Edith Cowan University

Research Online

Theses: Doctorates and Masters Theses

2003

Wavelet-based simulation of geological variables

T.T. Tran
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses

b Part of the Geology Commons

Recommended Citation
Tran, T. T. (2003). Wavelet-based simulation of geological variables. Edith Cowan University. Retrieved
from https://ro.ecu.edu.au/theses/1500

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses/1500


https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses?utm_source=ro.ecu.edu.au%2Ftheses%2F1500&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/156?utm_source=ro.ecu.edu.au%2Ftheses%2F1500&utm_medium=PDF&utm_campaign=PDFCoverPages

Theses

Theses: Doctorates and Masters

Edith Cowan University Year 2003

Wavelet-based Simulation Of Geological
Variables

T. T. Tran
Edith Cowan University

This paper is posted at Research Online.
http://ro.ecu.edu.au/theses/1500



Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose
of your own research or study.

The University does not authorize you to copy, communicate or
otherwise make available electronically to any other person any
copyright material contained on this site.

You are reminded of the following:

e Copyright owners are entitled to take legal action against persons
who infringe their copyright.

e A reproduction of material that is protected by copyright may be a
copyright infringement. Where the reproduction of such material is
done without attribution of authorship, with false attribution of
authorship or the authorship is treated in a derogatory manner,
this may be a breach of the author’s moral rights contained in Part
IX of the Copyright Act 1968 (Cth).

e Courts have the power to impose a wide range of civil and criminal
sanctions for infringement of copyright, infringement of moral
rights and other offences under the Copyright Act 1968 (Cth).
Higher penalties may apply, and higher damages may be awarded,
for offences and infringements involving the conversion of material
into digital or electronic form.



USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.



WAVELET-BASED SIMULATION
OF

GEOLOGICAL VARIABLES

Daoctor of Philosophy (Mathematics)

T.T. Tran

FACULTY OF COMPUTING, HEALTH AND SCIENCE
EDITH COWAN UNIVERSITY
WESTERN AUSTRALIA

November 2003



ABSTRACT

This thesis introduces a number of conditional simulation algorithms using wavelet
bases. These make use of two orthogonal wavelet bases, the Haar and the Db2 bases.
Firstly, two single-level algorithms are introduced, HSIM with the Haar basis and
DB2SIM with the Db2 basis, HSEM reproduces the histogram and semivariogram
mode] of isotropic samples but not the semivariogram model of anisotropic samples.
DB2SIM reproduces the histogram and semivariogram model in both the isotropic
and anisairopic cases but, because of the conditicning method employed, is not as
computationally efficient as we would wish.

Because of the limitations of HSIM and Db2SIM two multi-level wavelet-based
conditional simulation elgorthms PWSIM and DWSIM have then been developed. In
PWSIM, the conditional realisations are obtained by post-processing non-conditional
realisafions generated via an aviilable nen-conditional simulalion algorithm using
kriging. In DWSIM the data are conditioned directly via properties of the discrete
waveiet lansform, Because of the conditioning method, DWSIM is faster than
PWSIM.

The performance of PWIM and DWSIM with respect to the Haar and the Db2 wavelet
bases is assessed via the local and global aceuracy of the results. Both quantitative
and visual assessments indicate that, for both wavelet bases, the realisations obtained
via PWSIM have more varjability than those obtained via D'WSIM. If the Haar basis
is used, PWSIM and DWSIM perform equally well. If the Db2 basis is used then
PWSIM performance is much better than DWSIM performance.

For both PWSIM and DWSIM, the vse of the Db2 basiz rather than the Haar basis

increases the computational effort without producing a comparable increase in



algorithm performance. In PWSIM the use of the Db2 basis slightly improves
algotithm performance but the use of the Db2 basis in DWSIM decreases algorithm
performance.

A performance comparisen between DWSIM using the Haar basis and the commonly
uvsed conditional simulation algorithm $GSIM shows that DWSIM produces results
that are at least as good as those obtained by SGSIM but with less computational
effort. The computational advantage of DWSIM over SGSIM is especially
pronounced when a large number of realisations are simulated. In addition, the resuhl
obtained via DWSIM does not depend an user defined parameters s is the case in
both SGSIM and PWSIM.

The final result here is a (Haoar) wavelet-based conditional simulation algarithm
DWSIM that performs well in both the isotropic and the anisotropic cases and,
particularly when simulating a large number of realisations, is much fuster than the

standard algorithm in common use.
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1 INTRODUCTION

(eostatistical methods are now an essential tool in assessing the economic viability
of a mineral deposit or an oil reservoir. The cutcome of the geostatistical analysis of
a peological variablé, for example gold grade in an ore body, determines whether a
deposit will be mined. It is thus important to continuously develop improved geosta-
tistical methods that enable more accurate prediction of the attribute of interest.

‘We begin with the assumption that spatial data cannot be considered to be in-
dependent. Therelore, from z sample taken in & region the experimental spatial
continuity is measured and then modelled. This model is used for the prediction of
the unknown values in that region by estimation or simulation, Estimation methods
are based on generalised linear regression methods and predict an “expected value”
at each location. They are known as kriging techniques and produce smoothed im-
ages that, due to the nature of the input data, often under-estimate high grades and
over-estimate low grades.

Beeause of the smoothing effect, kriging is not an appropriate technique in appli-
cations that focus on the extreme values. For example, in assessing the impact of lead
in a polluted region on heulth using kriging, the health costs can be underestimated
because ol the smoothing effect. In such cases, simulation is an alternative approach
since unlike kriging, simulation methods reproduce the statistical fluctuations of the
phencmenon end the simulated images are not necessarily smooth.

Unlike kriging, from which the estimation is unique, a simulation algerithm gener-
ates a set of “equiprobable” realisations, ‘Therefore, simulation is a useful tool in risk
assessment or decision making. For example, in petroleun applications, geostatistical
simulation can be used to compute the distribution curves at well locations. These

probability distributions allow one to evaluate the range of values at any potential

1



well location, and hence decide whether or not to drill & new well.

The aim of geostatistical simulation algorithms is o model reality by generating
equiprobable realisations that reproduce relevant propertics of a given sarnple. Such
properties include variance, histogram and spatial correlation. If the simulated values
at sample locations are equal to the actual sample values then the simulation is seid
to be conditional; otherwise it is called nonconditional. Because the simulated values
at sampled locations are equal to the actual data values, conditional simulation is of
more interest than non-conditional simulation and can be applied in the modelling of
ore deposits.

All of the conditional simulation slgorithms developed to date, for example the
LU decomposition simulation, simulated annealing, sequential Gaussian simulation
{Chilés and Delfiner, 1989} and conditional spectral simulation {Yao, 1988) are sub-
ject to computational drawbacks. In the LU decomposition algerithm, simulated
realisations are obtained by the decomposition of the associated covariance matrix.
The limitation of the method is related fo the size of the covariance matrix to be
hendled. When if was first developed, this algorithm could only simulate realisations
with up to 700 points (Davis, 1987). Today, with the development of computer CPU,
it can be used to simulate realisations of larger size, However, because of its costly
computational effort this is still a time consuming algorithm.

The simmiated annealing algorithm, from which simulated realisations are obtained
by exploiting an optimisation method, is also a computationally expensive algorithm.
The result of the simulation also depends on the annealing scliedule defined the user.
The annealing schedule includes the izitial temperature, the reduction factor, which is
used to reduce the temperature and the maximum number of perturbations at a given

temperature. The rate of convergence depends on the reduction facter, the smeller



the reduction factor the faster the temperature is reduced and, hence, the faster the
rate of convergence. The user has Lo define a suitable reduetion factor for the cooling
process since an inappropriste choice of a high reduction factor will unnecessarily slow
down the rate of convergence and an inappropriate choice of a low reduction factor
can lead to a risk that the resuit is trapped in unaceeptable sub-optima (Goovaerts,
1097).

The results cbtained by the most frequently used method, sequential Gaussian
simmlation {SGSIM), which will be detailed in Chapter 2, also depend on many pa-
rameters selected by the user. In SGSIM the simulation is carried cut sequentially
along a random path that visit each grid node in the study region exactly once. At
cach location on the random path the simulated value is drawn [romn a normal dis-
tribution with mean equal to the kriging estimale and variance equal to the kriging
varjance, The result of the simulation, therefore, depends on the kriging method
selected by the user. In addition, the search radius or the number of original and pre-
viously simulated dats used for simulating & value also impacts the cutcome of the
simulation. For example, the choice of too smell a search radius may lead to & poor
conditioning or an inappropriate reproduction of the spatial correlation. Therefore,
to ensure a large enough seerch radius this algorithm requires that the size of the
study region to be simulated be larger than the range of the semivariogram (Vann et
al, 2001).

The conditional spectral simulation ulgorithm by Yao (1598) is fast since it is
based on the [ast Fourier transform. However, the conditioning of the realisations
using Yao's algorithm introduces artefacts in the neighbourhood of conditioning data.
High data values are surrounded by low simulated values and vice versa. In comparing

the simulated values with jackknife data, the point-to-point correlation between the



simulated values and the true values is close to zero. This algorithm also uses an
optimisation methed in conditioning the data; hence, there is a risk that the iterative
process does not converge if the spectral density is not consistent with the data.

Therefore, it is necessary to develop a conditional simulation algorithm that re-
quires less computational effort and is not subject to the above disadvantages. Thia
thesis introduces two conditional simulation algorithms, called PWSIM and DWSIM,
one of whicl, the conditional simulation algorithm DWSIM, satisfies both of the above
requirements. Both PWSIM and DWSIM maké_ use of the properties of wavelets to
generate realisations of a random function. Hewever, the method of obtaining con-
ditional simulated realisations in the two algorithms is different. In PWSIM the
data are conditioned by a postprocessing step using kriging and in DWSIM the data
are conditioned directly using the discrete wavelet transform. Due to this method
DWSIM is a very effective conditional simulation algorithm,

Compactly supported wavelets are families of functions that take non-zero vajues
only for a smnll value range. As in the case of Fourier analysis, there exists a fast al-
gorithm called the discrete wavelet transferm which can be used to save the computer
storage space snd computational time. The discrete wavelet transform computes the
scaling and wavelet coefficients at a coarser scale from the scaling coefficients at the
previous finer scele. It is initialised by regarding a set of evenly-spaced discrete values
as scaling coefficients at the original scale. On each application of the discrete wavelet
transform, the size of the set of scaling coefficients is compressed in one-dimensional
space by a [actor of two and in two-dimensional space by a factor of four.

Beeause the discrete wavelet transform is [ast, a simulation algorithm that makes
use of this translormation is expected to be a fast algorithm. In addition, in com-

pressing the set of sealing coefficicnts, the discrete wavelet transform also compresses



the spatial correlation of these coefficients. Because of the localisation property of
wavelets, the spatial correlation is limited only to a few scaling coefficients in a neigh-
bourhood. Therefore, an algorithm based cn the discrete wavelet transform does not
require that the size of the simmlated region be larger than the rango of the semivari-
ogram. The discrete wavelet transform is also independent of user-defined parameters
and of the number of previously simmlated values.

Because of the properties discussed above, wavelets are used as the basis of the
conditional simulation algorithm DWSIM, This is a multi-level wavelet-based condi-
tional simulasion algorithm since it starts the simulation at some coarse scale then
reconstructs the simulated realisations using the correlation emong the scaling coeffi-
cients. Two orthogonal wavelet bases can be used in DWSIM, the Haar and the Db2
wavelet bases, Haar wavelets are discontinuous functions whose filters have only two
non-zero coefficients. Db2 wavelets are continuous functions whese filters have four
non-zero coeflicients. Toth wavelet bases require less computational effort compared
with other families of orthogonal compactly supported wavelets.

The Haar wavelets are chosen as the basis of DWSIM since the computation of
the discrete wavelet transform based on the Haar filters is not subject to the edge
eflect. However, because of the discontinuity of Haar wavelets, the Db2 basis is also
introduced in this thesis for comparizon purposes. The impact of the choice of wavelet
basis used in DWSIM is investigated by comparing the results abtained from DWSIM
using the Haar basis with those obtained by DWSIM using the Db2 basis. ‘The results
of the comparison show that DWSIM using the Haar basis is more efficient.

TFor comparisen purposes, we implement a multi-level nonconditional simulation
algorithm using wavelet analysis called WSIM introduced by Zeldin and Spanos

{1995). The nonconditional realisations obtained using this algorithm are postpro-



cessed using kriging to obtain conditicnal simulations. The associated conditional
simulation alge:ithm that combines WSIM and the postprocessing step is called
PWSIM. The performance of PWSIM then is compared with the performance of
DWSIM using different measures to evaluate the effectiveness of the two wavelet-
based algorithms,

‘The thesis consists of 12 Chapters. Chapters 2 and 3 give the badground on
peostatistics and wavelet analysis. In Chapter 2, the concept of the random function
model on which geostatistical methods are based is introduced. Next, the measures
of the spatial continuity of sample data such as the experimental covariance, experi-
mental correlation and experimental semivariogram are presented. This leads into the
modelling of the spatial continuity based on the semivariogram model whick is then
used to compute the covariance model used in the simulation. Finally, the kriging and
simulation methods used to deduce the values at unknown locations.are discussed.
Two types of kriging are introduced: simpla kriging and ordinary lriging. Simple
kriging is used in the sequential Gaussian simulation algorithm, also discussed in this
Chapter, whose performance is compared with DWSIM performance in Chapter 10.
Ordinary kriging is used in the postprocessing step {o obtain conditional simulated
realisations of PWSIM.

Chaptor 3 includes deterministic and stachastic wavelet analysis in one- and bwo-
dimensional spaces. The deterministic wavelet analysis consists of the construction of
wavelets and the formulation of the discrete and inverse discrete wavelet transforms.
The stochastic wavelet analysis consists of the computation of the covariances of
pairs of scaling and wavelet coefficients, These covariances are used to simulate the
unknown scaling and (or) wavelct coefficients from the known ones. In PWSIM these

covariances are used to simulate the scaling coefficients at some coarser scale and



to compute the wavelet coefficients at the same scale from those scaling coefficients.
The inverse discrete wavelet transform is used to reconstruct the scaling coefficients
at the finer scales. In DWSIM the diserete wavelet transform is used to condition the
data and the covariances of pairs of scaling coefficients are used to reconstruct scaling
coefficients at o finer scale from those ot the next coarser scale. In addifion with
the covariances, the wavelet spectrum and the scaling spectrum are also introduced.
These spectrs are applied in the single level simulation algorithms HSIM and DB25IM
introduced in Chapter 6.

The performance of the simulations algorithms discussed in this thesis is assessed
using the imessures presented in Chapter 4. These measures are both quantitative and
visnal. The quantitative meesures are based on the accuracy, goodness and precision
of the probability distribution of the simulated values, misclassification analysis, E-
type cstimates, conditional variances and the measures for the reproduction of the
semivariogram mode! and the histogram of the associated sample. Visnal measures
are based on the mosaic plots of simulated realisations.

Chapter 5 provides the description of two data sets, one isotropic and one anisotropic,
their normal transformation and samples taken from these. In the isotropic case,
five samples (one gridded and four ungridded} drawn from the normal scores of the
isotropic data set are used to test the performance of the algorithms in the case that
the underlying random function is multivariate standard normal. Algorithm perfor-
mance in practical applications (the data are not necessarily drawn from multivariate
normal distribution) is tested using an ungridded sample drawn [rom the attribute
values of the isotropic data set. In the anisotropic case, in the case that the under-
lying random function is muitivariate standard normal, performance is tested using

two samples, one gridded and the other is ungridded, drawn from the normal scores



of the anisotropic data set. In practical applications, algorithm performance is tested
using an ungridded sample drawn from the attribute values of the anisotropic data
set, '

Chapter 6 introduces two single level wavelet-based algorithms used to gencrate
conditional realisations and discusses the performances of these algoritbms, Chap-
ter 7 gives the description, applications and general performance asscssment of the
multi-level wavelet-based conditional simulation algorithms PWSIM and DWSIM,
The algorithm description includes the formuletion for the simulation step and the
computation ol Lhe related weights. The applications of PWSIM and DWSIM using
the Haar basis and the Db2 basis are carried out in both isotropic and anisotropic
cases. In each case, algorithm performance is assessed visually via the mosaic plots
and the plots of the experimental semivariograms and histograms of three typical
realisations,

A detsiled performance comparison between PWSIM and DWSIM using each of
the wavelet bases in the case when the underlying random function is multivariate
standard normal with regard to sampling method and data structure is discussed in
Chapter 8. The impact of choice of wavelet basis and computational effort are also
compared. The performance messures used in this Chapter are the accuracy, good-
ness and precision of the distributions of simulated values and the reproduction of
the associated semivariogram models and sample histograms. The results of the com-
parison show that DWSIM using the Hoar basis is an effective conditional simulation
algorithm. Hence, we discard the algorithm PWSIM and focus only on the influence
of the sample size on DWSIM performence using Lhe Haar basis in Chapter 9.

Chapter 10 provides the performance comparisen between DWSIM using the Haar

basis and SGSIM in practical applications, that is, in the case where the underlying



random function is not multivariate standard normal. The performance measures are
the reproduction of the semivariogram models and sample histograms, misclassifica-
tion analysis, E-type estimates and conditional va.ris.n.c. . .

Chapter 11 provides the concluding discussion and Chapter 12 consists of the ap-
pendices which include the accompanying CI) that contains the executable Programs

WSIM and DWSIM and the data sets.



2 GEOSTATISTICAL BACKGROUND

This Chapter introduces the theory of random functions in geostatistics which pro-
vides the framework for the modelling of spatial data. Unless otherwise stated, the

backpround given in this Chapter is adopted from Goovaerts, 1997.

2.1 The Random Function Model

Cne goal of geostatistical methods is t¢ model an attribufe of interest at unsampled
locations. Most geoslatistical methods are based on the coneept of the random func-
tion model. In geostatistics, the value of an attribute at location u in a study region
A CR"™ is denoted by z{u). Ore grade and soil type are examples of such attributes.
In the random function model concept, the value z{u) is regarded as a particular
value of an unknown random variable Z{u) at the peint u. A random function Z

then is defined as the collection of all random variables in the study region
Z:A—{Z2(u):ue A}.

A random function Z can be characterised by its first- and second-order moments,
The first-order moment or expected value, if it exists, of a random variable Z(u) is a

function of w and is denoted by
E{Z(u)} = m{n). &y

There are three second-order moments used in geostatistics: the variance, the

covarizance and the semivariogram.
1. The variance, il it exists, of a random variable Z{u) is defined by
Var|Z(u)] = B{[Z{u) — m({u)]*}. @

10



In general, the varisnce depends on the location w. Note also that we can write
Var{Z{u)) = B{Z{u)?} — m{u)®. 8}
2. The covariance of two random variables Z{u) and Z(u’} is & function of locations
u and u’ and is given by
Clu,u) = B{(Z(u) - m{u)][Z(u) — m{u)]}. (4
3. The semivariogram of random varigbles Z(u) and Z(w') iz defined as
70, w) = SV erlZ{u) ~ 2 o)

and similar to the covariance, in general, the semivariogram depends on loca-

tions u and W'

A random function Z is said to be sfrictly slationary if the joint distribution of
{Z(w), ..., Z{u,}} is the same as the joint distribution of {Z(xu +h),..., Z{u, + h}}
for all h. If the expected valne of the random function is a constant and the covariance
between two random variables Z(u) and Z{u + h) is fnite and depends only on the

separetion vector h, that is
E{Z{u)} =m (6)
and
C(b) = E{Z(u + h)Z(w)} - m* - 9

for all u e then the random function Z is szid to be sccond-order stationary. A
random function Z is said to be infrinsic stationary if the increments Z{u -+ I) —

Z{u) are second-order stationary. A second-order stationary random function is also

11



intrinsic stationary but the converse is not true. The semivariogram (h) of  second-

order stationary random function is defined by
1(h) = 5 B{(2(a + ) - )}, Q
and it is related to the covariance C'(h) by
7(h) = C(0) — Ch). ®

The stonderdised form of the covariance is called the correlogram plh) and Is related

to the semivariogram by

C(h} y{h)

= —= | = —, 10

In this thesis we will assume that the underlying random function is second-order
stationary, In other words, the correlalion between two random variables Z{u + h}

and Z(u) depends only on the separation vector h.

2.2 Sample Spatial Correlation

In geostatistics the analysis or the mapping of the spatizl distribution of the values
of an attribute z in a region .4 is based on a sample of » data z{u.}),0 = 1,2,...7
teken from that region. The spatiel continuity of the sample i3 measured and this
measurement is then used for modelling the spatial continuily of the attribute over
the whole region. The tools used to describe the spatial continuity of sample data
include the ezperimenial covariance, experimental correlation and ezperimental semi-
varicgram {unctions,

The experimental covariance and the experimental rorrelation functions are mes-

sures of the similarity between data separated by a veclor h called a lag. The exper-

12



imental covariance function G(h) is defined by

1 N(k)
C(h) = T E[z(u,, 2{ugth) — oy, (11)

whore N(h) Is the number of data pairs of separated by h; iy, and 7y, respectively
are the means of the tail 2(u,) and the head z(w, + h) values corresponding to all

pairs {z{u,), 2{u, + h)) and are defined by
N{t)

My = N(h) Ez(ua)

and

N{R)

gy = ™ (h) E u, -+ h).

The experimentsl correlation function B{h), taking values in the interval [-1,1],

is the standardised form of the experimental covariance function given by

Ph) = =—=—, {12)

where &_), and F,y, are repectively the standard deviations of the tail and the head

W
e e

values. They are defined by

end

| Mw
8in= R D le{ua +h))2 -

When the experimenta! covariance a(h] is a lunction of both the wmagnitude |h
and the direction of the vector h, the function is said to be anisolropic. If this
function depends only on |k, then the random funciion is isefropic, that is, the
spatial variability is identical in ail directions of space.
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The experimental semivariogram measures the average dissimilarity and is defined

by

AL,
1) = ey 2o ) = ) (13)
When the distance |h| is sufficiently large, there may be no spatial correlation between
data values at two locations separated by |h|. A contour plot of the experimental
semivariogram, called the variogram surface, may be used to visualise the spatial

continuity in all directions.

A
Lag step =x Band width
'\-.\\ . A
Azimith,_ Lag tolerance

Direction
24 vector h

Angular tolerance

Figure 1: Pairing rule for irregular data in the direction of azimuth angle 90° (modified

from Deutsch and Journel, 1998).

In practice, for irregularly-spaced data a certain lag tolerance and a certain angular
tolerance are applied to ensure that there will be sufficient data pairs. In order
to exclude points that lie in areas too far off the search direction, a bandwidth is
introduced. The bandwidth is the maximum acceptable deviation in the direction
perpendicular to the direction ofrvector h. For example, in Figure 1 all data lying

within the fan are regarded as being in the direction of vector h (azimuth angle 90°).
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In calculating the spatial correlation in that direction with the distance equal to three
lag steps (3z), all sample points lying in the shaded region arc the associated heads
of point u,

Having obtained the experimental semivariogram (covariance, correlation) of the
sample data, a model is fitted to these measurements. Since, when it exists, the
covariance function of & random function can be obtained from the semivariogram by

{9), in this thesis we discuss only the modelling of the semivariogram.

2.3 Semivariogram Models

In order to interpelate the unknown values, we need a semivariogran function y(h)
that shows the dissimilarity for any possible separation vector between date, Since
the cxperimenta! semivaricgram ouly gives vahies at discrate lags, s smoolh curve is
fitted to the experimental semivariogram. This funetion is called the semivariogram

model.

2.3.1 Permissibility Condition

Some estimation methods require computations that make use of the variauce of some
linear combination of random variables. Hence, the semivariogram model musk ensure
the non-negativity of the variance. Let Z be a stationary random function in a region
A specified by the covariance C(h}. Suppose that ¥ is a linear combinalum of the

random variables Z{u,), o = 1,2,..., 7, then Y is a random variable and its varianc:

anl

:Var{Y} =Var {i /\aZ(L‘Iu)} (o4

must be non-negative. The expression (14) can be rewritten as

Var(Y) =3 dahgClug — up)

a=l =1
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or equivalently in matrix form as

M
Az
Var{Y) = ( M oA o M )qu o, =120 {15)
An
In order for the varlance to be non-negative, the covariance matrix {Cag}, o1
must be positive definite.

Using the relation v{h} = C{0) — C(h}, the veriance in {14) cen also be written

Var(Y) = z,\azxﬂ-zzxxﬂ aug) 20 (1)

a=] fcl

In the case that C{0) is not Gnite, the value of G{0) is filtered by letting

i,\., =0. (17)

o=l
In this case the expression (16) becomes
n i
Var(Y) ==Y ) radgr(ue ~ ug) > 0. (18)
a=1 =1
With the condition in {17), the variance of random variable ¥ is non-negative if
the semivariogram model is negative definite. The. semivariogram model 7 is then
said to be conditionally negative definite since it is only negative definite with the

condition in {(17).

2.3.2 Permissible Models

A simple way to avoid checking the permissibility condition js to limit the semivar-

iogram model to functions that are known to be negstive definite. In practice a
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semivariogram model is usually chosen to be a linear combination of cne or mare of
the five permissible models described below, These models are expressed here in their
isokropic form and are classified into bounded and unbounded models. Both bounded
and unbounded models are monotonic. However, a bounded semivariogram model
approaches a plateau called the sifl and the distance at which the sill is approached
is called the range (Isasks and Srivasiava, 1989}, whereas an unbounded mode! has

no &ill and hence no range.

Nugget effect model A nugget effect model is a bounded model used to model
phenomena that show an obvicus discontinuity at the origin. The semivariogram has
value 0 at h =0, then takes a non-zero, positive value at any distance greater than

zera. This standardised model {the sill value is sealed to 1) is given by

0 if[h|=0
o)) = . {19)

1 otherwise

For a nugget model, the sill is reached as soon as the distance is greater than 0.

Spherical madel The spherical model has linear behaviour near the origin; it is o

commonly used bounded model. Ifs standardised form is

158 — 035 (II;’I)S if [hj<a

g{lhl} = (20)

1 otherwise

where @ denotes the range which is the distance at which the semivariogram model

reaches the sill.

Exponential model Another commonly used bounded semivariogram model is the

exponential model which also has linear behaviour near the origin. An exponentisl
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sernivariogram model approaches the sill asymptotically and its lornwia is given by
=3h
o) = 1 -exp () (21)

where a is the proctical ronge, the distance at which the semivariogram reaches 95%

of the sill value.

Gaussian model The Gaussio~ model is a bounded model that has parabolic be-

haviour near the crigin. It is given by

(b = 1 - exp (i'“'—'i) . ()

Similar to the exponential model, 2 Gaussian semiveriogram mode! approaches the
sill asymptotically; its practical range is the distance where the semivariogram reaches

95% of the aill value, The spherical, exponential and Gaussizn models are illustrated

in Figure 2.
4
A Y S, o ot IR
.o ~
<0
N :
£ /s H
7 LS i
’ " 1
J / | —Spherical
,.' / ! .- Exponential
;‘ /7 1 - — Oaussian
7 1
v X7 : .
4——— Range ——»

Figure 2: Bounded semivariogram models (inedified from Goovaerts, 1997).

Power model The power model is an unbounded model given by

¢(|h)) = b|” with 0 < w < 2. (23)
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It has no =ill and hence no range. The behaviour near the origin depends on the
erponent w, & has linear behaviour when w = 1 and pambolic behaviour as w

approaches 2, This model is illustrated in Figure 3 for three specific values of &,

&

¥

Figure 3: Power mode] with three values of w ({medified from Goovaerts, 1997).

Anisotropic semivariogram models As mentioned in Section 2.2, an experimen-
tal semivariogram is said to be isotropie if it depends only on the distance |h|. In the
case when the semivariopram varies with direction, it is said to be snisetropic. De-
pending upon on the nature of the variation, anisofropic semivariograms are classified

into two types: those with geometric anisotropy and those with zonal anisotropy.

Geometric anisotropy When the 5ill value of the semivariogram is constant
but the range varies with direction we have peometric anisotropy. In two-fimensional
space, geometric anisotropy can be identified by menns of a rose diagram, which is the
plot of the range values against the azirmth @, by convention, measured in degrees
clockwise from North, In two-dimensional space, if the rose diagram is an ellipse then

the direction of the major axis is the direction of maximum continuity and has the
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longest range. The direction of minimum continuity is the direction of the minor axis.
Figure 4 gives an example of geomelric anisotropy. In Figure 44, the sill value of the
spherical semivariogram models g{hy) and g(h,) in the direction of azimuths ¢ and
i, respectively, ave identical. However, the range values ap and ay are different. The
associated rose diagram in Figure 4B is an ellipse with the direction of the major axis
in the direction of azimuth &; the major radius is equal te the maximum range az and

the minor radius is equal to the minimnm range ay. As all permissible semivariogram

Figure 4: Geometric anisotropy: A/. Semivariogram models; B/, The rose diagram,
modified from Gonvacrts (1997).

models introducad previously are in isotropic form, a coordinate transformation has
to be carried out to express the model that exhibits geometric anisotropy in isotropic
form with respect to the new coordinates, The process is accomplished by, firstly,
rotating the coordinate axes clock-wise so that the positive direction of the y-axis
is identical with the major axis of the ellipse. Secondly, the y—coordinates in the
new system are rescaled by a value equal to the anisotropy factor A = az/as. The

teansforrnation can be written as

lli = D,\ Rﬂfah.

0



where

10 cosd —sing
Dy = and Rot; =
0 A sind cos#

Zonal anisotropy When the sill value of the semivariogram varies with direc-
tion we have zonal anisotropy. In this case, the sill valne in the direction of minirnum
contiouity is higher than that in the direction of masdimurm continmity. Let us denote
by ¢ the azimuth anple specifying the direction that has the highest sill value; zonal
anisottopy can be modelled as a sum of an isotrapic model g and a zonal component

gy as follows

g(h) = qi{[h]) + galy). (24)

Here g is the distance measured in the direction that has the highest sill value. The
zonal component is computed as follows. Firstly, the coordinate axes are rotated
clock-wise so that the y-axis represents the direction of mexdimum contiouity. Sec-
ondly, the y—coordinates in the new system are rescaled by setting the range in the
direction of maximum continuity to & very large value so that the zonal component de-
pends only on the distance in the direction of minimum continuity. Consequently, the
anisotropy factor A approaches 0 and the zonal component depends only on A, Figure
5 gives an jllustration for the somivariogram models in the case of zonal anisotropy
where ¢ (||} denotes the semivariogram model in the direction of maximum continu-
ity and g1{|/h])+ g2{4) denotes the semivariogram model in the direction of minimun

spatial continuily.
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Figure 5: Zonal anisotropy semivariogram models (modified from Goovaerts, 1997).
2.4 Kriging

Kriging is an estimation method used to interpolate the unknown values in & region
using a sample of n dats {2{u,),e = 1,2,..,n}. It was developed by Matheron
and Krige (Journcl and Huijbregts, 1978). There are many types of kriging, both
linear and non-linear, Ounly linear kriging is discussed since it is the version used
in the simulation algorithms we consider. The basic principle of linear loiging is
that the value at each unsampled location can be estimated from a subset of the
values at the sampled locations using linear regression algorithms. Suppose that
{z{u,}, &= 1,2,...,n(u)} are the known values of tha attribute in a suitably chosen
neighbourliood of a ivcation 1 where the value z{u) needs to be estimated. We dencte
by Z}(u) the kriging estimate of the value z(u). In terms of random variables the

cstimator is given by
n{u)
Zic(w) —mu) = 37 A, (ua) | Z{ua) - m(ua)] {25}
=1
where m(u} denotes the expected value of the random variable Z{u) at the location
it. The values Aq(t,) are the weights to be determined so thet the expected value of

the estimation error is equal to ¢ and the variance of the etror is minimised. In other
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words, the weights A,{u,) are calculated by minimising
a(u) = Var[Zi(u) - Z(u}] (26)
with the constraint that
E{Zj(u) - Z(w)} = 0. @7

In simple kriging, the random function £ is assumed to be second-order stationary

with & known constant mean m. Therefore, from (25), we have

niu) niu}
Zige(u) = 3 Ma{w)Z{ua) + (1= Ao{ulim (28)
a=1 a=1

where the weights A,(u,) are determined by solving the system of n(u; linesr equa-
tions:
m{u}
ZAg[u)C(uu —ug)=Clug—u) a=1,.,n{u). (29)
A=
For ordinary kriging, the random function 2 is only required to be intrinsic stationary,
and (28) becomes

niu) nu)
Zoielu} =Y Aa(w}Z(ue} + 1 = Y Aalw)lme(u), (30

where m*(u) is assumed Lo be constent in & neighbourhood and usually unknown.
Hence, for the unbiasedness constraint in {27) to be satisfied, the weights A;(u.} are

determined by solving the system of (n(u) + 1} linear equations stated below:

nfu}

37 a(0)Clua — ug) + pfu)
f=1

Clug—u), a=l,..,nu)

I

nfu}

S aglw) = 1
B=1

1

where p(u) is the Lagrange parameter, and the equation EB(__‘.'I} Ap(u) = Lis the
unbiasedness condition,
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Both simple and ordinery kriging estimators are exact interpolators. The estimate

at a sample location is equal to the sample value

Zi(ua) = z{u,) (31)

and the kriging estimate at an unsampled location, for a given covariance moddl, is
unique.

