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Clustering Spatial Data for Join Operations Using Match-based Partition 

Jitian Xiao 
School of Computer and Information Science, Edith Cowan University, 

2 Bradford Street, Mount Lawley, WA 6050, Australia 
E-mail: j.xiao@ecu.edu.au 

Abstract 

The spatial join is an operation that combines two 
sets of spatial data by their spatial relationships. The 
cost of spatial join could be very high due to the large 
sizes of spatial objects and the computation-intensive 
spatial operations. In spatial join processing, a 
common method to minimize the I/O cost is to partition 
the spatial objects into clusters and then schedule the 
processing of the clusters such that the number of 
times the same objects to be fetched into memory can 
be minimized. In this paper, we propose a match-based 
approach to partition a large spatial data set into 
clusters, which is computed based on the maximal 
match on the spatial join graph. Simulations have been 
conducted and the results have shown that, when 
comparing to existing approaches, our new method 
can significantly reduce the number of clusters 
produced in spatial join processing.  

1. Introduction 

The spatial join is a common spatial query type that 
requires a high processing cost due to the large volume 
of spatial data and the computation-intensive spatial 
operations.  Spatial join queries usually access a large 
number of spatial data.  

To reduce the CPU and I/O costs for spatial join 
processing, most spatial join processing methods are 
performed in two steps (i.e., filter-and-refine
approach). The first step chooses pairs of data that are 
likely to satisfy the join predicate. The second step 
examines the predicate satisfaction for all those pairs 
of data passing through the filtering step.  

During the filtering step, a conservative 
approximation of each spatial object is used to 
eliminate objects that cannot contribute to the join 
result, and a weaker condition for the spatial predicate 
is applied on the approximations. This step produces a 
list of candidates that is a superset of the joinable 
candidates. These candidates are usually represented as 

pairs of object identifiers.  All candidates are then 
checked in the refinement step by applying the spatial 
operation on the full descriptions of the spatial objects 
to eliminate the “false drops”.  The join cost can be 
reduced because the weaker condition is usually 
computationally less expensive to evaluate and the 
approximations are small in size than the full geometry 
of spatial objects.  

The filtering algorithms were well studied [2, 3, 4]. 
However, using the same weaker condition, different 
filtering algorithms will produce candidates in different 
orders. Such differences can influence significantly on 
the refinement cost [4]. It is necessary to cluster the 
candidate set of the filtering result in order to reduce 
the I/O cost of the refinement step [3].    

Let S and T be the two spatial database tables for 
spatial join operation, denoted by S T. Objects in S
and T are indexed by their unique IDs. The spatial data 
of these objects can have different sizes, i.e., they are 
non-uniform sized. The filter operation of the spatial 
join produces a set of pairs of S and T objects. Let F be 
the set of ID pairs produced by the filter operation: 

F = {(sid, tid)| sid and tid are IDs of objects in S and 
T, respectively, that meet the weaker join condition} 
where an ID pair (sid, tid)∈F is called a candidate.
Figure 1 (a) shows an example of F. Note that F is 
available in the main memory after the filter operation. 
F contains only IDs of the candidates, not the data 
objects. 

The refinement step is to perform S  T on the pairs 
of objects indexed by F to produce the final join 
results. At this step, the S and T objects need to be 
fetched into the main memory for the full spatial join 
test.  Since some candidates may have join operation 
with several others, it needs to be fetched several times 
into the memory for the join operations. Taking the 
example of Figure 1 (a), B1 has join relation with A1, 
A2 and A5. After the join operation with A1 and A2, it 
may need to be fetched into the memory again when it 
joins with A5, if it was flushed out of the memory. 
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Our method is to cluster the objects into groups and 
then fetch objects in the same group into the memory 
for processing in a batch. The number of times an 
object to be fetched can thus be reduced. 

