
Edith Cowan University Edith Cowan University

Research Online Research Online

Research outputs pre 2011

2006

Agent-based Similarity-aware Web Document Pre-fetching Agent-based Similarity-aware Web Document Pre-fetching

Jitian Xiao
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks

 Part of the Computer Sciences Commons

10.1109/CIMCA.2005.1631587
This is an Author's Accepted Manuscript of: Xiao, J. (2006). Agent-based Similarity-aware Web Document Pre-
fetching. Proceedings of Computational Intelligence for Modelling, Control and Automation, 2005 and International
Conference on Intelligent Agents, Web Technologies and Internet Commerce, International Conference, Control and
Automation. (pp. 928-933). Vienna, Austria. IEEE. Available here
© 2005 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.v
This Conference Proceeding is posted at Research Online.
https://ro.ecu.edu.au/ecuworks/1879

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworks
https://ro.ecu.edu.au/ecuworks?utm_source=ro.ecu.edu.au%2Fecuworks%2F1879&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ro.ecu.edu.au%2Fecuworks%2F1879&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1109/CIMCA.2005.1631587
http://dx.doi.org/10.1109/CIMCA.2005.1631587

Agent-based Similarity-aware Web Document Pre-fetching

Jitian Xiao
School of Computer and Information Science, Edith Cowan University,

2 Bradford Street, Mount Lawley, WA 6050, Australia
E-mail: j.xiao@ecu.edu.au

Abstract

This paper presents an agent-based similarity-
aware web document pre-fetching scheme that is built
on the similarity-aware web caching architecture. A
set of agents are employed to carry out certain duties
such as document similarity detection, identification of
relevant access patterns, document prediction and
network traffic monitoring for document pre-fetching.
Preliminary simulations have been conducted to
evaluate the proposed scheme, and the results have
shown that the new pre-fetching scheme outperforms
existing web-document pre-fetching algorithms.

1. Introduction

Web caching is intended to reduce network traffic,
server load and user-perceived retrieval latency. Web
pre-fetching, which can be considered as “active”
caching, builds on regular web caching, minimizing
further a web user’s access delay. Pre-fetching is a
technique that attempts to guess those documents that
are likely to be requested when a page leading to them
is accessed – success of this technique is measured as a
“hit-ratio”. However, in such guessing, there is a need
for an effective balance to be achieved between user
comfort and computational overheads – the extremes
are: too little effort applied, resulting in too many on-
demand-fetches, while too much effort results in too
many pre-fetches. The consequence of either is that of
slower response to a user.

Previous work by Xiao [1] in developing pre-
fetching predictions between caching proxies and
browsing clients was based on measures of similarity
between web users established that pre-fetching is
capable of increasing the hit-ratio. Xiao’s work further
established that organization of the cache affects
opportunities for successful pre-fetching. In this paper
we describe a means of similarity based content
management and propose a similarity-aware pre-
fetching technique to improve the relative performance

of pre-fetching techniques based upon document
similarity detection.

Pre-fetch caching in the context of this study will be
based upon similarity detection and involve several
phases. Similarities will be sought from previously
cached documents employing several concurrently
applied, but differing, algorithms to detect
equivalences of, e.g. broad-content or keywords,
images and picture-titles and links contained within
pages under scrutiny. Similarities between web
documents, having been detected, will then be ranked
for candidature to be fetched in anticipation of a user’s
intentions, and pre-fetching may then proceed.

The rest of the paper is organized as follows.
Section 2 describes the similarity measures. Section 3
outlines a similarity-based web cache architecture upon
which the pre-fetching is developed. Section 4
proposes an agent-based the similarity-aware web
document pre-fetching scheme. Section 5 presents the
simulation results, and Section 6 concludes the paper.

2. Similarity measurement and detection

The exercise of measuring similarities among
documents follows two main streams: one uses a single
relationship between documents1 or data objects while
the other uses multiple relationships. Early research
used a single relationship to measure the similarity of
data objects. In the original vector space model (VSM)
[2], “terms” (e.g. key words or stems) were used to
characterize queries and documents, yielding a
document-term relationship matrix to compute
similarities among terms and documents. Such
relationships were used to measure the similarity of
documents for retrieval and clustering purposes [3]. In
the Latent Semantic Index [4], a singular vector
decomposition (SVD) method is applied to map the

1 In this paper, a document refers to a text document or
a web page that may contain text, images and/or
pictures.

Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’05)
0-7695-2504-0/05 $20.00 © 2005 IEEE

document-term matrix into some lower dimensional
matrix where each dimension associates with a hidden
“concept”, where any similarity of text objects is
measured by relationships to those “concepts” rather
than the keywords they contained.