Kriging is a best linear unbiased estimmation (BLUE) method. It is best in the
sense that the varjance of the estimation error is minimised. It is unbiased since the
expected value of the estimation error is equal te zero. However, due to the method of
estimation, kriging does not reproduce the histogram and the variance of the sample
data. In addition, because of the unbiasedness oonditi'an, the estimation by ordi-
nary kriging also exhibits conditional bias. The locations with high attribute values
arc underestimated and the locations with low attribute values are overestimated.
Therefore, the map of the estimates is always smoother than the true map,

In this thesi:, simple kriging is used in the sequential Gaussian simulation de-
geribed in the following section. .Ord.ina.ry kriging is used in the posprocessing step
used to obtain conditional simulated realisations in the simulation algorithm PWSIM

described in Chapter 7.

2.5 Simulation

The aim of geostatistical simulation techniques is to apply the Monte Carle simulation
method to generate realisations z,(u) that reflect the properties of a random function
Z. This random function is usually specified by the expectation m and the covariance
C{h) which is inferred from the semple covariance computed from the associated

sample {z{u,), & = 1,2,...,n}. Two types of simulation are distinguished: if the
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values at the sample locations in the simulated reslisations are equal to the actual

data, that is

zs{ua) = z(ua) (32)

for oe = 1,2, ..., n, the simulation is said to be conditional; if condition (32) is not
satisfied, the simulation is said to be nonconditional

Conditional simulation is prefered to linear kriging in applications that focus on
the fluctuation patterns of extreme values, for example, the pollution of heavy metals.
Because of the smoothing effect, linear kriging may underestimate the presence of
high pollutant values leading to the inability to recognise potential heolth threats.
Conditional simulation is also used to measure the spatial uncertainty of an attribute
in risk anslysis or in decision meking. For example, in order to evaluate the risk of
classifying & region as safe with respect to some type of pollution, one can generate
a set of conditional realisations then the risk can be visua.liséd via the plots of these
realisations or can be numerically quantified via 2 mathematical model. In this thesis
we focus only on multiGaussian simulation algorithms, that is, the underlying random
function is assumed to have a2 multivariate normal distzibution.

Conditional simulations can be obtained by using linear kriging to postprocess
realisations simulated via a non-conditional simulation algorithm, for example, the
turning band method (Journel and Huijbregts, 1978), the spectral simulation methed
{Childs and Delfiner, 1999 and Pardo-Igizquiza and Chiza-Olme, 1693} or by using
a conditional simulation algorithm. In the first case, at each grid node the simulated
value is conditioned by the following steps. Firstly, obtain two kriging estimates at this
location, one using the actual dats and one using the nonconditional simulated values
at data locations, respectively. Secondly, compute the difference of the two kriging

values. Finally, add this error to the nonconditional simulated value st this location.

25



That is, suppose that z,(u) is an unconditional simulated value, the postprocessing

method computes the conditional simulsted value z,0{u) from z,{u) by putting
2ao(1) = 2a(w) + [z (1) — 23 (u)] (33)

where z}(u} is the simple kriging estimate using the actual dote and 2 (x) is the
simple kriging estimate using the simulated values at the data locations (Journel and

Huijbregts, 1978). In terms of the random function raodel, {33} can be rewritten as:
Zye(n) = Zu(u) + [Zf (0) — Zlge(w)]. (349)

Since the configuration bebween date locations as well as the covariance model is
the same for the two kriging images, equation (33} only involves solving one kriging
system at each location to be simulated.

In the second cage, the data are conditioned directly during the simulation. The
sequential Gaussian simulation method {Chilés and Delfiner, 1999) is an example. In
the sequential Gaussian simulasion algorithm {(SGSIM), the simulation is carried out
sequentially along o randem path that visits each location in the study region once
and only once. At each location on the random path, the simulated value is drawn
from & parametric distribution constructed [rom the kriging estimate conditional to
the original data and previous simulated values. Then the newly simutated value, in
turn, becornes one of the conditioning values for all subsequent simulated values. Since
the random path defines the order of locations to be simulated in the study region,
for each different path a different simulzted realisation js gbtained. The results of
SGSIM depend on the search radius, the choice of the type of kriging estimate, the
number of criginal data and previously simulated datz used for simulating 2 value.

The performance comparison betwesn SGSIM and DWSIM, & multi-level wavelet-

based conditional simulation algorithm developed in this thesis, will be carried cut in
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Chapter 10,
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3 WAVELET ANALYSIS

3.1 Wavelet Analysis in One Dimension

In this Section, we first show how wavelats are constructed and then describe the fast
algorithm which is used to compute the wavelet and scaling coefficients for a set of

discrete values on a regular grid.

3.1.1 Deterministic Wavelet Analysis

Now consider the Hilbert space L*(R) (see Rudin, 1991} of all square-integrable func-
tions defined on tha real line R, that is, a complex-valued function f belongs to LHR)

if it satisfies

f_ ~ Lf(0)|dt < oo. (35)

L]

Finitely supported wavelets, denoted by {;,};nez, 2re families of well-localised func-
tions in L2(R} each member of which tekes non-zero values on a fnite interval only,
and whose integral over its support is equal to zero (Kahane and Lemarie-Ricusset,
1995). These wavelets are obtained by a dilation and a translation of a mother wavelet
P by

Wity = 27(273 — )y jm € Z. {36)
It a wavelet family {#;.};nez is an orthogonal basis for LX(R}, any function f in
IA(R) can be approximated by & linear combination of the functions ¥ ,. In the next
Section we introduce the conceps of multiresolution appreximations, the tool that is

used in the construction of orthogonal wavelet bases.

‘Wavelets and Multiresolution Approximations The approximation of a finc-
tion f in L*(R) at scale 27 (or at resolution 29} iz an orthogonal projection of f
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onto the subspace Vj,ez of L*{R). This approximation is specified if the associated
subspace V;,;ez and the basis for thesut.pace are defined. A multiresolution approz-
imation is used to compute the .- ~vocimation of a function at different scales, It is
constructed as torlows:

For ¢ € L}(R), let ¢, De tie family of functions defined by
$3a(t) = 2772g(27TL - n) (31)

ond let {157 ., be the sequence of closed subspaces of all linear combinations of ¢;,
(including their limit under the L2{R) norm). The sequence {V};gz is n multiresolu-

tion approzimation if the following conditions are met (Mallat, 1598):
1. The subspaces are nested:
LCHhocWoWhoVa, CV,C .. (38)
2. For all (,n) € 22,
flleVis fit-PFnje v, {39)

3. The closure of the union of all V; is L2(R)

1 = ;= L2 .
Jim vi= ) Vi =LR) (40)

' f=—mo

4. The intersection of all Vj is the zero subspace

Jim V5 =J__r_1mx<,- = (o). (a1)

5. The scaling property is satished: f{t) € V; <= f(#/2) € Vjy..

8. There exists & function ¢ € V; such that {¢{¢ — n)} .5 is an orthonormal basis

of V5.

29



In this case, the function ¢ is called the scoling function or the father wavelet,
From conditions § and &, it follows that, for each j, the sct {¢;, : n € Z} is an
orthonormal basis of the subspace V;, The space V; is alse called the space of all
approximations of the function § at the scale 27, Consequently, for & fixed 7, a function
J € LA(R) can be approximated by a function f; in ¥; by

=3 oad2t—n)

T==0d

Sinee V; C Vj-1, the scaling function ¢ satisfies

$le) = V2 3 hinlg(2t - n), (42)
with
hn) = V2 f' SOFE =, (43)
where the over-bar stands for complex conjugation and by construction {Daubechics,
1988)
> i) = V2. {44)
nEL

'The next step is to show how orthogonal wavelets are defined using the mulfires-

alution approximation. In L*{R} we define a lunction 1 by

w(t) = V2 )" gln]g(2¢ — ), (45)
where
gin) = (1AL ~ =], (46)

Then it can be prowed (Mallat, 1998) that for a fixed j, the family of [unctions
{#;n:m € Z} defined by

Yynlt) = 2795(279 —m)
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is » basis of the orthogonal complement W; of ¥; and these subspaces satisly
Via=V,eW, (47)

where @ denotes the direct sum. The subspace W} is also called the delail space. For
all integers § and & where j # &, the subspaces W} and W), are mutually orthogonal

and their direct sum is dense in L2(IR}, that is
FR=.oW . ,oWoWa.. (48)

The family of functions {¥;,,4,n € B} are called wouclets obtained by dilating

and shifting the mother wavelet 1 and these functions form a basis lor L2(R).

Definition 1 The function h[n] in equation {43) is called the lowpass filter and the

Junction gn] in equation (46) is called the highpass filter.

Examples of Orthogonal Finitely Supported Wavelets The following sections
give examples for orthogonal fnitely supported wavelets construeted via multiresolu-
tion approximations t¢, i -aer with their filters. These wavelel families will be used

as the bases for the simulation algorithms in this thesis.

Haar Wavelets Haar wavelets are the simplest orthogonal and finitely sup-
ported wavelets. They are obteined by the dilation and translation of the Haar

mother wavelet ¥, where

1 0£t<0h
gl =4 -1 DB<t<l - {49)
0 otherwise
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The Hasr mother wavelet is constructed from. the Haar father wavelet ¢y, given by

1 0<t=1
dylt) = (50)

0 otherwise

with lowpass filtor

v2/2  n=0,1
= d ,
0 otheruise
and highpass filter
2/ n=9_

gl ={ -2/ n=1
0 otherwise

The Haar mother wavelet is the only orthogonal and finitely supported wavelet that

has a closed form.

Daubechies wavelets Daubechies wavelets are orthogonal and finitely sup-
ported linctions that have no explictt lormulae but are characterised by their lowpass
and highpass filters. Since they have finite support, their filters have fnite length.
The number of nop-zero coefficiunts of the flters depends on the number of vanishing

moments of the wavelats.

Definition 2 Let M > 2 be o positive inieger. A wavelet family is said to have M

vanishing moments if
=~}
f PNt = Ok = 0, oy M — 1.
—on

For wavelets with M vanishing moments, the associeted filters have 2M non-zera

coefficients. Haar wavelets can be considered as wavelets with one vanishing moment.
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The more non-zero coefficients the filters have, the smoother the Daubechies mother
wavelet and scaling functions become. The values of the filters ave determined using
the properties and restrictions of multiresolution spproximations and orthonormality
{see Danbechies, 1988). Depending on the number of non-zero cocflicients of the
filters, we have different families of Daubechies wavelets, for example, Db2 denotes the
[amily of orthogonal and compactly supported wavelets with two vanishing moments;
Db3 denotes the Daubechies wavelets with three vanishing moments; Dbn denotes
the Daubechies wavelets with o vanishing moments, The filter coefficients of Db2

{correct to 10 decimal places) are listed in Table 1.

n| kg gln]

=

4820629131 | -.1204095226

—

-8365163037 | -.2241438680

b3

2241438680 | .8365163037

3 | 1294095226 | -.4829625131

Table 1: Db2 flter cocficients

Al Mother wavelet Db2 Bl. Scallng furiction db2
P 4.5
; 144
154 124
1 s
i 084
054 05 4
04 043
! 02
283 [ S—
a4 029
H 04 4
15 ¢ 45

Figure 6: Mother wavelet Db2 and scaling function db2.
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Since Daubechies wavelets have no explicit formulae, for cach value of £, the as-
sociated value of $(t) is determined using the “cascade algorithm" (see Daubechics,
1992). Figure 6 shows the plots of the Daubechies mother wavelet Db2 and of the

associated scaling function db2 generated via MATLAB.

The Discrete Wavelet Transform and Inverse Discrate Wavelet Transform
The discrete wavelet transform is a fast algorithm that computes the scaling and
wavelet coefficients at a coarser scale 24! from the scaling coefficients at the Rner
scale 29, Ths inverse discrete wavelst transform is the operation that reconstructs
the scaling cocfficients at the finer scale 2/ from the scaling and wavelet coefficients
at the coarser scale 27%1.

For a sot of uniformly-spaced values {c%n]}, .y we define a function f € ¥ by

==}

fy=) it - n). (51)

fi==-on

Using the orthonormality property of sealing functions {dy,.} nene 1t follows that

é’[n] = (f: ¢'l],n> (52)

where (.,.) denotes the inner product in L2(R) (see Rudin, 1991}, The scaling coeffi-

cients ¢ [n] and wavelet coeflicients &[n] of the set {P[n]}, ex are defined by

Flnl = {f,9;n) (83)

and

&) = {f, g0} - (54)

In this light, the set of discrete values {c[n]} .y is identical with the set of scaling

coeficients at scale 27 and &%[n] = 0 for all » since [ is a function in V.
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The following theorem (Mallat, 1998) allows the scaling coefficients at scale % to
be decomposed into and recomstructed from the scaling and wavelat coelficients a6

scale 274,

Theorem 3 Discrete wevelet fransform: Each scaling coefficient af the coerser scale
2+ 15 computed from the scaling coefficients at the finer scole 24 by

o

*n]= 3" hlp—2n]c[p). (55)

p=—os
Eoch wavele! coafficient at the coarser scale 294! is computed from the scaling coeffi-
cienls at the finer scale 2 by
N = -
¢ = ) glp—2n)d[pl. (86)
p=—tm
Inuverse diserete wavelel transform: Fach scaling coefficient al the finer scale 2 is
computed from the scaling end wavelet coefficients at the coarser scale 2471 by
) L--] 0o
dpl= 3 hlp- 2l ]+ 3 glp~ 2n)d™[n). (57)
=0 =~y
Here the lunctions g snd /i denote respectively the highpass and lowpass filters
corresponding to the chosen wavelet basis, Since the number of non-zero coefficients
of the filters is 2M where M is the number of vanishing moments, putting ¥ = p—2n,

we may write (55) and (56) as finite sums:

-1
&*l[n] = Z hlu)ei[2n + 4] {58}

powr
and

2l
&+ n} = }: gluld2n + 4. (59)

u=0
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3.1.2 BStochastic Wavelet Analysis

In cases where only some values on the regular grid are koown, the wavelel and
scaling coefficients at the coarser scale cannot be obtained simply by applying the
discrete wawelet transform $o the scaling coefficients at the finer scale. Likewise, the
scaling coefficients at the finer scale cannot be compnted from the scaling and wavelet
coefficients at the coarser scale simply using the inverse discrete wavelet transform.
Stochastic wavelet analysis is used to handle such situations.

In stochastic wavelel analysis, the attribute value at each grid nede is regarded
as a particular realisation of a random variable at this location. Then the scaling
and wavelet coelficients, which are lincar combinations of random variables, are also
random variables. Under the sssumptions that the underlying random function Z is
second-order stationary and that it follows a multivariate standard normal distribu-
tion with covariance function C{|h|}, the scaling coefficients and wavelet coeflicients
also follow a normal distribution with mean zero. In addition, i the attribute values
are correlated, the scaling and wavelet coefficients are also correlated. The correlation
of scaling and wavelet coefficients can be used to simulate the unknown scaling and

wavelet coefficients from the known ones.

Covariance between Two Scaling Coefficients at the Same Scale Since the
scaling cocfficients ¢°[.] at the original scale 2 are identical with the correlated original
values, the scaling coefficients at scale 27,7 > 0 are also correlated. Let us denote

by ﬁ{m‘"} the covariance between two scaling coefficients of[m] and ¢?[n},j > 0. Then
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using equation (58) and E{c/(J} = 0, we can write

Bimey = E{mle’ln]} ~ B [m]} B{e’ (]} (60)
2M-1 oAf—1
= B E Rl '2m +u] ) kvl [2n +4]} (61}
v=(
2M—1
= 3 huhful B{ " 2m + ule M 2n 0]} (62)
uu=0
and so
258 =1
ﬁ(m mn = E h[u]h["']ﬁ(!m-l-u Indu} (63)
u,v=0

It can be seen from equation (63} that the covariance between two sealing cocfficients
at the same scale is a linear combination of the covariance of the scaling coefficients

at the previous finer scale,

Covariance between Two Scaling Coefficients at Two Consecutive Scales
In the previous Section we have shown that the covariance between iwo scaling coeffi-
cients at 5 coarse scale can be computed from the covariance of scaling coeflicients at
the finer scale. In this Section we will give the formula for computing the covariance

of two scaling coeficients at two consecutive scales. Denote by

&

{mm)

= B{/lm)c[ml} — B{c/[m]} B{c" fn]} {84)

the covariance of two scaling coeflicients ¢/[m] and o™*![n] where j > 0; with (58),

equation (64) becomes
o2 )
Efn = E{em] Z e 2n + uf}
u=0

=1

> hful B{cim]e’[2n + u}.
u=(

According to the defin’tion in (B0), the covariance between two scaling coefficients

at two consecutive scales is o linear combination of the covariance belween scaling
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coefficients at the finer scale 2 and is given by
2M=-1

6{m.n} = Z_; h[‘-‘]ﬁf;..,a»;-q- (65]

Clovariance between Two Wavelet Coefficients at the Same Scale The co-

vartance of two wavelet coefficients d[m] and d?[n], 7 > 0 is denoted by

Ty = B{E(m]d[n]} — B{d/[mi} E{d![n]}. (66)

Using equation (59}, the covariance Tf.,.,n) is computed in terms of the scaling coeffi-

cients ab the fner scale 9/~ by

M- 2A1-1

E{E a1 2m + u] E vl (20 + o}

u=0 w=l
IM=1

> glulgl) B{ 2m + ]2 + 0]}

u o=}

E{d’[m]d[n]}

5o the coveriance of two wavelet coefficients at scale 29 is a linzar combination of the

covariance of scaling coefficients at the finer scale 27! and is given by

2M-1
T%m,n) = Z g[u]g[t‘]-s,(;nl-;+u|2n+u)' (67)

uu=0
Covariance between a Wavelet Coefficient and a Scaling Coefficient at the
Same Scale The covariance of & wavelet coeflicient 47[m] and a sealing coefficient

cf[n),j > 0 is denoted by
Ty = B{dm]eIn)} — B{d'[m]} E{'[n]}. (68)

Using equations {58) and (59), the covariance ('m‘") is computed in terms of the

scaling coeflicients at the finer scale 297! by

M=l 2411

E{ E gl ' 2m+ 1y E hfv)d=2n + 4]}

us=( u=0
20 -1

3" gt E (e pm +ule2a + ).

we=l

B{@micnl}
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In terms of the covariance of scaling coefficients at the finer scale, the covariance of a

wavelet coefficient and a scaling coelficient at the same scale is computed by
24 -1

q{m,ﬂ) = Z y[u]h[u]ﬁ{i’_r:wujﬂ-l-u)_' (69}

=0

For stationary processes, the values 8, #, viand # are independent of the indices

of the scalingfwavelat coefficients. The following proposition verifies this property.

Proposition 4 If the random function 2 : A — {Z{u): u € A} is a second-onder
stationary Gaussien random function with zers mean then the values 7,679 and

77 do not depend on the irdices of the scaling / wavelel coefficients.

Proof. We prove Proposition (4) for the case of the covariance of two scaling
coeflicients only. The same argument is used for other cases. This proof is based on
the Spectral Representation Theorem (see Appendix 12.1). _

Let o [&] be the scaling cocflicient at scale 2% and ¢2}m)] be the scaling coefficient
at scale 277

From equation (53}, the scaling coeflicient ¢/'[%] is the inner product of Z and the
scaling function ¢;,;, and because ¢y, is a real-valued function the scaling coefficient
o[k is given by

) - o oa
] = f, 2ol = f 2yl (10)
According to the first result of the Spoctral Representation Theorem, the value Z(u)

can be written as

2u) = / " g B ) (71)

o0

where £ denotes & complex random function. By substituting the value Z(x) in {71)

into equation {70) we have
= [ ([ ematoesan= [(f oo
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or

A= [ Faonhidien) )

where Téjlk is the Fourier transform (see Mallat, 1995, page 23} of the function ¢y,
defined by

a,-l,_.(wl} = f_ : gt (u)du.
Sirmilarly, the scaling coefficient c?[m] can be expressed os
i) = [ Fpulaniaion). @)
Since the scaling coeflicients are real, equation {73) can be rewritten by
cPlm) = et [m] = ./::mdz(wz) = f: 3ﬁm(wz)§§(3§-
Next, by computing the coveriance of the two scaling coefficients, we have

BN} = 5 Falonaon) [ BumlnldBer)

=2 [ Ttttz (70

According to the third result of the Spectral Representation Theorem {Appendix
12.1}, we have [ram (74)

B{e Hcklm]) = f: T} o 0)S ) (75)
whero
S} = 5 / " Clh)e-hdh,

Using the properties of Fourier transform together with the definition of the lunc-

tion ¢y, we have
Biulw) = 22000, (76)
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and

i (t0) =2 DI RRNG F), ()
By substituting the values on the right hand side of equations (76) and (77) into
cquation (75} and simplifing the resuit, we have

e _ .
E{[Hc*[m]} = f QUi aI 2t (2N G 0511 397200 ).

G
It: can be seen that the covariance between the two scaling coefficients ¢/ [k] and &2[m]
does not depend on the integer & and m but only on the different (k — Z3~A1m). =

We have proved that the covariance of two scaling coefficients o [k] and o2[m]

depends on (k — 22-Jiym), In particular, the covariance of two sealing coefficients at

the same scale ¢’[k] and c’|m] depends only on the difference of the indices k and m,

3.2 Wavelet Analysis in Two Dimensions

It this Section, the concepts used in deterministic and stochastic wavelet analysis in
one-dimensional space are extended to two-dimensional space.

3.2.1 Multiresolution Approximations of L*(R?) and Two-Dimensional

Wavelet Bases

In two-dimensional space, wavelets are defined as products of one-dimensional wavelet
and sealing functions. If ¢ and ¢ are the one-dimensional scaling function and mother

wavelet, respectively, then the two-dimensional mother wavelets are defined by
¥H{z,y) = $)oly) v (a.y) = Pl (= ) = vlehily)  (78)
and the family {1,:';}‘_,,,_“} given by
Vi ma(2,8) = 2795272 — 0,279y —m) (19)
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with k = 1,2, 3 are functions obtained by the dilations and translation of the mother
wavelets ¥*. The two-dimensionsl wavelets in {78) are obtained via the separable
multiresolution approzimations in L*(R?) described as follows.

Tor a fixed value of 4,7 € Z, the orthogonal projection of a function f in the
Hilbert space [*{IR?) onto the subspace V? of L(R?) is called the epproximation of
f at scale 2. TF for cach value of  the space V? is defined by

Vi =veV (80)
where @ denotes the tensor product and {15} ez is a multiresolution approximation of
L(R?) then the set of subspaces {V?} jez is & separable two-dimensional mulliresolution
approzimation of L*(R?). As a conscquence, for any j € Z, the collection of the
dilaticns and translations of the Scaling function ¢(z, ) = ¢(=)d(y} given by

{Bimn(:9) = 61D Esm () = 876,277 ~ n)in(27Y — M)} mmierr  (B1)
forms an orthonormel basis of V7. Similar to the multiresolution approximation in

one-dimensional space, the subspace V2, can be decomposed into two mutually or-

thogonal subspaces of coarser resolution W7 and V3 by
V2, =WleVZ. )

It can be proved (Mallat, 1998) that for a fixed value of 7, the set

{¢;,m,u {wt y)) ‘birn.n (I, y]i "xb?,m,u (.’..", y] }(m,n)EZ’ (83)
is an orthonormel basis of Wf and for § € Z the set of two dimensional wavelets in

{83) forms an orthonormal basis for the space L2{[Rk2).

3.2.2 The Two-Ihmensional Dizcrate Wavelet Transform

The two-dimensional discrete wavelet transform is a fast algorithm, based on the mul-

tiresolution epproximation of Z?(R?) and the two-dimengional wavelet bases, used to
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compute the scaling and wavelet coefficients of a set of discrete values {®(n2, 0} (mnjez?
on a regular grid.

As 2 result of the multiresolution approximation of L*(R?), the family of scaling
functions {@y Hmmyeze is & basis for Vi, Then the set of diserete values {c¥fm, 7]} mmezz

can be considered the set of scaling coefficients at the scale 20 of a function f € Vi

defined by
Slm,n] = (£, fo,m,n} (84)
where
o) =m§mc°{m,nl¢n,m,,.(z.y)‘ (85)

and as in the one-dimensional case {,,.) denotes the inner product. For j > 0 and

k = 1,2,3, the scaling and wavelet coelficients of the set {c%[m, n]}nuyeza 2ate defined

by

Slm, 1] = {f, drmn} (86)
and

difm,n] = (£, ¥ mn) (87)
respectively.

Using the above properties, it can be proved {Mallat, 1898} that the scaling and
wavelct coefficients at location (mm,n) at scale 2741 can be computed from the scaling

coefficients at the fner scale 2 by

&m,n] = i i k[k — 2m]h[l - 20l [k, 1), (88)
(=2 k=—ng

d*'fm,n} = i i gt — 2m)h[l — 2n)d]k, 1], (39)
Je 00 k=—or
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o

EPmal= 3 S K= 2miglt - el , (o)

f=—to k=—0a

d )= Y Y gl - 2mlglt - 2n)[%, 4], (91}

l=—va k=—0a
and that the scaling coefficients at scale 27 can be reconstructed from the scaling and

wavelet coefficients st the coarser seale 2941 by

oo

dima] = 3 3 Alm - 26l — U] (52)

k= —ng l=—ca

o o3
+ 5 Y glm - 2k]hln - 20)d] [k, 4

k=—go l=—0g

+ 3 Y Alm - 2kgln — 244} [k, 1)

k==cal=—0o

+ E Z glm — 2&jglr — 2045 [k, 1]

k=000

The decomposition in (88)-(91) is called the two-dimnensional discrete wavelet trans-
form and the reconstruction in (92) is called the inverse discrete wavelet transform.

In image processing the two-dimensional discrete wavelet transform is used to
compress images to save computer slorage space. As the fivet step, the discrete
wavelet transform is applied to the original image {'fm,n]: 0 € m < P,0 <n < Q}
where P =2™,Q = 2™ my,n; = 0,1,2,... to decompose it into one set of scaling
coefficients {c'[m,n|} and three scts of wavelet coefficients {d}[m, n]}s=y 2z where
0 <m < P20 £n < @f2. The set {c'[m,n|} is the compression of {c®[m,#n|}.
The three sets of wavelet cocRicients {associated with three types of wavelets in two-
dimensional space) contain the detail lost in the compression. Then the set of scaling
coeflicients can be [urther compressed by the discrete wavelet transform. Each move
from a finer scale 27 to the next coarser scale 27+ leads to a reduction In the size of

the scaling image by & factor of four. The process is illustrated in Figure 7 where the
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discrete wavelet transform is applied to an original image of size 128 by 128 (Figure
7TA). After one application of the discrete wavelet transform, one scaling and three

wavelet images of size 64 by 64 at the coarser scale are obtained as shown in Figure

7B.

A B

128 by 128

Figure 7: One application of the two-dimensional discrete wavelet transform to an

original image of size 128x128.

Similar to the one-dimensional case, putting u = k — 2m and v = [ — 2n, the

equations (88)-(91) can be rewritten as

2M-12M-1

ctm,n] = Z Z hlulh[v]e’[2m + u, 2n + v], (93)

u=0 v=0

2M-12M—-1

d&i*m,n] = Z Z glulh[v][2m + u,2n + ], (94)

2M-12M-1

&5 m, n] Z Z hlu)g[v]c’[2m + u, 2n + ], (95)

u=0 wv=0

2M-12M-1

[m,n| = Z Z lg[v]c[2m + u, 2n + v). (96)

u=0 wv=0

J+1
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Since in one-dimensional space the sum of the lowpass filter coefficients Z:ifu" hlu]

i equal to v/Z, the sum of the lowpass Alter coefficients in two dimensional space is

equal to 2, that is

ZM-12M-1
3o 37 hjulap) =2. (97

u=l

3.2.3 Stochastic Wavelet Analysis in Two-Dimensional Space

In this section, we introduce the lormulae for computing the covariance of pairs of
scaling coeflicients, the covariance between a scaling coefficient and a wavelel co-
efficient and the covariance of pairs of wavelet ceelficients of the same type. These
covariances are used in the simﬁlation of realisations of two-dimensional random func-
tions using the algorithms presented in this thesis. In addition, the definition and the

computation of the wavelet and scaling spectra are also introduced.

Covariance between a Pair of Scaling Coefucients In two-dimensional space,
the covariance between two scaling coefficients at thesame scale ¢f[p, g and of[m, n), j >

0 is denoted by
ﬁ{p,ﬂl)uhln} = E{c’[p, 'ﬂcj [m, ]} - E{cj 7 G']]’E{cj [m,n]},

and the eovariance between two sealing coefficients ¢’[p, g} and ¢*'[m,n),j > 0 ut

two consecutive sceles is denoted by

Eoampary = B gl m, nl} — E{lp, ]} B{ [m, ]}

Using equation {93) one can prove that the covariance ﬁfm B(mg) Can be computed

from the covariance at the previous finer scale 2-'by

IM=-1 2M-1

re{p,m),(q.n] = E E h{ullh{”1]h’[u.zlh[uzlﬁi;;iuljmdma),(h-{-w.2n+lrz)' (98)

uy, v =0 ug ve=0
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The covariance 6’('?.,“)‘(9'“) between two scaling coefficients atb two consecntive scales is

computed from the covariance of scaling coeflicients at the finer scale by

2811

lsiv.rr-}‘(q‘ﬂ) = B(clp.q) E hu)k[v]e’[2m + u, 2n + ]}
u,u=0

251-1 ' .

