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Abstract
Development of drug resistance has become a major obstacle for tyrosine kinase 

inhibitors (TKIs) in the treatment of Philadelphia chromosome-positive (Ph+) chronic 
myelogenous leukemia (CML) and other cancers. The BCR-ABL-T315I mutant does not 
respond to clinically available TKIs, although some newly developed anti-BCR-ABL-T315I 
TKIs are now being tested in patients. TKIs transiently inhibit kinase activity of BCR-
ABL, but do not reduce the level of the BCR-ABL protein. Elimination of mutant BCR-ABL 
protein would provide a new therapeutic strategy for treating Ph+ leukemia. We recently 
showed that inhibition of heat shock protein 90 (Hsp90) by a novel Hsp90 inhibitor, IPI-
504, causes BCR-ABL protein degradation, decreased numbers of leukemia stem cells, 
and prolonged survival of mice with CML induced by BCR-ABL-T315I. Here we discuss 
further the mechanisms and effectiveness of Hsp90 inhibition in suppression of survival 
and proliferation of leukemic progenitor and stem cells in CML mice, and the potential 
of this anti-Hsp90 strategy in treating CML patients, including those who have developed 
resistance to TKIs. 

Introduction

The human Philadelphia chromosome arises from a translocation between chromo‑
somes 9 and 22 [t(9;22)(q34;q11)],1 and the resulting chimeric gene, the BCR‑ABL 
oncogene, encodes a constitutively activated, oncogenic tyrosine kinase. Philadelphia 
chromosome‑positive leukemia (Ph+) leukemia includes two diseases: chronic myeloid 
leukemia (CML) and B‑cell acute lymphoblastic leukemia (B‑ALL). Imatinib mesylate is a 
BCR‑ABL tyrosine kinase inhibitor (TKI), and induces a complete hematologic and cyto‑
genetic response in the majority of chronic phase CML patients.2 However, some patients 
develop drug resistance mainly due to emergence of kinase domain mutations.3‑9 While 
newly developed BCR‑ABL TKIs10‑12 have inhibitory activities against most imatinib‑ 
resistant BCR‑ABL mutants, they are ineffective against the BCR‑ABL‑T315I 
mutant.13,14 Furthermore, BCR‑ABL‑induced ALL responds poorly to available TKIs.13,14 
These TKIs inhibit BCR‑ABL kinase activity without causing degradation of the 
BCR‑ABL protein. Heat shock proteins are highly conserved, constitutively expressed 
molecular chaperones that facilitate folding of their client proteins. Heat shock protein 
90 (Hsp90) has many client proteins including BCR‑ABL, and affects the stability of 
these proteins.15‑19 Interestingly, an in vitro assay showed that when BCR‑ABL becomes 
mutated, its dependence on Hsp90 for stability increases.18 In in vivo studies using 
leukemia mouse model, we showed that inhibition of Hsp90 more significantly attenuates 
leukemia induced by BCR‑ABL with kinase domain mutations than by wild type 
BCR‑ABL in mice.20 Here we discuss further the strategies for treating Ph+ leukemia 
through Hsp90 inhibition.

Hsp90 Inhibitors and their Therapeutic Effect on Leukemia Mice

The first small‑molecule Hsp90 inhibitor made available, the benzoquinone 
ansamycin 17‑allylamino‑17‑desmethoxygeldanamycin (17‑AAG),15 has been shown to 
have anti‑tumor activities.21‑23 The recently developed Hsp90 inhibitor IPI‑504 is the 
hydroquinone hydrochloride derivative of 17‑AAG and is a potent water‑soluble inhibitor 
of Hsp90.24 We recently showed that IPI‑504 induced disassociation of the mutant 
BCR‑ABL‑T315I from Hsp90 in 32D myeloid cells, subsequently causing BCR‑ABL 
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Inhibition of Hsp90 in Therapy of Ph+ Leukemia

protein degradation20 through a proteasome, as demonstrated using a 
proteasome inhibitor, PS‑341,25,26 which restored IPI‑504‑mediated 
depletion of the BCR‑ABL protein.20