With the advent of Word Wide Web, relationships
with document objects were used to derive similarity
[5]. Pitknow [6] applied co-citation to a hyperlink
structure to measure any similarity of two web pages.
Flesca [7] proposed a method to measure the similarity
of two documents that represents the current and the
previous version of monitored pages for web change
detection.

The approaches introduced above all relied upon a
single relationship to measure any similarity of data
objects. However, such approaches may run into
serious problems when applications require accurate
similarity e.g. where multiple types of data objects and
relationships must be handled in an integrated manner.
Accordingly, in the extended VSM [8], feature vectors
of data objects were augmented by adding attributes
from objects of other related spaces. Similarity
computation is then obtained from calculation on these
enhanced feature vectors.

Recently, it has been tried to calculate the similarity
of two data objects based upon any similarity of their
related data objects [9]. In this paper we define
similarity measures of web documents for effective
web document caching and pre-fetching. To pre-fetch
documents that are of similar topic to the document a
user is currently viewing, we derive the content
similarity of web documents, ignoring any structural
elements, e.g. HTML formatting. For efficacy of on-
line pre-fetching, we propose different levels of
similarity measures to capture levels of similarity
between web documents. In this study, similarities
between text documents are measured based on topics,
page titles, keywords or page contents or combinations
thereof. Compared with a keyword-based similarity
measure, a content-based similarity is complicated by
the need for special techniques, e.g., from the area of
information retrieval. However, any computation of
similarity still needs to be completed within a
reasonable time limit.

2.1. Document tree model

To calculate similarities among web documents, we
use a model based on the document model in [7],
wherein structured web documents are represented as
unordered labeled trees. That is, we consider
containment rather than order of appearance of words
within a document. Our model differs from that in [7]
in two ways: first, we don’t consider the HTML

formatting elements and, second, we consider a
document’s structure to be based on sectional
elements, e.g. Abstract and subsections, while their
work specifies texts in terms of pairs of start and end
tags, e.g., <table> … </table>, <ul. … .

In the resultant tree, each non-leaf node corresponds
to a subsection of the document (e.g. characterizing the
title of the subsection), except that the root-node might
also contain a set of keywords, a list of authors, a
string for title, or/and a set of words comprising the
abstract. Each leaf node corresponds to the text of that
(sub)section. Notably, such a structure allows us to
determine sectional similarities between particular
elements such as titles; between the various contents,
and, implicitly, between the structures of compared
documents. In brief, a document tree is an unordered
tree wherein each node is characterized by an
associated set of type-value pairs.

Given a document tree T, of root r, with a node nr

we may represent a sub-tree of T rooted at nr as T(nr).
We define a set of functions, each characterizing some
element on the document tree: keyword(r), title(r),
authors(r), abstract(r) and text(r). For a document tree
rooted at r, keyword(r) = {s | s is a keyword contained
in the keyword section of r}. The title(r), authors(r)
and abstract(r) can be defined similarly. If n1, n2, . . . ,
nk are child nodes of r, then

text(r)=

⎪
⎩

⎪
⎨

⎧ ∈∪∪ =)}(|{)(1 i

k

i ntextssrtitle

Essentially text(r) is a set of words contained in the
various strings associated with nodes of the (sub-)tree
rooted at r. Note that text(r) is defined recursively.

Our similarity computation algorithm works on this
tree structure by exploiting the information contained
in individual nodes and the whole tree. Observe that
each node keeps track of its level in the tree, its content
and the content of its child nodes.

