
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses: Doctorates and Masters Theses

2017

Denial-of-service attack modelling and detection for HTTP/2 Denial-of-service attack modelling and detection for HTTP/2

services services

Erwin Adi
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses

 Part of the Information Security Commons

Recommended Citation Recommended Citation
Adi, E. (2017). Denial-of-service attack modelling and detection for HTTP/2 services. Edith Cowan
University. Retrieved from https://ro.ecu.edu.au/theses/1953

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses/1953

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses?utm_source=ro.ecu.edu.au%2Ftheses%2F1953&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ro.ecu.edu.au%2Ftheses%2F1953&utm_medium=PDF&utm_campaign=PDFCoverPages

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons
who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement. Where the reproduction of such material is

done without attribution of authorship, with false attribution of

authorship or the authorship is treated in a derogatory manner,

this may be a breach of the author’s moral rights contained in Part

IX of the Copyright Act 1968 (Cth).

 Courts have the power to impose a wide range of civil and criminal

sanctions for infringement of copyright, infringement of moral

rights and other offences under the Copyright Act 1968 (Cth).

Higher penalties may apply, and higher damages may be awarded,

for offences and infringements involving the conversion of material

into digital or electronic form.

Denial-of-Service Attack Modelling and Detection

for HTTP/2 Services

by

Erwin Adi

B.Sc. Computer Science

M.Sc. Communications Technology and Policy

Submitted to the School of Science

in fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

EDITH COWAN UNIVERSITY

2017

ii

Denial-of-Service Attack Modelling and Detection for

HTTP/2 Services

by

Erwin Adi

Submitted to the School of Science
in 2017, in fulfillment of the
requirements for the degree of

Doctor of Philosophy

Abstract

Businesses and society alike have been heavily dependent on Internet-based ser-
vices, albeit with experiences of constant and annoying disruptions caused by the
adversary class. A malicious attack that can prevent establishment of Internet
connections to web servers, initiated from legitimate client machines, is termed as
a Denial of Service (DoS) attack; volume and intensity of which is rapidly grow-
ing thanks to the readily available attack tools and the ever-increasing network
bandwidths. A majority of contemporary web servers are built on the HTTP/1.1
communication protocol. As a consequence, all literature found on DoS attack
modelling and appertaining detection techniques, addresses only HTTP/1.x net-
work traffic. This thesis presents a model of DoS attack traffic against servers
employing the new communication protocol, namely HTTP/2.

The HTTP/2 protocol significantly differs from its predecessor and introduces
new messaging formats and data exchange mechanisms. This creates an urgent
need to understand how malicious attacks including Denial of Service, can be
launched against HTTP/2 services. Moreover, the ability of attackers to vary the
network traffic models to stealthy affects web services, thereby requires extensive
research and modelling.

This research work not only provides a novel model for DoS attacks against
HTTP/2 services, but also provides a model of stealthy variants of such attacks,
that can disrupt routine web services. Specifically, HTTP/2 traffic patterns that
consume computing resources of a server, such as CPU utilisation and mem-
ory consumption, were thoroughly explored and examined. The study presents
four HTTP/2 attack models. The first being a flooding-based attack model, the
second being a distributed model, the third and fourth are variant DoS attack
models. The attack traffic analysis conducted in this study employed four ma-
chine learning techniques, namely Naïve Bayes, Decision Tree, JRip and Support
Vector Machines.

The HTTP/2 normal traffic model portrays online activities of human users.
The model thus formulated was employed to also generate flash-crowd traffic, i.e.
a large volume of normal traffic that incapacitates a web server, similar in fashion

iii

to a DoS attack, albeit with non-malicious intent. Flash-crowd traffic generated
based on the defined model was used to populate the dataset of legitimate network
traffic, to fuzz the machine learning-based attack detection process. The two
variants of DoS attack traffic differed in terms of the traffic intensities and the
inter-packet arrival delays introduced to better analyse the type and quality of
DoS attacks that can be launched against HTTP/2 services.

A detailed analysis of HTTP/2 features is also presented to rank relevant
network traffic features for all four traffic models presented. These features were
ranked based on legitimate as well as attack traffic observations conducted in
this study. The study shows that machine learning-based analysis yields better
classification performance, i.e. lower percentage of incorrectly classified instances,
when the proposed HTTP/2 features are employed compared to when HTTP/1.1
features alone are used.

The study shows how HTTP/2 DoS attack can be modelled, and how future
work can extend the proposed model to create variant attack traffic models that
can bypass intrusion-detection systems. Likewise, as the Internet traffic and the
heterogeneity of Internet-connected devices are projected to increase significantly,
legitimate traffic can yield varying traffic patterns, demanding further analysis.
The significance of having current legitimate traffic datasets, together with the
scope to extend the DoS attack models presented herewith, suggest that research
in the DoS attack analysis and detection area will benefit from the work presented
in this thesis.

Keywords: HTTP/2, Denial of Service attack, traffic analysis, machine learning
techniques.

Principal Supervisor: Dr. Zubair Baig
Associate Supervisor: Assoc. Prof. Philip Hingston

iv

Declaration

I certify that this thesis does not, to the best of my knowledge and belief:

(i) incorporate without acknowledgement any material previously submitted

for a degree or diploma in any institution of higher education;

(ii) contain any material previously published or written by another person

except where due reference is made in the text of this thesis; or

(iii) contain any defamatory material;

Erwin Adi

2017

v

vi

Acknowledgements

My Principal Supervisor, Dr. Zubair Baig has been admirably supportive through

my PhD journey and the writing of this thesis. He directed me through the chal-

lenge of finding cutting-edge solutions, software tools, recent studies and research

grants. Zubair is very responsive through all communication means, constantly

giving advice on technical and thesis work challenges. I send my tremendous

thanks to Zubair for having guided the study to the direction that contributes to

its significance.

Assoc. Prof. Philip Hingston, my Associate Supervisor, played a big role in

advancing my research skills. He stretched my hard work to exhaustively explore

the subjects in the area and critically assessed my findings. He indicated the

areas where I needed improvements and advised on relevant references. I truly

appreciate Philip for shaping my academic aptitude.

I am grateful to Assoc. Prof. Chiou Peng Lam for having remarkably ap-

praised my research methodology and thesis proposal, contributing to scholastic

insights, and for co-authoring two publications. My sincere appreciation also goes

to Prof. Craig Valli for his pointer to investigate the new breed of communica-

tions protocol, HTTP/2. His immense knowledge in the area has led me to delve

into this novel research avenue.

The conduct of this study would not have been possible without the financial

support from Edith Cowan University through the International Postgraduate

Research Scholarship, which provided me with forefront access to knowledge,

materials and living support in Australia. Much appreciation goes to Avaya for

their Research Grant which endowed funding to the provisioning of high-end

equipment employed in this study.

I will always remember the joy of being together with my lab-mates: the

fellowship of attending seminars, having daily laughter, support and despair, and

sharing the finesse in surviving and thriving in this beautiful country, Australia.

vii

viii

Contents

1 Introduction 1

1.1 Background . 1

1.2 Purpose of the Study . 5

1.3 Significance of the Study . 6

1.4 Thesis Contribution . 8

1.5 Thesis Structure . 9

2 Literature Review 11

2.1 HTTP/1.1 Protocol . 11

2.2 DoS Attacks . 16

2.2.1 Network-Based DoS Attacks 18

2.2.2 Application-Based DoS Attacks 22

2.2.3 Discussion . 24

2.3 DoS Detection Techniques . 25

2.3.1 Detecting Vulnerability-Based Attacks 26

2.3.2 Detecting Flooding Attacks 27

2.3.2.1 Detection Techniques for Network-Based DoS At-

tacks . 27

2.3.2.2 Detection Techniques for Application-Based DoS

Attacks . 28

2.3.2.3 Anomaly Detection Techniques using Machine

Learning Techniques 32

ix

2.3.2.4 Challenges to Detecting Application-Based DoS

Attacks . 48

2.4 The HTTP/2 Protocol . 59

2.4.1 Initiatives . 59

2.4.2 Protocol Specifications . 59

2.4.3 Security Considerations . 62

2.4.4 Exposure to Resource Depletion 65

2.4.5 Implication to DoS Detection Technique 67

2.5 Conclusion . 67

3 Research Approach and Methodology 71

3.1 Research Approach . 72

3.1.1 Phase 1: Model Development 73

3.1.2 Phase 2: Traffic Generation 74

3.1.3 Phase 3: Feature Extraction and Dataset Creation 75

3.1.4 Phase 4: Feature Ranking and Traffic Classification 86

3.2 Evaluation Metrics . 88

3.3 Experimental Setup . 90

3.4 Ethical Issues . 92

3.5 Conclusion . 93

4 Legitimate Traffic Modelling and Analysis 95

4.1 Logs of Online User Browsing Behaviours 96

4.2 User Model . 98

4.3 A Framework to Generate Normal Traffic 99

4.3.1 Evaluating the Framework 104

4.4 Flash-Crowd Traffic . 107

4.4.1 Generating Flash-Crowd Traffic 108

4.4.2 Creating Flash-Crowd Dataset 109

4.5 Conclusion . 113

x

5 Attack Traffic Modelling and Analysis 115

5.1 Flood Attack . 116

5.1.1 Attack Model and Scenarios 117

5.1.2 Results . 123

5.1.3 Discussion . 126

5.1.4 Conclusion . 129

5.2 Distributed Attack . 129

5.2.1 Attack Model and Scenarios 130

5.2.2 Results and Discussion . 136

5.2.3 Conclusion . 148

6 Stealthy Attack Modelling and Analysis 151

6.1 Stealthy Attack 1 . 152

6.1.1 Attack Model and Scenarios 152

6.1.2 Results and Analysis . 156

6.1.3 Conclusion . 165

6.2 Stealthy Attack 2 . 165

6.2.1 Attack Model and Scenario 166

6.2.2 Results and Analysis . 171

6.2.3 Conclusion . 184

6.3 Analysis and Discussion . 185

6.3.1 Feature Ranking Comparison with HTTP/1.1 Features . . 185

6.3.2 Performance Comparison 189

6.4 Conclusion . 194

7 Conclusion 197

7.1 Contributions of the Study . 198

7.2 Limitations and Future Work . 202

References 205

xi

A Machine Learning Parameter Values 217

A.1 Naïve Bayes . 217

A.2 Decision Tree . 217

A.3 JRip . 218

A.4 Support Vector Machines . 218

A.5 Self Organizing Maps . 219

xii

List of Figures

1-1 DDoS attack . 4

2-1 A client-server communication model 12

2-2 A client-server communication detailed with layers 13

2-3 Messages are encapsulated at each layer. 14

2-4 An end-to-end HTTP communication 16

2-5 DDoS attack . 17

2-6 SYN flood attack . 19

2-7 Smurf attack . 20

2-8 A Decision Tree . 40

2-9 k -NN finds the most vote from the closest k neighbours 43

2-10 (a) H3 is the maximum margin hyperplane, (b) Support vectors . 44

2-11 Frame format . 60

2-12 An html response . 61

2-13 Illustration on HTTP/1.1 requests/responses and HTTP/2 multi-

plexing . 61

2-14 Illustration on HTTP/2 multiplexing from a different perspective 62

2-15 Stream states . 65

3-1 A dataset consists of a set of instances, which are characterised

through a set of features. 76

3-2 TCP and TLS Handshake . 77

3-3 Captured packets within an observed time window 79

3-4 A snippet of captured traffic . 80

xiii

3-5 The traffic generation setup . 91

4-1 The framework for creating flash-crowd dataset from a defined nor-

mal user model. 95

4-2 State Transition representing a User Model 98

4-3 An example of one User Model taken from DOBBS Sample 1 . . . 99

4-4 The framework on how DOBBS log was used to generate normal

traffic . 100

4-5 State Transition representing a User Model 101

4-6 Generating flash-crowd traffic and creating dataset 108

4-7 The generated traffic, captured and viewed using TShark 109

4-8 Filtering traffic and extracting features 109

5-1 The flooding-based attack model 118

5-2 The window_update payload format 120

5-3 The window-size-increment tells the receiver how many more bytes

the sender can transmit . 120

5-4 The traffic generation setup for Investigation-1 and Investigation-3 121

5-5 The traffic generation setup for Investigation-2 123

5-6 The DDoS attack model . 131

5-7 The traffic generation setup for DDoS attack 131

5-8 A higher window-size-increment value allows fewer number of sub-

sequent window_update packets 134

5-9 Process for normal and attack traffic classification 141

5-10 Distributed Attack Performance with Naive Bayes classification . 143

5-11 Distributed Attack Performance with Decision Tree classification . 144

5-12 Distributed Attack Performance with JRip classification 145

5-13 Distributed Attack Performance with Support Vector Machine

classification . 146

6-1 Visualization of count_syn feature values. Left: DDoS attack.

Right: Stealthy Attack-1. 156

xiv

6-2 A threshold line can split DDoS and flash-crowd traffic 157

6-3 Stealthy Attack-1 Performance with Naive Bayes classification . . 161

6-4 Stealthy Attack-1 Performance with Decision Tree classification . 162

6-5 Stealthy Attack-1 Performance with JRip classification 163

6-6 Stealthy Attack-1 Performance with Support Vector Machine clas-

sification . 164

6-7 Visualization of Stealthy Attack-1 size_rstAck feature values. . . 167

6-8 A sample of HTTP/2 Request traffic produced using nghttp2 library169

6-9 A sample of HTTP/2 Request traffic produced using curl library . 169

6-10 Visualization of the size_rstAck feature values. Left: Stealthy

Attack-1. Right: Stealthy Attack-2. 171

6-11 Stealthy Attack-2 Performance with Naive Bayes classification . . 174

6-12 Stealthy Attack-2 Performance with Decision Tree classification . 175

6-13 Stealthy Attack-2 Performance with JRip classification 176

6-14 Stealthy Attack-2 Performance with Support Vector Machine clas-

sification . 177

6-15 Visual inspection to find a range of X-values that yield low incor-

rectly classified instances values. 179

6-16 Incorrectly classified instances for all 3 attack types 181

6-17 Detection Rate performance comparison for all 3 attack types . . 181

6-18 False Alarm Rate performance comparison for all 3 attack types . 181

6-19 Cluster visualization using Self Organizing Map 183

6-20 A comparison of Stealthy Attack-1 performance when using both

HTTP/1.1 features and HTTP/2 features. 192

6-21 A comparison of Stealthy Attack-2 performance when using both

HTTP/1.1 features and HTTP/2 features. 193

xv

xvi

List of Tables

1.1 The number of connected devices over the past 14 years 2

2.1 HTTP versions and years of release 13

2.2 An example of traffic samples characterised by three features . . . 34

2.3 An example of traffic samples characterised by three features . . . 36

2.4 An example of a labelled traffic dataset characterised by three fea-

tures . 38

2.5 The counts and probabilities of the features 39

2.6 Features used by the existing studies on DoS detection 56

2.7 The range of data to observe for the investigations in this thesis . 69

3.1 Extracted features from network traffic shown in Figure 3-3 79

3.2 Extracted features from traffic shown in Figure 3-4 81

3.3 ACK packet time lapse values, extracted from traffic shown in

Figure 3-4 . 82

3.4 RST-ACK packet time lapse values, extracted from traffic shown

in Figure 3-4 . 83

3.5 Features used in this study . 84

3.6 Features and their names . 85

4.1 Dataset sample information . 97

4.2 A snippet of DOBBS Sample 1 97

4.3 Dataset sample information . 105

4.4 BotMaster mimicked DOBBS Sample-1 closely 106

4.5 BotMaster mimicked DOBBS Sample-2 closely 107

xvii

4.6 Filtering traffic messages to extract features 110

4.7 Flash-crowd traffic characteristics described through its feature

values . 112

5.1 Computing resource consumption during attacks 124

5.2 Duration the WINDOW_UPDATE frame was sent 138

5.3 DDoS using test case 4 . 140

5.4 DDoS using test case 5 . 140

5.5 Ranked features for the distributed attack traffic 142

6.1 Stealthy Attack-1 model . 155

6.2 Ranked features for Stealthy Attack-1traffic 158

6.3 Stealthy Attack-2 model . 170

6.4 Ranked features for Stealthy Attack-2 traffic 173

6.5 Feature ranks using Information Gain for all 3 attack types 188

6.6 Feature ranks using Gain Ratio for all 3 attack types 188

6.7 Incorrectly classified instances (%) by machine learning techniques

applied with only HTTP/1.1 features. 190

xviii

Publications Arising from the Research

Adi, E., Baig, Z., Lam, C. P., & Hingston, P. (2015). Low-rate denial-of-service
attacks against HTTP/2 services. In IT Convergence and Security (ICITCS),
2015 5th International Conference on (pp. 1–5). IEEE.

Adi, E., Baig, Z. A., Hingston, P., & Lam, C. P. (2016). Distributed denial-of-
service attacks against HTTP/2 services. Cluster Computing, 19 (1), 79–86.

xix

xx

Chapter 1

Introduction

1.1 Background

The Internet has been a significant catalyst for the world economy, with businesses

and society relying on it for their communication and information needs. Ensuring

the availability of these services is a challenging task due to the growing volume

of Internet traffic and the various communication standards that it supports.

HTTP/2 has emerged as a web communication standard over the past few years.

Through this thesis, novel techniques are proposed and evaluated for detecting

malicious network traffic that targets HTTP/2 services, as part of a Denial of

Service (DoS) attack. In addition, various techniques are proposed to differentiate

legitimate from malicious network traffic.

It is estimated that the number of Internet-connected devices in 2020 will be 50

billion (“The Internet of Things”, 2014), as detailed in Table1.1. This implies that

there will be more computer-connected devices per person. The ubiquity of these

devices creates many convenient benefits for society. For instance, online banking

speeds up purchases; mobile technology eliminates the distances between doctor-

patient and teacher-students (“The Third Great Wave”, 2014); and innovative

applications facilitate ordering a taxi and monitoring its arrival. Consequently,

an increasing number of services and devices will be connected to the Internet

(“The Internet of Things”, 2014), and the modern society will become more reliant

1

Table 1.1: The number of connected devices over the past 14 years

devices (billion) world population (billion)
2003 0.5 6.3
2010 12.5 6.8
2015 25 7.2
2020 50 7.6

on the availability of Internet-based services.

Internet-connected devices have increased the demand for content. For in-

stance, instead of displaying text as web servers were originally designed to ren-

der, contemporary web communication exchange richer content such as audio

and video. Due to the multimedia content that these devices transfer and down-

load, the current web browsing standard (HTTP/1.1) is reaching its full capacity

(Grigorik, 2013b), as it was designed to exchange text. Web users often experi-

ence slow Internet speed; hence, a new standard (HTTP/2) has been designed to

support communication at higher speed (Belshe, Peon, & Thomson, May 2015).

HTTP/2 was published in May 2015. While the web programming software used

to build websites remains unchanged, the HTTP/2 data communication tech-

niques differ from those of HTTP/1.1. HTTP/2 architecture introduces binary

framing, multiplexing, message interleaving, and application-layer flow control

(Belshe et al., May 2015). As such, the traffic it sustains over the Internet me-

dia shows different patterns than what has been observed and reported in the

literature, for HTTP/1.1.

The introduction of a new application-layer communication standard prompts

a critical analysis of its security implications. One important security considera-

tion is availability of web-based services. The availability of the Internet creates a

healthy ecosystem: society can access the conveniences offered by businesses, and

businesses make use of the growing size of the Internet to offer ever expanding

services to end users/clients. Unfortunately, parasites do exist in the ecosys-

tem. For monetary gain, adversaries threaten the availability of businesses by

attempting to bring down web servers and corresponding services (Heron, 2010;

Mansfield-Devine, 2011). Such a threat can translate into a Denial of Service

2

(DoS) attack, which is defined as, "an explicit attempt by attackers to prevent

legitimate users of a service from using that service" (CERT, 1997). Other moti-

vations for launching DoS attacks include ideological beliefs to uphold one’s views

while attempting to suppress the opposition’s ability to publicise through web-

sites; intellectual challenge to learn how to launch attacks; and cyber warfare, i.e.

attacks supported by military or terrorist organizations (Zargar, Joshi, & Tipper,

2013).

DoS attacks can be launched either by suffocating an Internet-connected ma-

chine by sending it a large volume of traffic (flooding technique), or by exploiting

a bug (vulnerability) in the target system’s software that incapacitates the service

(Mirkovic & Reiher, 2004). In flooding attack techniques, adversaries send more

packets than the target computer can process during a frame of time. This forces

the victim to either constantly use its processing capability to handle incoming

packets, or to face consequences due to depletion of its memory through packet

buffering. When the victim is a web server, the connected remote users experi-

ence either slow web responses, interrupted services, or no services at all. Similar

service disruption symptoms can be caused through exploiting a vulnerability of

the target. Web servers run software that parses and executes HTTP commands

that it receives. Attackers can exploit the software vulnerability of a web server

to cause the program to run undesirably. This could include running an infinite

loop, causing the web server to stop responding to legitimate client requests. As

illustrated in Figure 1-1, the attacks can be amplified using a group of compro-

mised computers in order to launch a large storm of traffic (Chang, 2002). This

variant is called a Distributed Denial-of-Service attack (DDoS).

DoS attacks pose a serious threat to businesses as they involve overwhelming

of the communication channel with malicious traffic. In the year 2000, major

websites (CNN.com, ZDNet, Yahoo) and businesses (Amazon.com, E*Trade, and

eBay) were targeted as part of DoS attacks that incapacitated web servers and

caused considerable monetary loss (Garber, 2000). In 2007, vital web servers in

Estonia including those belonging to banks, ministries, newspapers and broad-

casters were brought down through an organized DoS attack perpetrated by an

3

Figure 1-1: DDoS attack

adversary (Estonian Attacks Raise Concern over Cyber ’Nuclear Winter’ , 2007).

The attack crippled the Estonian government’s paperless IT infrastructure and

led to severe financial losses. In 2010, web servers belonging to MasterCard, Visa,

and PayPal were subjected to a DDoS attack (Addley & Halliday, 2010). The

attacks were launched as an act of revenge on companies that froze all payments

to WikiLeaks – a website that publishes sensitive, classified information. In 2012,

nine major online banking sites in the USA were made unavailable (Kitten, 2013).

It was believed that the attack was launched by an adversary residing in an enemy

state.

Detecting and bearing the ability to prevent DoS attacks against a web server

are therefore crucial in order to provide uninterrupted services to legitimate

clients. For network and web hosting operators, the ability to detect DoS traffic

prevents unwanted operational costs, helps to plan future infrastructure, and al-

lows operators to provide services that otherwise would have been disrupted by

illegitimate traffic.

Unfortunately, DoS attacks are increasing in their volume, ubiquity, com-

plexity, and use of novel techniques (Mansfield-Devine, 2011). Flood-based DoS

attack volume is usually expressed in terms of bandwidth usage. In 2002, the vol-

ume of DDoS attack traffic against large carriers and content providers around

the world was found to be 400 Mbps (Labovitz, 2010). In 2013, the volume was

increased to 60 Gbps (Paganini, 2013). Recently the total worldwide attack traffic

4

volume has been increasingly difficult to collect as the number has grown expo-

nentially. To illustrate, in the second quarter of 2015 alone, DDoS attack volume

touched a staggering 1,000 Gbps (Keane, 2015). In the beginning of 2016, the

British Broadcasting Corporation (BBC) website was flooded with a 600 Gbps

attack (Khandelwal, 2016). These threats are not to be underestimated due to

the fact that all web servers can become inaccessible when flooded with more

traffic than what can be processed.

Currently detection techniques for DoS attacks against web services have been

based on HTTP/1.1 traffic patterns. HTTP/2 as a new protocol is vulnerable

to DDoS attacks as is presented in this thesis. The new standard is no longer

regarded as experimental, but rather has been formalised and deployed for pub-

lic access. Although some semantics of the original protocol are preserved, the

information exchange and implementation mechanism of the protocol demand

memory consumption. The introduction of HTTP/2 opens up a new channel for

adversaries to interrupt the availability of web servers. This means that exper-

imentation, observation, and analysis of how HTTP/2-packet-based attacks can

be launched and be detected are important new areas of research.

This research studies how HTTP/2 consumes the computing and networking

resources of web servers. It develops attack models, differentiates between legiti-

mate and malicious attack traffic, and shows how cyber attacks intended to deny

access to HTTP/2 servers could be detected.

1.2 Purpose of the Study

The introduction of a new web browsing standard HTTP/2 poses a novel challenge

for DoS attack detection. Hence, the objectives of this study are:

∙ to develop attacker models for DoS attacks against HTTP/2 servers;

∙ to generate traffic representing DoS attacks against HTTP/2 servers;

∙ to identify features and produce datasets that best represent DoS attacks

against HTTP/2 servers; and

5

∙ to demonstrate how stealthy HTTP/2 DoS attacks can be analysed using

machine learning techniques.

The challenge to generate HTTP/2 traffic stemmed from the unavailability of

HTTP/2 implementation. Few programming libraries were available to support

the development of the traffic generator. This thesis work selected the most

appropriate library that could apply the model previously developed, and aimed

to generate HTTP/2 attack traffic. The study also examined how the generated

attack traffic consumed CPU and memory resources of an HTTP/2 web server.

In order to analyse the characteristics of the attack traffic, this study also

evaluated and examined the instances of the traffic. A large number of instances

that made up a dataset were required to extensively include the variations of the

instances. Currently there is no publicly available dataset representing HTTP/2

traffic. Instead, the datasets used in the literature describe normal and attack

traffic under HTTP/1.1 conditions. Through this work, datasets representing

DoS attacks against HTTP/2 were generated to best represent live network traffic.

Each data sample was characterised by a series of features. One of the ob-

jectives of this study was to identify features that characterised HTTP/2 traffic.

The study generated anomalous and legitimate HTTP/2 traffic patterns. Among

detection methods discussed in the literature, machine learning techniques are

suitable approaches to detect network traffic anomalies. The study explored the

use of machine learning techniques for efficient and effective detection of DoS at-

tacks. Machine learning techniques were used as a means to measure how attack

traffic differs from normal traffic in this study. Building upon these investigations,

the study aimed to demonstrate a stealthy HTTP/2 attack and showed how it

could be modelled to bring down a web server.

1.3 Significance of the Study

There are three significant aspects of this research. These are:

∙ to explore the design within HTTP/2 servers that can be exploited to con-

6

sume computing resources through a DDoS attack;

∙ to provide an extension of researchers’ understanding on DoS attacks

against web servers; and

∙ to develop knowledge on how machine learning can be used to detect DoS

attacks for HTTP/2 traffic.

First, the study explored how attacks against HTTP/2 services consumed

computing resources. Little was known about how much memory and CPU time

were utilised for handling HTTP/2 Requests and Responses. This study set up

a test bed that launched HTTP/2 packets towards an HTTP/2 server and moni-

tored the CPU utilisation, memory consumption, network throughput, and packet

loss. The results obtained from this experiment allow researchers to understand

how HTTP/2 servers can become unavailable when subjected to DoS attacks.

Second, the study extended the current understanding of detecting DoS at-

tacks against web servers. Existing studies in the area observed attacks against

HTTP/1.1 servers. Only a few of the deployed servers in the Internet implement

HTTP/2 and no dataset described HTTP/2 traffic. Moreover, no study was con-

ducted for detecting DoS attacks against HTTP/2 servers. This study extends

the knowledge in the area through testing and analysing different features relevant

to detecting DoS attacks against HTTP/2 servers. The study initially observed

whether the existing solutions (i.e. the detection methods on DoS attacks against

HTTP/1.1 servers) could be used effectively. Subsequently, the study observed

DoS attack traffic against an HTTP/2 server, generated a set of new features

based on these observations, and evaluated the effectiveness of the new features

in distinguishing DoS from normal traffic. The results provided new insights for

researchers on how HTTP/2 can influence effective approaches to detecting DoS

attacks.

Third, the study developed knowledge on how machine learning can be used

to characterise HTTP/2 traffic. Existing techniques learned patterns and built

classification rules from HTTP/1.1 data. In contrast, this research introduced

new traffic patterns and features. In addition, this study exhibited different

7

accuracy with distinguishing attacks from normal traffic. The investigation of

the data involved investigations using machine learning techniques. Therefore,

this study developed knowledge on how machine learning techniques can help

accurately differentiate legitimate traffic from malicious.

1.4 Thesis Contribution

The main contributions of this thesis are: HTTP/2 traffic models and datasets –

each with normal and attack class; HTTP/2 traffic features, and a stealthy attack

model. These are detailed as follows.

∙ HTTP/2 normal traffic model creation and dataset generation.

To differentiate anomalous traffic signifying DoS attacks, normal HTTP/2

traffic was generated to serve as the standard. Such synthetic traffic was

crucial not only for its use in this thesis but also for research at large that

could be conducted in the area. The traffic was generated as a result of

simulating a model that was proposed in this study. The evaluation of the

model showed how the generated normal HTTP/2 traffic can be justified

by its internal validity, and that initialising the model with another sample

showed how it closely represented the sample. Hence, a wider audience can

repeat the model to generate different traffic patterns. In this study, the

generated model was used to produce network traffic as the ground truth

to create a dataset representing normal online user behaviours.

∙ HTTP/2 attack traffic model creation and dataset generation. At-

tack traffic consumes the CPU utilisation of the target computer. HTTP/2

introduces new message exchange mechanisms that differ to its predeces-

sors. This study investigated the computing resources of an HTTP/2 server

when subjected to different traffic parameters. It observed the CPU con-

sumption and memory of a server, and proposed a range of HTTP/2 traffic

parameter values that can incapacitate the server. These parameters served

as the attack model that researchers can replicate and benefit from. Fur-

8

thermore, the study created attack datasets from the generated HTTP/2

traffic that the model simulated. To our knowledge, there is currently no

such publicly available dataset.

∙ Examination and ranking of HTTP/2 traffic features. Examining

datasets includes selecting and identifying features when the datasets are

applied to different evaluation purposes. Evaluating large data can be com-

plex and time consuming when dealing with many features. This study

proposed a set of features to characterise HTTP/2 traffic for both normal

and attack class, and identified a set of the most relevant features.

∙ HTTP/2 stealthy attack model definition. Having classified attack

and normal traffic, one of the important results was to present models that

generate HTTP/2 traffic of both classes. This model produced stealthy at-

tack traffic that represented similar characteristics to normal traffic. The

thesis presented model parameters which give wide opportunities to re-

searchers in the area to explore further attack traffic patterns.

1.5 Thesis Structure

HTTP/1.1 and HTTP/2 protocols are discussed in the next chapter. It details

how a pair of client-server can exchange information using the protocol and shows

the distinction between both protocols. Having firstly discussed how HTTP/1.1

protocol works, Chapter 2 discusses how DoS attacks can be launched in com-

puter networks running HTTP/1.1 protocol, and how they can be detected. The

chapter shows the gaps that exist in the literature on DoS detection methods

when applied to HTTP/2.

To study how HTTP/2 DoS attack traffic can be detected, this thesis modelled

and generated both normal and attack traffic. A computer lab was setup for the

purpose of generating the traffic, extracting the features, and creating datasets

for analysis. These are discussed in Chapter 3.

Methodology for normal traffic modelling and generation is discussed in Chap-

9

ter 4. Similarly, the discussion on how attack traffic was modelled and generated

is presented in Chapter 5. Analyses of these traffic patterns led this study to

model and generate stealthy attack traffic that degraded the performance of the

detection techniques previously presented. Two stealthy attack traffic models

were proposed in Chapter 6. Furthermore, the chapter showed how the stealthy

traffic detection analysis performed when the analysis were based on features

commonly used by HTTP/1.1 DoS detection methods.

10

Chapter 2

Literature Review

This chapter is divided into four main sections. The first section is a techni-

cal review of HTTP/1.1 which is the current protocol for web communications.

It provides details on how the HTTP/1.1 protocol facilitates communication of

messages across the Internet. The second section is a technical review of DoS

attack, explaining its types and variants such as DDoS. It also illustrates how the

attacks can be carried out by the adversary. The third section reviews the liter-

ature on how anomalous traffic such as DoS/DDoS attacks can be detected. It

further discusses machine learning techniques focusing on how they are deployed

for anomaly detection and traffic analysis. The fourth section is a technical re-

view of HTTP/2 covering: how HTTP/2 has a different information exchange

mechanism from HTTP/1.1; what the relevant security implications are; how it

is exposed to DoS attacks; and which techniques were proposed in this study to

detect DoS attacks against HTTP/2 servers.

2.1 HTTP/1.1 Protocol

The web traffic uses the Internet to connect the user and the information resources

hosted on web servers. The standard protocol for supporting web activity is the

Hypertext Transfer Protocol (HTTP). This section provides a thorough review

on how HTTP operates on the Internet.

The World Wide Web is a term coined by Tim Berners Lee in 1989 to denote

11

Figure 2-1: A client-server communication model

the universal world of information accessible through networked computers. It

was designed with simplicity in mind for users to search and view information. A

typical web communication exchange involves a search requested by a user from

a client computer from a remote computer server. This is illustrated in Figure

2-1. In response to the request, the web server processes and returns data to the

client machine.

In 1991, Berners-Lee initiated a high-level design of a computer commu-

nication protocol to implement the above client-server communication mecha-

nism (Berners-Lee, Fischetti, & Foreword By-Dertouzos, 2000). This protocol

was named Hypertext Transfer Protocol (HTTP) and it was unofficially named

HTTP/0.9. The protocol allowed a client to request a file from a server; and

allowed a server to send a response file in Hypertext Mark-up Language (HTML)

format. This format can contain references to an image and links to other docu-

ments. An HTTP client, such as a web browser, can retrieve the referenced image

by using HTTP: the web browser requests the image to a server, and the server

responds by sending the image to the web browser.

This initiative was well received and led to the rapid growth in web-based

communication. Client-side software was written to ease the use of web com-

munication over the Internet. The first client software was Mosaic and it was

renamed to Netscape when it commercialised the software in 1994. Subsequently,

the HTTP Working Group introduced and revised the protocol over time (Table

2.1). HTTP has become the protocol of choice for web browsing communication,

and web browsers such as Mozilla Firefox, Chrome, Internet Explorer and Opera

have become popular client software for facilitating web-based information access

by end-users.

12

Table 2.1: HTTP versions and years of release

Version Year introduced
HTTP/0.9 1991
HTTP/1.0 1996
HTTP/1.1 1997
HTTP/2.0 2015

Figure 2-2: A client-server communication detailed with layers

To reach a web server, information sent by web browsers was encapsulated

through different computer communication layers before being transmitted over

the Internet. This is illustrated in Figure 2-2 which essentially depicts the In-

ternet Protocol suite , i.e. a set of protocols used for computer communications.

The figure illustrates the Internet that consists of intermediary machines such as

routers which function to find connection paths between clients and servers. Ide-

ally a router has many physical network interfaces to route network information

from an input interface to an output interface. A series of connected routers link

two end computers and allows these computers to exchange network messages. A

mesh of router links creates an Internet communication infrastructure. The figure

shows that routers are also computers that are equipped with layered computer

communication architecture.

To allow communications between different computers, each message from

each layer is encapsulated at the layer below, to pack the information for network

transmission. A header is affixed at each layer, allowing the layered intercon-

nections. This is shown in Figure 2-3. Header-affixed information in network

communications is termed packets.

13

Figure 2-3: Messages are encapsulated at each layer.

The Application Layer describes protocols for human to interact with the

network. HTTP is an example of an Application Layer protocol. Other than

HTTP, examples of popular protocols are File Transfer Protocol (FTP) to trans-

fer files, Peer-to-Peer (P2P) to seamlessly connect with another computer, and

Simple Mail Transfer Protocol (SMTP) to facilitate exchange of emails. The

Application Layer translates human inputs (such as a website address) for de-

livery to the layer below it. For example, to request a page from a remote

web server, the web browser translates the website address to a destination

IP address (explained shortly) and uses HTTP to send a text message such as

GET /index.html HTTP/1.1 to the destination address. To do this, the GET

message is firstly encapsulated in the Transport Layer packet.

The Transport Layer manages a connection with a remote end, controls the

flow of the packets, and informs the Application Layer service type (e.g. HTTP).

The remote end in this example is the web server (which address was already

typed on the web browser as described above). User Datagram Protocol (UDP)

is an example of a Transport Layer protocol. UDP defines simple connections

without mandating a remote end to acknowledge that a packet has arrived at the

destination. On the other hand, Transmission Control Protocol (TCP) is an ex-

ample of a Transport Layer protocol that mandates a remote end to acknowledge

if it has received a packet. TCP is a reliable transport protocol; it initiates and

terminates a connection. Controlling connections is done through sending TCP

packets with some flags in the TCP header indicating the state of a connection,

such as initiating a connection, ending a connection, or acknowledging a received

packet. The TCP header also specifies the Application Layer service type it car-

14

ries through the use of port numbers. For example, HTTP is defined to function

on TCP port 80. To find a path to the destination address (in this example, the

web server), the TCP packet is encapsulated in the Network Layer packet.

The Network Layer is responsible for routing of packets through the Internet.

The Internet Protocol (IP) is the world standard to route packets from the source

(i.e. the computer where the web browser is) to the destination address (i.e. the

web server). These source and destination addresses are defined in the IP header

. Routers, the intermediary devices between the source and destination machines,

inspect the IP headers to find the destination address. They look up the routing

table to find which interface associates with the destination address, and forward

the packets to a physical interface. The Link Layer handles how the packets

are transferred over the wire through the routers’ interfaces as electric or light

signals.

The communication protocols described above are repeatedly applied at each

hop of a route until the packet reaches the destination address. At each router,

the process is reversed from the Link Layer to the Network Layer. Routers remove

the header of the Link Layer so that IP header information can be examined. Sub-

sequently, the Network Layer to Link Layer encapsulation process as explained

above is also repeated: routers find which interface is associated with the desti-

nation address, encapsulate the IP packet into a Link Layer frame, and forward

the packet to a physical interface. At the destination machine, the web server

removes each lower layer header until it obtains the original HTTP message.

After the web server eventually finds the GET /index.html HTTP/1.1 mes-

sage, it sends the requested HTML file back to the client. An example of an

index.html file content is a "<html>HelloWorld</html>" message. The file is

sent as a text message from the web server to the web browser following exactly

the same procedure as previously described. The simplified end-to-end HTTP

communication is illustrated in Figure 2-4. The figure illustrates how HTTP

messages allow clients and servers to communicate while decoupling the protocol

from network issues. In summary, HTTP allows the web browser to request files

from the web server using text messages without having to define the network

15

Figure 2-4: An end-to-end HTTP communication

protocols, which are standardised and implemented within HTTP supporting

machines.

The web traffic sent from a client to a web server is termed as HTTP Request,

and the response traffic is called HTTP Response. When a client sends a flood

of HTTP Requests, the server can become too busy handling the requests and

can fail to respond. An adversary can design this scenario to attack a web server.

This attack is called Denial of Service (DoS) attack which is detailed in the next

section.

2.2 DoS Attacks

This section reviews the underlying technical mechanism of DoS attacks. These

attacks can be described as malicious attempts to inhibit the legitimate use of a

computing service (CERT, 1997). There are two techniques that can be employed

by an adversary to carry out such attacks: flooding technique, and vulnerability-

based technique (Loukas, Gan, & Vuong, 2013; Mirkovic & Reiher, 2004).

Flood-based DoS attack

In flooding techniques, an attacker sends a large volume of traffic to a target

machine (e.g. a web server) beyond its processing capabilities. This causes the

target to consume its resources, comprising CPU time, memory, and network

bandwidth. As such, the machine is unable to perform its services in requisite

time frames, leading to incapacitation.

A flood-based DoS attack variant uses many machines to simultaneously flood

a target computer (Figure 2-5). This is called a Distributed Denial of Service

16

Figure 2-5: DDoS attack

(DDoS) attacks (Chang, 2002). DDoS is a flood-based attack carried out by many

machines operating in tandem and generating a large volume of requests towards a

target. The technique uses software agents, sometimes called DoS handlers, bots,

or botnets, that are illegitimately installed on compromised computers, which are

also referred to as zombies. They can launch simultaneous attack traffic towards

a victim under the attacker’s control, causing a much larger volume of traffic sent

to the victim compared to the traditional DoS attack traffic volume.

The victim is incapacitated due to the flood of packets that it has to process,

regardless of the distinction between DoS/DDoS technique. In fact, flooding

attacks after year 1999 have been mostly DDoS in nature (Zargar et al., 2013).

Since DDoS was derived from DoS techniques, the word DoS attacks means both

DoS as well as DDoS attacks, in the context of the thesis.

Vulnerability-based DoS attack

Vulnerability is the quality of being easily hurt or attacked. In computing ter-

minologies, ’vulnerability’ refers to a weakness in the computing design that could

be attacked. In vulnerability-based techniques, an attacker sends crafted infor-

mation to a target machine. The information exploits the vulnerability existing

in the target machine causing service disruption. An example of a vulnerability-

based attack is provided in the next section.

It should be noted that a demarcation between flooding and vulnerability-

17

based technique is not clearly outlined in the literature. Some DoS techniques

succeed through flooding malicious packets that exploit a vulnerability of a sys-

tem. The examples are given shortly in the following section. Furthermore, when

a vulnerability of a target computer has been patched, the machine can still be

subjected to flood-based DoS attacks.

Based on the communication layer it targets, DoS attacks can be divided into

network-based and application-based, which is discussed in the following section.

2.2.1 Network-Based DoS Attacks

The World-wide communications are based on the Internet Protocol suite as pre-

viously discussed (page 13). In Network-based DoS attacks, adversaries leverage

the features of these network protocols. Network-based DoS attacks comprise a

flood of network-layer packets that causes service disruption on a target machine.

The following discussion details the common and very effective attacks of this

type (Northcutt & Novak, 2002; Peng, Leckie, & Ramamohanarao, 2007).

SYN flood attack

When a client machine attempts to establish communications with a server,

it initiates a three-way handshake in order to establish the connection. This is

a sequence of three TCP packets exchanged between the client and the server.

Some TCP flags defined in the TCP header are exchanged as follows: the client

sends a TCP SYN message to the server; the server responds with a TCP SYN-

ACK message to the client; and the client responds with a TCP ACK message

to the server, as is illustrated in Figure 2-6a.

After the three-way handshake, a communication link is established to facil-

itate bidirectional communications. This design can be abused by a malicious

client, where the adversary can send a large volume of SYN packets to a target

server, followed by not responding with ACK packets. This is shown in Figure

2-6b. The exploit causes the server to indefinitely wait for the ACK packet after

completing the first two steps of the three-way handshake. A large amount of

18

Figure 2-6: SYN flood attack

SYN packets sent, in the absence of the subsequent ACK packets can thus deplete

the memory resources of the target machine.

