
Edith Cowan University Edith Cowan University 

Research Online Research Online 

Research outputs pre 2011 

2006 

A Comparison of Heuristics for Scheduling Spatial Clusters to A Comparison of Heuristics for Scheduling Spatial Clusters to 

Reduce I/O Cost in Spatial Join Processing Reduce I/O Cost in Spatial Join Processing 

Jitian Xiao 
Edith Cowan University 

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks 

 Part of the Computer Sciences Commons 

10.1109/ICMLC.2006.258779 
This is an Author's Accepted Manuscript of: Xiao, J. (2006). A Comparison of Heuristics for Scheduling Spatial 
Clusters to Reduce I/O Cost in Spatial Join Processing. Proceedings of International Conference on Machine 
Learning and Cybernetics. (pp. 2455-2460). Dalian, China. IEEE. Available here 
© 2006 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, 
in any current or future media, including reprinting/republishing this material for advertising or promotional 
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works. 
This Conference Proceeding is posted at Research Online. 
https://ro.ecu.edu.au/ecuworks/1923 

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworks
https://ro.ecu.edu.au/ecuworks?utm_source=ro.ecu.edu.au%2Fecuworks%2F1923&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ro.ecu.edu.au%2Fecuworks%2F1923&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1109/ICMLC.2006.258779
http://dx.doi.org/10.1109/ICMLC.2006.258779


Proceedings of  the Fifth International Conference on Machine Learning and Cybernetics, Dalian, 13-16 August 2006 

1-4244-0060-0/06/$20.00 ©2006 IEEE 
2455 

A COMPARISON OF HEURISTICS FOR SCHEDULING SPATIAL CLUSTERS 
TO REDUCE I/O COST IN SPATIAL JOIN PROCESSING 

JI-TIAN XIAO 

School of Computer and Information Science, Edith Cowan University, 2 Bradford Street, Mount Lawley, WA 6050, 
Australia 

E-MAIL: j.xiao@ecu.edu.au 

Abstract: 
In spatial join processing, a common method to minimize 

the I/O cost is to partition the spatial objects into clusters, and 
then to schedule the processing of the clusters in the spatial 
join processing such that the number of times the same objects 
to be fetched into memory can be minimized. A key issue of 
this clustering-and-scheduling approach is how to produce a 
better sequence of clusters to guide the cluster scheduling thus 
to reduce the total I/O cost of spatial join processing. This 
paper describes three cluster sequencing heuristics. An 
extensive comparison among them has been conducted, and 
simulation results have shown that, while using the cluster 
sequences generated to guide the cluster scheduling can 
significant reduce the I/O cost in fetching spatial objects in 
spatial join processing, their performance differs. 

Keywords: 
Spatial databases; Spatial join processing; maximum 

spanning tree; Ant colony optimization; scheduling, Match 

1. Introduction 

In Spatial databases, the cost of spatial join processing 
could be very high due to the large sizes of spatial objects 
and the computation-intensive spatial operations [4]. To 
reduce the CPU and I/O costs for spatial join processing, 
most spatial join processing methods are performed in two 
steps (i.e., filter-and-refine approach [1]). The first step 
chooses pairs of spatial objects that are likely to satisfy the 
join predicate. The second step examines the predicate 
satisfaction for all those pairs of objects passing through the 
filtering step.  

During the filtering step, a conservative approximation 
of each spatial object is used to eliminate objects that 
cannot contribute to the join result, and a weaker condition 
for the spatial predicate is applied on the approximations. 
This step produces a list of candidates that is a superset of 
the joinable candidates. These candidates are usually 
represented as pairs of object identifiers.  All candidates 
are then checked in the refinement step by applying the 

spatial operation on the full descriptions of the spatial 
objects to eliminate the ''false drops''.  The join cost can be 
reduced because the weaker condition is usually 
computationally less expensive to evaluate and the 
approximations are small in size than the full geometry of 
spatial objects.  

