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Abstract 

Skill acquisition theories suggest that automaticity of lower-level processes is required before 

the acquisition of higher-level skills can be attempted. However, there is a disparity between 

the theoretical expectations of skill acquisition and the empirical findings in the transfer of 

training research. Research has found that when a change is made to the contextual 

conditions in which a skill is acquired, the learned response becomes less skilled. When skill 

transfer occurs performance is disrupted so that reaction times are slower than observed prior 

to the context change. This observation has been made with several different tasks, however 

no research has established whether a transfer disruption is observed with automatic skills. 

The discrepancy between the theoretical assumptions and empirical findings suggests that 

aiming for automaticity in education may not be best practice. The experiments in the current 

thesis were designed to examine whether automaticity disrupts or enhances transfer 

performance. The studies were based on Lassaline and Logan’s (1993) visual numerosity task 

and Speelman and Parkinson’s (2012) two-step task design. The study has a particular 

emphasis on individual differences, and thus individual participant data are explored to 

determine the pervasiveness of trends observed in the group data. In experiment one it was 

found that experimental design might play a role in the acquisition and probability of transfer, 

with the experimental conditions revealing differences in disruption and acquisition of 

automaticity. Group results in experiment two suggest that automaticity is unaffected by 

context changes, however individual results revealed that some participants failed to 

approach automatic performance. In experiment three participants were approaching 

automaticity, however a large percentage of participants did not demonstrate a shift from 

controlled to automatic processing. Furthermore, group results suggest that performance is 

unaffected by context changes in transfer, yet, this observation was not reliably presented 

amongst individuals with many individuals demonstrating transferable skills while not 
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attaining automaticity. Overall, the results appear to be congruent with Lassaline and Logan’s 

(1993) findings. According to the group data, automaticity appears to facilitate transfer, and 

performance continues in accordance with the power law of learning; automaticity was 

transferred despite novel context changes. However, individual data indicates that not all 

participants are behaving this way. The current results question whether automaticity should 

be the desired outcome in education settings as many people failed to achieve automaticity. 

Further research is required at an individual level that includes factors such as working 

memory ability and task approach to determine why some participants deviate way from 

group data trends, and why they may be affected differently by context changes. 
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 1

Chapter 1: Introduction  

Automatic skills are a fundamental part of everyday functioning. The instant coming-

to-mind of familiar knowledge when we need it is a well-known phenomenon (Logan, 1988). 

There are many human processes that can occur automatically, such as driving a car or 

recalling times tables. What is of interest in this thesis is what happens to automatic skills 

when changes are made to the performance context. For example, if someone has learned to 

drive a car with an automatic transmission, and has mastered the accelerator and brake 

pedals, when the driver attempts to transfer this knowledge to a car with manual 

transmission, in some respects the driver becomes a novice, once again having to coordinate 

acceleration and braking with the introduction of the clutch. Several theories [e.g., the 

adaptive control of thought (ACT) theory (Anderson, 1982, 1987); procedural reinstatement 

theory (Healy, Kole, & Bourne, 2014; Healy, Wohldmann, Parker, & Bourne, 2005); the 

instance theory (Logan, 1988, 2002); transfer appropriate processing (Morris, Bransford, & 

Franks, 1977; Weldon, Roediger & Challis, 1989); and identical elements theory (Singley & 

Anderson, 1989)] describe the conditions under which transfer between skills can occur, but 

none of these theories adequately explain what happens when a skill has become automatic 

and knowledge is applied beyond the context in which it was acquired. There is little research 

on the specific question of whether automaticity facilitates or hinders transfer. 

The question of whether transfer is facilitated or inhibited by automaticity presents a 

conundrum in education: should learners strive for automaticity in order to facilitate flexible 

transferrable skills, or does automaticity hinder successful skill transfer due to the rigid, 

inflexible, context bound nature of automatic skills? The importance of the issue has been 

highlighted by contrasting and alternative theoretical interpretations: transfer may be 

facilitated by automaticity, or, transfer may be inhibited by automaticity (discussed further in 

Chapter 4). Skill acquisition theories, such as the ACT (Anderson, 1982, 1987) and instance 
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theory (Logan, 1988) cannot justify either position due to the lack of research directly 

addressing transfer of automatic skills. Many transfer of training studies have investigated the 

constraints in which transfer will or will not occur. Some (e.g., Lassaline & Logan, 1993; 

Logan, 1988) conclude that automaticity diminishes under transfer conditions involving 

context changes. The first objective in this thesis is to determine whether automaticity affects 

the transferability of learned skills in a primary task when context changes are made to a 

secondary task.  

Skill acquisition theories suggest that effective and efficient learning requires 

automatic recall or ‘automaticity’ of component parts (discussed further in Chapter 3). 

Accordingly, automaticity is considered an essential factor in learning to master basic level 

skills before moving on to more complex skills (Chase & Simon, 1973; Logan, 1985). For 

example, students are often trained on arithmetic facts, such as multiplication, so that they 

can be automatically retrieved in order to free up cognitive load before attempting harder 

math combinations (Baroody, Bajwa, & Eiland, 2009; Cumming & Elkins, 1999) (discussed 

further in Chapter 2). Furthermore, when automaticity occurs, skill transfer has been 

demonstrated to occur beyond the conditions of which a skill was acquired (e.g., Anderson, 

1982). Yet, there is a lack of empirical evidence to support a view that transfer is explicitly 

facilitated by automaticity. Educational research (i.e., Baroody et al., 2009; Cumming & 

Elkins, 1999) advocates that it is essential to attain automaticity with basic literacy and 

numeracy skills in order to develop higher-level cognitive skills; however, this assumption 

appears to be based only on inference. To date no studies have considered whether 

fundamental numeracy skills have been developed to automaticity or how this might affect 

(or limit) achievement in the long term.  

There appears to be an implicit argument that practice, leading to automaticity of task 

components, enables transfer of skills when context or items do not deviate too much from 
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practice conditions. Although, this assumption of striving for automaticity is accepted and 

widely practiced in mainstream education and training, this does not seem to be the case in all 

research scenarios (e.g., Healy et al., 2005; Speelman, Forbes & Giesen, 2011; Speelman & 

Kirsner, 2001; see Chapter 4), nor is it justified by all theoretical explanations (see Chapters 2 

and 3). This presents the current question under investigation: in requiring skills to become 

automatic before moving on in task complexity, are we in fact surpassing the optimum time 

for learning? On one hand, automaticity may produce flexible skills that can withstand 

changes in context, but on the other, automaticity could lead to inflexible skills that are 

difficult to moderate, leading to a disruption in performance.  

The second objective of the studies reported in this thesis was to examine transfer 

performance beyond what might be displayed as an initial performance disruption. 

Specifically of interest is how performance is affected beyond the initial readjustment to 

context changes. Speelman and colleagues (i.e., Speelman et al., 2011; Speelman & Kirsner, 

2001; Speelman & Parkinson, 2012) express this as an ‘overhead’ in performance 

reconceptualisation. Speelman and colleagues have found that when a change is made to the 

contextual conditions in which a skill is acquired, the learned response becomes less skilled. 

Skill transfer occurs, but performance is disrupted so that reaction time (RT) becomes slower 

than observed prior to the context change. It is expected that with any change to a task or 

surrounding context there will be a slight increase in RT performance as participants readjust 

to the environment changes; however, performance after the initial disruption may determine 

whether automaticity affects or reflects skill transfer. The observation of transfer has been 

made with several different tasks, yet no research has established whether automaticity 

affects the transferability of skills. Although skill acquisition theories describe automaticity 

as the end point of skill acquisition, the extent to which automaticity affects transfer is 

unclear. The discrepancy between assumed theoretical interpretations and empirical findings 
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further questions whether striving for automaticity is in fact the best learning practice. 

Furthermore, there is a lack of evidence to support the value of a lengthy learning process of 

waiting for basic skills to become automatic before moving on in task complexity.  

The rationale for the experimental design used in this thesis was derived from a 

review of earlier work by Lassaline and Logan (1993), and that of Speelman and Parkinson 

(2012). Lassaline and Logan utilised a visual numerosity task, in which participants were 

presented with a configuration of dots, ranging in number from six to 11, on a computer 

screen, and were asked to report the number of items by pressing the corresponding keys on 

the response pad. The time taken to respond was a function of the number of dots presented 

on screen. Lassaline and Logan found that after 1920 trials (64 repetitions per item) the 

relationship between the number of items on screen and response times disappears, thus a 

change in strategy from a counting algorithm (controlled process) to memory strategy 

(automatic retrieval) could be inferred. Although Lassaline and Logan also reported that 

successful transfer can occur between items learned in training to altered transfer tasks, so 

long as item changes do not deviate too much from the original training task, they only 

considered transfer performance from one session, and did not evaluate the effect of transfer 

beyond what may be considered a re-evaluation of new task conditions. This may not provide 

enough insight into the nature or recovery of transfer performance. Further to this, Lassaline 

and Logan only implemented changes to the same automated task. However, this does not 

inform the nature of automatic skills when only surrounding context changes occur to the 

same task. Automatic skills are often required in differing contexts where the same stimuli 

and process is required.  

Speelman and colleagues (e.g., Johnson, 2005; Speelman & Kirsner, 1993; Speelman 

et al., 2011; Speelman & Parkinson, 2012) utilised a two-step, or two part, task design in a 

series of experiments to investigate whether ‘old’ skills continue to improve under contextual 
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changes to the overall task. The two-part task design was implemented in the experiments 

reported here to facilitate the investigation of an automatic skill without directly influencing 

the automatic task. That is, there was a primary task (part one, e.g., counting asterisks) and a 

secondary task (part two, e.g., determining whether a number of asterisks were odd or even). 

By maintaining the automatic component task throughout the experiment and only 

implementing changes to the secondary task, the stimulus conditions and processing of the 

primary task remained the same, and so no direct changes were made to the automatic task 

components. On the basis of the ACT and instance theories it could be predicted that 

performance of ‘old’ skills (tasks that may be considered automated) should remain the same 

and demonstrate complete transfer when ‘new’ skills are added. However, Speelman and 

colleagues found that the addition of ‘new’ distractor items, or any change to part two of the 

same task in transfer, resulted in a disruption in performance. Thus, transfer performance was 

not just an extrapolation of training performance, and the disruption observed during initial 

transfer trials appears to falsify the predictions of the most prominent skill acquisition and 

automaticity theories. However, Speelman and colleagues design may have altered the 

complexity or processing requirements with the addition of the ‘new’ items. The experiments 

reported in this thesis utilised a combination of Lassaline and Logan’s numerosity design and 

a modification of Speelman’s two-step design so that context changes could be manipulated 

without changing the complexity or task requirements. 

 The present series of investigations aimed to provide data where theories are silent on 

the relationship between automaticity and skill transfer. Specifically, the experiments were 

designed to examine whether automaticity disrupts or enhances transfer performance. The 

research examined the relationship between automaticity, rate of skill acquisition, skill 

transfer and task disruption, and working memory capacity in order to determine whether any 

of these factors are successful predictors of skill transfer. The specific aims of this thesis 
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were, firstly, to clarify how performance of a task that remains unchanged during the duration 

of the experiment is affected by a change in surrounding context and, secondly, to investigate 

individual differences to determine whether transfer performance is inhibited or facilitated by 

the development of automaticity. This thesis has a particular emphasis on individual 

differences in automaticity and skill transfer, and thus individual participant data were 

explored in each of the aforementioned areas to determine the pervasiveness of trends 

observed in the group data.  