Smurf attack

A broadcast address is an IP address to where a machine can send a packet,

in order to reach all machines in the same network. For example, when a new

device or computer is connected to a network, it attempts to setup an IP address.

It must solicit its IP address from a remote server that supplies IP addresses. It

discovers the remote server by sending its request to a broadcast address. Any

computer that sends a packet to a broadcast address will effectively broadcast this

request to all hosts in the network (Figure 2-7a), where a host is a general name

for all computers or network devices such as routers and servers. In response to

the request, a designated server supplies the IP address to the newly connected

device.

The use of broadcast addresses can be abused when an attacker sends a

spoofed ping packet to the broadcast address. A ping packet is a network packet

sent from one machine to another to detect if the remote machine is turned on

and can respond to network-based requests. A host that receives a ping packet

sends a ping-response packet to the requesting host to signify that the receiving

host is alive (Figure 2-7b). This is a convenient tool for legitimate network ad-

ministrators to audit network connections. When a ping packet is sent from one

machine to a broadcast address, all live hosts in the network send ping-response

19

Figure 2-7: Smurf attack

packets back to the source. Smurf attack is a technique where an attacker spoofs

its source IP address and sends a large volume of ping packets to a broadcast

address. The spoofed source IP address is also changed by the adversary to the

address of a target machine, to make the ping appear to be originating from a

legitimate target machine. A spoofed ping packet sent to a broadcast address

causes all hosts in the network to send ping-response packets back to the spoofed

address (Figure 2-7c). A series of spoofed ping packet exploited as such can create

a flood of ping-reply packets that incapacitate the legitimate target.

Tribe Flood Network

The Tribe Flood Network attack is another example of a flooding attack that

exploits the use of ping packets for malicious purposes. This attack makes use of

many compromised computers to generate attack traffic. Malware can be installed

on the compromised machines to receive and run remote commands from the

attacker. Because the machines seamlessly follow the attacker’s command, they

are often referred to as zombies. In Tribe Flood Network, ping-reply packets are

utilised for issuing commands by an attacker to the zombie machines to initiate a

DoS attack. For example, the ping-reply packet causes the malware installed on

the zombie machines to simultaneously generate the previously discussed SYN

20

flood traffic. Ping packets are not usually filtered by firewalls, rendering such

attack very effective (Northcutt & Novak, 2002).

Loki

Loki extends the capability of the Tribe Flood Network by exploiting the

protocol used by ping packets, i.e. the Internet Control Message Protocol (ICMP).

The use of ICMP is to aid router administrations in computing the number of

hops (network devices) from one machine to another, detailing the network and

host status, and checking remote router parameters. The previously discussed

ping packets are defined as a pair (i.e. 21) of ICMP messages: echo requests and

replies. ICMP control header can accommodate a total of 215 instructions. This

ICMP header room is what Loki as an attack exploits to have greater command

options, and to be successful in carrying out attacks.

Loki software acts as a client-server application, with the server agent being

installed on the zombie machines, and the client program interacting with the

attacker on scheduled intervals. When a compromised machine runs a Loki server,

it executes commands received from a Loki client. An attacker controlling the

Loki client can cause the victim machine to display stored passwords, send spam,

or act as a DoS handler. As will be discussed in Section 2.3.2.4, sophisticated

DoS handlers or bots are part of recent challenges in detecting DoS attacks.

WinFreeze

WinFreeze is a technique used to intoxicate a target machine and to cause

failure. The target is remotely configured to flood itself with any network pack-

ets that it receives. The technique uses ICMP packets to configure a target

machine to forward all network packets it receives to its own address until it is

incapacitated.

Legitimately, ICMP packets can be utilised to update the network path of a

remote machine in the network, so that it can efficiently reach a destination ad-

dress. When a machine receives an ICMP-redirect packet, it updates its routing

table according to the information that it received from the packet. In Win-

21

Freeze, an attacker sends spoofed ICMP-redirect packet to a target machine so

that the source IP address becomes the target’s IP address. In this phase, the

target computer becomes a victim. The victim updates its routing table with the

information from the packet and it continuously loops back any network packet

to itself. A series of network packets sent this way can accumulate and consume

the memory or the CPU utilisation of the victim.

2.2.2 Application-Based DoS Attacks

The Application layer provides services to Internet users. Popular examples of

several application-layer services are provided above. The discussion in this sub-

section considers only HTTP-based DoS attacks. The attacks are grouped into

two, namely vulnerability-based and flooding-based, within the scope of the the-

sis.

Vulnerability-based attack

Adversaries exploit the design or programming flaw of the software run on a

machine. In web services, attackers can send crafted HTTP packets to attack

the target. The target is any machine that runs HTTP services such as a web

server, or a router that runs a web service as an interface to configure the routing

parameters.

An example of crafted packets are HTTP messages that contain codes, illegal

characters (such as "∖"), or Null parameters. When the server is not programmed

to handle these special situations, it can suffer from a number of undefined be-

haviours such as infinite loops, runtime errors, buffer overflows, or read/write

deadlocks. These behaviours cause the computer to show signs of resource con-

sumption such as high CPU utilisation, high memory consumption, or low net-

work throughput.

Vulnerability-based techniques can attack the weaknesses other machines,

while targeting to incapacitate a web server. Web servers are commonly con-

nected to other networked services such as database servers. An exploit can

22

send HTTP requests containing crafted database queries. These queries exploit

vulnerabilities that exist in the web-database connector interface (Zargar et al.,

2013). As a result, web users observe that the web server does not respond to

their requests.

Currently, there are more than 786 known vulnerabilities that are exploited

by sending HTTP packets that lead to the unavailability of a computing system

(Common Vulnerability and Exposures: The Standard for Information Security

Vulnerability Names , 2016).

Flooding-based attack

HTTP Request packets can consume the CPU utilisation of web servers.

When a web server receives an HTTP Request packet, it parses the HTTP mes-

sage to prepare for a response web page. The content of a response page is

structured according to what the message requests. These requests can cause the

web server to search and retrieve a file, connect to a database and update some

parameters, or communicate with other application layer services. Afterwards,

the web server returns the response web page to the remote users as a by-product

of the service. These activities demand CPU utilization at the web server. A

large number of HTTP Request packets will incapacitate web servers from future

processing (Peng et al., 2007; Zargar et al., 2013). Subsequently, this can exhaust

its CPU consumption.

HTTP Requests can also deplete a web server’s memory resources. When a

web server receives an HTTP Request, it maintains a session to keep information

that has been communicated with the client. To illustrate, a session is commenced

when a user logs-in to an e-commerce web account so that the user’s shopping

chart can be tracked. The session is ended when the user logs-out, which is when

the shopping cart becomes empty. Without session maintenance, web users can

never experience personalised logged-in accounts. In many user-friendly environ-

ments, web servers maintain sessions without mandating users to login. Session

maintenance consumes a web server’s memory. A large number of open sessions

can deplete the memory of the web server.

23

Because session maintenance can incapacitate web servers, some implementa-

tions allow web servers to limit the total number of active sessions during a frame

of time. However, this security measure can still be exploited. Attackers can send

multiple HTTP Requests within a single session until the web server resources

are exhausted. Session identification number (Session ID) is always exchanged

between a client and a server. In such a scenario, the first HTTP Request causes

the server to return Session ID in the HTTP Response message. Attackers can

craft subsequent HTTP Request messages to always advertise the same Session

ID and send a flood of such messages. This exploit can bypass the security control

that limits the allowed number of sessions and incapacitate the web server.

Another web security measure includes releasing previously opened, unused

sessions. Web servers close sessions where no HTTP Request is received within a

predefined time. An example of this can be seen with electronic banking websites

that log the users off after a period of idle time. Other than to protect users’ data,

this measure is considered as a technique to maintain the amount of available

memory. However, a DoS attack technique can bypass this measure. Adversaries

can learn the Session ID as previously described to open a session and send HTTP

Requests at a rate higher than the server predefined idle period time, to maintain

the opened session. When this procedure is repeated with multiple sessions, the

web server eventually depletes its memory.

Some web services require CPU-intensive tasks and therefore DoS attacks can

succeed by launching a series of requests (Crosby & Wallach, 2003). Web servers

are commonly connected to other networked services such as database servers,

mail exchange servers, voice call services, and interconnection services to other

platform or software. Some services require the CPU to process computationally

demanding tasks. As such, the web server is more susceptible to DoS attacks.

2.2.3 Discussion

There are two observations from the understanding of DoS techniques. First,

regarding the type of DoS attacks (i.e. flooding and vulnerability), and second,

24

regarding the DoS variants (i.e. DoS and DDoS).

It can be shown that the boundary between the two types of DoS attacks

– the flooding and vulnerability-based techniques – is not always obvious. For

example, the SYN flood was often illustrated as an exploit to an implementation

bug (Mirkovic & Reiher, 2004; Moustis & Kotzanikolaou, 2013), while it is only

effective when a flood of such packets is launched (Zargar et al., 2013).

Similarly, the boundary between DoS and DDoS seems not to be essential

when analysing traffic. For example, in WinFreeze, it can be seen that an attacker

does not decide on the number of zombie computers it requires to successfully

flood a target. The victim is incapacitated through the network packets it floods

itself. When the victim receives packets from machines across the Internet, it

sends response packets that are routed back to itself. Because this process loops

indefinitely, one packet sent from a legitimate user to a victim can incapacitate

the victim. A web server usually serves many, rather than one user; when the

victim is a web server, any number of clients can send Request packets to the

victim. Hence, any number of clients can eventually flood the victim, regardless

of the distinction between DoS and DDoS.

2.3 DoS Detection Techniques

This section reviews DoS detection techniques as found in the literature. It is

organized into two parts according to the detection technique, i.e. vulnerability-

based techniques and flooding-based techniques. Because this thesis presented

HTTP/2 flooding techniques, the second part of this section meticulously dis-

cusses the research reported in the area. The review on the detection methods

against flooding techniques presents both network and application-based DoS

detection methods, elaborating on how research in DoS detection using ma-

chine learning techniques remains active, and analyses the challenges to detecting

application-based DoS attacks.

25

2.3.1 Detecting Vulnerability-Based Attacks

The most effective measure to detect and prevent known vulnerability DoS at-

tacks is through patching the vulnerability on the target system (Moustis &

Kotzanikolaou, 2013). Vulnerable web servers are patched through replacing vul-

nerable server modules or by upgrading the entire server software to a more secure

version.

Although it might be viewed as a straightforward solution, Internet-connected

web servers are not always rebuilt to run on the latest software version. The ac-

tivity of patching and upgrading software itself can disrupt a service. Maintaining

continuous web services for this purpose requires extra hardware, knowledgeable

operators and a planned-work schedule which altogether can prove to be costly.

Hence, companies often adopt other means to prevent vulnerability-based DoS at-

tacks. These include detecting known attack signatures and blocking the packets

that match the signatures, configuring server session timeout, or using firewalls

to limit the number of suspected connections.

Traditionally, signature-based detection was found to be administratively pro-

hibitive. For example, when a software was vulnerable due to its inability to parse

and process irrelevant characters in network traffic, such as a back-slash, the "∖"

signature is recorded to block the incoming packets that contain such characters.

This implied that new signatures were to be updated when new exploits were un-

derstood, and therefore the server remained vulnerable when new exploits were

discovered. Furthermore, good quality signatures can be complex (Paxson, 1999)

as new signatures must cover the highest abstraction of an attack to represent

all variations of the attack. This requires not only expert knowledge but also

sufficient amount of data to analyse.

Since identifying signatures is non trivial, signature-based detection methods

suffer from false-positives, i.e. some legitimate traffic is identified as an attack.

This prompts research in the area remains active such that new techniques are

proposed to reduce false alarm rates. In fact, signature-based detection methods

were criticised to overemphasise on reducing false alarm rates, at the cost of algo-

26

rithm complexity for gaining real-time performance (Hubballi & Suryanarayanan,

2014).

2.3.2 Detecting Flooding Attacks

Flooding DoS attack traffic does not necessarily rely on signatures. Attackers

generate fictitious traffic packets of a large volume. Hence, many detection tech-

niques in the literature model normal traffic patterns in order to differentiate

and detect anomalous traffic patterns. Statistics have been used to prove the

significance of an observation and how it differs from the defined model. The

rest of this section discusses the detection techniques for flooding attacks, further

divided into network-based and application-based. It provides a comprehensive

background on the application-based flooding technique to review related research

to the subject in this thesis, i.e. HTTP/2.

2.3.2.1 Detection Techniques for Network-Based DoS Attacks

Crafting the content of network packets (as described in Smurf attack and Win-

Freeze) implies that anomalous traffic presents varying patterns, as is evident

from packet header information. Hence, measuring the statistical properties

of network packet headers was proposed to detect anomalies in crafted pack-

ets (Feinstein, Schnackenberg, Balupari, & Kindred, 2003). The authors used

source IP, destination IP, and destination port as features, and measured the

randomness/uniformity of the distribution of a network flow with reference to

a specific feature (e.g. entropy of source IP). The results obtained showed that

source IP and destination port are features that can effectively be used to detect

DoS traffic. The method was highly accurate when applied on a large dataset that

represented core Internet traffic, but degraded when applied on smaller datasets

that represented smaller networks.

Many detection solutions were deployed on the routers of the network

providers. These routers monitored bandwidth usage from traffic that passed

through them, grouped based on destination addresses. One method was to mea-

27

sure normal bandwidth against anomalies (Chan et al., 2006). Hence, Smurf

attacks were detected when showing statistically high number of ICMP packets

when compared to TCP packets; and SYN flood attacks were detected when the

number of SYN packets did not balance with the number of ACK packets.

Routers often become the subject of DoS attacks and several studies were

proposed for attack detection on routers. Traffic validation was proposed to

monitor anomalies in the network (Mizrak, Savage, & Marzullo, 2008). Such an

approach asserted that attacks were detected when the property of ingress traffic

was significantly different from traffic leaving the network. Specifically, the study

monitored the flow, content, packet order and timeliness of the packets that

passed through routers. The authors of the study hinted that the accuracy of the

results could be undermined in actual settings where router failure occurrences

were common. A similar approach that monitored incoming and outgoing packets

through routers was proposed to detect anomalous traffic when the IP address

was spoofed (Gonzalez, Anwar, & Joshi, 2011). The study introduced a reliable

router to monitor traffic passing through other entry points to the network.

2.3.2.2 Detection Techniques for Application-Based DoS Attacks

This section explains techniques found in the literature to detect application-

based DoS attacks. The broader area of study to identify flooding-based anoma-

lous traffic falls under the study of traffic analysis. The purpose of the traffic anal-

ysis exercise is to identify traffic characteristics that portray standard application

operations. Identifying the types of traffic that flows in networks is important for

network operators and researchers: network operators often sought to only serve

traffic that is legitimate and differentiate it from illegitimate. Anomalous traffic

is generated by viruses and worms, and traffic that consumes bandwidth such as

DoS/DDoS attack traffic is also malicious by class. Characterising application

types within a network can help categorise traffic into legitimate and anomalous.

Traffic could be classified based on its flow, i.e. the number of packets and

the size of bytes being transferred. One of the advantages of this approach is that

28

only one direction of network flows need to be observed (Erman, Mahanti, Arlitt,

& Williamson, 2007). This is useful when only one side of the communicating

equipment in a network was accessible. For example, UDP traffic is unidirec-

tional by nature, rendering traffic analysis methods that rely on bidirectional

flow information ineffective. This approach could be thoroughly independent of

TCP/IP information (Dyer, Coull, Ristenpart, & Shrimpton, 2012; Tang, Lin, &

Luo, 2014), making it suitable for classifying applications and anomalies caused

by their unintended use. For example, a resource-consuming Peer-to-Peer appli-

cation that uses web-traffic port number 80 can be accurately identified through

analysing the flow of one or more packets transmitted between a given pair of

hosts (Auld, Moore, & Gull, 2007).

Traffic could also be analysed through its social and functional pattern, or

through the behaviour of hosts. For example, a scheme was proposed to detect

application types that resided within a network(Karagiannis, Papagiannaki, &

Faloutsos, 2005). The study constructed the behaviour of a host from its IP

address, port number, flow, and size of the packets. The work was able to iden-

tify traffic types or applications through how each host communicates with other

hosts. For example, in DNS lookup activities, many hosts were involved in for-

warding packets to other hosts; in web communications, fewer hosts were commu-

nicating in both directions of the communication channels; in mail services, hosts

cascaded packets from one host to another; and in anomalous behaviour, many

hosts communicated with one single host within a short time period. Analysing

the behaviour of these hosts was effective when the observer had access to both

sides of the communicating equipment (i.e. a pair of computers that communicate

to each other, as in client-server communications).

Inspecting the application-payload packets could also help accurately classify

their application types. Payloads are the content of any network packets. One

study (Moore & Papagiannaki, 2005) aimed to address the urgency of network

operators to identify legitimate customer traffic and those that misused network

resources, and effectively, bandwidth. The challenge to identify legitimate traffic

is that customer traffic patterns change based on emerging applications. By

29

the same token, the challenge to identify illegitimate traffic is that attacks can

use a legitimate protocol to carry their malicious instructions. The study was

able to identify up to 79% of malicious traffic, where only 1 KB of each packet

was examined. When the packets were parsed to classify the payload messages

(e.g. FTP control), up to 98% of the traffic was identified. A near 100% traffic

identification was thus achieved when the entire payload was examined.

Statistics on the traffic captured from the real networks have been reported

in many studies to monitor traffic activity. In published methods, DoS attacks

were defined as activities above defined thresholds of a legitimate activity. Traffic

models could be constructed from the average packet rates and inter-arrival times

between consecutive packets for legitimate traffic. A subsequent comparison of

observed traffic with captured traffic flows facilitates anomaly detection. In order

to reduce high-dimensionality of the observed traffic data, a proposed method

(Jung, Krishnamurthy, & Rabinovich, 2002) grouped or clustered similar packet

fields such as address, port, and protocol. Increasing levels of activity within

clusters indicate DoS attacks in action.

Entropy (Shannon, 2001), defined as the degree of concentration or dispersion

of random information, has often been used in statistical methods for detect-

ing DoS attacks. A large entropy value implies large uncertainty of the ran-

dom variables being studied. In detecting DoS attacks, this property of show-

ing distributional changes was found to be superior to methods that only mea-

sure volume changes (Feinstein et al., 2003; Lakhina, Crovella, & Diot, 2005).

Statistics-based detection methods use entropy to identify applications in hetero-

geneous network which transport large-volume applications (Petkov, Rajagopal,

& Obraczka, 2013), and distinguish DoS from sudden increases in volume of le-

gitimate traffic (Ma & Chen, 2014; Rahmani, Sahli, & Kamoun, 2012; Sachdeva

& Kumar, 2014).

Wavelet analysis has been used generally for addressing optimisation problems

in the signal processing domain. The technique was found in the literature to

distinguish anomalous traffic (Barford, Kline, Plonka, & Ron, 2002; W. Lu &

Ghorbani, 2009), and DoS attacks (Dainotti, Pescape, & Ventre, 2006; L. F. Lu,

30

Huang, Orgun, & Zhang, 2010), with high effectiveness.

Some DoS mitigation approaches found in the literature identify malicious

clients instead of differentiating traffic. Once a client is identified as malicious,

its access to the server is blocked allowing legitimate traffic to pass. One ap-

proach (W. Meng, Li, & Kwok, 2014) performed identification of malicious clients

through its ’IP reputation’ calculation. When a client alerted an intrusion-

detection system, its source IP address was recorded and monitored. For all

of the client’s subsequent packets, the technique adjusted the IP reputation ac-

cording to the ratio of packets that alerted and passed the intrusion-detection

system. Once the IP reputation surpassed a threshold, the technique blocked

subsequent traffic that originated from the source IP address being monitored.

Similarly, some techniques mitigated DoS through blocking illegitimate source ad-

dresses (Ferguson, 2000) and spoofed IP addresses (Chen, Das, Dhar, El-Saddik,

& Nayak, 2008; Park & Lee, 2001; Savage, Wetherall, Karlin, & Anderson, 2000).

Another approach proposed in the literature identified legitimate clients

through a challenge-response technique. For example, some approaches deployed

a client puzzle protocol where a client machine must solve a cryptographic chal-

lenge sent by a server to identify itself as a legitimate client (Juels & Brainard,

1999; Stebila, Kuppusamy, Rangasamy, Boyd, & Nieto, 2011). In this approach,

clients capable of solving a problem were granted access to a server, while denying

other traffic such as DoS attacks. The drawback of this approach was that re-

sponding to cryptographic challenges could be automated and thus compromised

by attackers. Other approaches require a CAPTCHA – challenge that require

human end-users to type a series of letters illustrated through a distorted image

– to justify that the client is human (Gligor, 2005; Kandula, Katabi, Jacob, &

Berger, 2005). Client machines were tagged as legitimate after they had passed

a CAPTCHA test. In this approach, a finite number of legitimate clients were

served when large traffic volume was detected, thereby guaranteeing access to

human users.

Machine learning techniques are popular in solving network traffic analysis

problems, since they are able to classify large data spanning multi-dimensional

31

spaces. Due to its important role in addressing the gaps shown in this thesis,

this method is broadly discussed in the next section. It reviews different tech-

niques based on machine learning techniques, and shows how they are applied for

detecting DoS attacks.

2.3.2.3 Anomaly Detection Techniques using Machine Learning Tech-

niques

This subsection discusses machine learning techniques as part of the methods

used in detecting traffic anomaly. Machine learning methods are divided into

two types: supervised and unsupervised. In supervised learning, training data is

labelled according to class. Labelling data involves tagging the examples in the

training dataset, for example into legitimate and attack class. Supervised learning

techniques learn from the labelled input examples, and produce a classifier that

can be used to map unseen data into one of the two previously defined classes.

These classifiers can be represented in terms of a set of rules. Intrusion-detection

systems that employ supervised learning techniques can be equipped to contain

such rules, filtering instances according to the values of the different features, and

therefore can classify new instances, for example into "legitimate" or "attack".

Unsupervised learning techniques find statistical relationships among in-

stances of the data, and classify instances based on how strongly they correlate.

The techniques do not require labelled training data for learning; rather, they

learn from a probabilistic model of the data. Intrusion-detection systems that

employ unsupervised learning methods are equipped with some statistical pa-

rameters, such as learning rate, and those used to calculate error measurements

between a new instance and the rest of the data. Instances that are statisti-

cally different from the others are considered as belonging to another class, or

anomalous.

It is not always clear to define the boundary of what constitutes machine

learning methods. For example, the Naïve Bayes techniques are introduced when

discussing machine learning in some techniques (Witten & Frank, 2005; Z. Yu &

32

Tsai, 2011), while it is referred to as Probabilistic Learning in another reference

(Bhattacharyya & Kalita, 2013). Rather than redefining what constitutes ma-

chine learning techniques, this work follows Witten and Frank’s definition that

many statistical and probabilistic methods can be regarded as machine learn-

ing methods, since "these perspectives have converged" (Witten & Frank, 2005,

p.29). Machine learning techniques involve feature selection and data visuali-

sation which use statistics of data to construct classifier models. In selecting

features, statistics tests are used to find the degree of coherence when a feature

of a data sample is selected. This allows features to be ranked according to their

relevance. Many machine learning techniques benefit from ranked features to

reduce dimensionality and increase performance. The next subsection discusses

examples of machine learning techniques.

Examples of machine learning techniques

This subsection is to introduce the most commonly used machine learning

techniques in identifying attacks or traffic anomalies.

Naïve Bayes

Naïve Bayes is one of the most widely used techniques in data mining com-

munities (X. Wu et al., 2008). The name originates from its nature to naïvely

assume that the features originate from independent events. Despite this as-

sumption, the technique works surprisingly well when tested on actual datasets

(Witten & Frank, 2005, p.91).

The technique is a conditional probability model. It is the probability of an

event given that another event has occurred. Stated formally, it is the probability

of a data sample to belong to a class 𝐶 given a new instance 𝑥 is seen. In Naïve

Bayes, this is commonly called the posterior probability:

𝑝(𝐶𝑘|𝑥1, . . . , 𝑥𝑛) (2.1)

where 𝑘 is the number of classes, 𝑛 is the number of features that represent

33

Table 2.2: An example of traffic samples characterised by three features

Class cart today send # examples
e-commerce 400 350 450 500
email 0 150 300 300
news 100 150 50 200
Total 500 650 800 1000

𝑥. For each possible class 𝑘, the highest posterior probability is assigned to the

new instance.

The technique is first applied to a training dataset to construct prior probabil-

ities. The posterior probability defined in equation (2.1) is calculated by finding

the likelihood to belong to a class, based on a prior observation of the evidence.

This is formulated as follows:

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝑝𝑟𝑖𝑜𝑟 × 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒

An example can illustrate how this technique can classify an unknown in-

stance. The following example is adapted from Witten & Frank (Witten &

Frank, 2005, p.88). Suppose that a web page must be categorised if it were

an e-commerce, an email service, or a page containing sports news based on the

words it contains. The category of the web page should be characterised by three

words: "cart", "today", or "send". To serve as a prior evidence, suppose a re-

searcher collected statistics from a survey. The results are summarised in Table

2.2. In this example there were 1000 web pages surveyed, of which there were

500 e-commerce pages, 300 email pages, and 200 news pages identified.

In this example, the table was the training dataset, the web-page types were

the classes, and the three words were the set of features. The total number of

web pages surveyed was the total number of examples or instances. The first

row after the table header shows that of the 500 e-commerce pages surveyed, 400

of them contained the word "cart", 350 had the word "today", and 450 pages

showed "send" words. Other rows are to be explained similarly.

If a new, unknown web page showed "cart", "today", and "send" words on its

page, Naïve Bayes can be used to determine the class of this new instance. The

34

pre-computation is done as follows.

The prior probabilities are the portion of the classes over all instances.

Hence, in this case,

𝑃 (𝑒𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑒) = 500/1000 = 0.5

𝑃 (𝑒𝑚𝑎𝑖𝑙 = 300/1000 = 0.3

𝑃 (𝑛𝑒𝑤𝑠) = 200/1000 = 0.2

The probability of evidence values are not carried in the final calculation for

two related reasons. First, they are independent of the class so their values are

effectively constant. Second, the final calculation compares the posterior value

of the classes, so the probability of evidence as a constant cancels out. The

probabilities of evidence are shown here for illustration purpose:

𝑃 (𝑐𝑎𝑟𝑡) = 500/1000 = 0.5

𝑃 (𝑡𝑜𝑑𝑎𝑦) = 650/1000 = 0.65

𝑃 (𝑠𝑒𝑛𝑑) = 800/1000 = 0.8

The probability of 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 is the joint probability of each word (i.e. "cart",

"today", and "send") given a class (e.g. e-commerce), or the product of 𝑃 (𝑥𝑖|𝐶𝑘)

for all 1 ≤ 𝑖 ≤ 𝑛. This means the number in each cell in Table 2.2 was divided

by the total number of the class’ examples. The likelihood probability of a class

is the product of these values:

𝑃 (𝑐𝑎𝑟𝑡|𝑒𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑒) = 400/500 = 0.8

𝑃 (𝑡𝑜𝑑𝑎𝑦|𝑒𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑒) = 350/500 = 0.7

𝑃 (𝑠𝑒𝑛𝑑|𝑒𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑒) = 450/500 = 0.9

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝑒𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑒) = 0.8× 0.7× 0.9 = 0.504

Table 2.3 shows the posterior probability on the right-most column. It shows

that the e-commerce class returned the highest number. Hence, the new instance

was classified as an e-commerce web page.

In classifying traffic, Naïve Bayes technique can be used to compute the prob-

ability of an instance belonging to a normal traffic class or attack class, given

35

Table 2.3: An example of traffic samples characterised by three features

Class cart today send likelihood prior posterior
e-commerce 0.80 0.70 0.90 0.504 0.5 0.252
email 0.00 0.50 1.00 0.0 0.3 0.000
news 0.50 0.75 0.25 0.094 0.2 0.019

some observed features such as packet flow and size of traffic instances. Although

it is a classic classifier (Pearl, 1988), Naïve Bayes is used effectively in many

recent studies in traffic analysis and DoS detection (Katkar & Kulkarni, 2013;

Moore & Zuev, 2005; Mukherjee & Sharma, 2012; J. Zhang, Chen, Xiang, Zhou,

& Xiang, 2013).

Traffic analysis is classifying traffic to its application service types such as

mail, web, database, games, multimedia, and also attacks. Precise classification

is essential for network operators to determine the policies for its quality of service.

A study used Naïve Bayes to analyse and classify traffic without inspecting the

payload/content of the traffic (Moore & Zuev, 2005). The dataset was obtained

by extracting features from the TCP headers of the observed traffic. The features

were packet flow, lapsed time between consecutive flow, port numbers, and packet

size. The study showed that it achieved accuracy of 95% in classifying the traffic

through application of Naïve Bayes.

One of the biggest challenges in classifying traffic is the large amount of data

to analyse, given a set of features. To illustrate, Table 2.3 can become excessively

large and computationally expensive with increasing number of data samples and

features. A technique was proposed to rank relevant features so that only a subset

of the original features were used for the purpose of classifying attack and normal

traffic using Naïve Bayes (Mukherjee & Sharma, 2012). Feature selection thus

reduced the dimensionality of the data and therefore offered faster computation.

To compare the performance of the proposed technique, other widely used feature

ranking techniques, such as Information Gain and Gain Ratio, were applied by the

authors. These techniques are also used in this study and are discussed in detail in

Section 3.1.4. The proposed technique in the study showed that it outperformed

the widely used feature ranking techniques when selecting large volumes of data.

36

In contrast, another study proposed a solution when too few data sample were

available (J. Zhang et al., 2013). Due to a large number of emerging applications,

it was difficult to collect a large number of related data samples. The study pro-

posed a technique to pre-process traffic before extracting features to be classified

using Naïve Bayes. The technique correlated traffic flows that were generated

from the same application. Overall accuracy and F-measure were used as eval-

uation metrics. Overall accuracy is the ratio between the number of correctly

classified instances to the total number of instances to predict. F-measure is the

harmonic mean of precision and recall; precision is the ratio between the number

of correct positive results and the number of all instances identified as positive;

recall is the ratio between the number of correct positive results and the number

of positive instances. The study showed that the proposed method outperformed

other machine learning techniques such as Decision Tree and k -NN in terms of

overall accuracy and F-measure.

Decision Trees

Decision Tree is one of the most popular techniques applied for data classifi-

cation (X. Wu et al., 2008). For classification, Decision Tree is a sequence of rules

in which the current selected rule decides the subsequent rules to be selected by

splitting into two or more branches forming a tree-like structure. Decision Trees

learn from training samples to form a tree with its end leaf nodes signifying the

classes of data such as normal or attack. A new data instance can be classified

through traversing the rules from the root of the tree until an end leaf node is

reached.

Decision Tree is a simple but an outstanding technique for explaining the re-

lationship between the input instance characteristics and its target class (Rokach

& Maimon, 2014). Each instance is characterised by a series of features. The

root of a tree is chosen based on certain split functions of the training sample

features. A feature that can produce the best split value is chosen, with its split

rules determining the number of child nodes. This process is repeated on every

node until only one class is found on each child node.

37

Table 2.4: An example of a labelled traffic dataset characterised by three features

flow lapse size class
low short big normal
low short small normal
high short big attack
medium short big attack
medium long big attack
medium long small normal
high long small attack
low short big normal
low long big attack
medium long big attack
low long small attack
high short small attack
high long big attack
medium short small normal

An example can illustrate how a Decision Tree chooses the most relevant

feature to split, and iterates the process until a class is assigned at each of the

end leaf nodes. The following example is adapted from Witten & Frank (Witten

& Frank, 2005, p.97). Suppose a dataset as shown in Table 2.4 describes a 15-

second captured traffic. Each row represents a sample of the captured traffic at

1 second, characterised by some features. These features are the columns of the

table, i.e. packet flow, the time lapse since the last packet of its type was seen,

and the size of the packet. The last column labels the class of each data sample.

Table 2.4 provides the raw data for further processing such as counting the

tally of the features and dividing those values with the total number of occurrences

to compute the probabilities. The counts and their probabilities are shown in

Table 2.5. Examining the first feature in this table, the flow feature showing the

number of attack and normal classes are (2,3), (3,2) and (4,0) respectively. Hence,

when the flow feature was to be treated as a node to split, it would generate three

rules to split:

∙ if the flow was low, then the number of attack and normal classes was (2,3).

∙ if the flow was medium, then the number of attack and normal classes was

(3,2).

38

Table 2.5: The counts and probabilities of the features

flow lapse size class
attack normal attack normal attack normal attack normal

low 2 3 short 3 4 big 6 2 9 5
med 3 2 long 6 1 small 3 3
high 4 0
low 2/9 3/5 short 3/9 4/5 big 6/9 2/5 9/14 5/14
med 3/9 2/5 long 6/9 1/5 small 3/9 3/5
high 4/9 0/5

∙ if the flow was high, then the number of attack and normal classes was

(4,0).

In Decision Trees, a measure of split purity is applied to find the most relevant

feature. This example uses Information Gain as the measure, whose formula is

explained in Section 3.2. The higher the Gain value of a feature is, the more

relevant the feature for data classification.

Decision Tree firstly finds the degree of coherence or dispersion of the

Information at a given node. The Information represents a mix of the observed

attack and normal classes through a number, in bits. The higher the Information

value is, the higher the degree of dispersion. Using this measure, the information

values of each node after the flow-feature split are:

𝐼𝑛𝑓𝑜((2, 3)) = 0.971 bits

𝐼𝑛𝑓𝑜((3, 2)) = 0.971 bits

𝐼𝑛𝑓𝑜((4, 0)) = 0 bits

The Information value of the flow feature, or 𝐼𝑛𝑓𝑜(𝑓𝑙𝑜𝑤) is calculated as

follows:

𝐼𝑛𝑓𝑜((2, 3), (3, 2), (4, 0)) = (5/14)× 0.971+ (5/14)× 0.971+ (4/14)× 0) = 0.693

bits

The examples in the training dataset had 9 attacks and 5 normal classes.

Therefore, the information value of the training dataset, or 𝐼𝑛𝑓𝑜(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) is:

𝐼𝑛𝑓𝑜((9, 5)) = 0.940 bits

39

Figure 2-8: A Decision Tree

The Information Gain of the flow feature is:

𝐺𝑎𝑖𝑛(𝑓𝑙𝑜𝑤) = 𝐼𝑛𝑓𝑜((9, 5)) − 𝐼𝑛𝑓𝑜((2, 3), (3, 2), (4, 0)) = 0.940 − 0.693 = 0.247

bits

The Information Gain is calculated against each feature resulting in:

𝐺𝑎𝑖𝑛(𝑙𝑎𝑝𝑠𝑒) = 0.152 bits

𝐺𝑎𝑖𝑛(𝑠𝑖𝑧𝑒) = 0.048 bits

Because the gain value for ’flow’, 𝐺𝑎𝑖𝑛(𝑓𝑙𝑜𝑤), yielded the highest number,

the flow feature was selected as the final node by the decision tree technique.

This process is iterated for each feature. The result of this example is shown in

Figure 2-8. The tree can be used to analyse new, unknown instances by traversing

down according to the values of the new instance features. The new instances

eventually find their class when they reach a leaf node.

It can be seen from the illustration that the classification of a new in-

stance is computationally inexpensive since it simply follows a series of pre-

constructed rules, and therefore is suitable for real-time applications. This ad-

vantage prompted a study to use Decision Trees to quickly identify DoS traffic

for the purpose of tracing back the attack source. (Y. C. Wu, Tseng, Yang, &

Jan, 2011). The result presented show that Decision Tree yields 1.2 - 2.4% false

positive rates and 2 - 10% false negative rates in detecting such attacks.

Decision Trees have also been applied in traffic analysis research for identify-

ing botnets (Haddadi, Morgan, & Zincir-Heywood, 2014) and network anomalies

40

(Swamy & Lakshmi, 2012). Botnets are not only deployed to generate DDoS

traffic, but also help spread spam mails and to steal passwords. A study used

a Decision Tree to identify botnet behaviour from traffic patterns it generated

(Haddadi et al., 2014). The scheme compared its performance analysis with

Naïve Bayes and concluded that Decision Trees can produce better classification

accuracies. Interestingly, higher detection rates were achieved when analysis was

done on HTTP-filtered traffic, wherein only HTTP traffic was being detected.

The study suggested that the bots communicated using the HTTP/1.x protocol.

Rule-Learning Techniques

Rule-learning techniques recursively seek to find a rule that can identify a

class. A rule is defined as a set of feature values that can maximise an accuracy

measure, e.g. incorrectly classified instances, for classification. Although rule-

learning techniques can yield the same split rules as Decision Trees, the approach

is different. Decision Trees seek to find a feature value that best split the classes;

rule-learning techniques consider one class and seek a set of rules that covers

that class. Additional rules can be sought iteratively to classify the remaining

incorrectly classified instances.

The advantages of rule-learning techniques are that rule sets are relatively

easy for human to understand, and are natural for programming languages to

implement. Certain rules obtained from prior knowledge can therefore be pro-

grammed into rule-learning systems. However, rule-learning techniques do not

scale with sample size. Therefore, a study proposed "repeated incremental prun-

ing to produce error reduction" (RIPPER) as an extension to rule-learning tech-

niques (Cohen, 1995). It introduced a pruning method that reduces the com-

plexity of a tree. Pruning is a method that disregards computation to some

branches of a tree. RIPPER terminates further rule computations when the last

constructed rule yielded error larger than 50%.

JRip is a RIPPER implementation in Java programming language. JRip is

considered faster than Decision Trees (Cohen, 1995; Mohamed, Salleh, & Omar,

2012). Because JRip is fast, it is suitable for real-time data analysis. It was used

41

in traffic analysis studies to reduce false alarms (Gaonjur, Tarapore, Pukale, &

Dhore, 2008), to select features (Yang, Tiyyagura, Chen, & Honavar, 1999) and

to efficiently reduce the amount of data for an intrusion-detection system (Panda,

Abraham, & Patra, 2015).

k-Nearest Neighbour

The k -Nearest Neighbour (k -NN) technique learns directly from the supplied

data as the technique iteratively constructs neighbourhoods from data samples.

The learning is accomplished at the same time as when classifying a new data

instance. Assuming that data points represent previously observed examples, the

technique computes the distance between the new instance and the rest of the

data points in classification. This is illustrated in Figure 2-9. The black dot is

an instance of data that is to be classified. The squares represent data points of

a class, while the hexagons represent those of another class.

The distance metric used is the Euclidean function, which is defined as:

𝐸(𝑋, 𝑌) =

⎯⎸⎸⎷ 𝑚∑︁
𝑖=1

(𝑥𝑖 − 𝑦𝑖) (2.2)

In equation (2.2), 𝑋 and 𝑌 are two multidimensional data points characterised

by the features; 𝑋 is the new data instance and 𝑌 is the previously observed

sample, 𝑚 is the number of features, and 𝑥𝑖 and 𝑦𝑖 are the input values for

feature 𝑖.

Euclidean distance is not the only means used as a distance measure. Other

techniques include Hamming, Cosine, Chi-square, and hyper-rectangle distance

measure (Randall & Martinez, 2000).

Classifying the data is done through assignment of the new data instance to

the closest 𝑘 neighbours of the plot. The final decision is taken by collecting

the votes from all k neighbours. The new instance is classified according to the

majority vote of neighbours. Therefore, the new instance in Figure 2-9 would be

classified as a hexagon (class 2) when 𝑘 = 3, or as a square (class 1) when 𝑘 = 9.

On one hand, the technique can be computationally complex (Kotsiantis,

42

Figure 2-9: k -NN finds the most vote from the closest k neighbours

Zaharakis, & Pintelas, 2006), depending on the distance function used and the

value of 𝑘. On the other hand k -NN does not require a training phase, but rather

delays the computation until a new instance is to be classified. Therefore, in

anomaly detection, the technique has been used to detect anomalies in real-time,

allowing detection systems to proactively respond to intrusions (Tsai, Hsu, Lin,

& Lin, 2009; Su, 2011; Guo, Krishnan, & Polak, 2012).

Support Vector Machines

Support Vector Machines (SVMs) (Vapnik & Vapnik, 1998) are an example of

a supervised learning technique. They extend linear regression models to separate

datasets whose classes are otherwise linearly separable. Suppose that a task

requires separation of data points into two classes, as illustrated in Figure 2-10a,

where data points are shown as the black and white dots. SVMs seek to find a

line (or referred to as a ’hyperplane’ when used in multidimensional spaces) that

separates the two classes with the largest distance to the data points. The largest

distance is called the maximum margin. H1 and H2 are possible hyperplanes,

while H3 is the maximum margin hyperplane.

Data points that are closest to the maximum margin hyperplane are referred

to as support vectors. This is shown in Figure 2-10b.

SVMs have been used to classify DoS traffic and normal traffic in a recent

study (Sharma & Parihar, 2013). The study aimed to detect DoS in mobile Ad-

43

Figure 2-10: (a) H3 is the maximum margin hyperplane, (b) Support vectors

hoc networks, which is a network of mobile devices that are connected wirelessly,

wherein each device acts as a router in addition to its normal intended use. Such

kinds of networks are very vulnerable to DoS attacks since there is no security

policy imposed on the connected devices. The study showed that SVMs classify

with greater than 90% accuracy in all conducted experiments.

SVMs can also separate multiclass data. For example, a study reported in

(Li, Yuan, & Guan, 2007) aimed to classify 7 application types of traffic (bulk,

interactive, mail, service, www, p2p, and ’others’). Prior to this study, traffic

classification were focused only on HTTP data. It yielded 96.9% accuracy in

classifying the mixed traffic. The study showed that the same method was able to

classify homogeneous traffic comprising 87% HTTP traffic with 99.4% accuracy.

This suggests that the method was externally valid, i.e. it can achieve a desired

accuracy level when applied to different sets of data.

K -means

An example of an unsupervised learning technique is k -means. This technique

is initialised with 𝑘 number of groups, or clusters, according to the desired number

of classes (e.g. 𝑘 = 2 for classifying traffic to ’normal’ and ’attack’). Then, 𝑘

random points in the data are chosen. These points are treated as the initial

centre of the clusters. All other data points are assigned to their closest cluster

centre and become the member of that cluster. Afterwards, the means of the data

points in each cluster are calculated to choose new centre points. The process

is repeated with new centre points covering different cluster members, until all

44

centre points are stabilised as the final ones.