Because the stability of BCR‑ABL was shown to be more 
dependent on Hsp90 in vitro when it carries resistance‑conferring 
mutations,27 we wanted to test the dependence of mutant BCR‑ABL 
on Hsp90 in vivo. Therefore, we evaluated the therapeutic effect 
of Hsp90 inhibition by IPI‑504 in our drug‑resistant mouse 
models of leukemia induced by wild type BCR‑ABL and by the 
BCR‑ABL‑T315I mutant, which is resistant to available BCR‑ABL 
kinase inhibitors.13,14 Treatment with IPI‑504 alone significantly 
prolonged the survival of mice with wild type BCR‑ABL‑induced 
CML, but even more markedly prolonged the survival of mice 
with BCR‑ABL‑T315I‑induced CML.20 This result is consistent 
with previously reported results using the different Hsp90 inhibitor 
17‑AAG in SCID mice receiving a BCR‑ABL‑expressing cell line.18 
Importantly, the markedly prolonged survival of the IPI‑504‑treated 
mice with BCR‑ABL‑T315I‑induced CML correlates with the more 
significant in vivo degradation of the mutant BCR‑ABL than of wild 
type BCR‑ABL.

Chronic phase CML progresses to a terminal blastic phase 
involving acute myeloid or acute lymphoid leukemia (ALL).28 Some 
Ph+ leukemia patients have ALL as their first clinical appearance. 
Because ALL does not respond well to available BCR‑ABL kinase 
inhibitors,13,14 we tested the effect of Hsp90 inhibition on B‑ALL 
development using our B‑ALL mouse model.29,30 In this model, 
malignant lymphoid cells express pre-/pro‑B cell surface markers 
(B220 and CD19), and the disease phenotypically resembles de novo 
Ph+ ALL and lymphoid blast crisis of CML.29,31 Similar to the effect 
seen in CML, IPI‑504 treatment significantly prolonged survival of 
mice with ALL induced by BCR‑ABL‑T315I.

Functional Relationship Between Hsp90 
and Hsp70 in Survival and Proliferation 
of BCR‑ABL‑Expressing Cells

What is the mechanism by which inhibition of Hsp90 results in 
degradation of its client proteins such as BCR‑ABL? This mecha‑
nism appears to involve linkage of Hsp90 inhibition to induction 
of another heat shock protein, Hsp70, although the role of Hsp70 
in BCR‑ABL degradation and reduced cell proliferation induced 
by Hsp90 inhibition is controversial. On the one hand, it has been 
shown that the Hsp90 antagonists geldanamycin and 17‑AAG alter 
chaperone association of Hsp90 with BCR‑ABL and promote 
binding of BCR‑ABL to Hsp70, leading to degradation of BCR‑ABL 
by proteasome.17,27,32,33 On the other hand, some studies have 
shown that Hsp70 actually facilitates BCR‑ABL‑mediated resistance 
to apoptosis,34,35 which would in theory result in an increase of 
the stability of the BCR‑ABL protein. In addition, imatinib has 
been shown to decrease the level of Hsp70 in BCR‑ABL‑expressing 
HL60 cells,36 supporting the anti‑apoptotic role of Hsp70 in 
BCR‑ABL‑stimulated cell growth. We studied further the relation‑
ship between Hsp70 inhibition and stability of the BCR‑ABL 
protein. If Hsp70 cooperates with Hsp90 to facilitate degradation 
of BCR‑ABL protein, inhibition of Hsp70 should increase level 
of BCR‑ABL protein in cells. To test this hypothesis, we treated 
BCR‑ABL‑expressing 32D myeloid cells with an Hsp70 inhibitor, 
KNK437.37 Inhibition of Hsp70 by KNK437 did not prevent 

BCR‑ABL degradation caused by inhibition of Hsp90 by IPI‑504 
(Fig. 1). This result does not support a positive role of Hsp70 in 
Hsp90‑mediated degradation of BCR‑ABL. However, inhibition of 
Hsp70 by KNK347 did not synergistically increase IPI‑504‑induced 
apoptosis of BCR‑ABL‑expressing 32D myeloid cells either (data not 
shown). Functional relationship between Hsp70 and Hsp90 needs to 
be studied further.