Clarifying whether performance of a previously learned (automated) task is 

maintained when context changes occur will provide insight into whether automaticity is 

required for successful further learning, and will, therefore, inform the best learning practice 

for education and training practices. The potential benefits of such a study extend to the 

empirical and theoretical literature as well as to educational and remedial or therapeutic 

practices. With regard to the empirical literature, understanding how automaticity is related to 

skill transfer will assist with interpreting skill transfer performance and will facilitate better 

performance predictions based on individual training performance. Theoretical accounts of 

skill acquisition have also largely overlooked how automaticity and skill transfer are related 

despite empirical evidence that suggests skill transfer may not match theoretical predictions.  

The results of the studies reported in this thesis are also important for therapeutic 

practices. As will be discussed in Chapter 3, analysis of the pervasiveness of the results has a 

profound impact upon interpretation of results and subsequent implementation of programs 

and interventions. Speelman and McGann (2013) found that the word superiority effect was 

not found in almost half of their 500 participants. Thus, group statistics need to be interpreted 

with caution. Formulating therapeutic and remedial programs based only on group results 

may have a substantial impact upon those individuals who do not necessarily conform to 

group performance patterns. Furthermore, exploring individual predictors of performance 
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may identify whether skill transfer is likely to occur in a group of individuals. In education 

there is long standing debate on traditional learning methods (e.g., rote learning) versus 

contemporary inquiry based methods; however there has been a paucity of empirical 

evidence that supports either. Whilst the results of this thesis will not provide clarity of this 

debate, it will however assist in identifying the likelihood of an educational program’s 

success based on individual performance characteristics. Identifying performance 

characteristics that support the development of automaticity and successful skill transfer will 

enable insight into assessable student learning features that may indicate if and when more 

complex tasks can be attempted.  

To achieve these aims, the thesis reviews previous research pertaining to automaticity 

(Chapter 2), skill acquisition (Chapter 3), and skill transfer (Chapter 4). These chapters 

provide the relevant background literature to the studies reported in Chapter 5. Within 

Chapter 5, each experimental sub-section introduces a rationale for the study, describes the 

methodology, presents the results, and concludes with a discussion. 

The main discussion (Chapter 6) begins with a detailed synopsis of the research 

within the context of the research questions and previous literature. The theoretical and 

empirical implications of the studies are discussed, followed by the limitations of the overall 

study. This thesis concludes with a discussion of future research directions and an overall 

summary.  
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Chapter 2: Automaticity 

This chapter describes the major principles of automaticity. The central focus of this thesis is 

the relationship between automaticity and transfer, thus the chapter highlights the key 

theoretical and descriptive contributions of automaticity in order to determine whether 

automaticity is fixed or flexible in allocation and control—in other words to enquire how 

transferrable automated skills can be. Issues surrounding a central definition and alternative 

explanations of a well-replicated demonstration of automaticity, the Stroop Effect, are also 

reviewed. 

Automaticity, the instant “popping into mind of familiar knowledge when we need it” 

(Logan, 1991, p. 347), is a well-known phenomenon. A response or habit that is considered 

automatic does not necessarily need to occupy the details of the task at a conscious level in 

order to carry out the task (Logan, 1988). Automatic tasks can be performed quickly, 

effortlessly, and relatively autonomously (Chiappe, Siegel, & Hasher, 2000; Hasher & Zacks, 

1979; Jonides & Irwin, 1981; Logan, 1985; Schneider & Shiffrin, 1977). There are many 

human behaviours that can proceed automatically, such as driving a car or recalling times 

tables. However, whilst being able to perform activities quickly and effortlessly with little 

thought may appear to be of benefit, it is not without cost.  

Automaticity can also be considered a hazardous state of mind. When we perform a 

task, automated performance can lead to errors, such as adding two sugars to your coffee 

instead of one when you are trying to cut down your sugar intake. Sometimes automaticity 

can even lead to catastrophes (Reason & Mycielska, 1982). Automaticity has been considered 

by expertise researchers to result in habituation and routine expertise (Hatano & Inagaki, 

1986). The reflexive nature of automaticity when performing a well-learned task is of 

concern when adaptive and flexible skills are required. For example, in situations that require 
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flexible automatic skills where expertise is transferrable, rigid automatic skills can be 

problematic as they can become bound to the context of which they were acquired (Hatano & 

Inagaki, 1986). Conversely, Bilalić, McLeod, and Gobet (2008a) suggest that expertise may 

lead to either flexibility or inflexibility, dependent on the level of expertise. That is, factors 

such as knowledge or experience may mediate the ability to switch between flexible and rigid 

skills where necessary.  

Automaticity is an important phenomenon in skill acquisition that has been described 

throughout the literature in cognition, motor skill learning, and education. Automaticity is 

heavily relied upon in mainstream education and training, and is considered imperative to 

skill learning. Skilled performance is suggested to require the acquisition of a number of 

automatic processes and procedures (Chase & Simon, 1973; Logan, 1985). Dating back to 

1899, William and Harter claimed that lower level processes need to be automatised before 

the acquisition of higher level components can be attempted. Non-automatic skills are 

suggested to require greater attentional demands and inhibit the ability to attend to higher 

order tasks due to attentional requirements. Automaticity of base level skills frees up 

attentional capacity to deal with the attentional demands of more difficult tasks (William & 

Harter, 1899). Thus, automaticity may be considered an essential component of skill 

acquisition and some have argued that automaticity may be a mediating factor in skill 

acquisition (e.g., William & Harter, 1899; LaBerge & Samuels, 1974). For example, reading 

is considered a learned automatic skill. There are a number of basic level processes and 

procedures that need to be automated in order to obtain the ability to fluently read and 

process meaning from text. Initially, readers may need to identify words and letters 

automatically. This requires more than just an understanding of the relationship between 

letters and sounds. Knowledge of high frequency words and font variation also needs to be 

automatically processed and readily retrieved. By automatising sub-skills, more complex 
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actions can be attempted, such as comprehension and critical thinking, which result in skilled 

and fluent reading. Therefore, automaticity may be considered essential in learning to 

facilitate higher order cognitive thinking and task execution. 

Previous research has highlighted the importance of automaticity for skilled learning; 

however the association of automaticity with rigid versus flexible skills questions the way in 

which automaticity contributes to higher order learning. The current study is concerned with 

the usefulness of automaticity in skill learning; specifically how automaticity affects the 

transferability of skills. Before addressing the role of automaticity in skill transfer, the 

defining features and applications of automated performance are reviewed. The next section 

presents the features and theoretical accounts of automaticity in skill learning, and highlights 

some of the ambiguities and underpinning issues of a collective definition.  

Defining Automaticity 

Typically, automaticity describes skilled, habitual, and stereotyped performance 

(Moors & De Houwer, 2007). This implies that automatic skills differ from non-automatic 

skills in both performance and processing. For example, automatic processing is suggested to 

differ in speed (Logan, 1988; Neely, 1977; Posner & Snyder, 1975), effort (Logan, 1978; 

Logan & Zbrodoff, 1979; Schneider & Shiffrin, 1977), autonomy (Logan, 1980; Posner & 

Snyder, 1975; Shiffrin & Schneider, 1977; Zbrodoff & Logan, 1986), generalisability 

(Logan, 1988; McLeod, McLaughlin & Nimmo-Smith, 1985; Naveh-Benjamin & Jonides, 

1984), and awareness (Carr, McCauley, Sperber, & Parmelee, 1982; Marcel, 1983) compared 

to non-automatic processes. The following section considers the research evidence relating to 

the aforementioned properties (the role of practice and speed as identifying factors of 

automaticity are discussed in Chapter 3, in the subsection The Power Law of Learning). 

Many of the properties co-occur or overlap in terminology and definition and so they are 
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discussed under three broad headings: ballistic and autonomous processing, awareness and 

attention, and effort.  

The ballistic and autonomous nature of automaticity. 

Automatic behaviour is commonly associated with primitive biological reflexes, such 

as an eye blink in response to a puff of air, the patellar reflex, or the Babinski reflex (Besner, 

Stolz, & Boutilier, 1997). An automatic process is described as the uncontrollable response to 

a given stimulus, which prevails in all contexts or situations in the absence of conscious 

awareness or effort (Hasher & Zacks, 1979; Posner, 1978). Schneider and Shiffrin (1977, p. 

2) state, “once learned, an automatic process is difficult to suppress, to modify, or to ignore”. 

This description implies automaticity is reflexive in nature where, once a stimulus signifies 

for the task to begin, suppression of the response is difficult.  

Automaticity has been described by Bargh (1990) as reflexive, compulsive, and 

ballistic in nature. Thus, an automatic task may be considered to run until completion once 

started, without conscious monitoring. Ballistic processing refers to a reduction of conscious 

processing, which is the monitoring of intentional goal setting and intentional evaluation of 

outputs (Tzelgov, 1999). A process is considered automatic if it has acquired the ability to 

run without monitoring (Tzelgov, 1999). Therefore, a task may be carried out either 

autonomously or intentionally. Zbrodoff and Logan (1986) suggest that the concept of 

autonomy is closely linked to automaticity. Both the terminology of ballistic processing and 

autonomy suggests that automatic behaviour is difficult to control. Thus, automaticity may be 

defined as uncontrollable. In contrast, Logan (1985) suggests that automatic behaviour may 

be highly controllable, implying that automaticity differs in function to ballistic processing or 

autonomy.  
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Logan (1982) investigated the controllability of response inhibition using the stop-

signal paradigm with experienced typists. In this experiment skilled typists were asked to 

type single words or sentences, and upon receiving a stop signal (either a tone or a visual 

signal) participants were instructed to stop typing as quickly as they could. Thus, the stop 

signal informs the participant to inhibit their current response. The experiment set out to 

investigate whether single letters or whole words are processed ballistically. Under the 

ballistic processing theory, automatic skills, such as skilled typing, would be difficult to 

inhibit due to an inability to consciously monitor or control an automated stimulus response. 

Typing is considered a typical example of an automatic process, and is often used to 

demonstrate the capability of dual processing of typing and other tasks such as answering a 

telephone. However, what Logan found was that expert typists were able to successfully and 

quickly inhibit their responses by interrupting typing mid-word, after only one or two 

keystrokes upon hearing the stop signal. Logan’s results indicate that typing was not ballistic 

at the word level. Moreover, additional analyses revealed that the number of words typed per 

minute was also not related to stop-signal RT, further suggesting that skilled ability was 

unaffected by the stop signal (Logan, 1982).  

Logan’s (1982) results have been criticised as being limited in interpretation for two 

reasons. Firstly, Cohen and Poldrack (2008) argue that although the typists were considered 

experts in their field, and therefore considered highly automatic at typing, these typists may 

also be considerably skilled, and even automatic, at stopping due to sudden interruptions. 

Secondly, as only expert typists were utilised in Logan’s study it is unclear whether the 

expert’s stop-signal RT was faster or slower due to the automaticity of the typing skill. 