It is very important to reduce the I/O cost of 
fetching the full geometry of spatial objects, because it 
contributes a significant portion of the total cost of 
performing a spatial join operation. To consider the I/O 
cost, we take the spatial object size into account. The 
spatial object sizes can differ greatly from one to 
another. For example, while a spatial point object 
occupies only several bytes of storage, a large polygon 
object in a road map may have up to tens of thousands 
of edges that occupy several megabytes of storage. The 
I/O cost, in this paper, is measured in terms of the size 
of spatial data that are fetched into the memory for the 
refinement operation 

Figure 1. An example of a candidate set and SJ graph.
The rest of the paper is organised as follows: 

Section 2 describes a graph model to characterize the 
spatial data clustering problem. Section 3 proposes a 
match based method to partition spatial objects into 
clusters. Section 4 analyses the complexity of the 
proposed algorithm. Section 5 presents our simulation 
results, and Section 6 concludes the paper.  

2. Clustering spatial join operations over 
graph model  

For a given candidate set F, we introduce a 
weighted graph GF =(V, E, w), called Spatial Join (SJ) 
graph, to represent the join relationships between 
spatial objects referenced in F. Intuitively, the node set 
V contains all pairs of IDs in F, i.e., each node 
corresponds to a join operation between a pair of 
objects. The edge in the SJ graph GF is to reflect the 
overlapping status of the objects between different join 
operations represented by the nodes. Formally, V = 
{(v1, v2) | {(v1, v2) ∈F}, and E = {((v1, v2), (u1, u2)) | 
{(v1, v2), (u1, u2) ∈F, {v1, v2} ∩ {u1, u2}≠∅}. The 
weight of an edge e = ((v1, v2), (u1, u2)) is defined as 
the size of the object overlapped between {v1, v2} and 
{u1, u2}, i.e., w(e) = size(x) if {x} = {v1, v2} ∩ {u1,

u2}. Note that |{v1, v2} ∩ {u1, u2}|≤1 since different 
pairs of IDs in F are distinct. For example, the object 
sizes of the candidates in F of Figure 1 (a) are given in 
Figure 1 (b). Figure 1 (c) shows the corresponding SJ 
graph with weights shown beside edges. 

Let VC be the set of candidates referenced in F, 
i.e.,VC ={x| ∃v: (x, v)∈V or (v, x) ∈V}. The total I/O 
cost, CI/O, of fetching objects referenced in F varies in 
the range of 

))()(()( 2),( 1/
21

vsizevsizeCxsize
VvvOIVx c

+≤≤ ∑∑ ∈∈

The lower bound is achieved when each object is 
fetched only once, and the upper bound is met where 
an object is fetched every time when it is referenced. 

To reduce CI/O, our strategy is to group objects 
referenced in F into clusters such that objects inside a 
cluster are more likely to join with each other than 
those across clusters. The objects in the same cluster 
are brought into the memory together and processed in 
a batch. To achieve this, we partition V into m subsets 
V1, V2, …, Vm such that Vi∪Vj=V and Vi∩Vj≠∅  for 
i≠j. Let Ei=E∩{((v1, v2), (u1, u2)) | {(v1, v2), (u1, u2)
∈Vi}, i=1, 2, …, m. Then Gi =(Vi, Ei, w|Ei) is a 
subgraph of GF. Let q be the maximum memory 
capacity that is used to hold spatial objects for 
refinement operation. For any Gi, 1 ≤ i ≤ m, the total 
size of objects in Gi must be less than or equal to q,
i.e.,  

qvsize
icv

≤∑
∈

)(                                (1)

where ci ={x| ∃v: (x, v)∈Vi or (v, x) ∈Vi} is the set of 
objects referenced in Vi, called the ith cluster. We 
assume that the total size of each pair of objects 
referenced in F must be less than or equal to q;
otherwise no solution exists.  