5 o) B{e'p, gle’lem + v, 20 + v]).

u=0

According to equation (98), we have

i1
Bt = 2 ALY o 2y {99)

ey

Covariance between Two Wavelet Coefficients of the Same Type at the
Same Scale In two-dimensional space, there are three types of wavelet covariance.
Tor each &, & = 1,2 or 3 the covariance between two wavelet coefficients d‘;[m,n] and

@[p,ql,j > 0 is denoted by

d(m,p),(n,q) = E{di[mi ﬂld‘;;lp, '?]} - E{di[m, n]}E{d{-IP: ‘ﬂ }‘

Using equations {94), (95) and (96}, for each valug of &, the covariance Thmaing)

computed in terms of the covariance of scaling coeflicionts at the fner scale by

M1 281-1
j =1
TJl{m‘p}.{n,q) = Z E h[1-"-1]9[ﬂl]Mﬂzl.‘}[W]ﬁfgmq-u;'2p+u,],(2n+v1,zq+.,,p (100}

=0 ug =0
2M-1 2M-1

T%{m,p],(n,q) = E E 9['-"-1]h'[“l]9[“2]h[”z]ﬁf'z_nlwu;"zp+ngj.(2n+u,,2q+.,,p (101)

v =0 ug =0
TAM=1 2M-1

Tﬂ(m,p),(n,q) = Z Z 9[“1]9[‘-'1]9[u:!]Qluzlﬁf;rrl.+u1.2p+u,1.{2n+u,.2q+u,)- (102}

up =0z t2=0

Covariance botween a Wavelet Coefficient and a Scaling Coefficient at
tlie Same Scale Sinee there are three types of wavelot coefficients {di[p, g]}x=1,25
in two-dimensional space, there are also three types of covariance between scaling

coefficients and wavelet coefficients associated with each value of &, For & = 1,2, 3, the
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covariauce between 3 scaling coeflicient ¢%[n, m] and a wavelet coefficient di{p, ¢, k =

1,2,3 the same scale is denoted by
Thtmainay = BT mdlp, g}, £ =1,2,3.

Using equations {93) - (86}, for k = 1,2,3 the covarinnce 7, ¢, o is computed in

terms of the covariance of scaling cocflicients at the finer scale 2-! by

=1 2M-1

q{(m.P}.(ﬂ.fi)s Z Z Kl Jhlen]hlualglea] 8 [';l:ﬂlnzﬂ“!}-(:h‘"wn%*")}' (103)
uy=0ug =0

-1 24—t
n;(m.pl‘("ﬁlz E E h[ul}h'[ul]g[u*]h[U!]‘Bgi‘_nlwm.?N-u-x).fzn-f-m.?q-i"-'z]’ (104)

upn=ug =0

M -1 2M-1
Bimaing = 0 2 bldlhbalgluslollBiot,, spruimiozosmy:  (105)

1 =0ugzn=0
Similar to the case of one-dimensional space, the covariance #, 8,71 and 7] are

independent of the indices of the scaling and wavelet coefficients. This property is

generalised from Proposition 4 as follows:

Propasition 5 If £ : A — {2(uy,u) : (u1,ug) € A} is 6 second-order stationary
Gaussian random funciion with zero mean then the coveriences 6,1} and n} do

not depend on the indices of the scaling and wavelet coefficients.

Proof. Again we provide the proof for the case of the covariance of two scaling
coefficients only. In two-dimensional space, let ¢/|p,q] be the scaling coeflicient at
scale 31 and of2[m, n} be the scaling coefficient at scale 272,

From equation {86) and since the scaling function ¢ is o real-valued [unction, the

scaling coafficient ¢ [p, g} is expressed by
c"‘[p,q} =f f Z(ul,u2)¢jw(u1)gbjlq{uz)duldug. [105)
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By substituting

Z(ugug) = f” _/Q ghorrtenaddZion wp)

into (106), we bave

ch [P: ‘ﬂ = ./-: ./:W fm ./:: e!'(mulw:uajdz(wl,wz)cjljw{u;)gbjlq(uz)dulduz
= f—w fm([_m eml“l¢j|p(ul}dul}(-[_m Ei”’“’lﬁ_m(ug]duﬂd.?(wl,wz)
= [ [ R it
using
ajlp(wll = ‘/:“‘ ma'""ﬁjl,(ﬂ:)dﬁh
and
E;.q(wa) = f-‘” G—M“%ﬁq(ﬂz)dﬁz-
Similarly

0o Wﬂ-——-——n .
= [ [ D a2 5).
-kl o =00
Since c#|m,n} is real, it is equal to its complex conjugation
o o - = T T—
bmini = [ [ B Bl T )
- o -
Next, by computing the covariance of the two scaling coefficients, we have

EB{cp, glc*lm,n]}
- 5 [ T eaemiizonwn) [ [ Bnlol Bt BB}

Using the third result of the Spectral Representation Theorem

E{c [p, glc[m, ]} = j " f :a,,,(wl)Ej,q(wzyaj,m(ulyaj,n(wz)S(wl,o Yordary,

(107
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where

Swy,u) = L}f“" /“’ G(hl,hz)ﬁﬂf[ﬂlhwmﬂdhldﬁg‘

Using the properties of Fourier transform together with the definition of the function

‘35:‘1? we have
,plw) = 2 P2HPUEG 2015 (108)

and

-

Bpam(10) = PTG (o) (109}

By substituting (108) and (109) into equation {107) and simplifying the result, we

have

E{c* [y ale[m, nl} = Ky f” f : Kod (27001 (2w 320 V(2% an) S g s,
(110)

where

K= 2[!1-!-.153)1’2,

and

1{2 = eimﬂl(p—!‘:"lm)ciwﬂ-‘l(q-ziz--fln)_

Tt can be seen that the covariance between the two scaling coefficients o [p, q] and
ci*{m,n] depends only on (p — 27~f1m, g — 2*~hp), In particular, the covariance of
two scaling coeflicients at the same scale o?[p, g] and &/[m, 1) depends on the difference
of the indices (p - m, g~ 7). =

These properties are used to simulate a scaling coefficient at one scale from scaling

cocfficient(s) at other scale.
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3.2.4 Wavelat Spectrum - Sealing Spectrumn and Distributions of the

Wavelet and Scaling Coefficients

The wavelet spectrum, denoted by ¢, and the scaling spectrum, denoted by £, are
defined as the expected values of the squares of the wavelet cosflicients and scaling
coefficients, respectively. The wavelet spectrum and the scaling spectrum obtained by
the discrete wavelet transform of a realisation of & second order stationary randem
function Z are independent of location (Sachs et al, 2000}, M Z is a zero mean
(3aussian random function, the wavelet coefficients and scaling coeflicients follow zero

mean normal distributions with variance ¢4,k = 1,2,3, and £7, respectively that is
djfr,m] ~ N(0,¢}) (11)
and
cfln,m] ~ N{0,&). {112)

The scaling spectrum £ and the wavelet spectrum ¢ can be approximated via equa-
tions (98} and {100)-{102) respectively, by replacing p with m and g with n. That is,

the sealing spectrum is approximated by

2M=-1 IM-1

f’ = Z E h{ullh[‘ul]h[uﬁ}h[ua]'si'z-n}l-l-n; Smbug), (2t 2ntra) (113)

uy v =0 vz vg=0

and the wavelet spectra are approximated by

. -1 2M -1
d = Z h{ul]g[ul]h[u2]§l”2]ﬁ(2m+ul 2y ) {2nby 2ntue)? (11‘1)
uy .l!r*ﬂ uzwz=0
. =1 2M—1
= Z E 9[“1]";[”1]H[M]h[‘-’zlﬁ('zm.puhgmﬁ.,) {2n-huy 2ntug)? (115)

trp =0 vg,uz=0
. -1 M1
G z z gh‘l1]g[u]-]g[u?]g[vzjﬁ(?m-{—ul,'im-l-“!) {2t 2ntw)” (118)

upuy=0uz,v2=0
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3.3 Applications of the Discrete Wavelet Transform in Multi-
level Wavelet based Simulation Algorithms

Equations (93) and (97} indicate that each scaling coelficient 8t a coarser scale is equal
to twice the weighted average of scaling coefficients in an asséciated square window
wheose width is equal to the wavelet filter length. In addition, as can be seen in Figure
7, the size of the scaling image at the coarser scale is equal only to a quarter of the size
of the scaling image at the finer scale, yet it preserves all [eatures of this scaling image.
Therefore, the discrete wavelet transform can be used to shrink a study region whose
attribute values are known only at some locations o 2 region whose attribute values
at all locations are known without distorting the spatial structure of the original
region.

Equations (98)-(105) allow unknown scaling or wavelet coefficients to be computed
from the known ones. The correlation between pairs of wavelet and scaling coefficients
at the same coarser scale makes i possible to deduce the wavelet coeflicients from the
scaling coefficients at the same scale. Having both scaling and wavelet coefficients at
a coarser scale, the scaling image at the previous finer scale can be suitably recon-
structed from the sealing image at the ecoarser scale using the inverse discrete wavelet
transforrn. This property is used in the algorithm PWSIM introduced in Chapter 7.1.

The correlation between pairs of scaling coefficients at two consecutive scales can
be used to compute the scaling coefficients at the Aner scale from those at the coarser
scale and vice versa. Therefore, the simulation of the scaling image at the original
scale from the scaling image at the coarser seales can be carried out using the scal-
ing coefficients alone. This property and the method of shrinking the study region

using the discrete wavelet kransform ave used in the algorithm DWSIM introduced in
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Chapter 7.2.
Sealing and wavelet spectra together with their properties are used in the gingle-

leve! wavelst-based simulation algorithms HSIM and DB25IM in Chupter 6.



4 PERFORMANCE & EVALUATION MEASURES

In this Chapter we describe the criteria used to assess the performance of the simu-
lation algorithms in this thesis. The criteria used are both quantitative and visual.
Quantitative assessment consists of measures for local accuracy and global accuracy;
visual assessment is carried cut via the mosaic plots of the simulated realisations.
Tor the assessment of the local aecuracy of the results, we use misclassification anal-
ysis, E-type estimates and the absolute errors between the E-type estimates and the
true values and conditional variances, computed for the attribute values. In addition,
the accurecy, precision and goodness (Deutsch, 1997), computed in the normal score
space, of the results obtained via simulation are also considered. For the assessment
of the global accuracy, we focus on the reproduction of the sample histogram and the

semivariogram model computed in the normal score space.

4,1 Misclassification Analysis

Misclassification analysis can be used as a measure of the local accuracy of a stochasiic
or deterministic model. For example, in soil science applications, cach location in the
study region can be classified into two categories: a location u is sale from some type
of polluticn if the value at that location lies below o predefined tolerance z., and a

location is unsafe if 1lie value lics above the tolerance. That is

0 if z{u) <z
Hwy = )
1 if z(u) >z
where the value [} denotes a safe localion and 1 denotes an unsafle lecation.

In comparizig the calegory at each localion obtained from a simulated realisation

with the actual one, four cases occur: = safe location is correctly classified, an unsafe
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location is correctly classified, a safe location is wrongly classified as unsafe and an
unsafe location is wrongly clessified as safe. The prabability that a safe location u js

misclassified as unsafe is given by
ofu) = Prab{Z(u} € 223 {u} > =, (n)} (117)

where z} (u} denotes the simulated value st logation u. The probability that an unsafe

location u is misclassified as safe is given by

Blu)

I

Prob{Z{u) > z|z3{v} < z, (n)} (118)

1— ar{u).

At a given location either (117) or {118} is defined, but not hoth.

4.2 E-type Estimate and Absclute Error

Another measure of local accuracy used in this thesis is the E-type estimate and the
absolute average error computed at each unsampled location. The E-type estimate at
Ivcation u is the averape of L simulated values at this location obtained by running
a simulation algorithm L times. The absolute aversge error AAE{u} at location u
is the absolute difference between the true value z{u) and the E-type estimate at

location u. This measure is eomnputed by

1 L
uy = 730 )

where 2!{u),{ = 1,2,...0 are simulated values at w.

AAE(W) =

4.3 Conditional Variance

Let £ be the number of simulated realisations obtained by running a simulation

algorithm L times, where [ is large. At each location u; we obtain a set of L condi-
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tional simulated values {{u:},{ = 1,2, ..., L} that define a local frequency distribu-
tion. The conditional variance at location u; is the variance of tl.e simulated values

{#(w),t=1,2..,L}

4.4 Sample Histogram Reproduction

A quantitative measure fo. sample histogram reproduction is the mean of the absolute
deviation {MAD} betwesn the sample quantiles and the quantiles of an individual
realisation. This measure is computed by
MAD = - E]z{ ~ z] {119)
|—1
where z! and z; are the quantiles for th~ realisation and the sample in the normal

seore space, respectively and n is the number of quantiles.

4.5 Semivariogram Reproduction

For semivariogram reproduction we use the mnean of the absolute relative errors
{MAE) between the directional experimental semivariogram of the normal scores of
an individual realisation and the semivariogram model fifted to the normal scores of

the associated sample. The formula for MAE in the jsotropic case is

g"(Ibu]) — ool
R | (12

ny

MAE—WZ

=1

where g* denotes the experimental semivariogram for the realisation, ¢ denotes the
semivariogram model, 7 is the number of lags used to compute the errors and [k
is the distance satislying 0 < |h| < renge. Note that in equation (120}, the value
associated with [h;] = 0 is excluded for the case of a semivariogram model that has

. nugget eflect component. The sum Is computed only up to the range since only
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the spatial continuily and the crroms at distances smaller or equal to the range are
regarded as important. The division by the valye of the semivariogram model will
give more weight to the spatial continuity at short distances.

In the anisotropic case, for simplification, the measure for semivariogram model
reproduction is based cn the average of MAE values computed in the directicns af

maximum and minimum spatial continnity.

4.6 Accuracy - Goodness - Precision

Lel us consider a sot of L simulated realisations obtained by running a conditional
simulatien rlgorithm L times. The resulls obtained by the application of a trans-
fer function (for example 2 flow simulator) to each of these L realisations model &
probability distribution. This outcome probability distribution is aceurate if the true
result obtained by applying the same transfer function to the true values lics within
some predefined symmetric probability interval of this probability distribution. The
precision of the outcome distribution is defined by its spread; the more spread the less
precise. The accuracy of the outcome distribution can only be evaluated based on the
known values, These known values can be the sample data used in the modelling, the
data held back before the modelling (jacldnile data) or some additional information
about the phenomenon.

The adequacy of the algorithm can also be assessed directly using symmetric
coverage probabilities as ontlined by Deutsch {1997). According to this method a
stochastic model is aecurate if £(p), the proportion of the true values lying in an

interval (piow, Pup) of length p, is greater than or equal to p, where

1+p
4

1-— .
Piow = _‘2_2 and Pup =



and p € [0,1]. It can be seen that (Piw, pPp) is symmetric about the value 0.5. The
goodness of the outcome distribution is determined by the closeness of the value £(p)
to p.

To save compntational time, in this thesis the true values used to compute the
aceuracy and goodoess of a stochastic model are the jackknife data, which will be
described in Chapter 5. Based on this jackknife approach the computation of E{(p) is
carried out as follows.

Consider a sample of n values taken at locations v, = 1,...,n denoted by
{z(ua]la =1, "'tn} {121}

which is used in the modelling and conditioning of realisations of a random Mnction
Z In some study region A. Let u;, £ == 1,2, ..., 6, where @ is the number of jackkuife
data, be the locations where the known values are held back. By running a simulation
algorithm L times, where L is large, ot each location u; we obtain a set of L conditional
simulated values {2!{u;),{ = 1,2, ..., £} which define  local probability distribution.

If F{u;z|(n)) is the conditional cumulative probability distribution function at

location v, defined Ly
Flug 2|(n)) = Prob{Z(u;} < z|(n)}
the conditienal cumulative probability for the true value z(u;} at location u; is
Flug z{u)l(n)) = Prob{Z(u) < 2{uli(m)}.

The proportion E@ of the true values that lie within the probability interval for ali

unsampled locations then is computed by

élr) = &{wip). (122)

1

£ =
[}o



where

1 if Fuis 2(u)| (1)) € (Puows P}

otherwise

§(ug,p) = (123)

Definition 6 A stochastic model is said {o be accurate if £(p) > p for all p.

The accurcy of a stochastic model can be visualised by the plot of £(p) against p
and a stochastic model is accurate if all of the points {p, £(p)) lie above cr on the line
that bisects the first quadrant (the 457 line). This plot is called the accurecy plai.

In order to assess the performance of s simulation algorithm, lwo measures arc

defined, one for the eccuracy and one for the goodness. The measure for the accuracy

is computed by

1
A=./|; a(p)dp (124)
where

1 fZp) 2 p

0 otherwise

alp) =

for p € {0, 1]. I all the pairs (p, £(p)) in the accuracy plot lie above or on the line that
bisects the first quacdrant, that is Z(p) = p for all p, then the coefficient A attains its
meximum value of 1. If all the pairs (p, (7)) lie below that line, that is £{p} <  for all

p, then A attains its minimum value of 0. In practice, to compute {124) the interval

(0,1] is partitioned inte K evenly-spaced intervals of length 1/K and the value A is

obtained numerically by the discrete sum

1 &
A=— E alpk)
K
where pe = K/ K.
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The gocdness measure is computed by

6=1- [ salp) - G - ki (125)

Similar to the case of the accuracy coefficient A, in practice, the computation of G is
carzied out numerically via discrete summations,

According to equation (125), if all the peints (p, £(p}) lie on the 45° line, that is
£(p) = p, the value @ takes its maximum value of 1. The coefficient G gots smaller
as the departure of the pairs {p,£(p)) from the 45° line increases. In eddition, the
penalty is weighted twice for the case m < p. The goodness coefficient & can be
used to deduce the location of the result obtained by applying a transfer function to
the true values in relation with the median of the probability distribution modelled
from the values obtained by applying the same transfor function to the realisations.
The closer the value G is to 1, the closer is the median to the true result. If 7 is teo
small, the true result may fall outside the inteiyuartiles or even outside the range of
the results obtained by the simulation. This will lead to a wrong prediction.

‘The precision of a stochastic medel ean be determined via the average of the local
probability distribution variances denoted by V. The larger the average variance V,
the less precise is the result obtained by the simulation., Let o(u;) be the condilional
variance {defined in section 4.3) of the simulated values at location u; and & be the

number of jackknife data, the average variance denoted by V is computed by

Q
V== a*u) (126}

Since the average variance ¥ only provides the global spread of the conditional
cummulative distribution, another measure of the precision based on the width of the
local probability intervals has been introduced. This measure is the average width of

the probability intervals that contain the true values and is denoted by W(p). For o
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given probability p, the average width W is computed by (Gooveerts,2003)

)= 5255 ;‘““"””F o 14/~ P us (- p)/2)

where F=! denotes the inverse of the conditional cummulstive probability function

at location u;,

4,7 Mosaic Plots

The performance of the algorithms is assessed visually by comparing 2 mosaic plot of
the simulated realisation with the corresponding post plot of the associated sample
ard the corresponding mosaic plet of the exhaustive data set (since here the exhaus-
tive data set is available). By observing the mosaic plot of a simulated realisation,
one can detoct any unusual behaviour, lor example actefacts, or can verify that some
particular feature seen in the post plot of the sample and / or in the mosaic plot of
the exhaustive data set is also found in the simulated realisation. The mosaic plot of

a realisation can also reveal whether or not the spatial continuity is reproduced,

4.8 Applications and Case Studies

The measures discussed in this Chapter will be used Lo cvaluate the pedformance of
the algorithms developed in this thesis through their applications to samples that
have different spatial structures and that have been obtained using diflerent samnling
methods. In the case when the underlying function is multivariate norinal, these
algorithms are applied to seven samples with different saople sizes and sampling
methods drawn [rom the normal scores of two exhaustive data sets, one isotropic
and one anisotropic, as illustrated in the case studics in Chapters 6, 7, § and 9. In

order to identify artefacts and the reproduction of global statistics, the performance
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measures used in this case are the mosaic plots of typical realisations, the measures
for the reproduction of the sample histogram and semivariogram model {the MAD
and MAT values), Since the results in this case are in normal scores, the assessment
of the local accuracy and the variability of the simulation is based on the accuracy,
goodness and precision coefficients.

In the case when the underlying random function is not necessarily multivariate
standard normal, the algorithms will be applied to twe samples dravn from the
attribute values of the sbove data sets, as illustrated in Chapter 10. In this case,
the samples have Lo be transformed into the normal scores before the application of
the algorithms. The realisations then have to be back-transformed inlo the attribute
values after the conclusion of the algorithms. The performance measures to identily
the artefacts and the reproduction of glohal statistics are slso the mosaic plats of
typical realisations and the MAD and MARE values. Since the results now are the
attribute values, with the presence of the exhaustive data sets, the local accuracy is
assessed via misclassification analysis and E-type estimates, The variability of the

simulation is assessed via conditional variances
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5 DATA SETS AND SAMPLES

The performances of the simulation algorithms in this thesis are assessed using nine
sarples and seven sets of jackknile data. In the case where the underlying random
function is multivariate standard normal, the main samples used for the performance
assessment in Chapters 6, 7 and 8 are pH100n and pHI00IRn in the isotropic case
and Béfn and BE4{IRn in the anisotropic case. In addition, the samples pH50IRA,
pHI0GIRn, pHESOIRAN and pHE00IRM will be used to assess the impact of the sam-
ple size in Chapter 9 and the jackknife data JeckpH100n, JackpH100I8n, JackB64n,
JackB64IRn, JackpH50n, JackpH250n and JockpH500n are used in Chapters 8 and 0
for aceuracy assessmeat. The above 14 samples are taken from the normal transfor-
mation of two exhaustive data sels; one is isotropic and the other is anisotropic, In
the case where the random function is not multivariate normal, the samples used in
the performance assessment in Chepter 10 for the isotropic and anisotropic cases are
pfsamp and Bersamp respectively. These two samples are drawm from the attribute
values of the two exhaustive data sets discussed above. A detailed deseription of the

data sets and the samples is given below.

5.1 The Data Set pHsoil

The exhaustive data set pHseil contains 3721 pH values on a 61 x 61 regular grid. It
has been obtained by sequential Gaussian simulation of soil samples taken originally
in an uncropped field in an investigation of soil salinity and acidity in the Jimperding
Brook catchment area in Western Australia (Bloom and Kentwell, 1999). Summary
statistics and the histogram of this data set in Figure 84, together with the normal

probability plot in Figure 8B, indicate that the data set pHsoil is not standard normal.
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AJ. Summary statistics for pHsoll
Variable pH values

Mean 4 BB0
StDev 0.288
Vanance 0083
Skewniss 0.2
Kunasis 0604
N mn
Mintmum 4006
181 Quartile 4688
i ) 15 . 1 ' i i M.mm 4 ian
.llfl:l J?S liﬁil l;ﬁ 5:0 5?5 560 585 3rd Ouarlile 5 505
- Maximurn 5474
95% Confidence Interval for Mu
95% Confidence interval for Mu 4 B5 4 BREOT
S —— 95% Confidence Interval for Sigma
J 0.261 0729431

s - - ! 95% Confidence interval for Median
4,840 4 BEE
95% Confidence interval for Median

B/. Normal plot

5
pH values

Figure 8: Summary statistics and normal probability plot for pHseil.

Since pHsoil is not standard normal and the simulation algorithms investigated
in this thesis require that the underlying random function be multivariate standard
normal, the pH values have been transformed into the normal score space and the data
set that contains these standard normal scores is denoted by pHsoiln. The mosaic
plot of pHsoil using the left legend (or of pHseiln using the right legend) and the
variogram surface of pHsoiln in Figure 9 show that the spatial continuity is slightly
stronger in the direction of azimuth 135°. To avoid the influence of the choice of the
parameters in the backtransformation on the result of the algorithms, the data set
pHsoiln together with its associated samples, described later in this Chapter, will be
used to test the performance of the algorithms presented in this thesis in the case

when the underlying random function is multivariate standard normal. The data set
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pHsoil and an associated sample are used as test data in the case when the underlying

random function is not necessarily multivariate standard normal.

Variogram surface of pHsoiln

=

-12 0 12

24

"4 -12

Figure 9: Mosaic plot of pHsoil (pHsoiln) and variogram surface of pHsoiln.

To test the performance of the simulation algorithms in the case when the ran-
dom function is multivariate standard normal, we use one gridded sample, denoted
by pH100n, and four nested ungridded samples, denoted by pH50IRn, pHI100IRn,
pH2501Rn and pH500IRn, from pHsoiln. Samples pH100n and pH100IRn are used
in Chapters 6, 7 and 8 to test the performance of the simulation algorithms with regard
to the sampling method. Samples pH500IRn, pH250IRn, pH100IRn and pH50IRn
are used in Chapter 9 to assess the impact of the sample size. In Chapter 10, to
test the performance of the algorithms in practice, we use sample pHsamp which was

randomly drawn from the exhaustive data set pHsoil.

5.1.1 Sample pH100n

The gridded sample pH100n consists of 100 values at 6 node of pHsoiln starting
from z = 2, y = 2 with grid spacing 6 units of measurement. Summary statistics for
pH100n are shown in Figures 10.

The post plot and the variogram surface for pH100n in Figures 11A and 11B show
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Summary statistics for pH100n

Variable: Normal scores
Mean 0.037
Variance 1.022
Skewness 0221
Kurtosis -0.630
N 100
Minimum -1.958
| I | 1 | I
-20 -1.2 -0.4 0.4 1.2 2.0
| I | I | I

1st Quartile -0.845
Median 0.051
3rd Quartile 0723
Maximum 2542

95% Confidence Interval for Mu

| | I | I | i |

.DI.S 02 01 0.0 01 0.2 03 04 05
| 1 | I I | I 1 I

95% Confidence Interval for Median

Figure 10: Summary statistics for pH100n.

that pH100n is an isotropic sample, with both maps indicating that spatial continmty
is the same in all directions. As pH100n is isotropic, only the omnidirectional ex-
perimental semivariogram is modelled and the standard exponential semivariogram
model we have fitted to the experimental semivariogram with lag spacing [h| = 6.0 is

shown in Figure 11C. This semivariogram model has nugget 0.15, sill 0.85 and range

18.00.
A/. pH100n B/. Variogram Surface C/. Model
Omnidirectional
Yanp e
P 3 S s |
h1- i oan08l
o 0 C.aes
" 25w o317 0.6)
8' e.5 a.7a0
- e W cemsz() 4|
&9 v beer
wr 4 Uz
o- o % e
o e s © " [T o
010 20 30 41 51 B1 g 0 § 10 15 20 25 30

Figure 11: Post plot of pH100n and its variography.
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5.1.2 The Unpgridded Samples

The [our ungridded samples lcom pHsoifn are nested. Sample pH500IRn consists of
500 values randomly drawn from the data seb pfisoiln; sample pH250IRn consists of
250 values randomly drawn [rorm pH500!/tn; sample pH {001En consists of 100 values
randomly drawn from pH250{Rn and sample pH53n consists of 50 values randomly

drawn from pH100/Rn. In summary, the four ungridded samples satiefy
pH50iftn C pH100IRn C pHASOIRn C pHE00 AR C pHsoiln.

Summary statistics and the histograms for the nested samples are shown in Figure
12,

The post plots, variogram surfaces and semivariogram models for the four nested
samples are shown in Figure 13. The variogram surfaces of the nested samples in the
middle column indicate that ali four samples are isobropic since the spatial continuity
is the same in all directions. The omuidirectional experimental semivaviogram, com-
puted using lag spacing {h| = 4.0, lor sample pif50iRn and its associated model are
shown on the right of row 1 in Figure 13, the oninidirectional expecimental semivari-
ograms for the other three ssmples, computed using lag spacing |h| = 1.5, and their
associaled models are shown on the right of rows 2, 3 and 4. The standardised expo-
nential semivariogram models for all lour nested samples have the same parameters

with nugget 0.1, sill 0.85 and range 18.00.
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pH50IRN
Variable. Normal scores

Mean 0.001
Variance 108
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Figure 12: Summary statistics for nested samples.
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Figure 13: Post plots and the variography of ungridded samples from pHsoiln.
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5.1.3 Jackknife Data for the Samples of pHsoiln

Associated with the samples described above are five sets of jackknile data. The jack-
kmife data set for each sample consists of all values of the data sct pHsoiln excluding
the sample values. These jackknife data sets will bo used cnly in Chapters 8 and 0
in the performance assessment based on the accuracy plots deseribed in Chapter 4.

Summary statistics for the jackkaile data are shown in Table 2.

Statistics [ jack- jack- jack- Jjack- jack-
PH100n | pHS0IRn | pH100IRn | pH250IRn | pE5001Rn
N 1621 3671 3621 471 3221
Mean -0.001 ] 0.000 0.003 0.005 0.001
Variance | 1.00D 1.000 1.000 1.600 1.000
Min 3644 |-3644 -3.644 -3.644 -3.644
Q1 -0.67¢ | -0.674 -0.673 -0.667 -0.675
Median | 0.001 -0.001 0.003 0.001 -0.002
Q3 0.672 0.676 0.678 0.678 0.681
Max 3.644 3.644 3.644 3.644 3.644

Table 2: Bummary statistics for jackknife data of samples [rom pHsoiln.

5.1.4 Sample pHsamp

Sample pHsamy consists of 100 pH values randomly drawn from the exhaustive data
set. pHsoil. It is used in Chapter 10 to test the practical usefulness of the algorithm
DWSIM compared with the sequential Gaussian simulation algorithm {(SGSIM). Sum-
mary statistics and the cumulative probability distribution function for sample pH-

samp are shown in Figure 14,
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Figure 14: Summary statistics and cumulative distribution function of pHsamp.

Since pHsamp is not standard normal and since the algorithms used in this thesis
are based on the assumption that the underlying random function is multivariate
standard normal, the pH values, shown in the post plot on the left of Figure 15,
were transformed into normal scores before the computation of the variography. The
isotropic exponential semivariogram model fitted to the omnidirectional experimental
semivariogram for the normal scores, computed using lag spacing 3.5, is shown on the

right of Figure 15. It has nugget 0.15, sill 0.85 and range 18.00.
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Figure 15: Post plot of pHsamp and semivariogram model fitted to experimental

semivariogram for normal scores.

5.2 The Data Set Berea

Berea is a real two-dimensional exhaustive data set. It contains 1600 permeability
measurements (in millidarcies) on a 40 x 40 regular grid. These measurements were
taken from a 2 foot x2 foot vertical slab of Berea sandstone (Giordano et al, 1985)
using an air permeameter. The permeability measurements in Berea do not follow a
normal distribution. This can be seen from the summary statistics and the normal
probability plot in Figures 16A and 16B, respectively.