In support of Logan’s (1982) findings of the controllability of automaticity, Cohen 

and Poldrack (20008) also found evidence that automaticity may not be associated with a loss 

of control or development of ballistic movements. Using a stop signal paradigm with a 
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different task, Cohen and Poldrack investigated whether the degree of automaticity affects 

response inhibition on a serial reaction time (SRT) test. To determine the degree of 

automaticity, participants performed a concurrent secondary letter counting task. With 

practice, performance on the SRT task decreased, and performance cost decreased on the dual 

task manipulation, indicating that automaticity was achieved. Participants were then grouped 

as either fully automatic, or less automatic according to SRT and dual task performance. 

Cohen and Poldrack found the level of automaticity was not associated with a loss of control 

or development of ballistic movements. Specifically, it was found that participants who were 

identified as fully automatic or less automatic did not differ in response inhibition on the SRT 

task. They concluded that exerting motor control over automatised behaviour is possible in 

some tasks, such as the serial RT task. Given Cohen and Poldrack, and Logan’s findings, 

automaticity appears to be unrelated to the ability to control behaviour. However, control 

over attention may be harder to suppress.  

Awareness and attention as mediators of automaticity. 

 LaBerge and Samuels (1974) introduced the idea of attentional limitations, whereby 

attentional capacity limits the execution of higher-level skills if lower-level skills are not 

automatised. LaBerge and Samuels suggest attentional demands are ‘freed up’ by 

automatising lower-level processes so that higher-level procedures can be attended to. 

Automaticity is considered a way around resource limitations of central processing capacity, 

as automatic processing is not vulnerable to processing limitations (e.g., LaBerge & Samuels, 

1974; Logan, 1978; Posner & Snyder, 1975; Shiffrin & Schneider, 1977).  

The modal view of automatic processing suggests that automaticity is processing 

without attention (Hasher & Zacks, 1979; Logan, 1980; Logan & Zbrodoff, 1979; Posner & 

Snyder, 1975; Shiffrin & Schneider, 1977). The modal view of automaticity is commonly 

viewed as a single capacity view of attention that associates automaticity with limited 
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processing resources (Kahneman, 1973). On the other hand, Kahneman’s (1973) single 

capacity theory of attention suggests that attentional capacity strengthens performance, so 

that the rate of processing is dependent on the amount of capacity allocated to a process. It is 

suggested that automatic processes are associated with faster processing and less attentional 

demands. Thus, the modal view posits a gradual withdrawal of attention where automaticity 

does not require capacity and cannot be controlled by allocating resources. Theoretical 

positions concerning automaticity and involvement of attention under the modal view include 

the controlled processing theory (Shiffrin & Schneider, 1977), conscious strategies theory 

(Posner & Snyder, 1975), the resource account (Ackerman, 1988; Logan, 1985), and the 

effortful memory theory (Hasher & Zacks, 1979).  

Some researchers argue against attentional capacity limits (i.e., Spelke, Hirst, & 

Neisser, 1976) and a reduction of capacity demands (i.e., Kolers, 1975) as defining features 

of automaticity. Nonetheless, there is a qualitative difference in performance associated with 

practice, where task execution before practice is usually conscious, slow and error prone, and 

then after practice may be rapid, accurate and require little attention (Schneider & Fisk, 

1982). Automaticity has been implicated in the differentiating between involuntary and 

directed attention. Some have interpreted this shift in attentional requirements as a change in 

directed attention. Involuntary attention is suggested to be automatic; whereas directed 

attention may be required for non-automatic tasks where deliberate, effortful task execution is 

required (Kaplan & Berman, 2010). Kaplan and Berman (2010) suggest that involuntary 

attention is considered autonomous, stimulus driven, and less goal directed and controlled 

than directed attention, and is therefore more automatic than directed attention. Yet, 

automaticity cannot be simply defined as not requiring attention, which implies an all-or-

nothing process of automaticity or dual mode of automaticity. Automaticity is suggested to 

vary in its requirement of attention and does not exist in an all-or-nothing manner (Moors & 
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De Houwer, 2006). Kaplan and Berman contend  “involuntary attention is more automatic 

than directed attention, as it is more autonomous and stimulus-driven and less goal-directed 

and controlled than is directed attention” (2010, p. 46). 

Effort.  

Shiffrin and Schneider (1977) highlight two mechanisms of attention allocation. 

Firstly, there is voluntary allocation of attention and secondly, automatic activation of 

attention resulting from a prior automatic relevance detection (Moors & De Houwer, 2006). 

Automatic processes are suggested to use minimal attentional capacity (Hasher & Zacks, 

1979; Logan, 1979, 1980; Posner & Snyder, 1975). Attention can be directed to processes 

that are automatic; however attention is not necessary to complete the task (LaBerge & 

Samuels, 1974; Posner & Rogers, 1978). A change in attentional requirements of automated 

skills can also been interpreted as a shift in the obligation or effort of encoding and 

processing (Moors & De Houwer, 2006). A process is defined as effortless when it consumes 

little or no processing resources or attention capacity. Due to its minimal attentional 

requirements, automatic processing may be considered effortless or efficient, and may run in 

parallel with other processes with no interference. Effortful processes require substantial 

attentional resources, do not allow concurrent task execution, and must be processed serially. 

Evidence of automaticity being effortless lies within everyday examples in tasks where we 

seemingly operate on ‘automatic pilot’ (e.g., reading, driving etc.) where little effort is 

needed to engage in the task. Competing interference from concurrent tasks is suggested to be 

demonstrative of the effort required in completing a non-automatic task, thus the greater the 

impact of competing information on task performance the less automatic the task may be. 

That is, automatic processing does not inhibit processing of other information (Logan, 1997). 

Research utilising the dual task paradigm highlights the impact of interference on effortless 

skills. Posner and Boies (1971) utilised the dual task paradigm to demonstrate automatic 
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encoding of letters. In their study two letters were presented successively and participants 

were required to determine whether the letters were the same or different. A secondary task 

occurred on half of the trials. The secondary task involved a simple response to white noise 

probe tones, which occurred before or after the first letter, or after the second letter. Posner 

and Boies found that there was no difference in response times with or without the secondary 

task. Posner and Boies concluded that letter encoding is automatic, and does not require 

effortful attention, thus letter encoding does not require the involvement of a limited capacity 

attentional mechanism, nor is it subject to interference. Further to this, Posner and Klein 

(1973) also found that even when the first letter is only exposed for 50 ms the encoding 

process required no additional processing capacity, indicating that letter recognition is 

effortless and thus automatic.  

 Physiological changes associated with elevated levels of arousal have been linked to 

stress or task difficulty. According to Kahneman (1973, p. 10) “variations of physiological 

arousal accompany variations of effort”, thus a more difficult task (or one that is not yet 

automated) will require and result in increased arousal, indicating an increase in effort. 

Further to this, Chein and Schneider (2005) highlight that changes in brain activation patterns 

coincide with performance changes, from needing more directed attention to less attention 

and becoming more involuntary in execution. Specifically, Chein and Schneider found that 

the brain region responsible for episodic retrieval was more active for new unpractised 

stimuli compared to known practiced items. This idea is referred to as the effort-retrieval 

theory, which posits that less effort is needed to recall items that have a strong memory trace 

(Stanners, Meunier, & Headley, 1969; Sternberg, 1969). That is, the time to retrieve 

information increases as the strength of information decreases, so reaction time in this 

instance equates to effort. However, caution is needed when concluding that arousal level 
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relates to level of effort, as there are a multitude of factors that could lead to an increase in 

arousal other than just increased effort.  

Problems with the Property List Approach 

The attempts to define automaticity described above could be considered as property 

list approaches. Rawson (2004) identified a sample of studies from the text processing 

literature that describe automaticity as a list of properties. Each set of properties describing 

the automaticity of text processing is different, with some explicitly identifying properties 

that others reject. Rawson’s findings highlight the inconsistency in defining automatic skills. 

Logan and Klapp (1991, p. 179) support this interpretation, further suggesting “approaches 

that define automaticity in terms of manifest properties, such as speed, effortless, and 

autonomy (property-list approaches), are stipulative or descriptive but not predictive”. The 

property list approach, although useful in distinguishing automatic and controlled processes, 

raises questions about the characteristics necessary for processing to be considered automatic.  

Thus far it has been identified that automatic processing differs from controlled 

processing in the allocation of attention, control and effort. Characteristics of automaticity 

may explain how practice leads to an accumulation of knowledge resulting in reduced 

attentional demands; however, the mechanism by which this occurs has not been identified. 

Furthermore, automaticity has thus far been conceptualised in a fixed all-or-none manner that 

is uncontrollable by way of attention and effort. The following section provides an account of 

the dual processing theory in order to distinguish the features of automaticity and controlled 

processes and identify the mechanism under which automatic processes are thought to occur. 
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Controlled Versus Automatic Processing 

 In this section I describe two approaches: Schneider and Shiffrin’s (1977) dual 

processing theory and Hasher and Zacks’ (1979, 1984) effortful processing theory to contrast 

the defining features of controlled processing versus automatic processing.  

Dual processing theory. 

Schneider and Shiffrin (1977) contrast the implicit, unconscious nature of 

automaticity with the explicit, conscious nature of controlled processing in their dual 

processing theory. Schneider and Shiffrin explain that controlled and deliberate processes are 

used for difficult and unfamiliar tasks. Through practice under appropriate conditions, 

performance can shift from difficult to effortless and automatic. Such processes operate in 

parallel, require few cognitive resources, do not rely on attention, and are difficult to modify 

(Speelman & Mayberry, 1998).  

According to Schneider and Shiffrin (1977) an integral aspect of learning and 

automaticity involves memory sequencing. Memory is conceived to be a large and permanent 

collection of nodes that become complexly and increasingly inter-associated and inter-related 

through learning (Schneider & Shiffrin, 1977). Nodes that are active reflect short-term 

memory, whereas nodes that are passive reflect long-term memory. Active nodes are a 

temporary state in which manipulation or control of information takes place in order to 

facilitate memory transfer from short-term to long-term nodes. Temporary sequences of 

nodes are activated through control and attention. Thus, controlled processing requires a 

deliberate allocation of attention to activate a novel sequence of memory nodes. Only one 

sequence at a time may be controlled and attended to in short-term memory without 

interference, due to a limited capacity. Inactive and passive nodes reflect long-term memory 

and permanently stored information. A series of sequences can be retrieved automatically 
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without attention or deliberate control. Thus, in contrast to controlled processing, automatic 

processes can be triggered by internal or external stimulus conditions to activate a sequence 

of memory nodes without attention and with minimal resources. Automatic processes are 

therefore defined under the controlled processing theory as the activation of a particular 

sequence of nodes that almost always become active without attention or deliberate control 

(Schneider & Shiffrin, 1977). This absence of control and attention is facilitated through a 

considerable amount of training and practice (Schneider & Shiffrin, 1977).  

In order to investigate the contrast between automatic and controlled processing 

Schneider and Shiffrin (1977) devised a search task whereby participants would search 

through sets of items (letters and numbers) for pre-defined target items. Schneider and 

Shiffrin manipulated the nature of the target stimuli. In the consistent mapping (CM) 

conditions a set of items was consistently designated as target stimuli throughout the 

experiment. Because the same stimuli were repeatedly attended to, there was scope for 

automatic processes to develop. In the varied mapping (VM) condition a stimulus that was 

assigned to a given response on one trial (e.g., target) was assigned a different response (e.g., 

distractor) on the next trial. In VM, the prior and current associations were incompatible, 

thereby precluding the development of an automatic attention response. Instead, controlled 

processing was required, which is considered voluntary, serial, and requires attention.  