The objects in a cluster are fetched together into 
memory for processing, and are thrown away when the 
next cluster is processed. Therefore, the total I/O cost 
can be expressed as 

∑
∈

⋅∈=
CVv

jOI vsizecvjC )(|}|{|/
                    (2) 

or  

∑ ∑
∈ ∈

⋅−∈+=
C CVv Vv

jOI vsizecvjvsizeC )()1|}|{(|)(/
       (3)  

where |{j|v∈cj}| denotes the total number of clusters 
that contains object v. Let y be 

∑
∈

⋅−∈=
CVv

j vsizeVvjy )()1|}|{(|                    (4)

y is the total object size that may need to be reloaded 
for processing objects that appears in more than one 
cluster, when processing different clusters. If each 
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object belongs to no more than three clusters, then y
can be simplified as 

∑
≠∩∈

=
jiccv ji

vsizey
,

)(                               (5)

Since v∈Vcsize(v) is a constant, the optimization of CI/O
is to find a partition of GF such that y is minimized. 
The problem of minimizing y in graph GF is NP
complete [5].

3. The match based algorithms for spatial 
data partitioning 

In [1], a matrix-based algorithm was proposed to 
cluster non-uniformed spatial objects referenced in F
such that the object in the same cluster are closely 
related (i.e., they are more likely to join with each 
other). However, when the number of objects becomes 
larger (say thousands of objects), the space 
requirement of the matrix-based algorithm increases 
dramatically. This suggests alternative algorithms that 
are applicable to cases where a large number of spatial 
objects are involved in a spatial join.  

To ease the discussion, we introduce some terms: 
Two partitions, in a given SJ graph, are said to be 
adjacent (connected) if some of their nodes are 
adjacent (connected) in the SJ graph. The size of a 
partition refers to as the total size of objects referenced 
by nodes in the partition. The weight (of edges)
between two partitions is the sum of the weights of 
edges that connect nodes between the two partitions. 

       For a given SJ graph GF = (V, E, w), where V
={v1, v2, …, vk}1,  we partition V by initially taking 
each node of V as a partition, and then continually 
combining two (or more) partitions to form larger ones. 
The partitioning of V is commonly represented by a 
partitioning vector P of length k, such that for every 
node v ∈ V, P[v] is an integer between 1 and m,
indicating the partition to which v belongs. So 
combining partitions Vi and Vj (into Vi) can be easily 
implemented as:  for (l=1; l<=k; l++) {if (P[l] == j)   
P[l] = i;}.

To minimize y in (4), we consider two partitioning 
criteria, i.e., local and global, when selecting partitions 
to combine. The local criterion aims to select partitions 
whose combination would cause a greater reduction of 
y. Consider two partitions Vi and Vj. Let Wi~j be the 
weight of edges between Vi and Vj. If we combine Vi
and Vj to form a single partition, then the total 
reduction of y will be Wi~j. Hence, by selecting a pair 

                                                       
1 By definition, each node vi of an SJ graph is in the form of 
(ui

1, ui
2), i.e., a pair of IDs referenced in F.

of partitions that have a greater weight between them, 
we can decrease y by a greater amount. 

The global criterion takes into account the global 
effects when combining partitions. Consider two 
partitions Vj and Vl, both connecting to Vi by edges of 
same total weight. Let Ai

j (and Ai
l, respectively) be the 

set of adjacent partitions of Vj (and Vl, respectively) 
that connect Vi, and Ei

j (and Ei
l, respectively) the total 

weight of edges between Vj and Ai
j (and Ai

l., 
respectively).  If Ei

j>Ei
l, we combine Vi and Vj,

otherwise Vi and Vl, to form a new partition, say V'.  In 
this way, we get a greater weight of edges between V' 
and its adjacent partitions. This increase the chance to 
combine partitions of higher weight, thus increase the 
reduction of y in the following combinations. 

To meet both the local and global criteria we 
propose a maximal match based partition method to 
cluster objects over the SJ graph. A match of a graph is 
a set of edges; any two of them are not incident to the 
same node. A weighted matching (WM) problem is, for 
a given graph G, to find a match of G such that the sum 
of the edge weights of the match is maximal. The WM 
problem was solved by J. Edmonds [5] and the 
complexity of his algorithm is O(n3), where n is the 
number of nodes of G. The resultant match is called a 
maximal match2 of the graph. 

