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INTRODUCTION

Epiphytic macroalgae can account for >50% of the
standing stock and primary productivity of seagrass
meadows (Silberstein et al. 1986, Wear et al. 1999,
Borowitzka et al. 2006). Many grazers show a prefer-
ence for epiphytic algae over their seagrass hosts
(Klumpp et al. 1992, Jernakoff et al. 1996). As a result,
epiphytes can make significant contributions to the
productivity of seagrass communities. In some sea-
grass ecosystems, epiphytic algae can be an important
component of the habitat complexity provided by the
canopy and calcifying algae can be a significant source
of biogenic carbonate, contributing to sediments
(Patriquin 1972, Walker & Woelkerling 1988, Franko-
vich & Zieman 1994). They can also be important in

nutrient cycling, with cyanobacterial epiphytes con-
tributing to N-fixation (Iizumi & Yamamuro 2000,
Pereg-Gerk et al. 2002) and other algae acting as nutri-
ent ‘sinks’ (Cornelisen & Thomas 2002). Conversely,
epiphytic algae have been associated with large-scale
losses of seagrasses in eutrophic waters (Silberstein et
al. 1986, Walker & McComb 1992).

Given the clear importance of macroalgal seagrass
epiphytes, any understanding of the functions of sea-
grass ecosystems requires an understanding of the
associated epiphytes and their functions. The standing
crop of epiphytes on seagrasses is the result of the
cumulative effects of interacting factors, including
propagule recruitment, light and nutrient availability,
temperature, herbivory and water movement. Most of
these factors have been studied in some detail (see
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Borowitzka et al. 2006), but the role of water move-
ment and its effect on the accumulation of seagrass
epiphytes has largely been ignored. The structure,
and the movement of seagrass leaves in response to
water movement influences water velocity profiles
through canopies (Verduin 1996), with consequences
for boundary layer structure, which affects propagule
recruitment (Charters et al. 1973) and dissolved nutri-
ent uptake (e.g. Cornelisen & Thomas 2002).

Physical damage is a clear result of leaf motion, and
is hypothesised to remove epiphytes from seagrass
leaves (Borowitzka et al. 2006). This presumption was
supported in preliminary studies, where we observed
large differences in the standing crop of epiphytes that
were associated with the leaf movement. Studies
addressing the role of epiphytic macroalgae in sea-
grass ecosystems often assume that the standing crop
of epiphytic algae is equivalent to the gross epiphytic
growth over the lifespan of the leaf (e.g. Hegge et al.
1998). However, if leaf movement does affect the
standing crop, and if this occurs through erosion of
epiphytes, then the total contribution of epiphytes to
sediment production, for example, will be underesti-
mated. Similarly, if leaf movement controls the stand-
ing crop of seagrass epiphytes, it may offset the nega-
tive consequences of eutrophication.

An emerging body of research is increasingly
showing that the effects of key bottom-up controls
on epiphyte biomass (light and nutrients) may not
be simple. Heck et al. (2000) have shown that grazers
can ameliorate the effects of nutrient additions. Sim-
ilarly, Schanz et al. (2002) showed that complex
hydrodynamics–grazer interactions can control epi-
phyte accumulation. These observations indicate that
factors other than light and nutrients may play an
important role in controlling epiphytic algae biomass,
either alone or through interactions with other key
controls. Based on our earlier observations, we hypoth-
esised that leaf movement exerts a strong control on
the standing crop of epiphytes and that this could be
significant enough to warrant consideration in esti-
mates of epiphyte and seagrass ecosystem function.
The aim of this work was therefore to test the hypothe-
sis that the movement of seagrass leaves can affect the
accumulation of epiphytes. We also sought to test
whether any effect of leaf movement was dependent
on the degree of water movement at a site.

MATERIALS AND METHODS

Study area. This study was conducted off the eastern
shoreline of Garden Island (GI; 32° 15’ S, 115° 45’ E)
and in the Marmion Marine Park (MMP) near Perth,
Western Australia (Fig. 1). GI protects extensive sea-

grass meadows on its eastern shore from the predomi-
nant SW winds and swells of the region (Pattiaratchi et
al. 1997). MMP is considerably more exposed. Both
locations contain diverse assemblages with several
species of seagrass, including Posidonia and both spe-
cies of Amphibolis. The locations used in the study
were dominated by extensive P. sinuosa meadows
growing on medium-coarse calcareous sands.