Automatic processing is fast and parallel, requiring little attention or awareness, and 

develops with extended practice when targets are consistently mapped to responses. 

Information processing is then faster and more efficient, with higher accuracy, and is 

unaffected by workload. However, in the real world complex task decisions are made in 

inconsistent or varied conditions (Kramer, Strayer, & Buckley, 1991). Very rarely in 

everyday life would it be possible to perform under the same conditions consistently. For 

example, when learning to drive a car we experience varied terrains and weather conditions, 
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and have to make quick decisions to avoid traffic hazards. However, over a considerable 

amount of practice, there are certain driving procedures that become automatic, such as 

changing gears and indicating to turn.  

According to Schneider and Shiffrin’s (1977) dual processing theory controlled 

processes are serial, use resources, require attention, and are flexible—that is they can adapt 

to task changes and strategy use can vary. Conversely, automatic processes are difficult to 

modify. The dual processing theory views attentional requirements as either automatic or 

non-automatic, both of which have a fixed set of requirements, with no allowance for 

crossover in attentional resources, and is termed the ‘all or none’ view of cognitive 

processing (Moors & De Houwer, 2006). This ‘all or none’ view has been questioned and 

challenged by many studies (e.g., Bargh, 1992; Kramer et al., 1991; Logan, 1985, 1988, 

1989) because of the difficulty in identifying a task that only requires controlled or automatic 

processes. Many tasks may have components that require attention and control whilst other 

components are automatic (Bargh, 1992). 

Others, such as Carlson (2002) and Hommel (2000), suggest that although automaticity 

is often referred to as occurring without intention, automaticity may be better understood in 

terms of goal directed information processes or intentions. That is, unconscious or automatic 

processing inadvertently involves goal directed processes (Bargh & Chartrand, 1999). Under 

appropriate circumstances basic procedures may operate automatically (obligatory or ballistic 

manner) yet an individual must still control the process of what to do. That is, each step of 

mental activity may need to be chosen out of several alternative procedures (Carlson, 1997). 

Goal structures determine moment-to-moment activity and are generated from an individual’s 

learning history or reasoning and problem solving. According to Carlson (1997) the goals 

that control mental activity are part of the content of conscious intentions that may represent 

how to carry out individual steps of mental activity, however the details of these procedures 
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will not be conscious. Conscious intentions also control when and where to perform basic 

processes.  

Further to this, although Schneider and Shiffrin’s (1977) theory considers imperative 

features between automatic and controlled processes and the circumstances under which each 

can apply, Speelman and Mayberry (1998) point out that an underlying mechanism to explain 

this transition from controlled to automatic processing is lacking. A number of theories have 

been presented that address some mechanisms for the acquisition of automaticity, which 

largely fall into two categories: the procedural account and the memory account. The 

predominant examples of these two categories are the ACT and instance theories, which are 

addressed in Chapter 3.  

Effortful processing. 

In contrast to Schneider and Shiffrin’s (1977) dual processing account is a theory 

presented by Hasher and Zacks (1979; 1984) which considers automaticity at no stage to be 

controlled, and identifies automaticity to be innate and built-in to the human-information 

processing system. Hasher and Zacks posit that controlled processes require effort, and so 

limit one’s ability to engage simultaneously in other effortful processes. Effortful processing 

imposes the idea that memory efficiency increases with practice, and that effortful strategies 

can be implemented through the use of imagery and mnemonic devices to increase learning 

speed. Encoding is suggested to fall along a continuum from effortful processing to automatic 

processing. This is similar to the distinction between automatic and controlled processes as 

described by Schneider and Shiffrin. Both theories suggest that automatic processes require 

minimal attentional resources, can be initiated without awareness or intent, and are difficult 

to inhibit. However, Hasher and Zacks suggest that certain automatic processes are innate and 

that we are programed to be susceptible to becoming automatic on some tasks.  
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Our nervous system is ‘hard-wired’ to process certain kinds of information, thus, we 

have a preparedness to learn. For example, we are pre-programed to encode spatial location, 

event frequency, and temporal order (Hasher & Zacks, 1979). The conceptualisation of innate 

automatic processing is similar to Reber's (1992) assumption of implicit learning capabilities. 

Reber suggests that primitive and basic encoding shows little variation across age and 

intelligence, which typically has considerable impact on cognitive processing.  

The term ‘hard-wired’ has been criticised over its robustness. Neuroplasticity research 

suggests that very few psychological capacities are genuinely hard-wired, and that 

environmental experiences are capable of modifying such ‘in-built’ responses (e.g., 

Huttenlocher, 2009; Shermer, 2011). Research has questioned Hasher and Zacks’ (1979) 

view of innate automatic readiness; however the general consensus is that automatic 

processes and consciously controlled processes are fundamentally different.  

Challenges to the current definitions of the modal account of automaticity.  

Interestingly, others (e.g., Kolers, 1975; Spelke et al., 1976) argue against the two 

predominant characteristics of automaticity: attentional limits and a reduction of capacity 

demands. For example, Kolers (1975) suggests that automaticity is not just unskilled 

processing executed faster and requiring less attention, instead automatised skill may be 

composed differently to controlled processing. That is, automatic processing may be more 

selective and involve directed analysis of task components. There is also evidence from 

Spelke et al. (1976) that questions the role of attention as a defining property of the transition 

from automatic to controlled processing. In Spelke et al.’s study two subjects practiced 

reading short stories while dictating lists of words. Spelke et al. found that the two 

participants were able to divide their attention where necessary. Thus participants were able 

to establish automaticity in both tasks, thereby supporting Posner and Snyder’s (1975) 

suggestion of interference as a mediator of controlled versus automatic processing. However, 
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the participants were able to divide their attentions accordingly based on the task demands 

and demonstrate improvement in comprehension, which would appear to contradict the 

underpinning principles of the modal account of automaticity, which stipulates a reduction of 

attention and an all-or-none view of capacity demands. Thus, participants did not necessarily 

act on ‘automatic’ pilot, and instead demonstrated an increased ability to divide attention. 

Spelke et al. concluded that it may never be possible to define general limits on cognitive 

capacity, and attentional skills are no exception.  

The modal account of automaticity (e.g., LaBerge & Samuels, 1974; Posner & Snyder, 

1975; Shiffrin & Schneider, 1977) has been challenged on several grounds. Resource theories 

argue that automaticity is largely governed by a counterbalance of available resources 

resulting in either controlled processes or automatic processes. However, multiple resource 

theorists (e.g., Navon & Gopher, 1979) have argued that more than one resource limits 

performance, making it unclear which resources an automatic process uses fewer of. The 

multiple resource theory suggests that the resources a task requires may change with practice 

(Ackerman, 1988). Thus, automatic processes may use more of some resources than non-

automatic processes, which violate the fundamental assumption that automatic processing is 

resource free. 

Another set of theories view automaticity as a memory phenomenon (e.g., Anderson, 

1982; Logan, 1988; Newell & Rosenbloom, 1981). These theories consider novice 

performance, or non-automatic performance, to be based on a general problem-solving 

algorithm, whereas automatic performance is based on a single-step retrieval of past solutions 

from memory. Thus, automaticity is construed as a memory phenomenon; therefore, it could 

be explained using the same theoretical and empirical principles of memory. Under this view, 

automaticity shares properties of well-practiced memory retrieval, which is fast and effortless 
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(Logan, 1991, 1992). If this is the case, automatic processing is not processing without 

attention, but rather a different way of attending to information (Logan, 1985).  

The Stroop Effect as a Demonstration of Automaticity 

Automaticity has been demonstrated in a range of experimental tasks, such as alphabet 

arithmetic, lexical decision making, relative judgement, categorisation, dual task scenarios, 

visual numerosity, and most predominantly the Stroop paradigm (Hélie, Waldschmidt, & 

Ashby, 2010; Lassaline & Logan, 1993; Loft, Humphreys, & Neal, 2004; Logan & Klapp, 

1991; Stroop, 1935). The Stroop task illustrates how an automatic skill, such as reading, is 

difficult to suppress once triggered, resulting in what is referred to as the Stroop Effect. 

Furthermore, the Stroop effect demonstrates the role of interference in defining an automatic 

skill (MacLeod, 1991). Participants are presented with words referring to colours (e.g., red, 

blue, green), which are printed with different ink colours. They are asked to name the colour 

of ink (red, blue, green, brown, and purple) of either congruent (i.e., ‘red’ printed in red ink) 

or incongruent (‘red’ printed in green ink) words. Stroop (1935) found that subjects took, on 

average, 47 seconds longer to name incongruent words compared to the congruent words, this 

is referred to as semantic interference. He concluded that words evoke a single reading 

response and this response is widely practiced and considered highly automatic and 

demonstrates the durability of automatic skill establishment that is difficult to suppress. The 

Stroop effect is a classic example of the robustness of automatic skills, and it has been 

replicated numerous times (e.g., see McLeod, 1991 for a review). The effect occurs 

regardless of instruction to ignore incongruent words, this has led some researchers to 

conclude that reading is an automatic process, which is difficult to suppress or modify. That 

is, subjects access the meaning of words automatically with little effort or consciousness, 

whereas colour naming requires more effort than reading, creating interference in the Stroop 

effect (Tzelgov, Henik, & Berger, 1992). However, more recent research has criticised the 
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robustness of the effect to be attributed to testing conditions and priming effects (e.g., Besner 

et al., 1997; Lindsay & Jacoby, 1994). 

The imbalance of attentional resources in the Stroop task is attributed to our extensive 

history of word reading practice compared to ink naming (MacLeod, 1991). A more 

automatic process can interfere with a less automatic process, but not vice versa, due to the 

obligatory characteristic of automaticity (MacLeod, 1991). However, word reading is not 

attained automatically (Grabe, 2010). Reading is a skill that with practice transitions from a 

controlled and heavily attended task to a reflexive automatic process durable beyond the 

context in which the skills were developed (Rawson, 2010). 

 MacLeod (1991) suggests that practice affects the impact of interference. The more 

automatic a process becomes, the more it is capable of causing interference with a less 

automatic process. The reverse Stroop effect supports this conclusion. The reverse Stroop 

effect is where the sensory colours interfere with identifying colour words. For example, 

when an incongruent coloured word (i.e., the word “red” written in green ink) is presented 

with four coloured squares (i.e., red, green, yellow, and blue), and participants are asked to 

match the written colour (i.e., red) with the matching coloured square, response times are 

delayed; incongruently- coloured words significantly interfere with pointing to the 

appropriate square (Durgin, 2000). When a normally more automatic process is altered by an 

experimental manipulation, the normally less automatic process may become more 

automatic. In such instances the Stroop interference reverses (Macleod, 1991).  

The literature describes three possible explanations of the Stroop effect involving 

interference of competing information. First, the typical Stroop effect is suggested to arise 

from output interferences occurring due to the competition between vocal responses to the 

word and ink colour (Keele, 1973). Second, the direction of interference depends on the time 
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relations involved—words are read faster than it takes to name a colour—due to differences 

in processing. Thus, greater interference results from the time taken to name the colour 

versus naming the word. Third, words facilitate vocal output to colours with which they share 

a common name (Hintzman, Block, & Inskeep, 1972). These three factors explicate that 

incongruence of competing information results in increased reaction time for colour naming 

compared to word naming.  