Our partitioning method works in the following 
way: Initially, we have m = k partitions, each contain 
one node (of the SJ graph). Then, we reduce m by 
combining the existing partitions using maximal 
match. We employ Edmonds’ algorithm to produce a 
maximal match from G0=GF, then combine pairwisely 
the matched nodes (or partitions) to form larger 
partitions. At this point, we construct a coarsened 
graph G1 which has those newly formed partitions as 
its nodes (unmatched nodes of G0 are copied over to 
G1). The edges between the nodes of G1 are defined 
based on their edges in G0, as follows: For any pair of 
nodes (partitions), there is an edge between them. If the 
two partitions are adjacent (i.e., some of their nodes are 
adjacent in G0), and the total size of the objects 
referenced in the two partitions is less than or equal to 
q (i.e., the maximum memory capacity as defined in 
formula (1)), the weight between them is set as the 
weight between the two partitions, otherwise the 
weight is set as 0, suggesting that the two partitions 
will not be combined in the following iterations3. At 

                                                       
2 A match is maximal if any edge in the graph that is not in 
the match has at least one of its endpoints matched, and the 
sum of the edge weights of the match is maximal among all 
matches of the graph. 
3 Normally, two nodes with a weight of 0 will not be 
matched in a maximal match because such a match does not 
contribute to the total weight of the match. However we 
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this point, next round of iteration begins to find a 
maximal match from G1. This match-and-combination 
process continues until no more matches can be found 
or no partitions can be expanded (e.g., combination of 
any two partitions would violate formula (1)). The 
algorithm can be described as below: 

Algorithm matchBasedClustering(G)
Input: G = (V, E, w);             // V = {v1, v2, , …, vk}.
Output: c1,c2, , …, cm;   // clusters of objects referenced in F.
Begin 
[1] Find a maximal match M of G using Edmonds’ algorithm; 
[2] if no match was found or no pair of matched nodes can  
      be combined 
[3] then compute clusters c1, c2 ,…, cm from V;
               return(c1,c2,,…, cm);
[4] for all matched nodes // Coarsen G by collapsing 
             // matched nodes of M to produce a coarser graph G’
[5]  if vi and vj are a pair of matched nodes, and  

               qvvwxsizexsize ji
cx cxi j

≤−+∑ ∑
∈ ∈

),()()(

[6]      then combine vi and vj to from a node of G’ ;
[7] copy matched but uncombined nodes over to G’;
[8] copy unmatched nodes over to G’;
[9] update edges and the weights (of edges) between the  
      newly formed nodes of G’;
[10]  matchBasedClustering(G’); 
[11] return;
End

Example 1:  To illustrate how the algorithm works, 
we explore a part of the execution of the algorithm. Let 
q=1600. Figure 2 (a) shows a coarsened graph after 
some rounds of recursive execution of the algorithm, in 
which each node represents a partition of the original 
SJ graph (not presented here). The size of the spatial 
objects referenced in a node (partition) is shown beside 
the node (i.e., in a square bracket). The number beside 
an edge is the weight between the two nodes. For 
simplicity, all edges with a weight 0 were not given in 
the graph. In the next round of execution, the first step 
produces a maximal match M, which has 7 edges, with 
a total weight of 875, as shown by thick bold edges in 
the figure 2 (a). There is only one unmatched node 
(i.e., node labelled by 11) in the graph. Then pairs of 
matched nodes (partitions) are combined to form single 
nodes of the next level coarsened graph, as shown in 
figure 2 (b). Labels of the matched nodes are put 
together, separated by “/”, as the label of the formed 
nodes in the coarsened graph (e.g., label “1/4” in 
Figure 2 (b) indicates that the node was formed by 
combining nodes label by 1 and 4 in the figure 2 (a)). It 
                                                                                     
allow this type of match in order to combine two isolated 
partition of smaller sizes provided their combination does not 
violate the rule of formula (1). 

shows that 7 nodes of the graph were formed from the 
matched nodes of Figure 2 (a), and only one node was 
copied from the unmatched node. By this matching-
and-combination process, the total edge weight was 
reduced by 875 (out of 1490).  