Three experiments were conducted. The first tested
for effects of leaf movement on the accumulation of
macroalgal epiphyte biomass. The second and third
tested for the potential confounding effects of exposure
and water depth on leaf movement.

All 3 experiments used artificial seagrass leaves
(ASLs) that were similar in structure to the strap-like
leaves of Posidonia. ASLs have been shown to be use-
ful in performing epiphyte colonisation studies, as they
can be used to make identical replicate leaves remov-
ing confounding effects of variable leaf size and age
(Lethbridge et al. 1988). Artificial seagrass units have
been used in other studies and were shown to yield
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Fig. 1. Study sites. Open circle in Marmion Marine Park
(MMP): site used for the 4 and 8 wk deployments of artificial
seagrass. All sites were used in the exposed vs sheltered
experiment (MMP = exposed, Cockburn Sound = sheltered).
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similar epiphytic communities and accumulation of
biomass to those growing on natural seagrasses in this
region (Horner 1987, but see Pinckney & Micheli 1998
for other regions).

ASLs were constructed of clear plastic polyethylene
strips (1 × 10 × 250 mm) that are not known to inhibit
epiphytic algal recruitment (Horner 1987). Thirty plas-
tic leaves were stapled to plastic-coated wire grids
measuring 0.0625 m2 (0.25 × 0.25 m), at a density of 35
leaves 0.0625 m–2. To mimic natural seagrass leaves,
untethered (UT) leaves were attached to the grids only
at the bottom, allowing them free movement in
response to local hydrodynamics, which in shallow
wave-dominated conditions results in periodic reori-
enting of the leaves in the downstream direction. UT
leaves were constructed by mounting the grid with its
leaves into the base of a cuboid frame made of marine
grade stainless steel. Tethered (T) leaves were con-
structed by placing a second grid on the top of the
frame and stapling the tops and bottoms of the plastic
leaves to the top and bottom grids. This prevented any
lateral movement of the plastic leaves and provided a
mimic of a natural seagrass leaf, but with the potential
of movement removed. A cuboid frame with its associ-
ated grid and leaves is hereafter referred to as an arti-
ficial seagrass unit (ASU).

Replicate ASUs (n = 5 for each treatment) were
deployed for either 4 or 8 wk, which is within the aver-
age life span of Posidonia leaves (60–120 d; Cam-
bridge & Hocking 1997) and is sufficient time for algal
epiphyte assemblages to accumulate on natural leaves.
ASUs were placed randomly within sand patches sur-
rounded by seagrass meadow. On retrieval, each ASU
was placed in a plastic bag underwater to ensure min-
imal loss of epiphytic material during handling. On
board, the grids were separated from the frames and
stored in a cool, dark container for transport to the lab-
oratory, where they were processed to determine epi-
phytic algal biomass and composition within 12 h of
retrieval.

Effect of leaf movement on epiphytic standing stock
and species composition. To test for the effect of leaf
movement on the standing crop of epiphytes on sea-
grass leaves, we measured the accumulation of epi-
phytic algal biomass on T and UT seagrass leaves
located in 3 m of water at 1 site in MMP. The difference
in epiphytic biomass that accumulated on the 2 differ-
ent forms of ASU over 2 time intervals was a quantifi-
cation of the effect of leaf movement on epiphyte accu-
mulation. Differences in the effect of leaf movement
over time could then be related to post-recruitment
processes.

Ignoring the outermost ‘leaves’, 10 leaves were ran-
domly selected from each ASU and cut from the grid at
the points of attachment for biomass analysis. A further

5 leaves were randomly selected for analysis of species
composition. Pilot studies had shown this level of sam-
pling to be optimum for sampling of epiphytic biomass
and to provide an accurate representation of species
richness. Dry weight (DW) and ash-free dry weight
(AFDW) were determined to allow the proportion of
calcified algae to be determined. The lowest 5 cm of
the leaf was removed to exclude the area affected by
staples and to standardise the surface area of each leaf.
Epiphytic algae were then scraped from both sides of
the leaves with a flat edged razor blade. Epiphyte DW
and AFDW, from the bulked 10 leaves, was deter-
mined as per Kendrick & Lavery (2001), and nor-
malised to per-leaf basis.

