
Edith Cowan University Edith Cowan University

Research Online Research Online

Research outputs pre 2011

2006

Clustering Spatial Data for Join Operations Using Match-based Clustering Spatial Data for Join Operations Using Match-based

Partition Partition

Jitian Xiao
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks

 Part of the Computer Sciences Commons

10.1109/CIMCA.2005.1631513
This is an Author's Accepted Manuscript of: Xiao, J. (2006). Clustering Spatial Data for Join Operations Using
Match-based Partition. Proceedings of International Conference on Computational Intelligence for Modelling,
Control and Automation. (pp. 471-476). Vienna, Austria. IEEE Computer Society Press. Available here
© 2006 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.
This Conference Proceeding is posted at Research Online.
https://ro.ecu.edu.au/ecuworks/1880

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworks
https://ro.ecu.edu.au/ecuworks?utm_source=ro.ecu.edu.au%2Fecuworks%2F1880&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ro.ecu.edu.au%2Fecuworks%2F1880&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1109/CIMCA.2005.1631513
http://dx.doi.org/10.1109/CIMCA.2005.1631513

Clustering Spatial Data for Join Operations Using Match-based Partition

Jitian Xiao
School of Computer and Information Science, Edith Cowan University,

2 Bradford Street, Mount Lawley, WA 6050, Australia
E-mail: j.xiao@ecu.edu.au

Abstract

The spatial join is an operation that combines two
sets of spatial data by their spatial relationships. The
cost of spatial join could be very high due to the large
sizes of spatial objects and the computation-intensive
spatial operations. In spatial join processing, a
common method to minimize the I/O cost is to partition
the spatial objects into clusters and then schedule the
processing of the clusters such that the number of
times the same objects to be fetched into memory can
be minimized. In this paper, we propose a match-based
approach to partition a large spatial data set into
clusters, which is computed based on the maximal
match on the spatial join graph. Simulations have been
conducted and the results have shown that, when
comparing to existing approaches, our new method
can significantly reduce the number of clusters
produced in spatial join processing.

1. Introduction

The spatial join is a common spatial query type that
requires a high processing cost due to the large volume
of spatial data and the computation-intensive spatial
operations. Spatial join queries usually access a large
number of spatial data.

To reduce the CPU and I/O costs for spatial join
processing, most spatial join processing methods are
performed in two steps (i.e., filter-and-refine
approach). The first step chooses pairs of data that are
likely to satisfy the join predicate. The second step
examines the predicate satisfaction for all those pairs
of data passing through the filtering step.

During the filtering step, a conservative
approximation of each spatial object is used to
eliminate objects that cannot contribute to the join
result, and a weaker condition for the spatial predicate
is applied on the approximations. This step produces a
list of candidates that is a superset of the joinable
candidates. These candidates are usually represented as

pairs of object identifiers. All candidates are then
checked in the refinement step by applying the spatial
operation on the full descriptions of the spatial objects
to eliminate the “false drops”. The join cost can be
reduced because the weaker condition is usually
computationally less expensive to evaluate and the
approximations are small in size than the full geometry
of spatial objects.

The filtering algorithms were well studied [2, 3, 4].
However, using the same weaker condition, different
filtering algorithms will produce candidates in different
orders. Such differences can influence significantly on
the refinement cost [4]. It is necessary to cluster the
candidate set of the filtering result in order to reduce
the I/O cost of the refinement step [3].

Let S and T be the two spatial database tables for
spatial join operation, denoted by S T. Objects in S
and T are indexed by their unique IDs. The spatial data
of these objects can have different sizes, i.e., they are
non-uniform sized. The filter operation of the spatial
join produces a set of pairs of S and T objects. Let F be
the set of ID pairs produced by the filter operation:

F = {(sid, tid)| sid and tid are IDs of objects in S and
T, respectively, that meet the weaker join condition}
where an ID pair (sid, tid)∈F is called a candidate.
Figure 1 (a) shows an example of F. Note that F is
available in the main memory after the filter operation.
F contains only IDs of the candidates, not the data
objects.

The refinement step is to perform S T on the pairs
of objects indexed by F to produce the final join
results. At this step, the S and T objects need to be
fetched into the main memory for the full spatial join
test. Since some candidates may have join operation
with several others, it needs to be fetched several times
into the memory for the join operations. Taking the
example of Figure 1 (a), B1 has join relation with A1,
A2 and A5. After the join operation with A1 and A2, it
may need to be fetched into the memory again when it
joins with A5, if it was flushed out of the memory.

Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’05)
0-7695-2504-0/05 $20.00 © 2005 IEEE

Our method is to cluster the objects into groups and
then fetch objects in the same group into the memory
for processing in a batch. The number of times an
object to be fetched can thus be reduced.

It is very important to reduce the I/O cost of
fetching the full geometry of spatial objects, because it
contributes a significant portion of the total cost of
performing a spatial join operation. To consider the I/O
cost, we take the spatial object size into account. The
spatial object sizes can differ greatly from one to
another. For example, while a spatial point object
occupies only several bytes of storage, a large polygon
object in a road map may have up to tens of thousands
of edges that occupy several megabytes of storage. The
I/O cost, in this paper, is measured in terms of the size
of spatial data that are fetched into the memory for the
refinement operation

Figure 1. An example of a candidate set and SJ graph.
The rest of the paper is organised as follows:

Section 2 describes a graph model to characterize the
spatial data clustering problem. Section 3 proposes a
match based method to partition spatial objects into
clusters. Section 4 analyses the complexity of the
proposed algorithm. Section 5 presents our simulation
results, and Section 6 concludes the paper.

2. Clustering spatial join operations over
graph model

For a given candidate set F, we introduce a
weighted graph GF =(V, E, w), called Spatial Join (SJ)
graph, to represent the join relationships between
spatial objects referenced in F. Intuitively, the node set
V contains all pairs of IDs in F, i.e., each node
corresponds to a join operation between a pair of
objects. The edge in the SJ graph GF is to reflect the
overlapping status of the objects between different join
operations represented by the nodes. Formally, V =
{(v1, v2) | {(v1, v2) ∈F}, and E = {((v1, v2), (u1, u2)) |
{(v1, v2), (u1, u2) ∈F, {v1, v2} ∩ {u1, u2}≠∅}. The
weight of an edge e = ((v1, v2), (u1, u2)) is defined as
the size of the object overlapped between {v1, v2} and
{u1, u2}, i.e., w(e) = size(x) if {x} = {v1, v2} ∩ {u1,

u2}. Note that |{v1, v2} ∩ {u1, u2}|≤1 since different
pairs of IDs in F are distinct. For example, the object
sizes of the candidates in F of Figure 1 (a) are given in
Figure 1 (b). Figure 1 (c) shows the corresponding SJ
graph with weights shown beside edges.

Let VC be the set of candidates referenced in F,
i.e.,VC ={x| ∃v: (x, v)∈V or (v, x) ∈V}. The total I/O
cost, CI/O, of fetching objects referenced in F varies in
the range of

))()(()(2),(1/
21

vsizevsizeCxsize
VvvOIVx c

+≤≤ ∑∑ ∈∈

The lower bound is achieved when each object is
fetched only once, and the upper bound is met where
an object is fetched every time when it is referenced.

To reduce CI/O, our strategy is to group objects
referenced in F into clusters such that objects inside a
cluster are more likely to join with each other than
those across clusters. The objects in the same cluster
are brought into the memory together and processed in
a batch. To achieve this, we partition V into m subsets
V1, V2, …, Vm such that Vi∪Vj=V and Vi∩Vj≠∅ for
i≠j. Let Ei=E∩{((v1, v2), (u1, u2)) | {(v1, v2), (u1, u2)
∈Vi}, i=1, 2, …, m. Then Gi =(Vi, Ei, w|Ei) is a
subgraph of GF. Let q be the maximum memory
capacity that is used to hold spatial objects for
refinement operation. For any Gi, 1 ≤ i ≤ m, the total
size of objects in Gi must be less than or equal to q,
i.e.,

qvsize
icv

≤∑
∈

)((1)

where ci ={x| ∃v: (x, v)∈Vi or (v, x) ∈Vi} is the set of
objects referenced in Vi, called the ith cluster. We
assume that the total size of each pair of objects
referenced in F must be less than or equal to q;
otherwise no solution exists.