Since k -means does not require a training step, it could be applied to classify

traffic in real time. For example, a study reported in (Bernaille, Teixeira, Akod-

kenou, Soule, & Salamatian, 2006) aimed to identify the categories of traffic of a

large university network. The administrator of the network wished to block traf-

fic responsible for music file sharing and gaming. These types of traffic did not

use universally registered port numbers, rendering identification methods that

map port-numbers-to-application ineffective. The study used k -means to identify

applications such as edonkey, ftp, http, kazaa, nntp, smtp, ssh, https, and pop3s

with accuracy ranging between 81.8% - 99.6%.

Another study applied the ability of k -means to detect intrusions more accu-

rately than a previous method (Elbasiony, Sallam, Eltobely, & Fahmy, 2013). It

modified the k -means technique into weighted k -means in order to assign higher

weight values to more important features of the data samples. The finding showed

that the detection rate was 98.3% with 1.6% false positives. This result was better

than a previous study used as a comparison (Ryan, Lin, & Miikkulainen, 1998)

which yielded only 94.7% detection rate with 2% false positive rate.

Artificial Neural Networks

Artificial Neural Networks (ANNs) are inspired from how human-brain neu-

rons work (Haykin & Lippmann, 1994). They consist of ’neurons’ that learn

from data and recognise patterns of unseen data. ANNs assign weights to the

neurons, and adjust them as it learns from each training instance. The learning

process seeks to reduce the error in misclassification. ANNs can be branched into

supervised and unsupervised learning (S. X. Wu & Banzhaf, 2010).

In supervised learning, the neurons learn from labelled data, i.e. instances

whose classes are already known. Supervised neurons are generally modelled as

shown in equation (2.3). Here 𝑌 is the output whose value can be positive or

negative as indicated by the sign on the right hand side of the equation. Positive

𝑌 values indicate one class, while negative values indicate another. 𝑋 is a set

of 𝑛 features. The value 𝑥𝑖 of feature 𝑖 is weighted with 𝑤𝑖 for all 𝑛 number

45

of features. The model shows that neurons are weighted sums of inputs with a

threshold value 𝜃. The threshold value can be used to adjust decision boundaries.

𝑌 = sign[
𝑛∑︁

𝑖=1

(𝑥𝑖𝑤𝑖)− 𝜃] (2.3)

The weights are initialised with random values. Neurons learn by adjusting

the weights so that the output value 𝑌 produces the correct class given input

values 𝑥𝑖. That is, a data instance represented by its features is used to train the

neurons through supplying the feature values 𝑥𝑖 to the equation. If 𝑌 outputs

a different class than the label, then the weights 𝑤𝑖 are adjusted at its following

iterations through equation (2.4).

𝑒(𝑝) = 𝑌𝑑(𝑝)− 𝑌 (𝑝) where 𝑝 = 1, 2, 3, . . .

𝑤𝑖(𝑝+ 1) = 𝑤𝑖(𝑝) + 𝛼× 𝑥𝑖(𝑝)× 𝑒(𝑝)
(2.4)

In each iteration, error values from the 𝑌 output value to the desired 𝑌 value

is calculated. The error 𝑒(𝑝) at each iteration 𝑝 is obtained from subtracting

the output 𝑌 (𝑝) from the desired output 𝑌𝑑(𝑝). This yields a positive or negative

vector. Upon the following iteration (𝑝+1), the weight 𝑤𝑖 is increased or decreased

according to the error vector with a magnitude 𝛼. Thus, the weight 𝑤𝑖(𝑝 + 1)

learns (i.e. adjusts its value) from the error between the current and the desired

output. This step is iterated until 𝑌 outputs the desired class after processing

all instance values.

ANNs have the ability to generalise patterns that they learn from limited,

noisy, and incomplete data (S. X. Wu & Banzhaf, 2010). They are therefore

suitable for intrusion-detection system decision making that requires adaptation

to new traffic models, such as mobile networks (Panchev, Dobrev, & Nicholson,

2014). Their ability to generalise from limited and noisy data has been used to

improve intrusion-detection precision (Wang, Hao, Ma, & Huang, 2010). They

have been a very effective solution in detecting DoS attacks (Bivens, Palagiri,

Smith, Szymanski, & Embrechts, 2002) and illegitimate activities such as port-

46

scanning that comprises DoS attacks (Al-Jarrah & Arafat, 2014).

In unsupervised learning, there are no labelled instances to be learned by

the neurons. The neural networks discover patterns from input data and adjust

the weights of the neurons to classify instances into appropriate categories. The

weights are adjusted through the scores obtained from the data. Processing

the data is iterated until the network shows statistical regularities of the input

data, thereby indicating the data classes. Self Organizing Map is an example of

unsupervised neural networks, which is explained below.

Self Organizing Map

Self Organizing Map (SOM) is a class of unsupervised learning Artificial Neu-

ral Network techniques (Kohonen, 1982). Similar to ANNs, SOM output neurons

adjust their weights to learn from the inputs. The output neurons are arranged

in a 2 or 3-dimensional grid to facilitate visualisation. SOMs aim to adjust the

weights so that adjacent output neurons represent similar values given varying

input values.

To train the neurons, all weights are initialised with random values. Given an

input vector, an output neuron that has the highest score is selected to become

the winning node. Common score functions for this purpose include Euclidean

distance and Gaussian function (Negnevitsky, 2005). The weights of other neu-

rons within a certain radius 𝜆 from the winning node are adjusted to minimise

the difference between the output values to the winning node value. This step is

repeated for all input vectors within the dataset. Training is then repeated with

smaller radius 𝜆 for a given number of iterations.

SOM has been used in intrusion-detection systems to reduce the map size

it took to process the data (Siripanadorn, Hattagam, & Teaumroong, 2010),

making it suitable for real time detection (Ramos & Abraham, 2005; Srinivasan,

Vijaykumar, & Chandrasekar, 2006). Since SOM is often represented as a two-

dimensional map, it has also been used to visualise network anomalies (Corchado

& Herrero, 2011; Girardin, 1999; Olszewski, 2014).

47

Evaluation of machine learning techniques

A notable survey was done reviewing 18 significant works in traffic classifi-

cation that used machine learning for traffic analysis in (Nguyen & Armitage,

2008). The survey showed that machine learning techniques have demonstrated

up to 99% accuracy in classifying a large diversity of Internet traffic.

In order to assess which technique was the best for classifying what type

of traffic, a study (Kim et al., 2008) analysed 7 supervised machine learning

techniques: NB, Naïve Bayes Kernel Estimation, Bayesian Network, DT, k -NN,

ANN, and SVM. The study assessed which technique was the best for classifying

12 types of traffic: 10 different types of applications, attack, or "none". The

result consistently showed that SVM yielded the highest accuracy (more than

98%), followed by ANN and k-NN. This finding justified another study (Tsai et

al., 2009) that reviewed 55 articles on intrusion detection through application

of machine learning. The study concluded that SVM and k -NN were the most

commonly used techniques.

This subsection discusses machine learning techniques and how they are ap-

plied in detecting traffic anomaly and DoS attacks. The techniques can learn

from the data samples, adapt to new environments, produce rule sets, and pre-

dict the class of unseen data. They have been suitable for detecting anomalies

by distinguishing a group of data that have significantly different properties to

other groups. Applications of these techniques are to classify heterogeneous traf-

fic, detect anomalies in large network, detect real-time anomalies, and adaptively

learn from new datasets. The next subsection discusses the challenges that these

solutions pose.

2.3.2.4 Challenges to Detecting Application-Based DoS Attacks

This subsection discusses challenges to detecting flood-based application-layer

DoS attacks and shows what features the different approaches used. It begins

by discussing two challenges: the increasing number of Internet-connected de-

vices and the ability of adversaries to mimic normal behaviour. Furthermore,

48

it presents examples of how research in the area is active due to the challenges,

discusses solutions that the state-of-the-art studies propose and the features that

have been used in the reported studies.

The increasing number of Internet-connected devices

The size of the Internet has doubled every 5 years since 2003 as a result of

the growing number of Internet-connected devices and the number of deployed

applications (G. Q. Zhang, Zhang, Yang, Cheng, & Zhou, 2008). As was discussed

in Chapter 1, this number is projected to continue to grow exponentially. This

implies more devices can be made to participate in launching DoS attacks, and

researchers are challenged with analysis of bigger datasets.

The growing number of servers to support the growing Internet traffic has

contributed to the innovative ways in which a DoS attack can be launched. For

example, Content Delivery Networks (CDN) – a network of connected servers

that are geographically located closer to the users for the purpose of providing

better user experience – could be abused to become DoS amplifiers in order to

launch DDoS attacks (Triukose, Al-Qudah, & Rabinovich, 2009). CDN servers

could be instructed to repetitively download HTTP contents from a victim web

server, which would eventually consume the network bandwidth of the web server,

affecting its download speed. An attacker could compromise CDN servers and

modify the cache of the CDN servers to send requests to a victim web server. At

this point the attacker could terminate its connection to the CDN. In this case, the

CDN servers acted as DoS amplifiers since the attacker is not involved in sending

requests to the victim. When large objects (e.g. files, pictures) are requested by

the CDN servers, the victim may consume excessive network bandwidth.

A later study showed that web proxies could also be utilised to launch similar

kinds of attacks (Xie, Tang, Xiang, & Hu, 2013). Web proxies are machines

that serve incoming/outgoing traffic on behalf of a web server in order to load

balance the volume of traffic that the main server must handle. The authors used

historical behaviour to observe traffic in order to identify legitimate traffic and

differentiate it from attack traffic. The study identified legitimate traffic when

49

the observed behaviour was not significantly different from historical behaviour.

This implied that the volume and dimension of the data required for traffic

analysis increased. Recent datasets containing traffic generated by new devices

has rendered legacy studies in detecting application types and network anoma-

lies less accurate. Machine learning techniques have been suitable to address

this challenge since they are able to group large data according to the similari-

ties of the data attributes, reducing the high-dimensionality of data. Therefore

recent studies, that have identified anomalies in network traffic, have applied

machine learning techniques to classify large sized networks (Al-Jarrah et al.,

2014; Y.-X. Meng, 2011). Addressing the above-mentioned problems itself has

created challenges to application of machine learning techniques. The features,

i.e. the attributes that play a role to determine key affecting factors, no longer

accurately represent the characteristics of the instances when they are applied to

classify recent data. Hence, recent studies have defined ways to effectively select

the features in order to reduce the dimensionality of the data and yield high clas-

sification accuracy (Al-Jarrah et al., 2014; Baig, Sait, & Shaheen, 2013; Katkar

& Kulkarni, 2013).

Larger volumes of data create challenges for research in machine learning, and

consequently research in the area remains active. Early solutions became less ac-

curate; hence, state-of-the-art studies were to increase the detection accuracies of

the existing techniques (Moore & Zuev, 2005; Stroeh, Madeira, & Goldenstein,

2013). Another implication of having large data is imbalanced traffic distribution

in many networks, i.e. the distribution of the traffic data generated by popular

applications was found to be skewed when generated by a large number of traffic

flows such as HTTP and DoS traffic (Goseva-Popstojanova, Anastasovski, Dim-

itrijevikj, Pantev, & Miller, 2014; Li et al., 2007). The imbalance problem was

caused by machine learning classifiers that favoured large traffic classes, while

poor performance was observed in classifying smaller classes. Hence, an Opti-

mised Distance-based Nearest Neighbour technique was proposed to address the

imbalance problem (D. Wu et al., 2014). The results show that the proposed

technique improved the classification for small classes when tested on real traffic

50

datasets, in terms of higher F-measure by 10% to 20%.

It has been shown that machine learning techniques have been used to address

the challenge of analysing large data and heterogeneous networks in the past.

They are able to group large data according to similarities of the data attributes,

reducing the high-dimensionality of data. The next section shows how they were

applied in learning from the data to detect novel adversarial attacks.

The ability of adversaries to mimic normal behaviour

Identifying illegitimate HTTP packets that cause denial of service have been

challenged by flash crowd, i.e., legitimate, but sudden and high volume web brows-

ing activities. This could happen when, for instance breaking news emerges, or

when a popular sports match reaches a final score, causing the web servers to

receive an unusually high volume of visits. Hence, the evolution of detecting

illegitimate HTTP packets has been challenged with advanced adversarial be-

haviour that mimics flash crowds (S. Yu, Guo, & Stojmenovic, 2012; Fabian &

Terzis, 2007).

Traditionally, flash crowds have been seen to originate from a large number

of clients generating a sudden flash of traffic, while DoS traffic usually originates

from a group of unauthenticated, and in all likelihood, illegitimate clients (Jung et

al., 2002). It is observed that DoS traffic originates from a small group of clients,

whilst flash crowd traffic originates from a more dispersed group of attacking

nodes. Furthermore, DoS traffic originates from a group of clients that the server

had not seen before, while flash crowd traffic originates from a number of clients

that the server had seen before the sudden flash of traffic. Using this approach,

the authors showed that the web server was able to drop DoS attack traffic, and

could efficiently handle legitimate, flash crowd requests. This approach grouped

the client topology; hence, access to the source addresses of all clients was required

for the analysis.

Recently, new technologies have been introduced on both the client and server

ends. Hence, novel studies are motivated by the evolution of the adversary to

generate stealthier traffic through the use of new and enhanced techniques. An

51

example is the use of HTTP GET requests by the adversary to generate traffic

that appear to be legitimate. In response to this trend, a study observed that

entropy of requests per source IP address of flash crowds is higher than those

of DoS attacks (Ni, Gu, Wang, & Li, 2013). A similar study was motivated by

analysing DoS traffic in the cloud, generated and guised as HTTP GET Requests,

since through such action, all cloud computing resources (platform, software, and

infrastructure) could be attacked simultaneously (Choi, Choi, Ko, & Kim, 2014).

The study monitored the packet flow and HTTP GET requests arriving at the

server end each second, and showed that their solution detected more attacks

than a signature-based solution.

Another recent study was motivated through distinguishing DoS attacks from

flash crowds at the backbone of a network (Zhou, Jia, Wen, Xiang, & Zhou, 2014).

The proposed scheme relied on the frequency metric of web page access and was

found to operate at linear complexity. In contrast to its previous study (Ni et al.,

2013), their technique showed that flash crowd traffic has the least entropy and

was therefore deterministic in nature, thus could be detected with convenience.

Bots, or software that automate repetitious tasks, are common tools to launch

DoS attacks. The increased use of bots by the adversary class provides a new

playground for launching DoS attacks. The traffic produced by such bots is similar

to flash crowd traffic. Therefore, differentiating between bot and legitimate flash

crowd traffic has been proposed as a solution in the past. In a study (S. Yu, Zhou,

et al., 2012), the author observed that the number of concurrent users during a

flash event was an order of magnitude more than the number of live bot attacks.

Hence, the author defined traffic flow as a group of network packets bearing

the same destination address. It was also shown that the standard deviation

of the total flow of attack traffic is smaller than that of the total flow of flash

crowd traffic. Future work was to investigate how attackers could manipulate the

amount of traffic produced by bots to evade the proposed detection method.

One technique to detect the bots behaviour was to take into account HTTP

Request packets appertaining to the browsing session of a website and corre-

sponding user activity associated with individual page access (Ye & Zheng, 2011).

52

Packets that were not caused by a normal browsing behaviour showed an average

frequency of HTTP Request packets that was used to browse below a certain

threshold. These packets were tagged as being anomalous, possibly with in-

tentions beyond simplistic and legitimate user browsing. Hence, the technique

proposed in the paper marked the traffic as being suspect.

The concern over attackers evading known detection methods was the mo-

tivation of another work (Rahmani et al., 2012). Previous detection methods

were prone to false negatives i.e., the labelling of attack packets as normal (flash

crowd). It was observed that some legitimate connections had greater packet

volume than the cumulative sum of other connections, making it convenient for

attackers to conceal DoS traffic as a flash crowd. Therefore, it was proposed to

device a measure based on the number of packets as well as the numbers of con-

nections per browsing session. Large volume of legitimate traffic caused a higher

number of connections, whilst DoS attacks caused a disparity between the number

of packets and the number of connections. By analysing the coherence between

the traffic features, the researchers showed that their approach was able to detect

attacks that otherwise went undetected by previously proposed methods.

Machine learning techniques are suitable to address these challenges since they

are able to discover relationships that exist in the data and to predict the class

of unseen instances. Machine learning techniques were used in recent studies

to detect the number of zombie machines that attempt to connect to a target

(Agrawal, Gupta, & Jain, 2011), detect their behaviour (Garg, Singh, Sarje, &

Peddoju, 2013; Liu et al., 2013), and improve the detection accuracy (Barthakur,

Dahal, & Ghose, 2013). A recent study proposed a scalable solution to detect DoS

attacks to large networks due to an increased use of bots (Malialis & Kudenko,

2013).

This subsection has shown the challenges in detecting DoS attacks and the

state-of-the-art approaches proposed to provide various solutions. The next sub-

section provides a discussion summarising the solutions discussed and various

features used in the approaches.

53

Features used to detect DoS attacks

The above discussions are summarised in Table 2.6. The table shows the

features used by many of the existing studies discussed above. Many of the

studies used the KDD-99 dataset (Tavallaee, Bagheri, Lu, & Ghorbani, 2009),

which is a publicly available dataset to aid research in intrusion detection. This

section lists the features used in the literature as a base to later compare with

the HTTP/2 traffic data used in the thesis experiments (Section 2.5).

The table shows that the TCP port number is still considered as a relevant

feature in many studies, although the observed traffic is not assumed to use

universally registered numbers. For example, in one study (Rahmani et al., 2012),

the number of connections was used as a feature that corresponded to "IP port-

to-port traffic exchanged between two IP addresses during a period." Many other

studies used TCP port information in combination with other information to

define a connection or flow. However, TCP port number is less relevant when

the study wishes to analyse traffic patterns of only one protocol that uses a

predefined port number (e.g. HTTP uses port 80). An example of this was

a study that sought patterns of different adversarial attacks to servers running

HTTP applications in order to detect DoS attacks (Goseva-Popstojanova et al.,

2014). Since the technique monitored only HTTP traffic, TCP port number was

not used as a feature. Instead, flow information from the network was analysed

to detect attacks.

Table 2.6 also shows that application-layer information (TCP payload) can

be representative of a pattern. Earlier studies used TCP payload information to

detect traffic signatures (Sen, Spatscheck, & Wang, 2004); later studies identified

patterns out of the payload information. For example, when detecting a flood

of HTTP packets, many studies identified patterns out of the observed HTTP

information. Features identified from TCP payload were the number of HTTP

Requests per observation (Ye & Zheng, 2011), the number of HTTP Requests

per source IP (Ni et al., 2013), and the number of HTTP Requests per second

(Choi et al., 2014). Another example was using other HTTP information such as

the name of a file to be retrieved. This data was used to construct a new feature

54

based on the number of files accessed per each 10 second interval (Chan et al.,

2006).

Finally, Table 2.6 shows that the statistical properties of the traffic (such as

the flow of the packets, the size of the packets, and the duration of the observa-

tion) were relevant information in detecting DoS attacks. This information was

obtained without inspecting the content of the packet. Studies that aimed to

detect DoS attacks used packet content as features.

While this section discussed how DoS attacks can be launched and showed

current techniques in DoS attack detection and analysis, the next subsection

discusses a new challenge in launching and detecting DoS attacks due to the

introduction of the HTTP/2 protocol.

55

Table 2.6: Features used by the existing studies on DoS detection

Author (Year) Title
Header Data Statistical Data

FeatureIP TCP TCP TCP num size duration
port flag payload packets

Jung, J.,
Krishnamurthy, B.,
& Rabinovich, M.
(2002)

Flash crowds and denial
of service attacks:
Characterisation and
implications for CDNs
and web sites

D D traffic volume

D D
num distinct clients per 10s
interval

D
num files accessed per 10s
interval

Feinstein, L.,
Schnackenberg, D.,
Balupari, R., &
Kindred, D. (2003)

Statistical approaches to
DDoS attack detection
and response

D D D

entropy of a header parameter
(e.g., entropy of source, entropy
of destination port)

Sen, S., Spatscheck,
O., & Wang, D.
(2004)

Accurate, scalable
in-network identification
of P2P traffic using
application signatures

D signature

Karagiannis, T.,
Papagiannaki, K., &
Faloutsos, M. (2005)

BLINC: multilevel
traffic classification
in the dark

D number of hosts

D D distribution of src ports

D D number of packets transferred

Erman, J., Mahanti,
A., Arlitt, M., &
Williamson, C.
(2007)

Identifying and
discriminating between
web and peer-to-peer
traffic in the network core

D total num packets

D D mean payload size (excl header)

D num bytes transferred

D D flow duration

D
mean inter-arrival time of
packets

Auld, Moore, & Gull.
(2007)

Bayesian neural networks
for internet traffic
classification

D D flow

continued . . .

56

. . . continued

Author (Year) Title
Header Data Statistical Data

FeatureIP TCP TCP TCP num size duration
port flag payload packets

Kim et al. (2008)

Internet traffic
classification demystified:
myths, caveats, and the
best practices

D D D D D flow

Ye, C., & Zheng, K.
(2011)

Detection of
application layer
distributed denial of
service

D D D
num HTTP Requests

D D D
frequency vector

Yu et al. (2012)

Discriminating DDoS
attacks from flash crowds
using flow correlation
coefficient

D D D flow correlation coefficient

Rahmani, H., Sahli,
N., & Kamoun, F.
(2012)

Distributed
denial-of-service attack
detection scheme-based
joint-entropy

D D D
number of connections

D D
number of packets

Dyer, K. P., Coull, S.
E., Ristenpart, T., &
Shrimpton, T. (2012)

Peek-a-boo, I still see
you. Why efficient traffic
analysis countermeasures
fail

D packet length

D total trace time

D D D flow direction

Malialis, K., &
Kudenko, D. (2013)

Large-scale DDoS
response using
cooperative reinforcement
learning

D D
aggregate traffic arrived over
the last T seconds

Ni, T., Gu, X.,
Wang, H., & Li, Y.
(2013)

Real-time detection of
application-layer DDoS
attack using time series
analysis

D D
num HTTP Request per source
IP

continued . . .

57

. . . continued

Author (Year) Title
Header Data Statistical Data

FeatureIP TCP TCP TCP num size duration
port flag payload packets

Xie, Y., Tang, S.,
Xiang, Y., & Hu, J.
(2013)

Resisting web
proxy-based http attacks
by temporal and spatial
locality behavior

D D D total num requests

D D observed behavior index

D D historical behaviour profile

Choi, J., Choi, C.,
Ko, B., & Kim, P.
(2014)

A method of DDoS
attack detection using
HTTP packet pattern
and rule engine in cloud
computing environment

D entropy num packets

D D entropy num src port

D D entropy num dest address

D D D HTTP Request per second

Goseva-
Popstojanova, K.,
Anastasovski, G.,
Dimitrijevikj, A.,
Pantev, R., & Miller,
B. (2014)

Characterization and
classification of malicious
Web traffic

D D
mean length of request
substrings

D D
median length of request
substrings

D D max length of request substrings

D D num requests POST

Zhou, W., Jia, W.,
Wen, S., Xiang, Y.,
& Zhou, W. (2014)

Detection and defense of
application-layer DDoS
attacks in backbone web
traffic

D entropy source IP

D entropy URL

D D traffic intensity

Tang, Y., Lin, P., &
Luo, Z. (2014)

Obfuscating Encrypted
Web Traffic with
Combined Objects

D D num packets

D D packet length

58

2.4 The HTTP/2 Protocol

2.4.1 Initiatives

Hypertext Transfer Protocol (HTTP) has been the protocol of choice for web

browsing communication until today. The current version, HTTP/1.1, was de-

signed to transfer texts. As technology evolved, rich media was being increasingly

transferred using the same protocol, causing the web response time to slow down.

Furthermore, modern web applications that use these rich media have created a

demand for more user interactions, causing the protocol to reach its limit. Con-

sequently, web users experience slow connections to websites.

In 2009, Google introduced the SPDY (read "speedy") protocol to respond

to the above problem. SPDY retained the semantics of HTTP/1.1, while adding

multiplexing mechanisms in order to speed up web communication (Thomas, Ju-

rdak, & Atkinson, 2012). The protocol was implemented in the Google Chrome

browser, allowing users to experience faster web browsing. Google server-end ser-

vices such as Search, Gmail, Maps, were able to use SPDY, leading to improved

quality of Google services. In 2012, industries followed the trend. SPDY client

was implemented not only in web browsers such as Firefox and Opera, but also

on tablet devices such as Amazon Kindle. Major websites such as Facebook and

Twitter implemented SPDY server in subsequent years.

In 2012, the HTTP Working Group proposed to adopt SPDY as a catalyst

to a new HTTP version, HTTP/2 (Grigorik, 2013b). The following subsection

details the anatomy of HTTP/2.

2.4.2 Protocol Specifications

HTTP/2 is designed to improve the communication speed between clients and

servers. It is aimed to address the slow response rates that its predecessor suffered

through introduction of message multiplexing. The following discussion is to

explain the mechanism of HTTP/2 message multiplexing. The architecture was

adopted from the HTTP/2 standard (Belshe et al., May 2015), authored by the

59

Figure 2-11: Frame format

HTTP Working Group.

The HTTP/2 protocol format is based on binary framing as opposed to the

newline-delimited plain text mechanism of its predecessor. Figure 2-11 shows

the layout of the frame. The first field of the row identifies the length of the

frame payload. Hence, binary framing allows its parser to efficiently identify the

location of the subsequent packets in the traffic flow, and quickly identify each

packet’s type and flags.

The binary framing also allows multiplexing, i.e., multiple requests/responses

in one TCP connection per origin. First, HTTP/2 messages are broken down

into independent binary frame packets according to their type. Examples of frame

types are headers, data, setting and priority frames. As illustrated in Figure 2-11,

the Type field indicates the frame type of an HTTP/2 packet. Second, each frame

is assigned a stream ID through the application of the Stream Identifier field

in the frame header. Packets with different stream IDs can be sent independently

on the communication line in terms of time and direction. This technique allows

multiple HTTP requests and responses to be sent within one TCP connection.

An example of the technique is illustrated as follows. Suppose that a client

requested a page to a web server, and received a response page as shown in Figure

2-12. In HTTP/1.1, the client must send more that one HTTP Request message

to obtain the auxiliary files mentioned in the HTML code, i.e. the example.js,

Puzzle.jpg, and theme.css files. This is illustrated on the left side of Figure 2-13.

The figure shows that the client sent four request messages to get the four files

as coded in the HTML file.

On the other hand, HTTP/2 only requires one HTTP Request message, as

60

Figure 2-12: An html response

Figure 2-13: Illustration on HTTP/1.1 requests/responses and HTTP/2 multi-
plexing

shown on the right side of Figure 2-13. The protocol allows the server to send

(push) the auxiliary files. All assets are sent to the HTTP/2 client without having

to receive other client requests. In addition, the illustration shows that HTTP/2

does not necessarily have to send the files in the order of how they were coded

in the HTML file (Figure 2-13). This is due to the capability of HTTP/2 to

prioritise a flow of frames. As illustrated in the figure, the file theme.css is sent

the last when using HTTP/1.1, but it is sent the first among the other auxiliary

files when using HTTP/2.

The example shows that HTTP/2 is able to interactively send multiple re-

quests from client browsers on one direction, and delivers assets (i.e. response

pages, images, files) from the web server back to the client in different orders.

In addition, the server is able to avoid waiting for subsequent client requests by

pushing assets to the client. This is because the server can already identify where

to find those assets. The example shows that multiplexing, i.e. interleaving and

pushing frames, is one of the novel techniques that HTTP/2 introduces.

Figure 2-14 shows the same example from a different viewpoint. It illustrates

61

Figure 2-14: Illustration on HTTP/2 multiplexing from a different perspective

how streams (a flow of frames) are multiplexed in one connection between a client

and an HTTP/2 server.

In addition to the above mechanism, what makes HTTP/2 traffic pattern

different than HTTP/1.1 is that its implementation demands using Transport

Layer Security (TLS) to encrypt the messages. Although HTTP/2 did not man-

date the use of encryption, its implementations only support encrypted HTTP/2

services. Currently, no browser supports HTTP/2 traffic in unencrypted form.

Rather than for privacy purposes, the main motivation for encryption is to ensure

that the protocol can communicate without modification with intermediaries such

as routers or intrusion-detection systems (Grigorik, 2013a). Such intermediary

interventions could alter the client-server settings that may cause an increased

communication delay, thus affecting the end-user experience (Quality of Service).

It can be seen that HTTP/2 has different message exchange mechanism to

its previous version. The ability of HTTP/2 to efficiently exchange messages

and transparently communicate with its predecessors implies that the imple-

mentation introduces state-of-the-art set of rules on how it manages comput-

ing/communication resources. At the same token, the new protocol suggests an

array of security considerations.

2.4.3 Security Considerations

The HTTP Working Group indicated a number of potential security issues in the

HTTP/2 standard (Belshe et al., May 2015). These are discussed as follows.

Server Authority. When a client fails to validate if the server was authori-

tative to push assets (e.g. files) to the client, then the client could receive illegit-

62

imate information. As illustrated in the right diagram in Figure 2-13, HTTP/2

servers push assets to clients, without requiring the clients to send additional mes-

sages to request for the assets. These assets can be located at different servers

including those controlled by an attacker. Attacker-controlled assets can be mali-

cious, e.g. carry virus or contain inappropriate texts. Clients that did not certify

servers can thus become vulnerable to attackers.

Cross-Protocol Attack. In cross-protocol attack, illegitimate transactions

in one protocol can appear as valid transactions in another protocol. An attacker

can use a client to send legitimate HTTP/1.1 messages to attack an HTTP/2

server.

To illustrate, consider the Upgrade field that both HTTP/1.1 and HTTP/2

can have in their headers. In HTTP/1.1, the Upgrade field is to carry instructions

that specify what additional communication protocols the client supports and

would like to use. For example, a client can propose to switch to Internet Relay

Chat (IRC) protocol through sending "Upgrade: IRC/6.9" message in the HTTP

header to a server. If the server supports the protocol, it can begin communicating

IRC messages with the client.

In HTTP/2, the Upgrade field provides backward compatibility, allowing

clients to communicate with HTTP/1.1 if a server does not support HTTP/2.

Suppose a web browser was equipped with both HTTP/2 protocol and its pre-

decessors. Upon an initial connection to a server, the browser wished to probe

if the server was HTTP/2-enabled or not. Hence, it firstly sent an HTTP/1.1

request containing an "Upgrade: h2c" message in the header to signal that it

wished to communicate using HTTP/2. Servers that support HTTP/2 can begin

communicating the client under the HTTP/2 protocol. If an HTTP/2 server im-

plementation misinterpreted the Upgrade field message from the browser, then a

legitimate message sent by a browser that uses the additional (upgrade) protocol

can become a malicious instruction destined to the HTTP/2 server.

Intermediary Encapsulation Attack. HTTP/2 header fields allow values

that are not valid HTTP/1.1 values. Examples of these values are carriage return,

line feed, and zero characters. An adversary could take advantage of this fact to

63

create malicious messages if an HTTP/2 parser did not correctly handle these

values.

Cacheability of Pushed Responses. When an HTTP/2-enabled server

allows access from multiple users, one user could cause cached assets to be sent to

another user. This means attackers could reveal or forward classified information,

which implies a security breach.

Use of Compression. Secret data could be recovered when compressed in

the same context as data under attacker’s control. For example, an attacker could

generate and send messages to an HTTP/2 server. The protocol compresses the

messages before they are sent through a communication channel. The attacker

could observe the length and the ciphertext after the compression, and collect

patterns between the cleartext and the ciphertext. The attacker could eventually

infer the content of communicated secret messages.

Privacy Considerations. Settings, priorities, and flow control values could

be used for fingerprinting (e.g. revealing the type of browser, machine, or activity

of the remote device). Examining the values of protocol parameters has been

used as a technique to fingerprint a target. The introduction frame types and

flow control values in HTTP/2 can open a new landscape of how a target running

HTTP/2 protocol can be fingerprinted.

Denial of Service. HTTP/2-enabled servers demand more computing re-

sources than HTTP/1.1 machines. HTTP/2 introduces techniques previously not

employed in its predecessors. These techniques can demand more CPU utilisation

and memory consumption. This will be further discussed in the next subsection.

The primary elements of security are confidentiality, integrity, and availability

(Pressman & Jawadekar, 1987; Tanenbaum & Van Steen, 2007). Confidentiality

emphasises the ability of a system to guarantee that the information is only

disclosed to the authorised parties. Integrity concerns with the accuracy and

consistency of an asset against alterations. Availability means that information

is accessible when requested by an authorised party. Out of the HTTP/2 security

considerations, the Denial of Service (DoS) issue falls in this category. Detecting

DoS requires pattern matching, classification, and prediction in order to separate

64

Figure 2-15: Stream states

normal from attack information. The following subsection discusses how HTTP/2

information exchange mechanism can cause a server running HTTP/2 to become

unavailable.

2.4.4 Exposure to Resource Depletion

Previously it has been explained that HTTP/2 introduced multiplexing, a mech-

anism to interleave and prioritise web messages that was not found in HTTP/1.1.

This subsection reviews how HTTP/2 multiplexing can cause resource depletion.

The review goes back to HTTP messages that are broken down to frames, as

shown in Figure 2-11. Each frame in any flow direction can be grouped based

on its stream ID. In order to govern the types of frames that are legal or illegal

to be sent (or received) after one or a sequence of frames were sent/received,

each stream ID demands maintenance of its own state. Figure 2-15 depicts each

possible state of a given stream. This means HTTP/2-enabled equipment needs

to maintain the state of each stream in its memory (e.g. stream 3 is "idle", stream

2 is "open", stream 1 is "close", etc.)

The state arrangement allows an HTTP/2 connection to have virtual concur-

65

rent streams (as shown in Figure 2-14) for the purpose of avoiding the delay of

delivering higher priority frames. When too many frames have similar priority,

the network can become congested. Hence, the protocol imposes a flow control

mechanism in order for the communicating devices to advertise their susceptibility

to congestion.

The window_update frame is an HTTP/2 message that implements flow con-

trol. The purpose of flow control is to moderate the many streams in one con-

nection. This allows a server to lessen the packet flow on one stream, while it

needs to continue processing other streams in the same connection. The win-

dow_update frame is a way that a client or a server communicates the size of

data that the sender can transmit in addition to the current size. This capa-

bility did not exist in HTTP/1.1. Changing the value of window_update frame

causes an HTTP/2 device to carry out processing tasks that were not seen in any

HTTP/1.1 implementation. Changing this value indefinitely can consume more

CPU utilisation. This study observed how changing window_update values affect

the target’s computing resources (Chapter 5).

The HTTP/2-standard specifies the general principle of the flow control mech-

anism, but states that its implementations are to select any suitable technique.

Flow control at the application layer is novel; HTTP/1.1 as such did not define

any flow control. Flow control implementation on an HTTP/2 server can de-

mand great computing resources (CPU time and memory consumption) in order

to monitor the condition of each connection and maintain the state of each frame.

A server running HTTP/2 can consume greater CPU time and memory.

It has been shown that HTTP/2 mechanism is novel as it was not seen in

the architecture of its predecessor. This implies that an HTTP/1.1-enabled web

server should closely monitor its resource utilisation when the same machine was

upgraded to enable HTTP/2. The HTTP/2 standard states that, "An endpoint

that does not monitor this behaviour exposes itself to a risk of denial of ser-

vice attack." Therefore, there is a gap in the literature to observe the network

and endpoint machine parameters when running HTTP/2 services, to study how

HTTP/2 services can consume computing/network resources of a web server.

66

2.4.5 Implication to DoS Detection Technique

This study investigated how DoS could be crafted to attack HTTP/2 services

based on two gaps not explored in the literature: the introduction of multiplexing

and the use of encryption.

First, HTTP/2 introduces the flow control mechanism which was not present

in its predecessor, which means it adds dimensionality to traffic data. HTTP/2

traffic pattern is different from its predecessors since interleaved and multiplexed

traffic that the flow-control packets manage depicts new traffic patterns. Large

amount of HTTP/2 traffic requires a new technique to analyse the characteristics

of the traffic with new patterns.

Second, HTTP/2 implementations are encrypted. Although secured HTTP

is not novel, its implications to DoS attack detection had not been explored in

the literature. Securing HTTP/1.1 with TLS or its predecessor, Secure Socket

Layer (SSL), has been commonly used in the past. DoS detection methods dis-

cussed in the literature (Section 2.3) analysed unencrypted HTTP/1.1 traffic. As

was shown, an avenue of the studies proposed payload inspections which required

access to the unencrypted message content. In contrast, this study observes, char-

acterises, and classifies both normal and attack TLS-encrypted HTTP/2 traffic.

While some machine learning techniques are suitable to analyse data with high

dimensionality, different techniques are required to select features and analyse the

performance, since one technique alone might not give the optimum result. This

study uses different machine learning techniques to show comparisons of the new

traffic patterns as presented by HTTP/2 traffic. The methods of generating the

traffic, extracting and selecting features are discussed in the next Chapter.

2.5 Conclusion

In this chapter, various challenges and approaches for detecting DoS attacks were

reviewed. Many research approaches defined features to address their specific

objective. As Table 2.6 summarizes, the data collection for these features was ac-

67

complished from inspecting packet headers (e.g. the number of hosts was derived

from IP headers; the number of connections from TCP headers), or the statistical

properties of these packets (e.g. packet length was derived from the packet sizes).

The current challenges in detecting DoS attacks are due to the increasing size

of the Internet, and the ability of adversaries to launch undetected attacks. Ma-

chine learning techniques are suitable to address the problem in the area, since

they are able to learn from new environments, discover relationships that exist

in data samples, adaptively create a classification rule, and provide scalable so-

lutions. They have been used to analyse large data and heterogeneous network

traffic, and detect the presence and the behaviour of zombie machines. The tech-

niques have shown to provide high accuracy of classifying traffic and predicting

the class of new instances.

A novel challenge in detecting DoS attack is due to the introduction of

HTTP/2. Web servers that implement the HTTP/2 protocol can demand

more computing resources than servers that implement previous HTTP versions.

HTTP/2 server implementation introduces mechanisms that were not previously

present such as multiplexing and flow control. This means that research in the

area is challenged through the introduction of a new range of data types and

features, such as window_update and TLS frames. The summary is shown in

Table 2.7. The experiments in this thesis used both the existing and the new

range of data to define features in order to detect DoS attacks against HTTP/2

servers.

Since this study used new range of data to recognise patterns that were not

previously studied, it applied machine learning techniques to detect DoS attacks

against HTTP/2 services. The next chapter describes the proposed investigation

for generating the traffic data, extracting and selecting features for its analysis

using machine learning in detecting DoS attacks against HTTP/2 servers.

68

Table 2.7: The range of data to observe for the investigations in this thesis

Observed Data
Existing Studies This thesis
(HTTP/1.1) (HTTP/2)

Statistical Data:

flow, size, duration D D

Network-layer data:

IP (source, destination) D D

TCP ports D D

TCP flags D D

Application-layer data:

HTTP Request D D

HTTP/2 Frames – D

TLS messages – D

69

70

Chapter 3

Research Approach and

Methodology

The previous chapter reviewed literature on DoS attacks and HTTP/2. Existing

solutions to detect DoS attacks were presented. The topics addressed included

what features of traffic were used, and how they were evaluated by the researchers.

However, these existing solutions were developed for HTTP/1.1 traffic, while none

explored how to detect DoS attacks against HTTP/2 servers.

In this chapter, an approach is shown to attest the distinction between

HTTP/2 DoS traffic and normal traffic through observing traffic patterns. The re-

search approach is discussed in Section 3.1. The study explored how an HTTP/2

DoS attack can be modelled and how traffic can be generated from the model.

The study observed the generated traffic patterns, extracted features and created

datasets to analyse the patterns. Machine learning techniques were applied to

demonstrate how DoS attacks against HTTP/2 servers can be distinguished from

normal traffic.

While an approach to observe traffic and generate data is shown, this chapter

also discusses how the data are evaluated. Section 3.2 discusses the evaluation

metrics used in the study, to provide means to analyse the generated data. Evalu-

ation metrics allow researchers to assess incorrectly classified instances, Detection

Rate, and False Alarm Rates from different results. To model, generate, and ob-

71

serve traffic, a lab which comprised of HTTP/2 communicating machines was

designed. The lab setup is detailed in Section 3.3.

3.1 Research Approach

The proposed approach for detecting DoS attacks includes four phases which is

described as follows.

Phase 1 involves traffic modelling. Traffic models allow researchers to under-

stand how traffic can be generated. In this phase, traffic was modelled through

how current equipment, tools, and methodologies can be employed to generate

traffic. State-of-the-art equipment was employed, whose specifications and infras-

tructure are detailed in Section 3.3.

Two traffic models were developed in this study, i.e. attack and normal mod-

els. Attack traffic was modelled through how client-server machines communi-

cates with HTTP/2 protocol, how these machines generated traffic, and how the

sequence of traffic generation can be exploited to generate DoS traffic. Normal

traffic was modelled through mimicking the sequence and rhythms on how human

browse the Internet. Phase 1 is further detailed in Section 3.1.1.

Phase 2 provides a mechanism to generate traffic from the attack model of

the previous phase. The models were simulated at the client side, and HTTP/2

traffic was generated by according to the pattern that the models describe. The

generated traffic was sent by the client towards the server as illustrated in Figure

3-5. How traffic was generated and captured is discussed in Section 3.1.2. Traffic

generated through the proposed model serves as input to phase 3.

In phase 3, network traffic features are extracted and datasets are generated

to represent legitimate and malicious traffic. The study observed patterns from

the generated traffic, such as the packet types and their statistical properties such

as the count, size, and lapse time of each packet. These properties were used to

create traffic features to characterise the different traffic patterns generated in this

study. Furthermore, traffic features were used to create datasets. These datasets

served as inputs to the machine learning techniques that show how attack and

72

normal traffic were classified. Feature extraction and dataset creation procedures

are discussed in detail in Section 3.1.3.

In phase 4, features are ranked and machine learning classifier performance

is analysed. Feature ranking reduces the number of inputs for machine learn-

ing processing and analysis, through finding and ranking the most relevant fea-

tures. Ranked features aid the analysis of this study to find a set of features that

can describe the characteristics of the traffic models. Traffic analysers such as

intrusion-detection systems depend on having a finite set of rules to efficiently

detect certain traffic types. Feature ranking techniques are discussed in Section

3.1.4.

In this phase, different sets of ranked features were investigated to observe

performance of classifying attack and normal traffic. Traffic classification was

studied through employing four machine learning techniques, i.e. Naïve Bayes,

Decision Tree, JRip, and Support Vector Machines. To analyse the performance

of these machine learning techniques, several evaluation metrics were adopted.