Epiphytes present on the remaining harvested
leaves, minus the bottom 5 cm stapled section, were
identified to the lowest taxonomic level possible, using
keys found in Womersley (1984, 1987, 1994, 1996) and
Huisman & Walker (1990). To determine percent cov-
erage of each species on each leaf, a transparent 1 ×
1 mm grid was overlaid on the leaf, and the proportion
of intercepts on which the species occurred was
recorded.

Differences in epiphytic algal biomass and species
richness between times and between tethering treat-
ments were tested using a 2-factor orthogonal analysis
of variance (ANOVA). All data were then tested for
homogeneity of variances using Levene’s test (p >
0.05). In all cases, variances were homogeneous.
Where significant main effects were detected, post hoc
comparisons (Tukey-Kramer) were performed.

The species composition of epiphytes on T and UT
leaves at 4 and 8 wk were also compared using non-
parametric multivariate analyses found in the PRIMER
software package (Carr 1997). Bray Curtis similarity
matrices were constructed from species percentage
cover data, using each leaf as a sample (n = 50 T and
50 UT). Ordinations (nonmetric multidimensional scal-
ing, n-MDS) of the similarity matrix were used to visu-
ally inspect differences in the composition of epiphytes
from different types of ASUs and times. Two-way
crossed analysis of similarity (ANOSIM) was used to
test for significant differences in species composition
between treatments and times.

Influence of exposure. Any effect of leaf movement
on epiphyte accumulation may be moderated by differ-
ences in exposure and resultant water movement
among sites. To test for such effects, we repeated the
previously described experiment at sheltered and
exposed sites. Three replicate ‘sheltered’ sites were
chosen along the eastern side of GI in Cockburn
Sound, and 3 ‘exposed’ sites were chosen in MMP
(Fig. 1). At each site, replicate (n = 3) T and UT ASUs
were deployed at a depth of 3 m for 8 wk, after which
the ASUs were removed and processed for algal bio-

99



Mar Ecol Prog Ser 338: 97–106, 2007

mass using the same procedures described above. The
experimental design for this experiment corresponded
to a 2-factor nested ANOVA with treatment and expo-
sure considered as fixed factors. Site was nested within
exposure level. Prior to ANOVA, all data were treated
as described previously.

Differences in exposure between exposed and shel-
tered sites were quantified using 2 approaches. First,
the velocity of water movement in 2 horizontal planes
(X and Y), which reflects orbital wave velocities, was
measured at the height of the seagrass canopy for
15 min using an Acoustic Doppler Velocimeter (ADV)
Profiler (Nikora & Goring 1998). Higher velocities and
greater variation in water movement was interpreted
as higher levels of exposure. In addition, the effective
fetch (Håkansson 1981) was calculated for each site as
a measure of wave exposure. The effective fetch value
(Lf) was calculated as Lf = (Σχi cos γi)/(Σ cos γi), where χi

is the distance in km to the nearest land, measured in
15 directions (γ) with deviation angles (γi) ± 6, 12, 18,
24, 30, 36 and 42º from a central radius (0). The central
radius was placed in the direction giving the highest
value of Lf. Wikström et al. (2002) have previously cat-
egorised sites as sheltered (Lf < 1), intermediately
exposed (Lf = 1–10) or highly exposed (Lf > 10).

Influence of depth. To test for any interaction
between leaf movement and light availability on the
standing crop of epiphyte biomass, an additional
experiment was conducted in which ASUs were placed
in ‘deep’ (8 m) and ‘shallow’ (3 m) depths at 3 locations
along the eastern side of GI, separated by >3 km. In
this region, there is a steep gradient in bathymetry so
that within each location, the 3 m and 8 m depths were
<150 m apart, thus minimising the potential for major
differences in water quality and proximity to possible
sources of epiphyte propagules, while creating large
differences in light availability. This design also com-
plemented the design of Expt 2, in which there was the
possibility of inter-regional differences confounding
any interactive effect of tethering and exposure on epi-
phyte biomass. For example, regional differences in
recruitment pools may affect algal biomass. Since, for
shallow water waves, the orbital velocity associated
with waves is inversely proportional to depth (Open
University Press Team [OUP] 1989), deep sites have
lower water motion for a given wind wave condition at
the surface, but potential inter-regional differences in
water quality and propagule availability were min-
imised. At each site, replicate T and UT (n = 3 each)
ASUs were deployed for 8 wk, after which time they
were retrieved and processed for biomass determina-
tions as described earlier.