Hsp90 Inhibition Reduces Survival of Leukemic Stem 
Cells in CML Mice

While imatinib induces complete hematologic and cytogenetic 
remission in the majority of chronic phase CML patients,38 molec‑
ular remission (negativity by RT‑PCR) is difficult to achieve in these 
patients. For example, only 39% of imatinib‑treated chronic phase 
CML patients showed a major molecular response (greater than or 
equal to 3‑log reduction of BCR‑ABL mRNA) after 18 months, 
with only 4% showing a complete molecular response.39 This is 
likely due to the inability of imatinib to eradicate a small number 
of leukemic cells in CML patients, and these cells may function 
as CML stem cells that cause ultimate disease relapse. Similarly, 
although imatinib prolongs survival of mice with BCR‑ABL‑induced 
CML,30,40 the disease continues to progress,30 likely due to incom‑
plete eradication of leukemia stem cells that have been identified as 
BCR‑ABL‑expressing hematopoietic stem cells (HSCs).41 These cells 
are Lin‑c‑Kit+Sca‑1+ and can be cultured in conditions that support 
survival and growth of HSCs.42,43 In experiments using these culture 
conditions, we found that imatinib treatment did not lower the 
percentage and number of leukemia stem cells, whereas inhibtion 
of Hsp90 by IPI‑504 had a strong inhibitory effect on these stem 
cells.20 Inhibition of leukemic stem cells by IPI‑504 also occurs in 
CML mice harboring the BCR‑ABL‑T315I mutant.20 In contrast, 
potent BCR‑ABL kinase inhibitors did not have as significant an 
inhibitory effect on CML stem cells.41

Figure 1. Inhibition of Hsp70 by KNK437 does not prevent BCR‑ABL degra-
dation caused by inhibition of Hsp90 by IPI‑504. BCR‑ABL‑expressing 32D 
cells were treated with KNK437 (100 or 400 mM) or IPI‑504 (2 mM) alone 
or both for 24 hours. Protein lysates were analyzed by Western blotting 
using antibodies indicated. Inhibition of Hsp70 by KNK437 did not prevent 
BCR‑ABL degradation caused by inhibition of Hsp90 by IPI‑504.
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Inhibition of Hsp90 in Therapy of Ph+ Leukemia

The underlying mechanism for inhibition of leukemic stem cells 
by IPI‑504 is unknown. However, it is reasonable to believe that 
inhibition of Hsp90 with IPI‑504 not only causes degradation of 
BCR‑ABL but also affects the stability of other proteins that play 
roles in maintaining survival of leukemic stem cells. These proteins 
may cooperate with BCR‑ABL to regulate survival or self‑renewal 
of leukemic stem cells, and targeting them alone without simulta‑
neously inhibiting BCR‑ABL would not have a strong inhibitory 
effect, consistent with our observation that survival of normal HSCs 
in mice was not significantly affected by inhibition of Hsp90 with 
IPI‑504.20 As we showed previously, targeting BCR‑ABL alone with 
imatinib was also insufficient in eradicating leukemic stem cells 
in CML mice.41 These results suggest that simultaneous targeting 
of both BCR‑ABL and other Hsp90 client proteins would inhibit 
leukemic stem cells. If this is the case, we should ask why the 
simultaneous inhibition of both BCR‑ABL and other Hsp90 client 
proteins by IPI‑504 did not cure CML mice, although it resulted 
in the markedly prolonged survival of the mice.20 One explanation 
is that in vivo BCR‑ABL degradation induced by Hsp90 inhibition 
was not complete,20 and that the residual level of BCR‑ABL protein 
in leukemic cells may have been sufficient to stimulate growth of 
the cells although at a significantly decreased rate, reflected by the 
prolonged survival of CML mice treated with Hsp90 inhibitors.18,20 
In this regard, development of more potent Hsp90 inhibitors will 
be necessary to further evaluate the potential of Hsp90 inhibition 
in treating Ph+ leukemia. It is also possible that additional pathways 
in leukemic stem cells must be targeted to eradicate these cells. The 
identification of CML stem cells in mice41 provides a powerful 
system for studying the molecular mechanisms responsible for 
regulating survival and self‑renewal of leukemic stem cells.