The evaluation metrics is discussed in Section 3.2.

The details of the methods in each phase are discussed in the following sub-

sections.

3.1.1 Phase 1: Model Development

The study developed two models, i.e. normal and attack traffic model. The

normal traffic model was used as the standard traffic to facilitate comparisons

and analysis against attack traffic. To model normal traffic, the study used a

publicly-available log file that recorded actual human activities depicting routine

behaviour, such as browsing a website from one page to another, logging-in, and

posting a message. The log file is described in more detail, in Section 4.1. Using

the information from this log, a state transition model was used to model real

human actions (Section 4.2). This model was implemented to generate flash-

crowd traffic in the second phase of the study, where a number of human profiles

(extracted from the log) was run using a number of virtual machines connected

73

to an HTTP/2 server.

The attack model was developed based on several methodologies found in the

literature (Igure & Williams, 2008; Loukas et al., 2013; Mirkovic & Reiher, 2004).

The study observed the type of HTTP frames, the number of attacking clients,

the amount of traffic generated, and the consumed resources of the target such as

the CPU, memory, and network throughput. The amount of hardware required

and the degree of automation to launch the attack were observed, as they alluded

towards the design for a successful attack.

An attack was considered successful when the target server had consumed its

entire computing resource or network bandwidth. That is, the server showed:

∙ a significant increase in CPU utilization, or

∙ a significant increase in memory utilization, or

∙ a significant decrease in network throughput, or

∙ a significant increase in packet loss.

The study explored the effect of sending various combinations of HTTP/2

frame types, or launching a large number of HTTP/2 packets, and observed

whether the server showed signs of computing resource depletion. This study

also described four attack models as a result of controlling different parameters

of the packet generator, i.e. the number of packets, number of stream ID (Section

5.1), payload value of the HTTP/2 packets (Section 5.2), delay between packets,

and delay between TCP connections (Section 6.1 to 6.2).

The normal model is discussed in Section 4.2. The attack models are discussed

in Section 5.1.1, 5.2.1, 6.1.1, and 6.2.1. These models were used to generate

HTTP/2 traffic.

3.1.2 Phase 2: Traffic Generation

This phase aimed to produce flash-crowd and attack traffic. Flash-crowd traffic is

defined as normal traffic that consumes the computing resources of a web server.

74

Normal traffic was generated in this study through simulating the legitimate ac-

tivities from the state-transition model described in the previous phase. When

the simulation was in a specific state of the model, an HTTP/2 Request mes-

sage was generated from a client to target the server. The packet generator that

was discussed in Section 3.3 was implemented to send client request packets for

this purpose to simulate normal-user browsing activities. The traffic it generated

was captured using TShark (Combs, 1998–2015) at the server side. A script was

developed to replicate the model and simulate different user profiles (page 103 de-

fines 21 user profiles). This eventually created flash-crowd traffic (Section 4.4.2).

Hence, the flash crowd traffic was generated out of a large volume of legitimate

traffic, generated by many normal (non malicious) human users connecting to a

server during a given time frame.

This phase also generated attack traffic, which is a flood of network packets

that consume the computing resources of the server such as CPU and memory. To

generate a flood of HTTP/2 packets, the packet generator was designed to con-

stantly send HTTP/2 window_update packets into the outgoing network stream.

From the attack models developed in the previous phase, this study generated

four sets of attack traffic: HTTP/2 flood (Section 5.1), DDoS attack (Section

5.2), and two DDoS attack types that mimicked flash-crowd traffic (Section 6.1

and 6.2).

These sets of normal and attack traffic were then used to create datasets which

are detailed in the subsection.

3.1.3 Phase 3: Feature Extraction and Dataset Creation

The traffic generated from the previous phase was observed by replaying TShark.

The traffic was characterised by enumerating samples of the traffic. A sample is

commonly termed an "example" or an "instance," used interchangeably (Witten

& Frank, 2005, p.45). This study defined an instance as a 1 second time window

of traffic; hence, a 10-second traffic window yielded 10 instances.

Instances are expressed through a set of name-value pairs. The names of

75

Figure 3-1: A dataset consists of a set of instances, which are characterised
through a set of features.

the values are commonly termed as "features" or "attributes" (Witten & Frank,

2005, p.49). Stated in other words, instances consist of a set of features. Figure

3-1 illustrates 𝑚 instances, where each instance is expressed through a set of 𝑛

features.

A set of instances that characterise the whole traffic became a dataset. Hence,

datasets can be expressed as a matrix of instances versus features as illustrated

in Figure 3-1. In this study, characterizing traffic began by extracting features

which is explained below.

Extract features

In order to extract features, network packets were identified according to how

they differ from other packet types. Network packets serve different functions,

e.g. to carry IP addresses, initiate an end-to-end connection, initiate a secure

connection (i.e. through a TLS handshake), or to carry application data. Dif-

ferent network packets serve different purposes. This study identified features

according to several defined network packet types.

An example of feature identification is illustrated as follows. Suppose a traffic

instance was observed as shown in Figure 3-2 (adapted from (Grigorik, 2013a)).

The client in the figure began initiating a connection through sending a TCP

3-way handshake, which consists of 3 message exchanges: a SYN packet is sent

from an initiator (client) to its pair on the other end (server); the server replies

to this with a SYN-ACK packet; and the client acknowledges this by returning

an ACK packet to the server. In this case, the packet types are the SYN, ACK,

and SYN-ACK packets, respectively.

76

Figure 3-2: TCP and TLS Handshake

Features were extracted from the packets that the client sent to the server,

because the client-to-server communication direction is the one most relevant for

flooding a server. Hence, as in the above example, the packets used for analysing

features in this study are pictured on the left-hand side of Figure 3-2.

The values of each packet type are characterised by three groups of features:

count, size, and lapse. For each 1-second traffic instance, the values of these

features were obtained as follows.

∙ The count feature is the number of packets captured, grouped by packet

type.

∙ The size feature is the total number of bytes of a packet captured, grouped

by packet type.

∙ The lapse feature is the time lapse between packet capture and connection

initiation (i.e. the length of time between a packet and the SYN packet of

a connection), grouped by packet type. For each packet type:

– If there is more than one packet within a connection, only the lapse

77

value of the first packet is considered.

– Because there can be more than one connection within an instance,

there are as many lapse values as the number of connections. The

lapse feature considers the minimum, average, as well as maximum

values.

A 1-second time slice was chosen instead of other interval values (e.g. 2

seconds, 5 seconds), to ease the data validation process during the simulations.

For example, a 3,600-second captured traffic should produce a 3,600-row dataset.

Two examples on extracting feature values are hereby presented. The first ex-

ample is taken from a traffic instance shown in Figure 3-3 with the corresponding

extracted feature values shown in Table 3.1. The second example is taken from

a traffic instance shown in Figure 3-4 with the extracted feature values shown in

Table 3.2.

The first example considers the entire packets listed in Figure 3-3 as observed

within a single time window1. The first column of the list is packet number,

the second column shows both source and destination TCP port numbers, the

third column shows the time lapse relative to the time when the first packet was

observed, the fourth column shows the size of the packets in bytes, and the fifth

column represents the packet type. With this information, features of network

traffic packets can be extracted from real traffic.

In Figure 3-3, the SYN packet marked the beginning of a connection. There

was only 1 SYN packet within the observed time window. Hence, the SYN count

feature had a value of 1; and the SYN size feature was equal to 74 (as shown in

the 4𝑡ℎ column of the 1𝑠𝑡 packet in the figure). These feature values are shown in

the first row of Table 3.1. There was no lapse feature for SYN packets, because

the time lapse between a SYN packet to the beginning of its connection is always

zero. This is represented as "n.a." in the table.

Extracting the count and size feature values followed a similar procedure for

1The length of the observed time window to create datasets used for this study was 1 sec.
However, the examples given in this subsection used varying observed time window values to
simplify the discussions.

78

Figure 3-3: Captured packets within an observed time window

Table 3.1: Extracted features from network traffic shown in Figure 3-3

Packet type Count Size Lapse max Lapse ave Lapse min
SYN 1 74 n.a. n.a. n.a.
ACK 6 396 0.000243 0.000243 0.000243
ClientHello 1 343 0.109194 0.109194 0.109194
ClientKeyExchange 1 449 0.220194 0.220194 0.220194
ApplicationData 6 777 0.227939 0.227939 0.227939

79

Figure 3-4: A snippet of captured traffic

80

Table 3.2: Extracted features from traffic shown in Figure 3-4

Packet type Count Size Lapse min Lapse ave Lapse max
SYN 3 222 n.a. n.a. n.a.
ACK 15 990 0.000149 0.000224 0.000264
ClientHello 3 343 0.009138 0.027972 0.065081
ClientKeyExchange 3 449 0.010630 0.029391 0.066050
ApplicationData 3 777 0.015718 0.034489 0.071048
EncryptedAlert 1 97 155.889013 155.889013 155.889013
RST-ACK 1 66 184.029221 192.0153215 200.001422

subsequent packets. Consider the second packet in Figure 3-3, i.e. the ACK

packet. In this instance, 6 ACK packets were observed; their size was 66 bytes

each, totalling to 6× 66 = 396 bytes. Hence, the count feature value was 6, and

the size feature value was 396, which are shown in the table.

To extract the lapse features from the ACK packets, only the first packet

in the connection was considered. Although there were more than one ACK

packets captured, only the value from the first ACK packet in the connection was

extracted. Its lapse time since the connection initiation was equal to 83.408169−

83.407926 = 0.000243. Since there was only 1 connection in this example (with

port 56066 as shown in the second column of the figure), all of the lapse features

(i.e. min, average, max) of the ACK packet were identical, where the minimum,

average, and maximum value of a single value is the value itself. The same

explanation was valid for the rest of the packets shown in the figure – their min,

average, and max lapse features were identical since there was only 1 connection

within the observed time window.

Other packets in this example followed the same procedure to obtain the

feature values, as shown in Table 3.1.

As for the second example, consider the packets shown in Figure 3-4. This ex-

ample presents several connections within an observed time window. In addition,

this example shows a case where one of the connections was initiated outside (i.e.

before) the observed time window; examples obtaining the lapse feature values

from this connection will be discussed below. The features extracted from this

snippet of traffic are shown in Table 3.2.

81

Table 3.3: ACK packet time lapse values, extracted from traffic shown in Figure
3-4

TCP port
ACK packets SYN packets

Time Lapse
Packet # Time Stamp Packet # Time Stamp

57441 4989 37923.553689 4987 37923.553430 0.000259
57446 5020 38040.415432 5018 38040.415168 0.000264
57448 5050 38055.892577 5048 38055.892428 0.000149

The count and size feature values of the SYN packet type were obtained as

follows. There were 3 SYN packets in the observed time window; hence, the count

feature was equal to 3, and the size feature value was 222, equal to the cumulative

size of the 3 packets. There was no SYN lapse feature as previously discussed.

The count and size feature extraction of the ACK packet type was carried

out in similar manner; hence, the values were 15 and 990, respectively. The

lapse feature values were obtained by calculating the min, average, and max

lapse time from all of the first ACK packet in each connection. There were 3

connections initiated, i.e. 3 TCP ports are opened for this example. This is

illustrated in Table 3.3, with the first column showing the port numbers of the

initiated connections. The time lapse between the time stamp when the ACK

packet and the SYN packet were observed is shown in the last column of the

table. Using these time lapse values, the min, average, and max lapse features

can be derived as follows:

𝑚𝑖𝑛(0.000259, 0.000264, 0.000149) = Lapse min = 0.000149

𝑎𝑣𝑒𝑟𝑎𝑔𝑒(0.000259, 0.000264, 0.000149) = Lapse average = 0.000224

𝑚𝑎𝑥(0.000259, 0.000264, 0.000149) = Lapse max = 0.000264

Other lapse feature values of all packets in the example were extracted in

similar fashion: subtract the connection initiation time stamp from the packet

time stamp. In some cases, it is possible to have a TCP connection span multiple

instances, where the connection is initiated in an instance before the current

observed one. This was the case with the Encrypted Alert and RST-ACK packets

(with TCP port number 57358) in the above example, where the connection was

82

Table 3.4: RST-ACK packet time lapse values, extracted from traffic shown in
Figure 3-4

TCP port
RST-ACK packets SYN packets

Time Lapse
Packet # Time Stamp Packet # Time Stamp

57358 5047 38055.890435 (assume) 37900.000000 155.890435
57441 5081 38107.582651 4987 37923.553430 184.029221

initiated before the observed instance, as shown in Figure 3-4. In other words, the

packet did not have its associated SYN packet shown in the same instance; the

SYN packet must have been initiated in one of its previous instances. Extracting

the time lapse values from the packets in such cases was done using the same

procedure, i.e. subtract the connection initiation time stamp from the packet

time stamp. Examples of the above are given as follows.

The Encrypted Alert packet (packet number 5044) in Figure 3-4 had its con-

nection initiated before the observed traffic sample. Its TCP connection port

number was 57358; there was no associated SYN packet that initiated the con-

nection observed in the example. To simplify the discussion, assume that this

connection started at time stamp 37900.000000, which happened before the ob-

served instance. Therefore, the time lapse value for the Encrypted Alert packet

was calculated as 38055.889013− 37900.000 = 155.889013. Since there was only

1 such packet in this example, the lapse features for the Encrypted Alert packet

presented the same value, i.e. 155.889013. These lapse feature values are shown

in Table 3.2.

Similarly, the time lapse value for the RST-ACK packet of connection 57358

could be calculated as 38055.890435 − 37900.000000 = 155.890435. Because

there were two RST-ACK packets with different connections in Figure 3-4, their

lapse values were calculated as shown in Table 3.4. The lapse features could thus

be derived as follows:

𝑚𝑖𝑛(155.890435, 184.029221) = Lapse min = 155.890435

𝑎𝑣𝑒𝑟𝑎𝑔𝑒(155.890435, 184.029221) = Lapse average = 169.959828

𝑚𝑎𝑥(155.890435, 184.029221) = Lapse max = 184.029221

83

Table 3.5: Features used in this study

network layer packet type
count size lapse

min ave max

Application Data D D D D D

Application Client Hello D D D D D

Client Key Exchange D D D D D

Encrypted Alert D D D D D

SYN flag D D (n.a.) (n.a.) (n.a.)

ACK flag D D D D D

TCP RST flag D D D D D

RST-ACK flag D D D D D

FIN-ACK flag D D D D D

In this study, all lapse values could be obtained from the relevant packet time

stamps in the data. There was no need to assume values. Because all time stamps

were available in this study, extracting the lapse feature values from the packets

was done through applying the same procedure, i.e. subtract the connection

initiation time stamp from the packet time stamp.

There were a total of 42 features in this study: 5 groups (and subgroups)

of features (i.e. count, size, lapse min, lapse ave, lapse max), with each group

describes the values of 9 packet types, giving an initial total of 5×9 = 45 features.

With no lapse features for the SYN packets, the total number of features is

45−3 = 42 features. These are illustrated in Table 3.5. The features were named

according to what their values described, as is shown in Table 3.6.

The table also shows features other than those discussed in the examples

above, since other network messages of different layers and types were also in-

volved in the HTTP/2 message exchange. This is detailed in Figure 3-2, a sce-

nario of initiating an Internet connection before sending an HTTP/2 message is

illustrated. An Internet connection was initiated by a TCP 3-way handshake, fol-

lowed by a TLS handshake, followed by an application-layer data exchange. Here,

HTTP/2 messages were shown as Application Data – the universal term used for

application-layer messages. As could be seen, the packets on the left-hand side

of Figure 3-2 made up the features tabulated in Table 3.5.

In addition to those extracted from the TCP and TLS handshake discussed

above, the features in this study included TCP teardown packets, i.e. TCP

84

Table 3.6: Features and their names

packet type count size
Application Data count_app size_app
Client Hello count_tlsHello size_tlsHello
Client Key Exchange count_tlsKey size_tlsKey
Encrypted Alert count_encAlert size_encAlert
SYN flag count_syn size_syn
ACK flag count_ack size_ack
RST flag count_rst size_rst
RST-ACK flag count_rstAck size_rstAck
FIN-ACK flag count_finAck size_finAck

packet type
lapse

min ave max
Application Data lapse_app_min lapse_app_ave laps_app_max
Client Hello lapse_tlsHello_min lapse_tlsHello_ave lapse_tlsHello_max
Client Key Exchange lapse_tlsKey_min lapse_tlsKey_ave lapse_tlsKey_max
Encrypted Alert lapse_encAlert_min lapse_encAlert_ave lapse_encAlert_max
SYN flag (not applicable) (not applicable) (not applicable)
ACK flag lapse_ack_min lapse_ack_ave lapse_ack_max
RST flag lapse_rst_min lapse_rst_ave lapse_rst_max
RST-ACK flag lapse_rstAck_min lapse_rstAck_ave lapse_rstAck_max
FIN-ACK flag lapse_finAck_min lapse_finAck_ave lapse_finAck_max

packets involved in terminating a connection. Since either side of the connection,

i.e. client or server, could initiate a packet signifying the end of a connection, the

RST-ACK and the FIN-ACK were also captured in addition to the RST packets.

Extracting features was achieved by piping TShark output to an awk program

developed in this study, i.e.

tshark [replay instructions] | awk -f [extract feature code] > dataset.arff

The output of the awk program was a file that was used as the dataset.

Dataset Creation

A snapshot of traffic within an observed time window was characterised by

the above features. Each snapshot represented an instance, and several instances

comprised a dataset. Hence, tabular datasets were created with the rows as the

instances of the traffic, and the columns as the features of each instance. One

additional column, usually placed as the last one, contained nominal data that

labelled the class of each instance, i.e. flash-crowd or attack.

The datasets were represented in text-formatted files. These files can be read

85

using Weka (University of Waikato, 1993–2016) – a collection of machine learning

technique tools. To evaluate the goodness of the dataset, the feature values were

examined for irrelevant values. The procedure involved examining the correctness

of the data, such as missing or inaccurate values (e.g. zero, negatives, too large

values), and the correctness of the data types. Changes or inconsistencies in the

procedure during data collection might result in missing values, errors, or data

type inconsistencies. Therefore, these changes were also observed and studied.

The datasets created in this phase served as the input data for the following

phase.

3.1.4 Phase 4: Feature Ranking and Traffic Classification

This study used Weka to rank features and run a range of machine learning tech-

niques. Ranking features is an important step before analysing machine learning

performance, because some irrelevant features can produce inaccurate classifi-

cations. For example, in Decision Trees, the most relevant values should be

selected to avoid or minimize errors introduced by irrelevant features. Feature

ranking addresses this problem. This study used two feature ranking techniques,

i.e. Information Gain and Gain Ratio.

Information Gain is a measure of purity when a feature is taken into ac-

count. Its value can be used to measure the degree of information if a new instance

were classified as a certain class. The relevance value is given by equation (3.1),

𝐺𝑎𝑖𝑛(𝑓𝑒𝑎𝑡𝑢𝑟𝑒) = 𝐼𝑛𝑓𝑜(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)− 𝐼𝑛𝑓𝑜(𝑓𝑒𝑎𝑡𝑢𝑟𝑒) (3.1)

where 𝐼𝑛𝑓𝑜(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) is the amount of information when the whole set of

training example is included, and 𝐼𝑛𝑓𝑜(𝑓𝑒𝑎𝑡𝑢𝑟𝑒) is the amount of information

when a specific feature is selected. The amount of information is obtained from

an entropy function that measures the degree of coherence with respect to a each

class 𝑘, which is given in equation (3.2),

86

𝐼𝑛𝑓𝑜(𝑥) = −
𝑛∑︁

𝑘=1

𝑝𝑘𝑙𝑜𝑔(𝑝𝑘) (3.2)

where 𝑝𝑘 is the probability of an occurrence that an instance was classified as

𝑘 when feature x is selected. In a two-class scenario as used in this study, the

information of the training example set can be simplified as shown in equation

(3.3).

𝐼𝑛𝑓𝑜(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) = −𝑝𝑛𝑜𝑟𝑚𝑎𝑙𝑙𝑜𝑔(𝑝𝑛𝑜𝑟𝑚𝑎𝑙)− 𝑝𝑎𝑡𝑡𝑎𝑐𝑘𝑙𝑜𝑔(𝑝𝑎𝑡𝑡𝑎𝑐𝑘) (3.3)

The problem with Information Gain is that features with a large range of

possible values returns a near-zero entropy value. Consequently, the Gain value

of the feature becomes greater than any other features causing it to become ranked

higher without truly representing its relevance.

Gain Ratio is a feature ranking measure that compensates the above draw-

back. It normalizes the Gain value of the training dataset with the entropy value

of the feature’s subsets, named the 𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐𝑉 𝑎𝑙𝑢𝑒. Gain Ratio formula is given

in equation (3.4).

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝑓𝑒𝑎𝑡𝑢𝑟𝑒) =
𝐺𝑎𝑖𝑛(𝑓𝑒𝑎𝑡𝑢𝑟𝑒)

𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐𝑉 𝑎𝑙𝑢𝑒
(3.4)

The Intrinsic Value represents the information value of the feature. It dis-

regards any information about the class of the data sample. This is given in

equation (3.5).

𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐𝑉 𝑎𝑙𝑢𝑒 = −
∑︁

𝑣∈𝑣𝑎𝑙𝑢𝑒𝑠(𝑓𝑡𝑟)

|𝑥 ∈ 𝑆, 𝑣𝑎𝑙𝑢𝑒(𝑥, 𝑓𝑡𝑟)|
|𝑆|

.𝑙𝑜𝑔2
|𝑥 ∈ 𝑆, 𝑣𝑎𝑙𝑢𝑒(𝑥, 𝑓𝑡𝑟)|

|𝑆|
(3.5)

where 𝑆 is the number of instances in the training dataset, 𝑥 is a sample of

the training dataset, 𝑓𝑡𝑟 is the selected feature to measure, 𝑣𝑎𝑙𝑢𝑒𝑠(𝑓𝑡𝑟) is a set

of all possible values of the selected feature, and 𝑣𝑎𝑙𝑢𝑒(𝑥, 𝑓𝑡𝑟) is the value of the

selected feature in sample 𝑥.

87

The drawback of Gain Ratio is that it can rank a less relevant feature high, due

to the feature’s low intrinsic value. Therefore, this study used both Information

Gain and Gain Ratio to take the advantages of each measure and to ascertain

comparison of the relevance of features. This comparison is discussed in Section

6.3.1.

Ranking features was done to study the effect of machine learning perfor-

mance with a selected subset of features. Four machine learning techniques were

employed in this study to classify attack and normal traffic. These are Naïve

Bayes, Decision Tree, JRip, and Support Vector Machines. Machine learning

classification allows the investigation to understand how the generated traffic can

be distinguished. For example, performance of the classification can show how

one traffic model can closely mimic another. The machine learning performance

was quantified using a set of evaluation metrics, as defined below.

3.2 Evaluation Metrics

Evaluation metrics were applied in order to analyse and compare the results ob-

tained from various observations. Evaluating classification techniques was based

on metrics such as incorrectly classified instances, Detection Rate, and False

Alarm Rate. These metrics were further based on True Positives (TP), False

Positives (FP), and False Negatives (FN) of the data, which are explained as

follows.

∙ 𝑇𝑃 is the percentage of attacks that the machine learning technique cor-

rectly identifies as attacks.

∙ 𝑇𝑁 is the percentage of normal traffic that the machine learning technique

correctly identifies as normal traffic.

∙ 𝐹𝑃 is the percentage of normal traffic that the machine learning technique

incorrectly identifies as attack traffic.

88

∙ 𝐹𝑁 is the percentage of attacks that the machine learning technique incor-

rectly identifies as normal traffic.

The incorrectly classified instances (equation (3.6)) are self-explanatory. It

shows the percentage of instances incorrectly classified out of the total number

of the whole instances 𝑆.

Incorrectly classified instances =
𝐹𝑃 + 𝐹𝑁

𝑆
× 100% (3.6)

The Detection Rate 𝐷𝑅 is also the TP rate, i.e. instances correctly classified

to belong to a given class. Its value lies between 0 and 1. The results shown

in this study were weighted, i.e. the number of samples from each class was

considered in the calculation. Hence, the weighted Detection Rate, or 𝐷𝑅𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑,

was computed based on the values of 𝐷𝑅𝑛𝑜𝑟𝑚𝑎𝑙 and 𝐷𝑅𝑎𝑡𝑡𝑎𝑐𝑘. This is given in

equation (3.7)

𝐷𝑅𝑛𝑜𝑟𝑚𝑎𝑙 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

𝐷𝑅𝑎𝑡𝑡𝑎𝑐𝑘 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐷𝑅𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =
𝐷𝑅𝑛𝑜𝑟𝑚𝑎𝑙 × 𝑆𝑛𝑜𝑟𝑚𝑎𝑙 +𝐷𝑅𝑎𝑡𝑡𝑎𝑐𝑘 × 𝑆𝑎𝑡𝑡𝑎𝑐𝑘

𝑆
(3.7)

where 𝑆𝑛𝑜𝑟𝑚𝑎𝑙 is the number of instances in the normal class and 𝑆𝑎𝑡𝑡𝑎𝑐𝑘 is the

number of instances in the attack class.

The False Alarm Rate 𝐹𝐴𝑅 is the FP rate, i.e. the measure of instances

falsely classified to belong to a given class. Similarly, its value lies between 0

and 1. The results shown in this study were also evaluated through the weighted

False Alarm Rate, or 𝐹𝐴𝑅𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 metric. This is given in equation (3.8)

𝐹𝐴𝑅𝑛𝑜𝑟𝑚𝑎𝑙 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃

𝐹𝐴𝑅𝑎𝑡𝑡𝑎𝑐𝑘 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

𝐹𝐴𝑅𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =
𝐹𝐴𝑅𝑛𝑜𝑟𝑚𝑎𝑙 × 𝑆𝑛𝑜𝑟𝑚𝑎𝑙 + 𝐹𝐴𝑅𝑎𝑡𝑡𝑎𝑐𝑘 × 𝑆𝑎𝑡𝑡𝑎𝑐𝑘

𝑆
(3.8)

89

It can be seen that the chosen evaluation metrics, incorrectly classified in-

stances, Detection Rate and False Alarm Rate facilitated comparison and as-

sessment of the accuracy of the various DoS attack scenarios. Hence, iterative

investigations were arranged by refining the way traffic was generated and mea-

sured, based on the combination of selected features. The investigations were

conducted until the evaluation metrics yielded acceptable results. The evalua-

tion metrics also allowed the study to discuss different kinds of traffic types and

techniques to launch DoS attacks (Chapter 6.3).

In order to perform the investigations outlined in this chapter, the following

section details the infrastructure, tools and software.

3.3 Experimental Setup

The purpose of setting up an investigatory lab is to allow exploration of different

network traffic characteristics. The setup facilitated generation of network traffic

and helped demonstrate how the generated traffic consumes computing resources,

significant enough to cause Denial of Service. Furthermore, it facilitated applica-

tion of machine learning techniques to characterise the traffic into legitimate and

malicious.

The lab setup for the investigation is illustrated in Figure 3-5. All devices

pictured in the figure are virtual devices run on a desktop computer that serves

the host machine. The host runs Windows 10 on Intel-i7 quad core with 64 GB

RAM; and the virtual machine was VMware Player 12. The host machine could

run the whole virtual machines required in this study without showing any signs

of RAM exhaustion or CPU utilisation.

The network connecting the clients and the servers was comprised of VMware

machines. There was no bandwidth limit set on the network.

The client was used to generate traffic. Various traffic patterns, attacks as

well as normal traffic, were generated and studied to model several client-server

scenarios. Each client ran a Debian Linux Operating System, Ubuntu 15.04, on

the VMware virtual machine.

90

Figure 3-5: The traffic generation setup

Each client also ran a packet generator, i.e. software developed in this study to

generate traffic. A packet generator is a program that allows a user to craft certain

packet types to be sent at a chosen rate. The study used nghttp2 (Tsujikawa,

2015) and curl (Stenberg, 1996–2016) as the library to implement the HTTP/2

protocol.

The intermediary intercepted traffic before it arrived at the server. Packet

monitoring was installed here using publicly available tools such as Wireshark

and its command-line version, TShark (Combs, 1998–2015). In this study, Wire-

shark was run on the host machine, capturing all traffic that passes through the

virtual network (i.e. a VMware network interface). Wireshark displays graphical

outputs, visualizing traffic packets that pass through a network interface. It can

interactively display the content of traffic packets; hence, it was used in this study

to aid in understanding HTTP/2 packet patterns sent by the clients and servers.

While Wireshark allows graphical interactions, TShark provides a command-

line interface. In this study, TShark was run on the server, capturing traffic that

passes through the virtual Ethernet interface on the server. The tool provides

commands to select the output format of captured packets. The outputs can be

saved to a file, which can be further processed for feature extraction as will be

detailed in Subsection 3.1.3.

The server was an HTTP/2 web server. This study used a publicly avail-

able HTTP/2 server, named libevent-server written by the nghttp2 author

91

(Tsujikawa, 2015). The investigation monitored the server for effects of resource

consumption. In order to detect symptoms of resource consumption, the fol-

lowing measurements were to be monitored (Salah, Sattar, Sqalli, & Al-Shaer,

2011): CPU usage, memory consumption, network throughput, and packet loss.

When a computing resource is under load, CPU usage, memory consumption and

packet loss indicators can show increasing activities, while network throughput

can decrease.

Two server setups were designed to limit the above resource consumption

measures to indicate activities caused by only HTTP/2 processes. First, the

server only runs HTTP/2 services; it did not run web applications or back-end

databases. Therefore, client requests cause the server to respond only with the

Application Layer protocol it serves, the HTTP/2. Second, a simple HTML

file index.html which contained only "<html>HelloWorld</html>" text mes-

sage was stored on the server. Hence, upon client requests, the server responses

through sending only simple text messages rather than large files.

The command ps -ef showed that there were 218 processes that the server

executed upon startup. However, the Ubuntu System Monitoring showed that

the server CPU consumption was near 0% when idle, despite having active back-

ground processes. This suggests that these background processes did not demand

CPU utilisation that would interfere with the investigations in this study.

The next section provides an explanation on how the experimental setup fa-

cilitates generation of traffic and how machine learning techniques were applied

for traffic classification. Evaluation metrics used to assess the result of the inves-

tigations are also discussed.

3.4 Ethical Issues

This study involved only machines. There was no human nor animal involved as a

subject. In line with the Edith Cowan University procedure for PhD candidature,

an Ethics Declaration approval was sought and obtained.

92

3.5 Conclusion

This chapter presented the methodology for data collection, evaluation and analy-

sis adopted. It detailed the hardware equipment and software tools in a computer

lab used for the investigations. The experiments were conducted to generate

HTTP/2 traffic of both classes (normal and attack), following traffic models. A

dataset was created from the traffic, and its evaluation metrics for analysis were

detailed in this chapter. While this chapter provided overview of the methodol-

ogy, the following two chapters detail the provisioning, results, and analysis of

the legitimate traffic (Chapter 4) and attack traffic (Chapter 5 to 6).

93

94

Chapter 4

Legitimate Traffic Modelling and

Analysis

This chapter explains how legitimate user traffic can be modelled, and how

HTTP/2 traffic can be generated from the defined model. Normal traffic was

subsequently built-upon to create flash-crowd traffic and a corresponding dataset.

Figure 4-1 illustrates this framework.

While HTTP/2-enabled services are gaining popularity, currently most web

servers still communicate using the HTTP/1.1 protocol. This implies that a

sensor placed at a backbone of a computer network would not be able to tap much

data on HTTP/2 traffic. Through this study, HTTP/2 traffic was subsequently

modelled to mimic real user traffic and was generated as part of the experiments.

This chapter also explains how flash-crowd traffic was modelled. Flash-crowd

Figure 4-1: The framework for creating flash-crowd dataset from a defined normal
user model.

95

traffic was generated from a large volume of normal traffic that best presented

an HTTP/2 resource consumption on a server. Firstly, the proposed method

adopted a publicly-available log that described user actions in the Internet. This

was followed by a model construction task from the observed user actions. The

model was simulated to generate HTTP/2 traffic, and a dataset from the traffic

was created by extracting all traffic features. Secondly, flash-crowd traffic was

generated from simulating the model, and the traffic was extracted through the

feature extraction procedure described in Section 3.1.3 to create a normal traffic

dataset.

The following section describes the publicly-available log picturing normal

browsing actions.

4.1 Logs of Online User Browsing Behaviours

Behaviour of a normal Internet user was modelled from DOBBS, a publicly

available log of user actions obtained from online browsing (von der Weth &

Hauswirth, 2013). This log was comprised of records of user actions when a user

is online, such as opening a new browser, adding a new browser tab, clicking a

link or typing a web address, etc. The dataset was for a year-long activity record,

and was collected from volunteers from around the world who installed a browser

plugin that sent logs of these actions to a central archiving system.

In this study, a 3-day DOBBS data collection that had the most number of

users and surf entries was adopted. Typically, normal users do not continuously

surf the Internet; they take breaks and daily sleeps. Therefore, the 3-day sample

included not only records of user actions in the Internet as described above, but

also the duration of time when the users sleep overnight and other breaks. The

statistics of this sample are described in Table 4.1. The table shows the number

of users on each day, and the number of web surf events generated by these users.

The 3-day DOBBS data is named DOBBS Sample 1.

There are three tables in the DOBBS log representing three types of events:

first, that logged the browser’s window-related data such as window mini-

96

Table 4.1: Dataset sample information

Sample name Log date # users # distinct users # surfs
6 Aug 2013 14 14540

DOBBS Sample 1 7 Aug 2013 13 21 8774
8 Aug 2013 12 9835

Table 4.2: A snippet of DOBBS Sample 1

Time User ID Event ID Event description
20130826181127.900 48115555 100 New browser window opened
20130826181127.900 48115555 200 Session started
20130826181128.400 48115555 110 New browser tab opened
20130826181128.400 48115555 110 New browser tab opened
20130826181143.600 48115555 400 New web page loaded

mized/maximized, browser tab opened/closed, and whether window is focused;

second, that logged session-related data such as user inactive or idle (for example

due to reading the information on the browser); and third, that was related to

user actions as a result of browsing activities. Each table has a user ID column to

identify the unique user who performed the actions. For the purpose of this study,

the three tables were combined and the data was sorted based on the recorded

time-stamp per user ID. This log showed a story-like event illustrating how a user

browsed websites during a given period of time. An example of a data sample is

shown in Table 4.2.

The table illustrates that a user initialised its browser, opened two tabs, and

initiated web browsing after 15 seconds. The time-stamp for each entry presented

how much time a given event took.

In reality, each of the human users who took part in contributing to the

DOBBS log belonged to a different time zone. They were not active and did not

browse the Internet at the same time; some used the Internet at a time when oth-

ers slept. Furthermore, each user showed variations on their behaviour such as the

time it take for them to load a new page after browsing one, the amount of time

they spent online, taking breaks, and sleep. Although each user behaviour dif-

fered, they all can be represented by a state transition model (described shortly),

with each user having its own transition and dwell-time to represent its unique

97

Figure 4-2: State Transition representing a User Model

behaviour. A User Model can thus be created to represent each of these user

actions.

4.2 User Model

The User Model was represented in terms of states and transitions. Each recorded

event was represented as a state with its own dwell time in that state. Specifically,

the dwell time was the time an event remained in one state, before moving to

another state. Therefore, each state also took into account the time spent to

complete one event. Each state led to one other state or more, and the probability

of a state transitioning to another state was calculated by counting its frequency

of occurrence in the actual DOBBS log. This effectively modelled one sample user

that browsed web sites. Figure 4-2 shows the model of traffic that was described

in Table 4.2. In the figure, there was an equal chance of state 110 to transit to

either state 400 or to itself, because the frequency of those transitions in the data

log was equal. As for the model used in this study, the transition probability

of a state was tallied from the 3-day sample, i.e. the DOBBS Sample 1, which

accommodates larger data than the example given in Table 4.2. Therefore, the

transition probability was more fine-grained than the results shown in the above

example. The states and transition probabilities were named the User Model.

The User Model was constructed from a sequence of DOBBS Sample 1 entries.

98

Figure 4-3: An example of one User Model taken from DOBBS Sample 1

As illustrated in Figure 4-3, the model had 16 states with many edges (transi-

tions). The "S" state identified the first event observed in the log; therefore, it

pointed to only one state in the model and acted as the starting state. The data

structure of the model was coded using a two-dimensional matrix with 𝐼 rows

representing the current state, and 𝐽 columns representing the next state. The

data structure of each cell 𝑐𝑖𝑗 in the matrix had the dwell-time value for state 𝑖

and the probability value to transit to the next state 𝑗. Simulating the model to

transit from one state to another used a random number generator rand() from

the Linux C library.

The defined User Model was used to generate traffic which is described as

follows.

4.3 A Framework to Generate Normal Traffic

The framework describing how DOBBS log can be adopted to generate normal

network traffic is depicted in Figure 4-4. Two scenarios were implemented for this

research. The first one was called Ubot, with the "U" standing for "User". It was

defined to replay one User Model and generate normal traffic that mimicked the

user. Ubot takes a User Model as input, looks for a starting state and transits

to other states after a given dwell-time. When Ubot is in a state that represents

a user requesting a web page, Ubot generates an HTTP/2 Request packet. The

99

Figure 4-4: The framework on how DOBBS log was used to generate normal
traffic

second scenario was named BotMaster, defined to run a large number of Ubot

modules to generate flash-crowd traffic. Each Ubot module simulates a user. A

number of Ubot modules running in tandem simulate different user behaviours,

generating HTTP/2 traffic patterns that mimic normal users. BotMaster simu-

lates flash-crowd traffic by generating a large volume of normal traffic.

Ubot simulated the User Model, with the input data acquired from the

DOBBS Sample 1 (see Figure 4-4). Ubot simulated (normal) actions of 1 user,

with a defined idle time on each state to represent the length of time an event

took to complete, and executed another event (i.e. moved to another state) based

on the probability definitions for the state transitions. Because Ubot transits to

another state following a defined probability, it can show different patterns when

it replays the same user. Therefore, it mimics the logged actions of a user without

replaying the log verbatim. Ubot also produces variations when run repeatedly,

showing different sequence of user actions, but still follows the browsing activity

pattern of a specific user.

The Ubot implementation varied the pattern of user activities while maintain-

ing the identity of that user behaviour, i.e. each user’s preferred time rhythm and

choice of actions. Users allocate a certain amount of time to browse and sleep;

their browsing speed differs; and some launch more browser tabs than others.

Although Ubot transits to another state based on a probability, its implementa-

tion maintains the identity of user behaviours. The implementation considered

the phase when a user is active or idle according to its time-zone, the amount of

100

Figure 4-5: State Transition representing a User Model

break-time and sleep between activities, and the intermediate actions to complete

an activity. These are described in the following procedures.

∙ Ubot mimicked the activity phase of the user according to its time zone.

For this, a pause value was adopted to indicate an idle time before the first

event of a user was started. When each Ubot was first started, the user

that it simulated paused for the same duration as what was logged in the

DOBBS log. Each user was active at a different phase; hence, each had a

different pause value. For example, consider Table 4.2 as the input data.

State "S" would pause for 18 hours 11 minutes 27 seconds because the first

event for that user in the log occurred at that time. The pause in state "S"

is illustrated in Figure 4-5. At the end of the pause time, Ubot transited to

its next state indicating that the user initiated web browsing activity.

∙ Each state had a list of dwell time with each list entry signifying the amount

of idle time when Ubot was in that state. Dwell time is depicted in Figure

4-5 as an element of a state. A list of dwell time in each state was collected

from DOBBS Sample 1. Because a state could have more than one dwell

time value, it was chosen at random for the simulation. To illustrate, using

the logs from Table 4.2, the dwell time for which the user stayed in state

110 in the log was either 0 seconds or 15.2 seconds. A Ubot would randomly

choose either 0 or 15.2 seconds and stayed for the chosen duration at state

110 before transitioning to another state. It then retained the dwell time

101

it chose in memory. Suppose the Ubot firstly chose the 0-second pause, it

would then pick the 15.2-second pauses when it arrived at state 110 for the

second time. This rule is repeated when Ubot moves to any other state.

Dwell time could also represent the user break time, a temporary withdrawal

from web surfing activity, or daily sleep – which is explained next.

∙ Unlike robots, human sleep is usually taken overnight. Sleeping time be-

tween days could be observed within the 3-day sample (DOBBS Sample 1)

as a long idle time between two consecutive days. In Ubot, the sleep time

was treated the same as dwell time. As previously explained, Ubot remem-

bered the dwell time it chose and picked another dwell time value when it

reached the same state later. Once a sleep time was chosen, Ubot simulated

a user until it exhausted all dwell time entries in the list. Ubot cleared its

memory on the dwell time entries it chose, allowing it to regain access to

the whole dwell time entries in the list including the sleep time. In other

words, Ubot chooses the same sleep time value for the second time only

after it has simulated all other activities. Therefore, Ubot did not sleep for

more than the length the user normally sleeps, because it would not sleep

twice. This arrangement allowed Ubot to mimic the duration for which a

user was awake.

∙ When Ubot reached state 400, which according to DOBBS log means "new

web page loaded," then Ubot would generate an HTTP/2 Request. The

simulation code used curl as the programming library to generate HTTP/2

Request to a web server (as described in Section 3.3). The generated traffic

was captured at the server side as described in subsection 3.1.2.

∙ Ubot runs indefinitely and is terminated by an operator. In this study,

Ubot was terminated after a 2 GB file that captured the generated traffic

was successfully collected.

Since DOBBS Sample 1 had 21 distinct user IDs in the log, this study was

equipped with 21 unique user models depicting individual web-surfing behaviour.

102

Ubot was run to simulate any one of these users and generate traffic according to

the individual patterns. Its data structure was coded using a three-dimensional

matrix: a 2-dimension matrix to represent the User Model, and a one-dimension

parameter designated with the user ID. Therefore, Ubot replayed any behaviour

of the 21 users depending on the user ID that it was initialised with. This is

depicted in Figure 4-4 with 𝑁 = 21 users.