Differences in accumulation of epiphyte biomass due
to tethering, depth or location nested within depth
were tested using a 2-factor nested ANOVA, with fixed

factors of treatment and depth, and the factor site
nested within depth (see Table 1). The data failed Lev-
ene’s test for homogeneity of variance and were subse-
quently square-root transformed, resulting in homo-
geneity (p > 0.05).

RESULTS

Effect of tethering on epiphytic biomass 
and composition

There was a clear effect of tethering on epiphytic
algal biomass of ASUs (Fig. 2) as shown by the treat-
ment × time interaction (p < 0.001; Table 1). The inter-
action was due to increasing accumulation of epiphyte
biomass over time on T leaves and very little accumu-
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lation over time on UT leaves. DW and AFDW of algal
epiphytes were substantially greater on T leaves than
on UT leaves after 4 and 8 wk (Fig. 2). The ratio of
AFDW to total DW on UT leaves ranged from 0.3 after
4 wk to 0.6 after 8 wk, indicating a higher proportion of
inorganic material in the 4 wk samples. The ratio was
consistently about 0.6 for T leaves.

A total of 53 species of algae were found on the ASUs
(Table 2). With one exception, rhodophytes comprised
60–75% of the identified taxa; UT samples taken after
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Variable and factor df MS F p

(1) Tethering (Te) and time (T)
Dry weight
T 1 103.063 38.103 ***
Te 1 306.808 113.430 ***
T × Te 1 103.063 38.103 ***

AFDW
T 1 112.063 67.716 ***
Te 1 37.294 22.535 ***
T × Te 1 37.294 22.535 ***

Species richness
T 1 12.8 1.45 ns
Te 1 36.2 39.015 **
T × Te 1 120.05 13.932 **

(2) Te & Exposure (E)
Dry weight
E 1 1.289 .505 ns
Site (E) 4 4.328 .424 ns
Te 1 222.844 87.328 ***
E × Te 1 0.425 0.096 ns

AFDW
E 1 3.178 2.460 ns
Site (E) 4 2.105 0.390 ns
Te 1 67.457 52.211 ***
E × Te 1 2.121 1.643 ns

(3) Te & Depth (D)
Dry weight
D 1 47.804 63.508 ***
Site (D) 4 0.402 0.534 ns
Te 1 66.546 88.408 ***
D × Te 1 31.734 48.317 ***

AFDW
D 1 13.087 35.140 ***
Site (D) 4 0.509 0.772 ns
Te 1 21.065 56.564 ***
D × Te 1 10.325 27.724 ***

Table 1. ANOVA of: (1) 2-factor ANOVA testing differences
in biomass and species richness of seagrass epiphytes be-
tween tethered (T) and untethered (UT) artificial seagrass
units (ASUs) and time intervals (4 and 8 wk); (2) 2-factor
nested ANOVA testing for differences in biomass of seagrass
epiphytes between T and UT ASUs and exposure (sheltered
and exposed sites); and (3) 2-factor nested ANOVA testing
for differences in biomass of seagrass epiphytes between T
and UT ASUs and depth (shallow and deep sites). Dry weight
and ash-free dry weight (AFDW) data were square-root
transformed in the tethering and depth analysis. ** = p < 0.01,

*** = p < 0.001; ns: not significant

Species Type After 4 wk After 8 wk
T UT T UT

Antithamnion armatum R f + +
Antithamnion hanowiodes R f +
Audouinella daviesii R f +
Bryopsis foliosa C f +
Cholorophyta sp 2 C f +
Colpomenia peregrina P s +
Dictyota furcellata P cf +
Dictyota sp 2 P cfo +
Elachista sp 2 P f +
Heterosiphonia sp 2 R cf +
Heterosiphonia sp 1 R cf +
Laurencia sp 2 R cf +
Polysiphonia sp 1 R cf +
Ulva sp 1 C fo +
Enteromorpha sp 1 C fo + +
Polycerea zostericola R f + +
Giffordia sp 1 R f + + +
Encrusting coralline R e + + + +
Polycera nigrecens P f + + + +
Ceramiium faccidium R cf + +
Ceramium filicilum R cf + +
Ceramium isogonum R cf + +
Cladophora sp 1 C f + +
Dasya sp 1 C cf + +
Derbesia tenuissima C f + +
Hirsutithallia sp 1 R cf + +
Polysiphonia forfex R cf + +
Semnocarpa minuta R s + +
Ceramium puberbulum R cf + + +
Champia zostericola R s + + +