As in the isotropic case, the permeability measurements are transformed into
the normal score space and this data set is denoted by Berean. The mosaic plot
of Berea if the legend on the left is used (or of Berean if the legend on the right
is used) and the variogram surface of Berean in Figure 17 show that the spatial
continuity in the direction N55°W is stronger than the spatial continuity in any
other direction. It means that the data set Berea (or Berean) is anisotropic with
the maximum spatial continuity at the direction N55°W. Because of this spatial
structure, Berean is used in Chapters 6, 7 and 8 and Berea is used in Chapter 10 to test

the performance of our simulation algorithms in the anisotropic case. Performance
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Figure 16: Summary statistics for Berea and normal probability plot.

assessment of the algorithm DWSIM, which will be discussed in Chapters 7.2, for

highly skewed anisotropic samples can be found in Tran et al, 2002a.
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Figure 17: Mosaic plot of Berea (Berean) and variogram surface of Berean.
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5.2.1 Samples B64n and B64IRn

To test the performance of the algorithms with regard to anisotropic data in the case
where the underlying random function is multivariate standard normal in Chapters 6,

7, and 8, two samples, each of which contains 64 values, were drawn from Berean. In
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Figure 18: Summary statistics for B64n and B64IRn.

order to investigate the impact of the sampling method, one sample is gridded and the
other is ungridded. These samples are denoted by B64n and B6/IRn, respectively.
The values of the gridded sample B64n have been selected on every 5 node of Berean

while those of B64IRn are randomly drawn from this data set. Summary statistics
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for the two samples are shown in Figure 18A and Figure 18B respectively.
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Figure 19: Post plots of B64n, B64IRn and variography.

The variogram surfaces in Figure 19 show that the spatial continuity in the di-
rection N55°W is much stronger than the spatial continuity in other directions. In
addition, the experimental semivariograms for B6n, with lag spacing |h| = 5.0, and
for B64IRn, with lag spacing |h| = 3.0, reveal that the sill values in the direction of
maximum spatial continuity are lower than that in the direction of minimum spatial
continuity N35°F. Therefore, the semivariogram model in this case is the sum of

an isotropic model and a zonal component in the direction N35°F, as discussed in
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Chapter 2. The same standardised spherical semivariogram model is used for both
samples. This model has nugget, sill and range of 0.0, 0.6, and 9.0 in the direction
of maximum spatial continuity (N55°W) and nugget, siil and range of 0.0, 1.0 and
9.0 in the direction of minimmm spatial continuity {W35°E). This model is shown in

Figures 19A and 19B,

5.2.2 Jackknife Data for the Samples of Berean

Simitar to the case of ixotropic semples, the jackknile date used in Chapeer 8 in the
performance assessment via the aceuracy plot of each sample are the values of the data
set Berean cxcluding the sample values. For samples Bfijn and Bf4lfn, summary

statistics for the jackknife data are shown in Table 3.

Statistics | jackB64n | jackB64IRn
N 1536 1536
Mean -0.008 0.0uz
Variance 0.998 1.000
Min -3.421 -3.421
Ql -0.683 -0.669
Median -0.011 -0.006
Q3 0.663 0.675
Max 3.421 3.421

Table 3: Summary statlstics lor jackknife data of B64n and B64fiin.
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5.2.3 Sample Bersamp

In order to compare the performance in practice of the algorithm DWSIM, described
in Chapter 7, with the performance of the sequential Gaussian simulation algorithm
(SGSIM) in the anisotropic case in Chapter 10, a random sample of 64 permeability
values denoted by Bersamp was drawn from the exhaustive data set Berea. Summary
statistics, together with the cumulative probability distribution function for Bersamp,

are shown in Figure 20.
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Figure 20: Summary statistics and cumulative probability plot of Bersamp.

Since the permeability measurements do not follow a standard normal distribu-



tion, these values were transformed into the normal score space. The post plot. of the
permeability values and the semivariogram models fitted to the experimental semi-
variograms for the normal scores in the direction of maximum and minimum spatial
continuity, computed using lag spacing 3.5, are shown in Figure 21. The nugget, sill
and range of these standardised spherical semivariogram models in the direction of
maximum spatial continuity N55°W and in the direction of minimum spatial conti-

nuity N357F are 0.0, 0.6, 9.0 and 0.0, 1.0 and 9.0 respectively.
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Figure 21: Post plot of Bersamp and semivariogram models fitted to experimental

semivariograms for normal scores.

The normality ol the samples discussed in this Chapter is necessary but not suf-
ficient to ensure that the underlying random function follows a multivariate normal
distribution. Therefore, before applying the algorithms to the above samples, the
multiGaussian assumption is checked for the standard normal scores. Since it is not
possible to fully check the normality of more than two-point cumulative distribution
functions, in practice one can only check the biGaussian assumption. If the biGaus-
sian assumption is valid, then the multiGaussian assumption is taken to be satisfied.
The checking of the biGaussian assumption is shown in Appendix 12.2.

In the isotropic case the results do not indicate any violation of the biGaussian

78



assumption. In the anisotropic case, the hypothesis on the biGaussian is not sirictly
satisfied since the semivariograrns in Figures 67 and 68 indizate that the high valued
data are more correleted than the low values. However, since the violation is net too
severe, we do not reject the biGaussian hypothesis and assume that the anisotropic

samples come from a multivariate standard normal distribution.



6 SINGLE-LEVEL WAVELET-BASED CONDI-
TIONAL SIMULATION

In this Chapter we describe our first twe conditional simulation algorithms that make
use of wavelets. They are both single-level conditional simulation algorithms and are
named HSIM (using the Hanr basis) and DB2SIM (using the Db2 basis). In both
algorithms, the conditioning data and the values to be simulated in a study region
are regarded as the scoling coefficients at the originel scale 2°. HSIM and DB2SIM
then make use of the location independence of wavelet and scaling spectra to simulate
the wavelet and (or) scaling coefficients at the finest scale 2!, The simulated values
are computed from the simulated scaling and wavelet coeflicients using the inverse
discrete wavelet transform. Both algorithms are based on the assumptions that the
underlying random function is second order stationary and that the sampie 15 from
a standard normal distribution. Therefore, if the assumption of normality is not
satisfied, the application of each algorithm needs to be preceded by the transformation
of the conditioning data into standard normal scores before the modelling of the
semivariogram. The covarjance model is then computed from the semivariogram
medel using C'(h) = 1 —g(h). The results in normal score space are then transformed

back into the attribute values after the conclusion of th slgorithms,

6.1 The Algorithm HSTM

The algorithm HSIM is 2 sequential single level wavelet-based conditional simulation
algorithm based on Haar wavelets. The simulation at each location in the study
region is carried out in a window whose size is determined by the filter length with

the movement on a random peth, Since the Haar filters contzin only two non-zero
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coefficients, in the two-dimensional case the size of the window is 2 x 2. Al each
location of the window the wavelet coefficients at the finest scale 2! are simulated
and the essociabed scaling ceoefficient is computed in terrus of the simulated wavelet
coefficients and the conaitioninz value(s} within the window. The simulated values in
the window are obtained vio the inverse diserete wavelet transform. The reason for
starting the simulation at the finest seale is to associate the inverse discrete wavelet
transform, the wavelet and scaling coefficients at the finer scale 2! with the data at

the original scale 2°,

6.1.L Description of the Algorithm HSIM

The alporithm iz carried out as follows. Given a window of size 2 x 2 the method
proceeds by first determining the number of sample values and their loeations within
the window and then simulating the wavelet coefficients. If thers are { values, where
! = 1,2 or 3, within the window then we sirnulate 4—I wavelet coefficients, compute the
associated scaling coefficient and then calculate the values at the ivmaining locations

in the window. The algorithm is outlined as follows:

Step 1: Given a sample that is normally distributed with mean 0 and variance 1
and with covariance function C(h), we compute each Haar wavelet spectrum

according to equations {114)-(116) for 7 =1.

Step 2: Generate a random path visiting all grid nodes in the study region exactly

once.
Step 3: Move to the first grid node.

Step 4: Construct & window of size 2 x 2 containing the node. If the noda does net

lie on the right or on the bottom boundary of the study region, it is located at
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row 1 and column 1 of the window. If the node lies on the right boundary, it is
located at row 1 and column 2 of the window. If the node lies on the bottom
boundary, the node is located at row 2 colurmn 1, and if the node lies on the
right and bettom boundary, the node is located at row 2 and column 2 of the
window. Denote the values, which are regarded as the sealing coefBcionts at
scale 2°, at these locations by afu,v], with #,v = 0,1. I the window does not
contain any sample locations or previously simulated nodes, or if all nodes in
the window have already been assigned values, move to the next node. If the
window contains I, where { = 1,2 or 3, known values then denote the tlree
wavelet coefficients and the scaling coefficient at scale 2! associated with the
window by d],d},d} and ¢! respectively. Hence, each value in the window is
expressed as a linear combination of the wavelet and scaling cocflicients via the
inverse discrete wavelel, transform using equation (92). Here, in the case of Haar

wavelets, the system of linear equations is expressed s

5 5 5 5 Py a[0, 0]
i 5 ~5 -5 dl al0, 1
x| V| = [0,1] (127)
5 -5 5 -5 4 al1,0]
s -5 -5 B 1) all,1]

Since the number of sample and previgusly simuiated locations is I, where ! =
1,2 or 3 then, in {127), { values of a[,,.] are known. The remaining 4 — !
unknown values of of.,.] are those that need to be simulated. By putting the
known values af.,.] into their associated rows on the right hand side of (127),
two systems of linear equations are extracted. The first system consists of
cquations that express the known velues in the window in terms of one scaling

and three wavelet coefficients e* and df ., 54, This system is used to simulate
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the scaling and wavelet coefficients ¢! and d},_, 5 The second system consists
of 4 — { Tinear equations that express the unknown values to be simulated in
terms of ¢! and @}, 55 This system is used to compute the simulated values
in the window after ¢' and d},_|,; are obtained using the first system, For
example, if { = 2 and a0, 0] and 41, 1] are known then, according to locations of
these nodes in the window, from system (127) the first and the second systems

ars

' + 6db 4 5dE + 5d) = 2[0,0]

Sc' — 5] - 5d) + .54 = e[l,1] (128)
and

Aec' + .5d - 5db — 5db = af0,1]

Gc' — .64} + 5d) — 54 = afl,0). {129}

Step 5: Use the first system to obtain the wavelet coefficients df ,._; 5 5 and the scal-
ing cocfficient ¢'. Since this system consists of { linear equations in 4 unknowns,
we simulate 4 — ! wavelet coelicients d}, & = 1,2,3 from N(0,¢}) as defined in
{111) to reduce the frst system to a system of [ cquations in { unknowns. The
reduction is achieved by substituting the simulated wavelet coelficients into their
associated locations in the first system and rearranging these equations, The
scaling cocflicient ¢! and the remaining (£ — 1) wavelet coefficients are obtained
by solving the system. I[{ = 1, then all three wavelet coeilicients are simulated
and the scaling coefficient ¢! is computed in terms of the simulated wavelet
cocflicients and the conditioning value. If ! = 3, only one wavelet coefficient

is simulated. The scaling cocfficient and the other two wavelet coefficients are
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computed in terms of the simulated wavelet coelficient and the conditioning
vitlues. Since there are three types of waveles coefficients but only one is drawn,
the wavelet cocfficient which needs to be simulated is chosen at random, If} = 2
as in the case of the given example, because the system (128) has 2 lincar equs-
tions in 4 unknowns, two wavelet coefficients ere simulated. These two wavelet
coeflicients are chosen so that the cocflicient matrix of the reduced system is
net singular. For this particular example d} and d are drawn and by substibut-
ing the values of the two simulated coefficients into (128} and rearranging the

orquations, the system {128) becomes

St + .5}

2[0,0) — .5d} — .5}

Sct - 5dl

Il

all, 1} + .54} — 5. (130)

The coeficients ¢! and df then are computed by solving the reduced system
{130).

Step 6: Substitube the values of ¢! and d} ,_, , 5 into the second system to compute
the 4 — [ simulated values at unknown locations. In the above example, this
step is carried out by substituting the values ¢!, 4}, d} and d} into system (129}

to compute the simulated values a[0, 1] and a[1,0]-

Step 7: Add the newly simulated values to the conditioning values and the window

moves to next location in the random path
Step B: Repeat steps 4-7 until the window reaches the end of the path.

Step % Go back to step 3 until all locations have been simulated,



6.1.2 Applications of HSIM

The performance of HSIM is tested for isotropic and anisotropic data by using the
samples pH100IRn and B6/IRn respectively. The result of the simulation is visually
assessed by comparing the mosaic plots of the resulting realisations with the mosaic
plots of the exhaustive data sets pHsoiln and Berean. In each case the mosaic plots
of the realisations give some sharp-edged patches as shown in the middle column of
Figure 22. This artefact is more pronounced in the anisotropic case. Spatial continuity
is assessed by comparing the experimental semivariograms of the realisations with
the associated semivariogram models. For the isotropic sample, the experimental
semivariogram for the realisation is similar to the semivariogram model, however,

with a shorter range. For the anisotropic sample, the semivariogram model is not

adequately reproduced.
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Figure 22: Reference images (left), realisations and associated experimental semivar-

iograms (middle and right).
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QOur conjecture is that the artefact found in the mosaic maps and the poor repro-
duction of the spatial continuity in H3IM are caused by the nature of the Haar filters,
Since the Haar filters contain only two non-zero coelficients, the size of the window
may simply be too small to caplure the spatial continuity. Excluding the proviously
simulated values, the window usually contains at mast one conditioning value, In
addition, in HSIM, the covariance model is only used to compute the variances of
wavelet coefficients (the wavelet spectra). Any correlation between the locations of
the simulated values and data locations in the neighbourhood is ignored. The result is
that the simulated values in a window usually depend only on one conditioning valug
in this window. II this value is large, the simulated values are large and conversely
small values typically lead to small simulated values. Therelore, discontinuity and
patehiness are produced when the windew moves from a high value location to a low
velue location.

As the window of sizc 2 » 2 does not contain enough data to fully capture the
spatial continuity, we have attempted to expand the window size to a multiple of the
Haar filter length, for example 4 x 4, 6 x 6, 8 x 8 and so on, to include more nodes.
However, because of the discontinuity of Haar wavelets, this attempt increascs the
computational effort but the outcome of Lhe simulation is similar to that in the case
the window of size 2 x 2. Therefore, we deduce that the result of single level wavelel-
based conditionsal simulation can only be improved if o different wavelet basis is used

or the wavelel method is used in combination with other methods.

6.2 The Algorithm DB2SIM

In order to overcome the problem with HSIM detailed in Scction 6.1, we moved to

develop the algorithm called DB25IM (Tran et al, 2001). In DB25IM, the Hear basis
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is replaced by the Db2 basis and the location independence of the scaling spectrum
and the wavelet spectrum is used in combination with kriging to capture the spatial
continuity. The simulation is again carried out sequentizlly in a window moving along
a random path.

Although the Db2 filters contain four non-zero coeflicients, the size of the window
in this algorithm is not determined based on the filter length. We have attempted
to use a window of size 4 % 4, however, because of ‘he nature of the Db2 filters this
attempt has led to problems through ill-conditioning of the resulting matrices. In
addition, if the wavelet method is used alone, the spatial continuity is still not fully
captured since the size of the window is still small compared with the study region.

Therelore, in DB28IM the size of the window used js 2% 2 as in the case of the Haar
wavelets. In cach window the associated wavelet and scaling cocfiicients at the finest
scale 2 are simulated and the simulated values are comptted via the inverse discrete
wavelel transform. To caplure the spatial continuity, the ordinary kriging estimates
using the sample (assume that the data follow a standard normal distribution) are

used as the training Image for the simulation.

6.2.1 Description of the Algorithm DB2SIM
The conditional simulation algorithm DB25IM comprises the following steps.

Step 1: Given a sample from 2 slandard normal random function (if this condition
is not met then the sample needs to be transformed into normal score space),
obtain the covarisnce function Cth) from the semivariograin model via the
expression g{h} =C{0)—C{h} and compute the scaling and wavelet spectra at

the finest scale 2' using equations (113)-(116) for j = 1.

Step 2: Compute the kriging estimates at all unestimated nodes from the sample
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using the same semivariogram model. That is, if the conditioning data [ollow a
standard normal distribution then the kriging estimates are chtained using the
data and the semivariogram made! fitted to the experimental semivariogram for
the data. If the conditioning data do not follow a standavd normsl distribu-
tion then the kriging estimates are obtained using the normal scores and the
semivariogram model fitted to the experimental semivariogram for the normal

SCOres.

Step 3: Generate & random path visiting each grid node in the study region exactly

Gnee.
Step 4: Move to the first grid node on the path.

Step 5: Construct a window of size 2 x 2 contzining the node. The location of the
node in the window is determined in the same way as for HSIM. Denote the
values at these nodes by afu,v), with z,v = 0,1, I all locations in the window
are known, move to the next location on the path, If the window contains
unestimated values then the location to be simulated is the first unestimated
location in the window according to row-ascending order. The kriging estimates
are assigned to the other I, where | = 0,1,2 or 3 unknown locations in the
window so that the node whose value to be simulated is the only unknown
location in the window. Each value afu,] in the window can be expressed as
a linear combination of sealing and wavelet coefficients via. the inverse discrete
wavelet. transform in equation (92). Here, for Db2 wavelels, because of the edge

effect each value in the window is expressed in terms of 16 wavelet and sealing
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coeflicients by

afe,v] = mi ijl hfte — 2m]hfw — 2njefm, n]
+ mﬁi; mil gl = 2m]hlv — 2n)di [m, 1]
+§;I i_j] hltz — 2m]gly — 2nldym, n)
+ ijl mi_l glu ~2k]glv — 2nldsfk, ). (131)

Since three values in the window are known, by putting these values into (131),
two systems of linear equations are extracted. The first system consists of
three linear equations thaf express the known values in terms of 16 scaling and
wavelet coefficients c[m,n] and dy[m, 7}, where m,n = —1,0 and & = 1,2,3,
These three equations are used to simulate and then to compute the scoling
and wavelet cocfficients f.,.] and dy[.,.]. The second system consists of one
linear equation thal expresses the unknown value in terms of ¢[.,.] and dgl., J.
This equation is used to compute the unknown value after all 16 coefficients

¢[.,.] and d).[., ] are obtained.

Step 6: Simulate 13 scaling and wavelet cocfficients of ¢[.,.] and dg[., ],k == 1,2,3
in the first system from the distributions described in (111) and {112). Since
there are three cquations in 16 unknowns, 13 coeflicients are simulated and the
cther three are calculated in tevms of the known values and simulated coefli-
cients. The three coclficients, which need to be calculated, are selected so that
the matrix of the filter coefficients corresponding to thess ceelficients 1s not ili-
conditioning or singular. For example, if the three coeflicients to be calculated

are ¢[~1,-1],d1[0,0] and d;[0,~1], and K;,7 = 1,2,3 are the sums computed
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by substituting the values of the 13 simulated coefficients into their correspond-
ing locations in each equation of systen {131), then by rearranging the three

equations we obtain a system of three linear cquations in three unknowns

Alu + iy + 2e[—1, ~1] + gle|fu)d, [0, 0] + Alt]gle + 2]da[0, —1] = afu,v] — K.
(132)
Hence, the three coefficients ¢[—1,-1],d;[0,0] and d5{0,~1] ore obtained by
solving system (132). As the kriging estimates implicitly carry the spatial cor-
relation of the simulated process, the simulated wavelet and scaling coefficients,
which honour the kriging estimates, also implicitly capture this spatial corre-
lation. Having obtained all 16 wavelet and scaling coeflicients, the unknown
value in the window is computed by substituting these coefficients into the sec-
ond system. The kriging estimates are discarded before the next location is

simulated.

Step 7: Move to the next location in the random path and repeat steps § and §

until all locations have been simulated.

622 Applications of DB2SIM

Four samples are used to assess the performance of DB2SIM, pH160n and pH100[Rn

for the isotropic case and B6jn and Bf{Iftn for the anisotropic case. The mosaic

plots of the realisations from the four samples together with the sssociated semi-

variograms and the quantile-quantile plots of the replisations against the assaciated

samples are shown in Figure 23. In each case, DB2SIM approximately reproduces the

histograms and the semivariogram models of the associated samples, regardless of the

sampling method, even though the minimurm of each realisation is slightly lower than
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the corresponding sample minimum and the maximum is higher than the correspond-
ing sample maximum, It can be seen from the masaic plots that the realisations have
captured the features of the corresponding exhaustive data set pHsoiln and Hevean
and the associated samples. No artefacts are found in the mosaic plots,

Even though DB2SIM reproduces the sample histogram and the semivariogram
model with any spatial structure, it has to make use of the kriging estimates to do
so. Therefore, the result of the algorithm will depend on the parameters used to
obtain the kriging estimates. In addition with the estimation of the training image,
although carried out only once, DB25IM requires the solving of one system of three
linear equations with 16 unknowns for each simulated value. Because of this, the

computational efficiency of using the wavclel method iz diminished.

6.3 Comments on HSIM and DB2SIM

Based on the performance assessment in this Chapter, both HSIM and DB2SIM
possess some drawbacks. In HSIM, the simulated realisations approximately repro-
duce the associated sample histogram and semivariogram model in the isotropic case
but fail to adequately reproduce the semivariograin model in the anisotropic case.
In addition, artefacts may be found in the mosaic plots of the realisations. For
DB25IM, even though the realisations reproduce the sample histogram and semivar-
ingram model regardless of spatial structure and sampling method, this achievement.
comes with some loss of the speed advantage of using the wavelet method. In ad-
dition, over-conditioning by using the kriging eslimates twice reduces the differences
among realisations.

Daspite the shortcomings of HSIM and DB2SIM, the results from these algerithms

indicate that one can use the wavelet method to obtain reasonable conditional simu-
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lations. For both algorithms the drawbacks are caused by the fact that the window
used to capture the conditioning data is small compared with the study region. If
the window can contain more infermation from the study region, the problems can
be overcome, However, due to the localisation property of wavelats, increasing the
window size is not a feasible solution.

Therefore, instea. . acreasing the window size so that it is large encugh compared
with the study region one can compress the study region so that it is small enough
compared with the window. Then the window can capture spatial continuity of the
study region. In order to do so, the discrele wavelet transform must be applied
several times. Hence, the simulation must start at some scale coarsor than seale 2!
and the process of reconstructing the original sealing Tmage is not carried out in just
one level but via many levels, This approach is used in the multi-level wavelet-based

conglitional simulation algorithms in Chapter 7,
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7 MULTI-LEVEL CONDITIONAL SIMUEATION

ALGORITHMS

The single level simylation algorithms using the wavelet beses discussed in Chapter
6 start the simulation at scale 2!, one level coarser than the original image. These al-
gorithms did not exploit the fact that the scaling jmege at the coarser scale, obtained
via the discrete wavelet transform, is a compression of the scaling itnege at the previ-
ous finer scale. On compressing the study region, the discrete wavelet transform also
compresses the spatial continuily. Hence, if the discrete wavelet teansform iz applied
several times, the study region and the corresponding spatial continuity in this region
will be compressed to a level from which the size of the window, determined by the
corresponding wavelet, filler length, can capture the spatial continnity.

Therefere, in order to improve the results and to save computational time, we ex-
plored the possibility of starting the simulation at some scale coarser than 2!, Our two
approaches for an effective and efficient multi-level simulation algerithm are PWSIM
and DWSIM both: of which are detailed in this Chapter. All of the assumptions and
preparation steps made in the case of single-level simulation algorithms remain ap-
plicable for these multi-level algorithms. That is, PWSIM and DWSIM are based on
the assumptions that the data are from a multivariate standard normal distribution
and that the underlying random function is second-order stationary. If the assump-
tion of normality is not satisfied, the normal score transformation is applied to the

conditiond- ¢ data before modelling the semivariogram.
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7.1 The Algorithm PWSIM

Qur multi-level wavelet-based conditional simulation algerithm PWSIM is obtained
by post-conditioning a multi-level nonconditional simuiation algorithme. The noncon-
ditional simulation method exploited kere is that introduced by Zeldin and Spanos
(1995). This method kas been applied in engineering context to simulate Gaussian
stationary random functions. Zeldie and Spanos used it to simulate realisations of a

one-dimensional random function whose autocorrelation function is
e
plz1, €2) = cos{w [z — zol)e™ -

or of a two-dimensional random funetion whase autocorrelation functien is of the lorm

_yftmn = —)?

p(z'l!z!:yliy?) =e

where @ and w are scatars, We shall denote this algorithm by WSIM. For two-
dimensional random functions, the wavelet basis ugsed in WSIM can be either Haar
wavelets ar Daubechies wavelets with up to three vanishing moments. This non-
conditional simulation algorithm starts the simulation at some coarse scale then re-
cugsively builds up the simulated realisations {at the original scale) via the inverse

discrete wavelet transform,

7.1.1 Description of the Alporithm PWSIM

The algorithm WSIM makes use of the fact that alter cach application of the diserele
wavelet transform the size of a sot of evenly-spaced discrete values is reduced, in one
dimension by a factor of twe and in two dimensions by a facter of lour. Therefore,
alter the discrete wavelet transform hes been applied a number of times, at some

coarse scale the size of the scaling cocfficient image is small. Consequently, the size
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of the covariance matrix for the associated scaling coefficients is also small erough to
be decomposed ote a product of an upper and a lower triangular matrices,

As the initial step, the covariance matrix K of the associated scaling cocfficients
at the scale 2/ is decomposed into lower and upper triangular matrices using the

Choleg'd decomposition (Gerald and Wheatley, 1994), that is
=Ly
where
=y,
Then the associated scaling coeflicients are simulated by satting
o = Lw (133)

where w is 2 vector of random numbers drawn from & standard normal distribution.

The wavelet eoellicients at this scale are simulated using the correlation between
wavelet and scaling coefficients at the same scale. In order to do so, each wavelet
coefficient at scale 27 is expressed as a linear combination of scaling coefficients at
the same scale plus & noise, In two-dimensional space, each wavelet cosfficient of 2
stationary random function is simulated in terms of sealing coefficients at the same

scale by

dfm,n] = Z Vhip )€ [ 4 2,72+ Ba] + v, Bilm, n) (134)

kaami

for k£ =1,2,3,i=1,2... where for each & tha noise f.(m,n)} is randomly drawn rom
2 standard normal distribution and is statistically independent of ¢7[,,.), and since
the covarlance of twa scaling and or wavelet coefficients at the seme scale decreases in

an inverse proportion with the difference of the indices of these coefficients {Vannucc
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and Corradi, 1997), we choose ¢ = M, the number of vanishing moments to save
computational effort. Based on (134), each wavelet coelfficient di[m, m] is a linear
combination of {2i +- 1)2 scaling cocfficients o1, ] centered at ef[m, n] plus a random
noise.

It can be shown, by multiplying both sides of equation (134) by c/[m+ ky, n 1],
where k&, = —1i,..,0,...f and taking the expected value of each side, that the
weights ‘rfi(bz.f;} are the solutions of the system

i
WZ: _ ai[k:.Iz]’Gfm+k:,m+k1).(n+i;,n+l|) = W fonmia ) manbis)” (135)
y=-i
By squaring both sides of equation (134) and taking the expected value of each side,
the value 'ri is computed by

H i
ﬁzd"}:(m.n,\.(m.u)' Y Y B Fnramikraaiy (136)

fadas by =i
Having simulated the wavelet cocfficients associated with the scaling image at seale
2/, the scaling image at the finer scale % is reconstructed via the inverse discrete
wavelet transform, The process is earried out recursively by computing the associated
wavelet coefficients at scale 2/~ and applying the inverse diserete wavelet transform
to obtain the scaling coeflicients at scale 2/~% until the original scale is reached.

Note that, sinte WSIM is based on the inverse discrote wavelet transform, the size
of the simulated realization must be a power of 2.

The algerithm WSIM Is summarised in Figure 24 and an iliustration for the sim-
utation of the wavelet coclficient d{ [, n| for m =2,7 = 3 and i = 2 with the scaling
image of size 8 x 8 is given in Figure 25. The location of the wavelet coofficient d}[2, 3)
is indicated by the shaded cell in Figure 25A. This cocflicient will be simulated by 2

lincar combination of 25 scaling coefficients (at the same seale) in the shaded cells in
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Figure 24: Summary of WSIM.

Tigure 25B plus a noise. The weights of the linear combination are the solutions of
system (135) and the standard deviation of the noise iz computed via cquation {136).
Sinee the covariance of two scaling or wavelet coefficients is independent of the
coefficient indices, cach move from a coarse scale to the previous finer scale involves
the solving of the system (135) and equation {136) once for every &, that is, Lhree
systems of {2i + 1)? linear equations plus three equations.
The computation of the weights must be preceded by the computation of the

covariance tables at the conrser scales, If the size of the study region to be simulated
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Figure 25: A/. Wavelet coefficient to be simulated (shaded); B/. Scaling coefficients

used to simulate wavelet coefficient in A (shaded).

is P % Q, the computation of the covariance tables for the coarser scales is initialised
by computing the covariance table at the original scale of size (2P + 1) x (2Q + 1).
Then the covariance table at scale 27, j > 0 is computed from the covariance at the
previous finer scale 2/~'. Upon moving from one scale to the next coarser scale, the
size of the covariance table reduces. In general, at scale 27,5 > 0 the size of the

covariance table is

P Q

The number of algebraic operations used to compute the covariance values for the
coarser scales depends on the wavelet basis. In two dimensional space, according to
formula (99), for wavelets with M vanishing moments, in order to compute each value
in a covariance table at the coarser scale one needs to carry out 4 x (2M)* multi-
plications and (2M)* — 1 additions. Therefore, the higher the number of vanishing
moments, the more computation time is required. Detail on the computational effort

will be given in Appendix 12.3.
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We then condition the non-conditional simulated realisation obtained Ly WSIM by
adding to each non-conditional simulated vatue z,(u) the error between the ordinary
lriging estimate 25 {u) using the actual data and the ordinary kriging estimate zJ,(u)

using the simulated values at data locstions, that is
Zeelu) = 2, (1) + [25 () — 22 (u}] {127)

Since the configuration between data locations as well as the covariance model is the
same for the two kriging images, this step involves solving one kriging system for
each simulated value. PWSIM is our final result, combining WSIM with the post

conditioning described above,

7.1.2 Case Study 1: Applications of PWSIM to the Isotropic Case

The pecformance of PWSIM in the jsotropic case was tested by applying PWSIM te
samples pHi00n and pH100IRn, vsing each of the Haar and the Db2 bases. Since
FWSIM requires that the size of the simulated map be a power of 2, and since the size
of the study region in this case is 61 x 61, the size of the region to be simulated was
extended to a size of 64 x 64. By starting the simulation at scale 2! with the initial
scaling image of size 4 x4, for each wavelet basis and each sample 1000 nonconditicnal
realisations were simulated. The dimensions of cach simulated realisation were then
trimmed to 61 x 61 before the application of crdinary kriging to condition the data.
Based on the range of our semivariogram models and the size of the study reglon, a
search radius of 20 for the data with maximum of 16 data is used in the cstimation.

The performance of the simulation, in general, is visnalised by comparing the mo-
saic plots of three realisations, vandomly selected from the sets of 1000 realisations
from pH100n and pHI00/An simulated via each of the wavelet bases, with the mosaic

plot of the data set pHsoiln and the post plots of the corresponding samples. The
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spatial continuity reproduction is visualised by comparing the experimental semivar-
iograms of these reslisations with the gegivariogram models, The sample histogram
reproduction is visualised via the quaniile-quentile plots of the renlisations against
the corresponding samples. The mosaic plots for these realisations, together with the
mosaic plot of pHseiln and the post plots of pH100n and pHI00IRn, are shown in
Figure 26. Realisations from pHidfn simulated using the Haar basis and the Db2
basis are shown in eolumns 1 and 2, respectively, while those from pHIG0iRn are
shown in columos 3 and 4.