It is very important to reduce the I/O cost at the 
refinement step.  Experiments have shown that I/O cost 
(i.e., disk accesses) at the refinement step takes significant 
amount of time, as compared with the CPU time for spatial 
join [3]. If a large number of spatial objects are involved in 
a spatial join operation, a common method to minimize the 
I/O cost is to partition the spatial objects into clusters, and 
then to schedule the processing of the clusters in the spatial 
join processing such that the number of times the same 
objects to be fetched into memory can be reduced. The key 
issue of cluster scheduling is how to produce better 
scheduling sequences of the clusters such that the total I/O 
cost is minimized. However, the problem of finding a best 
spatial cluster scheduling sequence is NP-complete [7]. In 
our previous work, we have developed a number of 
heuristics [5, 6, 7] to produce spatial cluster scheduling 
sequences. This paper is to evaluate some individual 
heuristics and conduct comprehensive comparison among 
them. 

The rest of the paper is organized as follows: In 
Section 2, we formalize the spatial cluster scheduling 
problem. In Section 3, some preliminary concepts are 
presented and some cluster sequencing heuristics are 
reviewed. An example is given in Section 4 to show the 
performance of individual heuristics. Simulation results are 
presented in Section 5. And Section 6 concludes the paper. 

2. Formulation of cluster scheduling 

Let S and T be the two spatial database tables for 
spatial join operation, denoted by S χ T. Objects in S and T 
are indexed by their unique IDs. The spatial data of these 



Proceedings of  the Fifth International Conference on Machine Learning and Cybernetics, Dalian, 13-16 August 2006 

2456 

objects can have different sizes, i.e., they are non-uniform 
sized. The filter operation of the spatial join produces a set 
of pairs of S and T objects. Let F be the set of ID pairs 
produced by the filter operation: 
   F = {(sid, tid)| sid and tid are IDs of objects in S and T, 
       respectively, that meet the weaker join condition} 
where an ID pair (sid, tid) ∈F is called a candidate. Figure 
1 (a) shows an example of F. Note that F is available in the 
main memory after the filter operation. F contains only IDs 
of the candidates, not the data objects. 
 

A1
A2
A3

B1

A4

A6

B3

A6
A7
A8

B1
B3

B2

A5
B1
B2
B3

B4

(b) A candidate clustering.(a)  A candidate set.

A1           B1
A2           B1
A3           B2
A3           B3
A4           B3
A5           B1
A6           B2

S_id T_id

A6           B4
A7           B1
A8           B3
A8           B4

 
Figure 1. An example of a candidate set and its clustering 

 
The refinement step is to perform S χ T on the pairs of 

objects indexed by F to produce the final join results. At 
this step, the S and T objects need to be fetched into the 
main memory for the full spatial join check.  Since the 
memory size is limited and it can not keep all objects of F 
in memory at the same time, the objects need to be 
partitioned into clusters. Objects in the same clusters are 
brought into the memory together and processed in a batch. 
For example, Figure 1 (b) is a partitioning of the candidate 
set shown in Figure 1 (a). 

Assume that the spatial objects referenced in F have 
been partitioned into clusters. Our goal is to schedule the 
clusters in a way such that the repeatedly fetch of the 
overlapping objects between consecutive clusters is 
minimized.  The I/O cost, in this paper, is measured in 
terms of the size of object data (e.g., number of vertices of 
the spatial object) that are fetched into the memory for the 
refinement operation. 

Let  = {v1, v2, …, vk} be the set of objects referenced 
in F, and V1,V2,…, Vn the clusters of  For each i (1≤ i≤ n), 
Vi ={

miii vvv ,...,,
21

} (m≥1), ∈
jiv  (1≤ j≤ m). That is, 

i
n
i V1=∪ = and φ≠iV for each i (1≤ i≤ n). For 

convenience, we define size(Vi) as the sum of the sizes of 
objects in Vi, i.e., ∑ ∈

=
iVvi vsVsize )()(  where s(v) is the 

size of object v.  
We introduce a weighted graph G = (V, E, w), upon , 

called cluster overlapping (CO) graph, to represent the 

overlapping relationships between data clusters.  The node 
set V = {V1, V2, …, Vn} is a set of clusters, and the edge set 
E is defined as:  for each pair of nodes Vi and Vj (i ≠ j), 
there is an edge Eij = (Vi, Vj) if w(Vi, Vj) = size(Vi∩Vj) ≠ 0. 
Here w(Vi, Vj), also denoted as w(Eij), is the weight of edge 
Eij. For instance, based on the object sizes given in Figure 2 
(a), Figure 2 (b) shows the CO graph corresponding to the 
clusters in Figure 1 (b).  