Additional species found
only after 8 wk

Antithamnion sp 3 R cf +
Asperococcus bullosus R s +
Caulerpa distichohylla C s +
Glossophora sp 1 P cfo +
Griffithsia australe R f +
Hypnea sp 1 R cf +
Hypnea sp 2 R cf +
Laurencia majuscula R cf +
Mychodea pusilla R cf +
Phaeophyta sp 3 P cfo +
Antithamnion sp 1 R cf + +
Cladophora lehmanniana C f +
Cladophora sp 3 C f +
Dasya naccarioides C cf +
Ectocarpus sp 1 P f +
Ectocarpus sp 2 P f +
Feldmannia irregularis P f +
Giffordia sp 2 P f +
Giffordia sp 3 P f +
Giraudya sphacelarioides P f +
Hincksia mitchelliae R f +
Rhodophyta sp 5 R f +
Sphacellaria rigidula P f +

Total no. species 53 30 5 24 18
Proportion red (%) 58 60 60 75 39
Proportion brown (%) 21 17 20 8 44
Proportion green (%) 21 23 20 17 17
Proportion filamentous 43 37 60 21 72

Table 2. Species of macroalgal epiphytes found on tethered
(T) and untethered (UT) artificial seagrass leaves after 4 and
8 wk. Species are ordered to clarify the differences among
treatments and times. C = Chlorophyta, P = Phaeophyta and
R = Rhodophyta; cf = corticated filament, cfo = corticated
foliose, e = encrusting, f = filamentous, fo = foliose, s = saccate.
Different but unidentified species within a taxon are 

indicated by, for example, Chlorophyta sp 1, 2
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8 wk contained more brown algae species. There was
a significant interactive effect of tethering and time on
mean species richness (Fig. 2, Table 1); after 4 wk, the
T units contained significantly more species than UT
leaves (30 and 5 species, respectively; Tukey-Kramer p
< 0.01), but by Week 8 this difference was no longer
significant, with 24 and 18 species recorded on T and
UT leaves, respectively. Of the 18 species on UT
leaves, the majority were not found on the T units and
were overwhelmingly filamentous species.

While species richness was comparable after 8 wk,
the assemblages on UT leaves contained 13 species
that were not present on T leaves and were over-
whelmingly dominated by filamentous algae (72% of
species), while the T leaves contained a more func-
tionally diverse assemblage with filamentous (21%),
corticated filamentous (54%) and 4 other functional
groups (25%) of algae. Ordination produced a clear
separation of samples taken from T and UT ASUs
(Fig. 3). After 4 wk, the epiphyte composition on UT
leaves formed a discrete and tight cluster that was
well separated from the less tightly clustered T
leaves. By Week 8, the 2 sets of samples were closer
to each other, though still clearly separated. Results
from ANOSIM confirmed the significance of differ-
ences in epiphyte composition on T and UT units (R =
0.593, p < 0.01; Table 3) and between times (R =
0.709, p < 0.01). The differences among T and UT
units were greater at Week 4 than Week 8 (R = 0.910
and 0.508, respectively).

Influence of exposure

Mean horizontal velocity at the exposed sites was
115 cm s–1 with a range of 15 to 165 cm s–1. At the shel-
tered sites, mean horizontal velocity was 25 cm s–1 with
a range of 5 to 52 cm s–1. These measurements show a
clear difference in water motion at the sites. The mean
exposure index calculated for sheltered sites was 0.37
± 0.01. For exposed sites, the majority of compass bear-
ings yielded distances to land in excess of 1000s of km,
so Lf was well in excess of 100. Over the range used
here, the degree of exposure (site) did not influence
the effect of leaf movement on epiphyte biomass accu-
mulation (Fig. 4, Table 1). However, DW and AFDW
differed significantly between T and UT units. The
mean biomass (DW) ±SE on T ASUs at the sheltered
sites was 0.59 ± 0.06 g leaf–1 and at the exposed site
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Groups R