The second scenario implementation, BotMaster, was written to run an ar-

bitrary number of Ubots. Its code ran threads – computer processes to execute

multiple programming modules simultaneously. Each Ubot was assigned to a

thread so that traffic could be generated simultaneously. However, a large num-

ber of threads can lead to a race condition, i.e. a situation where the behaviour

of one process affected another. For example, a process can block another pro-

cess from execution. Hence, the number of threads before a race condition is

observed must be defined a priori. The challenge is that the maximum number

of threads that can be launched on a machine differs depending on its computing

environment. Therefore, a preliminary test was conducted in this study to find

the number of threads that BotMaster could run. When tested on the virtual

machine used in this study, 400 threads were found to be runnable which stopped

interactively without showing any signs of blocking. However, some threads could

not be stopped when 500 threads were run simultaneously, suggesting that a race

condition had occurred. Therefore, for the purpose of this study, one virtual ma-

chine was set to run 200 Ubots using threads. This number was chosen to give a

reasonable distance from the upper bound of 400, the number observed to avoid

a race condition. It was also observed that while the BotMaster was designed to

run any number of Ubots, 200 was the optimum number to run on each of the

virtual machines used in this study.

To generate a large volume of HTTP/2 traffic, this study used BotMaster

to mimic the behaviour of 200 users. For each of the 200 Ubots it ran, it ran-

domly chose any one of the 21 user IDs. Because a random number was used for

assigning a user ID to a Ubot, running BotMaster repeatedly would yield differ-

ent compositions of user IDs assigned to the 200 Ubots. Hence, the traffic that

103

BotMaster generated did not show identical patterns when the simulation was

replayed, or when the BotMaster was reproduced on different virtual machines.

Running several BotMasters simultaneously using several virtual machines cre-

ated flash-crowd traffic, which is explained in Section 4.4.2.

This section has shown a framework on how the User Model was simulated

using Ubot, and how a number of Ubots could generate a larger volume of traffic

using BotMaster. The next subsection discusses the evaluation of the framework.

4.3.1 Evaluating the Framework

This section shows the BotMaster simulation results when supplied with different

DOBBS log samples. The expected outcome of running the simulation was that

BotMaster could show that the number of visits to each state was closely related

to the number of actions in the DOBBS log it corresponded to. Testing the

framework included assessing all modules involved, including the User Model,

Ubot, and BotMaster. Observing the simulation outputs indicate:

∙ The User Model internal validity. The model was expected to adapt to

variations of the DOBBS log used as the input sample. For example, the

list of dwell times must be able to differentiate 0 or Null values. Large dwell

time values exceeding the whole duration of the sample indicated a time

conversion error. The model should correctly convert overnight cases, where

the clock was reset and the day count was increased. The model should also

be able to adapt to different user behaviours, such as being active on one

day and becoming idle on the next. Any unexpected output could question

the internal validity of the model.

∙ The Ubot veracity to choose a next state. The next state should be ran-

domly chosen with a probability equivalent to the tally of the corresponding

event in the DOBBS log. Therefore, the number of visits to each state in

the simulation should be similar to the number of logs for the event. Large

deviations between the numbers shown in the simulation and that in the

104

Table 4.3: Dataset sample information

Sample name Log date # users # distinct users # surfs
26 Aug 2013 12 8232

DOBBS Sample 2 27 Aug 2013 14 18 11483
28 Aug 2013 11 11979

original log could imply that the random number generator generated unfair

outputs.

∙ The BotMaster versatility in handling threads. BotMaster outputs de-

pended upon the concurrency of threads to run many Ubots as though

each of these were run by independent processes. When certain threads

blocked other threads, some user IDs could not be correctly simulated ac-

cording to their behaviours. For example one user ID could be simulated

indefinitely while another could not run at all. The test done in this part

of the study was able to detect such cases.

The test used two 3-day samples. One sample, the DOBBS Sample 1 had

been previously discussed (Table 4.1). A second 3-day sample was extracted

from DOBBS log to serve further tests and comparison. The sample, named

DOBBS Sample 2, is described in Table 4.3. The second sample was chosen due

to its high number of users per day, number of distinct users, and number of surfs

compared to the remainder of the data in DOBBS log.

In this part of the study, BotMaster was meant to simulate a number of

distinct users from a sample. Previously it was explained that a BotMaster was

set to run a maximum number of 200 threads to avoid race conditions. However,

for the purpose of evaluating the framework, BotMaster was set to run the same

number of threads as the number of distinct user ID in the sample. Therefore,

the number of threads was set to 21 when evaluating DOBBS Sample 1, and was

set to 18 when evaluating DOBBS Sample 2. Each Ubot that a thread processed

simulated a unique user IDs. Consequently this procedure was able to simulate

different types of DOBBS samples.

Table 4.4 and 4.5 show the simulation results through running the BotMaster

105

Table 4.4: BotMaster mimicked DOBBS Sample-1 closely

Event/State ID
DOBBS Sample-1 count:
total number of logs

BotMaster
average number
of visits

standard
deviation

100 199 190 14
101 196 190 15
110 1384 1339 73
111 1367 1333 90
140 261 253 19
150 1251 1211 47
151 1247 1201 44
155 5 5 2
200 197 188 14
201 197 189 15
210 1369 1311 28
211 1402 1347 39
215 9 8 4
400 7760 7640 348
410 10724 10567 594
420 8522 8385 520
430 6143 6034 306

total events 42233 41391 1969

using the above procedure. The table shows the number of times each state

was reached during a run. For each sample, BotMaster was run 30 times to see

the variations among different simulations. Each of the states in the model was

visited randomly, while maintaining a similar total number of states to the total

number of events within the entire simulation duration.

In simulating both samples (DOBBS Sample-1 and DOBBS Sample-2), it can

be seen that the total number of logs for each event were mostly 2 standard

deviations from the average number of state visits produced by BotMaster. Some

of the values showed that the gap was as close as within 1 standard deviation. This

meant that the events were closely mimicked by the BotMaster. The aggregate

number, i.e. the total number of logs for all events were within 2 standard

deviations from the simulation average. Therefore, the simulation results did

not deviate significantly away from the original log.

This subsection demonstrated that the proposed framework to generate nor-

mal traffic was internally valid. The technique for mapping samples to the User

106

Table 4.5: BotMaster mimicked DOBBS Sample-2 closely

Event/State ID
DOBBS Sample-2 count:
total number of logs

BotMaster
average number
of visits

standard
deviation

100 143 136 6
101 147 140 11
110 1587 1453 95
111 1651 1523 115
140 417 395 26
150 1224 1169 59
151 1220 1166 55
155 18 18 4
200 143 138 16
201 147 139 13
210 1703 1622 59
211 1711 1614 73
215 13 12 7
400 7537 7131 306
410 10016 9547 444
420 8025 7615 362
430 6116 5759 270

total events 41818 39576 1665

Model, which was simulated by Ubots and BotMaster, produced valid results

when different samples were used. Although simulating the User Model repeti-

tiously produced different patterns, it was confirmed that the traffic it generated

mimicked normal user behaviours. In other words, the experiments in this study

can confidently simulate copies of the User Model to generate a large volume of

normal traffic. Normal traffic that consumed computing resources of a server can

be thus labelled as flash-crowd traffic.

4.4 Flash-Crowd Traffic

While the previous section detailed how normal traffic was generated, this sec-

tion explains how flash-crowd traffic was produced from the normal traffic. The

generated flash-crowd traffic was subsequently captured and processed to create

a dataset. This part of the framework is illustrated in Figure 4-6. The grey boxes

in the figure illustrate how generating flash-crowd traffic (subsection 4.4.1) and

107

Figure 4-6: Generating flash-crowd traffic and creating dataset

creating flash-crowd dataset (subsection 4.4.2) fit in the framework explained in

this Chapter.

4.4.1 Generating Flash-Crowd Traffic

The flash-crowd traffic was generated by running several BotMasters on client ma-

chines, to target an HTTP/2 server. This is illustrated in Figure 3-5. The clients

and the server were all virtual machines. To describe the left side of the figure,

each client ran 1 BotMaster thread, and each BotMaster thread ran 200 Ubots.

On the right side of the figure is an HTTP/2 server running on Ubuntu 15.04.

Two monitoring tools were deployed on this machine: collectl and TShark. The

tool collectl was used to monitor the resource utilisations: CPU consumption,

memory usage, and network flow rate. This allowed the study to detect the con-

dition when the server began to show signs of resource consumption. The tool

TShark was deployed to capture the traffic generated from the clients.

A snippet of normal traffic produced by a user is illustrated in Figure 4-7. The

first column represents the packet numbers; the second is the port numbers; the

third is the time stamps relative to the time when the first packet was observed;

the fourth is the size of the packets in bytes; and the fifth column details the

packet information.

The number of clients was incrementally added to the client-server system

until the server showed a sign of resource consumption. The study showed that

the server reached 100% CPU consumption continually when 26 virtual machines

108

Figure 4-7: The generated traffic, captured and viewed using TShark

Figure 4-8: Filtering traffic and extracting features

were actively generating traffic directed towards the server. This represented

26 × 200 = 5200 normal users visiting a website. The captured traffic at the

server side represented flash-crowd traffic, because it was generated from normal

traffic pattern and it consumed the CPU utilisation of the server.

The file format was named packet-capture (pcap); the traffic was captured over

8706 seconds, which occupied a pcap file of size 2 GB. Currently this number is

the maximum pcap-format file size, when captured using TShark. TShark was

also used to replay the captured traffic for further analysis including displaying

with filters, counting and searching particular events.

4.4.2 Creating Flash-Crowd Dataset

To create a dataset of flash-crowd traffic, the traffic captured was filtered and

extracted. This procedure is illustrated in Figure 4-8.

The traffic captured by TShark was filtered twice, through the direction filter

109

Table 4.6: Filtering traffic messages to extract features

Network layer Used for features Not used
Application HTTP/2 DNS

SSL DHCP
Transport TCP
Network IP address
Data Link ARP

and the protocol filter. The first filter was to retain traffic only from client-to-

server. This filtering procedure ascertained that the packet flow from client to

server alone was captured, to represent a DoS attack. Hence, referring back to

the illustration in Figure 4-7, the direction filter yielded non-contiguous packet

numbers in column 1.

The second filter was a protocol filter, which operated so that only traffic

involved in an end-to-end communications was considered. Messages irrelevant

to a remote HTTP/2 server, such as DNS, DHCP, and ARP messages, were not

considered for creating the dataset in this study. To illustrate this using Figure

4-7, traffic shown on lines 55, 76, and 87 did not pass the filter and were thus

removed. Traffic that was relevant to creating the dataset was the end-to-end

network data such as HTTP/2 and SSL messages (application layer), and TCP

messages (transport layer). This is shown in packets 5 to 51 in Figure 4-7.

To illustrate the protocol filtering process from a common layered-network

perspective, Table 4.6 groups the traffic messages into network layers that were

found to be either relevant or irrelevant to the study.

After the traffic was filtered with the direction and protocol filters, it was

further characterised using the feature extraction procedure. As described in

Section 3.1.3, the procedure extracted the count, size, and minimum lapse, aver-

age lapse, and maximum lapse values, yielding 5 different values for each packet

type. There were 9 packet types extracted as shown in Table 3.5. In this study,

captured traffic was organized into 1-second instances. Therefore, each instance

could be characterised by 9× 5 = 45 feature values; however, there was no lapse

(min, average, max) value for one of the packets (i.e. the SYN packet), yielding

110

42 feature values to characterise traffic in this study.

A 3,600-second flash-crowd traffic was sampled for this purpose. That is,

the feature extraction procedure extracted the 42 feature values of each time

frame of length 1 second of flash-crowd traffic. Therefore, the feature extraction

procedure was iterated 3,600 times for obtaining 3,600 instances. The result could

be arranged in a table with its columns representing the feature values, and each

of its rows representing 1-second traffic instances.

This table represents the flash-crowd dataset. It describes HTTP/2 flash-

crowd traffic in a 42 × 3600 table. Table 4.7 also summarises the values of the

42 features. Statistics were applied to represent the 3600 values of each feature

through its maximum, minimum, average, and standard deviation values.

The shape of the flash-crowd traffic can be understood from the lapse feature

values. Table 4.7 shows that some of the lapse feature values showed 0 minimum

values, denoting an instance where the packet was sent immediately after its

previous one. On the other hand, the maximum value of the lapse features was

mostly several standard deviations away from 0, signifying that a special network

condition occurred. For example, the mean values for 𝑙𝑎𝑝𝑠𝑒_𝑎𝑝𝑝_𝑚𝑖𝑛 = 0,

𝑙𝑎𝑝𝑠𝑒_𝑎𝑝𝑝_𝑎𝑣𝑒 = 0.032, and 𝑙𝑎𝑝𝑠𝑒_𝑎𝑝𝑝_𝑚𝑎𝑥 = 1.563. These values indicate

that the Application Data packets sent by clients were received by the server 0.032

seconds on average after their connection was initiated. However, the Application

Data packets can also take 1.563 seconds, or 1.563/0.032 = 48.8 times higher than

average, from connection initiation until they were received by the server. One

explanation for having a very high lapse value was that the server was busy

and incoming packets were queued. Hence, this observation conforms to the

general understanding of flash-crowd traffic descriptions that legitimate traffic

can consume server resources.

Furthermore, Table 4.7 describes the nature of the flash-crowd traffic, indi-

cated by the gaps between the minimum and maximum values of the count and

the size features. The server was not made busy during any instance of time

where the volume of packets was at its minimum, but it found to approach its

serving limit during a time instance when the features showed its maximum val-

111

Table 4.7: Flash-crowd traffic characteristics described through its feature values

no feature name min max mean s.d.

1 count_app 18 398 201.553 34.783
2 size_app 2356 60634 30610.343 5264.759
3 lapse_app_min 0 0 0.000 0.000
4 lapse_app_ave 0 6 0.032 0.264
5 lapse_app_max 0 156 1.563 11.530
6 count_syn 33 132 76.790 13.772
7 size_syn 2442 9768 5682.460 1019.131
8 count_ack 16 464 223.777 41.804
9 size_ack 1056 30648 14778.687 2762.303
10 lapse_ack_min 0 0 0.000 0.000
11 lapse_ack_ave 0 23 0.042 0.654
12 lapse_ack_max 0 691 1.966 20.826
13 count_rst 0 231 73.048 25.134
14 size_rst 0 13860 4382.883 1508.043
15 lapse_rst_min 0 274 1.057 11.967
16 lapse_rst_ave 0 274 3.785 15.935
17 lapse_rst_max 0 873 25.631 67.556
18 count_rstAck 0 69 39.523 9.075
19 size_rstAck 0 4554 2608.503 598.944
20 lapse_rstAck_min 0 518 1.359 15.516
21 lapse_rstAck_ave 0 518 6.279 21.992
22 lapse_rstAck_max 0 979 36.71 79.556
23 count_finAck 0 112 24.902 12.201
24 size_finAck 0 7392 1643.528 805.276
25 lapse_finAck_min 0 401 1.831 18.409
26 lapse_finAck_ave 0 401 7.003 23.367
27 lapse_finAck_max 0 934 36.107 76.897
28 count_tlsHello 17 139 76.793 14.2
29 size_tlsHello 6343 51997 28695.703 5315.083
30 lapse_tlsHello_min 0 0 0.000 0.000
31 lapse_tlsHello_ave 0 0 0.000 0.000
32 lapse_tlsHello_max 0 3 0.011 0.137
33 count_tlsKey 0 19 6.154 2.475
34 size_tlsKey 0 4883 1581.549 636.142
35 lapse_tlsKey_min 0 1 0 0.017
36 lapse_tlsKey_ave 0 179 0.051 2.984
37 lapse_tlsKey_max 0 896 0.271 14.934
38 count_encAlert 1 155 76.713 15.104
39 size_encAlert 97 15035 7441.139 1465.058
40 lapse_encAlert_min 0 581 1.391 21.877
41 lapse_encAlert_ave 0 581 3.168 24.39
42 lapse_encAlert_max 0 800 23.864 68.85

112

ues. For example, the count_syn feature values reveal that flash-crowd traffic

is made of 77 connections per second on average, which ranges from 33 to 132

connections per second.

The average number of TLS handshake initiation per second, denoted by the

count_tlsHello feature, equalled to 76.793. This number is almost identical to

the average number of TCP connection initiation per second, count_syn, which

equalled to 76.790. This demonstrates that both the TCP SYN packet and the

TLS Hello packet are always in pair in initiating a connection, as illustrated in

Figure 3-2.

The count_ack mean feature value was 223.77, which is 3 times higher than

the count_syn mean feature value of 76.790. This means that the server receives

on average 3 ACK packets in a connection. Upon an investigation, these 3 ACK

packets were used to acknowledge a SYN packet for connection initiation, a TLS

Hello for TLS handshake initiation, and an HTTP Response page. Flash crowd

traffic can be identified through having count_ack feature values between 16 and

464. Table 4.7 shows that other count and size feature values also show that

flash-crowd traffic can be identified through feature values that lie between these

low and high traffic measures.

4.5 Conclusion

This chapter showed how legitimate user behaviour while online could be mod-

elled, and how flash-crowd traffic could be generated from the defined model.

The study produced a flash-crowd dataset and showed its feature values. This

dataset can be used to analyse how attack or anomalous traffic deviates from

the normal traffic. The following chapter presents a scheme to model and detect

attack traffic.

113

114

Chapter 5

Attack Traffic Modelling and

Analysis

The earliest Denial of Service (DoS) attack reported in the literature was launched

in 1974 (Heron, 2010; Dear, 2010). The attack required only one client command

to cause 31 remote machines to become unresponsive. The command was designed

to share the use of external devices in the network. The command launched data

transmission to an external device connected to another machine in the network.

However, in the absence of an external device, the machine indefinitely waited to

communicate with the non-existent device and was unable to serve other input

devices such as the keyboard. The attacker sent such a command to each of the

machines in the network, causing all 31 of them to become unresponsive to key-

board commands. DoS attacks in the subsequent years demanded launch of more

traffic from an attacking client. In 1996, a flood of ping packets (discussed in page

19) was found to cause target machines to freeze (CERT, 1996). Subsequently,

the Internet has facilitated means for attackers to increase the volume of traffic

to flood a target more effectively. Internet-connected machines have been used to

send simultaneous traffic, creating a Distributed DoS (DDoS) attack to incapac-

itate a target (Chang, 2002). Henceforth, flooding-based DoS attacks after the

year 1999 have been generally distributed in nature (Zargar et al., 2013).

This chapter shows how DoS attack traffic against an HTTP/2 service can

115

be modelled. It details the impact of launching HTTP/2 packets with varying

parameter settings to depict CPU utilization and memory consumption of a target

machine running an HTTP/2 server. The chapter is divided into two sections.

The first section presents a model of a flooding-based attack, and the second

section presents a model of a distributed attack.

5.1 Flood Attack

Prior to this study, flooding-based detection techniques discussed in the liter-

ature (subsection 2.3.2.2) analysed floods of HTTP/1.1 traffic. The techniques

employed HTTP/1.1 Request packets to create floods against web servers (Zargar

et al., 2013). Attackers at the client side launched a big amount of packets to the

server. As a result, the server was incapacitated.

In contrast, a flood of HTTP/2 Request packets observed in this study could

not be used to incapacitate a target running an HTTP/2 service. A client ma-

chine was designed in this study to continuously launch HTTP/2 Request packets

to an HTTP/2 server. The client used nghttp2 library to continuously generate

HTTP/2 data packets containing GET requests, and sent these packets towards

the server. However, the server was not incapacitated. The client machine, in-

stead of the server, reached 100% CPU utilization during the time that it launched

continuous HTTP/2 Request packets. This shows that the flooding-based attack

against the HTTP/2 server was unsuccessful. Therefore, flooding-based tech-

niques previously used to incapacitate HTTP/1.1 services, such as launching a

big amount of HTTP/1.1 Request packets, cannot be adapted to attack HTTP/2

services.

However, HTTP/2 packet types are not restricted to an HTTP/2 Request

packet. HTTP/2 standard (Belshe et al., May 2015) defines 10 frame types, i.e.

the ping, data, settings, window_update, headers, priority, rst_stream,

push_promise, go_away and continuation frames. This section further explores

other HTTP/2 packet types, particularly the window_update and the ping pack-

ets, to fit a model that allowed a client to launch flooding-based HTTP/2 DoS

116

attack traffic towards a target. Such an attack model is introduced in the follow-

ing subsection.

5.1.1 Attack Model and Scenarios

An attacking client was designed to generate and launch HTTP/2 attack packets

towards a target server. The attack packets were generated at the client side

based on a flooding-based attack model. The aim of the investigation in this

section is to find HTTP/2 packet types that can be employed as attack packets,

which consumes 100% CPU usage of a target server.

The flooding-based attack is modelled based on two intuitions. First, a target

server can be incapacitated when processing a big amount of packets. There-

fore, the proposed model allows the investigation to launch a predefined number

of attack packets from an attacking client to a target server. Second, sending

continuous attack packets could overload the CPU usage of the attacking client.

Reducing the attack flow, i.e. the number of packets launched per second towards

the target server, could still incapacitate the server. Hence, the model allows the

investigation to add and adjust a time delay between successive attacking packets.

The attack model proposed in this study is shown in Figure 5-1. The model

allows test cases in this study to generate a cumulative 𝑁 number of packets.

Hence, a variable 𝑠𝑒𝑛𝑡 is initialised to 0, to set that no packet has been generated.

The model generates and sends one HTTP/2 packets towards a target HTTP/2

server. Hence, the variable 𝑠𝑒𝑛𝑡 is incremented each time after an HTTP/2 packet

is generated, shown in the figure as 𝑠𝑒𝑛𝑡 = 𝑠𝑒𝑛𝑡+1. This process is iterated until

a 𝑠𝑒𝑛𝑡 equals to the cumulative number of packets 𝑁 . The terminating condition

is shown in the figure as a 𝑠𝑒𝑛𝑡 == 𝑁 conditional statement. The process

terminates when the condition is true.

Furthermore, the model provides a conditional statement to add a time delay

before sending an HTTP/2 packet towards a target server. When set to true,

the conditional statement add time delay allows a test case to set a delay with

a 1 nanosecond granularity, and allows the model to pause for the given time

117

Figure 5-1: The flooding-based attack model

delay before sending an HTTP/2 packet towards a target server. To bypass this

behaviour of adding a time delay, the conditional statement should be set to false.

In this study, the effects of varying different HTTP/2 packet types on the

CPU and memory consumption of a target were observed. This is explained in

Investigation-1 of the following subsection. Investigation-2 furthered the experi-

ment through observing the number of target machines that a single client was

able to flood. The effect of adding a time delay between attack packets on the

computing resources of a target was observed in Investigation-3.

Investigation 1: HTTP/2 Packet Types

The first investigation was to examine how DoS attack could be launched

against an HTTP/2 server. The following lab configuration was set up to facili-

tate the investigation. Two VMware Player virtual machines were deployed: one

hosted a client (as the attacker) and the other hosted a server (as the victim).

Each virtual machine was configured to have 1 processor core with 1 GB RAM,

and ran Ubuntu 14.10 Linux distribution. The client and the server were con-

118

nected through a 100 Mbps virtual network. The two virtual machines were run

on the same host machine.

Several test cases were run to launch various packet types, i.e. settings,

data, ping, and window_update packets. Some of the results were not in accord

with the expectancy. For example, sending settings frames more than once

generated an error; and transmitting data frames containing GET requests did

not successfully cause resource depletion. It was found that the client machine

(instead of the target) reached 100% CPU consumption when the data packet

was used to flood the target. Of interest in this investigation, two packet types

i.e. the ping and window_update frames could be used for further observation,

as they allowed the flood-based attack model (Section 5.1.1) to iteratively send

HTTP/2 packets.

The ping packet discussed in this section is an HTTP/2 frame types at the

application level, as not to confuse it with ping messages at the network level,

notoriously known to cause DoS attacks (Section 2.2.1). The ping frame is part

of the HTTP/2 protocol.

The window_update packets are used to control the amount of bytes an

HTTP/2 machine can send (discussed in Section 2.4.4). Every HTTP/2 packet

is tagged with a stream ID, which allows packets to be grouped and transmit-

ted asynchronously to a remote machine, regardless of the packet flow of other

groups. While every HTTP/2 packet is tagged with a stream ID, the win-

dow_update packets can control the flow of different stream IDs. In other words,

window_update packets allow flow control, grouped by the stream IDs of the

packets.

The window_update frame format, shown in Figure 5-2, has a payload named

window-size-increment. The figure shows that the window-size-increment occu-

pies 31 bits of the frame. In addition, the Figure also shows a 1-bit reserved

payload denoted with "R" – this reserved payload is not discussed in this study.

The window-size-increment value indicates the maximum length of a frame

that the machine (that sends the frame) can transmit in addition to its previous

value. This is illustrated in Figure 5-3. In the figure, a machine running HTTP/2

119

Figure 5-2: The window_update payload format

Figure 5-3: The window-size-increment tells the receiver how many more bytes
the sender can transmit

service initially kept a local value of window size. This value signifies how many

bytes the machine can transmit. In this example, (suppose) the three shaded

boxes meant that the machine could send three bytes of data. After it sent

a window_update packet with window-size-increment value of 1, the machine

increased its local window size to 3+1 = 4 bytes. This allowed the machine to send

1 more byte. The machine henceforth sent four-byte data to a remote machine.

Likewise, a window-size-increment value of 2 indicates that future frames can

send 2 more bytes. As illustrated in the figure, the machine increased its window

size to 4 + 2 = 6 bytes, and henceforth sent six-byte data.

The traffic generation setup for Investigation-1 is shown in Figure 5-4. A

client machine run the flood-based attack model to generate attack traffic towards

120

Figure 5-4: The traffic generation setup for Investigation-1 and Investigation-3

a target server. A code called packet generator was constructed using nghttp2

library to generate a large number of HTTP/2 window_update packets as the

attack traffic. The packet generator was equipped with some user-supplied input

parameters to allow control over the total number of HTTP/2 stream IDs and

the window-size-increment value used to launch an HTTP/2 packet.

In this investigation, five observations were noted when a flood of packets

against an HTTP/2 server were generated. For each observation, the packet

generator sent one test case of crafted HTTP/2 frame packets against the server.

Hence, there were five test cases in total. These are :

∙ Test case 1: 2M ping packets were sent to the victim.

∙ Test case 2: 2M window_update packets were transmitted on stream 0,

with random window-size-increment.

∙ Test case 3: 2M window_update packets were transmitted on stream 0,

with fixed window-size-increment.

∙ Test case 4: 10K window_update packets with random window-size-

increment were transmitted on each of 100 different stream IDs.

∙ Test case 5: 10K window_update packets with fix window-size-increment

were transmitted on each of the 100 different stream IDs.

121

Each experiment was repeated 30 times to reduce the variance in the results

obtained, and to improve the overall confidence in the findings. The next section

presents the results of the observations. It is important to note that test case 1

required sending ping frame packets at the application level, as not to confuse it

with the ping messages sent at the network level, known to cause DoS attacks

(Section 2.2.1). The ping frame is part of the HTTP/2 protocol.

In order to send packets in different stream IDs as done for test cases 4 and 5,

a header frame was sent to the receiver to open a new stream ID. Hence, there

were 100 header frame packets sent to create 100 different stream IDs.

Investigation 2: The Power of the Attack

The second investigation was to observe how many servers a single client

can flood. The intuition behind this was that if the client required minimal

computational and storage resources to launch a DoS attack, multiple victim

machines could be targeted. This is opposed to the nature of DDoS attacks,

where a single server is attacked by many client machines.

In this investigation, one server was added in the network each time all servers

in the network have shown 100% CPU usage. This is shown in Figure 5-5. The

client was used to generate attacks according to the five test cases discussed in

Investigation-1. In this investigation, one client was used to send attack traffic

to all servers in the network. The investigation was concluded when any one of

the servers did not yield a near 100% CPU usage. The number of servers was

observed at the conclusion.

Investigation 3: Adding a Delay

The third investigation was to observe if a time-delay could make an attack

to become stealthier. As shown in Figure 5-1, the attack model in this section

allows a time-delay to be inserted between consecutive attack packets. The in-

tuition behind this was that a time-delay would reduce the attack traffic rate. If

the attack could be lowered gradually, the lowest possible packet rate that will

translate to a successful DoS attack would be observed.

122

Figure 5-5: The traffic generation setup for Investigation-2

To implement a pause between attack packets, the programming interface

nanosleep() was used in the code. The interface allowed the study to vary a delay

up to a minimum of 1 nanosecond, before a packet was generated. The same

five test cases were run again to observe the effect of adding a time-delay to the

attack packets, on the behaviour of the victim machine.

The traffic generation setup is shown in Figure 5-4. A client implemented the

flooding-based attack model to generate attack traffic towards a server. A delay

was added before each packet was sent towards the server. This investigation

varied the delay value to find a minimum value that caused the server to show

100% CPU usage.

5.1.2 Results

This section presents the results of the observed parameters of the server when

subject to the attack. The effect of flooding different types of HTTP/2 packets

to a server was investigated in five test cases (page 121): first, flooding with

ping packets; second and third, with window_update packets on one stream

with random and fixed window-size-increment respectively; fourth and fifth, with

window_update packets on 100 stream IDs with random and fixed window-size-

increment respectively.

Since the server resources were the parameters of interest to observe in this

123

Table 5.1: Computing resource consumption during attacks

Test case
CPU size (KB/sec) count (packets/sec)

ave s.d. ave s.d ave s.d.
1 98.56 6.29 403.98 45.67 274.06 31.81
2 94.80 17.23 320.40 88.38 224.04 78.20
3 88.39 24.22 305.35 120.79 219.94 103.73
4 97.99 8.82 321.42 127.00 223.71 121.04
5 98.14 7.46 324.59 121.26 226.41 122.60

study, the host and client resource parameters were not considered for the anal-

ysis. It is useful to note that the host machine did not show any sign of resource

depletion during the attack traffic generation, indicating that the observed re-

source parameters at the victim machine were not affected by the underlying

host environment. Similarly, the client machine did not show any sign of resource

depletion, suggesting that it did not require high computing resources to produce

such attacks.

Result of Investigation 1

The results from each test case are shown in Table 5.1. The table shows the

average (ave) and standard deviation (s.d.) of the server resource parameters:

the % CPU consumed, the size of packets received per second, and the number

of packets received per second.

It can be seen from the table that the average CPU consumption was near

100% for all cases. During the flooding-based attack, a simple HTTP/2 Request

sent to the server was not responded to. That is, in all five observations, the server

did not respond to a page request that was sent from another client terminal

during the attack. The response page was received by the client as soon as the

attack ended. This indicated that the DoS attack was successful in incapacitating

the victim.

The server’s free memory was stable at 235 MB when idle. When it was

attacked based on test case 1, the memory was consumed at about 1.5 MB per

second. However the available memory was then stable between 67 - 80 MB even

though the attack was still ongoing. In other words, the attack consumed the

124

server memory up to 168 MB. The test results differed when test cases 2 - 5 were

run; the server memory only consumed up to 2 MB during the attack.

In all five observations, ICMP ping packets were sent from the client to the

server to test network conditions such as packet loss and round-trip delay. When

the network that connects the client to the server is not congested, a client receives

responses for ICMP ping packets that it sends to a server. In other words, a

network condition such as network congestion had occurred when a client did not

receive the ICMP ping packet it sent to a server. In this study, packet loss tested

through ICMP ping tests was 0%, suggesting that the network was not congested,

and did not contribute to packet loss.

ICMP ping can also yield round-trip delays, which is a metric showing the

time it takes for a client to receive back ICMP responses from a server. In all

five observations in this study, the round-trip delay was doubled from about 500

ms when the server was idle to 1 second during an attack. This suggests that

the server responded slower to ICMP ping packets during the attacks. As it was

shown that the network was not congested, the slow response was due to a busy

server, rather than a congested network. Hence, the doubling of round-trip-delay

values shows that the server was busy.

It was difficult to sample the average and variation of the round-trip delay

since different measurement tools were used: ICMP ping packets were used to

measure the round-trip delay, while a collectl tool was used to monitor the other

parameters. This created difficulties to align the data collected. The key observa-

tion was that there was no noted packet loss during the attack thus showing that

the high CPU usage observed at the server was not due to a congested network.

Because the victim machine only run an HTTP/2 server, the high CPU usage

was due to a DoS attack against an HTTP/2 service.

Result of Investigation 2

After running 12 servers (as the victims) and 1 client (as the attacker), all

servers were still successfully attacked. The host machine had very low remaining

available memory to run a further experiment, thus the investigation concluded

125

with the 12 servers. During the attack, all servers showed CPU usage of almost

100% and they could not respond to a given client request page. The results were

consistent when attacks were launched using each of the five test cases, i.e. all

test cases caused the 12 servers to show near 100% CPU usage.

Result of Investigation 3

As expected, adding a delay between attack packets yielded less CPU usage

than what was shown in Table 5.1. However, when a simple page request was sent

by the client in this investigation, the requested page was promptly returned by

the server. This indicated that the server was still able to serve incoming requests

in a timely manner. The delay value was varied during the investigation until

the smallest fraction of delay that the programming interface could provide (1

nanosecond) was attempted, yet the server was not incapacitated from providing

service.

It was observed that larger time delay (e.g. 100 ns) yielded lower CPU usage at

the victim’s end. This result confirmed the internal validity of this experiment:

less frequent delays between offending packets should cause less stress on the

victim. The results were also consistent when attacks were launched using each

of the five test cases.

This investigation also showed that adding a time-delay did not successfully

incapacitate the server, yet caused lower CPU utilization of the HTTP/2 server.

5.1.3 Discussion

Interpretation of the Results

In all five test cases sending attack traffic, the server was incapacitated during

the attacks: Table 5.1 shows that the CPU utilization was near 100%. Further-

more, it was observed that the server did not send a response page during each

of the five attack test scenarios, confirming that the DoS attacks were successful.

In all five scenarios tested, the network was not congested for two reasons:

first, the observed packet sizes were 3 to 4 hundred KB per second (shown in

126

Table 5.1) which were much lower than the 100 Mbps virtual network bandwidth;

and second, the ICMP ping requests yielded no packet loss. The latter signified

that the network still had available capacity to receive network packets, i.e. the

attack packets and the ping packets. Because the network was not congested, the

inability of the server to respond to a requested page as described above was due

to its CPU utilization approaching 100%.

Much of the server memory remained available during the attack, suggesting

that the observed server CPU consumption was not due to its limited memory

setting of 1 GB. As a comparison, the client did not show any resource consump-

tion despite it operated at the same 1 GB memory setting. This demonstrated

that the client did not require much memory or high CPU processing power to

create, buffer and send attack packets to a target. Rather, it was the processing

of these packets at the server that caused CPU resource depletion. This was

confirmed through the second investigation which showed that one client could

still pose computing power to successfully attack many machines that processed

HTTP/2 packets. Hence, it can be stated with confidence that processing of

HTTP/2 packets at the receiving end (server) required a lot of CPU usage.

Implication of the Observations

The study in this section indicated that it was possible to detect HTTP/2

flooding-based DoS attacks when launched through the five proposed test cases.

Table 5.1 shows that attacking the server through test case 1 caused the highest

CPU consumption (98.56%). However, test case 1 also yielded the highest packet

size per second (403.98), and the highest numbers of packets per second (274.06).

Furthermore, the rate at which the server memory was consumed at 1.5 MB per

second proved to be an indication of an attack. As a result, it was possible to

detect the test case-1 attack or to trigger an alarm when the memory resources

depleted at higher than normal rate.

It is more economical for an attacker at the client side to incapacitate a

target with less effort. Attacks demonstrated through test cases 2 - 5 proved

so: lower-rate attacks could incapacitate an HTTP/2 server. In addition, these

127

attacks did not consume noticeable memory. This implied that through certain

test cases, attacks could be made more efficient, hence stealthier. Such stealthy

attack traffic, when inserted with legitimate traffic, can be difficult to detect.

It was still unclear whether launching attacks through different stream IDs (as

in test cases 4 - 5) were stealthier than attacking through only 1 stream ID (as in

test cases 2 - 3). As shown in Table 5.1, the packet size per second and the number

of packets per second did not differ significantly in these test cases (2 - 5). The

investigation did not reveal if sending attacks in different stream IDs were more

difficult to detect when legitimate traffic was inserted. However, since HTTP/2

traffic typically runs through multiple streams at a time, test cases 4 - 5 mimicked

the legitimate traffic closely. Currently, HTTP/2 is not yet widely used; hence,

legitimate HTTP/2 traffic dataset is not yet available. There is room for future

study to observe if test cases 4 - 5 were stealthier than the others, which became

the motivation for the study reported in the following section (i.e. Distributed

Attack, Section 5.2).

External Validity

Through the second investigation, it was observed that one client machine

could attack many (in this case 12) servers simultaneously. This meant that it

did not need distributed machines as in a DDoS attack to successfully disrupt

HTTP/2 services. Since the client still had available computing resources, it was

possible for an attacker to mimic a DDoS attack through a single client.

However, this observation might not be externally valid. The investigations

were done using virtual machines where there was no physical distance between

the machines. When a 1 ns delay between the attack packets was inserted in the

third investigation, the server was still able to serve client requests by sending

a response page, indicating that the DoS attack was not successful. In reality,

several millisecond delays could be noticed between two remote client-server end

points. Hence, when time-delay in the communication channel was considered

for launching the five attack test cases, a flood of HTTP/2 traffic was not able

to incapacitate the servers as demonstrated here.

128

Nevertheless, the ability of one client to successfully attack many servers si-

multaneously that this study observed is externally valid for the following reasons.

Real web applications host services that interact with databases and send big files.

They are busier than the idle servers used in this investigation. Furthermore, they

are visited by many clients simultaneously. When the attack traffic proposed in

this study is combined with legitimate web traffic, real HTTP/2 servers in the

Internet are successfully attacked.

5.1.4 Conclusion

The study demonstrated flooding-based DoS attack models targeting HTTP/2

servers. The test cases 1 - 5 showed how the attacks could be launched against

a target server. However, the demonstrated attacks were still detected through

observing whether the victim memory resources gradually deplete at a certain

rate. It had been previously argued that it was possible to launch stealthier DoS

attacks through sending packets based on traffic generation rules that exploit the

way a victim processes HTTP/2 packets.

The results showed that a single malicious client flooding with win-

dow_update packets can successfully attack 12 servers at any time. This was

in contrast to flooding a server with HTTP/2 Request packets, which consumed

the computing resource of the client. Adding a time-delay of 1 ns between con-

secutive attack packets did not make a successful attack; hence, DoS attacks

using the test cases herewith presented could not be made stealthier through

adding time-delays higher than 1 ns between the attack packets. The demon-

strated flooding-based attack model in this section was extended to construct

DDoS attacks models that will be presented in the next section.

5.2 Distributed Attack

The previous section presented the effect of flooding-based attack on HTTP/2

window_update packets, and how they could incapacitate an HTTP/2 server.

129

While the previous section employed one attacking client, this section presents

how a distributed attack, or DDoS attack, employing more than one client could

be modelled. The intensity of DDoS attack traffic was analysed to see if it could

bypass a hypothetical intrusion-detection system that monitored CPU consump-

tion and increased memory usage activity.

The study aimed to generate stealthy attack traffic, where each attacking client

caused a target server to consume 50% CPU usage, yet caused the target server

to consume 100% CPU usage when a number of malicious clients were employed

in attack traffic generation. Hence, further parameter values were investigated

in this study. These are the window-size-increment value, the number of attack

packets, and the number of malicious clients (bots) used. These parameters af-

fected the intensity of DDoS attack traffic. Furthermore, this section describes

how the attack traffic could be classified using machine learning techniques; in-

cluding steps to train and test on network traffic packets.

5.2.1 Attack Model and Scenarios

A DDoS attack model is shown in Figure 5-6. This model extends the previously

introduced flooding-based attack model (Figure 5-1) in setting a predefined value

for the total number of packets 𝑁 to be sent towards a target server, and setting

a predefined window-size-increment value. The remaining procedures defined by

the model remained equal as the flooding-based attack model; a packet is sent

towards a target server until the number of packets sent equals to the predefined

total number of packets 𝑁 .

The DDoS model in Figure 5-1 allows the investigation in this section to find

two parameters, i.e. the maximum number of packets 𝑁 and the window-size-

increment value, to generate attack traffic that caused a target server to consume

50% CPU usage. The other parameter, the number of bots required to generate

attack traffic that consumes 100% CPU usage of a target server, was observed by

varying the number of bots at the client side. This is illustrated in Figure 5-7.

To find the maximum number of packets, the window-size-increment value,

130

Figure 5-6: The DDoS attack model

Figure 5-7: The traffic generation setup for DDoS attack

131

and the number of bots required in a DDoS attack, three investigations were

conducted, as reported in this section. They extended the flooding-based attack

model using window_update packets discussed in the previous section. Because

this study is based on encrypted HTTP/2 communications, the number of win-

dow_update packets received at the server could not be directly inspected, as

the window_update packets were part of the encrypted data. However, the max-

imum number of window_update packet communicated by a sender depends on

the value of its payload, i.e. the window-size-increment. Hence, Investigation 1

aimed to find the window-size-increment value that represented 50% CPU con-

sumption, and Investigation 2 deduced the number of window_update packets.

Investigation 3 aimed to find the number of bots needed to form a successful

DDoS attack that led to a 100% CPU consumption at the victim.

Investigation 1: Effective window-size-increment value

The aim of this investigation was to find the window-size-increment value

that yields a 50% CPU utilization at the victim. The window-size-increment

value affects the total number of window_update packets that a sender (in this

case the attacking client) can send. In this investigation, a window-size-increment

value 𝑑 was sought until the victim machine began to show indications of excessive

resource consumption through flooding by window_update packets.

The HTTP/2 standard (Belshe et al., May 2015) defines that the window-

size-increment is represented as a 31-bit integer payload of a window_update

frame (Figure 5-2). Hence, when the window size of a stream reaches its limit

of 231 − 1, the client does not send any further window_update packet, even if

the client interface (such as the packet generator used in this study) triggers a

command to send a window_update packet. The implication of this behaviour is

that the window-size-increment value of 1 would allow a client to send a flood of

window_update packets within a much longer period of time than when window-

size-increment value is set to 231 − 1. The latter would allow the client to send

one or less window_update packets to a server. This is illustrated in Figure 5-8.

When a client sends a window_update packet, it updates its local window size

value according to the window-size-increment value. In the example, the window

132

size was pictured as having size equal to 3 bytes, represented by the 3 shaded

boxes. If the client sent a window_update packet with window-size-value set to

1, the local window size value was incremented by 1 byte. Therefore, in the top

figure, the local window size value became 4 bytes (represented by the 4 shaded

boxes). A series of window_update packets sent by the client, with window-size-

increment value set to 1, caused the local window size to increase by 1 byte until

the local window size reached its maximum value. When the local window size

reached its maximum value, no further window_update packets could be sent by

the client.