 

A1
A2
A3
A4
A5
A6
A7
A8
B1
B2
B3
B4

200
80
40
30
32
260
18
60
60
80
110
76

oid obj size

(a) Object size (b) cluster overlapping graph

A1, A2, A3,
B1, B2, B3V1

A6, A7, A8,
B1, B3, B4 V3

A4, A5, A6,
B1, B2, B3 V2

430170

250

 
 

Figure 2. An example of CO graph 
At refinement step, if the object clusters are processed 

in the sequence of V1, V2, …, Vn (i.e., no scheduling), then 
the total I/O cost is: 

)()(
1

11
/ j

n

i
i

n

i
iOI VVsizeVsizeC ∩−= ∑∑ −

==

       (1) 

When processing cluster Vi+1, objects in 1+∩ ii VV are 
already in memory just after processing Vi. There is no need 
to load these objects again. 

Generally, for a schedule π which determines the 
processing sequence of V1, V2, …, Vn as 

n
VVV πππ ,...,,

21
, 

where VV
i
∈π

 and 
ji

VV ππ ≠  for i ≠ j, the I/O cost for 

schedule π is  

))()(()(
11

1

1
/ +

∩−+= ∑−
=

iii
VVsizeVsizeVsizeC

n

i
OI ππππ

π  

    ).()(
1

1

11
+

∩−= ∑∑ −

==
iii

VVsizeVsize
n

i

n

i
πππ

       (2) 

When the clusters are given, )(
1∑ =

n

i i
Vsize π

 is a constant. 

Let y be: 

 )(
1

1

1
+

∩=∑−
=

ii
VVsizey

n

i
ππ            (3) 

The objective of spatial cluster scheduling is to find a 
schedule π such that y is maximized, which is the case that 

π
OIC /

 is minimized. 



Proceedings of  the Fifth International Conference on Machine Learning and Cybernetics, Dalian, 13-16 August 2006 

2457 

3. Spatial Cluster Scheduling Heuristics  

Given a CO graph G = (V, E, w) with V = {V1,V2, …, 
Vn}, an maximum overlapping (MO) order among V1,V2, …, 
Vn is a sequence (

niii VVV ,...,,
21

) such that 

)(
1

1

+
∩∑ −

ll i
n

l i VVsize  reaches the maximum among all 

permutations of V [7]. In other words, an MO order in a CO 
graph G is a permutation of nodes in G such that the total 
size of overlapping objects between adjacent nodes reaches 
the maximum. For example, (V1, V2, V3) is an MO order in 
CO graph in Figure 2(a), and the total size of overlapping 
objects between adjacent nodes in the order is 680. 

The simplest algorithm to find an MO order is to 
check all permutations of V to see which one makes the 

max { )(
1

1
+

∩∑ −
ll i

n

l i VVsize }. The complexity of the method 

clearly has factorial order and is certainly not practical.    
Although an MO order exists for each CO graph G, it 

is impossible to find an MO order in polynomial time. 
However, the task of finding an MO order can be reduced 
to the case where G is a connected graph [5]. We now 
describe three heuristics that produce approximation of MO 
(AMO) order in given CO graph G. 

3.1. Maximum Spanning Tree Based Heuristic 

A maximum spanning tree (MST) based heuristic was 
developed in [7] to produce an AMO order of relative 
“high” overlapping weights in the sense that the weight of 
the AMO order produced by the algorithm is always greater 
than or equal to half the weight of an optimal MO order. 
The algorithm consists of three steps: The first step 
produces a maximum spanning tree T of the CO graph G; 
the second step conducts a depth-first search (DFS) on T 
and, in the third step, an AMO order is built, which is the 
traversal order of the DFS on T. The complexity of the 
algorithm is O(m2 log2 m), where m = max(|V|, |E|). 

3.2. ACO-based Heuristic 

The ant-colony optimization (ACO) based meta- 
heuristic is a population-based approach to the solution of 
discrete optimization problems. It imitates real ants 
searching for food, i.e., by finding the shortest path from a 
food source to their nest. Ants use an aromatic essence, 
called pheromone, to communicate information regarding 
the food source. While ants move along, they lay 
pheromone on the ground which stimulates other ants rather 
to follow that trail than to use a new path. As other ants 
observe the pheromone trail and are attracted to follow it, 

the pheromone on the path will intensified and reinforced 
and will therefore attract even more ants.  