Thus far, it has been highlighted through the Stroop task paradigm that automaticity is 

related to attention and allocation of resources, however, the role of practice in reducing 

interference of an automatic skill may be equally important. Although theoretical 

explanations can attribute the Stroop findings to one or more characteristics that have been 

highlighted in the automaticity research, the phenomenon of the Stroop effect is not without 

criticism. Some researchers criticise interpretations that the Stroop effect demonstrates 

automaticity. Others criticise the replicability of the effect, and some highlight the role of 

variables, such as experimental context, as mediators of the Stroop effect. Details of these 

criticisms are discussed below. 

Besner et al. (1997) suggests that priming to read printed words may be responsible for 

the Stroop effect. As participants are typically presented with congruent words and colours 

(e.g., ‘red’ written in red ink) in the initial phase of testing, participants could have just read 

the word and been praised for performing a successful trial. Given this experimental design 

there is no way of determining whether or not the ink colour was being reported or simply 

being read. Thus, it is plausible that participants were being primed to read the word instead 

of reporting the ink colour, which in turn could have affected the next trial of incongruent 

words and ink colours. Besner et al. investigated evidence for the Stroop effect when 

manipulating experimental design elements. They found that interference in the Stroop task 

can be reduced (experiment one) and even eliminated (experiment two) through the use of 
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mental sets. For example, Besner et al. found that when limiting the ink colour to only a 

single letter instead of the whole word, the Stroop effect was eliminated, indicating that 

words are not necessarily read automatically. This specifically rejects the notion that, if the 

Stroop effect is an example of automaticity, an automatic process cannot be suppressed or 

refrained from being fired or initiated. Thus, the literal context may be more important at 

mediating the effect rather than the explicit instructions to name the colour ink and not the 

word. The context presented in the original Stroop task, as well as in many other replications, 

primes participants to read by setting up mental structures and the pathways that connect 

them. Thus a ‘mental set’ is primed with the context presented. In terms of the general 

explanation of automaticity, Besner et al. concludes that by classifying some skills as 

automatic we may fail to recognise and identify the underlying processes.  

The magnitude of the Stroop effect appears to be affected by the number of congruent 

trials in a list, such that the Stroop effect is larger when the proportion of congruent trials is 

higher than when the proportion of congruent trials is lower. So participants are primed into 

word reading rather than colour naming. This is referred to as the proportion by congruency 

interaction (e.g., Lindsay & Jacoby, 1994; Logan & Zbrodoff, 1979). These findings alone 

question whether automaticity is as ballistic and durable as the congruent definition suggests, 

or whether experimental conditions used in experiments, such as the Stroop task, are an 

ineffective measure or demonstration of automaticity and instead demonstrate adaptation to 

experimental contexts. This questions whether participants actively moderate strategies that 

result in automatic-like performance, or whether individuals implicitly react and assimilate to 

environmental changes. This question concerns one aspect of the definition of automaticity—

the role of awareness.  

Blais, Harris, Guerrero, and Bunge (2012) investigated the awareness of the proportion 

of congruent trials as necessary for the proportion of congruency interaction. They 
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investigated the relative contribution of self-regulated conscious (deliberate) strategies versus 

implicit adaptations to knowledge of the experimental design on performance of the Stroop 

task. Blais et al. suggest that if participants informed of the composition of an upcoming 

block then they might be able to implement an overt strategy, best suited to the task. 

However, Blais et al.’s group results demonstrated no significant difference whether 

participants were aware that there were more congruent trials than the number of incongruent 

trials within the block. This suggests that awareness of the proportion of congruent trials 

plays little role in the proportion by congruency interaction. Blais et al. suggests that this does 

not indicate that an individual is unable to apply an explicit strategy, but that participants may 

be subconsciously adapting to their environment. However, Blais et al. report that, upon 

inspection of the proportion by congruency interaction, the effect was larger than when there 

was no encouragement, indicating that automaticity may be mediated despite the absence of a 

significant interaction. 

 The aforementioned studies suggest that context plays a role in the development or 

execution of an automatic skill. This would seem to defy current and past statements of the 

characteristics of automaticity, such as obligatory encoding, stability, and control of attention 

and awareness. Therefore, automaticity may not be as reliable or as fixed as what has been 

claimed by some researchers.  

 Dishon-Berkovits and Algom (2000) employed the Stroop task to demonstrate how a 

change in contextual information can impact automaticity. Dishon-Berkovits and Algom 

changed the context of the Stroop task by manipulating the number of congruent and 

incongruent colour-word trials. Dishon-Berkovits and Algom found the Stroop effect could 

be manipulated due to the relationship of the distractors to the target. Specifically, in 

experiments one to three dimensional correlation appeared to affect selective attention. When 

conditions were neither a component of the stimulus or indicated information about the other 
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component, selective attention was good. However, when dimensional values covaried, the 

Stroop effect was evident. In experiments four and five, context appeared to influence 

selective attention. That is, picture-word stimuli affected the Stroop interference where 

pictures interfered with the categorisation of words. Irrelevant words did not interfere with 

categorisation of pictures. Dishon-Berkovits and Algom suggest that the context of the 

distractor item will limit attention to the target, thus informative and salient distractors 

produce the greatest interference. Dishon-Berkovits and Algom support the findings of others 

(i.e., Besner et al., 1997) who suggest the Stroop effect encompasses attentional systems 

rather than automatic processing and is evidence of the predictive relationship between words 

and colours of the Stroop design.  

Similarly, Labuschagne and Besner (2015) found that attention can be mediated and 

thus occurrence of the Stroop effect can be manipulated. Semantic processing is said to be 

responsible for the fast, efficient manner of word identification in the Stroop task. 

Labuschagne and Besner suggest that semantic processing in the Stroop task can be 

eliminated by changing spatial attention. In their experiment the classic Stroop effect was 

replicated when the basic premise of the task was implemented. That is, when the whole 

word was printed and coloured in associated ink (i.e., “red” printed in ‘red’ ink). However, 

Labuschagne and Besner found that by spatially separating the letters and colouring only 

single letters, as opposed to the whole word printed in coloured ink, the Stroop effect was 

eliminated. For example, “red” may be presented as “R E D”. Labuschagne and Besner’s 

findings were commensurate with the earlier findings of Besner et al. (1997) and support the 

suggestion that automaticity may not be stable across varied contextual conditions if 

automaticity can be manipulated with minor experimental changes.  

 It has also been suggested that modality is a predictor of the Stroop effect. Durgin 

(2000) found that a reverse Stroop interference is found when a pointing task is implemented, 
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while nearly eliminating traditional Stroop interference. Prior experiments by Pritchatt (1968) 

and McClain (1983) found that the Stroop effect can be eliminated by utilising another 

modality for colour naming. For example, colour matching has been used, whereby coloured 

patches were placed on or near buttons that were to be used as responses. Pritchatt 

demonstrated a reduction in interference, but little reversal. McClain also reported 

elimination of Stroop interferences using coloured buttons. These findings contradict 

automaticity or strength association explanations of the Stroop effect (e.g., Cohn, Dunbar, & 

McClelland, 1990). Durgin instead suggests that the Stroop effect is due to response 

compatibility and subsequent response competition. This questions the typical interpretation 

of the Stroop effect.  

Although the main view is that automatic performance involves fast, effortless, 

unconscious, autonomous, and involuntary processing developed with extensive practice 

(Hasher & Zacks, 1979; Logan, 1980; Posner & Snyder, 1975; Shiffrin & Schneider, 1977), 

contradictory evidence from Regan (1981) suggests that extensive practice may not be 

required for involuntary processing. Thus, terminology such as ‘effortless’ and ‘autonomy’ 

may not typically co-occur in automatic processing (Regan, 1981). This further suggests that 

automaticity may not be internally consistent in definition. Therefore, based on the reviewed 

evidence, the reliability and consistency of identifying and defining automaticity may be 

called into question.  

The Failure of Automaticity in Skilled Expertise Research 

 Automaticity is considered a characteristic of expertise. The expertise literature refers 

to automaticity as highly specific to the stimuli and conditions experienced during training, 

so much so that skills are highly attuned to the conditions under which automaticity was 

developed. The expertise literature refers to this type of expertise as ‘routine expertise’ 
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(Hatano & Inagaki, 1986). In circumstances where conditions do not change, domain-specific 

knowledge develops over an accumulation of experience that mostly consists of problem 

solving in a given domain. Thus, automaticity may be established; yet, in conditions where 

things do change a lot, automatic skills are unlikely to develop, and so may lead to more 

adaptive expertise (Hatano & Inagaki, 1986).  

Increased task errors and errors in planning have been attributed to automaticity, and 

prior experience and stimulus familiarity in chess (e.g., Bilalić et al., 2008a, 2008b; Reingold, 

Charness, Pomplun, & Stampe, 2001) and medicine (Croskerry, 2003; Gordon & Franklin, 

2003). For example, it is suggested that prior knowledge or domain specific knowledge 

interferes with problem solving when familiar problems or solutions are presented, so that a 

familiar, but inappropriate, solution is triggered in response. In turn, alternative solutions are 

prevented from being considered (Kaplan & Berman, 2010; MacGregor, Ormerod, & 

Chronicle, 2001). This phenomenon of cognitive bias in using an already developed problem-

solving set is known as the Einstellung effect (Luchins, 1942).  

Bilalić et al. (2008b) investigated the Einstellung effect amongst chess experts using 

eye-tracking technology. Bilalić et al. manipulated board positions so that only two positions 

were available; participants were required to find a checkmate in as few moves as possible. 

The first problem had two solutions: a familiar five-move (smothered mate) solution and a 

less well-known three-move solution. In the second problem, only the shorter solution was 

possible. All players shown the two-solution problem found the familiar smothered mate 

solution, and reported that although they looked for a shorter mate, they failed to find one, 

suggesting they were subject to the Einstellung effect. All players shown the one solution 

problem found the shorter, less familiar solution. The two groups of players were compared 

for eye movements and found that the group looking for the two-solution problem spent more 

time looking at the two sets of squares relevant to the smothered mate solution, despite 
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reports of actively looking for alternative solutions. Bilalić et al. suggest that a schema in 

memory is activated by the familiar pattern, and so attentional focus is directed to 

information relevant to the activated schema and all other contradictory information is 

ignored.  

Additionally, failure in expert task performance has been linked to the development of 

attentional sets, which prevent flexible and adaptive task strategies. Attentional sets are 

suggested to trigger an internalised production rule, which are triggered automatically under 

certain situations. For example, Furley, Memmert, and Heller (2010) suggested that certain 

coaching practices—such as: ‘if the defence responds by doing A, then you should do B; if 

they respond in manner C, then you should be D’—facilitated ‘if-then’ rule type pairings. 

Attention is drawn to a certain player, who subsequently completed that pass, even though it 

may not have been the best option available resulting in inattentional blindness (Mack & 

Rock, 1998). Whilst this type of instruction, or internalised production rule, serves to assist 

the players limited processing capacities by automatically directing their focus of attention to 

the next plan of action, it may also lead to errors in performance by inducing an attentional 

set. That is, the prioritisation of certain stimuli leads to a form of confirmation bias 

(Nickerson, 1998), where existing expectations direct attention and action.  