4T, 4UT 0.910
4T, 8T 0.624
4T, 8UT 0.981
4UT, 8T 0.563
4 UT, 8UT 0.561
8T, 8UT 0.508

Table 3. Results of 2-factor crossed ANOSIM and pair-wise
comparisons of macroalgal epiphyte assemblages on tethered
(T) and untethered (UT) artificial seagrass units after 4 wk (4)
and 8 wk (8). Comparisons were made using Bray-Curtis
similarity matrices based on untransformed % cover data. In
all cases, the number of permutations was 5000, and the

significance (%) was 0.0

stress = 0.1

Tethered Week 4

Tethered Week 8

Untethered Week 4

Untethered Week 8

Fig. 3. Two-dimensional ordination (nonmetric multidimen-
sional scaling) plot of epiphytic macroalgae samples on teth-
ered and untethered artificial seagrass leaves at 4 and 8 wk
after deployment. Ordination was based on Bray-Curtis simi-
larity matrices constructed from untransformed percentage

cover data
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was 0.46 ± 0.10 g leaf–1, compared to 0.07 ± 0.01 g
leaf–1 and 0.05 ± 0.01 g leaf–1 on the UT units at the
respective sites.

Effect of depth

The effect of tethering on epiphyte biomass was
apparent at both depths, although the effect was
greater at shallow sites (Fig. 5, Table 1), as shown by
the significant depth × treatment interaction. At shal-
low sites, the mean DW of epiphytes on T units ranged
from 0.26 to 0.92 g leaf–1 compared to 0.06 to 0.10 g
leaf–1 for UT units. Similarly, T units placed at the deep
sites had a higher algal biomass (0.12–0.14 g leaf–1)
than UT units (0.04–0.06 g leaf–1). Thus, on T leaves,
the mean algal biomass was 5 times higher in shallow
sites compared to deep sites, while on UT units there
was no difference.

DISCUSSION

Our results clearly show that leaf movement exerts a
very strong control over the accumulation of epiphytes,
possibly reducing the standing crop by an order of
magnitude. Since the characteristics of epiphyte
assemblages on this substrate and real seagrass leaves
are similar (Horner 1987), we conclude that the effects
noted here on ASUs can be considered analogous to
those on seagrass leaves. Furthermore, the timescale
of our experiment (up to 8 wk) is ecologically relevant,
being within the turnover time of Posidonia leaves
(Marbà & Walker 1999, Collier 2006).

The effect of leaf movement has significant implica-
tions for seagrass production. Burt et al. (1995) empiri-
cally derived a relationship between epiphyte biomass
on Posidonia leaves and the percentage reduction in

light penetration to the leaf surface (y = 17.651 ln(x) +
44.556). On the basis of this relationship, the epiphyte
biomass observed on T ASUs after 4 wk (Expt 1) could
reduce photosynthetically active radiation (PAR) pene-
tration to the leaf surface by as much as 32%, while
that on UT leaves would be over 5-fold lower (about
6%). After 8 wk, there would be a 7-fold difference in
the reduction of PAR reaching the leaf due to accumu-
lation of epiphyte biomass, with 51 and 7% reduction
on T and UT leaves, respectively. This clearly demon-
strates the potential benefits to the seagrass plant of
reduced epiphyte cover through leaf movement, espe-
cially at depth or in turbid waters where production
may be light limited.

The growth of epiphytes on leaves is strongly impli-
cated in the loss of seagrasses at sites throughout the
world and is generally viewed as a response to nutrient
enrichment (Cambridge et al. 1986, Wear et al. 1999,
Moore & Wetzel 2000). Our results suggest that the
effects of nutrient enrichment on epiphyte accumula-
tion are ameliorated to some extent by leaf movement,
and that the effects of nutrient enrichment would be
most extreme at protected sites with low leaf move-
ment. The differences we observed in this study were
apparent over 4 to 8 wk, about half the longevity of
Posidonia leaves (Cambridge & Hocking 1997, Marbà
& Walker 1999), and it is possible that on natural
leaves, the differences in epiphyte accumulations in
highly protected and exposed sites would be greater.
However, it appears that the relationship between leaf
movement and epiphyte biomass is not linear. The
effect of leaf movement was comparable at both the
sheltered and exposed sites. Given the enormous dif-
ferences in the degree of exposure, this suggests that
even in relatively protected areas, leaf movement is
sufficient to induce responses comparable to very
exposed sites and indicates that the degree of move-
ment at both sites was above the threshold required to
affect epiphyte accumulation. On the other hand,
Expt 3 showed that at depth, the effect of leaf move-
ment was reduced, and we suggest that this is due to
reduced water movement. Overall, this would indicate
that the condition of no leaf movement is unlikely to
occur, and that the threshold at which leaf movement
affects epiphyte biomass is probably quite low, but that
in some circumstances (e.g. highly sheltered and deep
lagoon environments) movement may be reduced
sufficiently for its control on epiphyte accumulation to
be released or reduced.