The objects in a cluster are fetched together into
memory for processing, and are thrown away when the
next cluster is processed. Therefore, the total I/O cost
can be expressed as

∑
∈

⋅∈=
CVv

jOI vsizecvjC)(|}|{|/
 (2)

or

∑ ∑
∈ ∈

⋅−∈+=
C CVv Vv

jOI vsizecvjvsizeC)()1|}|{(|)(/
 (3)

where |{j|v∈cj}| denotes the total number of clusters
that contains object v. Let y be

∑
∈

⋅−∈=
CVv

j vsizeVvjy)()1|}|{(| (4)

y is the total object size that may need to be reloaded
for processing objects that appears in more than one
cluster, when processing different clusters. If each

Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’05)
0-7695-2504-0/05 $20.00 © 2005 IEEE

object belongs to no more than three clusters, then y
can be simplified as

∑
≠∩∈

=
jiccv ji

vsizey
,

)((5)

Since v∈Vcsize(v) is a constant, the optimization of CI/O
is to find a partition of GF such that y is minimized.
The problem of minimizing y in graph GF is NP
complete [5].

3. The match based algorithms for spatial
data partitioning

In [1], a matrix-based algorithm was proposed to
cluster non-uniformed spatial objects referenced in F
such that the object in the same cluster are closely
related (i.e., they are more likely to join with each
other). However, when the number of objects becomes
larger (say thousands of objects), the space
requirement of the matrix-based algorithm increases
dramatically. This suggests alternative algorithms that
are applicable to cases where a large number of spatial
objects are involved in a spatial join.

To ease the discussion, we introduce some terms:
Two partitions, in a given SJ graph, are said to be
adjacent (connected) if some of their nodes are
adjacent (connected) in the SJ graph. The size of a
partition refers to as the total size of objects referenced
by nodes in the partition. The weight (of edges)
between two partitions is the sum of the weights of
edges that connect nodes between the two partitions.

 For a given SJ graph GF = (V, E, w), where V
={v1, v2, …, vk}1, we partition V by initially taking
each node of V as a partition, and then continually
combining two (or more) partitions to form larger ones.
The partitioning of V is commonly represented by a
partitioning vector P of length k, such that for every
node v ∈ V, P[v] is an integer between 1 and m,
indicating the partition to which v belongs. So
combining partitions Vi and Vj (into Vi) can be easily
implemented as: for (l=1; l<=k; l++) {if (P[l] == j)
P[l] = i;}.

To minimize y in (4), we consider two partitioning
criteria, i.e., local and global, when selecting partitions
to combine. The local criterion aims to select partitions
whose combination would cause a greater reduction of
y. Consider two partitions Vi and Vj. Let Wi~j be the
weight of edges between Vi and Vj. If we combine Vi
and Vj to form a single partition, then the total
reduction of y will be Wi~j. Hence, by selecting a pair

1 By definition, each node vi of an SJ graph is in the form of
(ui

1, ui
2), i.e., a pair of IDs referenced in F.

of partitions that have a greater weight between them,
we can decrease y by a greater amount.

The global criterion takes into account the global
effects when combining partitions. Consider two
partitions Vj and Vl, both connecting to Vi by edges of
same total weight. Let Ai

j (and Ai
l, respectively) be the

set of adjacent partitions of Vj (and Vl, respectively)
that connect Vi, and Ei

j (and Ei
l, respectively) the total

weight of edges between Vj and Ai
j (and Ai

l.,
respectively). If Ei

j>Ei
l, we combine Vi and Vj,

otherwise Vi and Vl, to form a new partition, say V'. In
this way, we get a greater weight of edges between V'
and its adjacent partitions. This increase the chance to
combine partitions of higher weight, thus increase the
reduction of y in the following combinations.

To meet both the local and global criteria we
propose a maximal match based partition method to
cluster objects over the SJ graph. A match of a graph is
a set of edges; any two of them are not incident to the
same node. A weighted matching (WM) problem is, for
a given graph G, to find a match of G such that the sum
of the edge weights of the match is maximal. The WM
problem was solved by J. Edmonds [5] and the
complexity of his algorithm is O(n3), where n is the
number of nodes of G. The resultant match is called a
maximal match2 of the graph.

Our partitioning method works in the following
way: Initially, we have m = k partitions, each contain
one node (of the SJ graph). Then, we reduce m by
combining the existing partitions using maximal
match. We employ Edmonds’ algorithm to produce a
maximal match from G0=GF, then combine pairwisely
the matched nodes (or partitions) to form larger
partitions. At this point, we construct a coarsened
graph G1 which has those newly formed partitions as
its nodes (unmatched nodes of G0 are copied over to
G1). The edges between the nodes of G1 are defined
based on their edges in G0, as follows: For any pair of
nodes (partitions), there is an edge between them. If the
two partitions are adjacent (i.e., some of their nodes are
adjacent in G0), and the total size of the objects
referenced in the two partitions is less than or equal to
q (i.e., the maximum memory capacity as defined in
formula (1)), the weight between them is set as the
weight between the two partitions, otherwise the
weight is set as 0, suggesting that the two partitions
will not be combined in the following iterations3. At