The mosaic plots for the simulated realisations in Figure 20 indicate that, regard-
less of the wavelet basis used, the main features of the data set pHsoifn and of the
associated samples have been captured. At locations where pHseiln and the samples
have low values the simulated realisations alzo have low values. At locations where
pHsoiln and the samples have high values the simulated realisations also have high
values. No artefects are seen in any of the mosaic plots for the realisations.

Experimental semivariograms of these realisations in Figure 27 show that for both
wavelet bases the semivariogram models of both samples are reproduced. The exper-
imental semivariograms of the realisations from sample pH/00r i columns 1 and
2 and those for realisations from pHI00IRn in columns 3 and 4 of Figure 27 have
captured the behaviour of the associated semivariogram model. In particular, the
semivariogram of Realisation #2 from pH00n, simulated using the Db2 baais, in
column 2 fits the modd very well.

The sutumary vlatistics and the quantile-quantile plols in Figure 28 show that
the histograms of the two samples are approximately reproduced. The means and
variances of the realisations are close to those of pH100n and pHI00{Ra. Tor all real-

jsations the extreme values fsll cutside the rangs of the corresponding samples. This
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Figure 26: Mosaic plot of pHsoiln, post plots of pH100n and pH100IRn compared
with three randomly selected realisations simulated via PWSIM.
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Figure 27: Experimental semivariograms of the three randomly selected realisations

from pH100n and pH100IRn simulated via PWSIM.
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Figure 28: Summary statistics and Q-Q plots of three randomly selected realisations

from pH100n and pH100IRn (simulated via PWSIM) against corresponding samples.
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feature of the simulation algorithm mevely reflects the fact that Monte Carlo simula-
tion is used and no range restrictions are made. In fact, in most cases & restriction to
the range implied by the sample is avoided and to ensure that the extreme values of
the realisations fall outside the range. Except for those of realisacions from pHI00n
simulated using the Db2 basis, which Auctuate about; the sample skewness coefficient,
the skewness coeflicients of the cther realisations are lower than the skewness coeffi-
cient of the associated sample. Compared with those in the case of the Haar basls,

the realizations gbtained via the Db2 basis have more low valucs.

7.1.3 Case Study 2; Applications of PWSIM to the Anisotropic Case

We now investigate the performance of PWSIM in the case of the anisotropic samples
Btin and BE4IRn. By starting the simulation at scale 2! with the initial scaling
images of size 4 x 4, for each sample and each wavelet basis 1000 realisations of size
64 x 64 were simulated and then trimmed to size 40 x 40, Ordinary kriging hes been
used in the postprocessing step with a search re.clius‘ of 20 and the maximum oum-
ber of 16 data used, Mosaic plots for three randomly selected realisations obtained
from each sample via each wavelet basis are shown in Figure 20 and the associated
experimental semivariograms and quantile-quantile plots of the realisations against
the corresponding snumples are shown in Figures 30 and 31 respectively.

The mosaic maps of the realisations in rows 2-4 of Figure 29 indicate that the
realisations from Bffn and BE{IRn have captured all features and spatial structure
of their corresponding samples and of the data set Bereon. For example, the location
of high values in the right top carner of the two samples and the exhaustive are seen
in all realisations. For sample Bfijn, the mosaic maps of the realisations simulated via

both wavelet bases are consistent with the sample. Locations of low values associated
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Figure 29: Mosaic plots of three randomly selected realisations from B64n and

B64IRn simulated via PWSIM.
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Figure 30: Semivariograms of three randomly selected realisations from B64n and

B6/IRn simulated via PWSIM.
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Summary Statistics

Bodn B64IRn
Sample Realisations Sample Realisations
Haw Dy2 Haar Dy2
Stats ] 2 3 1 2 3 i 2 3 1 2 3

Mesn | 0.19 0.18 [ 0192 | 0.14 [ 019 | 010 | 0.22 -0.05 001 {003 |.006 | -003| 020 | 0.00
Ve 1.03 103 | 057 | 057 | 096 | 1.08 | 096 1.02 091 1 107 | 136 | 142 | 130 | 100
Max 2.36 306 | 300 | 306 | 364 | 3.40 | 320 2.15 276 | 376 | 344 | 347 | 291 1.81
Q3 0.91 0% [ 087 | 078 | 08 | 071 | 0.9 0.64 070 | 061 | 0.11 | 0.63 | 095 | 0.69
Med 0.12 045 § 022 (011 [ 017 | 007 | O3 9.9 005 | -007 | 004 | 0.00 | 024 | 0.04
Ql 042 | 047 | 047 | 053 | 047 | 060 | 046 | D87 | .0.61 | 075 ] 0386 | 067 | 060 | -0.69
Min <242 | -296 | 287 | 285 | .2.84 | .276 | L334 | .2.29 | .3.20 | .3.46 | 4200 | -401 | -3.19 | 293
Bkew | 013 001 {-0.18 | 0.00 | 004 | 024 | 002 | 009 |.027 | 037 | 011 |-0.15] 001 | 014
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Figure 31: Summary statistics and Q-Q plots of three randomly selected realisations

from B64n and B64IRn (simulated via PWSIM) against corresponding samples.
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with the banding, in the right middle and close to the right bottom of the post plot of
the sumple are reproduced in the simulated realisations. The dark blue pixels indicate
that the low extreme values in of the realisations are lower than the corresponding
sample minimum and the piuk pixels show that the high extreme values are higher
than the corresponding sample maximum, For sample B64IRn, the banding in the
direction N55°W seen in the mosaic map of the exhaustive data set is reproduced
consistently with the sample.

The experimental semivariograms of the realisations in Figure 30 show that the
semivariogram models of both samples are reproduced regardiess of the wavelet ba-
sis. The sill velues in the direction of maximum continuity N55°W and minimum
contimuity N35°F are clearly distinguished in the semivariograms of the realisatious.
These semivariograms are also close to the associated semivariogram models.

The summary statistics and the quantile-quentil plots in Figure 31 indicate that
the histograms of Bf4n and B64IRn are approximately reproduced. The means and
variances of the realisations are close to the associated sample means and variances.
The skewness coefficients of the realisations are also close to those of the samples,
albeit with some fluctuation. Similar to the case of the isotropic samples, as a feature
of the simulation, the minima of the realisations are lower than the corresponding
sample minimum and thé maxima of the realisations are higher than the corresponding

sample maximum,

7.1.4 General Comments on PWSIM

Throughout the two case studies, we can see that PWSIM performs well in both
isotropic and anisotropic cases. Regardloss of the wavelet basis and the sampling

method, realisations oblained via PWSIM capture the spatial structure of the asso-
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ciated sarople. The associated sample histograms are alse reproduced. However, it
should be noted that the result of the siraulation depends on the kriging parame-
ters in the postprocessing step. In addition, sinee PWSIM requires solving as many
kriging systems as the number of unknown locations to condition the data, it is not

computetionally efficient.
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7.2 The Direct Multi-level Wavelet-Based Conditional Sim-

ulation Algorithm DWSIM

To avoid the impact of user-defined parameters and to improve the computational
efficiency of aur wavelet simulation, we have proceeded to develop our direct wavelet-

based conditional simulation algorithm DWSIM.

7.2.1 Description of the Algorithm DWSIM

In general, our direct multi-level wavelet-based conditional simulation algorithm DWSIM
consists of two main stages, the estimation stage and the back simulation stage, each
of which is carried out in a2 moving window.

The estimation stape uses deterministic wavelet analysis, in particular the two-
dimensional discrete wavelet transform, to recursively compute conditioning values
al the coarser seale 2,7 > 0 from the conditicning values at the original scale 2°.
The back simulation stage makes use of stochastic wavelet analysis in which the
scaling coefficients are regarded as correlated random variables. As a consequence,
the covariance of pairs of sealing coefficients can be used to simulate unknown scaling
cocflicients from the already known coefficients.

The estimation stage is based on formula (93) which indicates that the scaling
coefficients are computed by means of a moving window whose size equals the size
of the associated wavelet filter. This window moves on every second row and column
index in ascending order on the scaling image at scale 2/. At each stopping location,
the scaling coefficient at the coarser scale 2! associated with the window is equal
to twice the weighted average of the values within the window. If the flter length is
equal to two, there is no overlap in the movement of the window; if the filter length is

larger than two, the succeeding window will overlap the previous one from the right
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and the bottom 2M — 2 grid nodes.

By imitating the discrete wavelet transform, the estimation of the conditioning
values at the coarse scale 294! § > I is also carried out in & window moving in the
same manner, However, since only values at sample locations are known, not all
values in the window at seale 27 are known. In many cases, the window contains no
known values. Therclore, if the window contains known values, the assoviated scaling
coefficient at the coarser level 29+1 is setb equal to twice the weighted average of the
known valves within the window. If the window contains no date, the associated
scaling coelficient at the coarser scale is left unestimated. Since the two-dimensional
discrete wavelet transform compresses the scaling image by = [actor of 4, at some
coarse scale, the values at all grid nodes of the associated scaling image are known.
The estimation stage is completed and this scaling image is used as the inifial scafing
image for the back simulation stage.

In the back simulation stage, the scaling image at the finer scale is reconstructed
from the scaling image at the next coarser scele. Since the size of the scaling image
at the coarse scale 27! equals one quarter of that of the scaling image at the finer
scale 27, the reconstruction stage has to guarantee that the size of the scaling image
at the finer scale equals four times the size of the scaling image at the coarse scale.

In order to do so, DWSIM malkes use of the scaling coeflicients and the covariance
of the scaling coefficients at the same scale as well as at two conseculive scales. The
expansion is also carried out by means of non-overlapping windows of size 2 x 2. In
the expansion, each unknown value in the window moving on the scaling image at
the finer scale 27 is expressed as a linear combination of the scaling coeflicients at the
coarser scale 27+! plus a normally distributed random noise. The weights of the linear

combination and the standard deviation of the noise are determined in such a way
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that the correlation among the scaling cocfficients at the coarse scale 27! and the
correlation betwoen the scaling coefficients at scale 27 and scale 277 are maiotained.
The wavelet cocfficients are ignored since they contain very little information of the
scaling image at the previous scale.

The estimation and back simulation stages are detailed in the following Sections in
which the method of obfaining the conditioning values at the coarse seales is applied
for Hoar wavelets and then gencralized to Daubechies wavelets with M vanishing

moments. The back simulation stage is the same for all wavelet bases,

Estimation Stage for Haar Wavelets

Lot A CR? be the study region of size P % @ where P = 2™ and @ = 2% with
my, ny = 1,2,3... then at scale 2741 the size of the scaling image is { P21 x (Q/214)
where § = 0,1, ..., min(my, ny). The estimation stage is preceded by computing the
covariance tables for the coarser scales 27,7 > 0. 'The computational effort for the
computation of the covariance tables will be discussed in Appendix 12.3,

For Haar wavelets, since the filters have only two non-zero coefficients, the os-
timation of the conditioning values at scale 271 § > 0 is carried out by means ~f
nan-overlapping windows of size 2 x 2. Each window contains four values denoted by
¢f[2m 4+, 2n +v] where w,v = 0,1 and 0 < m < P30 < n < @2l

According to formula {93) and since for Haar wavelets the values of the lowpass

filter % are defined by

\/El'lr2 fi= U: 1
Bln] =
0 otherwise

the scaling coefficient o+ [m, 7] at the coarser scale 21 is equal to twice the average

of the scaling coefficients e/[2m + u,2n + 8],4,v = 0,1 at the Gner scale. For this
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reason, each scaling coefficient at the coarser scale is set equal to twice the average
of the knewn values within the associated window at the previous finer scale. When
moving from the original seale to the next coarser seale, a random noise, drawn from
a standard normal! distribution and independent of (m,n), is added to the estimated
scaling coefficient ¢![,,.]. The purpose of adding this noise is to avoid unigueness in
the estimation in order to improve the variability of the simulation. Once 21l scaling
coefficients associated with the windows that contain conditioning data have been
estimated, the varisnce of the newly estimated conditioning values is computed. If
this variance is different from the variance of the associated scaling image (read [rom
the precomputed covariance table), the estimated conditioning values for cach coarse

scale are re-scaled by a factor f, where

variance of the associsted scaling image
variance of the estimated conditioning values’

=

(138)

so that their variance is equal to the variance of the associated sealing image befure
moving to the next coarser scale.

The process is {llustrated in Figure 32 for the case of an original image of size
8 % 8. In Figure 32A1 the sample locations are indicated by dots and the windows
that contain conditioning values are shaded, After the first estimation, four locations
that have estimated conditioning values at scale 2! are sliown in Figure 3242, Then
the windows that cover these locations are indicated by the shaded aress in Figure
3281, After the two-dimensional discrete wavelet transform has been applied one
more time, the image with all of grid locations estimated is obtained as shown in
Figure 32B2. In the case of Haar wavelets, since the filter length is equal to two
and the dimensions of the study regions are a power of two, there is no cdge cllect.
The estimated scaling image in which the values at all grid nodes are known together

with all intermediate conditioning values obtained in the estimation stage are used
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to simulate the original image in the back simulation stage.
A1, A2,
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Figure 32: lllustration of estimation stage in the Haar basis case.

Estimation Stage for Daubechies wavelets

For Daubechies wavelets with 2M non-zero coefficients, the estimation stage is
carried out by means of overlapping windows of size (2M) x (2M). A window, whose
values are denoted by ¢/[2m + u,2n + v] where u,v = 0,1,...,2M — 1 and 0 <
m < P/271 0 < n < Q/27*), starts only at even indices and moves across the
finer scaling image in row and column ascending order to search for data. At each
stopping location, the scaling coefficient ¢/*![m,n| associated with the window is
estimated by twice the weighted average of the known values in the window. A
random noise drawn from a standard normal distribution is added to the estimated
scaling coefficient ¢'[m,n| when moving from the original scale to the next coarser
scale to improve the variability of the simulation. In other words. let
hlulh{v] if  ¢[2m + u,2n + v] is known

W [ulh'[v] =
0 if ¢/[2m + u,2n + v| is unknown
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then the sealing coefficient associated with a window containing conditioning value(s)

is estimated by

&, n] = PIY :fn"l Alu)i [v][2m + u, 2r + 9]
. 2M—T @M1 g
e Ln=a DR

X2+ R (139)

where £ is drawn from N(D, 1} if § = 0 and R = 0.0 if otherwise snd is independent

of [m, n]. Due to the negative values of the lowpass filter coefficients, the sum

2M=12M-1

Z Z R [ulR v}

u=0 =0
in equation {139) can take values very close to ot equal to zero. In the case where
the absolute value of the denominator in (139} is smaller than a predefined tolerance,

the estimation in the associated window is modified by

1. Computing the average of the known velues in the window.
2. Assigning the average to the locations in the window whose values are unknown.

3. Computing the scaling coefficient ¢#+[m, n] using formula {83) then adding a

random noise drawn from ¥(0,1) il 7 =0,

Theoretically, the estimation can be applied to Daulechies wavelets with M van-
ishing moments, However, the larger the size of the window, the less accurate the
above estimation becomes. In addition, s will be shown in Chapter 8, the higher the
number of vanishing moments, the more computation is required in the simulation.

Therefore, only the Haar and the Db2 wavelet bages are used in DWSIM.
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Similar to the case of the Haar wavelet basis, the estimated conditioning values
at each coarse scale are also rescaled so that their variance is equal to the variance of

associated scaling coefficients.
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0 . 0 e
1 . 1 e ————y
2 2 e — i —
3 3

4 4

5 5

6 ol 6

7 7]

B1 ¢ B2

0123

00. 0

1 1

2 . 2

3 . 3

cC ¢

0 1

ﬂ'.

1..

Figure 33: Illustration of estimation stage in the case of Db2 wavelets.

The estimation of the scaling coefficients used as conditioning values at scale
27,j > 0 for the Db2 wavelet basis is illustrated in Figure 33 for an original image of
size 8 x 8. Unlike the case of the Haar basis, in the estimation of scaling coefficients
at scale 27, j > 0, for the Daubechies wavelet basis one has to take into account the

edge effect. At the right and bottom boundaries, the scaling image at the finer scale
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hos to be extended two grid nodes further so that the window size is always equal to
the filter length, In Figwe 33A1 sample locations at the original level 7 = 0 are indi-
cated by dots and the windows that contain conditioning values are shaded in Figure
33A2. The locations of the estimated conditioning values after the first application
of the two-dimensional discrete wavelet transform and the essociated windows that
cover these locations are shown in Figure 33B1 and Figure 33B2, respectively. Alter
applying the two-dimensional discrete wavelet transform one more time, a scaling

image with 2l grid locations estimated is abtained as showm in Figure 33C.

The Back Simulation Stage

In the back simulation stage, the scaling image at scale 2/, 7 > 0 is simulated by
expanding the scaling image nt the coarser scale 27+ by a factor of 4. The expansion
makes use of the cavariance of scaling coefficients within the same scale as well as
the covariance of scaling cocflicients across two consecutive seales. It is carried out
by means of non-overlapping windows of size 2 x 2 in which each unknown velue is
simulated in Lerms of the known scaling cocflicients at the next coarser scale. The
following Sections provide the formula for the expansion and the computation of the
related elements used in the expansion.

The expansion of the sealing image from one scale to the next finer scale is ac-
complished by expressing each unknovm scaling coefficient in the moving window as
a linear combination of scaling coeflivients at the coarser level plus a random noise.
The basis for the formula lies in the fact that, the scaling coeflicient ¢f+![m,n] at
seale 2741 is a lincar combination of the scaling coefficients of{2m + u, 2n + v}, where
v, v =1,2,..,2M and M is the number of vanishing moments. Since the coefficients

¢ at seals 27 are correlated, the coefficients ¢/+! are alse correlated. The correlation
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is not confined only to the coefficients in the same scale, it also oceurs among sealing
coefficients at different scales, Because of the correlation, & scaling coefficient at one
scale can be siraulated from the coeflicients at another scale.

To expand the whole scaling image at & coarser scale to the previous finer scale by
2 factor of four, each scaling coefficient of the scaling image {¢*+!} has to be expanded
into four sealing coefficients of the previous finer scale 27, To optimise the expansion,
for o given sealing coefficient ¢*'[m, n] at location {m, ), it is necessary to identify
four scaling coeficients at the finer scale 29 that have the strongest correlation with

¢/*![m, ). Then these four scaling coefficients are simulated in terms of o*'jm, nj.

Proposition 7 For a given location {m,n) in fhe scoling imege of scale 37+, there
exists an associated window of size 2 by 2 in the scaling fmage af scale 2 that contains
four scaling cogfficients denoted by &F{2m + u,2n 4 o] where v =0,1 and 0 < m <

P{2,0 € n < Qf2H! that have the strongest eorrelation with ¢#+![m,n].

Proof. For Hear wavelets, according to formula (93), only the four values of[2m+
u, 2n+v], 4, v = 0, 1 are used to compute &7+ m n], Therefore the correlation between
&#i[m, n] and each scaling coefficient in the 2 X 2 window {(2m+u, 2n+ v}, u,v =10,1
is stronger than the correlation between ¢+'[m,n] and any scaling coefficient that
lies outside the window.

For Db2 wavelets, using formula {83), the welghts A[u]h[v] associated with of[2Zm+
u,2n 4+ 9], 1,v = 0,1,2,3 used to compute ¢ [m,n] in the linear corebination are
shown in Table 4.

Since the weights hfu]#[v] associated with four values &/[2m+u, 2n+v|,2,v =01,

defined by

h{0]Afo] = 2323,
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u\v |0 1 2 3

0 0.2333 (04040 |0.1083 | -0.0625

1 0.4040 | 0.6998 |0.1876 | —0.1083

2 0.1083 | 0.18Y5 |0.0502 | -—0.0200

3 -0.0625 | ~0.1083 | —0.0260 | 0.0167

Table 4; Weights used to compute & scaling coefficient from scaling coefficients at

previons finer scale.

2[0JA{1] = .4040,

h[1}h[0] = 4040,

h[1}A[1] = 6998,

respectively, arc larger than the rest of the weights, the scaling coefficients o/[2m +
u,2n + v),u,v = 0,1 have stronger correlation with ¢*![m,n] compared to other
sealing coelficients at scale %7, m

Because the correlation between cf*![m,n] and ¢[2m + u,2n + o), u,v = 0,1,
is stronger than the correlation between o*'[m, n] and any other scaling coefficient
outside the window, it is more efficient to simulate these scaling coeflicients from the
scaling coefficient £7+![m, n| than to simulate any cther scaling coeflicients outside the
window from ¢'+'[m,n]. In addition, to take inte account the correlation between the
scaling coefficients ¢f and the scaling coefficients &+ in the neighbourhood centred

at ¢*+[m,n], we propose a formula for stmulating each of the scaling coeficient o in
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the window by putting

H2m+u,2n+ 4] = E a’,;;"l}:[u,u]c’i+l[m+kg,n+12]+7j+l[u,u]Rm,,‘[u,u].

[ ]

{140}
In (140) Rppnft,v] 5 a random number drawn from a standard normal distribution
and by construction is uncorrelated with ™*1; off} are called the weights; o/+iu, v]
is called the standard deviation of the noise and the index £ > 1 in the summation is
calied the radius of the estimation. It can be seen from (140) that each ¢ is a linear
combination of (27 + 1)* scaling coefficients centered at ¢/*'(m, n].

Unlike in the case of WSIM, where wavelet coefficients are computed in terms
of the scaling coefficients at the same scale, here we compute the sealing coefficients
directly in terms of the scaling coefficients at the coarser scale and so avoid the use
of wavelet coefficients completely. By propetly defining the weights and the standard
deviation of the noise, simulatet realisations will reproduce the global statistics of

the sample.

Defining the Value of the Estimation Radius From equation {140) it can
be seen that the number of scaling coefficients centred at &*![m,n] is determined
by the estimation radius i. Hence, it is necessary to define an appropriate value for
i to avoid unnecessary computation and to ensure that no important information
is ignored. According to Vannucci and Corradi {1997} the covariance between two

scaling coefficients at two consecutive scales o*![p, q] and [k, {] vanishes when
Jk-2p|>2M —1lor {—2¢] »>2M ~1 {141)

where M is the number of vanishing moments,

In our case, we focus on the covariance between the scaling coefficients in the
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window ¢#[2m + u, %0 4 ] and the scaling coefficients ¢/*!{m 2= i,n & 4] centered at
¢tim,n].

By letting & = 2m +u,p=m=i,l =2n+v and g = n &1, we have from (141)

2mtu—2(mEi)|>2M ~1lor [In+v—2ntid)|>2-1. {142)
Since u,v = 0,1, the left inequation in {142) gives

u+2 > 2M—loru-2%<1-2M

P M~L;—“ori>M-~1~;—”. (143)

Sirnilarly, the right inequation in {142) can be simplified as

l+w 1—-v

i> M- ori> M- 7 (144}

From (143) and {144) for all u,v the correlation between ¢/[2m + u,2n + v] and
c#i[mtd, noki] vanishes when i > M. Therefore, only the scaling coefficients o+ [m£
M,n £ M] need to be included in equation (140), That is, ¢ is equal to M. This
choice of 7 was also verified using trial and error in the case of the Haar wavelets in
Tran et al (2002a).

Since the covarfance between two grid nodes of the scaling image at scale 27+ is
read from a precomputed covariance table, to ensure that the value is listed in the

table, the index ¢ must also not exceed S,,/2 where

e = min{P/2 Q727 for § 2 0

Computation of the Weights The process of computing the weights o}, in
this part will ensure that the simulated realisations at the original level preserve the

spatial correlation of the jnitial scaling image estimated from the sample.
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In order to determine the weights we first multiply equation {140) by ¢[m +

ky,n + 1], where ki, i) = —,...,0, ..., 1, to have a system of (2i + 1)? equations

2m+ 1, 2n + o} [m + kg, n + I

= em+hy,n+4] z‘: CL{;},[H,?J]CHJ[M + kg ntt]
Eafg=—i
+9 v 4+ byy 1+ b R[]
The correlation of the scaling coeflicients ¢! with the coeficients to be simulated
&[2m + u,2n -+ v] is taken into account by taking the expected values for both sides
of the above equations. Hence, the covariances between the scaling coefficient to be
simulated at the Gner scale 27 and the scaling coefficients at the coarse scale 274! are

related by

&
(ks 2ntdu),(ntdy 2nt+u)
1
= E{ > ol m o kyyn 4 L] ke +£2]}
K dz=—t
+5 {7""'1{11, et m + kyyn + L) Rl v]} (145)
Since Rmu[u, v} and ¢+1[., ] are uncorrelated, the second term on the right hand side
ol system (145) equals zero. Therefore, from (145} we have a system of {2i-+1)? linear
equations
; S j+1
Eim+k;,2m+u].{u+h.2u+v] = Z ﬂ?ﬁ:.h[u’ U]ﬁ€m+f€:|m+k1)-("+!:.ﬂ+h) (146}
[ ra—
where ﬁf:ih.mﬂu},(nﬂg,"ﬂl) denotes the covarisnce of scaling coeflicients at scale
2741 Thus the weights cx’,;:‘_ L [, v] are the solution of system (146).

Using matrix notatiou, system (146) can be written as
Ba=A {147)
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with
B= [ﬁ{:l:-fn,.m-{ukl},(wl-l:.n+.!1)}ik2.lz,h BB
a = [ [t o))"
where T denotes the matrix transpose, and A is the vector
A= [Efm-l-h‘1m+u),(u+h.2n+v)]

Computation of the Standard Deviation The standard deviation of the
simulated scaling image at scale 29,7 > 0 is reproduced by suitably defining the
standard deviation *![u,v) of the random noise. This standard deviation is com-
puted by caleulating the standard deviation of the simulated values in the window

&l]2m 4 u, 2n -+ o). By squaring both sides of (140), we have
; 2
[€2zm +u 20+ 1'.-’]]2 = E aﬁi[u,ﬂ]c”‘[m +kayn B} + T“"‘[u,v]R,,.,,.[u,-u}]
(148

fa=—i

)
and as Ropnafu,v] end o' are uncorrelated, by taking the expected values for both

sides equation (148) becomes

2
E{d2m+u2n+ u]:}2 = E{ i of 1 [, )" e+ Fgm !z]}
kafa=—{
+E {‘p;+1[u,v]R,n.,,[u, 4} {149)
Since B q[u, v] are drawn from the standard normal distribution
B{Ap2 =1

and

2
B {ci[?,m +u,2n+ U]} = ﬁ{2m+u.2mm.{2n+m'2nﬂ)
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we have that

i i
j _ j+1 +1 41
ﬁ&m+u.2m+u}.(2n+v,!u+u} = E E a‘l‘n.!a[u!u]%.h [u,u] {mtkgumtk )iz nly)
kada=—1 ki fy=-i
+ [y, 0] (150)

The value f;; in the left hand side of equation (150) is the standard deviation of the
scaling coefficients at scale 27,
In matrix form, equation (150} is rewritten as
; i 2
ﬁiﬁm+u,2m+n),(2ﬂ+u,2ﬂ+v) =o' Ba + [7J+1 [U‘ Uﬂ

Hence the standard deviation 7+ u, v] is determined by

7j+1[ul U] = \r“ ﬁ{'zm+u,ﬂm+41).(2n+u.!n+u} - aTBa. (151)

Because the configuration of locations of scaling coefficients on the left hand side
of (140) is independent of location {m,n) (see Proposition 5), the covariance matrix B
in {147) and (151} is also independent of {m, #}. In addition, since the configuration
between the window and the locations of scaling coefficients on the right hand side
of (140) does not depend cn (m, n), the vector A on the right hand side of (147} slso
does not. depend on (m, n). Therefore, the weights ¥} [¢,v] and the value 47*'[u,2]
do not depend on the loeation of the window but only on (u, ), the location in the
window of the scaling coeflicient to be simulated. Therefore, for each pair (u,u),
system (147) and cquation (151) need to be solved once. In other words, to¢ move
from o coarse level to the previous finer level, system (147) and equation (151) are
solved a total of four times.

Since the value of index { depends on the.number of vanishing moments, the higher

the uumber of vanishing moments the finitely supported mother wavelet basis has,
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the larger the system (147) is. The system (147) contains nine linear equations with
nine unknowns if the basis used is the Haar wavelets and (2M + 1)? equations with
(2M +1)% unknowns for DbM wavelets. The larger the system, the more computation
is required. Therefore, to save computation time, we limit the bases in DWSIM only

to the Haar wavelets and the Db2 wavelets.

A1, A2

ey LI ASE 7

~N N s oW R = O

B1. B2.

NUS.’I!#SE?

b S R T O

Figure 34: Al &B1/ Scaling images with windows containing values to be simulated;

A2 & B2: locations of scaling coefficients used to simulate values in associated window.

Figure 34 gives an illustration of the simulation of four coefficients ¢/[2m~+u, 2n+v]
in the case (m,n) = (1,1) and (m,n) = (1,2). Figures 34A1 and 34B1 show locations
of the windows that contain the coefficient ¢/ to be simulated (shaded regions). Loca-
tions of ¢/ in the window associated with (u,v) = (0,0); (u,v) = (0,1); (u,v) = (1,0)
and (u,v) = (1,1) are denoted by 1,2,3 and 4, respectively. Figures 34A2 and 34B2

show locations of the associated coefficients ¢/*! in the case i = 1. The elements of
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matrix B in equation (147) are the covariance of the scaling coefficients whose loca-
tions are shaded. It is obvious that matrix B does not depend on (m, n); however, the
covariances between coefficients ¢/ in the shaded windows in Figures 34A1 and 34B1
and the coefficients ¢/*! in the shaded areas in Figures 34A2 and 34B2 are functions
of (u,v).

When the window comes close to the boundary, in many cases some scaling coef-
ficients in the coarser scale lie outside the scaling image. In this situation, the edge
problem is handled by setting the associated weights equal to zero. Figures 35A2 and
35B2 show the coefficients used in the linear combinations in equation (140) when
(m,n) = (0,0) and (m,n) = (1,3) in the case 7 = 1 for a coarser scaling image of size

4 x 4.

Al AZ.

w0 I 7 34 3 &1
W s

-Uc}‘

- = O

- e e s R e D

B1. B2,

nd 1 2 3 4 3.& 7

B ke B WM = D

Figure 35: A1&B1/ Scaling images and windows containing values to be simulated.
A2& B2/ Locations of scaling coefficients (shaded) used to simulate values in windows
in Al& Bl.

127



Summary of the Algorithm DWSIM  After fitting a semivariogram model to
the experimental semivariogram of the data and computing the covariance model from
the semivariogram mode! using C{) = 1 — g(h), the DWSIM algorithm is carricd

out by the following steps:

1. For j = 0. Compute the vovariance table for the covariance model.

2. Compute the eovariance tshle for scale 27+, Compute the coefficients (the
weights and the standard deviation) in (140} associated with the scale. Store

the coefficionts.

3. Extend the scaling image at scale & to the right and to the bottom (2Af - 2)

grid nodes.

4. Construct & window of size (24} x {2M) whose ficst row and first column
overlap the first row and the first column of the scaling image. If the window
contains conditioning value(s), estimate the associated conditioning value for
the scale 27t! and store this value; it not move to the next window location,
defined at every sccond row and column index in row-oscending order. The
process is continued until all grid node values of the scaling image at scale 29!

associsted with windows that contain known value(s) at scaie 27 are estimaled.

5. Rescale the estimated values so that the variance of the estimated values equal

to the target wariance.

6. If all grid nodes at scale 2/+! are estimated, the scaling image at this scale is

the initial scaling imege, if NOT let § = j 4 1 and go back o step {(2).