Preferential Inhibition of BCR‑ABL‑T315I‑Expressing 
Cells in CML Mice Provides a New Therapeutic Strategy

Because mutant BCR‑ABL proteins are more sensitive than wild 
type BCR‑ABL to degradation induced by Hsp90 inhibition,18,20 
inhibition of Hsp90 may preferentially prevent emergence of 
BCR‑ABL‑T315I‑expressing clones over wild type BCR‑ABL clones 
in mice. This hypothesis was tested by transplanting mixed wild type 
BCR‑ABL‑ and BCR‑ABL‑T315I‑expressing bone marrow cells into 
the same recipient mouse using the cell surface markers Ly5.1 and 
Ly5.2 to distinguish the two populations of leukemic cells. Mice were 
treated with IPI‑504, and eventually the BCR‑ABL‑T315I‑expressing 
cells became the minor population,20 indicating that inhibition 
of Hsp90 preferentially suppresses BCR‑ABL‑T315I‑expressing 
leukemic clones over the wild type BCR‑ABL‑expressing clones. 
These results suggest that the combined use of IPI‑504 and imatinib 
in CML patients would be a viable strategy for preventing emer‑
gence of imatinib‑resistant clones through inhibition of Hsp90 
and for suppressing imatinib‑sensitive clones though inhibition 
of BCR‑ABL in CML patients. In fact, this idea is supported by 
our study in CML mice.20 In this study, mouse bone marrow cells 
were transduced with BCR‑ABL‑T315I and wild type BCR‑ABL, 
respectively, and equal numbers of the transduced cells were mixed 
and transplanted into recipient mice. Each recipient mouse received 
both types of transduced cells. Mice treated with the combination 
of IPI‑504 and imatinib survived significantly longer than those 
treated with IPI‑504 or imatinib alone. Preferential inhibition of 

the BCR‑ABLT315I‑expressing cells in CML mice provides a new 
therapeutic strategy for the treatment of Ph+ leukemia (Fig. 2).

Summary and Remaining Issues

The major mechanisms of resistance to TKIs in CML patients are 
insensitivity of leukemic stem cells to inhibition by these inhibitors 
and the emergence of BCR‑ABL kinase domain mutations. While 
the resistance of stem cells is poorly understood, BCR‑ABL kinase 
domain mutations have been very well characterized. Most of these 
BCR‑ABL mutants respond to potent kinase inhibitors,10,12 but 
these drugs are ineffective in treating Ph+ leukemia patients with the 
BCR‑ABL‑T315I mutation. For example, patients known to have 
the BCR‑ABL‑T315I mutation prior to therapy had no objective 
response to dasatinib treatment.14 Even with the significant effort in 
developing new BCR‑ABL kinase inhibitors that effectively inhibit 
imatinib‑resistant BCR‑ABL mutants, a critical question to ask is 
whether inhibition of BCR‑ABL kinase activity alone is sufficient 
to shut down all functions of BCR‑ABL. We showed previously 
that Src kinases activated by BCR‑ABL remained active when 
BCR‑ABL kinase activity was inhibited by imatinib and that Src 
kinases play a crucial role in the development of BCR‑ABL‑induced 
ALL in mice.30,41 This finding is in opposition to a general belief 
that shutting down of the kinase activity of BCR‑ABL by imatinib 
will completely inhibit its functions, leading to inactivation of its 
downstream signaling pathways and cure of the disease. Besides Src 
kinases, we have identified more signaling molecules that play roles in 
BCR‑ABL leukemogenesis, and whose activation does not depend on 
BCR‑ABL kinase activities (data not shown). In addition, BCR‑ABL 
kinase domain mutations cause insensitivity of leukemic cells to 
imatinib. However, these BCR‑ABL mutants in some CML patients 
are insufficient to promote growth of leukemic cells,44 implying a 
requirement of additional events (besides the presence of mutant 

Figure 2. Combination therapy of CML using Hsp90 and BCR‑ABL kinase 
inhibitors. After imatinib‑resistant mutations of BCR‑ABL occur in leukemic 
cells, two types of cells may exist in a patient: cells harboring mutant BCR‑ABL 
(such as BCR‑ABL‑T315I) and cells harboring wild type BCR‑ABL. Treatment 
with a BCR‑ABL kinase inhibitor alone (such as imatinib) would lead to 
selective growth of leukemic cells harboring mutant BCR‑ABL, although 
leukemic cells harboring wild type BCR‑ABL were suppressed. In contrast, 
treatment with both Hsp90 and BCR‑ABL kinase inhibitors (such as IPI‑504 
and imatinib) would inhibit growth of both types of leukemic cells, with a 
much stronger inhibition of leukemic cells harboring mutant BCR‑ABL. This 
combination therapy provides a novel therapy for Ph+ leukemis.
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Inhibition of Hsp90 in Therapy of Ph+ Leukemia