Similarly, the next round of execution of the 
algorithm results in a coarsened graph as shown in 
figure 2 (c).  During the edge weight update step (i.e., 
in step [6]), the edge weight between the nodes 
labelled 5/9/6/10 and one labelled 12/13/14/15 were set 
as 0 (although the total size of objects overlapped 
between them is 60) because their combination would 
results in violation of formula (1). In this way, we 
force the algorithm not to match them in the next round 
execution of the algorithm if there is any other choice.  
The case between the nodes labelled by 7/8/10 and 
12/13/14/15 is similar, as shown in dotted lines. The 
last round of recursive execution of the algorithm 
produces a maximal match containing two edges, of 
which only one leads to a combination of the linked 
partitions. The other pair of nodes was not combined 
because the restriction enforced by the rule of formula 
(1). The algorithm output three data clusters: The first 
cluster contains all spatial IDs that were originally 
referenced by the nodes (partitions) labelled by 1, 2, 3, 
4, 5, 6, 9  and 10  in  figure  2 (a), of  total  object  size 
1576. The second contains all spatial IDs that were 
originally referenced by the nodes (partitions) labelled 
by 7, 8 and 11, of total object size 470. And the last 
one contains those originally referenced by the nodes 
(partitions) labelled by 12, 13, 14 and 15. This cluster 
has a total size of 1578. The sizes of overlapping 
objects between these clusters are 60, 60 and 30, 
respectively, as shown in brackets beside edges in 
Figure 2 (d). 

4. Algorithm analysis 

We now analyse the complexity of the algorithm 
matchBasedClustering. For a given SJ graph with n
nodes, line 1 needs at most O(n3) time (refer to [5]). 
Line 2 needs at most O(n2) time as it scans at most 
once for each node to find its matching node, and 
determine if the matched nodes can be combined. Line 
3 needs O(n) time as it scans the nodes once for each 
partition to form the clusters. Lines 5~6 has the 
complexity of O(n2) because, for each matched node, it 
needs no more than once scanning to calculate the 
formula and to combine to its matched one to form a 
node of the next level coarser graph. So the total 
complexity of lines 4~6 is limited by O(n3). Both line 7 
and line 8 need O(n) time to complete. Line 9 needs 
O(n2) because, for each node, it needs at most one scan 
to all nodes to update edges, while calculating weights  
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Figure 2. Examples of  matching and combination process

of edges between the newly formed nodes of the next 
level of coarsened graph. Line 10 completes the 
recursive execution of the algorithm. 

Let g(n) be the complexity function of the 
algorithm. We analyse both the best case and the worst 
case. First, consider the best case of the execution (i.e., 
all nodes in G were matched in step [1]). Denote f(n) as 
the complexity of this case. For an ideal matching, 
each node is matched, thus the next level of coarser 
graph has n/2 nodes. In this case, we can get a 
recurrence formula for the complexity function as 

⎪
⎩

⎪
⎨
⎧

=)(nf                          

where α is a constant. As the collapsing reduces half 
the number of available (multi)nodes, either n≤1 or 
(n>1 and no further match exists) will become true 
after running the algorithm recursively for some 
rounds. Therefore, for a large n, according to the
recurrent property of f(n), we have  

f(n) = α⋅n3+f( 2
n )  = α⋅n3+α⋅ 3

2)(n  + f( 4
n )  = …  

      = α⋅(n3+ 3
2)(n + 3

4)(n + …+1) + f(1)
This equation is valid for any n that is a power of 2, 
say n = 2k. Thus, we have 

f(n)=αn3⋅(1+ 32
1 + 322

1
⋅  + 332

1
⋅ + …+ )1(32

1
−k ) + f(1)

Recalling that f (1) = 0, we get f(n) = 7
8 ⋅α⋅n3 , or 

  f(n) = O(n3)                            (6)
If n is not a power of 2, there must exist k such that 

2k <n  2(k+1). Therefore, we have 7
8 ⋅αn3 f(n) 