7. Leb j=j— 1.
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8. In the scaling image at scale 27, construct a window of size 2 x 2 whose first
row and first column everlap the frst row and the frst column of the sealing

image.

9. Caleulate the unknown values io the window in terms of acaling coeficients at

scale 21 vig formnta (140) using the weights computed in step 2.

10. Move to the next window location and repeat step (9) until the values at all

grid nodes in this scaling image is simulated,
11. Repeat step {7)-{10} until § < 0.

In the algorithm, the estimation slage includes steps (1)-{6). and the back simu-
lation stage consists of steps (7)-(11). The weights used In the back simulation stage
are computed in step (2) to avoid stering the covariance tables.

In the case where the sample is not standard normal, the dats have to be trans-
formed into normal scores before the modelling of the spatial continuity. The results
of the simulation then have to be back-transformed into the attribute values. The

summary of the algorithm DWSIM is shown in Figure 36.
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Figure 36: Summary of DWSIM.
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7.2.2 Case Study 3: Applications of DWSIM to Isotropic Samples

The isotropic samples used to test the performsnce of DWSIM are pHi00n and
pH100IRn. As DWSIM requires the dimensions of the study regien to be power of 2,
the study region was extended to size 64 X 64 and after the conclusion of the simula-
tion, the simulated realisations were trimmed to 61 x 61. For each wavelet basis, 2000
realisetions from each sample were simulated, The mosaic maps of three randomly
selected reslisations for each case were plotted to compare with the mosaie plot of the
exhaustive data set pHsoiln and the post plots of the associated samples. Sample his-
togram repraduction was visuslised via the quantile-quantile plots of the realisations
against the associated samples. Spatial continuity reproduction was visualised via
the plots of the experimental semivariograms of the simulated realisations together
with the associated semivariogram models. The mosaic plots of the realisations from
pHI00% and pHI100IRn are shown In Figure 37 while the associated semivariograms
and the quantile-quantile plots are shown in Fipures 38 and 39 respectively.

The mosaic plots for the realisations in rows 2, 3 and 4 of Figure 37 indicate that
the simulated realisations have captured all features of the samples, regardless of the
wavelet basis and of the sampling method. No artefacts have been detected in these
mosaic plots. Locations with high and low values in the data set pHseiln and the
samples are reproduced in the simulated realisations.

The spatial continuity is also reproduced since all of the experimental semivari-
ograms in Figure 38 are similar to the essociated semivariogram models. The sum-
mary statistics and the quantile-quantilz plots in Figure 39 show that the histograms
of both samples are approximately reproduced. The means, variances and quartiles
of the simulated realisations are close to those of the samples with the variances

of all realisations from Bf{n simulated using the Hasr basis being lower than the
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Figure 37: Mosaic plots of three randomly selected realisations from pHI100n and

pH100IRn simulated by DWSIM.
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Figure 38: Semivariograms of the three randomly selected realisations from pH100n

and pH100IRn simulated by DWSIM.
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Summary Statistics
pHI00n PH1G0TR
Samgple Realisations Sample Realisations
Hase Db2 Haar Dh2
1 2 3 1 2 1 3 1 2 3 1 2 1.3
004 | 0.04 | 004 | 0.04 [ 002 | 002 | 001 | 002 | 0.03 | -002| 001 | 0.00 | 0.67 | 0.01
102 | 105 | 102 | 104 | o9 |09 | 098 | 100 | 1.04 | 105 | 105 | 601 | 106 | 1.03
254 | 315 | 38 | 330 | 319 | 317 | 368 | 262 | 370 | 410 | 377 | 400-| 273 | 363
072 | 073 {073 | 066 | 065 | om | 067 | 030 | 072 | 062 | 0.67 | 083 [ 0.7 | 067
005 | 004 | 005 | 004 005].001] 002 018 | 003 | -0.06]-003].003]| 012 | -0M
082 |-068) 065|-076].0731.068|.070 | 085 | -0.65] .072 | 067 | 069 | 0356 | 0.8
-1.96 -309 1 -320 | 4131 3.12 | .2.89 | -3.07 -2.23 -301 | .3.50 | 296 | 341 | 412 | -3.18
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Figure 39: Summary statistics and Q-Q plots of three randomly selected realisations

from pH100n and pH100IRn (simulated by DWSIM) against corresponding samples.
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sample variance. The maxima/minima of all realisations are higher/lower than the
corresponding sample maximum/minimim since this is a feature of Monte Carlo sim-
ulation and since the semple is only an approximate representative of the population.
However, the skewness coefficients of all realisations are lower thar the corresponding

sample skewness coefficients.

7.2.3 Case Study 4: Applications of DWSIM to Anisotropic Samples

As in Caso Study 2 in Chapter 7.1.3, the samples used to test the performance of
DWSIM in the anisotropic case are B64n and B6/IRn. Since the dimensions of the
simulated realisations are required to be a power of 2, the simulations were earrjed
out in & study repion of size 64 x 64 then each realisation was trimmed to size 40 % 40.
For cach wavelet basis, three realisations were randomly selected from a set of 1000
realisations Irom each sample. The mosaic plots, semivariograms and the quantile-
quantile plots of the realisations are shown in Figures 40, 41 and 42, respectively.

It can be seen from the mosaic plots in Figure 40 that the realisations simulated
via the Haar basis have captured the features of both samples and the exbaustive data
set Berean. Locations having high values at the top right corner of the study region
can be geen in all of the realisations in columns 1 and 3 of Figure 40. The locations
with low values associated with the banding in the direction IV55W at the middle left
and near the bottom right corner of the samples Bf{n and B64{ffin are reproduced.
No artefacts are found in the mosgic maps of the realisations. In the case of the Db2
basis, locations associated with low and high values arn also reproduced. owaver, the
locations associated with the banding are better reproduced in the case of realisations
from the ungridded sample B64/Rn in column 4 than in the case of realisations from

the gridded sample B6fn in column 2. In both bases, the low extreme values of the
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realisations are lower than the corresponding sample minimum and the high extreme
values of the realisations are higher than the corresponding sample maximum.

Semivariogram models of both samples are reproduced in the Haar basis case. The
experimental semivariogramns for the normal scores of the realisations in columns 1
and 3 of Figure 41 are similar to the associated semiveriogram models. The sill values
in the directions of maximum continuity N55W and minimum continuity V35E are
clearly distinguished. However, for the Db2 basis, only the semivariogram model
of the ungridded sample B64{/Hn is approximately reproduced. The ranges in the
direction of maximum spatial contimuity Ni5W of all sernivariograms of realisations
from Bf{n in column 2 are smaller than that of the associated model,

In terms of sample histogram reproduction, the summary statistics and the quantile-
quantile plots in Figure 42 show that the means and variances of both samples are
reproduced. Except for the wariances of the realisations from Bfi{n simulated using
the Db2 basis, which are all lower than the sample variance, the variances of the other
realisations Auctuate above and below the corresponding sample variance. For both
wavelet bases, the minime (maxima) of all realisations are lower (higher) than the
corresponding sample minimum (maximum}. However, the medians and quartiles are
close to the corresponding sample median and quartiles. The skewness coefficients of
all realisations are close to the corresponding sample skewness coefficients, except for
the case of Realisations #1 and #3 fom BE{IRn simulated using the Db2 basis. In
general, in the anisotropic case, IYWSIM reproduces sample histograms regardless of

the wavelet basls and the sampling method.
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Figure 40: Mosaic plots of three randomly selected realisations from B64n and

B64IRn simulated via DWSIM.
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Figure 41: Semivariograms the three randomly selected realisations from B64n and

B6/IRn simulated via DWSIM.
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Summary Statistics
Bédn BédlRn
Sample Reslisations Sample Realisations
Haer [ Db2 Haer Dt2
Stais 1 2 3 1 2 3 1 2 3 1 2 3
Mean | 0.9 | 0.0 | 002 ] 014 | 01z | 0.19 | 0.17 | 005 | 001 | 005 | 0.07 | 0.06 | 0.00 | 0.07
Var 103 | 103 | 102 { 109 | 094 | 092 | 092 | 102 | o085 { 102 | oss | 097 | 093 | 1.06
Max 236 | 293 | 281 | 314 | 244 | 308 [ 295 | 215 | 242 | 319 | 324 | 266 | 276 | 273
Q3 091 | 080 | 07z {086 | 079 | 087 [ 084 | 064 | 065 [ 076 | 085 | 071 | 068 | 0%
Med | 012 | o010 | 004 | 017 {018 | 048 | 048 | 009 |-003f 013 | 049 | 0.08 | 00t | 012
qQl 042 | 059 | 067 | 058 .049 | .041 | 049 | 087 |.063|.052] 050 |.053]| 069 | D56
Min | -242 | -338 | -361 | 312 | -3.40 | .271 | 339 | .229 | 288 | 303 | 304 | 362 | 268 | 412
Skew | -013 | 004} 021 [ -015].045] 020|010 009 | -003].0231.007 | 028 ] 004 037
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Figure 42: Summary statistics and Q-Q plots of three randomly selected realisations

from B6/n and B64IRn (simulated via DWSIM) against corresponding samples.
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7.2.4 General Comments on DWSIM

Wo have seen in case studies 3 and 4 that DWSIM using the Hasr basis reproduces
the seraivariogram model and sample histogram in both sotropic and anisotropic
cases regardless of the sampling method. Even though DWSIM using the Db2 basis
reproduces the histograms of all samples, it fails to appropriately reproduce the spatial
continuity of the anisotropic gridded sample B64n, In the next Chapter, we will
investigate the performance of DWSIM in more detail by quantitatively comparing
the global and local accuracy of the simulated realisations obtained via DWUIM
with those of realisations simulated vis PWSIM. The computational effort for these
algorithms is also discussed to compare the computational efficiency of two algorithms,
The results of the comparison will be used to determine the appropriate wavelet basis

for DWSIM.
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8 COMPARISON OF PWSIM AND DWSIM

DWSIM and PWSIM are sitiler in that they are both multilevel wavelet-hased
sirnulation algorithms and both exploit the second-order stationarity property of the
underlying random function. Both algorithms start the sirulation from an inifial
scaling imapa at some coarse scale and then reconstruct the sealing image at the finer
scale using the correlation of scaling/wavelet coefficients.

However, the glgorithms differ in the methods used to obtein the conditional
simulated realisations. Firstly, the initial scaling image in DWSIM is estimated [rom
the conditioning date, via the discrete wavelet transform while in PWSIM the initial
scaling image is simulated using the Choleski decomposition. Secondly, in DWSIM
only the scafing coefficients at the coarser scale are vsed to simulste the scaling
coefficients at the finer scale while in PWSIM the scaling coefficients at the finer scale
are computed from the simulated scaling and wavelet coefficients at the coarser scale
using the inverse discrete wavelet transferm. The method used to estimate the initial
scaling image and to simulate the sceling coefficients at the finer scale in DWSIM
makes it possible to condition the data directly.

In Chapter 7, we illustrated brielly the performance of PWSIM and DWSIM.
In this Chapter we will quantitatively assess the performance of the two algorithms
for cach wavelet basis. The performance measures used include the accuracy and
goodness coefficients A and G, the average variance V of the local distributions, and
MAD and MAE values described in Chapter 4. The realisations used to compute
these measures are those from pHI00n and pHIGOIRn in the isotropic case and those

from Bé4n and BG{IRn the anisotropic case.
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8.1 Accuracy, Goodness and Precision

The sccurecy, goodness and precision of the simulation ave visvally assessed via the
accuracy plots and quantitetively assessed via the accuracy coefficient A and the
goodness coefficient & in conjunction with the average variznce V.

Using formula {122}, for each sample the computation of the accuracy, goodness
and precision coefficients are based on the local conditional cumulative probability
distribution functions modelied from 1000 realisations with the jacklmile data from
Chapter 5. The accuracy plots for each sample, together with the coelficients, are
shown in Figure 43 with the plots in the case of PWSIM in rows 1 and 2 and those
in the case of DWSIM in rows 3 and 4.

In the isotropic case, since the accuracy coefficients A and goodness coefficients
G computed from realisations simuated via PWSIM in row 1, column 1 and row 2,
column 2 are higher than those computed from realisations simulated via DWSIM
in row 3, column 1 and row 4, column 2, PWSIM performs better than DWSIM for
both wavelet bases. For the Haar basis, in both ssmples, PWSIM porfarmancc is
only slightly better than DWSIM performance because the accuracy end goodness
cocfficients in the case of PWSIM are only slightly higher than those in the case
of DWSIM. For the Db2 basis, PWSIM performance is much better than DWSIM
performance because the accuracy and goodness coceflicients computed in the ease of
PWSIM are much higher than those computed in the case of DWSIM.

The setback [or the higher accuracy and goodoess coefficients in the case of
PWSIM is that the average variances V computed from realisations simulated via
PWSIM are higher than those computed from realisations simulated via DWSIM.
Similar to the case of the accuracy and goodness coeflicients, the differences between

the average variances computed from realisations simulated via the two algorithms
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Figure 43: Accuracy plbts obtained using PWSIM and DWSIM.
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are negligible for the Haar basis and considerable for the Db2 basis. This indicates
that the results of tha simulation using PWSIM are less precise than those in the case
of DWSIM.

It the anisotropic case, the accuracy plots in columas 3 and 4 of Figure 43 indicete
that the performance of PWSIM and DWSIM arve approximately equivalent if the
Haar basis is used, Since the acenracy cocfficients A are close to 0, we focus only
on the goodness coefficient G and the average variance V. For the gridded sample
B4n, the gondness coefficient &, in row 1, computed [rom realisations simulated via
PWSIM arc lower than that computed from realisations simulated via DWSIM in row
3. The opposite is true for the average variance. For the ungridded sample B64Ifin,
the coefficient A is higher in the case of PWSIM while the coofficient ¥ is the same.

Similar to the isotropic case, the performance of PWSIM is much better than the
performance of DWSIM if the Db basis is used. The cocticients & in both samples
in the case of DWSIM in row 4 are much lower than those in row 2 in the case of
PWSIM. The everage variances V in the case of DWSIM are also much lower than
those in the case of PWSIM.

In compering the impact of wavelel basis with regard to the same algorithm,
PWSIM using the Db2 basis performs slightly better than PWSIM using the Haar
basis since the coefficients A and & in the case of the Db2 basis are slightly higher
than those in the case of the Haar basis. The jncrease of these cocfficients is traded
by the increase of the average variances. On the other hand, DWSIM using the Haar
basis performs much better than DWSIM using the Db2 basis.

The precision of DWSIM and PWSIM with regard to the two wavelet bases is vi-
sualised via the plots of the average width W of the probability intervals that contain

the true values against the probability p in Figure 44. It can be seen that for both

144



_ Isotropic _
351w o 35- 5=
w w 2
pH100n pH100IRn
31 3
2.5 4 251
+ DWSIM (Haar) 3 + DWSIM (Haat)
5 ] ¥ DWSIM (Db2) X » ] % DWSIM (Db2)
——PWSIM (Haas) _»:* ——PWSIM (Haas)
> PWSIM (Db2) £ o PWSIM (Db2)
15 4 15 4
14 14
05 | 05
P P
0 —— o .
] 0z 03 04 05 06 07 08 03 1 0 01 02 03 04 05 06 07 08 03 1
Anisotropic
B64n B64IRn
351 v 351 7
[e]
3 4 [¢] 3
25 4 ¢ 251
+ DWSIM (Hae) . + DWSIM (Haar)
N % DWSIM (Db2) . ” ] % DWSIM (Db2)
——PWSIM (Haaf) R —=—PWSIM (Haas) X
& PWSIM (Db2) . © PWSIM (Db2) ¥
15
1.
Ot
0.5 - %;;:,,:mﬁt"x
i — .
0 61 02 03 04 05 06 07 08 03 1

Figure 44: Plots of average probablity intervals of realisations simulated via DWSIM and

PWSIM.

145



isotropic and anisotropic cases the widths of the probability intervals modelled by
realisptions simulated via PWSIM are wider than those in the case of DWSIM. Since
the wider the probability widths the more true values they can contain, the accuracy
coefficients in the case of PWSIM are higher than those in the case of DWSIM. Sim-
ilarly, since the widths of probability interval modelled by realisations simulated via
PWSIM using the Db2 basis are larger than those modelled by realisations simulated
using the Haar basis, the accuracy coefficients obtained via PWSIM using the Db2
basis are higher. The opposite is true for DWSIM.

8.2 Sample Histogram and Semivariogram Model Reprodue-
tion

The reproduction of the histogram and semivariogram model of each sample will be
assessed via the MAD and MAFR values of 1000 conditional realisations, The MAD is
the mean of the absolute deviations between the quantiles of a simulated realivation
and the quantiles of the associated sample. The MAT is the mean of the relative error
between the experimental semivariogram of a simulated realisation and the associated
semivariogram model. Summary statistics for the MAD valucs, computed vsing 20
quantiles, and the MAE values, compuied from 18 lags in the isotropic case and 9
lags in the anisotropic case using lag spacing of 1 measurement unit, are displayed
by means of the boxplots in Figures 45 and 46 respectively. The boxplots for the
MAD and the MAE of realisations simulated using the DbZ basis are on the right
of the Figures with those for the MAD and MAE values computed from realisations
simu'ated via PWSIM being shaded.

Since the medians of the MAD values shown by the boxplots in Figure 45 are

close to 0 for all cases, for each algorithm the listogram of each sample is repreduced
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regardless of the wavelet basis used. By comparing the boxplots in two algorithms,
one can sge that except for the median of the MAD values computed for realisations
from pH100IRn simulated using the Haar basis, the medians of the MAD values in
the case of DWSIM are lower then those in the eese of PWSIM. Therefore, in general,
in terms of sample histogram reproduction DWSIM performs better than PWSIM.

With regard to the wavelet basis used, the sample histogram is better reproduced
in the case of the Db2 basis than in the case of the Haar basis for DWSIM. All the
medians on the right of Figure 45 are smaller than those on the lefi. For PWSIM,
on average the use of the wavelet basis does not have a clear impaet on sample
histogram reproduction. In the isotropic case, the histogram of the pgridded sample
is better reproduced in the case of the Db2 basis than in the case of the Haar basis.
The opposite is true for the histogram of the ungridded sample, In the anisotropic
case, the use of the Db2 basis worsens sample histogram repreduction regardless of
the sampling method.

In terms of semivariogram model reproduction, in the isotropic case, for both
wavelet bases DWSIM performs better than PWSIM for the gridded sample pH100n,
and the opposite is true for the ungridded sample pH100IRn. In the anisotropic
case, PWSIM performs better than DWSIM in the anisotropic case regardless of the
wavelet basis and sampling method. In fact, for DWSIM using the Db2 basis, the
semivariogram meodel of anisotropic sample Bfi{n is not appropriately reproduced. It
can be seen on the right of Figure 46 that the minimum and median of the MAE
values computed for realisations simulated via DWSIM (from sample B64n) using
the Db2 basis is considerately higher than 0.0.

With regard to the impact of the wavelet basis on cach algorithm, in the isotropic

case the use of the Db2 basis slightly improves the performance of both algorithms
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Figure 45: Boxplots for MAD values computed from realisations simulated via

PWSIM (shaded) and DWSIM.

in the case of the gridded sample pH100n. The opposite is true for the ungridded
sample pH100IRn. In the anisotropic case, PWSIM using the Db2 basis performs
better than PWSIM using the Haar basis, regardless of the sampling method. The
opposite applies for DWSIM.

We have shown from the summary statistics for the MAE values that PWSIM,
using either the Haar or the Db2 basis, and DWSIM using the Haar basis reproduce
the spatial continuity of the corresponding sample regardless of the sampling method
and the spatial structure. DWSIM using the Db2 basis only appropriately reproduces
the semivariogram models in the isotropic case, We will now visualise the reproduction
of spatial continuity by plotting the experimental semivariograms for the realisations

simulated via the two algorithms, together with the semivariogram models.
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For readability, only the experimental semivariograms of the first 200 realisations
from each sample are plotted. The experimental semivariograms and the associated
semivariogram models in the isotropic case are shown in Figure 47 and those in the
anisotropic case in Figure 48. The plots in Figure 47 indicate that, in both algorithms
the semivariograms for the realisations from pH100n and pH100IRn are similar to
the corresponding semivariogram models. They fan out about the models with those
associated with the maximum errors lying far above or below the models and those
with minimum errors overlapping the models. In the case of PWSIM the range of
the fluctuation is similar for both bases. In the case of DWSIM, the variability of the
semivariograms for realisations simulated via the Db2 basis is much lower than that

in the case of the Haar basis.

149



Al. Haar basis % lem

154 pH100IR

: ’ ——— Model
B TE T ¢ § 0 EM® B L
51 pH100IR 15, pH100IR
12
¥ _ -
us
o8
03
 Moiel

Figure 47: Experimental semivariograms for realisations from isotropic samples sim-

ulated via PWSIM and DWSIM.

150



A/. PWSIM
Haar basis Db2 basis
B64n B64IRn Bé&4n BS4IRn
51 % DisctinNssw ]}/ Direction N55W 51%  DiectionNssw ] / Disection N5SW
124 12 12 12
034 L = a9 a9
08+ - i3 06
034 a3
0 _Mﬂdlﬂ uz _Mudu] 0 _Mﬂdﬂl
0 5 1 B @ 5 D § @ 9 € P s 20 W & ¥ B D
Ih| Ih| Ih| Ihl
181%  Disection N35E 15 Direction N35E 151y  Disection N35E 15 % Direction N35F.
124 Fas, 12 12
09+ 09
06+ 06
“z‘ —Model “Z —Model
o 5 © § ® 0 5 D B D o 5 B B @
[l [hi [hi
B/. DWSIM
Haar basis Db2 basis
B64n B64IRn B64n B64IRn
154 15+ 15-
| ¥ Duectinnsw | V' Ditection N35W b 7 DisectionNssw
094 - 034 - 094 ‘
06 4 06 o __: 064
034 (I 034
0 — fodel 0 — Mo del % w— Mudel
g 5 V- % ® I &8 9 -5 B 8. & & % 2
[hl [h [h|
151 ¥ Direction N35E 15 4 Direction N35E 151 ¥ DirectionN3SE
12 124 =
03- 034
06 - 06
03+ |
0 . a ; _—P'JNIBII
% & 0 5 1 B @
[h|

Figure 48: Experimental semivariograms for realisations from anisotropic samples

simulated via PWSIM and DWSIM.

151




In the anisotropic case, the plots in Figure 48 show that, for both wavelet bases,
the spatial continuity is better reproduced for realisations simulated via PWSIM than
for those simulated via DWSIM. The semivariogram models of Bffn and B&{IRn are
cnvered completely by the experimental semivariograms of the realisations simulated
via FWSIM. For DWSIM, the spatial continnity is better reproduced in the case
of sample B64IRn than in the case of B6fn. Repardless of the wavelet basis, the
sill values of the experintental semivariograms of the realisations from B64{n in the
direction of maximum continuity N55W are higher than the sill walue of the model
{in that direction}. Onec reason for the better performance of PWSIM compared with
DWSIM in terms of spatial continuity reproduction is that realisations generated
using PWSIM have larger local variances. This leads to the larger fluctuation of
the semivariograms of the realisations; hence, these semivariograms better cover the
assoeinted semivariogram model. The plots in Figurc 48 also show that the variabilily
among the experimental semivariograms for realisations simulated via PWSIM is
similar for both wavelet bases. For DWSIM, the variabilily among the experimental
semivariograms of realisations simulated via DWSIM using the Haar basis is higher
than the variability among these of realisations simulated via DWSIM using the Db2
basis.

In summary, if the Haar basis is used, in terms of accuracy and goodness co-
efficients, PWSIM parforms better than DWSIM in the isotropic case and DWSIM
performs as well as PWSIM in the anisotropic case. The drawback [or the higher
accuracy and goodness coclficionts in the case of PWSIM compared with the case
of DWSIM is the bigger nverage variance, Since Lhe average variance is bigger, the
spread of the local probability distributions is larger; therefore, the proportion of

the Lrue values falling wilhin the probability intervals becomes higher. In terms of
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histogram and semivariogram reproduction, the performances of the two algorithms
arg equivalent in the isotropic case. In the anisotropic case, DWSIM performs better
than PWSIM if the MAD values are compared and the opposite is true if the MAE
values are compared.

If the Db2 basis is used, PWSDM performs better than DWSIM for both isotropic
and anisotropic cases if the aceuracy and goodness cocllicients are compared and the
opposite i true if the MAD values are compared. In terms of semivariogram mede]
reproduction, the DWSIM performance is equivalent to PWSIM perfermance in the
isotropie ease and PWSIM perlormance is better than DWSIM performance in the
anisclropic case.

The performance eomparison between PWSIM and DWSIM, with regard to the
same wavelet basis and spatial structure, that is, PWSIM using the Haar (Db2) basis
corpared with DWSIM 1sing the Haar (Db2) basis and PWSIM applied to isotropie
{anisotropic) sample compared with DWSIM applied to isotropic (anisotropic) sem-
ple, is shown in Table 5. The 4 in the table indicate the more efficient algorithm

wlereas the = indicate an equivalenl perlormance.

PWSIM DWSIM
Haar Db2 Haar Db2
Iso. | Ani. | Iso. | Ani. | Iso. | Ani. | Iso. | Ani.
Accuracy/Goodness | + | = | + | + =
Average variance = + | =+ +
MAD = =+ | +| +
MARE =+ | =+ = =

Table 5: Performance comparison betwenn PWSIM and DWSIM.
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With regard to the impact of wavelet basis used in each algorithm, PWSIM using
the Db2 basis performs better than PWSIM using the Haar basis if the rerformance
measure is besed on the accuracy and goodness coefficients. There s no clear trend
for other measures. For DVWSIM, except for the performance measure based on the
MAD values, DWSIM using the Hear basis performs better than DWSIM using the
Db2 basis.

8.3 The Impact of Trimming the Simulation Grid on His-
togram Reproduction

In this section we Investigate the impact of trimming the simulation grid on histogram
reproduction. Since both DWSIM and PWSIM require that the dimensions of the
study region be a power of 2, the simulation is veually carried out in & region that
is larger than the actual one, At the conclusion of the simulation, both DWSIM
and PWSIM report only the simulated values within the study region. As data are
only available within the study region, one can expect that trimming the realisa-
tions improves the perlormance of the algorithms based on the reproduction of the
corresponding sample histogram.

The left and middle columns of Figure 49 show the mosaic plots of the realisa-
tions from B64IRn after and before trimming the simulation grid, respectively. The
realisation ebtained vin DWSIM is shown in the second row whereas the realisation
obtained vie PWSIM is shown in the thirl row. The study region in this case is a
40 x 40 grid whereas the simulation has to be carried out in a 64 x 64 grid. The
boxplots in column 3 of Figure 49 show the summary statistics of the MAD values
computed from 1000 rezlisations simulated using DWSIM (in the second row) and

PWSIM (in the third row) with the shaded boxplots indicating summary statistics
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Figure 49: Mosaic maps and boxplots illustrating the impact of trimming simulation grid

on histogram reproduction.

for MAD values after the simulation grid is trimmed to the grid size of 40 x 40. It
is clear that the sample histogram is better reproduced after trimming. In the case
of PWSIM, the MAD values before trimming are only slightly larger than the MAD
values after the trimming. However, in the case of DWSIM the MAD values before
trimming are significantly larger than those after trimming. The reason for the dif-
ference in the impact of trimming the simulation grid on the two algorithms comes
from the method used to condition the data. In PWSIM, a larger search radius and

number of conditioning data have to be used in the kriging step to allow the grid
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nodes outside the study region to be simulated in terms of sufficiently many condi-
tioning values within the study region. The cost for this is a higher computational
effort. Tn DWSIM, due to the size of the filter length and the conditioning methed,
the simulated values at the nodes outside the study region usually depend caly on a
very small number of conditioning values close to the edges. Therefore, if these nodes
are included in the realisations, the deviation of the realisation histogram and the

sample histogram is larger,

8.4 The Impact of the Size of the Initial Scaling Image in

PWSIM

In DWSIM, the reconstruction of the original scaling image is started at the scaling
image all of whose grid nodes are estimated. PWSIM, on the contrary, can start the
reconstruction at any coarse scale as long as the covariance matrix for the sealing
cocfficients is small enough to make the Choleski decomposition feasible. Diferent
starting scales result in different sizes of the initisl scaling image. In the comparison
we have carried out previously, as discussed in Chapter 7, the simulation is started at
an scaling imape of size 4 % 4 but there is no reason that PWSIM cannot begin with
an initial scaling image of smaller ot of largor size. Now we investigate the impact of
the size of the scaling image on the performance of PYW/SIM in the isotropic case.
Since the size of the exbaustive data set pHsoil is 61 % 61, the size of original scaling
image (7 = 0) for the simulation is extended to 64 x 64. At the end of the simulation,
the program trims off the simulated realisation back to size G1 x 61. Since the size
of the criginal scaling image for the simulation is 64 x 64, the maximum number of
times the discrete wavelet transform can be applied to this image is log,(64) = 6. In

other words, the coatsest scale at which PWSIM can start is scale 2° when the size of
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the initial scaling image is 1 x 1. In this case, the initial scaling image is oo small to
carry enough the information of the criginal scaling image, Therefore, the simulation
has to start at some finer scale so that the size of the covariance mattix for the scaling
coefficients is small enough so that the decomposition can be feasibly applied and the
size of the scaling image is large enough to contain the correlation from the original
scale.

As discussed, the results we have obtained in this Case Study so far are based
on the initial scaling image of size 4 by 4, that is the simulation starts at scale 29,
The results may be worse or better if the simulation starls at some dilferent scale,
Therefore, we will investigate the performance of FWSIM using the Haar basis when
the simulation starts at one scale conrser 2° {the size of the initial scaling image is
2x2) and at one scale finer 22 {the size of the initial scaling is 8x 8). In each case 1001
realisations from each sample were generated. The mosaic plots of three randomly
selected realisations from each sample in the case when the starting scale is 2° are
shown in Figure 50B while those for when the starting scale is 2% arc shown in Figure
50C. The maps in Figures S0B and 50C indicate that the realisations have capturcd
the features of the exhaustive data set and of the associated samples regardless of
the starting scale. "The regions of high and low values seen from the mosaic plots of
the exhaustive data set pHsoitn and of the samples pl100n and pHI100{Rtn in Figure
50A are reproduced in these mosaic plots. Ne indication of artifacts is apparent in
the plot of any realisation.

We have investigated visually three typical realisations simulated via PWSIM
corresponding to difforent starting scales, We now explore the impact of Lle size
of the initial scaling image on the performance of the algorithm using quantitetive

measures. These measures include the MAD and MAE values and the coefficients for
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evaluating the accuracy and goodness of the simulation.
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Figure 51: Boxplots for MAD and MAE values associated with different initial scaling

image size.