2 A match is maximal if any edge in the graph that is not in
the match has at least one of its endpoints matched, and the
sum of the edge weights of the match is maximal among all
matches of the graph.
3 Normally, two nodes with a weight of 0 will not be
matched in a maximal match because such a match does not
contribute to the total weight of the match. However we

Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’05)
0-7695-2504-0/05 $20.00 © 2005 IEEE

this point, next round of iteration begins to find a
maximal match from G1. This match-and-combination
process continues until no more matches can be found
or no partitions can be expanded (e.g., combination of
any two partitions would violate formula (1)). The
algorithm can be described as below:

Algorithm matchBasedClustering(G)
Input: G = (V, E, w); // V = {v1, v2, , …, vk}.
Output: c1,c2, , …, cm; // clusters of objects referenced in F.
Begin
[1] Find a maximal match M of G using Edmonds’ algorithm;
[2] if no match was found or no pair of matched nodes can
 be combined
[3] then compute clusters c1, c2 ,…, cm from V;
 return(c1,c2,,…, cm);
[4] for all matched nodes // Coarsen G by collapsing
 // matched nodes of M to produce a coarser graph G’
[5] if vi and vj are a pair of matched nodes, and

 qvvwxsizexsize ji
cx cxi j

≤−+∑ ∑
∈ ∈

),()()(

[6] then combine vi and vj to from a node of G’ ;
[7] copy matched but uncombined nodes over to G’;
[8] copy unmatched nodes over to G’;
[9] update edges and the weights (of edges) between the
 newly formed nodes of G’;
[10] matchBasedClustering(G’);
[11] return;
End

Example 1: To illustrate how the algorithm works,
we explore a part of the execution of the algorithm. Let
q=1600. Figure 2 (a) shows a coarsened graph after
some rounds of recursive execution of the algorithm, in
which each node represents a partition of the original
SJ graph (not presented here). The size of the spatial
objects referenced in a node (partition) is shown beside
the node (i.e., in a square bracket). The number beside
an edge is the weight between the two nodes. For
simplicity, all edges with a weight 0 were not given in
the graph. In the next round of execution, the first step
produces a maximal match M, which has 7 edges, with
a total weight of 875, as shown by thick bold edges in
the figure 2 (a). There is only one unmatched node
(i.e., node labelled by 11) in the graph. Then pairs of
matched nodes (partitions) are combined to form single
nodes of the next level coarsened graph, as shown in
figure 2 (b). Labels of the matched nodes are put
together, separated by “/”, as the label of the formed
nodes in the coarsened graph (e.g., label “1/4” in
Figure 2 (b) indicates that the node was formed by
combining nodes label by 1 and 4 in the figure 2 (a)). It

allow this type of match in order to combine two isolated
partition of smaller sizes provided their combination does not
violate the rule of formula (1).

shows that 7 nodes of the graph were formed from the
matched nodes of Figure 2 (a), and only one node was
copied from the unmatched node. By this matching-
and-combination process, the total edge weight was
reduced by 875 (out of 1490).

Similarly, the next round of execution of the
algorithm results in a coarsened graph as shown in
figure 2 (c). During the edge weight update step (i.e.,
in step [6]), the edge weight between the nodes
labelled 5/9/6/10 and one labelled 12/13/14/15 were set
as 0 (although the total size of objects overlapped
between them is 60) because their combination would
results in violation of formula (1). In this way, we
force the algorithm not to match them in the next round
execution of the algorithm if there is any other choice.
The case between the nodes labelled by 7/8/10 and
12/13/14/15 is similar, as shown in dotted lines. The
last round of recursive execution of the algorithm
produces a maximal match containing two edges, of
which only one leads to a combination of the linked
partitions. The other pair of nodes was not combined
because the restriction enforced by the rule of formula
(1). The algorithm output three data clusters: The first
cluster contains all spatial IDs that were originally
referenced by the nodes (partitions) labelled by 1, 2, 3,
4, 5, 6, 9 and 10 in figure 2 (a), of total object size
1576. The second contains all spatial IDs that were
originally referenced by the nodes (partitions) labelled
by 7, 8 and 11, of total object size 470. And the last
one contains those originally referenced by the nodes
(partitions) labelled by 12, 13, 14 and 15. This cluster
has a total size of 1578. The sizes of overlapping
objects between these clusters are 60, 60 and 30,
respectively, as shown in brackets beside edges in
Figure 2 (d).