The typical application of ACO is the travelling 
salesman problem (TSP) [2], defined as follows: A graph 
G=(V, E, w) with node set V and edge set E is given; each 
edge e∈E has a weight w(e) associated, representing the 
length of it. The problem is to find a minimal-length closed 
tour that visits all the nodes once and only once. In the 
ACO approach each edge of the graph has two associated 
measures: the heuristic desirability ηij, which is defined as 
the inverse of the edge length and never changes for a given 
problem instance, and the pheromone trail τij, which is 
modified at runtime by ants. Each ant has a starting node 
and its goal is to build a solution, that is, a complete tour. A 
tour is built node by node: when ant k is in node i it chooses 
to move to node j using a probabilistic rule that favors 
nodes that are close and connected by edges with a high 
pheromone trail value. Nodes are always chosen among 
those not yet visited in order to enforce the construction of 
feasible solutions. Then pheromone trail is updated on the 
edges of the solutions.  

To apply the ACO approach for finding an AMO order 
for an arbitrary CO graph G=(V, E, w), we extended G to a 
complete graph G’=(V, E’, w’) by the following steps. For 
any pair of nodes vi, vj ∈V, 1≤i, j≤n, add an edge (vi, vj) to 
E’. If (vi, vj)∈E, then define w’(vi, vj) = 1/w(vi, vj); otherwise 
define w’(vi, vj) = wmax, where wmax is a very large number. 
w’(vi, vj) is taken as the length between nodes vi and vj. 

Then the ACO algorithm is applied to G’ to find a TSP 
solution, which is a shortest close tour on G’. Once a TSP 
solution was found, an AMO order can be determined by 
simply removing an edge of maximum weight from the 
solution and taking the order of the resultant path as the 
AMO order [5]. The complexity of the ACO-based 
algorithm is O(Nc⋅n3), where Nc is the predetermined 
iteration parameter of the ACO algorithm (Nc usually takes 
a value of n). 

3.3. Match-based Heuristic 

A match of a graph is a set of edges; any two of them 
are not incident to the same node. A weighted matching 
(WM) problem is, for a given (edge weighted) graph G, to 
find a match of G such that the sum of the edge weights of 
the match is maximal. The WM problem was solved by J. 
Edmonds [2] and the complexity of his algorithm is O(n3), 
where n is the number of nodes of G.  For any graph, 
Edmonds’s algorithm outputs a maximal match1 of G. 

                                                           
1 A match is maximal if any edge in the graph that is not in 
the match has at least one of its endpoints matched, and the 



Proceedings of  the Fifth International Conference on Machine Learning and Cybernetics, Dalian, 13-16 August 2006 

2458 

The basic idea behind the match-based algorithm [6] is 
first to divide the CO graph into sets of  disjoint path 
graphs2 such that the sum of the edge weights of the 
longest paths in the path graphs reaches the maximum, and 
then link these paths using maximal match among the 
endpoints of the longest paths in the path graphs. 

The match-based heuristic is a recursive one 
containing three main steps: In the first step, a maximal 
match M of G is produced using Edmonds’s algorithm (for 
details see [2]). Edges in M are taken as the initial AMO 
order. Then G is divided into sets of path graphs, each 
consists of a pair of matched nodes and an edge connecting 
the matched nodes. Each unmatched node of G forms a 
special path graph, i.e., one without an edge. In the second 
step, the graph G is coarsened by collapsing the matching 
nodes. At this step, each pair of matching nodes are 
combined to form a single node of the next level coarser 
graph G’= (V’, E’, w’). Nodes in V’ are either in the form of 
v = {vi, vj}, where vi, vj∈V are matched in M, i.e., (vi, vj) ∈ 
M, or v = {vi}, where vi is a unmatched node of M. That is, 
V’={{vi, vj} | vi, vj∈V and (vi, vj) ∈ M}∪{{vi}| vi is a 
unmatched node of M}.We refer to node v of form {vi, vj} 
in V’ a multinode. E’ and w’ are then defined such that the 
edge between any pair of multinodes v’ and v” corresponds 
to an edge in E whose two endpoints are in v’ and v”, 
respectively, and whose weight is maximal among all edges 
connecting nodes in between the multinodes v’ and v”, if 
such an edge exists (note that any pair of unmatched nodes 
is not connected in both G and G’). After graph G’ is built, 
Edmonds’s algorithm is applied to G’ again to produce a 
maximal match M’.   