It can be seen from Figure 31 that the size of Lhe inilial scaling image has little
impact on the reproduction of the sample histograms and semivariogram models. For
sample histogramn reproduction, the summary statistics for MAD values {computed
using 20 quantiles} of 1000 realisations of each sample shown in Figure 51A show that

these values vary with the slarting scale. Howaever, there is ne trend of improvement;
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the reproduction of the sample histogram does not improve in accordance with the size
of the initial scaling image. In fact, only the range of the MAD values changes. The
medians of MAT) values associated with the initisl scaling image of size 2% 2,4 %4 and
8x 8 in the case of sample pH100n are approximately equal to 0.130, 0.140 and ¢.125;
and those in the case of sample pHIO0MRn are 0.150,0.130 and 0.140, respectively.
The differences among these medians are small. Similarly, regarding semivariogram
model reproduction, the summary statistics for 1000 MAE values (computed from
18 lags using & lag spacing of 1 unit) of both samples in Figure 518 indicate that
increasing the size of the initial scaling image has little impact on the MAE values.
The accuracy plots in Figure 52 show that the size of the inilial scaling image has
only a small impact on the accuracy, goodness and precision of the shmulation. The
accuracy plots obtained from realisations of pff100n in Figure 52A and of pH100IRn
in Figure 5218 show that, in general, increasing the size of the initial scaling image
stightly reduces the spread of the local distributions, in other words reduces the
uncertainty of the results. There is no trend for the aceuracy or the goodness of the
distributions. As can be scen [rom the accuracy plots for realisations of pHI100IRn,
the average variance V slightly decreases when the size of the initial scaling image
increases. However, this change is not very great. For sample pH {007, the coeflicient
V equals 0.54 for the initinl scaling image of size 2 x 2, then increnses to 059 for the
initia] scaling image of size 4 X 4 and reduces to 0.53 for the initial scaling imape of
size 8 x B. For sample pH{00iRn, the coefficient V decreases from 0,62 lor the initjal
scaling image of size 2 % 2, then 0.61 for the initial scaling image of size 4 x 4 and
0.60 for the initial sealing image ol size 8 x 8. If we disregard the middle graph in the
first row of Figure 524, the precision of the simulation increases with the size of the

initiel scaling image.
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In summary, since the starting level of PWSIM has little impact on the pecfor-
mance of PWSIM, it can be ignored.

8.5 Computational Effort for PWSIM and DWSIM

In this Section we compute the computational effort needed by PWSIM and DWSIM
in the simulation of one realisation. As an illustration we count the number of al-
pebraic operations used to simulate one realization of the sample pH100n. From a
debug file created by the computer program, the size of initizl scaling image in the
case of DWSIM for this example is 8 x 8, therefore, for consistency we assume that
PWBSIM also starts the simulation with the initial scaling image of size 8 x § that is

associated with § = 3.

8.5.1 Computational Effort for PWSIM

Let M be the number of vanishing moments of the wavelet basis used, the computa-

tional effort used in PWSIM includes

1. The computation of the covariance tables requires (5603 — 460M + 12M7) x
(80M* — 1) + 66564 aperations.

2. The simulation of the initial scaling image requires 93472 algebraic operations.

3. The computation of the weights requires 3 x (4 {2M + e+ LM+ 1)'1 -

£ (2M 4 1)® + 3) operations.

4. The simulation of the wavelet coelficients requires 8064 (2M + 1) + 4032 oper-

ations.

5. The inverse discrete wavelet transform requires 6451207 — 5376 additons and

multiplications.
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6. Conditioning the data: assume that 16 conditioning data are used to compute
the kriging estimate at cne unknown location this step requires 1,154 x 107

additions and multiplications.

Step NP of operations

1| (5603 - 460 + 1207} (8DM* — 1) +- 66364

2 93472

3 [ax@eM+)f+BEM+) —ieM+1)°+3)

4 |8064(2M +1)° + 4082

5 | pd512M?% — 5376

6 | 1.154 x 107

Total | 1024M° — 36608M5 - 4,400 8 » 108M°

+1360M3 4 O7TO6M* + 33018M 4 1.1702 x 107

Table 6: Number of algebraic operations lor simulating one realisation using PWSIM.

In summary, the number of algebraic operations required for simulating one con-
ditional realisation using PWSIM is summarised in Table 8. Detail lor the compu-
tation can be seen in Appendix 12.3. According to this table, {for Haar wavolets
1.224 8 x 107 algebraic operations have to be carried out to simulate one realisation.
For Db2 wavelets the pumber of multiplications end edditions goes up to 1.8249x 107,
However, when a set of realizations is simulated, the computation of the covariance
tables is only carried out once. Therefore, suppose that 100 realisations need to be
simulated the number of additions and multiplications needed are 1.1774 x 10 in the

case of the Haar basis and 1,2153 x 10° in the case of the Dh2 besis.
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8.5.2 Computational Effort for DWSIM

The computational effort used in DWSIM includes

1. The computation of the covariance tables requires the same number of algebraic

operations as in the case of PWSIM.

2, Estimation of the initial scaling image requires 2799 additions and multiplica-

tions.

3. The computation of the weights requires 3 x {4 (2 -+ 1)¥ + 22M + 1)* -~

£(2M + 1) + 4) algebraic operations.

4. The simulation of the scaling coefficients at the finer scale via the scaling coef-

ficient at the coarser stale requires 4300802 4- 4300BM + 16128 additions and

multiplications.
Step N? of operations
1 | (5603 — 4600 4 12M°) (BOM* — 1) + 66564
2 12199
3 |3xGEM+) +BEM LY —E2M +1) 4+ 4)
4 | 43008042 + 430087 + 16128
Total | 10245 — 36 608M* + 4.4898 x 105M 1+

1168043 - 4383102 + 43751 M 4 79937

Table 7: Number of algebraic operations for simulating one realisation using DWSIM.

The number of algebraic operations required [or simulating one conditional re-

alisation using DWSIM is sumrnarised in Table 7. Detail for the computation can
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be seen in Appendix 12.4. Hence, 5.4309 x 10° algebraic operations have to be per-
formed to simulate one conditional realisation from pHIGfn in the case of the Hasr
basis whercas in the case of the Db2 basis the number of algebraic operations is
6.2771 x 10% As in the case of PWSIM, since the covariance tables are computed
only once, if 100 realizations are to be obtained, the number of algebraic operations
needed in the case of the Haar and the Db2 bases are 1.0973 x 107 and 3.386 2 x 107,

respectively.

8.45.3 Comparison of the Computational Effort of PWSIM and DWSIM

By comparing the computational effort for Lle two algorithms, ene can see Lhat
DWSIM is much faster than PWSIM. Excluring the postprocessing step, PWSIM
and DWSIM require approximately the same computational efforl even though the
methods used lo obtain nonconditional realisations in PWSIM and conditional real-
isations in DWSIM are differcal. However, while in DWSIM conditional simulated
realisations arc obtained direetly, FWSIM necds an additional postprocessing step
to aclieve the conditional realisations. Becanse of this step, PWSIM is slower than
DWSIM. Based on the sinulation of one realisation, in the case of the Haar wavelet
basis, DWSIM is 21 times as fast as PWSIM: however, in the case of the Db2 basis
DWSIM is only approximately three times as fast as PWSIM. Based on the simuls-
tion of a set of 100 realisations, DWSIM 13 107 times as fast as PWSIM il the Haar
basis is used and 35 times as fasl as PWSIM if the Db2 basis is used.

Bebweon Lhe bwo wavelet bases, based oo the sirmlation of one realisation, PWSIM
using the Haar basis is 1.5 times s [asl a5 in the case of the Db2 basts, and bhased
on the simulation of 100 realisations, the computational cflort using the two bases

is approximately the same. On the other hand, DWSIM using the Haar basis is 11
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times as fast as DWSIM using the Db2 basis i one realisation is simulated and threo
titnes as fast ag DWSIM using the Db2 Dasis if 100 realisations are simulated.

Since the Db2 basis requires more computational effort than the Haar basis, the
result obtained via DWSIM using the Db2 basis is expected to be better than that
in the case where the Haar basis is used. However, contrary to the expectation and
unlike the case of PWSIM, the result of the simulation using DWSIM is better in the
case of the Haar basis than in the case of the Db2 basis. As can be seen from Sections
8.1 and 8.2, the goodness cocflicients obteined using DWSIM with the Db2 basis in
the anisotropic case are very low and the semivariogram model of the anisotropic
sample B64n is not adequately reproduced.

The inappropriate reproduction of the semivariogram model can be caused by
the method of obtaining the conditioning values for the coarser scales. Since the
covariance among the locations of Lhe known values in the window is not taken into
account in the estimation, the larger the window size the less aceurate the estimation
is, especially for strongly anisotropic samples. Errors in the estimation are propagated
and the compression of the study region to the initial scaling image does not strictly
preserve the spatial continuity of the sample. As the consequence, even though the
back simulation captures the spatial structure of the initial scaling image, this spatial
struciuse departs from the target spatial continuity.

Since DWSIM using the Haar basis is much more efficient then DWSIM using
the Db2 basis and also more efficient than PWSIM, [rom now on we locus only on

DWSIM with the Hear basis.
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9 CASE STUDY 5: THE IMPACT OF SAMPLE
SIZE ON DWSIM

In this Chapter we investigate the impact of sample size on the performance of
DWSIM in the case of the Haar basis. To do so, DWSIM is applied to tho nested
samples pH50In, pH250IRn and pH500/Rn of the exhaustive data set pHsoiln, The
results obtained by applying DWSIM using the Haar basiz to pH100IRx, discussed
in Chapters 7 and 8, are also shown for the purpose of comparison. The performance
of DWSIM with regard to sample size is assessed visually and quantitatively, Visual
assessment is carried out by comparing the mosaic plots of three typical realisations
from each sample with the post plots of the corresponding sample and the mosaie plot
of pHeoiln. The quantile-quantile plots of the realisations against the corresponding
samples and semivariograms associated with the typieal realisations are also plotted in
order to visualise the reproduction of the associated sample histograms and semivar-
iopram models. Quantitaiive assessment is carried out by the measures of accuracy,
goodness and precision and the measures lor sample histogram and semivariogram

model reproduction using MAD and MAE.

9.1 Typical Realisations

The performance of DWSIM with regard to sample size is first visually assessed
via moszic plots of typical realisations, the quantile-quautile plots and experimental
semivariograms. For each sample, three realisations are randomly selected [vom the
sel of 1400 realisations. In Figure 53 mosaic maps for these realisations are shown
together with the post plots of the samples and the mosaic map of the correspending

exhaustive data set,
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Figure 53: Mosaic plot of pHsoiln, post plots of nested samples and mosaic plots of

three randomly selected realisations from each sample.
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Surnmary Statistics
pHI0IR H100Rn | H2301Rn pHI00IRn
Sample Realisations Satmpl Realisations Sampls Realisations Jainpi Realisati i
Stais 1 2 3 1 2 3 i 2 3 1 2 3
Mean goe | 007 | 002 004 | 012} 003 | .002 | 001 | .007 | -0.07 | 000 (.02 0.00 0.00 | -0.03 | 0.01
Var 1.92 1.10 Lo 1.08 100 | 1.04 1.05 105 | 101 1.10 1.01 1.00 1.00 1.03 1.03 1.02
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Figure 54: Summary statistics and Q-Q plots of typical realisations (from nested

samples) against corresponding samples.
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Figure 55: Experimental semivariograms of typical realisations from nested samples.
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It can be seen from Figure 53 that the mosaic maps of the realisations capture
all the features in the post plots of the associated samples. The more data the closer
is the sample to the exlsustive data set. Therefore, as one can expect, the mosaie
plots of the realisations get eloser to the wosaic plot of the exhaustive data set when
the sample size increases. For example, locations of high velues near the left top
corner and near the right bottom corner in the mosaic plot of the exhaustive data set
are better reproduced in the case of realisations from pH500/Rr than in the case of
realisations from the other samples. No unusual features or arlefacts are apparent in
the maps.

The summary statistics together with the quantile-quantile plots of the realisa-
tions againsl the corresponding samples and the experimenta! semivariograms of the
realisations in Figure 53 are shown in Figures 54 and 58, respectively. The quantile-
quantile plots in Figure 54 reveal that the more data the better the sample histogram
is reproduced, By comparing the summary statistics of the realisations in Figur 54
with those of the assuciated sample, ene cen see that all realisations approximately
reproduce the associated sample means, variances, skewness coefficiznis, mediaus and
quartiles. As & {eature of the simalation, the minimum (maxiinum) of all realisations
being lower (higher) than the corresponding sample minimum {maximum).

The experimental semivariograms in Figure 55 also indicale ihat the semivar-
jogram model is reproduced regardless of sumple size.  All experimental semiviri-
ograms are similar to their associated semivariogram models with some fluctuation.
Howaver, Lhe experimental semivariograms of realisations from satple pH500 An
show less llucluation than those of roalisations [rom other samples.

The reproduction of e sample histogram and semivariogram model is quantita-

tively assessed using the MAD and MAE values of 1he sets of 1000 realisations in the
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following section.

9.2 Sample Histogram and Semivariogram Model Reproduc-
tion

The MAD and MAE values are used to quantitatively nssess sample histopram and
semivariogram model reproduction. They are calculated from 1000 realisations from
each sample. Each of the MAD values is compuled using 20 quantiles and cach of
the MAE values is compuled [rom 18 lags using spacing of 1. The boxplots [or Lhese

values are shown in Figures 56A and 56B.

AL MAD Bf. MAE
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L] , L]
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0.0z J
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Figure 56: Box plots of the MAD and MAE values for the four samp'es.

In general, the sample histogram and semivariogram model of cach sample are
reproduced sinee the medians of the MAD and the MAE values are sinall. In the hast
case, the MAD and the MAE values are close to zoro and in the worst case Lhe MAD
value is approximately cqual to 0.3 and the MAE value is approximately equal to
0.12. For sample listogram reproduction, excluding the case of smple p/f100IR, e

baxplols in Figure 56A show thal the MAD values become smaller when the sunple
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Figure 57: Experimental semivariograms of 100 realisations from the nested samples,

size increases. I[n other words, the more data the closer are the histograms of the
realisations to the sample histogram. For semivariogram reproduction, the boxplots
in Figure 56B show that, excluding the case of sample pH250IR, the MAE values
are inversely proportional to the sample size, the more data the less deviation. The
maximuim error MAE decreases from approximately .11, in the case of pH50IR, to
0.10, in the case of pH100IR, to 0.09, in the case of pH500IR; and the median for the
MAE also decreases from .04, in the case of pH50IR, to 0.03, in the case of pH500IR.

The convergence of the experimental semivariograms for the realisations of the
four samples to the associated semivariogram model is illustrated via the plots in
Figure 57. For readability, we only plot experimental semivariograms of the first 100
realisations from each sample. The plots show that the deviations from the model of
these semivariograms decrease when the size of the sample increases. The deviations
are largest in the case of pH50IRn and are smallest in the case of pH500IRn, excluding

the case of pH2501Rn.
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9.3 Accuracy, Goodness and Precision of a Simulation

The increase in sample size leads to the slight improvement in the performance of a
simulation assessed via the accuracy plots. Since in Figure 58 a1l the pairs {p, £(p))
fall below the 45° lineg, only the goodness coelficients and the average variances are
considered. It can be seen that while the goodness coefficient G goes from 0.96 in
the case of pHS(HR, 0.95 for pHIOGIR, 0.96 for pHE250IR and 0.99 for pH500IR, the
associated average variance V' decreases fram 0.64 to 0.56,0.51 and 0.49, respectively.
Even though ihe increase of the goodness cocfficient & 1s small, the decrease of the
average variance is quite considerable. Therefore, the performance of the algorithm

improves with the sample size since Lhe results are more reliable.
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Figure 68: Accuracy plots for the nested samples.

9.4 Summary on the Impact of Sample Size

As can be seen in this Chapter, if the performance evaluation is based ou the mosaic
plots or the aceuracy plots then increasing the sample size will increase the perfor-
mance of DWSIM. Il the performance evalualion is based on the reproduction of the
sample histogram and semivariogram medel then inereasing the sample size will nol
strictly increase the performance of the algorithm, However, for all measures, the

results obtained via DWSIM are adequate regardless of the sample size.
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10 DWSIM IN COMPARISON WITH SGSIM

In this Chapter we use a practical application to compare the performance of DWSIM
{using the Haar basis) with that of the sequential Gaussian simulation algorithm
3G8IM (Deutsch and Journel, 1508). SGSIM is the most commonly used condi-
tional simulation algorithm based on the sssumption that the randem function te
be simulated follows a multivariate standard normal distribution. Because of this
assumption, the isotropic sample pffsamp and the anisotropic sample Bersemp have
to be transformed intc normal stores before the application of the algorit hms SGSIM
and DWSIM.

For each sample, 1000 realizations in the normal score space are simulated. Tlhese
realisations then are backtransformed to attribute values, The parameier fiie [or
3GSIM is shown in Figure 71 in Appendix 12,6.3. For the sample pHsamp, based
on the shape of the cumulative distribution function in Figure 14, the power and
hyperbolic models, each with parameter 1.5, are used for the extrapolation at the
lower and upper tails, respectively. Tor the sample Bersamp, Lased on the shape
of the cumulative distribution function in Figure 20, a linear model js used in the
extrapolation at both tails. The parnmeter files lor the backiransfurim ave shown in
Figures 72 and 73 in Appendix 12.6.4. The purpose of the exirapolation at Lhe two
tails is to allow the extreme values to lie outside the range of the corresponding sumple,
as the sample is only regarded as approximately representative of the population.
Therelore, even though the MAD values measure the reproduclion of the sample
histogram, we allow the minima/maxima of the realisations Lo be lower/higher than
the corresponding sample minimum/maximurm. Since lere, the exhaustive data sels
arc availuble, we set the minimum/maxioum variables in the parameter file equal

to the minimum/maximum of the corresponding exhaustive data sel. In the case
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of, pHsamp, the minimum and maximum pH level are set equal to 4.00 and 6.00
respectively. In the ease of Bersamp, the minimum and maximnm permeability are
set equal to 19.5 and 111.5. For both isotropic snd anisotropic cases, the performance
comparison is based on the reproduction of the associated semivariogram models
and sample histograms, the absolute errors between the average of 1000 realisations
from each sample and the corresponding exhaustive data sets vnd the conditional
variances. In addition, in the isotropic case, misclassification analysis is also carried
out Lo compare the Jocal accuracy of the simulated realisations obtained by the two

algorithnis.

10.1 Typical Realisations

We fArst visualise the performance of DWSIM and SGSIM by plotting the mosaic
maps of the backtransform of two selected realisations from each semple together with
their semivariograms and histograms. In Chapters 7, 8 and 9 the realisations were
randomly selected. However, in this Chapter to visuzlise the reproduction of spatial
continuity based on the MAE measure, the selected realisations are those that have
experimental semivariograms that best and worst [t the semivatiogram models. These
cxperimenta! semivariograms are computed lrom the normal scores of the realisations
whilst the histograms are computed in terms ol the attribute values. The mosaie plots
for the realisations from pHsamp and Bersamp simulated via DWSIM together with
the summary statistics, the quantile-quantile plots and semivaricgrams are shown in
columne 1 and 2 and those for realisations simulated via SGSIM in enlumns 3 and 4
of Figures 59 and G0, respectively.

The mosaic plots, the suiunary statistics, quantile-quantile plots and semivar-

jograms in Figures 59 and 60 show that both DWSIM and SGSIM maintain the
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features, histograms and semivariogram models of the associated samples, Locations
that have low and high values in the corresponding exhaustive data sets and sam-
ples are captured by the realisations. In both alperithins, the minimum/maximum
of the realisations are lower /higher the corresponding sample minimum /maximmm,
and this is a direct consequence of the choice of the extrapelation parameters in the
backtransforrn. In the case of sample Bersamp, the reproduction of the anisotropy
is seen both via the banding in the mosaic maps of the realisations and from the

experimental semivariograms,

10.2 Sample Histogram and Semivariogramn Model Repro-

duction

Similar to the previous case studies, the repraduction of the sample histograms and
semivariogram models is quatitatively assessed viz the MAD and MAE values. These
are computed from the normal scores of 1000 realisations simulated from each sampla
via DWSIM and SGSIM. The MAD values arc computed using 20 quantiles and the
MAE values are computed from 18 lags in the case of the isotropic sample and § lags
in the case of the anisotrapic sample, with lag spacing 1. Summary statistics for these
values are shown by the boxplots in Figure 61 with those for the SGSIM realisations
being shaded.

These boxplots revenl that, on average, in both the isotropic and the anisotropic
case the sample histogram and the semivariogram model are better reproduced with
DWSIM. It can be seen that the medians in the case of DWSIM are lower than those
in the case of SGSIM. With regard to spatial structure of the data, DWSIM performs
better in the isotropic case than in the anisotropic case whereas SGSIM performs

equally well for both cases. In the case of SGSIM, the medians of the MAE values
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Figure 61: Boxplots of MAD and MAE values of 1000 realisations simulated via

SGSIM and DWSIM.

are approximately equal for both isotropic and anisotropic samples whilst in the case
of DWSIM the median of the MAE values for the isotropic sample is much lower
compared with that for the anisotropic sample. With regard to the variability of the
deviations, in terms of histogram reproduction (the MAD values), the variability of
the deviations in the case of DWSIM is smaller than that in the case of SGSIM for
both samples. In terms of semivariogram model reproduction (the MAE values), the
variability in the isotropic case for realisations simulated via DWSIM is lower than
the variability among realisations simulated via SGSIM. The opposite applies for the

anisotropic case.
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Figure 62: Mosaic maps of E-type estimates and conditional variances obtained from

1000 realisations simulated via DWSIM and SGSIM.
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10.3 E-Type Estimates - Absolute Errors and Canditional
Variances

E-type estimates of the reslisations rom pisamp and Bersamp are obtained by av-
eraging the backtransform of 1000 realisations simulated using DWSIM and SGSIM.
The results are then compared with the values of the corresponding exhaustive data
sets pHeoil and Berea The mosaic plots of the exhaustive data sets, the E-type esti-
mates and the conditional variances are shown in Figure 62. In the isotropic case, the
mosgaie maps in the micdle column show that the E-type estimates from the two algo-
rithms equally capture the [eatures of the corresponding data set. In the anisotropic
case the E-type cstimate map obtained by realisations simulated via SGSIM looks
closer to the masaic map of the exhaustive data set Beree. The banding in the di-
rection N55°W in the mosaic map in row 4, column 2 looks clearer compared with
that in the mosaic map in row 3, column 2. The conditional variznee maps in eoluma
3 reveal that in the isotropic case the result obtained via DWBSIM is more precise
than that obtained via SGSIM since the local conditienal varignces are lower. The
opposite applies for the anisctropic case. One can see from the mosaic map in row
4, column 3 that the conditional variances at locations associated with the banding
and at the top right corner are lower compared with those at the same locations in
the mosaic map in row 3, column 3.

The boxplots for the errors obtained by taking the absolute values of the differences
between the estimates shown in Figure 62 and the true values of the corresponding
exhaustive data sets pHsoi! and Berea are shown in Figure 63. On average, for the
isotropic sample, the median of the errors in the case of DWSIM is slightly lower

than that in the case of SGSIM. The opposite is true for the anisotropic sample. In
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Figure 63;: Boxplots for absolute of errors computed from the E-type estimates by

DWSIM and SGSIM.

both isotropic and anisotropic cases, compared with the maximum errors obtained
via realisations simulated via SGSIM, the maximum errors in the case of DWSIM are

higher.

10.4 Misclassification Analysis

Now we compare the performance of the two algorithms in the isotropic case using
misclassification analysis. In practice, for example in barley cropping, the acidity in
soil is critical if the pH value is lower than 4.5. Soil acidity can lead to poor root
growth which then causes poor crop yield because of nutrient deficiencies. Therefore,
if the pH value drops below 4.5, some treatment, for example the application of lime
to soil, needs to be carried out to reduce the acidity level. For this reason, we have
taken 4.5 as the threshold for the classification. The regions where the pH values are
lower than the threshold are classified as highly acidic whereas the locations where

the pH values are higher than the threshold are classified as moderately acidic. An
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indicator function used to classify the study region is defined as follows:

I{u) = 1 if z(u)<45 | (152)

0 if =z(u)>4.5

Misclassification analysis is carried out for the pH values. Because of the limitation
of computer space only 500 realisations are used in this performance assessment.
Using the indicator function in (152), the data set pHsoil and the backtransformation
of each of 500 realisations from sample pHsamp, generated by DWSIM and PWSIM,
were classified into moderately acidic and highly acidic categories. The summary
statistics for the percentage of the misclassification at unsampled locations, obtained
by comparing the true categories with those obtained from the realisations, are shown
by means of the boxplots in Figure 64, in which the boxplots for the misclassification

obtained from realisations simulated via SGSIM are shaded.

Total musclassification
20 - Alpha type misclassification
; Beta type rusclassification
-
154
3
10 4 =
* E #
5.
| | ] 1 | |
DWSIM SGSIM DWSIM SGSIM DWSIM SGSIM

Figure 64: Boxplots for percentage misclassified locations obtained via SGSIM and
DWSIM.
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Based on miselassification analysis, DWSIM performs better than SGSIM since
the boxplots in Figure 64 reveal that the classification using realisations simulated via
DWSIM results in lower percentage of misclassified locations than the classification
using realisations simulated via SGSIM. In total, the boxplots on the left of this figure
show that all of the summary statistics for the percentuge of misclassified locations
obtained by realisations simulated via SGSIM are higher than those in the case of
DWSIM. For alpha type errors (mederately acidic misclassified as highly acidic), on
average DWSIM performs better than SGSIM. For beta type errors (highly aeidic
misclassified a3 moderaiely ecidic), on average SGSIM perlorms slightly beller than
DWSIM.

The mosaic maps ol the miselassified locations in Figure 65 revenl that locations
that are prone to be misclassified are those that have low pH values. The mosaie
plots lor the total misclassification and the alpha type misclassilication show that
SGSIM produces more misclassified locations than DWSIM. For example, the region
near the top right corner of the mesaic plots in the case of SGSIM are larger than
the corresponding regions in the mosaic plots in the case of DWSIM. The differences
between the mosaic maps for the beta type misclassification are negligible.

In summary, realisalions simulated by DWSIM using the Haar basis and SGSIM
capture the fealures of the associated samples and cxhaustive data sets. The resull
of the comparison based on histogram and semivariogram model reproduction shows
that the performance of Lhe twa algorithims is equivalent. Each algorithm reproduces
the histograins and spatizl continuity of the corresponding samples. The result of the
comparisen based on misclassification analysis shows that DWSIM performs slightly
better than SGSIM. Finally, performance comparison based on E-type cstimates and

conditional variances shows that DWSIM performance and SGSIM performance are
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equivalent in the isotropic case and 3GS8IM performs slightly better than DWSIM in

the anisotropic case.
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11 CONCLUDING DISCUSSION

In this Chapter we discuss the efiiciency of PWSIM and DWSIM, the impact of the
wavelet basis used in the two algorithms and the result of the performance comparison
between DWSIM and PWSIM and between DWSIM using the Hasar basis and SGSIM.

The results obtained from the assessment of PWSIM in the case where the under-
lying random function is standard multivariate Ganssian in Chapters 7 and 8 show
that PWSIM performs well with both wavelet bases. In general, the investigation
of the mosaic maps of the simulations doss not reveal any particular feature that
can distinguish the differences between the mosaic plots for individual realisations
simulated via the Haar basis from those simulated via the Db2 basis. All of the main
features seen in the mosaic plots of the associated exhaustive data sets and samples
are found in the mosaic plots of the realisations regardless of the sampling method
and the spatial structure of the data. In the case of the Haar basis, even though
PWSELM can start the simulation at different initial scales, as illustrated in Chapter
8, the choice of the initial scaling imege size does not have a major impact on the
results.

In terms of the measures of accuracy, goodness and precision, in the isotropic
case where the accuracy coefficients are larger than 50%, the goodness coefficients
are very close to the maximum value. In the anisotropic case where the accuracy
coefficients ate close to zero, the goodness coeflicients are greater than 0.50. Between
the two bases, the performance of PWSIM is better in the case of Db2 wavelets since
the aceuracy, goodness coelficients are higher, howaver, with the drawback that the
results of the simulation are less precise.

Tor global accuracy, the sample histograms and semivariogram models are repro-

duced lor each wavelst basts in both isotropic and anisotropic cases. On average, the
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deviations between the histograms and the experimental semivariograms of the real-
isations with the associated sample histograms and semivariogram models are small.
Bebween the two bases, this fluctuation is higher in the case of the Db2 basis. For
a piven wavelet basis, the fluctuation about the semivariogram model is generally
higher in the case of the ungridded sample.

Based on the computational effort for one realisation, PWSIM using the Haar basis
is faster; however, based on the computational effort for a set of 100 realisations the
difference in the speed of the simulation is not crucial. Since the computational effort
of PWSIM using the two bases is approximately similar if a set of many realisations
is simulated as indicated in Chapters 7 and 8, PWSIM using the Db2 basis should be
preferable to PWSIM using the Haar basis.

However, because of the postprocessing step, if compared with other conditional
simulation algorithms, for example the sequential Gaussian simulation algorithm
SGSIM, PWSIM requires more computation. Yet it is as complicated as SGSIM in
terms of user defined parameters. In using kriging to condition the data in PWSIM,
the user must determine the appropriate kriging method (ordinary or simple kriging),
the search radius and the number of data to be used in the estimation.

DWSIM, on the other hand, is free from user defined parameters and is faster than
PWSIM. Since DWSIM makes use of the discrete wavelet transform and its properties
to obtain the conditional realisations, only the filter of the wavelet basis impacts on
the result. Therefore, for a given wavelet basis the orly parameters that need to be
defined are those of the semivariogram model. In addition, as discussed in Chapter
8, because of the conditioning method, DWSIM is faster than PWSIM regardless of
the wavelet basis used.

In the case where the underlying random function is multivariate normal, the
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performance evaluation in Chapters 7, 8 and 9 shows that DWSIM using the Haar
basis, is a very elfective conditional simulation algorithm. The mossic plots of the
realisations simulated via DWSIM using Haar wavelels capture all relevant features of
the associated exhaustive data sets and samples in both the isotropic and anisotropic
cases. The sample histogram and the semivariogram model are reproduced for all
coses. The goodness coclficients are close to 1 (the maximum value). The goodness
coefficient is used to deduce the location of the actual ontcome obtained by applying
a transfer lunction to Lhe true values compared with the median of the probability
distribution modelled from the outcomes obtained by applying the same transfer
function to a set of simulated realisations. The claser the value of the goodness
coefficient is to 1, the closer to the median is the actual outcome. Since the goodness
coellicient is close to 1, the predictions based on realisations simulated via DWSIM
using the Haar basis are reliable,

The performance of DWSIM using the Haar basis is approximately equal to the
performance of PWSIM. In terms of accuracy, goodness and precision the results
obtained via DWSIM using the Haar basis are slightly more precise than those in the
case of PWSIM. A drawback is that the accuracy and goodness coefFicients in the case
of DWEIM are slightly lower than those in the case of PWSIM. In terms of histogram
and semivariogram reproduction, DWSIM using the Haar basis performs better than
PWSIM. Because the performances of the two algorithms are approximately equal yet
DWSIM is [aster and is free from user-defined parameters, it is more officient than
PWSIM,

In this thesis, the samples we use lor the performance assessment in the case
where the underlying random funetion is not multivariate normal in both isotropic

and anisotropic cases only slightly depart from the normel distibution. The perfor-
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mance assessment it the case of anisobropic samplas [rom highly skewed data scts in
Tran et al, 2002a, shows that DWSIM using the Haar basis has reproduced the asso-
ciated sample histogram and semivariogram models for both gridded and ungridded
samples. The investigation of the mosaic maps of the realizations also reveals that
the realisatint  ~ we reproduced the spatial structtre of the associated samples. No
artefacts have been found in the realisations.