Attentional sets are a vital aspect of skilled performance and are required to assist in 

rapid decision making; however, the automatic recall of such processing or procedures may 

hinder attentional flexibility, and therefore inhibit ‘expecting-the-unexpected’ (Pesce, 

Tessitore, Casella, Pirritano, & Capranica, 2007). There is evidence to suggest that control 

over automatic attentional processes is possessed by skilled performers in addition to 

reflexive automatic processes (Jacoby, Ste-Marie, & Toth, 1993).  
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Bilalić et al. (2008a) found that the level of expertise achieved might depict whether 

task execution results in flexibility or inflexibility. In chess, automaticity in skilled players 

facilitates parallel processing of the relational position of all the pieces on a board. 

Conversely, the relational position of each chess piece is processed one piece at a time by less 

skilled players. In a similar research design to Bilalić et al. (2008b) using the Einstellung (set) 

effect paradigm, chess players ranging from ordinary experts to superior experts tried to solve 

problems that had both a familiar but non-optimal solution and a better but less familiar one. 

The presence of the non-optimal solution induced the Einstellung effect even in experts, 

which reduced their problem-solving ability to that of player’s three standard deviations 

lower in skill level. Experts demonstrated inflexibility of thought by prior knowledge, but the 

more expert they were the less prone they were to the effect. Whilst it may be argued that the 

players who found the right solution were significantly more skilful than players who did not 

and were able to utilise flexible adaptive problem solving, the evaluation of problem 

situations is heavily influenced by available knowledge (e.g., Gobet, 1997; Holding, 1985; 

Sarriluoma, 1995). Bilalić et al. (2008a, p. 92) posit “knowledge is an essential part of 

flexible behaviour”. Thus, players that are more skilful were able to see and evaluate the 

optimal solution and were not bound to set solutions.  

According to empirical evidence there is reason to suggest that automaticity may not be 

an all-or-nothing phenomenon. Errors in performance may be attributed to an over-reliance of 

automated processes or a failure to shift from a more automatic mode (Memmert, Unkelbach, 

& Ganns, 2010). That is, excessive amounts of automaticity restricting flexible and adaptable 

performance may lead to mistakes, slips, and lapses in skilled performance. Christensen, 

Sutton, and McIlwain (2016) posit that experts have the ability to shift from automatic to a 

more attention-based mode of control at the right time of performance. Christensen et al.’s 

‘mesh’ theory accounts for the way that cognitive and automatic processes may co-exist with 
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cognitive control available for strategic elements of performance and automatic control for 

implementation and task execution.  

Conclusion 

 Characteristics of automaticity include processing that is fast (Fitts & Posner, 1976; 

Neely, 1977), effortless (Logan, 1978, 1979; Schneider & Shiffrin, 1977), autonomous 

(Logan, 1980; Posner & Synder, 1975; Zbrodoff & Logan, 1986), stereotypic (McLeod et al., 

1985), outside conscious awareness (Carr, et al., 1982), and requiring a consistent 

environment (Logan, 1988; Schneider & Fisk, 1982). Automaticity is further characterised as 

a form of cognitive processing without capacity limits, and as processing that may not 

necessarily demand attention (Epstine & Lovitts, 1985; Logan 1988). Many definitions also 

include an association with primitive reflexes such as an eye blink in response to a puff of air, 

the patellar reflex, or the Babinski reflex (Besner, et al. 1997) suggesting that automaticity is 

an uncontrolled response to a stimulus in the absence of conscious awareness (Epstein & 

Lovitts, 1985). The ability to perform routine activities effortlessly and quickly, with little 

thought or conscious awareness is a phenomenon of everyday life. Without automaticity we 

would struggle with many of life’s simple requirements, such as driving to work or 

understanding and calculating money, even tying shoelaces would be difficult if we had not 

developed the skill to automaticity. However, the evidence does not favour this extreme 

view. Automaticity is also considered as sensitive to minor context changes and may not be 

as durable as once thought. Performing on ‘automatic pilot’—leaving our mind to attend to 

other things—may also be considered problematic (Logan, 1988).  

Automaticity is suggested by the evidence of the Stroop task to be stable, predictable, 

and reliable, however, research further suggests that the Stroop effect does not represent a 

normal occurrence of automaticity, but an adaptation to a highly constrained experimental 
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condition. Thus far, discrepancies exist between theoretical definitions and empirical 

evidence of automaticity. This then leads to the need for clarity in the characteristics that not 

only identify automaticity but also clarity in the theories regarding mechanisms of attaining 

and maintaining automaticity. That is, a more cohesive understanding of how automaticity 

may affect task performance, and what influences ongoing automatic performance is required 

to provide insight into the best learning situation or learning approach.  

 This thesis is concerned with whether automatic skills are task dependent, thereby 

limiting their usability outside of the learned context. The evidence so far falters at a clear 

definition of automaticity and its usefulness in learning.  

 The following chapter (Chapter 3) considers how theories of skill acquisition explain 

the occurrence of automaticity, and Chapter 4 considers the transferability of learned skills.  
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Chapter 3: Skill Acquisition 

This chapter discusses the power law of learning in cognitive skills, a central issue 

throughout the thesis. Particular emphasis will be placed on individual differences as 

mediators of learning curve deviations and in the acquisition of automaticity. The ACT 

theory (Anderson, 1982, 1987) and the instance theory (Logan, 1988) will be discussed as 

explanations of the acquisition of automaticity and performance. The aim of this chapter is to 

determine whether the skill acquisition theorists consider automaticity as transferrable.  

  

 In Chapter 2 it was demonstrated that automaticity might be considered a fixed state in 

the end product of skill acquisition. Many examples of the robust nature of automaticity exist 

within the literature (i.e., the Stroop task). However, as the previous chapter highlighted, 

alternative explanations of the well-demonstrated phenomenon of automaticity exist. This 

further questions whether automaticity is fixed in nature or adaptable and flexible to change, 

contrary to classical demonstrations of the durability of automaticity. Specifically, this 

questions whether automaticity facilitates or hinders the overall learning process if automated 

skills need to be transferred to another learning situation. If automaticity is considered a rigid 

state, then learning until reaching automaticity may not be the best learning strategy where 

flexible and adaptable skills are required.  

 First, this chapter introduces the concept of skill (i.e., what is skill?), then the concept 

of the power law of practice will be explained, followed by an introduction to Anderson’s 

general (1982, 1987, 1993) adaptive control of thought (ACT, ACT*, ACT-R) theory and 

Logan’s (1988, 2002) instance theory of automatisation. This chapter highlights various ideas 

on the mechanisms underlying the development of automaticity, including whether skill 
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acquisition theorists consider automaticity fixed or flexible. Finally, there is consideration of 

individual differences in the acquisition of automaticity.  

What is ‘Skill’? 

How do we know when performing a task becomes a ‘skill’? Bruner (1973) conceived 

the idea that skilled action is the ability to perform serially ordered acts with reduced 

variability to performance. Skill is also the ability to modify performance where required 

whilst taking into account feedback and knowledge of results (Widmer, Ziegler, Held, Luft, 

& Lutz, 2016). Skill acquisition then is the learning process used to acquire a new skill. This 

may involve prolonged learning of sub-skills and events that are then stored in memory. 

Skilled retrieval of productions (e.g., the ACT theory) or instances (e.g., the instance theory) 

leads to skilled behaviour, which may then become routinised (automatic) under some 

conditions (Speelman & Kirsner, 2005).  

Skilled behaviour can be defined to include responses that are not innate, such as 

playing a musical instrument, driving a car, dancing, or even writing. It also extends beyond 

overt behaviour to recognising alphabetical or numerical symbols that facilitate reading. In 

such examples, extensive practice has led to a set of mental representations that are held in, 

and easily accessible from, memory so that when activated an instant typical response is 

available. Skilled performance is then defined as effortless, error free, and fast. Tasks, such as 

lexical decision (Kirsner & Speelman, 1996), geometric sequencing (Greene, Rucker, Zauss, 

& Harris, 1998) and arithmetic (Logan, 1988), are often used in cognitive psychology to 

explore the underlying cognitive mechanisms involved in skill acquisition. Changes in 

reaction time (RT), particularly very fast RT, are suggested to indicate skilled performance 

(Logan, 1988).  
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Power Law of Practice 

Snoddy (1926) was considered the first psychologist to highlight the continuous 

nature of improvement in a mirror-drawing task. Over a 60-day period, gradual improvement 

was noted as well as a reduction in the rate of improvement over time on a motor task. Thus, 

practice has been found to lead to faster and more accurate responses over time (Anderson, 

1992, 1993), and the pattern of improvement is described as the ubiquitous power law of 

practice (Newell & Rosenbloom, 1981).  

Newell and Rosenbloom (1981) investigated the nature of the mechanisms underlying 

improvement. They reviewed data from numerous studies comparing fits to the reported 

learning curves of generalised power, exponential and hyperbolic functions. Newell and 

Rosenbloom concluded that power functions provided a superior fit to those provided by the 

other functions. On this basis they theorised a single law that describes all practice data, 

which they referred to as the power law of learning. The power law of learning applies to 

examples such as Crossman’s (1956) reports of skill acquisition at cigar rolling. When 

practice of a task leads to performance improvements, the improvement is usually well 

described by a power function (see Figure 1). As is clear in the learning curve plotted in 

Figure 1, early task practice usually results in rapid performance gains (i.e., decrease in RT), 

with a steep decrease in RT at earlier stages of practice. However, after further practice, 

performance gains decrease until reaching an asymptotic level in which performance does not 

improve any more.  

A power function describes performance where: 

RT = a + bN -c 

(1) 
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In equation 1, RT is the response time on a task, N is the number of practice trials, a is the 

value of response time that represents asymptotic performance (i.e., the minimum response 

time that a participant could achieve), and b represents the total amount of speed-up possible. 

The parameter -c in equation 1 is the learning rate or slope of the learning curve. The 

decrease in RT in skill acquisition is often graphically depicted as a ‘learning curve’. Figure 2 

demonstrates the parameters of a typical skill acquisition curve, where b represents 

performance on the first trial and a represents the asymptote.  

 

Figure 1: A learning curve showing the typical relationship between the speed of 
performance of a task and the amount of practice on the task.  

 

The power law phenomenon has been observed in a range of tasks, such as mirror-tracing 

(Snoddy, 1926), solving of geometry proofs (Anderson, Greeno, Kline, & Neves, 1981), 

lexical decision (Kirsner & Speelman, 1996) and reading inverted text (Kolers, 1975), and is 

widely recognised in skilled learning and human performance (Fitts & Posner, 1967). When 

describing learning as a power law the nature of performance improvement as a curvilinear 

plateau, referred to as an asymptote, implies that there must be a limit to learning 
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(Tomporowski, 2003). However, the rate at which limits of learning are reached is very 

slow—so slow that most individuals do not reach their capacity (Fitts & Posner, 1973).  

 

Figure 2: Parameters of a typical skill acquisition curve. 

 

An often-cited example of the power law of learning is Crossman’s (1956) report of 

the effects of practice on a hand-operated cigar rolling machine. Crossman found that when 

speed of performance was plotted as a function of the amount of operator experience, speed 

of performance increased linearly for about four years, and then performance levelled off. 