Consequently, higher window-size-increment values imply fewer win-

dow_update packets to be sent. This is illustrated at the bottom of Figure

5-8. A series of window_update packets sent by the client, with window-size-

increment value set to 2, caused the local window size to increase by 2 bytes

until the local window size reached its maximum value. Similarly, when the local

window size had reached its maximum value, no further window_update packet

could be sent by the client. Comparing the top and the bottom figure, it can

be seen that fewer number of window_update packets can be sent by the client

when the window-size-increment is set to a higher value.

In this investigation, a client sent a flood of window_update packets to a

server with window-size increment set to 𝑑 = 2𝑛, where 0 ≤ 𝑛 ≤ 31. (The flood

duration was to be observed in Investigation 2.) To implement a test framework,

the test cases 2 and 3 from the previous section were employed. They are repeated

here as follows:

∙ Test case 2: 2M window_update packets were transmitted on stream 0,

with random window-size-increment.

∙ Test case 3: 2M window_update packets were transmitted on stream 0,

with fixed window-size-increment.

In the above two investigations, test case 2 was run with random window-size-

increment value that was set between 1 and 𝑑 for each window_update packet,

where 𝑑 is a value to be sought in this investigation. Test case 3 was run with a

133

Figure 5-8: A higher window-size-increment value allows fewer number of subse-
quent window_update packets

134

fixed windows-size-increment value 𝑑. Using a monitoring tool collectl, the CPU

consumption of the machine was monitored when flooded with varying window-

size-increment values. The value found in this investigation would serve as a

constant input for the next stage of investigation.

Investigation 2: Effective number of packets

The aim of this investigation was to find the number of packets required to

flood an HTTP/2 service, deduced through observing time duration of attacks.

Using the window-size-increment value from the previous step, this investi-

gation deduced the number of packets 𝑘 received at the server end when the

window_update packets was no longer sent by the client machine, i.e. when the

local window size had reached its maximum value of 231− 1. To find 𝑘, the client

sent varying numbers of 𝑥 = 10𝑛 window_update packets to the server, where

4 ≤ 𝑛 ≤ 9.

The study observed the flood duration, i.e. the time duration for which the

CPU of the server showed near 50% consumption, when subjected to the varying

values of 𝑥. When the local window size at the client side had not reached its

maximum value, lower 𝑥 values sent by the client caused a shorter flood duration

observed at the server side. Consequently, higher 𝑥 values caused longer flood

duration.

When the local window size at the client had reached its maximum value of

231 − 1, no further window_update packets were sent by the client. Under this

condition, higher 𝑥 values did not show longer flood durations. Hence, 𝑥 values

above a certain threshold were no longer effective to flood a server. The threshold

was the condition when higher 𝑥 values did not yield longer flood durations.

The value 𝑘 was deduced to be below the value 𝑥 when this condition was first

observed.

The results found in this investigation were used as a parameter to launch a

DDoS attack in the following investigation.

Investigation 3: DDoS attack packets

135

This investigation aimed to find the minimum number of attacking bots as

part of a DDoS attack to indicate symptomatic depletion of resources on the

victim machine represented through a delayed HTTP response from the victim.

The independent variables were the number of bots and the number of threads

(processes) per bot, while the variables to be observed were the number of captured

packets, the number of dropped packets, and the flood duration (in seconds) at the

victim’s end.

Each bot in this investigation sent stealthy attack traffic, i.e. a flood of traffic

that consumed 50% CPU usage of a victim. Hence, the window-size-increment

value found in Investigation-1 and the maximum number of packets found in

Investigation-2 was employed in this investigation. In addition, this investigation

used multiple streams to simulate multiple clients under a DDoS attacks. Test

cases 4 and 5 from the previous section were used as follows to send packets from

an attacking client to a target server:

∙ Test case 4: 10K window_update packets with random window-size-

increment were transmitted on each of 100 different stream IDs.

∙ Test case 5: 10K window_update packets with fix window-size-increment

were transmitted on each of 100 different stream IDs.

5.2.2 Results and Discussion

Result of Investigation 1

As previously explained, creating a flood of window_update messages is not

trivial: an open stream established between HTTP/2 clients and servers cannot

be set up for a client to send an endless flood of window_update packets to a

server. The client does not send the frame when the local window size value of a

stream is high enough that it would exceed the maximum value, when supplied

with a given window-size-increment value. Therefore, the victim’s CPU would

not be continuously over-utilised. Hence, the CPU consumption was studied in

this investigation, when the client sent a flood of window_update packets to the

server given a window-size-increment value of 𝑑 = 2𝑛 with 0 ≤ 𝑛 ≤ 31.

136

The results obtained are presented as follows. When 𝑛 > 29, there was no

observable CPU consumption. A calculation can show that there were only

231/229 = 22, or at most 4 frame packets sent to the server assuming a very

small initial window size. On the contrary, the CPU consumption was 100% at

all other times when 𝑛 = 0; and after 1 hour and 7 minutes into simulation,

the CPU consumption returned back to normal with no further packets received

at the server end. This finding confirmed the above explanation that the win-

dow_update packets were prevented from arrival at the server after the window

size of the stream reached its maximum value of 231−1. This investigation sought

a window-size-increment value 𝑑 that consumed around 50% CPU, and through

further experiments, this value was found to be 𝑑 = 214, or 16,384.

Result of Investigation 2

Given the window-size-increment value of 16,384 from the previous step, this

investigation sought to find the minimum number of packets, and to observe

the time duration of a flood of window_update packets which can be sent by

an attacking client to a target victim on a given stream. These were measured

against the methods described for test cases 2 and 3, i.e. sending a flood of

window_update packets with a fixed window-size-increment value of 16,384 (as

in test case 2), and those with a random window-size-increment value between 1

and 16,384 (as in test case 3).

The results of investigation 3 are shown in Table 5.2. The results indicated

that varying the number of window_update packets sent did not cause a large

variation of duration for which the flood packets were observed at the victim.

The number of window_update packets, or 𝑘, was deduced to lie between

100K and 1M since the flood duration did not show significant fluctuations when

the number of packets sent were above 1M. The average flood duration for test

case 3, when 100𝐾 < 𝑘 ≤ 1𝑀 is (30+54+34+36)/4 = 38.5 seconds. The number

of window_update packets can be confirmed with the following calculations. The

HTTP/2 standard stated that the initial window size is 65,535 (Belshe et al., May

2015, p.23). Therefore, when the window-size-increment value was set to 16,384

137

Table 5.2: Duration the WINDOW_UPDATE frame was sent

Test case Number of packets Flood duration (ms)
2 10K 4

100K 23
1M 64
10M 56
100M 64
1B 70

3 10K 5
100K 25
1M 30
10M 54
100M 34
1B 36

or 214, the value 𝑘 was found to be (231 − 1− 65, 535)/214 = 131, 068. Attacking

clients that sent higher number than 131,068 packets to a target server would

observe similar flood duration of 38.5 seconds.

The implication of this observation was that a packet generator should be

designed to send an effective number 131, 068 of window_update packets. An

attacking client designed to send 1M packet should distribute the packets into

several stream IDs. For example, 10K window_update into 100 stream IDs. The

distribution of 1M packet into 100 stream IDs was used as a parameter for the

following investigation.

Result of Investigation 3

This investigation sought to find the number of attacking bots it took for an

HTTP/2 service to reveal a symptom of resource depletion when one attacking

bot alone did not indicate suspect behaviour. From the previous investigations,

it was found that the victim’s CPU was only utilized around 50% for about 64

ms (for test case 2) or 30 ms (for test case 3). Any normal computing activities

(e.g. disk writing) could show such indications. Hence, the proposed meth-

ods produced stealthy attack traffic which could bypass a hypothetical intrusion-

detection-system that triggered an alert when a client caused a machine to reach

near 100% CPU consumption. The values found in the first and second investi-

138

gation served as the ground to set up a stealthy attacking bot. These are 16,384

window-size-increment as the window_update payload value, and a maximum

number of 131,068 window_update packets on a stream.

To simulate hundreds of clients as seen in a flash crowd (or bots as in a DDoS

attack), the methods described in test cases 4 and 5 were employed. Each of these

test cases required sending of 10K window_update packets in each 100 different

stream IDs successively, that in this case represented 100 clients connecting to a

server in succession (and the flood duration was part of the observed variable). In

addition, a delay 𝑡𝑑 between individual stream IDs was inserted, where 10 ms ≤

𝑡𝑑 ≤ 200 ms. That is, an attacking client sent 10K window_update packets on

one stream without any delay 𝑡𝑑 in between the packets, and a delay was added

before the client sent other 10K window_update packets on another stream. This

investigation observed different delay values inserted between stream IDs at the

client side, and a delay value was noted as soon as packet drops were reported

by TShark at the server side. This delay value represented the smallest delay

that can be added between stream IDs until the server showed packet drops. The

delay value for test case 4 was found to be 𝑡𝑑 = 45 ms; values smaller than this

number showed that some packets were always dropped, while values exceeding

this number showed no packets dropped. The delay value for test case 5 was

found to be 𝑡𝑑 = 100 ms.

In this investigation, both threads and virtual machines were used to represent

the number of attacking bots. As discussed above, each bot sent stealthy traffic

to a target server. The traffic was designed to consume 50% server CPU for

duration of 38.5 ms; and consumed no more than 2 MB server memory. The

study varied the number of virtual-machine clients and the number of threads

per bot to represent a DDoS attack, each thread sending 100 packets sequentially

(test cases 4 and 5). The results are shown in Table 5.3 and 5.4.

It can be seen that a higher number of packets were dropped when the num-

ber of attacking bots were increased. This was to confirm that the computing

resources of the victim were consumed using the stealthy traffic generated; and

subsequently, the victim was compromised.

139

Table 5.3: DDoS using test case 4

Num bots Num threads/bot Captured Dropped Flood duration (sec)
1 1 144775 298 30.11
2 1 293879 8199 29.90
3 1 353986 22786 29.59
4 1 345743 83780 29.41
1 2 231041 2575 29.52
2 2 330567 16305 29.35
3 2 362003 76313 29.77
4 2 344580 80256 29.69

Table 5.4: DDoS using test case 5

Num bots Num threads/bot Captured Dropped Flood duration (sec)
1 1 263522 391 29.73
2 1 410097 1379 30.27
3 1 513076 3984 30.14
4 1 532612 6560 30.33
1 2 266191 132 30.21
2 2 384540 1460 29.96
3 2 531913 4625 30.27
4 2 530751 7257 30.44

To witness the significance of the observed packets dropped, the study man-

ually sent an HTTP/2 Request every second and measured the time it took for

the server to respond to a hello.htm page, and subsequently closed the conver-

sation. When 4 virtual-machine clients (bots) with 2 threads/bot were employed,

up to 40 ms of delay for test case 4 was observed, and up to 97 ms delay for

test case 5. This delay was higher than a 0.3 ms delay that was observed when

the attack traffic was not present. As real web applications serve more than just

displaying a hello.htm message, the stealthy offending traffic proposed in this

section can translate to a recipe that fully incapacitates an HTTP/2 service upon

introduction of variant client behaviour types, based on diverse web page access

patterns.

Comparison to flash-crowd traffic

In this part of the study, one of the above attack traffic patterns was analysed

using several machine learning techniques. Specifically, the study utilized the

140

Figure 5-9: Process for normal and attack traffic classification

attack traffic shown in the last row of Table 5.4, i.e. using test case 5 with 4 bots

and 2 threads/bot. The purpose was to understand how the attack traffic can be

distinguished from flash-crowd traffic.

Figure 5-9 describes the process for classifying attack and flash-crowd traffic.

A set of features from both the attack and flash-crowd traffic was extracted (as

explain in Section 3.1.3). The feature extraction yielded a dataset with 124

attack traffic instances. The dataset was merged with the flash-crowd dataset

which consisted of 3600 instances (explained in Section 4.4.2), yielding a dataset

with a total of 3724 instances. The features from the dataset were ranked using

two features selection techniques, Information Gain and Gain Ratio (as explained

in Section 3.1.4). The study applied four machine learning techniques, i.e. Naïve

Bayes and Decision Tree J48, JRip and Support Vector Machines, to classify

the attack traffic when subjected to the flash-crowd traffic that was described

in Section 4.4.2. The parameter values of these machine learning techniques are

given in Appendix A. The result of the feature ranking is shown in Table 5.5 and

the result of the machine learning classification is shown in Figure 5-10 to 5-13.

The incorrectly classified instances graphs (the (a) graphs of Figure 5-10 to 5-

13) showed that the attack traffic could be distinguished from flash-crowd traffic

using these machine learning techniques. Naïve Bayes and Decision Tree perfectly

classified the two classes when at least 4 most relevant features were employed

(Figure 5-10.a and 5-11.a). Although Naïve Bayes produced 0.027% incorrectly

classified instances when 2 features were used, it yielded a perfect classification

141

Table 5.5: Ranked features for the distributed attack traffic

rank
Information Gain Gain Ratio

feature # feature name feature # feature name
1 1 count_app 1 count_app
2 9 size_ack 8 count_ack
3 7 size_syn 9 size_ack
4 6 count_syn 7 size_syn
5 29 size_tlsHello 29 size_tlsHello
6 28 count_tlsHello 6 count_syn
7 2 size_app 28 count_tlsHello
8 8 count_ack 2 size_app
9 18 count_rstAck 39 size_encAlert
10 19 size_rstAck 38 count_encAlert
11 38 count_encAlert 13 count_rst
12 39 size_encAlert 14 size_rst
13 34 size_tlsKey 19 size_rstAck
14 14 size_rst 18 count_rstAck
15 13 count_rst 23 count_finAck
16 23 count_finAck 24 size_finAck
17 24 size_finAck 10 lapse_ack_min
18 33 count_tlsKey 32 lapse_tlsHello_max
19 22 lapse_rstAck_max 31 lapse_tlsHello_ave
20 21 lapse_rstAck_ave 30 lapse_tlsHello_min
21 12 lapse_ack_max 35 lapse_tlsKey_min
22 11 lapse_ack_ave 36 lapse_tlsKey_ave
23 27 lapse_finAck_max 37 lapse_tlsKey_max
24 26 lapse_finAck_ave 4 lapse_app_ave
25 4 lapse_app_ave 3 lapse_app_min
26 37 lapse_tlsKey_max 11 lapse_ack_ave
27 36 lapse_tlsKey_ave 33 count_tlsKey
28 17 lapse_rst_max 34 size_tlsKey
29 5 lapse_app_max 12 lapse_ack_max
30 42 lapse_encAlert_max 5 lapse_app_max
31 10 lapse_ack_min 22 lapse_rstAck_max
32 31 lapse_tlsHello_ave 21 lapse_rstAck_ave
33 32 lapse_tlsHello_max 27 lapse_finAck_max
34 16 lapse_rst_ave 26 lapse_finAck_ave
35 35 lapse_tlsKey_min 42 lapse_encAlert_max
36 30 lapse_tlsHello_min 17 lapse_rst_max
37 3 lapse_app_min 16 lapse_rst_ave
38 40 lapse_encAlert_min 40 lapse_encAlert_min
39 15 lapse_rst_min 15 lapse_rst_min
40 20 lapse_rstAck_min 41 lapse_encAlert_ave
41 41 lapse_encAlert_ave 20 lapse_rstAck_min
42 25 lapse_finAck_min 25 lapse_finAck_min

142

(a) Incorrectly classified instances (%)

(b) Detection Rate

(c) False Alarm Rate

Figure 5-10: Distributed Attack Performance with Naive Bayes classification

143

(a) Incorrectly classified instances (%)

(b) Detection Rate

(c) False Alarm Rate

Figure 5-11: Distributed Attack Performance with Decision Tree classification

144

(a) Incorrectly classified instances (%)

(b) Detection Rate

(c) False Alarm Rate

Figure 5-12: Distributed Attack Performance with JRip classification

145

(a) Incorrectly classified instances (%)

(b) Detection Rate

(c) False Alarm Rate

Figure 5-13: Distributed Attack Performance with Support Vector Machine clas-
sification

146

when only 1 feature was used, which is the count_app feature. This showed that

Naïve Bayes was able to classify the DDoS traffic from flash-crowd through ex-

amining the amount of Application Data. While Decision Tree produced 0.027%

incorrectly classified instances when using 2 Information Gain-ranked features

or 3 Gain Ratio-ranked features, it yielded 0.054% incorrectly classified instances

when only 1 feature was used, the i.e. the count_app. Both Naïve Bayes and De-

cision Tree yielded 0% incorrectly classified instances when more than 4 features

were employed, regardless of the ranking technique used.

The attack traffic was not perfectly identified when JRip was used, as it

returned some incorrectly classified instances regardless of the number of features

selected (Figure 5-12.a). JRip yielded 0.027% incorrectly classified instances at

best, while yielded higher incorrectly classified instances (0.107%) when using

some feature sets, i.e. 38 Information Gain-ranked features; and 14, 22, and

38 Gain Ratio-ranked features. With JRip, no feature sets yielded a perfect

classification.

When analysed using Support Vector Machines, the attack traffic could be

perfectly identified when 3 to 5 Information Gain-ranked features were used, or

when 4 to 7 Gain Ratio-ranked features were employed (Figure 5-13.a). Support

Vector Machine yielded 0.027% incorrectly classified instances when feature sets

outside the above range were used. That is, higher than 5 and lower than 3

Information Gain-ranked features; and higher than 7 and lower than 4 Gain

Ratio-ranked features.

The Detection Rate (the (b) graphs of Figure 5-10 to 5-13) and the False

Alarm Rate (the (c) graphs of Figure 5-10 to 5-13) of the machine learning classi-

fication results also supported the above analysis. All machine learning techniques

were able to reach a perfect Detection Rate of 1 and a clean False Alarm Rate of

0, mostly when the number of features selected was higher than 3. An exception

was shown with JRip analysis which did not reach a zero False Alarm Rate when

analysed with all series of ranked features.

The detailed numbers for the Detection Rate are as follows. Naïve Bayes

(Figure 5-10.b) and Support Vector Machine (Figure 5-13.b) yielded Detection

147

Rate of 1 in all number of features selected . Decision Tree showed similar results,

but the Detection Rate (Figure 5-11.b) degraded to 0.999 when 2 Information

Gain-ranked features were used, and when 1 Gain Ratio-ranked feature was used.

JRip yielded Detection Rate of mostly 1 (Figure 5-12.b). It degraded to 0.999

when 38 Information Gain-ranked features were used; or when 14, 22, or 38 Gain

Ratio-ranked features were used.

The detailed numbers for the False Alarm Rate are as follows. Naïve Bayes

(Figure 5-11.c) yielded False Alarm Rate of 0 in all number of features selected.

Decision Tree (Figure 5-11.c) showed similar result, but it degraded to 0.008

when 2 - 3 features were selected with Gain Ratio. JRip only reached 0.008 False

Alarm Rate when using almost all number of features selected. It degraded to

0.031 when 38 Information Gain-ranked features were used; or when 14, 22, or

38 Gain Ratio-ranked features were used. Support Vector Machine (Figure 5-

13.c) was able to reach 0 False Alarm Rate; it degraded to 0.008 when 3 to 5

Information Gain-ranked features were used, or when 4 to 7 Gain Ratio-ranked

features were employed.

The analysis in this section showed that machine learning techniques were able

to detect the DDoS model simulated. Naïve Bayes, Decision Tree, and Support

Vector Machines were able to distinguish DDoS from normal traffic when using

more than 4 features out of the 42 features proposed in this study.

5.2.3 Conclusion

This section presented a DDoS attack model where each attacking bot sent a large

volume of HTTP/2 traffic to a victim machine in a fixed time frame. From the

results obtained, it was noted that the protocol itself did not restrict the intensity

of traffic generated, and therefore, auxiliary mechanisms ought to be deployed for

identifying the volumes and patterns of network traffic communicated between a

client and server machine.

Three varying investigations were conducted to analyse the behaviour of a vic-

tim machine when subject to large HTTP/2 traffic volume through an established

148

connection stream. The first investigation found that a flood of window_update

packets sent by an attacking client caused a target server to show 50% CPU

consumption when the window-size-increment value was set to 16,384. The sec-

ond investigation showed that the effective number of window_update packets

that the client sent was 131,068; a higher number than this did not yield longer

flood duration. The third investigation demonstrated that 4 attacking bots were

able to cause a target server to show 100% CPU consumption. The traffic flood

that each of these bots sent caused the target server to consume only 50% CPU

consumption. Therefore, the proposed DDoS attack model could bypass a hypo-

thetical intrusion-detection system that monitored its resource consumption such

as CPU consumed.

However, the attack traffic could be distinguished from flash-crowd traffic

using various machine learning techniques. Naïve Bayes, Decision Tree, and Sup-

port Vector Machines were able to distinguish DDoS from normal traffic when

more than 4 out of 42 features proposed in this study were employed. Machine

learning techniques performed well when they were used to detect the proposed

HTTP/2 DDoS attack traffic.

The next chapter aims to present a stealthier attack model than the DDoS

model presented here. It was observed that a stealthier model could be achieved

through a better understanding of flash-crowd traffic characteristics and mimick-

ing the feature values.

149

150

Chapter 6

Stealthy Attack Modelling and

Analysis

The study carried out and reported in Chapter 4 presented the characteristics of

legitimate, HTTP/2 flash-crowd traffic and introduced an HTTP/2 attack traffic

model (Chapter 5). The attack traffic based on the presented model was able to

bypass hypothetical intrusion-detection systems that monitored CPU consump-

tion caused by process execution remote clients to service and also successfully

incapacitate a target machine when a number of attacking clients collectively

launched a DDoS attack. The attack traffic characteristics presented previously

could be distinguished from flash-crowd traffic through machine learning-based

analysis. This chapter extends the attack model introduced in the previous chap-

ter to demonstrate how HTTP/2 attack traffic which is stealthy in nature can

degrade the performance of machine learning analysis. It aims to show how

HTTP/2 attack traffic could cause machine learning techniques to incorrectly

classify traffic instances, leading to degraded Detection Rate and False Alarm

Rate.

The chapter introduces two models, namely, Stealthy Attack 1 and Stealthy

Attack 2 and shows how the generated traffic could be distinguished from flash-

crowd traffic based on machine learning. The analysis applied four machine learn-

ing techniques, i.e. Naïve Bayes, Decision Tree, JRip, and Support Vector Ma-

151

chines. In addition, the Self Organizing Map was applied to visualize the clusters

of similar traffic groups. Furthermore this chapter compared the HTTP/2 attack

traffic characteristics when the analysis was built upon features traditionally em-

ployed in the literature for HTTP/1.1 DoS attack analysis.

6.1 Stealthy Attack 1

Stealthy traffic causes machine learning analysis to yield more incorrectly classi-

fied instances. This section introduces a variant of the attack model presented

in Chapter 5 to generate stealthy attack traffic, as opposed to flash-crowd traffic.

The study aimed to model attacks whose traffic continually consumed the vic-

tim’s computing resource, yet caused machine learning techniques to incorrectly

classify some traffic instances. It contrasted the traffic characteristics produced

from the investigation in this section to that of the DDoS traffic produced and

reported in Section 5.2.

In addition, the study tried to find the least possible number of attacking

clients to successfully incapacitate a victim machine. In this chapter, attacking

clients are named as ’bots’. There were two motivations for this study. First, it

would aid in quantifying malicious flood traffic launched from one generic com-

puter (e.g. from an attacker’s place of residence) towards a victim. Second, it

quantifies the number of remote computers that would be required to be compro-

mised to run bots, when an attacker intends to launch a DDoS attack against a

victim.

6.1.1 Attack Model and Scenarios

The study proposed to camouflage attack traffic with features of normal traffic.

The stealthy attack model presented herewith comprises two groups of bots to

camouflage attacks. One group attempts to exactly mimic the flash-crowd traffic

features, and another does the generation the offending traffic derived from the

current understanding (Chapter 5) (Adi, Baig, Lam, & Hingston, 2015; Adi, Baig,

152

Hingston, & Lam, 2016), i.e.: a flood of 131,068 window_update packets with

window-size-increment payload set to 16,384 sent by an attacking bot for 38.5 ms

caused a target server to consume 50% CPU consumption; and 4 attacking bots,

where each bot sent such a flood caused a target server to consume 100% CPU

resources. The mimicking bots are labelled as the mime group, and the attacking

ones are labelled as the offending group.

The proposed implementation was to have the number of TCP connections of

the attack traffic mimic that of the flash-crowd traffic closely. The feature that

represented this characteristic was the count_syn feature, which is defined as

the volume of SYN packets observed in a one-second traffic instance. Hence, the

mime group attempted to mimic the number of SYN packets/sec of flash-crowd

traffic generated by the bots targeting a victim, while the offending group gen-

erated attack traffic towards the victim. The attack traffic aimed to continually

consume 100% CPU usage of the victim. The study controlled the amount of

traffic generated by each group, until instances of 100% CPU consumption were

observed at the victim machine.

To control the amount of traffic, two independent variables were added to the

packet generator that constructed both the mime and offending bot anatomy.

First, instead of indefinitely transmitting a flood of window_update packets as

attempted in the previous sections, the bot sent intermittent floods. A flood was

defined as 131,068 (or 131K) window_update packets in 38.5 ms. Here, stealthy

factor is defined as the outcome of rolling an 𝑥-sided dice, where a random integer

was generated between 1 and 𝑥. A flood from a bot towards a target server was

launched when 𝑥 equalled to 1. When 𝑥 ̸= 1, the bot sent only 1 HTTP/2 Request

and then disconnected the TCP connection. Higher stealthy factor numbers imply

smaller chances to have an outcome value of 1 out of a given stealthy factor 𝑥;

hence, the higher the stealthy factor the less frequently for launching a flood.

This mechanism created intermittent floods from the bots towards the victim

rather than continuous attack traffic.

Second, a delay variable was introduced. Instead of pausing for 100 ms be-

tween streams as previously proposed (Section 5.2.2), the bots disconnected the

153

TCP connection and reconnected after a given delay. This variable controlled

the flow of SYN packets/sec from each bot towards the victim. As illustrated on

page 19, a SYN packet initiates a client-server TCP connection. Hence, the bots

created SYN packets with a fixed delay between connections. The investigation in

this section searched for a delay value between connections initiated by the mime

group and the offending group. Larger delay values aided the mime group to

mimic the number of SYN packets/second of flash-crowd traffic. However, larger

delay values caused the offending group to send less attack traffic flow, causing

the CPU consumption of the victim to slide from 100%.

In bot-induced DDoS attacks, the higher the number of bots, the closer the

traffic pattern that they generated is to flash-crowd traffic (S. Yu, Guo, & Stoj-

menovic, 2012). This is reasonable, since both flash-crowd as well as attack traffic

floods are generated from Internet-connected machines. In this study, a minimum

number of bots were observed when the traffic that the bots generated caused a

target machine to continually show 100% CPU consumption. An attacking bot

anatomy is modelled as being built upon five parameters:

∙ number of threads : the number of simultaneous processes runs on a bot

machine, where each process can independently initiate a TCP connection

with a remote machine, i.e. a target server.

∙ number of streams : the number of stream IDs in one TCP connection, where

each stream ID generates a traffic flood towards a target machine.

∙ number of window_update: the number of window_update packets in each

stream.

∙ stealthy factor : the frequency at which a TCP connection is used to send a

flood of packets against a target machine, equals to 1/𝑠𝑡𝑒𝑎𝑙𝑡ℎ𝑦𝑓𝑎𝑐𝑡𝑜𝑟 .

∙ delay : a time delay between successive TCP connections.

This section proposed one implementation of a stealthy attack model which

is shown in Table 6.1. The table shows that the proposed stealthy attack traffic

154

Table 6.1: Stealthy Attack-1 model

Bot 1 Bot 2
Number of threads 1 1
Number of streams 1 1
Number of window_update 131K 131K
Stealthy factor 50 500
Delay between connections 11 ms 11 ms

could be generated by simply two bots, with one bot representing the mime group

and the other the offending group. One virtual machine was used to run each bot.

Bot 1 acts as the offending group that sends 131K window_update packets as

attack traffic towards the victim, the value of which was obtained from Section

5.2.2 (page 138). The attack traffic is sent periodically with a stealthy factor

equals to 50. This means the attack traffic is sent when a random variable 𝑥 yields

1 of 50 chances, otherwise the bot sent 1 HTTP/2 Request and disconnected its

TCP connection with the victim. Bot 2 sends less frequent attack traffic, as

it is assigned a stealthy factor 500. This number is ten times higher than Bot

1, to maintain the desired number of TCP connections in its attempt to mimic

flash-crowd traffic.

The traffic these bots generated was extracted using the feature extraction

method described in Section 3.1.3, yielding an attack traffic dataset with 549

instances. The attack traffic dataset was merged with the flash-crowd dataset

which consisting of 3600 instances (explained in Section 4.4.2), yielding a dataset

with 4149 instances. The features from the dataset were ranked using Information

Gain and Gain Ratio techniques, upon which the dataset comprising flash-crowd

and attack traffic features was classified using four machine learning techniques,

i.e. Naïve Bayes, Decision Tree, JRip, and Support Vector Machines. The ma-

chine learning classifications were executed on an Intel Core-i3 machine with a 2

GB RAM. Three machine learning techniques, i.e. Naïve Bayes, Decision Tree,

and JRip, took less than 1 minute to yield classification results. Support Vector

Machines took more than 2 minutes to yield classification results. The param-

eter values of these machine learning techniques are given in Appendix A. The

155

Figure 6-1: Visualization of count_syn feature values. Left: DDoS attack. Right:
Stealthy Attack-1.

following subsection presents the results of this investigation.

6.1.2 Results and Analysis

This section compares the results from observing the TCP connection flow for

DDoS and Stealthy Attack-1 traffic. It shows the feature ranking results as well

as the results of machine learning classification of Stealthy Attack-1 traffic.

Comparison of the number of TCP connections

The proposed implementation method of camouflaging attack traffic was in-

tended to mimic the number of TCP connections from flash-crowd traffic. The

number of TCP connections in the dataset comprising flash-crowd and attack

traffic was represented by the count_syn feature. Figure 6-1 presents how

the count_syn feature values of DDoS and Stealthy Attack-1 compare to the

count_syn feature values of flash-crowd. The figure was obtained from Weka.

The X-axis shows the number of SYN packets/sec, and the Y-axis shows the

number of instances, or the tally for the X values. The left figure illustrates the

count_syn features of the DDoS attack, particularly from the last row of Table

5.4, i.e. using test case 5 with 4 bots and 2 threads/bot. The right figure illus-

trates the count_syn values for the Stealthy Attack-1 as proposed in this section.

There are similarities as well as contrasting differences between the two figures.

In both left and right figures, the black graph shows the distribution of the

flash-crowd count_syn feature values, and the grey one shows that of attack traf-

fic. Hence, it could be seen that in both figures, the flash-crowd traffic produces

156

Figure 6-2: A threshold line can split DDoS and flash-crowd traffic

higher flow of SYN packets/sec than the DDoS attack traffic, as the values of both

black graphs are shown on the right hand side of their respective grey graphs.

However, the difference is that the DDoS traffic (the left figure) can be visually

classified, since the attack traffic (grey) is shown on the far left of the flash-crowd

traffic (black). It is unambiguous to choose a threshold value such as a vertical

dotted-line to split the two colours as illustrated in Figure 6-2. In contrast, the

Stealthy Attack-1 traffic (Figure 6-1 right) camouflaged the attack traffic as the

values can be seen to overlap with those of the flash-crowd traffic.

Hence, the two proposed bots in this section (Table 6.1) were able to cam-

ouflage the number of SYN packets/sec and operate as flash crowd, remaining

undetected. This traffic was stealthier than the DDoS traffic of Section 5.2.

Feature ranking and performance analysis

Table 6.2 lists the results of ranking the traffic features when subjected to

Stealthy Attack-1 and the flash-crowd dataset. The more relevant features are

ranked closer to the top of the list. The order of the rank number is used to

select the features when the processed traffic is analysed using machine learning

techniques. For example, when the number of features selected is set to 1, then

the techniques used the top-ranked feature to split the two classes. When the

number of features selected is 𝑛, a set of features ranked {1 . . . 𝑛} is employed.

This is repeated until the total number of 42 features (as shown in Table 3.6

on page 85) was selected. Figure 6-3 to 6-6 present the performance analysis

when the different sets of features are employed by each of the machine learning

techniques.

157

Table 6.2: Ranked features for Stealthy Attack-1traffic

rank
Information Gain Gain Ratio

feature # feature name feature # feature name
1 19 size_rstAck 19 size_rstAck
2 18 count_rstAck 18 count_rstAck
3 1 count_app 2 size_app
4 34 size_tlsKey 34 size_tlsKey
5 29 size_tlsHello 1 count_app
6 33 count_tlsKey 33 count_tlsKey
7 2 size_app 6 count_syn
8 6 count_syn 7 size_syn
9 7 size_syn 28 count_tlsHello
10 28 count_tlsHello 39 size_encAlert
11 38 count_encAlert 38 count_encAlert
12 39 size_encAlert 24 size_finAck
13 24 size_finAck 23 count_finAck
14 23 count_finAck 27 lapse_finAck_max
15 8 count_ack 22 lapse_rstAck_max
16 14 size_rst 26 lapse_finAck_ave
17 13 count_rst 21 lapse_rstAck_ave
18 9 size_ack 29 size_tlsHello
19 27 lapse_finAck_max 17 lapse_rst_max
20 22 lapse_rstAck_max 16 lapse_rst_ave
21 26 lapse_finAck_ave 14 size_rst
22 21 lapse_rstAck_ave 13 count_rst
23 17 lapse_rst_max 42 lapse_encAlert_max
24 16 lapse_rst_ave 8 count_ack
25 42 lapse_encAlert_max 41 lapse_encAlert_ave
26 41 lapse_encAlert_ave 9 size_ack
27 20 lapse_rstAck_min 20 lapse_rstAck_min
28 25 lapse_finAck_min 25 lapse_finAck_min
29 5 lapse_app_max 5 lapse_app_max
30 15 lapse_rst_min 15 lapse_rst_min
31 12 lapse_ack_max 12 lapse_ack_max
32 4 lapse_app_ave 4 lapse_app_ave
33 37 lapse_tlsKey_max 37 lapse_tlsKey_max
34 11 lapse_ack_ave 11 lapse_ack_ave
35 32 lapse_tlsHello_max 32 lapse_tlsHello_max
36 3 lapse_app_min 36 lapse_tlsKey_ave
37 40 lapse_encAlert_min 3 lapse_app_min
38 35 lapse_tlsKey_min 40 lapse_encAlert_min
39 36 lapse_tlsKey_ave 31 lapse_tlsHello_ave
40 30 lapse_tlsHello_min 35 lapse_tlsKey_min
41 31 lapse_tlsHello_ave 30 lapse_tlsHello_min
42 10 lapse_ack_min 10 lapse_ack_min

158

The (a) graphs from Figure 6-3 to 6-6 reveal the incorrectly classified instances

when Stealthy Attack-1 were analysed against flash-crowd traffic. These graphs

show more sets of selected features that yield incorrectly classified instances,

than the DDoS graphs previously presented (the (a) graphs from Figure 5-10 to

5-13). In other words, the graphs show more 𝑥 values that yield above-zero 𝑦

values, signifying that the Stealthy Attack-1 traffic is stealthier than the DDoS

traffic. It could be seen that Naïve Bayes (Figure 6-3.a) did not classify the

traffic unimpaired, as the incorrectly classified instances were above 0. Similarly,

Decision Tree (Figure 6-4.a) could distinguish the two traffic types only in special

cases when certain sets of features were selected using Gain Ratio. Contrary to

the DDoS traffic, the Stealthy Attack-1 traffic led to more incorrectly classified

instances when analysed using the two machine learning techniques, i.e. Naïve

Bayes and Decision Tree. This can be seen where the number of features selected

are 5 or more, Stealthy Attack-1 analysis with Naïve Bayes (Figure 6-3.a) and

Decision Tree (Figure 6-4.a) show more incorrectly classified instances than DDoS

analysis with Naïve Bayes (Figure 5-10.a) and Decision Tree (Figure 5-11.a).

In contrast, JRip (Figure 6-5.a) showed that some 𝑦 values reached 0, given

certain 𝑥 values, suggesting that Stealthy Attack-1 can be classified using JRip.

Contrary to DDoS analysis with JRip (Figure 5-12.a) where all feature sets

yielded incorrectly classified instances, the Stealthy Attack-1 analysis with JRip

can have 0 incorrectly classified instances when certain sets of features were se-

lected. That is, Information Gain-ranked features yielded 0 incorrectly classified

instances when 10, 12, 15, and 17 features were selected. Gain Ratio-ranked fea-

tures yielded 0 incorrectly classified instances when 5, 7 to 13, and 17 features

were selected. It can be seen that it was difficult to predefine a set of features

to yield 0 incorrectly classified instances, as the simulations did not show a reg-

ular pattern. Hence, while JRip was able to distinguish Stealthy Attack-1 from

flash-crowd traffic, it had a drawback that a minimum set of features to yield 0

incorrectly classified instances was difficult to define.

Support Vector Machines (Figure 6-6.a) performed best as they showed 0

incorrectly classified instances when the number of features selected were 5 or

159

above. Hence, a hypothetical intrusion-detection system that employed Support

Vector Machine could adopt a set of features with at least 5 most relevant features

selected, to detect attack traffic. On the other hand it showed 17.5% incorrectly

classified instances when 3 most relevant Information Gain-ranked features were

employed, or 11.6% when Gain Ratio-ranked features were employed. These num-

bers were the highest (worst) compared to the performance of other techniques

(Naïve Bayes, Decision Tree, JRip). Hence, the hypothetical intrusion-detection-

system could yield the worst percentage of incorrectly classified instances among

the other techniques tested, when predefined to employ an incomplete set of fea-

tures (such as a set of 3 features as demonstrated here).

When True Positives were examined, all four machine learning techniques

tested were able to produce a high rate of instances correctly classified as a given

class. As shown in graphs (b) from Figure 6-3 to 6-6, Support Vector Machine

yielded the highest Detection Rate with the least number of features, followed by

Decision Tree and Naïve Bayes. It was difficult to define a threshold value for JRip

to choose the number of features selected that resulted in a perfect Detection Rate,

as the graph showed that the performance degraded when a certain feature set

was selected. In particular, figure 6-5.b shows that JRip yielded Detection Rate

of less than 1 when 1-4, 6-7, 19, 25-26, 30, 40 and 42 Information Gain-ranked

features were selected; or when 1-4, 19, 25-26, 30, 40, and 42 Gain Ratio-ranked

features were selected.

However, the high Detection Rate obtained using the four machine learning

techniques tested were not without an associated cost. As shown in graphs (c) of

Figure 6-3 to 6-6, Support Vector Machine yielded 18.4% normal traffic instances

falsely classified as attacks when 3 features were employed. Other techniques

tested showed between 0.4% to 0.5% incorrectly classified normal traffic.

This study described the characteristics of stealthy attack traffic that made

it indistinguishable when compared to flash-crowd traffic. Feature selection pro-

cedures were applied to rank the most relevant features using two techniques,

Information Gain and Gain Ratio. The machine learning analysis showed the

percentage of incorrectly classified instances, Detection Rate and False Alarm

160

(a) Incorrectly classified instances (%)

(b) Detection Rate

(c) False Alarm Rate

Figure 6-3: Stealthy Attack-1 Performance with Naive Bayes classification

161

(a) Incorrectly classified instances (%)

(b) Detection Rate

(c) False Alarm Rate

Figure 6-4: Stealthy Attack-1 Performance with Decision Tree classification

162

(a) Incorrectly classified instances (%)

(b) Detection Rate

(c) False Alarm Rate

Figure 6-5: Stealthy Attack-1 Performance with JRip classification

163

(a) Incorrectly classified instances (%)

(b) Detection Rate

(c) False Alarm Rate

Figure 6-6: Stealthy Attack-1 Performance with Support Vector Machine classi-
fication

164

Rate when classifying the attack and flash-crowd traffic.

6.1.3 Conclusion

This section presented an attacking-bot model that impaired the performance of

two machine learning techniques when classifying the bots-generated and flash-

crowd traffic. The investigation showed that the attack model could rely on as few

as 2 bots (Table 6.1) and remain undetected. Using the features proposed for this

study (Table 3.6), the four machine learning techniques (Naïve Bayes, Decision

Tree, JRip, Support Vector Machines) were able to yield accurate Detection Rates

and low False Alarm Rates. However, Stealthy Attack-1 analysis with these four

machine learning techniques showed more sets of selected features that yielded

incorrectly classified instances (the (a) graphs from Figure 6-3 to 6-6), than the

DDoS analysis (the (a) graphs from Figure 5-10 to 5-13). This demonstrates

that the traffic generated through the proposed attack model in this section was

stealthier than the Distributed Attack traffic presented earlier (Section 5.2).

The implementation method in this section attempted to mimic the flash-

crowd traffic features. Particularly the method attempted to mimic the

count_syn feature values, which is an HTTP/2 feature for the number of SYN

packets sent from an attacking client towards a target machine. The next section

examines how the attack model could resemble other flash-crowd traffic features,

and therefore operate in even more stealthier manner.

6.2 Stealthy Attack 2

Previously it was demonstrated that HTTP/2 DDoS attack traffic could be gen-

erated to cause a CPU depletion of an HTTP/2 server without triggering an

alarm at a hypothetical intrusion-detection system that monitored per connec-

tion CPU and memory consumption (Section 5.2). However, the traffic model

it produced could be accurately classified when compared to flash-crowd traffic:

a set of 4 features or more yielded 0 incorrectly classified instances when Naïve

165

Bayes, Decision Tree, or Support Vector Machines were employed. Therefore,

Stealthy Attack-1 was proposed as a model to produce stealthier traffic less eas-

ily detectable by the detection system. It was shown that four machine learning

techniques incorrectly classified the attack traffic that the model produced as

flash-crowd traffic (Section 6.1).

Stealthy Attack-1 traffic was crafted to delude machine learning-based detec-

tion by camouflaging one of the traffic features (count_syn), which is representa-

tive of TCP connection flow between a device pair. This was done through having

a group of bots (it was found that 1 bot would suffice) to send traffic, mimicked

by count_syn feature values to represent flash-crowd traffic. The proposed attack

model in the previous section led to another investigation if the same camouflage

strategy could be adopted to produce stealthier HTTP/2 attack traffic. Hence,

the aim of this section is to examine how two groups of bots could launch stealth-

ier attack traffic than the previously defined Stealthy Attack-1 model. The study

reported in this section is therefore named Stealthy Attack-2.

The following subsection details the proposed method to model and generate

Stealthy Attack-2 traffic. It then analyses the traffic it generated using the same

four machine learning techniques, and presents a comparison of the results.