BCR‑ABL) in CML development. Because these putative additional 
events cooperate with BCR‑ABL in leukemogenesis, identification 
of BCR‑ABL mutations in CML patients prior to treatment is 
still necessary. Two recent studies have shown the successful detec‑
tion of BCR‑ABL mutations in human CML cells using effective 
screening methods.44,45 Furthermore, BCR‑ABL kinase inhibitors 
only transiently inhibit its kinase activity without causing a reduc‑
tion of the BCR‑ABL protein level; an alternative treatment strategy 
is to cause degradation of the aberrant BCR‑ABL protein (regardless 
of its mutational status) rather than rely solely on the inhibition 
of BCR‑ABL kinase activity, as proposed by Blagosklonny’s group 
based on their elegant study using BCR‑ABL‑expressing cell lines.36 
We have demonstrated in mice that direct inhibition of the Hsp90 
protein represents an alternative and effective treatment strategy 
that attenuates BCR‑ABL‑induced leukemia by causing degradation 
of the wild type and mutant BCR‑ABL proteins.20 The impressive 
therapeutic effect of Hsp90 inhibition on Ph+ leukemia in mice 
suggests that inhibition of other targets linked to Hsp90 function 
might also be effective in treating the disease. For example, 
histone deacetylatase (HDAC) inhibitors that induce acetylation and 
inhibition of Hsp90 should also be effective.46‑49 The mechanisms 
for resistance of leukemic stem cells to BCR‑ABL kinase inhibitors 
remain unknown; thus, identification and characterization of the 
pathways affected by Hsp90 inhibition in leukemic stem cells will 
provide useful information for developing novel therapies against 
leukemic stem cells. It is likely that a pathway distinct from but 
cooperative with BCR‑ABL is involved in suppression of survival 
of leukemic stem cells by the Hsp90 inhibitor IPI‑504, and that 
this non-BCR‑ABL signaling pathway is driven by an unknown 
Hsp90 client protein to maintain survival of leukemic stem cells. 
Furthermore, this putative Hsp90‑dependent pathway might be less 
critical for maintenance of survival of normal hemaotpoietic stem 
cells than of leukemic stem cells. Future study of this putative non-
BCR‑ABL pathway in leukemic stem cells has significant potential to 
lead to development of more effective therapies.

The inhibitory effect of IPI‑504 on BCR‑ABL‑T315I‑expressing 
cells emphasizes the potential effectiveness of Hsp90 inhibitors as 
therapy for patients with CML as well as those with blast crisis or 
with Ph+ ALL resistant to BCR‑ABL kinase inhibitors. The simulta‑
neous use of Hsp90 and BCR‑ABL kinase inhibitors in chronic phase 
CML patients might prevent the development of imatinib‑resistant 
clones while inhibiting growth of imatinib‑sensitive leukemic cells 
through inhibition of BCR‑ABL kinase activity. In addition, early use 
of IPI‑504 to suppress initial B‑ALL clones may help prevent the tran‑
sition of CML to advanced B‑ALL caused by the BCR‑ABL‑T315I 
mutation. A critical question remaining, however, is why mutant 
BCR‑ABL is more sensitive than wild type BCR‑ABL to Hsp90 
inhibition. Answers to this question could provide valuable insights 
into how BCR‑ABL and other Hsp90 client proteins function and 
how to more efficiently target these proteins for cancer therapies. 
In addition, the mechanisms by which Hsp90 affects stability of 
BCR‑ABL merit further study. Such mechanisms include the role 
of Hsp70 in degradation of BCR‑ABL upon Hsp90 inhibition, as 
previous studies are contradictory with respect to whether Hsp70 
is anti‑apoptotic34,35 or apoptotic.17,27,32,33 In sum, IPI‑504 repre‑
sents a novel therapeutic approach to treating CML and Ph+ ALL 
patients, and future clinical trials will help to evaluate its potential 

for treating cancer that has become resistant to therapy with tyrosine 
kinase inhibitors such as imatinib. Time will tell whether inhibition 
of Hsp90 is a useful strategy for treating Ph+ leukemia.
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