7
8 ⋅8αn3, which still leads to formula (6).
Secondly, consider the case where some unmatched 

nodes produced in step [1], or some matched nodes are 
not be able to combined in lines 4~7. Denote F(n) as 
the complexity of the algorithm in this case. Without 
loss of generality, we assume that the average number 
of matching pairs is n/4 (≈ (1 + 2 + . . . + n/2)/(n/2)). 
After collapsing, the next level of coarser graph will 
have 3n/4 multinodes. In this case, we can get a 
recurrent function as 

⎪
⎩

⎪
⎨
⎧

=)(nF                          

where F(3n/4) is the complexity of the matching and 
collapsing process on the next level coarser graph. In 
the worst case, every recursive execution of the 
algorithm would produce a (next level) coarser graph 
whose number of multinodes is about four thirds of 
that of the current graph. After k times of recursive 
execution, either the number of the (multi)nodes of the 
graph becomes 1, or no further match can be found 
from the graph. So, for simplicity, we can assume that 
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(d)

0                     if n≤ 1 
α⋅n3                        if n>1 and no further match exists
α⋅n3 +f ( 2

n ) if n>1 and further match exists

 0                          if n≤ 1 
α⋅n3                              if n>1 and no further match exists
α⋅n3+F(3n/4)     if n>1 and further match exists
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n · k)
4
3( = 1, or n = ⎥⎦

⎥
⎢⎣
⎢ k)

3
4(   for some k. According to 

the recurrent relation of F(n), we can derive 

F(n) = α⋅n3+F( n
4
3 )  = α⋅n3+α⋅ 3)

4
3( n  + F( n2

2

4
3 )     

   = … ≤ α⋅n3 (1+ 3

3

4
3 + 6

6

4
3 + 9

9

4
3 + …) =

37
64 ⋅α⋅n3

or  
F(n) O(n3)                                         (7)

Following the discussion above, it is not difficult to 
prove that formula (7) holds for any n (the proof is 
omitted here). 

As the complexity of our algorithm is always 
greater than or equal to f(n), and less than or equal to 
F(n), i.e., O(n3) = f(n) g(n) F(n) O(n3), we get  

g(n) = O(n3).
5. Simulations 

The simulation work is to demonstrate the reduction 
of the I/O costs in spatial join processing by using the 
matched based data partitioning method against that 
proposed in [1]. The simulations are conducted with 
artificial and real world spatial data sets.

    
Table 1: A comparison: numbers of clusters produced by the 
 matrix-based and match-based partitioning methods 

Average No.  of clusters 
Size of candidate set Matrix-based Match-based

200 2 2 
400 3 3 
800 9 8 
1200 16 14 
1600 37 33 
2000 59 49 
2400 86 68 

In the simulation, two criteria are used to measure 
the quality of the clusters produced. For the same 
candidate sets, we first compare the numbers of 
clusters produced using the two methods, and then 
compare total size of overlapping objects between 
clusters produced by the two methods, respectively. In 
the simulations, the memory capacity (i.e., q as in 
formula (1)) varies from 500 to 2000 blocks, and the 
sizes of the spatial objects vary from 8 to 1654 
vertices, with average size of 92 vertices. The 
following tables show that when the size the candidate 

set is not vary large, (i.e., hundreds to a thousand), the 
two methods produced similar results. However, when 
the candidate set becomes large, the matched based 
method outperforms the matrix-based method 
significantly. The total size of overlapping objects 
between clusters produced by the two methods is 
almost linear to the number of clusters produced, and 
thus was not given here. Table 1 shows the simulation 
results. 

6. Conclusion 

The spatial join is one of the most important 
operations in spatial databases.  The cost of spatial join 
could be very high due to the large sizes of spatial 
objects and the computation-intensive spatial 
operations. In spatial join processing, spatial objects 
are usually partitioned into clusters and then processed 
cluster by cluster. The partitioning step aims to 
partition objects into clusters such that objects inside a 
cluster are more likely to join with each other than 
those across clusters.  

This paper proposed a match-based spatial objects 
partitioning method. We demonstrated that the new 
methods outperform the existing methods. Simulation 
results have shown that the match based partitioning 
method can produce less number of clusters than the 
method proposed in [1]. 
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