6.2.1 Attack Model and Scenario

Similar to the strategy adopted to model Stealthy Attack-1 as presented in Section

6.1, this study proposes to camouflage attack traffic to mimic flash-crowd traffic.

The difference is that this study aimed to have attack traffic mimics another

feature value of flash-crowd traffic, i.e. size_rstAck. Hence, it was aimed that

Stealthy Attack-2 traffic is stealthier than Stealthy Attack-1 traffic, indicated

through yielding more incorrectly classified instances when analysed with machine

learning techniques.

Two groups of bots were defined as part of the proposed model. A mime

group aimed to mimic the flash-crowd traffic, and an offending group to generate

attack traffic. In this study, the mime group mimicked another feature values,

166

Figure 6-7: Visualization of Stealthy Attack-1 size_rstAck feature values.

i.e. size_rstAck in addition to the count_syn feature values of flash-crowd traf-

fic. The minimum number of bots was observed when the traffic that the bots

generated caused a target machine to continually show 100% CPU consumption.

The intuition behind mimicking the size_rstAck feature values of the flash-

crowd traffic is that the Stealthy Attack-1 feature ranking results (Table 6.2)

pointed to size_rstAck as the most relevant features. This feature represents

the total size of TCP packets with RST and ACK flags set, or named RST-

ACK packets, observed in a 1-second traffic instance on the victim machine. For

connection termination, a TCP packet with the RST flag set, or named RST

packet, is sent by one bot machine to a remote machine. RST-ACK packets sent

by the bot are essentially RST packets with the ACK flag set, to also acknowledge

a previous packet received by the same machine. To further mimic the flash-crowd

traffic, the Stealthy Attack-2 study proposed to have the mime-bot group closely

mimic the values of the size_rstAck feature.

Figure 6-7 shows the size_rstAck feature values of both Stealthy Attack-1

and flash-crowd traffic dataset. The X-axis represents the feature values, and the

Y-axis represents the number of traffic instances that was representative of such

a feature value. The size_rstAck values of Stealthy Attack-1 traffic are shown

as the tall grey bar on the left side of the figure, while the values of flash-crowd

traffic is shown as the black normally-distributed graph on the right hand side of

the figure. The figure shows that the size_rstAck values of both traffic datasets

are different: Stealthy Attack-1 traffic shows lower size_rstAck values than those

of flash-crowd traffic.

The difference between the size_rstAck values produced by the two traffic

167

patterns was due to varying implementations of the attack and the flash-crowd

traffic. The former was implemented using nghttp2 library, while the latter was

using curl. It is acceptable to have various implementations of a communication

standard, since standards also clearly indicate the implementation requirement

levels that ranged from "must" to "optional" for HTTP/2, according to RFC 2119

(Bradner, 1997). Consequently different HTTP/2 libraries, while maintaining the

requirements mandated by the HTTP/2 standard (Belshe et al., May 2015), are

not uniform in their implementations, and subsequently the traffic pattern they

produce varies.

An example of the variations is shown in Figure 6-8 and 6-9, detailing traffic

associated with one sample HTTP/2 Request traffic through implementation of

nghttp2 and curl libraries. The "Protocol" column specifies which data samples

relate to HTTP/2 packets1 and which ones to TCP packets. It could be seen

from these figures that the traffic pattern produced by the two implementations

differed. With nghttp2, the client was observed to terminate the connection

by sending a RST packet. On the other hand, the curl library terminated the

connection with a RST packet while at the same time acknowledging previously

received packets; hence, the client was observed to finish the connection with an

RST-ACK packet.

Understanding the cause of these differences, the study in this section therefore

uses curl to implement the mime-bot group, while maintaining the use of nghttp2

as the engine for the offending group. The Stealthy Attack-2 implementation is

presented in Table 6.3, comprising 4 bots. Bots 1 and 2 are the offending group,

launching a flood of attacking traffic periodically towards a target machine. A

flood was defined as 131K window_update packets sent in 38.5 ms. The stealthy

factor 5 meant that a flood was sent once every 5 seconds on average by chance.

Hence, there was 1/5× 1/5 = 1/25 chance during each second that the two bots

simultaneously launched a flood of traffic towards a victim. Bots 3 and 4 formed

1Encrypted messages cannot be inspected. However the content of the encrypted HTTP/2
traffic in this example could be revealed by the monitoring tool Wireshark, since the TLS Server
Key was supplied to its configuration for debug and research purposes in this study. Otherwise,
TLS/SSL encrypted traffic only showed "Application Data" to designate its data packets.

168

Figure 6-8: A sample of HTTP/2 Request traffic produced using nghttp2 library

Figure 6-9: A sample of HTTP/2 Request traffic produced using curl library

169

Table 6.3: Stealthy Attack-2 model

Bot 1 Bot 2 Bot 3 Bot 4
threads 1 1 2 40
streams 1 1 1 1
window_update 131K 131K 0 0
stealthy factor 5 5 n.a. n.a.
delay 1 sec 1 sec 0.001 ms 5 sec

the mime group that attempted to mimic the flash-crowd traffic. Because these

two bots did not send any window_update traffic to the victim, any number

assigned to the stealthy factor did not serve any purpose for launching attack

packets. Hence, the table shows "n.a." for the stealthy factors. The number of

threads indicates the number of instances of the above scenario that were run by

each bot during a given time frame. These threads, although relatively small in

their number (2 for Bot 3, and 40 for Bot 4), were an attempt to mimic the 5200

users (Section 4.4.1) that comprised flash-crowd traffic.

Maintaining consistency with the performance measurement previously car-

ried out for Stealthy Attack-1, the traffic generated in this section was extracted

using the feature extraction method described in Section 3.1.3 (page 75), yield-

ing an attack traffic dataset with 254 instances. The dataset was merged with

the flash-crowd dataset which consisted of 3600 instances (explained in Section

4.4.2), yielding a dataset with 3854 instances. The features from the dataset were

ranked using Information Gain and Gain Ratio techniques, following which the

traffic was classified using four machine learning techniques, i.e. Naïve Bayes,

Decision Tree, JRip, and Support Vector Machines. The machine learning clas-

sifications were executed on an Intel Core-i3 machine with a 2 GB RAM. Three

machine learning techniques, i.e. Naïve Bayes, Decision Tree, and JRip, took

less than 1 minute to yield classification results. Support Vector Machines took

more than 2 minutes to yield classification results. The parameter values of these

machine learning techniques are given in Appendix A. The following subsection

presents the results of this investigation.

170

Figure 6-10: Visualization of the size_rstAck feature values. Left: Stealthy
Attack-1. Right: Stealthy Attack-2.

6.2.2 Results and Analysis

Comparison of the RST-ACK flag packets size

It was aimed to have the size_rstAck feature values of the attack traffic re-

semble that of the flash-crowd traffic. Figure 6-10 shows the comparison of the

Stealthy Attack-1 size_rstAck values (the left figure), with the results obtained

through experiments reported in this section (the right figure).

In both figures, the black graph represents the flash-crowd size_rstAck values,

and the grey represents the attack traffic size_rstAck values. The left figure shows

that the Stealthy Attack-1 traffic (grey) could be clearly distinguished from the

flash-crowd traffic (black) by designating a threshold value, such as a vertical line

separating the two colours. In contrast, the right figure shows that the Stealthy

Attack-2 size_rstAck values amalgamated with that of the flash-crowd traffic,

causing ambiguity in differentiation of both traffic types.

The size_rstAck values extracted from the Stealthy Attack-2 traffic were gen-

erated by the mime group, i.e. bots 3 and 4 shown in Table 6.3. Hence, the right

side of Figure 6-10 demonstrates that the mime group camouflaged the attack

traffic with flash-crowd and caused encumbrance in the detection process.

Feature ranking and performance analysis

Table 6.4 shows the ranked values of features extracted from Stealthy Attack-

2 as well as flash-crowd traffic. The size_rstAck feature was no longer ranked as

the topmost. The table shows that it was listed as rank 6 when measured using

171

Information Gain, and ordered 7 with Gain Ratio.

The performance analysis of machine learning techniques is shown in Figure

6-11 to 6-14. The results are for Naïve Bayes, Decision Tree, JRip, and Support

Vector Machines. The following discussion is to firstly discuss the incorrectly

classified instances, which are shown on the (a) part of the figures, followed by

Detection Rates (the b graphs) and False Alarm Rates (the c graphs).

Stealthy Attack-2 traffic yielded incorrectly classified instances when using

the first three classifiers, i.e. Naïve Bayes, Decision Tree and JRip, regardless of

the feature sets used. Only Support Vector Machine were able to distinguish the

traffic when at least 5 Information Gain-ranked features or 13 Gain Ratio-ranked

features were selected. Interestingly, the traffic led to Naïve Bayes yielding higher

percentage of incorrectly classified instances with greater number of features se-

lected. This result showed that Stealthy Attack-2 caused a degraded classification

when the graphs were compared to those of Stealthy Attack-1.

Other performance measurements made included Detection Rate and False

Alarm Rate. Three of the techniques, i.e. Naïve Bayes, JRip and Support Vector

Machines, reached a Detection Rate of 100% when certain feature sets were se-

lected, but no pattern was observed on the number of features required to achieve

the same. Decision Tree did not yield a 100% Detection Rate for any of the feature

sets analysed.

Decision Tree yielded a 0% False Alarm Rate. However other techniques did

not perform as well. Naïve Bayes and JRip always yielded high False Alarm

Rates with all feature sets. Support Vector Machine could reach 0% False Alarm

Rate when at least 13 features were selected.

Comparison with DDoS and Stealthy Attack-1 performance

This part of the study compares the performance measurement obtained in

this section with those from the previous sections. It considers the 3 attack traffic

models presented in this study, DDoS (Section 5.2.1), Stealthy Attack-1 (Section

6.1.1) and Stealthy Attack-2 traffic (Section 6.2.1). Here, the best performance

values of the incorrectly classified instances, Detection Rate, and False Positive

172

Table 6.4: Ranked features for Stealthy Attack-2 traffic

rank
Information Gain Gain Ratio

feature # feature name feature # feature name
1 34 size_tlsKey 19 size_tlsKey
2 33 count_tlsKey 18 size_app
3 1 count_app 2 count_tlsKey
4 2 size_app 34 count_app
5 29 size_tlsHello 1 lapse_tlsHello_max
6 19 size_rstAck 33 count_rstAck
7 18 count_rstAck 6 size_rstAck
8 42 lapse_encAlert_max 7 lapse_tlsHello_ave
9 22 lapse_rstAck_max 28 lapse_encAlert_max
10 17 lapse_rst_max 39 lapse_rstAck_max
11 27 lapse_finAck_max 38 lapse_rst_max
12 7 size_syn 24 lapse_finAck_max
13 6 count_syn 23 size_tlsHello
14 28 count_tlsHello 27 count_encAlert
15 38 count_encAlert 22 size_encAlert
16 39 size_encAlert 26 size_syn
17 21 lapse_rstAck_ave 21 count_syn
18 13 count_rst 29 count_tlsHello
19 14 size_rst 17 lapse_rstAck_ave
20 8 count_ack 16 count_rst
21 9 size_ack 14 size_rst
22 24 size_finAck 13 count_ack
23 23 count_finAck 42 size_ack
24 26 lapse_finAck_ave 8 lapse_finAck_ave
25 41 lapse_encAlert_ave 41 size_finAck
26 16 lapse_rst_ave 9 count_finAck
27 20 lapse_rstAck_min 20 lapse_rst_ave
28 25 lapse_finAck_min 25 lapse_encAlert_ave
29 15 lapse_rst_min 5 lapse_rstAck_min
30 32 lapse_tlsHello_max 15 lapse_finAck_min
31 31 lapse_tlsHello_ave 12 lapse_rst_min
32 11 lapse_ack_ave 4 lapse_app_min
33 3 lapse_app_min 37 lapse_encAlert_min
34 40 lapse_encAlert_min 11 lapse_tlsKey_max
35 5 lapse_app_max 32 lapse_app_ave
36 4 lapse_app_ave 36 lapse_app_max
37 12 lapse_ack_max 3 lapse_ack_max
38 10 lapse_ack_min 40 lapse_tlsHello_min
39 30 lapse_tlsHello_min 31 lapse_tlsKey_ave
40 37 lapse_tlsKey_max 35 lapse_ack_ave
41 36 lapse_tlsKey_ave 30 lapse_ack_min
42 35 lapse_tlsKey_min 10 lapse_tlsKey_min

173

(a) Incorrectly classified instances (%)

(b) Detection Rate

(c) False Alarm Rate

Figure 6-11: Stealthy Attack-2 Performance with Naive Bayes classification

174

(a) Incorrectly classified instances (%)

(b) Detection Rate

(c) False Alarm Rate

Figure 6-12: Stealthy Attack-2 Performance with Decision Tree classification

175

(a) Incorrectly classified instances (%)

(b) Detection Rate

(c) False Alarm Rate

Figure 6-13: Stealthy Attack-2 Performance with JRip classification

176

(a) Incorrectly classified instances (%)

(b) Detection Rate

(c) False Alarm Rate

Figure 6-14: Stealthy Attack-2 Performance with Support Vector Machine clas-
sification

177

Rate were compared. Three approaches were applied: through visual inspections,

through comparing the best (highest/lowest) performance values, and through

Self Organizing Map-based visualization. The first two approaches, the visual

inspections and comparing the best performance values, analysed Figure 5-10 to

5-13 for DDoS, Figure 6-3 to 6-6 for Stealthy Attack-1, and Figure 6-11 to 6-14

for Stealthy Attack-2 performance results.

First, visual inspections were applied to find a range of numbers of selected

features, to yield a low percentage of incorrectly classified instances. The reason-

ing behind this is that a hypothetical intrusion-detection system would choose

rules that can yield the lowest ’incorrectly classified instances’ value. Figure

6-15 was used to visually choose a number of selected features. The figure com-

bined the incorrectly classified instances (Y-axis) of the 3 attack traffic models

when Information Gain-ranked features were employed. For example, Figure 6-

15.a combines the graphs from Figure 5-10.a for DDoS, Figure 6-3.a for Stealthy

Attack-1, and Figure 6-11.a for Stealthy Attack-2 results. The X-axis represents

the number of features selected. Figure 6-15 helps visualize a range of X-axis

values that yield low Y-axis values

From visually inspecting Figure 6-15.a, a hypothetical intrusion-detection-

system that employed Naïve Bayes would choose 19 selected features or higher

to obtain low Y values. In this regard, Stealthy Attack-2 was found to be the

stealthiest due to its high Y values, followed by Stealthy Attack-1 and DDoS.

A visual inspection on Decision Tree (Figure 6-15.b) also shows that Stealthy

Attack-2 yielded the highest Y values, hence the stealthiest, when a hypothet-

ical intrusion-detection system employed 5 Information Gain-ranked features or

higher. The figure also shows that Stealthy Attack-1 was less stealthy, and DDoS

was the least stealthy.

JRip (Figure 6-15.c) graphs show that between 10 and 17 features can be

selected to yield low Y values. When these features are selected, Stealthy Attack-

2 was the stealthiest (as it showed the highest Y value), followed by DDoS and

Stealthy Attack-1.

178

(a) Naïve Bayes (b) Decision Tree

(c) JRip (d) Support Vector Machine

Figure 6-15: Visual inspection to find a range of X-values that yield low incorrectly classified instances values.

179

Support Vector Machine (Figure 6-15.d) show otherwise. When 5 or more

features were employed, DDoS was the stealthiest, as it yielded 0.024% incorrectly

classified instances (Figure 5-13). A hypothetical intrusion-detection system can

distinguish the other two attack traffic models, Stealthy Attack-1 and Stealthy

Attack-2, from flash-crowd when 5 or more features were employed.

From visual inspection, it was discussed that Naïve Bayes, Decision Tree, and

JRip show that Stealthy Attack-2 bears the stealthiest traffic among the 3 traffic

models analysed. Support Vector Machines yield otherwise, with DDoS being the

stealthiest.

The second investigation compared the boundary values of the performance

results. The boundary performance values were indicated by the best figure a

classifier measured regardless of the number of features selected, i.e. the farthest

Y value regardless of X. Hence, these were the lowest values of incorrectly clas-

sified instances, the highest values of Detection Rate, and the lowest values of

False Alarm Rate. The comparisons are presented in Figure 6-16 to 6-17.

The incorrectly classified instances (Figure 6-16) showed the higher bars as

stealthier traffic. Hence, Stealthy Attack-2 traffic was the stealthiest when mea-

sured with Naïve Bayes and Decision Tree (Figure 6-16). However, this result

was not uniform across other classifiers tested. JRip showed that DDoS traf-

fic was stealthier than Stealthy Attack-2, as DDoS showed a higher bar than

Stealthy Attack-2. Similarly, JRip showed that Stealthy Attack-2 was stealthier

than Stealthy Attack-1, as the former showed a higher bar than the latter. Sup-

port Vector Machines were able to yield 0% incorrectly classified instances when

classifying the 3 proposed attack traffic models. Hence, it can be concluded that

Support Vector Machines can be applied to identify all three attack traffic models

presented in this study.

The Detection Rate showed the lower bars. Figure 6-17 shows that Stealthy

Attack-2 was the stealthiest among other traffic types as it yielded a low Detection

Rate when Naïve Bayes and Decision Tree classifiers were employed. The other

two classifiers, JRip and Support Vector Machines, were able to yield a 100%

Detection Rate.

180

Figure 6-16: Incorrectly classified instances for all 3 attack types

Figure 6-17: Detection Rate performance comparison for all 3 attack types

Figure 6-18: False Alarm Rate performance comparison for all 3 attack types

181

The False Alarm Rate showed the higher bars as the stealthier traffic (Figure

6-18). Stealthy Attack-2 was the stealthiest when classified using Naïve Bayes.

However, it was second to DDoS traffic when measured through JRip. Other

classifiers, namely JRip and Support Vector Machine showed a False Alarm Rate

of 0% for all traffic types.

The third traffic comparison analysis was done using Self Organizing Maps, a

machine learning technique that visualize data in clusters. The parameter values

of the machine learning technique are given in Appendix A. For this analysis, four

datasets were generated in this study, i.e. flash-crowd, DDoS, Stealthy Attack-1

and Stealthy Attack-2, were merged, yielding a dataset with 4527 instances. The

Self Organizing Map analysis was run on an Intel Core-i3 machine with a 2 GB

RAM.

The results are shown in Figure 6-19. The X axis shows the classes from the

dataset generated in this study, which are separated by black vertical lines. Each

integer value of X corresponds to an instance in the dataset. The Y axis shows

how the technique assigns the instances from the dataset into one of four clusters.

If the technique produces perfect classification, the graph would show only one

cluster colour Y for each X traffic dataset, i.e.:

∙ Blue for Stealthy Attack-1,

∙ Red for flash-crowd traffic,

∙ Turquoise (greenish-blue) for DDoS, and

∙ Green for Stealthy Attack-2.

However, the graph assigned other colours to three of the four traffic datasets.

For example, Stealthy Attack-1 was not only blue, but also green and turquoise,

indicating how the Self Organizing Map technique incorrectly assigned the blue

traffic in a separate cluster. Similarly, Stealthy Attack-2 traffic was also mistak-

enly classified as other attack traffic. Stealthy Attack-2 cluster was assigned green,

but Self Organizing Map clustered the traffic as green, blue, and turquoise. On

the other hand, all DDoS traffic was distinguished simply as a turquoise cluster.

182

Figure 6-19: Cluster visualization using Self Organizing Map

The flash-crowd traffic was labelled as a red cluster. Although Self Organizing

Map showed some flash-crowd instances labelled as DDoS, most flash-crowd in-

stances were categorised in the red cluster. This indicates that Self Organizing

Map was able to accurately distinguish flash-crowd traffic from attack traffic.

While the Self Organizing Map analysis was run on an Intel Core-i3 machine

with a 2 GB RAM, it took more than 10 minutes for Weka to analyse the dataset

with 4527 instances. In this regards, Self Organizing Maps were not suitable for

online environment, where real-time analysis is required to classify traffic.

To conclude, this section presented three approaches to compare the attack

traffic with flash crowd using several machine learning techniques. It could be seen

that Stealthy Attack-2 showed many signs that it was stealthier than Stealthy

Attack-1 and DDoS, particularly when the analysis applied Naïve Bayes and Deci-

sion Tree. Although JRip generated different results, it did not show a consistent

trend given a range of numbers of features selected. Hence, it was difficult to

predefine a set of features where JRip could yield the best performance.

Support Vector Machines can be used as a means to distinguish all of the pro-

posed HTTP/2 attack traffic from flash-crowd. However, it had some drawbacks.

First, certain sets of features selected returned adverse classification results. Sec-

183

ond, it took a very long execution time (more than 2 minutes) to run the classifier

compared to the other ones tested, which took less than 1 second to obtain the

classification results. The Support Vector Machine analysis was run on an Intel

Core-i3 machine with a 2 GB RAM. The analysis time length showed that Support

Vector Machines were inappropriate to be used as a real-time intrusion-detection

system.

6.2.3 Conclusion

This section proposed a stealthier attack model through mimicking a different

traffic feature, i.e. the total size of RST-ACK packets observed in a second.

Using the same attack model as previously described, the study proposed two

groups of bots, where one offending group generated attack traffic and another

group mimicked the flash-crowd traffic. The mime group was built using the same

programming library (i.e. curl) as the one used to build the flash-crowd traffic.

The results showed that the Stealthy Attack-2 RST-ACK feature values (i.e. the

size_rstAck feature) overlapped with the same feature values of the flash-crowd

traffic, indicating how the former traffic mimicked the latter. Furthermore, the

Stealthy Attack-2 classification using three classifiers (Naïve Bayes, Decision Tree

and JRip) resulted in stealthier performance measurements than the Stealthy

Attack-1 and DDoS traffic models.

Support Vector Machine classifier was able to separate attack traffic from flash

crowd more accurately than other classifiers. However, it was not appropriate

to be used as a real-time intrusion-detection system, since it took more than 2

minutes to run the analysis on a dataset of 4527 instances. Similarly, although

Self Organizing Map was able to distinguish normal traffic from attack accurately,

it required more than 10 minutes to produce the results which would again be

unacceptable in online environment.

184

6.3 Analysis and Discussion

The study has introduced HTTP/2 flash-crowd traffic (Chapter 4) and attack

traffic models (Chapter 5). The flash crowd traffic was generated by having 5200

simulated normal end users simultaneously visiting an HTTP/2 server (Sub-

section 4.4.2); and the attack traffic was obtained by flooding the server with

HTTP/2 window_update packets (Section 5.1). This flood of HTTP/2 packets

could bypass a hypothetical intrusion-detection system that monitored the CPU

and memory consumption of a machine (Section 5.2), and degraded classification

performance to encumber differentiation between attack and flash-crowd traffic

(Section 6.1 to 6.2). It was demonstrated that 2 and 4 bots were able to yield

stealthier traffic than DDoS attacks. Hence, HTTP/2 flood attacks were found

to be more efficient than HTTP/1.1 Request floods that required a substantially

large amount of HTTP packets and bots to incapacitate the server.

This section also discusses the comparison of HTTP/2 flood attack perfor-

mance with that of HTTP/1.1 from other viewpoints. It compares the importance

of certain determining factors to classify traffic (Section 6.3.1) and the classifica-

tion performance when using only the HTTP/1.1 features (Section 6.3.2).

6.3.1 Feature Ranking Comparison with HTTP/1.1 Fea-

tures

Current research on DDoS attack classification explores methods to distinguish

attack traffic from normal or flash-crowd traffic operating in an HTTP/1.1 en-

vironment. In contrast, this study operated in HTTP/2 environment to classify

normal from attack traffic. This section also discusses how the HTTP/1.1 fea-

tures can be ranked differently as distinguishing factors when applied to HTTP/2

traffic.

To make a comparison, the study investigated features that were used for both

HTTP/1.1 and HTTP/2 traffic analysis. Listing these common features was a

non-trivial task, because the traffic patterns varied significantly. HTTP/1.1 traffic

185

analysis was reliant on unencrypted packets, while HTTP/2 analysis carried out

in this study was applied to encrypted traffic. HTTP/1.1 traffic analysis required

deep packet inspection, where unencrypted HTTP packets such as the content

of HTTP Requests (Jung et al., 2002; Oikonomou & Mirkovic, 2009; Saleh &

Abdul Manaf, 2015; Zhou et al., 2014), its distribution (Bhatia, Mohay, Tickle,

& Ahmed, 2011), or flow (Sachdeva & Kumar, 2014) could be analysed. Similarly,

the number of resources (i.e. files or pages) that clients requested from a server

was one of the features to model flash-crowd traffic (Bhatia, Mohay, Schmidt, &

Tickle, 2012). Again, these solutions relied on unencrypted HTTP data.

As a result, many of the previous methods that inspected HTTP/1.1 traf-

fic were no longer applicable when implemented for encrypted traffic analy-

sis of HTTP/2. This is because encrypted traffic conceals the content of the

application-layer data. Hence, browsing behaviour that depended on HTTP data

and packet flow measurements, and required application-data inspection could

not be analysed through these techniques. Consequently, deep packet inspection

methods and features that relied on certain HTTP/1.1 packet flow observations

as described above could not be applied to analyse encrypted HTTP/2 traffic.

However, certain aspects were adoptable from HTTP/1.1 traffic analysis and

applied to HTTP/2 traffic. Both HTTP protocols required IP headers (explained

on page 15) to deliver client to server HTTP messages. The IP header was not

commonly encrypted in HTTP/2 unless for tunnelling purposes (where client to

server IP headers were encrypted to obscure client-server IP addresses). Hence,

IP header information was valuable analysis. Traditionally, studies observed the

entropy of the IP address and the port number as the distinguishing features to

detect DDoS attacks against HTTP/1.1 services (Kumar, Joshi, & Singh, 2007;

Lakhina et al., 2005). The disadvantage of this solution was that IP address

spoofing, or forging the source IP address, has increasingly been a common prac-

tice adopted by adversaries. Attackers could mimic the statistical properties of

legitimate traffic and bypass detection methods. Therefore, these features alone

are insufficient for categorizing DDoS attack traffic.

A more recent approach (Rahmani et al., 2012) applied statistical components

186

of the network headers, i.e. the number of connections and the number of pack-

ets, to define a determining factor using joint-entropy. Joint entropy is a measure

of uncertainty of values from a pair of variables. The method showed high co-

herence between any two factors in a flash-crowd event, while attacks yielded a

deviation from some values that indicated coherency. The study clarified that it

only inspected the IP header field which did not require deep packet inspections.

However, as previously explained, IP header values can be spoofed and the dis-

tribution of the values could be made to mimic flash-crowd properties, making it

harder to distinguish.

The features used in the above HTTP/1.1 DDoS detection methods that in-

spected IP headers could be applied to compare the stealthiness of the HTTP/2

attack traffic proposed in this study. These HTTP/2 features were the count_app

and the count_syn features, representing the two HTTP/1.1 features, i.e. the

number of packets and the number of connections, respectively.

Other than these sets of features used for the study, the HTTP/2 traffic

analysis in this thesis applied machine learning techniques, while the previous

study (Rahmani et al., 2012) used joint-entropy. In this case, the advantage of

using machine learning is that a range of features could be compared and ranked

according to their relevance to detecting and differentiating attack traffic.

The results are presented in Tables 6.5 and 6.6, which summarize the work

presented in from the previous sections. The two HTTP/1.1 traffic features are

shown at the top because they were the most distinguishing factors for distin-

guishing HTTP/1.1 DDoS from flash-crowd traffic. When applied to analyse

HTTP/2 traffic, it can be seen that the count_syn feature (highlighted) deviated

significantly from the top ranked feature. This was true for both Information

Gain (Table 6.5) and Gain Ratio-based feature ranking (Table 6.6).

Furthermore, Tables 6.5 and 6.6 showed that the count_app feature (high-

lighted), remained a highly relevant feature as it was still ranked near the top for

all three HTTP/2 traffic types, i.e. the DDoS, Stealthy Attack-1 and Stealthy

Attack-2. This confirmed that the Denial-of-Service attack demonstrated in this

study was categorized accurately as a flooding-based attack, and the HTTP/2

187

Table 6.5: Feature ranks using Information Gain for all 3 attack types

HTTP/1.1
HTTP/2

DDoS Stealthy Attack 1 Stealthy Attack 2
count_app count_app size_rstAck size_tlsKey
count_syn size_ack count_rstAck count_tlsKey

size_syn count_app count_app
count_syn size_tlsKey size_app
size_tlsHello size_tlsHello size_tlsHello
count_tlsHello count_tlsKey size_rstAck
size_app size_app count_rstAck
count_ack count_syn lapse_encAlert_max
count_rstAck size_syn lapse_rstAck_max
size_rstAck count_tlsHello lapse_rst_max
count_encAlert count_encAlert lapse_finAck_max
size_encAlert size_encAlert size_syn
size_tlsKey size_finAck count_syn

Table 6.6: Feature ranks using Gain Ratio for all 3 attack types

HTTP/1.1
HTTP/2

DDoS Stealthy Attack 1 Stealthy Attack 2
count_app count_app size_rstAck size_tlsKey
count_syn count_ack count_rstAck size_app

size_ack size_app count_tlsKey
size_syn size_tlsKey count_app
size_tlsHello count_app lapse_tlsHello_max
count_syn count_tlsKey count_rstAck
count_tlsHello count_syn size_rstAck
size_app size_syn lapse_tlsHello_ave
size_encAlert count_tlsHello lapse_encAlert_max
count_encAlert size_encAlert lapse_rstAck_max
count_rst count_encAlert lapse_rst_max
size_rst size_finAck lapse_finAck_max
size_rstAck count_finAck size_tlsHello
count_rstAck lapse_finAck_max count_encAlert
count_finAck lapse_rstAck_max size_encAlert
size_finAck lapse_finAck_ave size_syn
lapse_ack_min lapse_rstAck_ave count_syn

188

server was incapacitated due to a high traffic volume from the attack.

This led to further discussions on the external validity of the outcomes

achieved. Hence, a comparison with other studies was made to justify how the

standard traffic model used in this study, i.e. the synthetically generated flash-

crowd traffic, can be differentiated from real flash-crowd traffic. For example, the

standard traffic used might be too dense because the flash-crowd traffic was gen-

erated using 5,200 clients (Section 4.4.1) while another study used only 80 clients

to generate similar traffic volume (Sachdeva & Kumar, 2014). When the HTTP/2

attack traffic was compared to a network with such low traffic density, the attack

traffic would yield a much higher number of packets and therefore could be easily

distinguishable from flash-crowd. However, the study that used 80 clients also

used simulated data; hence, the low number of clients did not mimic real traffic

accurately.

Currently there is no real HTTP/2 dataset available. The closest publicly

available HTTP/1.1 dataset is the World Cup 98 (WorldCup98 dataset , 1998).

The data from this dataset was based on more than 3,000 client requests generated

per second. Assuming user-browsing time was 15 seconds as in the case of the

normal User Model (Section 4.2 page 97), the number of clients in this dataset

was equal to 45,000. This number was almost 9 times higher than the 5,200

clients used to generate flash-crowd traffic in this study. If real HTTP/2 traffic

characteristics were similar to that, the stealthy traffic proposed in this section

(Section 6.1 and 6.2) would cause the count_app feature to become less relevant.

Therefore, when a machine learning technique is applied to classify flash-crowd

traffic, the stealthy traffic could yield more stealthy properties such as a higher

number of incorrectly classified instances, i.e. false negatives.

6.3.2 Performance Comparison

While the previous section identified features used in HTTP/1.1 as determin-

ing factors for differentiating flash-crowd from DDoS attack traffic, this section

presented how machine learning techniques perform when the traffic was anal-

189

Table 6.7: Incorrectly classified instances (%) by machine learning techniques
applied with only HTTP/1.1 features.

Stealthy Attack 1 Stealthy Attack 2
Naïve Bayes 0.2651 0.5189
Decision Tree 0.1687 0.2335
JRip 0.1205 0.2335
Support Vector Machine 0 0.3373

ysed using two HTTP/1.1 features, i.e. the count_app and count_syn features.

Furthermore, it compared the machine learning technique performance analysis

when using the two HTTP/1.1 features (the count_app and count_syn features)

to the 42 HTTP/2 features proposed in this study (Table 3.6). The discussion

also examined the incorrectly classified instances as an evaluation measure.

The machine learning-based analysis results, when using the HTTP/1.1 fea-

tures as determining factors, is shown in Table 6.7. It can be seen that

Stealthy Attack-2 yielded higher percentages of incorrectly classified instances

than Stealthy Attack-1. This was another evidence that Stealthy Attack-2 proved

to be stealthier than Stealthy Attack-1.

The methodologies for comparison of the results with previously presented

attack models (Section 6.1 and 6.2) are shown in Figure 6-20 and 6-21. The for-

mer is a comparison to the Stealthy Attack-1 performance, while the latter is a

comparison to the Stealthy Attack-2 performance. In the two figures, classifica-

tion performance using HTTP/1.1-features from Table 6.7 is shown as a straight

line in all graphs to serve as a baseline value. The baseline value was to visualize

gaps to classification performance results using HTTP/2-features, illustrated in

red and blue in the figures. It can be seen from the figures that the green lines

are higher, away from the X-axis, than the red and blue graphs. This means that

classifying the Stealthy Attack-1 and Stealthy Attack-2 from flash crowd yielded

more incorrectly classified instances when employing HTTP/1.1 features than

when employing the HTTP/2 features proposed in this study (Table 3.6). The

HTTP/2 features yielded better results than the HTTP/1.1 features, when they

were employed by machine learning techniques to distinguish HTTP/2 attack

190

traffic from flash crowd traffic.

Another observation drawn from Figures 6-20 and 6-21 is that Stealthy Attack-

2 is stealthier than Stealthy Attack-1. When the green lines – which represent

performance results using HTTP/1.1. features – were set as a baseline, larger

green-red and green-blue gaps are clearly seen on the Stealthy Attack-2 figures

(Figure 6-21). That is, the figures show larger gaps between green-red graphs on

the Stealthy Attack-2 performance (Figure 6-21) than the green-red graphs on the

Stealthy Attack-1 performance (Figure 6-20). Similarly, larger green-blue gaps

can be seen on the Stealthy Attack-2 (Figure 6-21) than the Stealthy Attack-1

(Figure 6-20) performance. Therefore, when a hypothetical intrusion-detection-

system, equipped with a classifier employing HTTP/1.1 features was used to

measure the incorrectly classified instances of the two traffic models proposed in

this section (Section 6.1 and 6.2), Stealthy Attack-2 yielded stealthier traffic than

Stealthy Attack-1.

Two conclusions can be drawn from the analysis and discussions in this section.

First, Stealthy Attack-2 yielded more incorrectly classified instances than Stealthy

Attack-1. The former showed that the count_app and count_syn features were

ranked lower than the latter (Section 6.3.1). These features were the two fea-

tures employed by DDoS detection studies in the literature for HTTP/1.1 traf-

fic. Furthermore, Stealthy Attack-2 yielded high incorrectly classified instances

than Stealthy Attack-1 when analysed with HTTP/1.1 features (Section 6.3.2).

This demonstrates that Stealthy Attack-2 mimicked flash-crowd traffic closer than

Stealthy Attack-1.

191

(a) Naïve Bayes (b) Decision Tree

(c) JRip (d) Support Vector Machine

Figure 6-20: A comparison of Stealthy Attack-1 performance when using both HTTP/1.1 features and HTTP/2 features.

192

(a) Naïve Bayes (b) Decision Tree

(c) JRip (d) Support Vector Machine

Figure 6-21: A comparison of Stealthy Attack-2 performance when using both HTTP/1.1 features and HTTP/2 features.

193

Second, the 42 HTTP/2 features proposed in this study (Table 3.6) were able

to yield better results than the HTTP/1.1 features proposed in the literature, in

distinguishing attack from flash-crowd traffic. This is shown by the larger gaps

between the graphs produced by the Stealthy Attack-2 and Stealthy Attack-1

traffic to the results produced by HTTP/1.1 features (Figure 6-20 and 6-21).

This observation was true in all four cases, i.e. when the analysis used Naïve

Bayes, Decision Tree, JRip, and Support Vector Machines. This demonstrates

that the HTTP/2 features proposed in this study yielded better results than the

HTTP/1.1 features employed in the literature.

6.4 Conclusion

This section introduced two sets of HTTP/2 attack traffic, namely, Stealthy

Attack-1 and Stealthy Attack-2. It was shown that these traffic types were

stealthier than the DDoS traffic presented in the previous chapter. The evalua-

tion presented in the section showed that machine learning techniques performed

poorly when deployed to distinguish attack traffic from flash crowd traffic.

Two groups of bots were introduced to generate attack traffic. A mime group

was assigned to mimic flash-crowd traffic, and an offending group was designed

to generate flooding traffic. Stealthy Attack-1 was modelled to consist of one bot

for each group, yielding a total of two bots to generate traffic that continually

consumed 100% CPU usage on a target server. Stealthy Attack-2 model consisted

of two bots for each group, yielding a total of four bots. These numbers, i.e. two

bots for Stealthy Attack-1 and four bots for Stealthy Attack-2, were significantly

lower than 5200, the number of clients deployed to generate flash-crowd traffic.

Since two to four machines can generate attack traffic, HTTP/2 DDoS attacks can

become more ubiquitous in the future. These can be launched from an attacker’s

place of residence as opposed to traditional DDoS attack methods that required

distributed computers to launch simultaneous attack floods targeting a victim.

Three analyses conducted showed that Stealthy Attack-2 was stealthier

than Stealthy Attack-1. First, machine learning-based classifications employing

194

HTTP/2 features proposed in this study (Table 3.6) showed that Stealthy Attack-

2 yielded higher percentages of incorrectly classified instances than Stealthy

Attack-1 (Figure 6-15). A hypothetical intrusion-detection system would per-

form worse when Stealthy Attack-2 traffic model was chosen rather than Stealthy

Attack-1. Second, Stealthy Attack-2 did not reach 0% incorrectly classified in-

stances when analysed with Naïve Bayes, Decision Tree, and JRip (Figure 6-16).

In contrast, Stealthy Attack-1 reached 0% incorrectly classified instances when

analysed with Decision Tree and JRip. Third, Stealthy Attack-2 showed higher

incorrectly classified instances than Stealthy Attack-1 when HTTP/1.1 features

(i.e. count_app and count_syn) were used as distinguishing factors to classify

attack and flash-crowd (Figure 6-20 and 6-21). Thus, a hypothetical intrusion-

detection-system that was equipped with machine learning classifiers analysing

HTTP/1.1 traffic would perform worse when Stealthy Attack-2 traffic model was

chosen rather than Stealthy Attack-1, to generate attack traffic.

Support Vector Machines and Self Organizing Maps can be used to classify

HTTP/2 attack from flash-crowd traffic. Support Vector Machine yielded 0%

incorrectly classified instances (Figure 6-16), 100% Detection Rate (Figure 6-17),

and 0% False Alarm Rate (Figure 6-18) when classifying all three attack models

presented in this study, i.e. DDoS, Stealthy Attack-1, and Stealthy Attack-2.

Similarly, a Self Organizing Map-based visualization (Figure 6-19) showed that

the cluster representing flash-crowd traffic was coloured uniformly, indicating that

the Self Organizing Map accurately clustered normal and attack traffic. However,

both Support Vector Machine and Self Organizing Map took a very long execution

time to produce analysis results. Support Vector Machines spent more than 2

minutes, while Self Organizing Map spent more than 10 minutes when analysing

each of the datasets consisting of between 3,700 to 4,400 instances. The analysis

was run on an Intel Core-i3 with a 2 GB RAM. Therefore, it can be seen that

Support Vector Machines and Self Organizing Maps were not suitable techniques

for real-time intrusion-detection systems.

The study further showed how features used in HTTP/1.1 traffic were not

highly relevant when applied to analyse HTTP/2 traffic. The HTTP/1.1 features

195

employed in the literature, i.e. the count_app and the count_syn features, ranked

as less relevant features when they were employed to analyse HTTP/2 traffic

(Table 6.5 and 6.6). The tables showed that the two features were not ranked at

the top of the list. On the other hand, a hypothetical intrusion-detection system

would perform better when it employs HTTP/2 features proposed in this study

(Table 3.6). Figure 6-20 and 6-21 show that graphs representing classification

performance employing HTTP/2 features were lower than the curves representing

classification performance employing HTTP/1.1 features. Thus, the proposed

HTTP/2 features of this study contributed to better classification performance.

196

Chapter 7

Conclusion

Denial of Service (DoS) attacks are known to disrupt routine Internet services

that modern society benefits from. Detecting and having the ability to prevent

DoS attacks against a web server have been widely studied in the literature. Cur-

rently, research on detection of DoS attacks against web servers as found in the

literature is associated with HTTP/1.1 traffic. The HTTP/1.1 protocol has been

the global web communication standard for nearly two decades, and the new ver-

sion of this standard, namely HTTP/2, was published very recently, i.e. in May

2015. This thesis work investigated, modelled and analysed flooding-based DoS

attacks against HTTP/2 services. The study presented HTTP/2 normal traffic

model (Chapter 4) and various attack models (Chapter 5 and 6), to illustrate the

mechanism adopted by the adversary for launching such attacks against web ser-

vices. In addition, a thorough analysis was performed based on machine learning

techniques so as to differentiate attack traffic from legitimate. A proposal of a

stealthier version of the DoS attack was presented, to encumber the detection

process. The findings reported in this thesis demonstrate how HTTP/2 attack

traffic can be modelled; identify future directions of work to extend the proposed

models; and allow follow-up studies in traffic analysis and identification as active

research areas.

197

7.1 Contributions of the Study

The main contributions of this study are outlined as follows:

∙ An HTTP/2 legitimate traffic model was defined and analysed (Chapter 4).

∙ Four HTTP/2 attack traffic models were defined and analysed (Chapter 5

and 6).

∙ HTTP/2 traffic features (Table 3.5) were analysed and ranked based on

known feature ranking techniques.

∙ HTTP/2 normal and attack traffic datasets (Section 4.4.2, 5.2, 6.1, and

6.2).

This study introduced four HTTP/2 DoS attack models, i.e. flooding-based

attacks (Section 5.1), DDoS attacks (Section 5.2), Stealthy Attack-1 (Section 6.1)

and Stealthy Attack-2 (Section 6.2). The first two models, flooding-based and

DDoS, demonstrated how HTTP/2 traffic can be modelled to generate attack

traffic that incapacitates a target machine through sheer traffic intensity. The

traffic generated based on these four defined models caused a target machine to

reach 100% CPU consumption. In addition, the two traffic models were distin-

guishable from legitimate traffic. Machine learning techniques were subsequently

applied to classify the flooding-based and DDoS traffic from legitimate traffic.