In contrast to exposure, depth did influence the mag-
nitude of effect that leaf movement had on epiphyte
accumulation, with differences due to tethering being
much less in deeper (8 m) locations. The average light
attenuation coefficient (k, m–1) for these waters is 0.12
to 0.23 m–1, and the daily averaged photosynthetic
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photon flux density at 8 m is of the order of 1 to 4 mol
m–2 d–1 (Collier 2006). Allowing for seasonal variation
in day length, this equates to 20 to 100 µmol m–2 d–1.
Factoring in additional light attenuation due to the sea-
grass canopy, which can be as much as 95% within
200 mm (Masini et al. 1995), light is likely to be limiting
for many species of algae at this depth. In the absence
of leaf movement, this difference in light availability
probably accounts for the lower biomass on T units
placed in 8 m of water, and was not unexpected. How-
ever, the lack of significant difference in biomass on
UT leaves placed at the 2 depths was surprising. This
indicates that when leaves are free to move, differ-
ences in light availability do not exert as strong an
influence on the accumulation of epiphytes as does leaf
movement. Given the overwhelming assumption that
light and nutrients are the primary bottom-up controls
of algal growth, this result is surprising and reinforces
the need to take leaf movement into account when
estimating epiphyte growth. Again, the extent of vari-
ation in leaf movement among natural seagrass sites
remains unclear and warrants further investigation.

Our study did not set out to determine the mecha-
nism by which leaf movement affects epiphyte stand-
ing crop. Conceptually, however, there are several
mechanisms through which leaf movement could
affect algal standing crop (Table 4), including mechan-
ical erosion, availability of resources to epiphytes,
reduced grazing pressure, altered recruitment of
propagules or a combination of these. Leaf movement
could cause the direct abrasion of epiphytes through
contact with adjacent leaves, epiphytes or sediments.

In the Baltic Sea, the movement of Fucus vesiculosus
fronds scours filamentous algal assemblages from the
surrounding hard substrate (the ‘whiplash effect’;
Kiirikki 1996). In that study, it was assumed that if the
later successional species (Fucus) was physically more
resistant to abrasion than its epiphytes (as per Littler &
Littler’s [1980] functional-form model), then the
whiplash effect could limit algal epiphyte accumula-
tion. In our study, movement of seagrass leaves would
exert a negative control on epiphyte standing stock,
and the difference between the T and UT ASUs repre-
sents algal, and possibly carbonate, inputs to the sur-
rounding seagrass meadow and the detritus pool avail-
able for transport to adjacent habitats.

Carruthers & Walker (1997) found that average light
attenuation by the canopy of the seagrass Amphibolis
griffithii was higher in winter than summer and related
this to higher leaf movement in winter; the repeated
bending of the leaves in winter produced a more hori-
zontal canopy structure with greater light attenuation.
Given this, leaf movement in the experiments reported
here might be expected to have contributed to lower
epiphyte standing crop by reducing light availability. 

Leaf movement may reduce propagule settlement
onto seagrass leaves. Leaf movement is associated
with increased water velocities at the leaf surface
(Koch et al. 2006), and spore settlement is strongly
reduced under moderate flow conditions (Vadas et al.
1990, Granhag et al. in press). In our study, after 4 wk,
species richness of epiphytic algae was greater on T
leaves, but this difference was short-lived. This indi-
cates that leaf movement may influence the initial rate

of recruitment but, over time, effects
are minimal on species richness. It is
also possible that the initial establish-
ment of calcareous encrusting algae is
due to their high mechanical resistance
(Littler & Littler 1980) and that once
established, they facilitate the recruit-
ment of less robust corticated and fila-
mentous algae. The increase in the
AFDW:DW ratio on UT leaves after
4 wk supports this, reflecting the early
dominance by calcareous, encrusting
algae followed by a gradual infilling of
cover by small fleshy epiphytes (or
competitive displacement of calcareous
forms). The encrusting layer may facili-
tate spore settlement by increasing sur-
face roughness in the viscous sub-
layer, just above the leaf surface.
Settlement of algal spores in the vis-
cous sub-layer is affected by water
velocity (Okuda & Neushul 1981), and
it has been proposed that under oscilla-
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Proposed Effect on Experimental
mechanism epiphytes support

