr this particular example, the sample contains 100 values, at the 

original scale j = 0 the distance between these values is 6 grid nodes. At j = 1, 

only 100 scaling coefficients ure estimated from 100 window:;, each of which 

contains only one vn.iue. The estimation nf each scaling coefficient involves 3 

additions (I of which is llSed to increwm the counter) and 2 multiplications (1 

for averaging the value, 1 for doubling the average). The same number of scal­

ing coclficients ere eslimated at j = 2 and the window associated with each 

estimated scaling coefficients also contains 1 value. At j = 3, the number of 

estimated values is 64 {the values of all of the grid nodes are known). Assume 

that ead, window at the finer scn.!e associated with an estimated value contains 

3 known valul'!l, the estimation of one value involves 6 additions and 2 multi­

plicntions. In addition, these values have to be rescaled so that the estimated 

values achieve the variance of the associated scaling coefficients. The number of 

additions and multiplications for the rescaling and for the estimntim1 i!l lisl!.!d 

in Table 11 

3. The computation of the weights: The computation of the weights in equation 
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j Estimation Rescaling 

1 300 add. + 200multi. 400 add. + 101 multi. 

2 200 add. + 200multi. 400 add. + 101 multi. 

3 64(7 add. + 2multi.) 256 add. + 65 multi. 

4 0 0 

Thtru 1476 operations 1323 operatiollll 

Ta.blc 11: Number of algebraic operations for the estimation stage. 

(140) to move from one conrse scale to the next finer scale involves: 

• The determination of four sets of weights, each for one location in the 

2 x 2 window. Using the Cho\eski decomposition and the back-substitution 

method, the number of algebraic operations iB computed in similar manner 

IL'l in the ca.sa of PWSIM. However, for DWSIM, four set of weights are to 

bb obtained. Therfore, in total the computation for four sets of weights in 

the CllSC wnvclets with M vanishing moments involves 

~(2M+ l)a +¥(2M+ 1)~- ~(2M+ 1)2 +4 {161) 

nlgebraic operations. Therefore, on moving from a scaling image at j = 3 

Lo a scaling image at j -= 0, three times of that amount is required. 

4. The simulation of the scaling coei!Jdcnts at the finer sca:c via the scaling coef­

ficient at the coarser scale: According to) formula (140), the simulation of each 

scaling coefficient involves {2M+ 1)~ + I :nultip!icatio:ms and (2M+ 1)2 addi­

tions. In total, 2(2M + 1)2 + l algebraic operation> lnwe to be carried out. The 

total number of algebraic operations used to compute the scaling coefficients 

for simulating one ocalisation is listed in Table 12. 
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j Scaling image size Nl Operations 

0 64 X 64 64x 64 X (2(2M + 1)2 +1) 

1 32 X 32 32 X 32 X (2(2M + lf+ 1) 

2 16 X 16 16 X 16 X (2(2M + 1)2 + 1) 

3 '"' 0 

Thtal operations: 43008W + 43008M + 16128 

Table 12: The number of operations used to compute the scaling coefficients in the 

back simulation. 

12.5 Computer Programs - Data Sets and Samples 

Two executive computer progra.ms DWSIM.EXE, WSIM.EXE and the parameter ffies 

together with the data sets and samples discussed in this thesis are included on the 

accompanyiug CD. The two executive computer programs are compiled from two sets 

of FORTRAN 4.0 sourca codes. The set of source codes (not included in th!l CD) 

nsed to compile DWSIM.EXE consists of 

• The main program DWSIM.f 

• The include file DWSIM!nc.f 

• Subroutine Acorni.f from the GSLIB library used to generate uniformly d.iB­

tributed random numbers. 

~ Subroutine Backsim.j nscd to rccoUBtrur.t the scaling image from a coarser scale 

Lo the previous finer scale. 

• Function Cova2.f from the GSLm libracy used to compute the covariance table 

at the original scale. 
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• Subroutine Gav.inv.f from the GSLIB "hrary used to generate normally dis­

tributed random numbers with mean 0 and variance 1. 

• Subroutine Getdata.[ used to read conditioning data. 