The performance comparison between DWSIM and PWSIM using the Hear basis
in the case of a highly skewed isotropic sample in Tran et al, 2002b, indicates that
realisalions obtained using DWSIM have less variability ihan those cbtained using
PWSIM. In terms of sample histogram and spatial continuity reproduction DWSIM
performance and PWSIM performance are approximately equivalent. In terms of
misclassification analysis, the performance assessment was carried out by comparing
the aceuracy of realisations associated with the minimum, median and maximum
MAE. In order to do so, the study region is divided into 2 x 2 blocks. The realisations
that have minimum, median and minimum MAE obtained from PWSIM and DWSIM
are back-Lranslormed (using the same parameters) and are classified into ore or waste
blocks using three cut-offs associated with the 25% | 50" pnd 75% porcentiles of the
exhaustive data set, The category of cach block then is compared with the true
calegory obtained by classifying the exhaustive data set using the same cut-olfs. The
results of the comparison show thal in the case of the realisation that has minimum
MAE DWSIM is more accurate than PWSIM: it has a smaller number of misclassificd
blocks. For other realisations, PWSIM is more accursle than DWSIM.

However, if the Db2 basis is used, DWSIM is less effective especially in the
anisotropic case, 1f the Db basis is used, DWSIM requires more computational effort,

but the result of the simulation is no better than the result obkained if the Haar basis
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is used. Tlie semivariogram model of the gridded sample in the anisotropic case is not
adequately reproduced and the goodness cocfficient is low. If the goadness cocfficient
is too low, the actual value may fall oul off the renge of the ontcomes obtained by
the simulation. In other words, the prediction based on the simulated realisations is
not reliable.

The unexpected poorer performance of DWSIM using the Db2 basis in the anisotropic
case is due to the methed used to estimate the initial sealing image. In the estimation
stage, the covariance of the scaling cocfficients within the window in the finer scale
is ignored. As discussed in Chapter 8, because the number of nonzerc coefMeients of
the Db2 filter g larger than that in the case of the Haar filter, the window in the
case of the Db2 basis is larger than that in the case of the Hoar basis. Hence the
cstimation of the scaling coefficients ut the coarser seale in the case of the Db2 basis is
not as appropriate as ju the case of the Haar basis, especially in the acisotropie case.
Therefore, in the anisolropic case the Haar basis is more appropriate for DWSIM.

In the case when the underlying random function does not follow a multivariate
normal distribution, the performance comparison between DWSIM (using the Haar
besis) and SGSIM in Chapter 10 shows that DWSIM performs slightly better than
SGSIM in the isotropic case but the opposite is true in the anisotropic case. In the
isotropic case, the histograms and experimentzl semivariograms of the realisations
simulated via DWSIM are closer to the associated sample histograms and semivari-
ogram models than when the realisalions are simulated via SGSIM, For loeal accuracy,
DWSIM performance and SGSIM perlormance are equivalent if the E-type eatimates
and conditional variances are compared and DWSIM performance is slightly bet-
ter than SGSIM performance if the results obtained by misclassification analysis are

compared. As discussed in Chapter 10, the median of the absclute errors and the con-
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ditionsl variances computed from the renlisa.tio:_ls simulated using the two algorithms
are approximately the same; but the percentage of misclassified locations in the case
on SGSIM is higher than in the case of DWSIM. In the anisotropic case, the perfor-
mance of the two algorithms is equivalent in terms of histogram and semivariogram
reproduction. In terms of E-type gtimates and conditional variances, SGSIM perfor-
mance is better than DWSIM performance since the absolute errors and conditional
variances are lower in the case of SGSIM than in the case of DWSIM,

In terms of computational effort, compared with SGSIM, DWSIM using the Haar
basis is more efficient. Firstly, DWSIM is free from user defined parameters such as
the kriging methad and the number of data used in the kriging. Secondly, DWSIM
does not require that the size of the study region be larger than the range of the
semivariogram model. It only requires that the size of the study region be 2 power of
2. Thirdly, DWSIM is computationally cfficient. As discussed in the end of Chapter
8, DWSIM only requires approximately 5.8209 x 137 algebraic operations to simulate
one realisation from pH{00n, For SGSIM, the number of algebraic operations used
to solve for the kriging weights alone is 1.154 x 107, which is approximately 20 times
the number of algebraic operations used in the case of DWSIM. H one takes into
sccount the number of additions and multiplications used to compute the covariance
among the conditioning data in the kriging system and those used Lo compute the
error variance of the kriging estimates, the difference between the number of algebraie
operations used in SGSIM and that used in DWSIM would be larger. In eddition, in
simulation methods wsually a large number of realisations are simulated, rather than
Jjust a single realisation. If 100 realisations are required, DWSIM uses approximately
only 1.0971 x 107 additions and multiplications while for SGSIM more than 1.154 x 10°

nlgebraic operations are needed, which is 105 times as many as the number of algebraic
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operations in the case of DWSIM.

In the example discussed above, the size of the region to be simulated by DWSIM
is G4 > 64 which is approximately 61 x GI, the size of the study region, When the
dimensjons of the study region are much smaller than those of the region that DWSIM
has to simulate, the computational advantage for simulating one realisation cbtained
using DWSIM may not be as great as in the case of the example. For example, in
the anisctropic case the size of the study region is of 40 x 40, but the region to be
simulated by DWSIM must be of size B4 % 64, & power of 2, Therefore, the number of
grid locaticns to be simulated by DWSIM is much Iarger than the actual one wherens
this reguirement does not apply for SGSIM. In this case, the computational advantage
of DWSIM over SGSIM is based on the large number of realisations simulated.

SGSIM is the most commonly used conditional algerithm that is based on the
same assumptions as those in the case of DWSIM. This algorithm can simulate, con-
dition the date and handle the anisotropy at the same time. However, one cof the
disadvantages of this algorithm over other algorithms, for example the LU decom-
position simulation algorithm, is the number of user-defined parameters. In defining
these parameters, one needs to validate that the choice is appropriate.

The purpose of the comparizon between SG8IM and DWSIM is to find out whether
or not the perlformance of this newly-developed algorithm DWSIM, which apart from
the semivariogram model is free from user-defined paramciers and which is also com-
putationally ellicient, is equivalent to that of SGSIM. Based on the example in Chap-
ter 10, it is obvious that DWSIM performance is slightly better than SGSIM perlor-
mance in the isotropic case. However, in the anisotropic cese SGSIM performance is
slightly better than DWSIM performance.

In summary, in this thesis we have first introduced two single-lovel wavelet-based
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conditional simulation slgorithms HSIM and DB2SIM und then moved to develop
two multi-level wavelel-based cenditional simulation algorithms called PWSIM and
DWSIM. Both multi-level algorithms recursively reconstruct the simulated realisa-
tions from an initial scaling image at & coarse scale. While jn PWSIM the result of
the reconstruction is a nonconditional simulation which needs an additional postpro-
cessing step te condition the data, in DWSIM a conditional simulation is obtained
directly. Becouse of this, DWSIM is a very fast conditional simulation algorithm.

The performance evaluation shows that DWSIM using the Haar basis performs
well based on different performance measures for both isotropic and anisotropic data.
The results of the simulation obtained by DWSIM using the Haar basis are as good
as those obtained via PWSIM and SGSIM yet DWSIM is more efficient than PWSIM
and SGSIM. Wlile both PWSIM and DWSIM rely on kriging, DWSIM uses the
discrele wavelet transform to condition the data. This is the reason why, unlike
PWSIM and SGSIM, DWSIM is fast and Iree from user-defined parameters. Because
of these advantages, it can save & great amount of user effort in computsational time
and in validating the parameters.

One limitation of DWSIM is that the conditioning data have to coincide with the
simulation nedes. In the case whon the data do not lic on grid nodes, the applicaticn
of the algorithm has to be preceded by a telocation of the data to the nearest grid
nodes. In addition, DWSIM can only be applied in the case where the underlying
random function is second-order stationary. Tor non-stationary random fanctions,
the covariznce depends on locations. ‘The computation of the weights used in the
reconstruction of the scaling image then will also depend on the locations of the
simulated nodes. Henee, the method of computing the weights used in DWSIM is

no longer appropriate. Therefore, more research needs to be carried out to find &
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suitable epproach for computing these weights so that the algorithm is still fast and

effective.

196



12 APPENDICES

12.1 The Spectral Representation Theorem

Theorem 8 Let X(t} be o second order stationary process; S(w) is the spectral den-

sity associated with X () given by
o) = = f " Clhye-hdn
27 J oo

Then there ezists o unigue comple stochastic process 2 (w) salisfying (see Koopmens,

19%):
1.
X(t) = f_ : 2 () (153)
.
BldZ(w)] =0, for allw
.
Elaiwdfay =i Tt (154)

Sfwidw fwy =ws=w

where the over-bar denoles the complex conjugoate.

12,2 Checking the BiGaussian Assumption

The checking is based on the properties of a standard multivariate Gaussian random

function.
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Let ¥ : A — [Y{u}:ue A} be a standard multivariate Gaussian rendom
function. Suppose that Cy(h) is the corrclogram obtained from the semivariogram

model 7, {h) of & sample from the random fimckion ¥ (u} by letting
Gy(h) =1 —,(h).

Then the two-point distribution of auy pairs of the random variables Y'(u) and

Y{u 4 h) follows normal distribution and is determined by {(Goovaerts, 1997)

Gy up) = Prob{Y(u) £p, Y{uth) < yy) {155)

oL [ Tl ~ gy dnd
+ %ﬂ P 2cos? db (16)

for all p,p" € [0,1], where g, is the standard normal p-quantile. By setting 4, = g

cquation (155) becomes

Gigp, ot = Prob{¥(u) < g, ¥Y{u+h) < 1) {157)
1 arcain Oy fh) y:
= p2+%£ exp [—mm—.‘j df. {158)

The two-point probability distribution in (157) can also be written as

Preb(¥Y{u) € yuY{u+h)g %)

E{Hupi{u+hp)} =p—7/h;7)

where
I YY) <y,
flup) = '
0 if otherwise
and (I p) is the indicator semivariogram for the threshold g,. Therefore, the the-

oretical indicator semivariogram corresponding Lo the threshold y, can be computed

by
Tj(h;p) =p- G(hiypl yp)- (159)
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Based on equations (157) and (158), the checking for two-point Gaussian distri-

bution is carried out by:

1. Computing the theoretical indicator semivariograms lor several thresholds, This

is carried out using the program BIGAUSEXE in the GSLIB library.

2. Computing the experimental indicator semivariograms for those associated thresh-

olds.

3. For each threshold, superimposing the experimental indicator semivariogram
onto the plot of the theoretical indicator semivariogram and observing the fit. If
for all thresholds, the theoretical and experimental semivariograms ave similar,

the biGaussian assumption is satisfied.

The checking Gaussian distribution of the samples used in this thesis is carried
out by computing the theoretical and experimental indicator semivariograms for the
25-, 50- and 75-percentile of each sample. In the isotropic case, the plots of the
isotropic theoretical and experimental indicator semivariograms are shown in Figure
6G. In the anisotropic case, the theoretical and experimental indicator ommidirectional
semnivariograms are shown in Figure 67 whereas ihe theoretical and experimental
indicator semivariograms in the directions of maximum and minimum continuity are
shown in Figure 68. Based on the semivariograms, the biGaussian assumption is

valid.
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Figure 65: Theorctical and experimental indicator semivariograms for 25-, 50- and

75-percentile thresholds of isotropic samples.
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12.3 Computational Effort for PWSIM in Detail

1. The computation of the covariance tables: The computation of one value in
the covariance table at the coarser scale from the covariance at the finer scale
requires 4 x (2Af)* multiplications and (2M)* — 1 additions, in total 80M* ~ 1
operations. For a simulated realisation of size 64 X 64, as in our example, the
number of covariance values that have to be computed in this step is shown

in Table 8, Theoretically, for 7 > 0, the size of the covariance table asso-

j | Scaling image size | Covariance table size

0|64x64 128 x 129 (Not counted)
1]32%32 (65 — 2M) X (65 —~ 2M)
2116 x 16 (33 — 2M) x (33 - 2M)
3|8xs (17 — 2M) x (17 — 2M)

Total covariance values:

5603 — 460M + 12M2

Table & The number of covariance values at j>0 to be computed.

ciated with a scaling image of size P x @ is (2P + 1) x (2Q -+ 1). However,
because of the edge effect, enly (2P + 1 — 20) = (2Q + 1 — 2M} covariance
values can be computed. Hence, for this particular example, the number of
algebraic aperations required for the computation of the covariance tables for
7 > 0 is (5603 — 4600 -+ 1284%) {8001 — 1). In addition, each value of the
covariance table at 7 = 0 requires 3 rulitiplications and 1 addition. There-
[ore, in total the computalion of the covariance tables for § = 0,...,3 requires

(5603 — 460M -+ 12M7) (80M* — 1) + 66564 operations.

2. The simulation of the initial scaling image: The simulation of the initial scaling

image involves the Choleski decomposition of the covariance matrix and the
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simulation of the associated scaling coefficients. For the covsriance matrix of
size m % nit, the decomposition requires %-{- -'%2- - 2—3-"‘ multiplications and % -
additions (Burden and Faires, 1997, page 411). The simulation of associabed
scaling coeflicients according to formula (133) needs ﬂ’;u‘l multiplications and
51;—1)3 additions. In this special example, since the size of the initial scaling
image is 8 x 8, the size of the covariance matrix is 64 x 64, that is m = 64, The
decomposition of this matrix costs 89376 alpebraiz operations and the simulation
requires 2080 multiplications and 2016 sdditions. In total, 93472 algebraic

operations must be carried out for this step.

. The computation of the weights: The computation of the weights in equation

{134) involves:

= The solving for the weights ; @ There are three sets of weights to be solved:
one for each type of wavelet coefficients. Tho solving for the weights is
carried out using the Choleski decomposition of the ceefficient matrix and
the back-substitution methed. The decomposition of & covariance matrix
of size m x m requires §m” 4+ }m? — $m multiplications and additions, To
obtain the solutions of the system of m equations, m? multiplications and
m? — m additions have to be carried out {Burden and Taires, 1997, page
412). Bince the cocflicient matrix is the same for three wavelet coelficient
types, the Choleski derompaosition is only carried out once. Therelore, in
total, the computation of three sets of weights for the three types of wavelet
cocflicients involves

1 4,1 5 &
3™ G

2 3 k4
m+ 3(23‘!’[ - I’H.] ™= 3m + '—-2 m - 6 m

algebraic operations.



© The computation of the standard deviation 7 of the noise: For a system
of m equations, the computation of the standard deviation -y in equation
136, requires m? +m + 1 multiplications and m? additions. Hence, (2m? +
m -1} x 3 algebraic operations are required for computing three standard

deviations associated with the threa sets of weights,

e Hence, to move from one coarse scale to the next finer scale, in total
im® 4+ Zm? — &m 4+ 3 algebrsic operations have to be cartied out. In
our case, for wavelets with M vanishing moments, by replacing m with
(2M + 1)® on moving from a scaling image at § = 3 to & sceling image
at § = 0, the number of algebraic operations required for computing the

weights is
1 25
3{E (@M 418 4 03 (2™ +1)* - % (2M 4 1)% +3).

4. The simulation of the wavelet coellicients: According to formula (134), the
simulation of each wavelet coefficient involves (2M -+ 1)® + 1 multiplications
and (2M + 1)? additions. In total, 2(2M + 1) + 1 algebraic operations have
to be carried out [or one wavelet coefficients. The number of additions and
multiplications required to ¢btain all of three types of wavelet coefficients during

& simulation is listed in Tables 9.

5. The inverse discrete wavelet transform: According to formula {92), the compu-
tation of each scaling coefficient at Lhe finer scale from the scaling and wavelel
coefficients al Lhe next coarser scale via the inverse discrete wavelet transform
involve 2 x (2M)? multiplieation and (2M)? — 1 additions: in total 1202 — 1
operations. The number of algebraic operations for the inverse discrete wavelet

transform is computed in Table 10.
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j { Scaling image size N? of operations

0| 64 64 0

1]32x32 3% 32 x 32 x (2(2M 4 1) + 1)
2]/16x16 3% 16 x 16 x ({2 +1)2 + 1)
3]8x8 IxBx8x(22M+12+1)

Total aperations: 8064 (ZM + 1)° 4 4032

Table 9; The nuraber of operations nsed to compute all wavelet coefficients.

j | Bealing: imape size | N® Operations

0f64x64 64 x 64 x (12M2 - 1)
1[32x32 32 % 32 x (12M°% — 1)
2|16 % 14 16 x 16 x {12M? — 1)
3|8x8 0

Total operations: 6451202 — 5376

Table 10: &'he number of operations used in the inverse discrete wavelet transform.

6. Conditioning the data. Assume that 16 conditioning data are used to compute
the kriging stimate at one unkonown locaticn, in t.hié example, for a study
region of size 61 x 61 with 2 sample of 100 data, this step involves the solving
of 3721 — 100 = 3621 systems of 16 linear equations in 16 unknowns. Assume
that the solutions are obtained by the Gaussian elimination method, according

to Burden and Faires (1997} to solve a system of m equations

2 .3 5, 1
z ht fut 160
3m +2m +2m ( )

algebraic operations are required. In vur example, m = 16, therefore, 3123 alge-
braic operations are needed for solving one set of kriging weights. In additions,

to obtain condition (33) one has Lo carry ont 2 x (16 multiplications + 15 addi-
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tions} and 2 more additions {subtractinns). In total, 3187 algebraic operations
are required to condition one location, Therefore, in total the postprocessing

step requires 3187 x 3621 = 1.154 x 107 algebraic operations,

12.4 Computational Effort for DWSIM in Detail
1. Computation of the covariance table is the sarne as step 1 in Section 12,3,

2. Estimation of the initizl scaling image: The uumber of multiplications and ad-
ditions in this step depends on the number of conditioning data and Eheir con-
figuration. Tor thiz particular example, the sample contains 100 values, at the
original scale j = 0 the distance between these values is 6 grid nodes. At j =1,
only 100 scaling cocflicients are estimated from 100 windows, each of which
contains only one value, The estimstion »f each scaling coefficient involves 3
additions {1 of which is used to increase the counter) and 2 multiplications (1
for averaging the value, 1 for donbling the sverage). The same number of scal-
ing coclficients are estimeted at j = 2 and the window assoctated with each
estimated scaling coefficients also contsins 1 value, At j = 3, the number of
estimated values is 64 {the values of all of the grid nodes are known). Assume
that eact: window at the finer scale associated with an estimated value contains
3 known valurs, the estimation of one value involves 6 additions and 2 multi-
plicaticns, In addition, these values have to be rescaled so that the estimated
values aclieve the variance of the associated scaling eoefficients. The number of
additions and multiplications for the rescaling and for the cstimation iy listed

in Table 11

3. The computation of the weights: The computation of the weights in equation
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i Estimation Rescaling
1 | 300 add. + 200multi. | 400 add. 4+ 101 multi.
2 | 200 add. - 200multi, | 400 add, + 101 multi.
3 | 64(7 add. + 2multi.} | 256 add, + 65 multi.
4 |0 0

Total | 1478 operations 1323 operstions

Table 11: Number of algebraic operations for the estimation stage.

{140) to move from one coarse scale to the next finer scale nvolves:

= The determination of four sets of weights, each for one location in the
2x2 window. Using the Choleski decomposition and the back-substitution
method, the number of algebraic operntions is computed in similar manner
as in the case of PWSIM. However, for DWSIM, four set of weights are to
be cbtained. Therfore, in total the computation for four sets of weights in

the case wavelels with A vanishing moments involves

%(2M+ 1)"+-32E{2M+ Nk ~§{2M+ 12 +4 {161)

algebraic operations. Therelore, on moving from a scaling image at § =3

Lo a scaling image at j == 0, three times of that amount is required.

4. The simulation of the scaling cocfficients at the finer scale via the scaling coef-
ficient at the coarser scale: Aceording to formula (140), the simulation of each
scaling cocfficient involves {2M + 1)% + 1 multiplications and (2 + 1} addi-
tions. In total, 2(2M + 1)* +1 algebraic operations Linve to be carried out. The
total number of algebraic operations used to compute the scaling coefficients

for simulating one realisation is listed in Table 12,
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J | Scaling image size N® Operations

0]64x64 64 x 64 x (2(2M +1)2+1)
1fa2x32 32 %32 % {2(2M +1)2+1)
2|16x16 16 % 16 x {2(2M + 1)+ 1)
3/8x8 0

Total operations: 43008M2 + 43008M + 16128

Table 12: The number of operations used to compute the sealing coefficients in the

back simulation.
12.5 Computer Programs - Data Sets and Samples

Two executive computer programs DWSIM.EXE, WSIM.EXE and the parameter files
together with the data sets and samples digcussed in this thesis are included on the
accompanying CD. The two executive computer programs are compiled from two sets
of FORTRAN 4.0 source codes. The set of source codes {not included in the CD}

used to compile DWSIM.EXE consiats of

» The main program DWSIM.f
» The include filte DWSIMMe.f

o Subroutine Acornif from the GSLIB library used to generate uniformly dis-

tributed random numbers.

a Subrontine Backsim.f used to reconstruct the scaling image from a coarser seale

Lo the previous finer scale.

» Function Cova2.f from the GSLIB library used to compute the covarisnee table

at the original scale.
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» Subroutine Gauinvf from the GELIB “hrary used to generate normally dis-

tributed random numbers with mean 0 and variance 1.
e Subroutine Cetdete.f used to read conditioning data.

= Subroutine Getiri_fmage.f used to estimate the conditioning values at the

scales associated with 7 > 0 and the initial image,
s Subroutine Gletwaights.f used to compute the weights.

= Subroutine Scaleou.f used to compute the covariance tables for the scales asse-

ciated with j > 0,

» Subrontine Readparam.f used to read the parameters in & parameter file called
DWSIM. PAR,

The set of FORTRAN 4.0 source codes (not included in the CD) used to compile

the program WSIM.EXE for the non-conditional simulation consists of
s The main program WSIM,f
s The include file WSIMInef

s Subroutine Acorni,f from the GSLIB library used to generate uniformly dis-

tributed random numbers.

» Subroutine Backsim.f used to reconstruct the scaling image from a coarser scale

to the previcus finer scale.

» Function Coval.f from the GSLIB library used to compute the covariance table

at the original scale.
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» Subroutine Gautne.f from the GSLIB library used to gencrate normaliy dis-

tributed random mumbers with mean 0 and variance 1.

« Subroutine Getweighis.f used to compube the weights for simulating the wavelet

cocflicients.

¢ Subroutine Hscaleov.f used to compute the covariance table for the scales as-

sociated with j > 0 using the Haar lowpass filter.

» Subrouting Readparam.f used to read the parameters in & parameter file called

WSIM.PAR.
The data sets and samples included in the CD are
» Date seb pHsoil,
s Data set pHaoiin.
e Sample pH1Gin and the jackknife data JeckpH!00n.
+ Sample pH108tn and the jackknife data Jeckpf100IRn.
= Sample pH50[Fn and the jackknile data JackpH50[Rn.

s Sample pH250IRn and the jackknife data JackpHE50[Rn.

Sample pH500IRn and the jackknile data JeekpH500/Rn.

Data set Herca,

Data set Berean.

Sample B4n and the jackknife date JeckB64n,

¢ Sample B64IRn and the jackknife data JackB64Ifin.
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» Sample pHsamp

» Sample Sersomp to simulate conditional reslisations using the Haar and Db2

bases, It consists of

12.6 Parameter Files

The following parameter files should be opened using WordPad.

12.6.1 Parameter File for WSIM

Parameters lor Wl

START OF PARAMETERS:

61 0o ) Lt ki ks pacing

81 00 1 \ ny ymin yspading

B \ Starfing scalo

1 \wavlot basis used (Haar ; Db2: 2)
1 Lrumbos of simutation

293100 \ random number sead

wesamn.dal \output ffa fer simudatad roalisations
1 015 \nst, nuggat affect

2 05600 180 180 \lezang, a_hnin, a_hmax

nsl; numbec of semvariogram suttures
o sill
ang: azimwth of maamyn spabal contnuy
a_hemat; range inthe madmum spatial onkineaty
a_min: rangrin the minkrum spatial conlinuity
it 1: Sphercal

2: Exponential

3: Gaugslan

Figure 68; Parameter file for WSIM.

212



12,62 Parameter File for DWSIM

Parameters for DWSIM
START OF PARAMETERS:
berg4n.dat \datafile
1. 2 8 &4 \ columns for x, y, variable.numdata
40 06 1 \ nx xmin xspacing
40 06 1 \ ny ymin yspacing
1 \wavelet basis used (Haar:1 ; Db2: 2)
1000 \ number of simulation
283107 trandom number seed
dwsim.dat } ouiput file for simulated realisations
2 Q.0 \ nst, nugget effect
1 083060 90 10000 \it.ce.ang.a_hminyk, a_hmax
1 04360 99 20 \itce.ang.a_hmink, a_hmax
nst: number of semivariogram structures
ce; sill
ang: azimuth of madmum spatial continuity
a_hmax: range in the maximum spatial continuity
a_hmin; rangs in tha minimum spatial continuity
it: 1: Spherical
2: Exponential
3: Gaussian

Figure 70: Parameter file for DWSIM.

213



12.6.3 Parameter File for SGSIM

Parametars for SGSIM
e Ao e
START OF PARAMETERS:
pHsampn.dat \ o with data
120400 Vv columns for XY Zrawt.sac var,
-1.0021 1.0021 \ fimming Erits
0 \transform tho data [D=no, 1=yas]
sgsim,im \ file for cutput Irans table
4] \ congidar raf, dist [0=no, 1=yes)
histemth.out \ file with ref, dist distribution
12 1 oolumnis for vr and wi
00 160 \ zmin,zmaxtal exirapolatian)
1 00 \ lower tall option, paramalor
1 169 \ upper tall option, parameter
1 \ debugging lavel: 0.1.2.3
sgsim.dbg \ file for debugging output
sgsim.dat A file for simulation output
1000 \ number of realizations to generate
61 00 10 \ recsrnnsiz
6i 00 1.0 Ly ysiz
1 00 10 \ nz.zmn zsiz
7920008 \random number seed
4 20 L min and max original data for sim
12 \number of simulated nodes to use
1 { assign data to nodes (0=no, 1=yes)
13 Y muliple grid search {0=no, 1=yas)num
20 \ maximurn data par ogtant {0=riot usod)
200 200 100 \madimtm search radif {hmax hminyeart)
00 00 00 \angles for saarch ellipseid
1 060 10 \kiype: 0=5K,1=0K 2=LvM, 3=EXDR.4=C0LC
Jdataprdata.dat Lila with Ly, EXDR, or COLC variable
L A column for secondary variable
1 1B \nst, nugget offact
2 8500 00 0 \itccanglang2angs

Tigure 71; Parameters for SGSIM.
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12.6.4 GSLIB Parameter Files far Bacl-transformation

Faramaters for BACKTR

AR L A
START OF PARAMETERS:
dhwsineey.dat \ file wilh data
-] \ column with Gatsslan variable
-1.0021 1.0e21 A Irimnming fenils
dwsimb,dat \ fite for output
pHsampr.lin \ fita with input fransformation tablo
4 B \ rrinimum and masdmum data value
215 \ lower tall aption and parameter
4156 \ uppe; tall oplion and parameler

Figure 72: Parameter file or backtransformation of realisations fom pHsamp.

Paemeters for BACKTR

START OF PARAMETERS:

dwslm.dat \ flewithdata

1 \ column with Giaussian variable
-1.0e21 1.082] § trimming limits

dwsimb.dat 1 Rlofor output

bersampnim \ fils wilh input iransformation table
185 115 | mirirum and maxmum data value
10 { lower 1ail option and parameter
LY \ upper 1alt option and parameter

Figure 73: Parameter file for backtransformation of realisations from Bersamp.

12.7 Notation
@ : direct sum

@ : tensor product
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{f,g) : inner product

A accuracy coefficient
A: study region

a: range of semivariogram

ﬁfm‘") : covariance between two scaling coefficients cf[m] and ¢/[n} in one-dimensional

space

ﬂ{mm)_(q.n]: covariance between two scaling coefficients ¢/[p,q] and of[m, 7] in two-

dimensional space
c/[n| : one-dimensional scaling coefficient ot location n
c/{m, n] : lwo-dimensional scaling coefficient at location (m,n)
Ch)  covariance function of stationary random function Z for lag vector h
C(0) : covariance value at separation distance |h| =0
C{u, 1) : non-stationary covariance of random variebles Z(u) and Z{w').
@’[n] : one-dimensional wavelet coefficient at location n

di[m.‘n],k = 1,2 or 3 : horizontal, vertical or diagonal two-dimensional wavelet
coefficient at location {m, )
8y * COVariance between two scaling cocfficients o/[m] and &*1[n]

6'("; gn)” COVATiance between two scaling coefficients cip, q] and & m, ]

E{.} : expected value
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qu_“) : covariance between wavelet coefficient d/[rm] and scaling coelficient cf[n]

T g ¢ COVRTiEnCe between wavelet coefficient d[p,ql, k = 1,2 or 3 and scaling

coefficient of[n, m]

F(u; z|(n)) : conditional curmlative distribution function at location u of & randem

variable Z{u) with regard to the information given by n data
g{|h|) : isotropic standardised semivariogram model
gl + wavelet highpass filter
@ : goodness cocfficient.
({h) : semivariogram function of stationary random function Z for lag vector h.
fifn] : wavelet lowpass filter

T*(R) : space of square integrable functions such that [°7_|f(£)|%dt < co in one-

dimension
M 1 number of vanishing moments.
n : number of conditioning data in the study region A.
n{u) : number of data value used for estimation the attribute value at location u
{0, 5%) : normal distribution with mean 0 and variance o®
¢ : one- or two-dimensional father wavelet

¢4 : one-dimensional scaling function obtained by dilating and shilting the father

wavelet & scale [actor 29 and a translation factor n
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@mn > two-dimensional scaling function obtained by dilating and shifting the father
wavelet a scale factor 2/ and translation factors m end n in horizontal and

vertical directions
4 : one-dimensionsl mother wavelet

10,  one-dimensional wavelet obtained by dilating and shifting the mother wavelet

a scale factor 2/ and a translation factor n
1" : two-dimensional mother wavelet

gb;f’m.,,(k = 1,2 or 3) : horizontal, vertical or diagonsal two-dimensional wavclet ab-
tained by dilating and shifting the mother wavelet a scale factor 27 and frans-

lation factors m and n in horizontal and vertical directions
p{h) : correlogram function of stationary randem function Z for lag vector h
Ik : set of real numbers
o2(u1) : conditional veriance of random variable Z at location u

Tiemmy © COVariance between two wavelet coefBicients df{m] and di[n)

Ti(m‘p)_(“m,k = 1,2 or 3 : covariance between two wavelet coefficients df;[m, n] and

dlpal
u : eoordinate vector at a location
¥ : average variance.
V; : space of all approximations of the function f at the scale 29

W; : detail space, orthogonal complement of V5
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& : scaling spectrum

Z : set of integera

Z : random function

z{u) : true value at location u

#,{u) : nonconditional simulated value at location u
Z,{u) : conditional simulated value at location u

z}{u) : kriging estimate of the true value z{u) at location using data values at

sample locations

Zi{u)} : kriging estimate of the true value z{u) at location using simulated values

at sample locations
Z{u) : continuous random variable at location u
Zgx{u) : simple kriging estimator of Z{u)
Zhy(u) : ordinary laiging estimator of Z{u)

¢k = 1,2 or 3) : wavelet spectrum
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