4. Algorithm analysis

We now analyse the complexity of the algorithm
matchBasedClustering. For a given SJ graph with n
nodes, line 1 needs at most O(n3) time (refer to [5]).
Line 2 needs at most O(n2) time as it scans at most
once for each node to find its matching node, and
determine if the matched nodes can be combined. Line
3 needs O(n) time as it scans the nodes once for each
partition to form the clusters. Lines 5~6 has the
complexity of O(n2) because, for each matched node, it
needs no more than once scanning to calculate the
formula and to combine to its matched one to form a
node of the next level coarser graph. So the total
complexity of lines 4~6 is limited by O(n3). Both line 7
and line 8 need O(n) time to complete. Line 9 needs
O(n2) because, for each node, it needs at most one scan
to all nodes to update edges, while calculating weights

Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’05)
0-7695-2504-0/05 $20.00 © 2005 IEEE

Figure 2. Examples of matching and combination process

of edges between the newly formed nodes of the next
level of coarsened graph. Line 10 completes the
recursive execution of the algorithm.

Let g(n) be the complexity function of the
algorithm. We analyse both the best case and the worst
case. First, consider the best case of the execution (i.e.,
all nodes in G were matched in step [1]). Denote f(n) as
the complexity of this case. For an ideal matching,
each node is matched, thus the next level of coarser
graph has n/2 nodes. In this case, we can get a
recurrence formula for the complexity function as

⎪
⎩

⎪
⎨
⎧

=)(nf

where α is a constant. As the collapsing reduces half
the number of available (multi)nodes, either n≤1 or
(n>1 and no further match exists) will become true
after running the algorithm recursively for some
rounds. Therefore, for a large n, according to the
recurrent property of f(n), we have

f(n) = α⋅n3+f(2
n) = α⋅n3+α⋅ 3

2)(n + f(4
n) = …

 = α⋅(n3+ 3
2)(n + 3

4)(n + …+1) + f(1)
This equation is valid for any n that is a power of 2,
say n = 2k. Thus, we have

f(n)=αn3⋅(1+ 32
1 + 322

1
⋅ + 332

1
⋅ + …+)1(32

1
−k) + f(1)

Recalling that f (1) = 0, we get f(n) = 7
8 ⋅α⋅n3 , or

 f(n) = O(n3) (6)
If n is not a power of 2, there must exist k such that

2k <n 2(k+1). Therefore, we have 7
8 ⋅αn3 f(n)

7
8 ⋅8αn3, which still leads to formula (6).
Secondly, consider the case where some unmatched

nodes produced in step [1], or some matched nodes are
not be able to combined in lines 4~7. Denote F(n) as
the complexity of the algorithm in this case. Without
loss of generality, we assume that the average number
of matching pairs is n/4 (≈ (1 + 2 + . . . + n/2)/(n/2)).
After collapsing, the next level of coarser graph will
have 3n/4 multinodes. In this case, we can get a
recurrent function as

⎪
⎩

⎪
⎨
⎧

=)(nF

where F(3n/4) is the complexity of the matching and
collapsing process on the next level coarser graph. In
the worst case, every recursive execution of the
algorithm would produce a (next level) coarser graph
whose number of multinodes is about four thirds of
that of the current graph. After k times of recursive
execution, either the number of the (multi)nodes of the
graph becomes 1, or no further match can be found
from the graph. So, for simplicity, we can assume that

 0

40

 1 2 3

 4 5 6

7 8 9 10

11 12 13 14 15

20

 60
110

 50 30

30

15

 20
 170

 60

30 40

 180 160

95 30 70

 10 30 20

 120

 (a)

 (b)

 (c)

[186]

[210]

[170] [220]

[390]

 [310]

[165]

 [70]

[345] [400]
[480]

[522] [442] [361] [605]

 1/4 2/3

 7/8 5/9

14/15 12/13

 6/10

11

 30 50
 50

 30

 15 10 20 30

60

30 110

60 20

[365] [280]

[415] [630]

[70] [792] [846]

[610]

1/4/2/3

 7/8/11 12/13/1
4/15

5/9/6/10

 30

 (30)

 130

 (60) 0
 30

[576] [1130]

[470]
[1578]