The above matching and collapsing process continues 
until no further matching can be found.  Then in the third 
step, the heuristic produces the AMO order according to the 
output of the above procedure. 

Intuitively, if we conceptually take a pair of matching 
nodes and the edge between them as a path graph at the end 
of first round of matching and collapsing process, then from 
the second round of matching and collapsing process on, 
these path graphs are merged pairwisely in a way that their 
longest paths are linked end by end using an edge of 
maximal weight between endpoints of the paths. With the 
matching and collapsing process going on, paths are linked 
using the maximal matching on levels of coarser graphs 
until a set of disconnected path graphs is reached. At this 

                                                                                                 
sum of the edge weights of the match is maximal among all 
matches of the graph. 
2 A path graph G = (V, E) with n nodes is a graph in which 
all nodes in V can be listed as a sequence v1, v2, ..., vn such 
that (v1, v2), (v2, v3), ... (vn-1, vn) are the only edges of E. 

stage, a sequence of nodes of the longest path for each path 
graph was output.  Any order of these sequences can be 
taken as an AMO, because the produced path graphs are 
non-joint with each other, and each node of the original CO 
graph belongs one and only one path graph. 

4. Comparison among heuristics: An Example  

Now let us compare the performance of these 
heuristics using the example given in [4], which is 
re-produced as below: Let  = {a1, a2, …, a36} be a spatial 
object set and V = (V1, V2, …, V6) a set of clusters on . The 
relationship between an object ai (1≤ i ≤36) and a cluster Vj 
(1≤ j≤6) is given by the following incidence matrix (mij), 
i.e., m(i, j)=1 if aj∈Vi, and m(i, j)=0 otherwise. 

 
Vi  |  V1 V2 V3 V4 V5 V6    Vi  |  V1 V2 V3 V4 V5 V6 
-----|------------------------    -----|------------------------ 
a1   |  1  1  1  1  0  0     a19  |  1  0  0  0  1  0 
a2   |  1  1  1  1  0  0     a20  |  1  0  0  0  1  0 
a3   |  0  1  0  1  0  0     a21  |  1  0  0  0  1  0 
a4   |  0  1  0  1  0  0     a22  |  0  0  1  0  1  1 
a5   |  0  1  0  1  0  0     a23  |  0  0  1  0  1  1 
a6   |  0  1  0  1  0  0     a24  |  0  0  1  0  1  1 
a7   |  0  1  0  1  0  0     a25  |  0  0  0  0  1  1 
a8   |  0  1  0  1  0  0     a26  |  0  0  0  0  1  1 
a9   |  0  1  1  0  0  0     a27  |  0  0  0  0  1  1 
a10  |  0  1  1  0  0  0     a28  |  0  0  0  0  1  1 
a11  |  0  1  1  0  0  0     a29  |  0  0  0  0  1  1 
a12  |  0  1  1  0  0  0     a30  |  0  0  0  0  1  1 
a13  |  0  0  1  0  0  0     a31  |  0  0  0  1  0  1 
a14  |  0  0  1  0  0  0     a32  |  0  0  0  1  0  1 
a15  |  1  0  1  1  0  0     a33  |  0  0  0  1  0  1 
a16  |  1  0  1  1  0  0     a34  |  0  0  0  1  0  1 
a17  |  1  0  0  1  0  0     a35  |  0  0  0  1  0  1 
a18  |  1  0  0  0  1  0    a36   |  0  0  0  1  0  1 

 
The corresponding CO graph is given in Figure 3 (a). 

In this example, the sizes of all objects are identical, thus 
are not important. For simplicity, an object ai is expressed 
by its index i in the figure, and the size of ai is taken as 1, 
for all 1≤ i ≤36. By applying the MST based algorithm to 
the CO graph, an AMO order was produced as shown in 
Figure 3 (b), which is V1, V4, V2, V3, V6, V5, with the total 
overlapping weight 31.  