Flapping reduces boundary layer: + no
higher solute exchange

Flapping reduces boundary layer: – yes
higher local drag force

Flapping reduces boundary layer: + no
higher contact rate with spores

Oscillation exerts a momentum force: – yes
high peak force due to epiphyte momentum

Free leaf movement causes leaf interactions: – yes
abrasion of epiphytes

Flapping causes substrate bending: – yes
adhesive failure of epiphytes

Free leaf movement causes reduction in + no
grazer density: less herbivory on epiphytes

Free leaf movement produces more horizontal – yes
leaf canopy: increased canopy light attenuation

Table 4. Summary of potential mechanisms of effect of leaf movement on
epiphytic algal standing crop of seagrass leaves, and the nature of any effect
(+, – = increased, decreased algal biomass or productivity, respectively). Sup-

porting literature is provided in the text
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tory motion the layer can be substantially thinner, due
to the steeper velocity gradients (Granhag et al. in
press). Even very small increases in surface roughness,
such as those that encrusting algae may create, can
produce microenvironments with reduced water veloc-
ity in the viscous sub-layer for settlement (Callow et al.
2002). It is plausible, therefore, that the initial encrust-
ing algal layer acts as a facilitator (sensu Connell &
Slatyer 1977) in the succession of epiphytes and is a
necessary precursor for the development of the epi-
phyte assemblage in oscillating conditions.

Filamentous algae dominated the assemblage that
subsequently developed on the UT leaves. It is not
clear why these forms dominated, but it is possibly
related to the reduced mechanical drag experienced
by thin filaments compared to thicker corticated forms;
the drag experienced by a cylindrical object under
simulated wave conditions increases dramatically with
the size of the cylinder (see Denny 1994). However,
epiphytic algal assemblages on natural seagrasses are
frequently dominated by corticated filaments (Lavery
& Vanderklift 2002), suggesting that any initial selec-
tion for filamentous forms must not persist.

Some effects of leaf movement can conceivably
favour epiphyte productivity (Table 4); oscillating leaf
movement can enhance water exchange, and there-
fore nutrient availability, through canopies (Ghisal-
berti & Nepf 2002, Koch et al. 2006), and the associated
increases in water velocity are known to enhance
nutrient uptake rates by epiphytic algae (Cornelisen &
Thomas 2002). Similarly, leaf movement can affect
grazer biomass with positive effects on epiphyte bio-
mass. Schanz et al. (2002) demonstrated that unidirec-
tional (tidal) water movement caused the removal of
grazers from seagrass leaves, releasing algal epiphytes
from top-down control and resulting in an increased
epiphyte biomass under high flow condition. In our
study, epiphyte biomass was clearly lower under
higher movement conditions, suggesting that any pos-
itive effects of leaf movement associated with
increased resource availability or reduced herbivory
were offset by the negative effects of leaf movement.

In summary, leaf movement can reduce the standing
crop of epiphytic algae on ASUs 6- to 12-fold, and is
likely to have a similar effect on natural seagrass
leaves. A variety of processes could be contributing to
this effect, the relative contributions of which are
unclear at this stage. Irrespective of the precise mech-
anisms involved, the reduction in epiphyte biomass
associated with leaf movement has potentially pro-
found ecological significance, including the dramatic
reduction of light attenuation caused by epiphytes
on seagrass leaves. If the difference we have observed
is due to loss of epiphytes rather than reduced pro-
duction, then the level of erosion needs to be consid-

ered when modelling the turnover rates of nutrients
or production of carbonate by epiphytes in seagrass
systems. Importantly, our results suggest the potential
for leaf movement to exert control over algal standing
crop and to strongly moderate any effect of light avail-
ability.
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