 0

[1578]

 (30)
 7/8/11 12/13/

14/15

1/2/4/3/
5/9/6/10

 (60) 0
 (60) 0

 [1576]

[470]

(d)

0 if n≤ 1
α⋅n3 if n>1 and no further match exists
α⋅n3 +f (2

n) if n>1 and further match exists

 0 if n≤ 1
α⋅n3 if n>1 and no further match exists
α⋅n3+F(3n/4) if n>1 and further match exists

Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’05)
0-7695-2504-0/05 $20.00 © 2005 IEEE

n · k)
4
3(= 1, or n = ⎥⎦

⎥
⎢⎣
⎢ k)

3
4(for some k. According to

the recurrent relation of F(n), we can derive

F(n) = α⋅n3+F(n
4
3) = α⋅n3+α⋅ 3)

4
3(n + F(n2

2

4
3)

 = … ≤ α⋅n3 (1+ 3

3

4
3 + 6

6

4
3 + 9

9

4
3 + …) =

37
64 ⋅α⋅n3

or
F(n) O(n3) (7)

Following the discussion above, it is not difficult to
prove that formula (7) holds for any n (the proof is
omitted here).

As the complexity of our algorithm is always
greater than or equal to f(n), and less than or equal to
F(n), i.e., O(n3) = f(n) g(n) F(n) O(n3), we get

g(n) = O(n3).
5. Simulations

The simulation work is to demonstrate the reduction
of the I/O costs in spatial join processing by using the
matched based data partitioning method against that
proposed in [1]. The simulations are conducted with
artificial and real world spatial data sets.

Table 1: A comparison: numbers of clusters produced by the
 matrix-based and match-based partitioning methods

Average No. of clusters
Size of candidate set Matrix-based Match-based

200 2 2
400 3 3
800 9 8
1200 16 14
1600 37 33
2000 59 49
2400 86 68

In the simulation, two criteria are used to measure
the quality of the clusters produced. For the same
candidate sets, we first compare the numbers of
clusters produced using the two methods, and then
compare total size of overlapping objects between
clusters produced by the two methods, respectively. In
the simulations, the memory capacity (i.e., q as in
formula (1)) varies from 500 to 2000 blocks, and the
sizes of the spatial objects vary from 8 to 1654
vertices, with average size of 92 vertices. The
following tables show that when the size the candidate

set is not vary large, (i.e., hundreds to a thousand), the
two methods produced similar results. However, when
the candidate set becomes large, the matched based
method outperforms the matrix-based method
significantly. The total size of overlapping objects
between clusters produced by the two methods is
almost linear to the number of clusters produced, and
thus was not given here. Table 1 shows the simulation
results.

6. Conclusion

The spatial join is one of the most important
operations in spatial databases. The cost of spatial join
could be very high due to the large sizes of spatial
objects and the computation-intensive spatial
operations. In spatial join processing, spatial objects
are usually partitioned into clusters and then processed
cluster by cluster. The partitioning step aims to
partition objects into clusters such that objects inside a
cluster are more likely to join with each other than
those across clusters.

This paper proposed a match-based spatial objects
partitioning method. We demonstrated that the new
methods outperform the existing methods. Simulation
results have shown that the match based partitioning
method can produce less number of clusters than the
method proposed in [1].

References

[1] Jitian Xiao, Yanchun Zhang & Xiaohua Jia. Clustering
Non-uniform-sized Spatial Objects to Reduce I/O Cost for
Spatial Join Processing, The Computer Journal, Vol. 44,
No.5, 2001.

[2] H. Samet and Walid Aref, Spatial Data Models and Query
Processing. Modern Database Systems, Addison-Wesley
Publishing Company, Inc, 1995.

[3] Y. Theodoridis, E. Stefanakis, T. Sellis. Cost Model for
Join Queries in Spatial Databases. Proc. of ICDE’98,
Orlando, Florida, USA, 1998.

[4] T. Brinkho, H. Kriegel and Bernhard Seeger, Efficient
Processing of Spatial Joins Using R-trees. Proc. ACM
SIGMOD Int. Conf. on Management of Data, pp.237-246,
1993.

[5] E. L. Lawler, Combinatorial Optimization: Net-works
and Matroids. Holt, Rinehart and Winston, New York, 1976.

Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’05)
0-7695-2504-0/05 $20.00 © 2005 IEEE

	Clustering Spatial Data for Join Operations Using Match-based Partition
	untitled