• Subroutine GeUni_ImageJ used to estimate the conditioning values a.t the 

scales associated with j > 0 and the initial image. 

• Subroutine Getwllig/Us.f used to compute tho weights. 

• Subroutine Scalcov.J used to compute the covariance tnblffi for tlm5Clllcs 11-SSo>­

ciated with j > 0. 

• Subroutine Readparnm.f used to read the parameters in a parameter file cn!Jcd 

DWSIM.PAR. 

The set of FORTRAN 4.0 source codes (not included in the CD) nscd to compile 

the program WSIM.EXE for the non-conditional simulation consists of 

• The moin program WSIMJ 

• The include file WSIMincJ 

• Subroutine Awrni.j from the GSLIB library used to generate unifonnly dis­

tributed random numbers. 

• Subroutine Backsimf used to recoru;truct the scaling image from a coarser scale 

to tim previous finer scale. 

• f.'unction Gova2.f from the GSLIB library used to compute the covariance table 

at the original scale. 
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• Subroutine Gauinv.f from the GSLIB library used to g!lnemte normally dis­

tributed random numbers with m!lall 0 and vnrianoo l. 

• Subroutine Getweights.f used to compute the weights for simulating the wavelet 

coefficients. 

• Subroutine Hscnlrov.f used to compute the covariance tabla for the scales a& 

sociated with j > 0 using the Haar lowpass filter. 

• Subroutine Readpamm.f used to r!!lld the parameters in a parameter file called 

WSIM.PAR. 

The data sets and samples included in the CD arc 

• Data set pHsoil. 

• Data set pHsoiln. 

• Sample pH lOOn and the jackknife data Jac/qJHJOOn. 

• Sample pHJOOIRn lllld the jackknife data Jackpll100!Rn. 

• Sample pH50!Rn and the jackknife data Jacl;pH50!Rn. 

• Sample pH250!Rn and the jackknife data JackpH250!Rn. 

• Sample pH500!Rn and the jackknife data JackpH500IRn. 

• Data set Berea. 

• Data set Berean. 

• Sample B64n and the jackknife data JackB6,fn. 

• Sample B64!Rn and the jackknife data JackB6,f!Rn. 
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• Sample pHsamp 

• Sample Bersamp to simulate conditional realisatioru; using the Haar and Db2 

bases. It consists of 

12.6 Parameter Files 

The following parameter Hies should be opened using WordPad. 

12.6.1 Parameter File for WSIM 

START OF PARAMETERS 
6t ~~ 

61 00 

' ' 
2!13\00 
wsim.Cial 
1 0.15 
2 0.60 0.0 18.0 180 

\""""""''""'"'l lny)fm)"'pil'*'\J 
\Siarlin<JSoaiO 
1"""""-lbas,usod(Haat:\ Db2 21 
ln<.mi!O<olsirn<.tat\on 

\ oulplll flo lor <imlkltod IDiliiSal>oOs 
\ml oooootollecl 
\ lt.c::.ang, a.Jvnln. a.)vno:< 

nsl: IMI!bor ol '""""'"o~amslnlci\Jres . ., 
ang: ""'"""h ol """""'"m sp,...<:<m1<1LI!y 
ajltna)c: rarogo nlhom""'mum <po~~ oonliruly 
.._-: rall<JOil 1M rrrioom spa~~ 0011lii>Jily 
~- I: Spl1elkol 

2; E>ponenl'al 
3:Gausslon 

Figure 69: Parameter file for WSIM. 