By applying the match-based algorithm to the CO 
graph in Figure 3(a), the first step produces a maximal 
match M = {(V1, V3), (V2, V4), (V5, V6)}. That is, the initial 
set of path graphs contains three path graphs, with path 
sequences P1 = (V1, V3), P2 = (V2, V4) and P3 = (V5, V6), 
respectively. After collapsing, the next round of matching 
produces a maximal match containing one edge, i.e., ({V1, 
V3}, {V2, V4}), and an isolated node which is the multinode 
{V5, V6}. By collapsing the (matched) multinodes, two path 
graphs (i.e., those with path sequences P1 and P2) were 



Proceedings of  the Fifth International Conference on Machine Learning and Cybernetics, Dalian, 13-16 August 2006 

2459 

merged to form a new path graph, with longer path 
sequence V1, V3, V2, V4. The endpoints (i.e., V1 and V4) of 
this path sequence form a new multinode in the next level 
coarser graph. The next matching and collapsing process 
results in a single multinode {V1, V5} that makes the 
algorithm stop. This step merges the two path sequence (V1, 
V3, V2, V4) and (V5, V6) together by inserting the edge 
between the matching nodes V4 and V6, leaving the final 
endpoints of the longest path to be V1 and V5. The final 
AMO order is V1, V3, V2, V4, V6, V5, as shown in Figure 4(a).  

 

 
Figure 3. A CO graph and its AMO order produced by the 

MST based algorithm. 
 

By comparing the above AMO orders, we found that 
the match based algorithm produced a better AMO order by 
the fact that the total overlapping weight of the AMO order 
produced by the match based algorithm is 33, which is the 
optimal MO order in this example, while it is 31 for the 
AMO order produced by the MST algorithm.  

When applying the ACO-based heuristic to the CO 
graph in Figure 3(a), two AMO orders were produced, as 
shown in Figure 4.  one is the same as that in Figure 4(a), 
and the other is as in Figure 4(b). Both have a total 
overlapping weight of 33, the same with that produced by 
the match-based algorithm. 

5. Simulations 

The simulation work is to demonstrate the reduction of 
the I/O costs in spatial join processing by using different 

AMO orders to guide the scheduling of processing of 
clustered join operations. Two types of simulations were 
conducted. The first type of simulations is to show the I/O 
cost reduced by using various cluster sequencing methods, 
and the second is to compare the overlapping weights on 
AMOs produced by various heuristics. 

  

 
             (a)                 (b) 
Figure 4. AMO order produced by (a) match-based and (b) 

ACO-based heuristics. 
 
In the first type of simulations, AMO orders produced 

by MST-, match- and ACO-based heuristics are applied to 
the same application scenarios to guide spatial cluster 
scheduling. For ease of description, the related schedules 
are called MST, MB, and ACO, respectively, in this section. 
These schedules are simulated against each other using the 
following spatial cluster scheduling strategy: the schedule 
fetches spatial objects into the memory, cluster by cluster, 
in the AMO orders produced by the MST-based, 
match-based and ACO-based heuristics, respectively. The 
overlapping objects between two consecutive clusters are 
not fetched into the memory again when processing the 
next cluster. Although match-based and ACO-based 
heuristics take longer time than MST-base heuristic does in 
finding AMO orders, their calculation costs can all be 
neglected, when comparing with the total fetching cost. 

In the simulations, most spatial datasets are generated 
while a small portion of datasets is from real spatial 
applications. The object sizes change from tens to hundreds 
of vertices. At each simulation point, the simulation runs 10 
times. Since every object needs to be fetched into the 
memory for the refinement operation, for simplicity, we 
measure the I/O cost in terms of the total size of the 
overlapping objects that are fetched repeatedly into the 
memory for processing (i.e., y value in formula (3)). The 
I/O costs of Y-axis are the mean values of y in all runs. 

Figure 5 shows the I/O cost versus the cluster numbers. 
The average size of clusters in this figure is 20. We can see 
that ACO and MB are quite similar in performance, and 
they perform all the time better than MST. On average, 
ACO and MB can achieve over 16% saving when 
comparing with MST. For example, when the number of 
clusters is 50, the average size of overlapping objects to be 



Proceedings of  the Fifth International Conference on Machine Learning and Cybernetics, Dalian, 13-16 August 2006 

2460 

fetched repeatedly into memory by MST is 2069, while it is 
1760 by ACO and 1766 by MB, respectively. As the 
number of clusters grows, the performance gain obtained by 
ACO and MB, respectively, gets greater. When cluster size 
changes, similar trends are achieved in our simulations. 
Due to space limitation, the results are omitted here.  

Figure 5. I/O cost versus cluster numbers (cluster size=20). 
 