This levelling off in performance corresponded to the limit of the rate of work possible with 

the machine. Crossman concluded that the asymptotic point of the operator’s learning limit 

might also be indicated by the levelling off in performance. As humans cannot possibly 

complete a task in zero seconds reductions in learning gains or improvement indicate human 

performance limits.  
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Despite the fact that power functions provide such a good description of learning 

curves, there have been suggestions that the power law of learning is not so law-like. 

Although learning curves derived from group data are more likely to be described well by 

power functions, individual data often reveals deviations from power functions (Haider & 

Frensch, 2002; Speelman & McGann, 2013). For example, Heathcote, Brown, and Andrew 

(2000) suggest that averaging group data provides a bias in favour of the power function. 

They state “practice functions from different subjects should not be averaged, not only 

because variation of learning rates can distort the shape of the average function, but also 

because an individual subject’s learning may occasionally follow a function other than the 

usual exponential form” (Heathcote et al., 2000, p. 198). Moreover, some (e.g., Conway & 

Schultz, 1959) question the ‘ubiquity’ of the power law because of the difficulty in providing 

a generalised, or universal, learning function that describes a ‘true’ curve of learning.  

It has been suggested that the generality of the power law is limited to simple tasks 

requiring only RT as a performance measure. Critics, such as Anderson (2001) and Murre 

and Chessa (2011), argue that data averaging produces an artificial power law because the 

averaging of many curves together necessarily produces a power function. The issue of 

averaging data to draw a conclusion about a phenomenon is of specific interest to the current 

thesis and is discussed at more length in Chapter 5. In this thesis both group and individual 

learning curves were considered in order to provide a thorough account of learning patterns. 

Skill Acquisition Theories 

Many models of skill acquisition have been proposed, however most consider that 

general knowledge is the starting point for skill acquisition from which expert specialist 

knowledge is developed (Anderson, 1987; Crossman, 1959; Fitts, 1964; Fitts & Posner, 

1967). When learning a skill, performance changes from slow and effortful to fast and 
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effortless. Fitts and Posner (1967) reported that this shift in performance occurs over three 

phases. The first stage is the cognitive stage where the individual draws on known resources, 

such as task requirements, features of the task, and strategies learned from previous tasks. In 

this stage performance is slow, prone to errors and requires attention. Overt verbalisation of 

task sequences is commonly observed. The second stage, the associative stage, utilises 

aspects of the previously learned task that are appropriate and they become strengthened 

through positive feedback. The feedback process involves evaluation of performance; 

appropriate aspects are refined and inappropriate aspects are weakened and discarded. The 

third stage, the autonomous stage, describes the shift from dependent, controlled, verbalised 

behaviours to faster, more efficient automatic performance.  

 Shiffrin and Schneider (1977) associate these phases of skill acquisition with changes 

in the requirement of attention from controlled to automatic processing. Controlled 

processing is considered slow, effortful, intentional, and requiring attention. Conversely, 

automatic processing is fast, efficient, error free, and requiring less attention. The contrast 

between the attentional requirement of controlled versus automatic processing has been 

reported across many higher mental processes, such as social cognition and goal oriented 

information processing (Bargh & Ferguson, 2000). The transition from controlled to 

automatic processing is consistent with Fitts and Posner’s (1967) model. In the cognitive 

stage controlled processing is required because learning a new task places a high demand on 

attentional resources. Finally, the autonomous stage is where cognitive load is freed up and 

automatic processing is consistent. Over time the more a skill set is practiced and memory 

retrieval is refined the more a task can be executed with more skill than that of a novice. 

 Although Shiffrin and Schneider’s (1977) idea of controlled versus automatic 

processing is widely accepted, there is a limitation in their theory in terms of how this 

transition occurs from controlled to automatic processing. Two theories attempt to explain 
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this transition: the ACT* theory (Anderson, 1992, 1983, 1987) and Logan’s instance theory 

(1988).  

Adaptive control of thought (ACT) theory. 

A clear explanation of the mechanisms underlying skill acquisition is provided in the 

ACT theory (Anderson, 1987). Basic learning processes describe the features of skill 

acquisition, such as the effect of practice on automaticity and the shapes of learning curves. 

Anderson has developed a line of production system theories that all fall under the name 

ACT. In 1983 he proposed a general theory of production systems called the ACT* theory. 

This theory was later (1993) improved to include a more specific architecture of the 

mechanisms of the production system. The theory was then extended to the ACT-R (R for 

rational) theory, which presents more advanced details of the model (Anderson, 1993, 2014). 

The experiments reported in this thesis are concerned with the basic skill acquisition concepts 

of the model, and will refer to Anderson’s production rule theories under the broad heading 

of the ACT theory.  

 Anderson’s (1982, 1983, 1987) ACT theory provides more details to extend Fitts and 

Posner’s (1967) stage theory. For example, in the first phase of acquiring skill at performing 

a task, subjects acquire basic facts, statements and/or instructions about the task, known as 

declarative knowledge. These facts can be described verbally to others and are well known 

and identifiable to the individual. ‘Chunks’ of facts are then stored in working memory 

(Speelman & Mayberry, 1998). In the second (associative) stage declarative knowledge is 

then compiled into procedural knowledge. That is, declarative knowledge, which encodes our 

factual knowledge, transforms into procedural knowledge, which encodes cognitive skill. 

Furthermore, procedural knowledge also consists of task knowledge of the steps and 

procedures as the task no longer requires verbal rehearsal in working memory, and the 

procedures used are no longer available for verbal recall (Anderson & Lebiere, 1998). The 



 44

process of ‘proceduralisation’ is responsible for converting the declarative knowledge into 

production rules.  

A production is a set of rules that are drawn upon for a specific cognitive act 

(Anderson, 1982). Anderson (2014, p. 4) states that “A production has certain boundaries; 

specific conditions and circumstances for which they apply and actions that are carried out 

when called upon. Production rules are if-then or condition-action pairs. The if, or condition, 

part specifies the circumstances under which the rule will apply”. For example, a red traffic 

light is a signal to stop, therefore, IF the traffic light is red, THEN stop (Anderson, 1987). 

This is what Anderson (1992) terms the ‘if then’ rule. Anderson provides an example of a 

typical production rule for dealing with an addition problem: 

IF the goal is to find the sum of n1 and n2 

and n1 + n2 = n3 

THEN say n3 

There are some important features to note about the above production rule. The first is that 

there is a specific goal that has been identified. The second is the retrieval of a specific sum 

from long-term memory (Anderson, 1992). Anderson (1981, 1982, 1983) indicates that all 

productions have a set of conditions and actions or contexts based on declarative memory, 

and that as practice with executing these productions increases, refinement and specificity to 

that particular task increases. The process of composition, where several productions are 

combined into a single production, also speeds up performance.  

The ACT theory suggests that problem solving involves a means-ends analysis 

(Anderson, 1993). That is, the problem solver determines the best strategy to reach an end or 

goal. If no adequate problem-solving state exists, the problem solver will search for a similar 
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problem-solving state. Research demonstrates (e.g., Pirolli & Anderson, 1985; Ross, 1984) 

that early problem solving is influenced by analogy to similar examples. This initial stage of 

problem solving is referred to as the interpretive stage, as it requires the recall of similar 

problem solving to be translated to the new problem-solving state. Verbalisation of critical 

analogy features is necessary as the learner rehearses task procedures and properties. As 

verbalisation ceases, a transition from the interpretive stage to the procedural stage occurs 

(Anderson, 1993).  

 The accessibility of declarative knowledge and the performance of procedural 

knowledge are dependent on the encoding processes. Practice strengthens the encoding of 

declarative and procedural knowledge so that strength grows as a power function of practice 

(Anderson, 1993). Power function improvements that occur in skill learning are controlled by 

the growth of strength. Skill is acquired with practice, and more importantly, the recognition 

of success in the execution of particular procedures consolidates successful performance 

through the development of knowledge (Anderson, 1982).  

As mentioned above, the ACT theory proposes that skills are acquired via two forms 

of knowledge: declarative knowledge and procedural knowledge. Declarative knowledge 

consists of general information from past experiences and is characterised as being flexible 

and domain-general. This is where initial knowledge about performing a task begins. Implicit 

procedural knowledge is domain specific consisting of particular rules or procedures that 

become consolidated. For example, the previous traffic light example demonstrates the 

already acquired knowledge that a red traffic light is a signal to stop. So, where declarative 

knowledge holds representations of facts, procedural knowledge informs what actions need to 

follow; IF we already know that a red traffic light is an indication to stop, we must THEN 

stop. A process called compilation facilitates this reasoning. Compilation involves two 

processes: proceduralisation and composition. 
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The first process of proceduralisation is the creation of domain-specific productions 

based on declarative (domain-general) knowledge (Anderson, 1992). Once proceduralisation 

has occurred there is no need to consult declarative knowledge for task execution as a new set 

of productions (procedural knowledge) can be drawn upon. As this need to refer to 

declarative knowledge is reduced, the load on working memory should also be ‘freed up’ 

(Woltz, 1988). Composition is the collapse of sequences of productions into single step 

retrieval productions, which aids in efficiency and faster retrieval (Speelman & Kirsner, 

2005). With practice, productions are strengthened and can be executed faster than newly 

formed productions. 

The transition from declarative knowledge to procedural knowledge is illustrated in 

an example adapted from Speelman and Kirsner (2005), where a teacher describes an algebra 

solution to a student. The teacher may present the problem as follows; 

79 = 3 x + 4, the goal is to solve for ‘ x’. 

There are a number of sub-goals required to solve the problem. For example, the first step 

may be to isolate the ‘x’ term on the right-hand-side of the equation. This will mean 

eliminating the “4” from this side of the equation. 

79 + (-4) = 3x +4 + (-4) 

75 = 3x 

Having achieved this sub-goal of isolating the “x ” term on the right-hand-side of the 

equation, the teacher may move on to the second sub-goal, of eliminating the coefficient of 

the ‘x’ term, which is 3. This is achieved by dividing both sides of the equation by 3: 
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75   =  3x 
3         3 
 

25 = x             This is then the solution to the problem. 

 

The memory for such explicit instructions is considered declarative knowledge. It 

represents context specific knowledge that cannot be used to solve other problems. If the 

student was given another example, such as 85 = 4x + 5, they could apply the same processes 

as the previous example, given the student recognised the similarities and usefulness of the 

previous solution (Gick & Holyoak, 1983). Thus, 

85 = 4 x + 5, the goal is to solve for ‘x’. 

85 + (-5) = 4x + 5+ (-5) 

= 80 = 4x 

80  =  4x 
4         4  

 

= 20 = x 

This example demonstrates how general problem-solving methods, such as analogy, translate 

declarative knowledge into action (Singley & Anderson, 1989). 

The autonomous stage of Anderson’s ACT theory concerns the strengthening of 

productions. As multiple productions may be applied to each situation, the probability of a 

particular production rule being recalled is a function of strength (Anderson, 1993). With 

successful application of a production strength is gained, however if a production is either not 

utilised or is used unsuccessfully it loses strength. Therefore, feedback mediates the strength 
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of a production. As strength of a production increases, the faster it may be applied. Thus, 

strength also contributes to a speed-up in performance, but not to the same extent as 

proceduralisation or composition (Anderson, 1983).  