212 



12.6.2 Parameter File for DWSIM 

Parameters for DWSIM ....... .,.,. .... .....,.. .... 
START OF PARAMETERS: 
ber64n.dat \data file 
1 2 3 64 1 columns forx. y. variable.numdala 

\ nxxm1n xspadng 40 0.5 
40 0.5 

1000 
283107 
dwsim.dat 
2 0.0 

\ nyymin yspadng 
\wavelet basis used (Haar:1 ; Db2: 2) 
\ number of simulation 
\random number seed 
\output file for simulated realisations 
I nst. nugget effect 

0.6 305.0 8.0 1000.0 
0.4 35.0 9.0 9.0 

\ il.cc.ang.a_hminx. a_hmax 
\itcc.ang.a_tminx.. a_hmax 

nst: 
cc: 
ang: 
a_hmax: 
a_hmin: 
it: 

number of semi'lariogram structures 
sill 
azimuth of ma>dmum spatial continuity 
range in the maximum spatial continuity 
range in the minimum spatial continuity 
1· Spherical 
2: E)(ponential 
3: Gaussian 

Figure 70: Purametcr file for DWSIM. 
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12.6.3 Parameter File for SGSTh<l 

Parametem lor SGSI M 

START OF PARAMETERS 
pHsampn.dat 
120400 
-t.Oo21 

' sgsim,tm 

1.0021 

' histsmth.out 

" 0.0 16.0 

1 0.0 

'"' 
sgsim.dbg 
sgsim.dat 
1000 

61 0.0 1.0 
61 0.0 1.0 

Q_Q 1.0 

7929708 

" ' 
" 

' ' " 20.0 20.0 10.0 
o_o o.o o.o 

0 60 LO 
.Jdata'ydata.dat 

' I .15 
2 .85 o_o o_o _o 

I fie ,.,;th data 
I cotumnslorX.Y.Z.vr.wt.sac . ...,.,-. 
I trimming imits 
I transiOilll tho data (O•no. 1 ")'E'S) 
I ble lor oulput trans tabla 
\ considerraf. dist [O•no. 1 ")'E'S) 
I fila 1'11th ref. d1st disllibution 
I coturMstorvrandwl 
I zmln.zmax{t;ul a>drapolation) 
\ towertajl op~on. parnmotor 
I upper tail op~on. parameter 
I dobugging level: 0.1.2.3 
1 me lor dobugg1ng output 
I file for simulation output 
I number of malizations to ganaralo 
I rnu<mn.><Si~ 
lny.ymn.)'SiZ 
ln~.zmn.zsiz 

I random number seed 
I min and ma>< original data for sim 
I number of simulated nodes to use 
I assign data to nodes (O•no. 1 ")'E'S) 
1 mulbpla glid search (Omno. 1 "}'OS).num 
I ma><imum data par octant (O~not usod) 
I mot-:imum searcll radii (hma><.hmln.vert) 
1 angles tor search ellipsoid 
I kt)-pe: O~SK.1 zQK_2•LVM,3•EXDR.4•00LC 
I file with LVM. EXDR. or OOLC variable 
I column tor secondary'l<lriable 
I nst. nugget offoct 
I it.cc.angl .ang2.ang3 

Fi~,ouro 71; Parameters for SGSIM. 
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12.6.4 GSLID Parameter Files for Back-transfonnation 

Paramoters lor BACKTR 

START OF PARAMETERS: 
dwsifrolt.dat I ~lalloilhdata 
3 I column with Gausslanvariabl9 
·l.Oo21 1.0921 
dwsimb.dat 
pHsampn.lrn 

' . 
2 1.5 
4 1.5 

1 trimming limits 
I f~o for cutplll 
I file with inpllltranstorma~on tablo 
I minin1um and m1llcim<.ll'fl data value 
I lowerlail option and parameter 
I uppPr tail option and parameter 

Figure 72: Parameter file for backtransformatioa of realisations from pHsamp. 

Parameters for BACKTR 

START OF PAAAMETERS: 
dwslm.dat 

' -1.0921 1.0e21 
dwsimb.dat 
bersampnJm 
1S.5 111.5 

' 0 
' 0 

I tile with data 
I col<.ll'fln with Gaussian variable 
I tnmming limits 
I folotorolllplll 
1 file \'lith inputtran!ilorma~on table 
\ minimum and ma>iimum data value 
I lower tail option and parameter 
I Upper tail option and parameter 

Figure 73: Parameter file for backtrnnsformation of realisations from B~rsamp. 