Table 1. A comparison of overlapping weights among AMO 
orders produced by three heuristics 

 
Table 1 shows the average overlapping weights among 

AMO orders produced by ACO-based, match-based and 
MST-based heuristics, respectively, for graphs of size (n, e), 
where n is the number of nodes, and e the number of edges. 
We observe that, for any size of graphs, the average weight 
of the match-based AMO orders is always greater than (or 
equal to) that of the MST-based AMO orders, and it is very 
close to that of ACO-based AMO orders. As ACO produces 
optimal or near-optimal solution for most NP-hard 
problems, the average weight of the AMO order produced 
by the ACO-based algorithm is very close to that of the MO 
order. Therefore, the AMO orders produced by match-based 
algorithm are very close to the MO order.  

However, from the simulation, the computation cost of 
ACO-based AMO order is sensitive to the number of edges 
of the CO graph, while MB and MST are not. Due to this, 
ACO is not suitable for online spatial join service where 
spatial join processing must be completed in a reasonable 
time limit. On the other hand, for offline spatial join, ACO 
performs better than the other two schedules. 

6. Conclusion 

In spatial join processing, spatial objects are usually 
partitioned into clusters and then are processed cluster by 
cluster. Since two clusters may have overlapping, the 
overlapping objects may be repeatedly loaded into memory.  
It is important to schedule the processing of the clusters in 
such a sequence that two consecutive clusters in the 
sequence have higher number of overlapping objects, thus, 
there is no need to load those overlapping objects when 
processing the next cluster because they are already in the 
memory. The I/O cost can, therefore, be reduced.   

The key issue behind the spatial cluster scheduling 
method is how to produce a better AMO order to guide the 
scheduling. This paper described three cluster-sequencing 
heuristics. A comparison among them has been conducted 
to evaluate their performance. Simulation results have 
shown that, while ACO-based and match-based heuristic 
produce better AMO orders than the MST-based one does, 
ACO is not suitable for online spatial join processing. 

References 

[1] L. Becker, A. Giesen, K. Hinrichs and J. Vahrenhold. 
Algorithms for Performing Polygonal Map Overlay 
and Spatial Join on Massive Data Sets. R. G¨uting, D. 
Papadias, F. Lochovsky (Edt.): SSD’99, LNCS 1651. 
pp.270-285. Springer-Verlag Berlin Heidilberg, 1999. 

[2] E. L. Lawler, Combinatorial Optimization: Networks 
and Matroids. Holt, Rinehart and Winston, New York, 
1976. 

[3] M. L. Lo and C. V. Ravishankar. Spatial Joins Using 
Seeded Tree, Proc. ACM SIGMOD Int. Conf. on 
Management of Data, pp209-220, 1994 

[4] Y. Theodoridis, E. Stefanakis, T. Sellis. Cost Model 
for Join Queries in Spatial Databases. Proc. of 
ICDE’98, Orlando, Florida, USA, 1998. 

[5] J. Xiao, Applying the Ant Colony Optimization 
Algorithm to the Spatial Cluster Scheduling Problem. 
Proceedings of the 3rd International conference on 
Machine Learning and Cybernetics (ICMLC04), 
Shanghai, China, August 26-29, 2004, pp1341-1346. 

[6] Jitian Xiao, Match Based SJP Cluster Sequencing and 
Scheduling in Spatial Databases, Proceedings of the 
2nd Computational Intelligence, Robotics and 
Autonomous Systems, Singapore, Dec.15-18, 2003. 

[7] J. Xiao, Y. Zhang, X. Jia and X. Zhou. A Schedule of 
Join Operations to Reduce I/O Cost in Spatial 
Database Systems, Data & Knowledge Engineering, 
Elsevier Science B.V, Vol. 35, 2000, pp299-317. 

        size (n,e) 20/50 30/60 40/100 50/120 100/200 
heuristic            
ACO-based 2399 11898 27276 27182 47673 
Match-based 2375 11825 27577 26287 47576 
MST-based 2191 11161 25576 25425 46439 

Cluster size = 20

0

1000

2000

3000

4000

5000

6000

7000

8000

10 20 30 40 50 60 70 80 90

Clustre number

I/O
 c

os
t

MST

ACO

MB


	A Comparison of Heuristics for Scheduling Spatial Clusters to Reduce I/O Cost in Spatial Join Processing
	Microsoft Word - finalM7793.doc