2.2. Document similarity measures

Using the text extracted from elements of document
(sub-)trees, we can define levels of document
similarity measures. To compute the similarities
efficiently, the measures must be normalized, allowing
the comparison of pairs of documents and the selection
of different levels of elements. Given two document

trees T1 and T2, and two nodes r1 ∈T1 and r2 ∈ T2, we
define

 intersect (w(r1), w(r2)) =
|)()(|

|)()(|

21

21

rwrw

rwrw

∪
∩

 (1)

{s |s is a word in leaf(T(r))} if r is a leaf
d

if r is a non-leaf node, with children n1,…, nk

Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’05)
0-7695-2504-0/05 $20.00 © 2005 IEEE

where w(r) is a set of strings associated with nodes of
the (sub-)tree rooted at r. The function intersect
(w(r1),w(r2)) returns the percentage of the number of
common words divided by the number of all words
that appear in both w(r1) and w(r2). Clearly, intersect

(w(r1),w(r2)) ≤1. For two document trees rooted at r1

and r2, similarities of keyword, title and abstract may
be defined by the following formulae (2) through (4):
SIMKB(r1, r2)=intersect(keyword(r1), keyword(r2)) (2)
SIMTB(r1, r2) = intersect(title(r1), title(r2)) (3)
SIMAB(r1, r2) = intersect(abstract(r1), abstract(r2)) (4)

while the content-based similarity is defined as
SIMCB(r1, r2) = intersect(w(r1), w(r2)) (5)

where w(ri) = text(ri) ∪ keywords(ri) ∪ abstract(ri),

1≤i≤ 2.
Let weightr(s) be the number of appearances of the

word s in document represented by r, then the intersect
function can be more generally defined as
intersectwt (w(r1), w(r2)) =

∑
∑

∪∈

∩∈

+
)()(

)()(

21
21

2
21

1

|)()(|
2

1

)}(),(min{

rwrws
rr

rrwrws r

sweightsweight

sweightsweight
 (6)

Based on this function, the weighted similarity
measures SIMKB(), SIMTB(), SIMAB() and SIMCB()
can all be defined by replacing intersect() with
intersectwt() defined in (2) to (5) above.

2.3. Data pre-processing

We developed a text filter to extract meaningful
words from sections of a document, and count them
per section. The method is described briefly below: In
the text filter, raw text is first parsed into generalized
words, called tokens. Tokens include meaningful
strings, abbreviations, punctuation and other
specialized symbols that have been derived from the
structure found in the document’s sections. For
example, while typical words such as “web” and
“page” are taken as tokens, the punctuation mark “$”
and the URL “www.ecu.edu.au” are also tokens.
However, digits and others insignificant words, e.g.
pronouns and prepositions, are not treated as tokens.

The text filter produces a list of (token, c(token))
pairs for each section, where c(token) is the count of
that token within the section – in effect, a bag-of-words
basis for our representation. Note that for brevity of the
token list and subsequent comparison, each word is
reduced to its stem (e.g., server and service into serve).
While the unordered bag-of-words model will not
suffice for linguistic analysis, we assume it captures
most of the information needed for calculating
similarities using formula (2) ~ (5).

3. The similarity-based web cache scheme

In this section, we describe a similarity-based multi-
cache web caching scheme and on-line algorithm to
capture and maintain an apposite similarity profile of
documents requested through a caching proxy. The
architecture consists of four major components: central
router, similarity profiles (SP), sub-caches, and
document allocator. Of these, the central router is
pivotal in controlling and coordinating the other
components.

Before configuring the multi-cache web caching
architecture, we first cluster documents in cache based
on the similarity measures introduced in (2)~(6), and
determine the number of themes, N, of the documents.
For each theme/cluster, a number of stems relating to it
were chosen (e.g., by looking at all stems produced by
the text filter when SP vectors were computed). Then
the cache is divided into N+1 sub-caches. Each of the
first N sub-caches stores documents of one particular
theme, and the last sub-cache stores other documents
not belonging to any of the N themes. In this way, we
ensure that similarities among documents in any sub-
cache are relatively higher, while relegating those
among documents across sub-caches.

The SP comprises N two-dimensional arrays Ai(*,
*), i=1, 2, …, N, of which each corresponds to one of
the first N sub-caches. For each document j in sub-
cache i, SP counts the number of occurrences of the
stems that relate to the theme of the sub-cache, storing
the numbers in vector Ai(j,*). This information is
useful when performing similarity-aware pre-fetching
from the sub-cache to a client. For each theme, we
limit the number of stems to be 100.

A sub-cache is an independent cache that has its
own cache space, contents and replacement policy.
Since documents in a same sub-cache are usually of
similar theme, simpler replacement policies, e.g. LRU,
LFU and FIFO, may be applied.