Following this, the latter two models, Stealthy Attack-1 and Stealthy Attack-2,

were formulated to impair the performance of machine learning classifiers from

accurately differentiating legitimate from attack traffic. These two traffic mod-

els caused machine learning classifiers to show higher percentages of incorrectly

classified instances, lower Detection Rates, and higher False Alarm Rates. The

four HTTP/2 attack traffic models presented in this thesis were one of the key

contributions of the study.

To show how the latter two attack traffic models (i.e. Stealthy Attack-1 and

Stealthy Attack-2) were classified from normal traffic, this study also presented

an HTTP/2 legitimate traffic model. The legitimate model was subsequently

198

extended to generate flash-crowd traffic, i.e. traffic generated by legitimate online

users, where a high number of users causes a web server to exceed its serving

capacity and becomes unresponsive to client requests. The study presented the

legitimate model and the generated flash crowd model in Chapter 4.

The legitimate traffic model was built upon a publicly available log of online

human actions. The log consisted of user activities, or events, with a time stamp

on each event. This allowed the study to represent activities of a normal user

through a state transition model (Section 4.2). Different patterns of user actions,

representing different user behaviours, were represented by the state transition

model. In the study conducted, 21 distinct user behaviours were modelled to

generate legitimate traffic. The normal user model definition is one of the contri-

butions of this study.

This model was applied to generate flash-crowd traffic, i.e. a volume of traffic

that consumed 100% CPU resource of an HTTP/2 web server. The study found

that 5,200 user models were required to operate simultaneously in order to gen-

erate flash-crowd traffic. To characterise the generated flash-crowd traffic, this

study presented distinguishing factors for traffic identification through a set of

network traffic features. Three feature groups were presented, i.e. the count, size,

and lapse features. The count and size features identified the number and the size

of packets per second, respectively. The lapse feature identified the minimum,

average, and maximum time lapse of packets since a TCP connection to transport

packets was established. Each feature was used to describe the characteristics of

different packet types observed in the generated traffic in this study. There were

a total of 42 features presented in Table 3.6. The HTTP/2-feature set is one of

the contributions of this study.

This set of features was applied to characterise the flash-crowd traffic gen-

erated in this study. The characteristics of the flash-crowd traffic are shown in

Table 4.7. The values of these features were employed as the legitimate traffic;

values significantly different from these feature values indicated traffic anomalies.

Hence, the legitimate traffic features were used to identify attack traffic presented

in this study.

199

The traffic generated by the first attack model, the flooding-based one, caused

a victim machine to become unresponsive to client requests. This signified that

the attack successfully incapacitated the victim machine. The flooding-based

attack traffic caused a victim machine to show 100% CPU consumption. This

model employed an HTTP/2 packet type, namely, window_update to flood a

target machine.

The second attack model, DDoS model, extended the flooding-based model to

generate stealthy traffic, i.e. a traffic flood that bypassed a hypothetical intrusion-

detection-system that monitored CPU and memory consumption of a victim ma-

chine. The study found that when the window_update payload, i.e. window-

size-increment was set to 16,384, then a flood of 131K window_update packets

sent within 38.5 seconds consumed 50% CPU of a target machine. This CPU load

did not incapacitate a target machine, thereby allowing the traffic to bypass the

hypothetical intrusion-detection system previously described. The DDoS traffic

was generated by four attacking clients, where each client launched 2 attack traf-

fic volumes, based on the above defined models of stealthy traffic. The generated

traffic caused a target machine to consume 100% CPU utilisation. However, the

traffic was distinguished from legitimate traffic. Hence, the study introduced a

third model to investigate how stealthy attacks operate.

The third attack model, Stealthy Attack-1, extended the DDoS model to

camouflage attack traffic characteristics. Two bots were employed to mimic the

count_syn feature values of attack traffic. This feature was the number of TCP

packets with the SYN flag set, observed per second. The traffic was analysed

through employing four machine learning techniques (Naïve Bayes, Decision Tree,

JRip, and Support Vector Machines). The analysis showed that Stealthy Attack-

1 traffic produced more incorrectly classified instances than the DDoS traffic,

suggesting that the Stealthy Attack-1 traffic is stealthier than the DDoS model.

The fourth attack model, Stealthy Attack-2, extended the Stealthy Attack-1

model to demonstrate how stealthier attack traffic can be modelled. Four bots

were employed to mimic the size_rstAck feature values of attack traffic. This

feature defined the size of TCP packets with RST-ACK flag set, observed per

200

second. Three machine learning techniques, i.e. Naïve Bayes, Decision Tree

and JRip, showed that Stealthy Attack-2 produced more incorrectly classified

instances than Stealthy Attack-1, suggesting that the former is stealthier than

the latter.

The study further showed how features used in HTTP/1.1 traffic were not

highly relevant when used to analyse HTTP/2 traffic. Instead, the analysis of

the two HTTP/2 stealthy attack traffic models, Stealthy Attack-1 and Stealthy

Attack-2, performed better when the HTTP/2 features (Table 3.6) were used as

the distinguishing factors. Machine learning classifiers (Naïve Bayes, Decision

Tree, JRip, and Support Vector Machines) yielded less percentage of incorrectly

classified instances when applying HTTP/2 features than HTTP/1.1 features.

The study demonstrated that two machine learning techniques, Support Vec-

tor Machines and Self Organizing Maps, were able to distinguish attack and

legitimate traffic with a high degree of accuracy. Support Vector Machines can

classify the two traffic types when at least 5 Information Gain-ranked features

or 13 Gain Ratio-ranked features were selected, yielding 0% incorrectly classified

instances. Self Organizing Maps showed flash-crowd traffic cluster in a colour

code different from other traffic clusters, suggesting that the traffic is successfully

differentiated between the two classes. However, it took more than 2 minutes and

10 minutes, respectively, to run the analysis of Support Vector Machines and Self

Organizing Maps. Hence, these machine learning techniques were not suitable

for real-time applications such as intrusion-detection systems.

The study indicated that DoS attack analysis will remain to be an active re-

search area with the ready-adoption of the HTTP/2 standard. The study demon-

strated that a small number of machines can be designed to produce HTTP/2 DoS

attack traffic. It took only 2 machines to disrupt an HTTP/2 service as opposed

to an estimated number of 45,000 clients required for HTTP/1.1 DDoS attack

traffic generation. The use of more bots, such as 4 bots that the Stealthy Attack-

2 modelled, could camouflage more attack properties with legitimate properties.

Future studies that employ higher number of bots can create further similarities

between attack and normal traffic.

201

7.2 Limitations and Future Work

Two limitations are identified in this study. First, the legitimate traffic dataset

was obtained from synthetic data. Further HTTP/2 DoS traffic analysis can ben-

efit from actual HTTP/2 flash-crowd traffic datasets when they become available.

Second, the attack models were based on one of the HTTP/2 frame types, the

window_update packet. Overall there are 10 frame types which can be combined

to produce different traffic patterns. These combinations were outside the scope

of this study and serve as future work.

Synthetically-generated traffic was set as the baseline standard for machine

learning techniques to analyse the four attack traffic models presented in this

study. The legitimate traffic was generated through the implementation of curl, a

programming library that generated HTTP/2 traffic. Real web traffic is produced

by heterogeneous devices and implementations, which altogether create legitimate

traffic patterns. These patterns can show different feature values when compared

to the ones used in this study. Future work in HTTP/2 DoS attack design and

analysis can benefit from actual HTTP/2 flash-crowd traffic.

Another limitation of this study is that only one of 10 HTTP/2 frame types,

i.e. window_update, was exploited to serve as the anatomy of the proposed

attack models. The study observed that a flood of HTTP/2 packets consisted of

other frame types such as ping, data, and settings packets did not successfully

incapacitate a target server. The rest of the frame types were outside the scope

of this study; these are: the headers, priority, rst_stream, push_promise,

go_away and continuation frames. It can be seen that HTTP/2 attack models

were endowed with different techniques than its predecessor, one of which was to

examine how these frame types can be employed. Combinations of these frame

types can produce a range of traffic patterns that have not been studied.

This study has contributed in creating novel, HTTP/2 legitimate and attack

datasets. As Internet-connected devices and its heterogeneity are projected to

increase significantly in the future, research focusing on creating, collecting and

synthesizing current Internet traffic datasets will continue to extend knowledge

202

published through this research work. On the other hand, HTTP/2 introduces

new techniques capable of generating various traffic patterns, which have been

shown in this thesis to produce DoS attack traffic of varying characteristics. These

can further create a race amongst state-of-the art HTTP/2 DoS studies in attack

design, analysis, and detection.

203

204

References

Addley, E., & Halliday, J. (2010). Wikileaks supporters disrupt Visa and Master-
Card sites in ’operation payback’ [Web Page]. Guardian News and Media
Limited. Retrieved from http://www.theguardian.com/world/2010/dec

/08/wikileaks-visa-mastercard-operation-payback (Accessed: 2016-
09-12)

Adi, E., Baig, Z., Lam, C. P., & Hingston, P. (2015). Low-rate denial-of-service
attacks against HTTP/2 services. In IT Convergence and Security (IC-
ITCS), 2015 5th International Conference on (pp. 1–5). IEEE.

Adi, E., Baig, Z. A., Hingston, P., & Lam, C. P. (2016). Distributed denial-of-
service attacks against HTTP/2 services. Cluster Computing , 19 (1), 79–86.
doi: 10.1007/s10586-015-0528-7

Agrawal, P., Gupta, B., & Jain, S. (2011). SVM based scheme for predicting
number of zombies in a DDoS attack [Conference Proceedings]. In Euro-
pean Intelligence and Security Informatics Conference (EISIC) (p. 178-182).
IEEE.

Al-Jarrah, O., & Arafat, A. (2014). Network intrusion detection system using
attack behavior classification [Conference Proceedings]. In Information and
Communication Systems (ICICS), 2014 5th International Conference on
(p. 1-6). IEEE.

Al-Jarrah, O., Siddiqui, A., Elsalamouny, M., Yoo, P., Muhaidat, S., & Kim,
K. (2014). Machine-learning-based feature selection techniques for large-
scale network intrusion detection [Conference Proceedings]. In Distributed
Computing Systems Workshops (ICDCSW), 2014 IEEE 34th International
Conference on (p. 177-181). IEEE.

Auld, T., Moore, A. W., & Gull, S. F. (2007). Bayesian neural networks for in-
ternet traffic classification [Journal Article]. Neural Networks, IEEE Trans-
actions on, 18 (1), 223-239.

Baig, Z. A., Sait, S. M., & Shaheen, A. (2013). GMDH-based networks for
intelligent intrusion detection [Journal Article]. Engineering Applications
of Artificial Intelligence, 26 (7), 1731-1740.

Barford, P., Kline, J., Plonka, D., & Ron, A. (2002). A signal analysis of network
traffic anomalies [Conference Proceedings]. In Proceedings of the 2nd ACM
SIGCOMM Workshop on Internet measurment (p. 71-82). ACM.

Barthakur, P., Dahal, M., & Ghose, M. K. (2013). An efficient machine learning
based classification scheme for detecting distributed command & control
traffic of P2P botnets [Journal Article]. International Journal of Modern

205

Education and Computer Science (IJMECS), 5 (10), 9.
Belshe, M., Peon, R., & Thomson, M. (May 2015). Hypertext Transfer Protocol

version 2 (HTTP/2) (Report No. RFC 7540). Internet Engineering Task
Force (IETF).

Bernaille, L., Teixeira, R., Akodkenou, I., Soule, A., & Salamatian, K. (2006).
Traffic classification on the fly [Journal Article]. ACM SIGCOMM Com-
puter Communication Review , 36 (2), 23-26.

Berners-Lee, T., Fischetti, M., & Foreword By-Dertouzos, M. L. (2000). Weaving
the web: The original design and ultimate destiny of the world wide web by
its inventor. Harper Information.

Bhatia, S., Mohay, G., Schmidt, D., & Tickle, A. (2012). Modelling web-server
flash events. In Network Computing and Applications (NCA), 2012 11th
IEEE International Symposium on (pp. 79–86). IEEE.

Bhatia, S., Mohay, G., Tickle, A., & Ahmed, E. (2011). Parametric differences
between a real-world distributed denial-of-service attack and a flash event.
In Availability, Reliability and Security (ARES), 2011 Sixth International
Conference on (pp. 210–217).

Bhattacharyya, D. K., & Kalita, J. K. (2013). Network anomaly detection: A
machine learning perspective [Book]. CRC Press.

Bivens, A., Palagiri, C., Smith, R., Szymanski, B., & Embrechts, M. (2002).
Network-based intrusion detection using neural networks [Journal Article].
Intelligent Engineering Systems through Artificial Neural Networks , 12 (1),
579-584.

Bradner, S. (1997). Key words for use in RFCs to indicate requirement levels
(Report No. RFC 2119). Network Working Group.

CERT. (1996). CERT Advisory CA-1996-26: Denial-of-Service attack via
ping [Web Page]. Carnegie Mellon University. Retrieved from http://

www.cert.org/historical/advisories/CA-1996-26.cfm (Accessed:
2016-10-14)

CERT. (1997). Denial of service attacks [Web Page]. Carnegie Mellon Univer-
sity. Retrieved from https://www.cert.org/information-for/denial_

of_service.cfm? (Accessed: 2016-09-06)

Chan, E. Y., Chan, H., Chan, K., Chan, P., Chanson, S. T., Cheung, M., . . . Hui,
L. C. K. (2006). Intrusion detection routers: Design, implementation and
evaluation using an experimental testbed [Journal Article]. Selected Areas
in Communications, IEEE Journal on, 24 (10), 1889-1900.

Chang, R. K. (2002). Defending against flooding-based Distributed Denial-of-
Service attacks: a tutorial [Journal Article]. Communications Magazine,
IEEE , 40 (10), 42-51.

Chen, Y., Das, S., Dhar, P., El-Saddik, A., & Nayak, A. (2008). Detecting and
preventing IP-spoofed distributed DoS attacks [Journal Article]. IJ Network
Security , 7 (1), 69-80.

Choi, J., Choi, C., Ko, B., & Kim, P. (2014). A method of DDoS attack de-
tection using HTTP packet pattern and rule engine in cloud computing
environment [Journal Article]. Soft Computing , 1-7.

206

Cohen, W. W. (1995). Fast effective rule induction. In Proceedings of the Twelfth
International Conference on Machine Learning (pp. 115–123).

Combs, G. (1998–2015). Wireshark (version 2.0.1) [Software]. Retrieved from
https://www.wireshark.org/

Common vulnerability and exposures: The standard for information se-
curity vulnerability names [Online Database]. (2016). The Mitre
Corporation. Retrieved from http://cve.mitre.org/cgibin/cvekey.

scgi?keyword=HTTP+denial+of+service

Corchado, E., & Herrero, l. (2011). Neural visualization of network traffic data
for intrusion detection [Journal Article]. Applied Soft Computing , 11 (2),
2042-2056.

Crosby, S. A., & Wallach, D. S. (2003). Denial of Service via algorithmic com-
plexity attacks [Conference Proceedings]. In USENIX Security (Vol. 2).

Dainotti, A., Pescape, A., & Ventre, G. (2006). NIS04-1: Wavelet-based detection
of DoS attacks [Conference Proceedings]. In Global Telecommunications
Conference, 2006 (GLOBECOM’06) (p. 1-6). IEEE.

Dear, B. (2010). Perhaps the first Denial-of-Service attack? [Web Page]. PLATO
History Foundation. Retrieved from http://www.platohistory.org/

blog/2010/02/perhaps-the-first-denial-of-service-attack.html

(Accessed: 2016-10-14)
Dyer, K. P., Coull, S. E., Ristenpart, T., & Shrimpton, T. (2012). Peek-a-boo, I

still see you: Why efficient traffic analysis countermeasures fail [Conference
Proceedings]. In Security and Privacy (SP), 2012 IEEE Symposium on
(p. 332-346). IEEE.

Elbasiony, R. M., Sallam, E. A., Eltobely, T. E., & Fahmy, M. M. (2013). A
hybrid network intrusion detection framework based on random forests and
weighted k-means [Journal Article]. Ain Shams Engineering Journal , 4 (4),
753-762.

Erman, J., Mahanti, A., Arlitt, M., & Williamson, C. (2007). Identifying and
discriminating between web and Peer-to-Peer traffic in the network core
[Conference Proceedings]. In Proceedings of the 16th International Confer-
ence on World Wide Web (p. 883-892). ACM.

Estonian attacks raise concern over cyber ’nuclear winter’ [Web Page].
(2007, May 24). Information Week. Retrieved from http://www.

informationweek.com/estonian-attacks-raise-concern-over-cyber-

nuclear-winter/d/d-id/1055474? (Accessed: 2016-09-07)
Fabian, M., & Terzis, M. A. (2007). My botnet is bigger than yours (maybe,

better than yours): Why size estimates remain challenging. In Proceedings
of the 1st USENIX Workshop on Hot Topics in Understanding Botnets,
Cambridge, USA.

Feinstein, L., Schnackenberg, D., Balupari, R., & Kindred, D. (2003). Statis-
tical approaches to DDoS attack detection and response [Conference Pro-
ceedings]. In DARPA Information Survivability Conference and Exposition,
2003. Proceedings (Vol. 1, p. 303-314). IEEE.

Ferguson, P. (2000). Network ingress filtering: Defeating denial of service attacks
which employ IP source address spoofing (Report No. RFC 2267). Network

207

Working Group.
Gaonjur, P., Tarapore, N., Pukale, S., & Dhore, M. (2008). Using neuro-fuzzy

techniques to reduce false alerts in IDS. In 2008 16th IEEE International
Conference on Networks (pp. 1–6).

Garber, L. (2000). Denial-of-Service attacks RIP the Internet [Journal Article].
Computer , 33 (4), 12-17.

Garg, S., Singh, A. K., Sarje, A. K., & Peddoju, S. K. (2013). Behaviour anal-
ysis of machine learning algorithms for detecting P2P botnets [Conference
Proceedings]. In Advanced Computing Technologies (ICACT), 15th Inter-
national Conference on (p. 1-4). IEEE.

Girardin, L. (1999). An eye on network intruder-administrator shootouts [Con-
ference Proceedings]. In Workshop on Intrusion Detection and Network
Monitoring (p. 19-28).

Gligor, V. D. (2005). Guaranteeing access in spite of distributed service-
flooding attacks [Conference Proceedings]. In Security Protocols (p. 80-96).
Springer.

Gonzalez, J. M., Anwar, M., & Joshi, J. B. (2011). A trust-based approach
against IP-spoofing attacks [Conference Proceedings]. In Privacy, Security
and Trust (PST), 2011 Ninth Annual International Conference on (p. 63-
70). IEEE.

Goseva-Popstojanova, K., Anastasovski, G., Dimitrijevikj, A., Pantev, R., &
Miller, B. (2014). Characterization and classification of malicious web
traffic [Journal Article]. Computers & Security , 42 , 92-115.

Grigorik, I. (2013a). High performance browser networking: What every web de-
veloper should know about networking and web performance [Book]. O’Reilly
Media, Inc.

Grigorik, I. (2013b). Making the web faster with HTTP 2.0 [Journal Article].
Communications of the ACM , 56 (12), 42-49.

Guo, F., Krishnan, R., & Polak, J. (2012). Short-term traffic prediction under
normal and incident conditions using singular spectrum analysis and the
k-nearest neighbour method [Conference Proceedings]. In Road Transport
Information and Control (RTIC 2012), IET and ITS Conference on (p. 1-
6). IET.

Haddadi, F., Morgan, J., & Zincir-Heywood, A. N. (2014). Botnet behaviour
analysis using IP flows: With HTTP filters using classifiers [Conference
Proceedings]. In Advanced Information Networking and Applications Work-
shops (WAINA), 28th International Conference on (p. 7-12). IEEE.

Haykin, S., & Lippmann, R. (1994). Neural networks, a comprehensive foundation
[Journal Article]. International Journal of Neural Systems , 5 (4), 363-364.

Heron, S. (2010). Denial of Service: Motivations and trends [Journal Article].
Network Security , 2010 (5), 10-12.

Hubballi, N., & Suryanarayanan, V. (2014). False alarm minimization tech-
niques in signature-based intrusion detection systems: A survey. Computer
Communications , 49 , 1–17.

Igure, V., & Williams, R. (2008). Taxonomies of attacks and vulnerabilities in
computer systems [Journal Article]. Communications Surveys & Tutorials,

208

IEEE , 10 (1), 6-19.
The internet of things [Magazine Article]. (2014, July 12). The Economist .
Juels, A., & Brainard, J. G. (1999). Client puzzles: A cryptographic counter-

measure against connection depletion attacks [Conference Proceedings]. In
NDSS (Vol. 99, p. 151-165).

Jung, J., Krishnamurthy, B., & Rabinovich, M. (2002). Flash crowds and Denial
of Service attacks: Characterization and implications for CDNs and web
sites [Conference Proceedings]. In Proceedings of the 11th International
Conference on World Wide Web (p. 293-304). ACM.

Kandula, S., Katabi, D., Jacob, M., & Berger, A. (2005). Botz-4-sale: Surviving
organized DDoS attacks that mimic flash crowds [Conference Proceedings].
In Proceedings of the 2nd conference on Symposium on Networked Systems
Design & Implementation-Volume 2 (p. 287-300). USENIX Association.

Karagiannis, T., Papagiannaki, K., & Faloutsos, M. (2005). BLINC: Multilevel
traffic classification in the dark [Conference Proceedings]. In ACM SIG-
COMM Computer Communication Review (Vol. 35, p. 229-240). ACM.

Katkar, V. D., & Kulkarni, S. V. (2013). Experiments on detection of denial of
service attacks using naive bayesian classifier [Conference Proceedings]. In
Green Computing, Communication and Conservation of Energy (ICGCE),
International Conference on (p. 725-730). IEEE.

Keane, J. (2015, August). DDoS attack hit record numbers in Q2 2015. Digi-
tal Trends. Retrieved from http://www.digitaltrends.com/computing/

ddos-attacks-hit-record-numbers-in-q2-2015/

Khandelwal, S. (2016, January). 602 Gbps! This may have been the
largest DDoS attack in history. The Hacker News. Retrieved from
http://thehackernews.com/2016/01/biggest-ddos-attack.html

Kim, H., Claffy, K. C., Fomenkov, M., Barman, D., Faloutsos, M., & Lee, K.
(2008). Internet traffic classification demystified: Myths, caveats, and the
best practices [Conference Proceedings]. In Proceedings of the 2008 ACM
CoNEXT conference (p. 11). ACM.

Kitten, T. (2013, January 14). DDoS: Lessons from phase 2 attacks [Web
Page]. Information Security Media Group, Corp. Retrieved from http://

www.bankinfosecurity.com/ddos-attacks-lessons-from-phase-2-a-

5420/op-1 (Accessed: 2016-09-06)
Kohonen, T. (1982). Self-organized formation of topologically correct feature

maps [Journal Article]. Biological cybernetics , 43 (1), 59-69.
Kotsiantis, S. B., Zaharakis, I. D., & Pintelas, P. E. (2006). Machine learning:

A review of classification and combining techniques. Artificial Intelligence
Review , 26 (3), 159–190.

Kumar, K., Joshi, R., & Singh, K. (2007). A distributed approach using entropy
to detect DDoS attacks in ISP domain. In Signal Processing, Communica-
tions and Networking, 2007. ICSCN’07. International Conference on (pp.
331–337).

Labovitz, C. (2010, December 14). The Internet goes to war [Web Page].
Arbor Networks, Inc. Retrieved from http://www.arbornetworks.com/

asert/2010/12/the-internet-goes-to-war/

209

Lakhina, A., Crovella, M., & Diot, C. (2005). Mining anomalies using traffic fea-
ture distributions. In ACM SIGCOMM Computer Communication Review
(Vol. 35, pp. 217–228).

Li, Z., Yuan, R., & Guan, X. (2007). Accurate classification of the Internet traffic
based on the SVM method [Conference Proceedings]. In Communications,
2007. ICC’07. IEEE International Conference on (p. 1373-1378). IEEE.

Liu, H., Zhang, Y., Lin, H., Wu, J., Wu, Z., & Zhang, X. (2013). How many
zombies around you? [Conference Proceedings]. In Data Mining (ICDM),
IEEE 13th International Conference on (p. 1133-1138). IEEE.

Loukas, G., Gan, D., & Vuong, T. (2013). A taxonomy of cyber attack and
defence mechanisms for emergency management networks [Conference Pro-
ceedings]. In Pervasive Computing and Communications Workshops (PER-
COM Workshops), 2013 IEEE International Conference on (p. 534-539).
IEEE.

Lu, L. F., Huang, M. L., Orgun, M. A., & Zhang, J. W. (2010). An improved
wavelet analysis method for detecting DDoS attacks [Conference Proceed-
ings]. In Network and System Security (NSS), 2010 4th International Con-
ference on (p. 318-322). IEEE.

Lu, W., & Ghorbani, A. A. (2009). Network anomaly detection based on wavelet
analysis [Journal Article]. EURASIP Journal on Advances in Signal Pro-
cessing , 2009 , 4.

Ma, X., & Chen, Y. (2014). DDoS detection method based on chaos analysis of
network traffic entropy. IEEE Communications Letters , 18 (1), 114–117.

Malialis, K., & Kudenko, D. (2013). Large-scale DDoS response using cooper-
ative reinforcement learning [Conference Proceedings]. In 11th European
Workshop on Multi-Agent Systems (EUMAS).

Mansfield-Devine, S. (2011). DDoS: Threats and mitigation [Journal Article].
Network Security , 2011 (12), 5-12.

Meng, W., Li, W., & Kwok, L.-F. (2014). EFM: Enhancing the performance of
signature-based network intrusion detection systems using eenhanced filter
mechanism [Journal Article]. Computers & Security , 43 , 189-204.

Meng, Y.-X. (2011). The practice on using machine learning for network anomaly
intrusion detection [Conference Proceedings]. In Machine Learning and
Cybernetics (ICMLC), International Conference on (Vol. 2, p. 576-581).
IEEE.

Mirkovic, J., & Reiher, P. (2004). A taxonomy of DDoS atack and DDoS defense
mechanisms [Journal Article]. ACM SIGCOMM Computer Communication
Review , 34 (2), 39-53.

Mizrak, A. T., Savage, S., & Marzullo, K. (2008). Detecting compromised routers
via packet forwarding behavior [Journal Article]. Network, IEEE , 22 (2),
34-39.

Mohamed, W. N. H. W., Salleh, M. N. M., & Omar, A. H. (2012). A compara-
tive study of reduced error pruning method in decision tree algorithms. In
Control System, Computing and Engineering (ICCSCE), 2012 IEEE Inter-
national Conference on (pp. 392–397).

Moore, A. W., & Papagiannaki, K. (2005). Toward the accurate identification

210

of network applications [Book Section]. In Passive and Active Network
Measurement (p. 41-54). Springer.

Moore, A. W., & Zuev, D. (2005). Internet traffic classification using bayesian
analysis techniques [Conference Proceedings]. In ACM SIGMETRICS Per-
formance Evaluation Review (Vol. 33, p. 50-60). ACM.

Moustis, D., & Kotzanikolaou, P. (2013). Evaluating security controls against
HTTP-based DDoS attacks [Conference Proceedings]. In Information,
Intelligence, Systems and Applications (IISA), 2013 Fourth International
Conference on (p. 1-6). IEEE.

Mukherjee, S., & Sharma, N. (2012). Intrusion detection using naive bayes
classifier with feature reduction [Journal Article]. Procedia Technology , 4 ,
119-128.

Negnevitsky, M. (2005). Artificial intelligence: A guide to intelligent systems.
Pearson Education.

Nguyen, T. T., & Armitage, G. (2008). A survey of techniques for Internet traffic
classification using machine learning [Journal Article]. Communications
Surveys & Tutorials, IEEE , 10 (4), 56-76.

Ni, T., Gu, X., Wang, H., & Li, Y. (2013). Real-time detection of application-
layer DDoS attack using time series analysis [Journal Article]. Journal of
Control Science and Engineering , 2013 , 4.

Northcutt, S., & Novak, J. (2002). Network intrusion detection [Book]. Sams
Publishing.

Oikonomou, G., & Mirkovic, J. (2009). Modeling human behavior for defense
against flash-crowd attacks. In Communications, 2009. ICC’09. IEEE In-
ternational Conference on (pp. 1–6).

Olszewski, D. (2014). Fraud detection using self-organizing map visualizing the
user profiles [Journal Article]. Knowledge-Based Systems , 70 , 324-334.

Paganini, P. (2013, May 28). Dangerous DDoS (Distributed Denial of
Service) on the rise [Web Page]. InfoSec Institute, Inc. Retrieved
from http://resources.infosecinstitute.com/dangerous-ddos-

distributed-denial-of-service-on-the-rise/

Panchev, C., Dobrev, P., & Nicholson, J. (2014). Detecting port scans against
mobile devices with neural networks and decision trees [Book Section]. In
Engineering applications of Neural Networks (p. 175-182). Springer.

Panda, M., Abraham, A., & Patra, M. R. (2015). Hybrid intelligent systems
for detecting network intrusions. Security and Communication Networks ,
8 (16), 2741–2749.

Park, K., & Lee, H. (2001). On the effectiveness of probabilistic packet marking
for IP traceback under denial of service attack [Conference Proceedings]. In
INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Com-
puter and Communications Societies. Proceedings. IEEE (Vol. 1, p. 338-
347). IEEE.

Paxson, V. (1999). Bro: A system for detecting network intruders in real-time.
Computer networks , 31 (23), 2435–2463.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of
plausible inference [Book]. Morgan Kaufmann.

211

Peng, T., Leckie, C., & Ramamohanarao, K. (2007). Survey of network-based de-
fense mechanisms countering the DoS and DDoS problems [Journal Article].
ACM Computing Surveys (CSUR), 39 (1), 3.

Petkov, V., Rajagopal, R., & Obraczka, K. (2013). Characterizing per-application
network traffic using entropy [Journal Article]. ACM Transactions on Mod-
eling and Computer Simulation (TOMACS), 23 (2), 14.

Pressman, R. S., & Jawadekar, W. S. (1987). Software engineering [Journal
Article]. New York 1992 .

Rahmani, H., Sahli, N., & Kamoun, F. (2012). Distributed Denial-of-Service
attack detection scheme-based joint-entropy [Journal Article]. Security and
Communication Networks , 5 (9), 1049-1061.

Ramos, V., & Abraham, A. (2005). ANTIDS: Self organized ant-based clustering
model for intrusion detection system [Book Section]. In Soft Computing as
transdisciplinary science and technology (p. 977-986). Springer.

Randall, W. D., & Martinez, T. R. (2000). Reduction techniques for instance-
based learning algorithms. Machine Learning , 38 (3), 257–286.

Rokach, L., & Maimon, O. (2014). Data mining with decision trees: Theory and
applications. World scientific.

Ryan, J., Lin, M.-J., & Miikkulainen, R. (1998). Intrusion detection with neural
networks. Advances in Neural Information Processing Systems , 943–949.

Sachdeva, M., & Kumar, K. (2014). A traffic cluster entropy based approach to
distinguish DDoS attacks from flash event using DETER testbed [Journal
Article]. ISRN Communications and Networking , 2014 .

Salah, K., Sattar, K., Sqalli, M., & Al-Shaer, E. (2011). A potential low-rate
DoS attack against network firewalls [Journal Article]. Security and Com-
munication Networks , 4 (2), 136-146.

Saleh, M. A., & Abdul Manaf, A. (2015). A novel protective framework for
defeating HTTP-based denial of service and distributed denial of service
attacks. The Scientific World Journal , 2015 .

Savage, S., Wetherall, D., Karlin, A., & Anderson, T. (2000). Practical network
support for IP traceback [Conference Proceedings]. In ACM SIGCOMM
Computer Communication Review (Vol. 30, p. 295-306). ACM.

Sen, S., Spatscheck, O., & Wang, D. (2004). Accurate, scalable in-network
identification of P2P level traffic using application signatures [Conference
Proceedings]. In Proceedings of the 13th International Conference on World
Wide Web (p. 512-521). ACM.

Shannon, C. E. (2001). A mathematical theory of communication [Journal Arti-
cle]. ACM SIGMOBILE Mobile Computing and Communications Review ,
5 (1), 3-55.

Sharma, A. K., & Parihar, P. S. (2013). An effective DoS prevention system
to analysis and prediction of network traffic using support vector machine
learning [Journal Article]. International Journal of Application or Innova-
tion in Engineering & Management , 2 (7), 249-256.

Siripanadorn, S., Hattagam, W., & Teaumroong, N. (2010). Anomaly detection
in wireless sensor networks using self-organizing map and wavelets [Journal
Article]. International Journal of Communications , 4 (3), 74-83.

212

Srinivasan, T., Vijaykumar, V., & Chandrasekar, R. (2006). A self-organized
agent-based architecture for power-aware intrusion detection in aireless ad-
hoc networks [Conference Proceedings]. In Computing & informatics. ic-
oci’06. international conference on (p. 1-6). IEEE.

Stebila, D., Kuppusamy, L., Rangasamy, J., Boyd, C., & Nieto, J. G. (2011).
Stronger difficulty notions for client puzzles and denial-of-service-resistant
protocols [Book Section]. In Topics in cryptologyâĂŞct-rsa 2011 (p. 284-
301). Springer.

Stenberg, D. (1996–2016). cURL [Software]. Retrieved from https://curl.

haxx.se/download.html

Stroeh, K., Madeira, E. R. M., & Goldenstein, S. K. (2013). An approach to the
correlation of security events based on machine learning techniques [Journal
Article]. Journal of Internet Services and Applications , 4 (1), 1-16.

Su, M. Y. (2011). Using clustering to improve the kNN-based classifiers for online
anomaly network traffic identification [Journal Article]. Journal of Network
and Computer Applications , 34 (2), 722-730.

Swamy, K., & Lakshmi, K. V. (2012). Network intrusion detection using improved
decision tree algorithm [Journal Article]. IJCSIS) International Journal of
Computer Science and Information Security , 10 (8).

Tanenbaum, A., & Van Steen, M. (2007). Distributed systems [Book]. Pearson
Prentice Hall.

Tang, Y., Lin, P., & Luo, Z. (2014). Obfuscating encrypted web traffic with
combined objects [Book Section]. In Information security practice and ex-
perience (p. 90-104). Springer.

Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A.-A. (2009). A detailed analysis
of the KDD CUP 99 data set. In Proceedings of the Second IEEE Symposium
on Computational Intelligence for Security and Defence Applications 2009.

The third great wave [Magazine Article]. (2014, October 4). The Economist .
Thomas, B., Jurdak, R., & Atkinson, I. (2012). SPDYing up the web [Journal

Article]. Communications of the ACM , 55 (12), 64-73.
Triukose, S., Al-Qudah, Z., & Rabinovich, M. (2009). Content delivery networks:

Protection or threat? In European symposium on research in Computer
Security (pp. 371–389).

Tsai, C. F., Hsu, Y. F., Lin, C. Y., & Lin, W. Y. (2009). Intrusion detec-
tion by machine learning: A review [Journal Article]. Expert Systems with
Applications , 36 (10), 11994-12000.

Tsujikawa, T. (2015). Nghttp2: HTTP/2 C library [Computer Program]. Re-
trieved from https://nghttp2.org/

University of Waikato. (1993–2016). Weka (version 3.8) [Software]. Retrieved
from http://www.cs.waikato.ac.nz/ml/weka/downloading.html

Vapnik, V. N., & Vapnik, V. (1998). Statistical learning theory (Vol. 2) [Book].
Wiley New York.

von der Weth, C., & Hauswirth, M. (2013). DOBBS: Towards a comprehensive
dataset to study the browsing behavior of online users. In Web Intelligence
(WI) and Intelligent Agent Technologies (IAT), 2013 IEEE/WIC/ACM In-
ternational Joint Conferences on (Vol. 1, pp. 51–56).

213

Wang, G., Hao, J., Ma, J., & Huang, L. (2010). A new approach to intru-
sion detection using artificial neural networks and fuzzy clustering [Journal
Article]. Expert Systems with Applications , 37 (9), 6225-6232.

Witten, I. H., & Frank, E. (2005). Data mining: Practical machine learning tools
and techniques [Book]. Morgan Kaufmann.

WorldCup98 dataset. (1998). Retrieved from http://ita.ee.lbl.gov/html/

contrib/WorldCup.html

Wu, D., Chen, X., Chen, C., Zhang, J., Xiang, Y., & Zhou, W. (2014). On
addressing the imbalance problem: A correlated kNN approach for network
traffic classification [Book Section]. In Network and system security (p. 138-
151). Springer.

Wu, S. X., & Banzhaf, W. (2010). The use of computational intelligence in intru-
sion detection systems: A review [Journal Article]. Applied Soft Computing ,
10 (1), 1-35.

Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., . . . Philip,
S. Y. (2008). Top 10 algorithms in data mining. Knowledge and Information
Systems , 14 (1), 1–37.

Wu, Y. C., Tseng, H. R., Yang, W., & Jan, R. H. (2011). DDoS detection and
traceback with decision tree and grey relational analysis [Journal Article].
International Journal of Ad Hoc and Ubiquitous Computing , 7 (2), 121-136.

Xie, Y., Tang, S., Xiang, Y., & Hu, J. (2013). Resisting web proxy-based HTTP
attacks by temporal and spatial locality bsehavior [Journal Article]. Parallel
and Distributed Systems, IEEE Transactions on, 24 (7), 1401-1410.

Yang, J., Tiyyagura, A., Chen, F., & Honavar, V. (1999). Feature subset selec-
tion for rule induction using RIPPER. In Proceedings of the Genetic and
Evolutionary Computation Conference (Vol. 2, p. 1800).

Ye, C., & Zheng, K. (2011). Detection of application layer distributed denial
of service [Conference Proceedings]. In Computer Science and Network
Technology (ICCSNT), International Conference on (Vol. 1, p. 310-314).
IEEE.

Yu, S., Guo, S., & Stojmenovic, I. (2012). Can we beat legitimate cyber behavior
mimicking attacks from botnets? In INFOCOM, 2012 Proceedings IEEE
(pp. 2851–2855).

Yu, S., Zhou, W., Jia, W., Guo, S., Xiang, Y., & Tang, F. (2012). Discriminating
DDoS attacks from flash crowds using flow correlation coefficient [Journal
Article]. Parallel and Distributed Systems, IEEE Transactions on, 23 (6),
1073-1080.

Yu, Z., & Tsai, J. J. (2011). Intrusion detection: A machine learning approach
(Vol. 3) [Book]. World Scientific.

Zargar, S. T., Joshi, J., & Tipper, D. (2013). A survey of defense mechanisms
against distributed denial of service (DDoS) flooding attacks [Journal Ar-
ticle]. Communications Surveys & Tutorials, IEEE , 15 (4), 2046-2069.

Zhang, G. Q., Zhang, G. Q., Yang, Q. F., Cheng, S. Q., & Zhou, T. (2008).
Evolution of the Internet and its cores [Journal Article]. New Journal of
Physics , 10 (12). doi: 10.1088/1367-2630/10/12/123027

Zhang, J., Chen, C., Xiang, Y., Zhou, W., & Xiang, Y. (2013). Internet traf-

214

fic classification by aggregating correlated naive bayes predictions [Journal
Article]. Information Forensics and Security, IEEE Transactions on, 8 (1),
5-15.

Zhou, W., Jia, W., Wen, S., Xiang, Y., & Zhou, W. (2014). Detection and defense
of application-layer DDoS attacks in backbone web traffic [Journal Article].
Future Generation Computer Systems , 38 , 36-46.

215

216

Appendix A

Machine Learning Parameter

Values

A.1 Naïve Bayes

Remark Parameter Value
The preferred number of instances to
process if batch prediction is being
performed

batchSize 100

The number of decimal places to be
used for the output of numbers in the
model

numDecimalPlaces 2

Use kernel estimator for numeric
attributes rather than a normal
distribution

useKernelEstimator false

Use supervised discretization to
convert numeric numeric attributes to
nominal ones

useSupervised
Discretization

false

A.2 Decision Tree

Remark Parameter Value
The preferred number of instances to
process if batch prediction is being
performed

batchSize 100

Whether to use binary splits on
nominal attributes when building the
trees

binarySplits false

217

Whether parts are removed that do
not reduce training error

collapseTree true

Pruning confidence factor, smaller
values incur more pruning

confidenceFactor 0.25

If true, the split point is not relocated
to an actual data value

doNotMakeSplitPoint
ActualValue

false

The minimum number of instances per
leaf

minNumObj 2

The number of decimal places to be
used for the output of numbers in the
model

numDecimalPlaces 2

Whether reduced-error pruning is used reducedErrorPruning false

A.3 JRip

Remark Parameter Value
The preferred number of instances to
process if batch prediction is being
performed

batchSize 100

If true, the check for error rate > 50%
is included in stopping criterion

checErrorRate true

The amount of data for pruning folds 3
The minimum total weight of the
instances in a rule

minNo 2

The number of decimal places to be
used for the output of numbers in the
model

numDecimalPlaces 2

The number of optimization runs optimizations 2
The seed used for randomizing the
data

seed 1

Whether pruning is performed usePruning true

A.4 Support Vector Machines

Remark Parameter Value
The type of SVM to use SVMType C-SVC
The preferred number of instances to
process if batch prediction is being
performed

batchSize 100

The cache size in MB cacheSize 40.0
The coefficient to use coef0 0.0
The cost parameter C cost 1.0
The degree of the kernel degree 3

218

Whether to turn off automatic
replacement of missing values

doNotReplace
MissingValues

false

The tolerance of the termination
criterion

eps 0.001

The gamma tu use, if - then
1/max_index is used

gamma 0.0

The type of kernel to use kernelType linear
Normalize the data normalize false
The number of decimal places to be
used for the output of numbers in the
model

numDecimalPlaces 2

Whether to generate probability
estimates

probabilityEstimates false

The random number seed to be used seed 1
Whether to use shrinking heuristics shrinking true
The weights to use for the classes weights 1

A.5 Self Organizing Maps

Remark Parameter Value
The number of epochs in convergence
phase

convergenceEpochs 1000

The height of lattice height 2
The initial amount the weights are
updated

learningRate 1.0

Normalize the attributes normalizeAttributes true
The number of epochs in ordering
phase

orderingEpochs 2000

The width of lattice width 2

219

	Denial-of-service attack modelling and detection for HTTP/2 services
	Recommended Citation

	tmp.1487909219.pdf.OEz5u