12.7 Notation 

E9 : direct sum 

@: tensor product 
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(f,g): inner product 

A : accuracy coefficient 

A: study region 

a: range of smnivariogram 

P[m,n) :covariance between two scn.ling coefficients d[m] and d[n) in on~dimensional 

space 

Pi,,ml,(o,n); covariance between two scaling coeffidents d[p,q] and d[m,n] in two­

dimensional space 

d[nj : ono-dimensional scaling coefficient at location n 

d[m, n) : ~wo-dimensionnl scaling coefficient at location (m,n) 

G(h): covariance function of stationary random function Z for lag vcclcr h 

C(O) : covariance value at separation distance jhj = 0 

C(u, u') : nou-st.l<tionary covariance of random variables Z(u) ru1d Z(u') .. 

di[n] : on~dimensional wavelet coefficient at location n 

di[m,n),k = 1,2 or 3: horizontal, vertical or diagonal two-dimensional wavelet 

coefficient at location (m, n) 

5j,,.,,.): covnriance between two scaling coefficients d[m] and d+1[n] 

i{ ,m),(q,n): covarirutce betwcen two scaling coefficients d[p, q] and &+ 1[m, n] 

E{.}: expected value 

216 



flim,n) : covariance bctw'*ln wavelet coefficient d;[m] and scaling coefficient &'[n] 

lJ!{m,p),(n,q) : covariance between wavelet coefficient d~[p,q], k = l, 2 or 3 and scaling 

coefficient &'[n, m] 

F(u; z[(n)) ; conditional cumulative distribution function at location u of a random 

variable Z(u) with regard to the information given by n data 

g([h[) : isotropic standardised semivariograrn model 

g[n] : wa.velct highpass filter 

G : goodness coefficient. 

1'(h) : semivariogram function of stationary random function Z for lag vector h. 

l![n] : wavelet lowpass filter 

L2(R) ; space of square integrable functions such that r: lf(t)l2dt < 00 in one-

dimension 

M : number of vanishing moments. 

n: number of conditioning data in the study region A. 

n(u): number of data value used for estimation the attribute vulue at location u 

N(O, u2) : normal distribution with mean 0 and variance ,-2 

¢ ; one- or two-dimensional father wa.velet 

¢;,n : one-dimensional scaling function obtained by dilating and shifting the father 

wavelet a scale factor z; md a translation factor n 
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¢1,m,n : two-dimcnBiona\ scaling function obtained by dilating and shifting the father 

wavelet a scale factor 2i and trlliL'llation factors m and n in horizontal and 

vertical directions 

1/1 : one-dimensional mother wavelet 

1/J;,n : one-dimensional wavelet obtained by dilating !llld shlfting the mother wavelet 

a scale factor 2i and a translation factor n 

1/Jk : two-dimenBional mother wavelet 

1/J;,,,,.(k = 1,2 or 3): horizontal, vertical or diagonal two-dimensional wavelet o~ 

tained by dilating and shifting the mother wavelet a scale factor 21 and tran& 

lation factors m and n in horizontal and vertiGa! directions 

p(h) : correlogram function of stationary random function Z for lag vector h 

!It : set of real numbers 

u2(u) : conditional variance of random variable Z at location u 

r(m,nJ : covariance between two wavelet coefficients dijmj and d1jnj 

r.,·, J ( (' k = l, 2 or 3 : covariance betwoon two wavelet coefficients di[m, nj and m,p, n,q 

u: coordinate vector at a location 

i7 : average variance. 

Vj : space of all approximations of the function f at the scale 21 

W1 : detail space, orthogonal complement of Vj 
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t;J : scaling spectrum 

Z : 5et of integern 

Z : random function 

z(u): true value at location u 

z,(u) : nonoonditionnl Bimulated value at location u 

Z,o(u): conditional simulated value at location U 

zK(u) : kriging estimate of tho true value z(u) at location using data values at 

sample locations 

z;K(u) : kriging estimate of the true value z(u) at location using simulated values 

at sample locations 

Z(u): continuous random variable at location u 

ZSK(u): simple kriging estimator of Z(u) 

ZbK(u): ordinary kriging estimator of Z(u) 

(i{k = 1, 2 or 3) : wavelet spectrum 
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