The sub-cache allocator assesses comprehensively a
candidate set of evictions selected by sub-caches, with
possible results of: re-caching, eviction or probation.
Of these, re-caching and eviction are instantaneous,
while a probation document will be held by the
allocator in its own space pending a final decision.

The similarity-aware caching algorithm responds to
a request for a document d as follows: an instance of d
is sought in an in-cache index; if d is already cached
(cache hit) and still fresh its containing sub-cache is
noted whereupon d will be returned to the requesting
client. If the instance of d is not fresh, then re-cache
from an origin server, updating related parameters such
as SP vectors. For a cache miss, the request for d will
be forwarded to the origin server and a resultant

Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’05)
0-7695-2504-0/05 $20.00 © 2005 IEEE

downloaded document dnew is returned to the client.
Based on the content of dnew, a SP vector will be
calculated to determine a sub-cache cd in which dnew is
to be cached. Where there is insufficient space for dnew,
the sub cache cd makes room according to its eviction
(e.g. LRU, LFU) and/or space sharing policies. The
document allocator of cd will then assess and purge any
eviction candidates.

The central router mediates between cooperating
sub-caches. Although a document may be cached
“conceptually” in several sub-caches in terms of sub-
cache document allocator evaluation, only one actual
copy will be maintained.

4. Agent-based web document pre-fetching

We focus on web document pre-fetching between
caching proxies and browsing clients in this section. If
the proxy can predict cached documents a user might
access next, the idle periods of network links may be
used to push (or to have the browser pull) them to the
user while the user is viewing the web document. Since
the proxy only initiates pre-fetches for documents in its
caches, there is no extra internet traffic increase.

4.1. The agents

An agent is a software entity that carries out some
set of operations on behalf of a client/program with
some degree of independence or autonomy. An agent
employs some knowledge or representation of the
client's goals or desires. According to [10], agents have
the following properties: (1) autonomy: agents operate
without the direct intervention of humans or others,
and have some kind of control over their actions and
internal state. (2) social ability: agents interact with
other agents (and possibly humans) via some kinds of
agent-communication language. (3) reactivity: agents
perceive their environment, and respond in a timely
fashion to changes that occur in it. (4) pro-activeness:
agents do not simply act in response to their
environment, they are able to exhibit goal-directed
behaviour by taking the initiative. (5) mobility: able to
transport themselves from one machine to another. (6)
learning: changes their behaviour based on their
previous experience.

In this study, we employ both proxy-side and client-
side agents that exchange messages using a predefined
protocol for actualizing similarity detection, document
prediction, network traffic monitoring and proxy-client
coordination intentions during the process where they
negotiate to reach the most probable solution. We are
concerned with coordinating intelligent behaviour
among these agents, i.e. how they coordinate their

knowledge, goals, skills, and plans jointly to take
action or to solve problems.

Three activities are crucial in the similarity-aware
web document pre-fetching process and are the focuses
of this section, including:

• identifying similarities between documents in the
proxy cache and the document a user is viewing;

• predicting documents that a client is most likely to
access next; and

• monitoring idle network periods to pre-fetch the
documents.

Among these activities, the first one is similar to the
similarity detection in caching new document (see
Section 3). The third activity involves traffic handling
and resource utilization, and is, thus, beyond the scope
of this paper. Therefore, we focus on the second
activity. In this architecture, agents and other software
components are described as follows:

Client Agent (CA): The agent plays the role of a
client. It delivers a pre-fetching request to the
Coordination Agent (CoA). Upon receipt of an initial
pre-fetching plan (i.e., a list of candidate documents to
be pre-fetched) from the CoA, it modifies the plan by
removing the candidates that were hit by its local
cache, and then returns the modified plan to the CoA
for final pre-fetching.

Coordination Agent (CoA): the agent is responsible
for receiving the pre-fetching requests from clients,
and coordinates among the similarity detection agent
(SDA), access pattern matching agent (PMA), pre-
fetching agent (PFA) and network traffic monitoring
agent (TMA) for document pre-fetching process.
Through the interaction between the agents and the
client in the architecture, the detailed job of the CoA
involves following steps:

• receive pre-fetching requests from CAs;

• invoke SDA to identify a set of cached documents
(in one or more sub-caches) whose similarities
with the document the client is viewing surpass
certain threshold;

• invoke PMA to assess and identify a set of users’
past (historical) access patterns that could be
referenced for prediction of future access of the
client;

• upon receipt of the responses from steps 2) and 3),
assign a process that calls PFA to produce an
initial pre-fetch plan (e.g., a list of candidate
documents for pre-fetching);

• send the initial pre-fetch plan to the CA to
determine which in-list candidates should not be
pre-fetched due to local cache hit; and

• upon receipt of the modified pre-fetch plan from a
CA, assign the plan to a TMA for document pre-
fetching.

Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’05)
0-7695-2504-0/05 $20.00 © 2005 IEEE

Similarity detection agent (SDA): The agent
determines a set of documents whose similarity with
the given document surpasses the given similarity
threshold. These documents will be referenced when
similarity-aware PFA performs document prediction.

Access pattern matching agent (PMA): The agent
matches a number of other users whose past access
patterns with the given user’s is greater than or equal to
a certain threshold. These access patterns will also be
referenced when the PFA performs document
prediction.

Pre-fetching agent (PFA): The agent is responsible
for predicting a set of cached documents as candidates
of an initial pre-fetching plan (see Section 4.2).

Network traffic monitoring agents (TMA): the agent
is responsible for monitoring the network traffic
between the proxy and a given client. Once a suitable
idle period is identified, the agent sends (if a proxy-
side agent) a candidate document of the pre-fetch plan
from the proxy cache to the client within the idle
period. This monitoring-identifying-sending process
continues until all candidate documents were sent, or
the pre-fetching time limit is reached.

Conversation Manager (CM): The CM coordinates
the activities of agents in the documents pre-fetching
circle. It is responsible for receiving events from an
agent, and informing other agents of messages. For
example, each agent routes all its outgoing messages
through the CM, and all its incoming messages are
received via the CM as well.

4.2. The Agent-based pre-fetching prediction

Two agent-based algorithms are proposed to guide
similarity-aware pre-fetching from proxy caches to
clients. The first one is a pure similarity-based pre-
fetching predictor which considers only those
documents whose similarities with the document in
viewing surpass a certain threshold. The second
algorithm (i.e., similarity-aware pre-fetching)
combines the prediction by partial matching (PPM)
method [11] and the pure similarity-based pre-fetching
strategies. These algorithms are the main
functionalities and behavior of PFAs.

4.2.1 Similarity-based pre-fetching predictor. The
similarity-based pre-fetching agent evaluates the next k
documents in the proxy cache based on document
similarities. With the support of the similarity-aware
web cache architecture, the similarity-based document
pre-fetching predictor works based on a very simple
rule. Suppose a client is viewing a document, say d (at
this time, a copy of d must be cached in a certain sub-
cache, say ci, or being held by the allocator). When a

pre-fetching request is received, the CoA invokes a
SDA which compute the similarities between d and
those documents in sub-cache ci by referencing the
similarity information in ith SP. No documents in other
sub-caches are considered because of their low
similarities with d. Then the predictor simply chooses k
documents whose similarities with d are among the top
k highest ones. These k documents, together with those
cached pages to which hyperlinks exist from d, will
form an initial pre-fetching plan and return to CoA for
possible pre-fetching.

4.2.2. Similarity-aware pre-fetching predictor. The
PPM essentially predicts the next l requests on the past
m accesses of a user, limiting candidates by an access
probability threshold t. The performance metrics of the
algorithm depend on the (m, l, t) configurations.
However, the algorithm uses patterns observed from all
users’ references to predict a particular user’s behavior.
Referencing too many contexts makes the prediction
inaccurate, inefficient and unwieldy.

We extended the PPM algorithm by referencing
only those access patterns from a small group of other
users exhibiting high similarities in their past access
patterns to predict a current user’s next access [1]. The
number of times the algorithm can make prediction is
reduced because of the smaller sample size, but the hit
ratio of the pre-fetching increases because more related
access patterns are referenced. We call the method
pattern-similarity based PPM (or psPPM).

We now modify PPM and psPPM by replacing the
access threshold t with s, where s is a similarity
threshold between the document to be pre-fetched and
the document the user is viewing. Thus the new
algorithm has the following parameters:

r: the number of users whose access patterns are
referenced to predict future accesses of current user.

m: the number of past accesses that are used to
predict future ones. We call m the prefix depth.

l: the number of steps that the algorithm tries to
predict into the future.

s: the similarity threshold used to weed out
candidate document. Only those documents whose
similarity with the viewing document is greater than s,

where 0 ≤ s ≤ 1, is considered for pre-fetching.
When a pre-fetching request for document d is

received from user u, the CoA invokes a PMA to
assess and identify a set of r users’ access patterns of
relatively high similarities with u (sorted in descending
order). For l >1, not only the immediate next request,
but the next few requests after an URL are also
considered for potential pre-fetching. For example, if
l=2, the PFA predicts both the immediate next and its
successor for the user. If m>1, more contexts of the r

Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’05)
0-7695-2504-0/05 $20.00 © 2005 IEEE

users’ past accesses are referenced for the purpose of
improving the accuracy of the prediction.

The PFA maintains a data structure that tracks the
sequence of URLs for every user. For prediction, the
past reference, the past two references, and up to the
past m references are matched against the collection of
succession to the users’ past access patterns to produce
a list of URLs for the next l steps. If a longer match
sequence can be found from the other r users’ patterns,
the next URL to the longest match is also taken as a
potential document to be accessed next by the user.
The outcome of each prediction is a list of candidate
documents, ordered by their similarities with d. For
those candidate documents with the same similarity
value, the URL matched with longer prefix is put first
in the list.

5. Simulations

Two series of preliminary simulations have been
conducted. The first is to demonstrate the capability of
our similarity measures for document comparison to
determine the document themes (or clusters). Using the
obtained similarity information, our second series of
simulations demonstrates the improvement in
prediction accuracy (and thus hit rate) of the pre-
fetching between caching proxies and browsing users
using our similarity-based/aware predictors. The
preliminary results indicate that our predictor is
capable of practical prediction for web document pre-
fetching in the sense and an improvement of the order
of 10% over traditional PPM. Detailed results and their
analysis are omitted here due to space limitation.

6. Conclusions

This paper proposed an agent-based similarity-
aware web document pre-fetching scheme. We
presented its underlying web-caching architecture and
developed agent-based similarity-aware predictors for
web document pre-fetching between proxy caches and
browsing clients. Preliminary simulations have shown
that our predictor is capable of practical prediction for
web document pre-fetching in the sense that it may
predict more accurately and effectively than the

traditional PPM does by only referencing a reduced set
of users’ past access patterns.

References

[1] Xiao, J., Zhang, Y., Jia, X., and T. Li. Measuring
Similarity of Interests for Clustering Web-Users.
Proceedings of the 12th Australian Database Conference
2001 (ADC'2001). Gold Coast, Australia, 107-114, 2001.

[2] Salton, G., Automatic Information Organization and
Retrieval. McGraw-Hill, 1968.

[3] Rasmussen, E., Clustering algorithms. Information

Retrieval: Data Structure and Algorithms. Prentice Hall,
419-442, 1992.

[4] Deerwester, S., Dumais, S.T., Landauer, T.K., Furnas,
G.W., and Harshman., R.A., Indexing by Latent Semantics
Analysis, Journal of the Society for Information Science,
41(6), 391-407.

[5] Dean, J., and Henzinger, M.R., finding Related Pages in
the World-Wide Web. Proceedings of the 8th International
Conference on World Wide Web, 1999.

[6] Pitkow, J. and Pirolli, P., Life, Death, and Lawfulness on
the Electronic Frontier. Proceedings of the Conference on
Human Factors in Computing Systems, Atlanta, Georgia,
1997.

[7] Flesca, S. and Masciari, E. Efficient and Effective Web
Change Detection, Data & Knowledge Engineering, Elsevier,
2003.

[8] Fox, E., Extending the Boolean and Vector Space Models
on Information Retrieval with P-Norm Queries and Multiple
Concepts Types. Cornell University Dissertation.

[9] Popescul, A., Flake, G., Lawrence, S., Ungar, L.H., and
Gile, C.L., Clustering and Identifying Temporal Trends in
Document Database. Proceedings of the IEEE advances in
Digital Libraries, Washington, 2000.

[10] Bradshaw, J.M., Software Agents. San Francisco,
CA, USA: AAAI Press/MIT Press, 1997.

 [11] Fan, L., Cao, P., Lin, W. and Jacobson, Q. Web
Prefetching between Low-Bandwidth Client and Proxies:
Potential and Performance, SIGMETRICS'99, 1999.

Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’05)
0-7695-2504-0/05 $20.00 © 2005 IEEE

	Agent-based Similarity-aware Web Document Pre-fetching
	untitled