The instance theory. 

Memory based accounts of automaticity, such as the instance theory, suggest that the 

transition from controlled to automatic processing reflects a race between the application of 

an algorithm to produce a response and a memory process that retrieves a response from past 

experiences (Logan, 1990). Logan’s (1988) instance theory describes skill acquisition as 

improvements in performance attributed to an increased range of episodic representations. It 

is the automatic (fast) retrieval of an instance that results in improved performance, in 

contrast to the ACT theory where improvement with practice is the result of a refinement in 

procedural knowledge.  

There are three premises that underlie the instance theory: obligatory encoding, 

obligatory retrieval, and instance representation (Logan, 1997). Obligatory encoding refers to 

the requirement of attention to form a memory representation, and that each processing 

episode results in a separate representation in memory. This involves memory of the stimulus 

conditions, goal state, interpretation of the stimulus conditions, the response, and the result of 

the response. Obligatory retrieval is the idea that attention to an item or event results in the 

associated memory of conditions, responses, and states being activated each time the event or 

item is encountered. Instance representation means that each encounter or episode results in a 

separate instance even if the instance is identical to many others in memory (Logan, 1997).  

Performance can be described as skilful when it relies only on the automatic retrieval 

of instances. This requires some experience in the task in order to build and retrieve some 

instances. Logan’s (1988) instance theory of automaticity describes automatic behaviour as 
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resulting from the accumulation of instances. Automaticity, then, represents a transition from 

algorithm computation (or multistep memory retrieval) to single step memory retrieval of 

episodes. This computation output is stored in memory so that future processing may bypass 

computation of the algorithm and rely entirely on memory retrieval. For example, in learning 

to solve addition problems such as: 3 + 3 = ?  a student may start by counting the digits to 

generate an answer; however over time the solution to this problem will be stored in long-

term memory as a single step, and the student will no longer rely on counting methods. The 

instance theory emphasises automaticity as a continuing process determined directly by the 

amount of training or practice (Logan, 1988).  

Logan stipulates that in the race between the execution of the algorithm and the 

retrieval of an instance, whichever one is retrieved first controls performance. As practice 

increases the number of stored instances, the chance increases of an instance being retrieved 

faster than the execution of the algorithm. Performance becomes fast and automatic, resulting 

in a speed-up in the power function when performance is dependent on stored instances that 

are consistently recalled faster than the general algorithm. Thus, automatic retrieval of an 

episodic representation occurs through extensive successful practice.  

One of the tasks Logan and Klapp (1991) developed to test the instance theory is the 

alphabet arithmetic task where participants are given a number of expressions consisting of 

alphabet equations for the first half of the alphabet. For example, expressions such as: 

A + 3= D         C + 2 = G 

Participants are required to respond true or false to each expression. In order to perform the 

task Logan suggests that participants will start by counting through the alphabet, however, 

after significant practice participants will eventually be able to respond by remembering past 

solutions to expressions experienced before. Automaticity is then measured by the increase in 
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RT according to items on the screen. Facts that are recalled from past experiences are 

executed quicker than facts that need to be counted through the alphabet and have not been 

automatically recalled from memory. According to the theory, the number of instances ready 

to be recalled influences how quickly automaticity may be established. Logan and Klapp 

indeed found that automaticity was established relative to the number of arithmetic facts 

presented. That is, the number of items learned, rather than the amount of practice, 

determined how quickly automaticity developed.  

 Logan and Klapp (1991) also investigated whether transfer could occur to new items. 

That is, during training sessions one to 12 participants were trained on only one half of the 

alphabet arithmetic task, on session 13 participants were then given the same arithmetic style 

questions using the second ‘untrained’ half of the alphabet. They found a significant increase 

in RT between sessions 12 and 13. Logan and Klapp’s findings support the assertion of the 

instance theory and automaticity-as-memory theories that only similar items will evoke 

responses from memory.  

 Automatic processing has been replicated and demonstrated many times in many 

different tasks, however what is missing from current automaticity and skill acquisition 

accounts is the level of awareness or directed attention involved in facilitating obligatory 

skill/memory retrieval of an instance. Kramer, Di Bono, and Zorzi (2011) suggest that 

diminished discriminability plays a role in automaticity. Kramer et al. investigated 

numerosity estimation in a visual motion task. A typical criticism of numerosity estimation 

findings is that by manipulating a collection of items, the physical dimensions also change, 

thereby increasing or decreasing the spatial area or density. Kramer et al. found that as 

numerosity increases numerosity items are either forced further into the periphery or closer 

together, so that both large and small numerosities may be underestimated.  
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Skill Acquisition Theories Compared 

 Logan’s ‘instances’ and Anderson’s productions both represent the stimulus context 

of the task, the goals of processing, responses executed and the outcome. However, the 

differences lie in the explanation of the development of automaticity. Logan’s theory posits 

that new instances are created with each exposure (or practice), whereas Anderson’s theory 

purports that automaticity is strengthened as memory is consolidated from multiple to single 

step productions. Also relevant to the development of automaticity, the theories differ in their 

explanations of learning curves and skill transfer.  

 Logan explains that the negative acceleration in the rate of learning occurs from the 

increase in the number of instances with practice. A negative acceleration feature of learning 

curves is produced by the retrieval of an instance faster than the previously fastest instance, 

the chance of this occurring gets smaller with increasing practice. Consequently the rate of 

improvement in performance diminishes. Anderson (1982) instead suggests the power law 

reflects compilation and strengthening processes during practice. It is the fine-tuning of 

productions that strengthens productions. The more successful experiences the stronger the 

production.  

Individual Differences in Skill Acquisition   

 Reed (1931, p.1) summarised a theoretical question posed by Thorndike (1908): 

“Does equal training make a group of individuals more alike or more different in their 

achievement?” Thorndike’s inquisition is an important consideration in skill acquisition and 

learning research as it questions the universality of learning. It cannot be assumed that 

individuals operate the same way that group data implies, that is, individuals may vary in 

processing, experience, and demand characteristics. Thus, conclusions made about 
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psychological occurrences using group data cannot be assumed to represent individual 

performance.  

Skill acquisition is largely represented by a change in performance rate and gains. 

Data that are not represented by typical learning curves are suggested to be indicative of 

methodological or measurement problems (Ackerman, 1988), however, task characteristics 

may in fact be the chief problem in measurement error and therefore cannot be discounted or 

overlooked when analysing data. Differences in acquiring skills and task performance can be 

influenced by environment and variables outside of experimental control (such as individual 

factors and their interactions). Factors, such as task requirements, task difficulty, degree of 

prior learning and ability, and motivation may be key indicators to explain possible learning 

curve deviations.  

In high stakes tasks performance pressure impacts on performance success and often 

causes below ability performance (Baumeister, 1984). The term choking under pressure 

describes this phenomenon. Although much research on choking is dedicated to high stakes 

situations, choking has been replicated in both real-world (e.g., Dohmen, 2008) and 

laboratory situations (e.g., Beilock, 2008). DeCaro, Thomas, Albert and Beilock (2011) 

describe choking under pressure phenomena as relating to the monitoring and control of 

attention. The pressure situation itself can lead to distraction, and explicit monitoring results 

in hindering working memory and attentional control. This links to motivational factors that 

mediate the amount of attentional resources and working memory features. A person’s drive 

to fulfil accuracy or time goals would affect skill acquisition learning.  

 Conscientiousness has been suggested to influence learning ability in cognitive tasks. 

For example, Colquitt, LePine and Noe (2000) found conscientiousness to be positively 

related to motivation. Task approach, such as attending to accuracy demands of the task, may 
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slow down learning and result in learning curves not reaching asymptotic rates. Conversely, 

one who is overly reliant on speed of performance rather than accuracy will also indicate 

faster approaches to asymptote and may be interpreted as automatic. The implications here 

are two-fold, results may be interpreted inaccurately due to motivational features, or, results 

may be representative of differences in learning approach. That is, automaticity may not be 

achieved by all individuals due to motivational orientation.  

Speelman and McGann (2013) highlighted the differences between group and 

individual data in an informal inquiry into the word superiority effect (where letter perception 

is more accurate when a letter is presented in the context of a word than when presented in 

isolation; Reicher, 1969; Wheeler, 1970). Data was collected over five years amongst 

undergraduate university students as part of a laboratory exercise (Speelman & McGann, 

2013). The word superiority effect was found to be present in only half of the 500 

participants (Speelman & McGann, 2013). Speelman and McGann suggest that in 

psychological research there is a tendency to focus solely on whether differences between 

means are statistically significant. In doing so, individual scores of the data set are assumed 

to reflect collective group results. Furthermore, Ruthruff, Allen, Klien, and Grabble (2008) 

also found individual variation in the automaticity of reading ability and attention, which they 

suggest may be due to individual differences in crystallised intelligence. Thus, caution must 

be taken when interpreting aggregate data. Individual trends in skill acquisition have been 

investigated by others, such as Ackerman (1987), Katzir, Ori, Hsieh, and Merian (2015), 

Phillips, Segalowitz, O'Brien, and Yamasaki (2004), Pellegrino (1988), and Stanovich 

(1980); however, no one has reported work on individual differences in the acquisition of 

automaticity. 

 Although there has been some research on individual differences in skilled 

performance, there is little research that directly focuses on whether all people, given the 
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same experimental conditions, attain automaticity on a particular task. For example, 

Ackerman (1997) investigated individual differences in skill acquisition. He found that in 

reanalysing several published findings individual differences exist between abilities, such as 

intellectual and cognitive abilities, and skill learning. However, Ackerman was concerned 

with individual differences in learning and individual differences in skill acquisition, not 

whether or not there are individual differences in attaining automaticity.  

 Individual differences in processing efficiency and the role of practice and ability have 

also been investigated by Pellegrino (1988). Pellegrino examined the issue of automaticity 

via measures of speed and accuracy of processing or task execution. He found that processing 

ability related to other abilities, specifically perceptual spatial ability. However, Pellegrino 

did not consider whether performance was automatic and how this related to ability 

measures.  

 In addition, research by Fawcett and Nicholson (1992) investigated individual 

differences in general learning deficits, specifically the ability to automatise without the need 

for conscious control, amongst children with dyslexia compared to non-dyslexic children. 

Fawcett and Nicholson examined balance performance of a range of motor skills whilst 

performing a secondary concurrent task of counting backwards. They theorised that children 

with dyslexia would have a break down in performance, that is, balance would be 

compromised, under dual task conditions. According to the Dyslexic Automatisation Deficit 

hypothesis, individuals with dyslexia may struggle to become completely fluent in both 

cognitive and motor skills, so, by introducing a secondary task, which is performed 

concurrently, attention would be distracted away from the motor skill balance task if 

performance had not been automatised. Individual data revealed support for the hypothesis 

with all dyslexic participants showing impairment in balance under dual task conditions, 

compared to only four of 19 non-dyslexic children who demonstrated a balance impairment. 
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Group data suggested a clear impairment on primary task performance for children with 

dyslexia, however, non-dyslexic children overall demonstrated automaticity of balance on 

both the primary and secondary task.  

 Whilst Fawcett and Nicolson’s (1992) findings suggest that amongst individuals with 

dyslexia automatisation of tasks extends beyond the phonological skills in learning to read to 

motor skills, what is unknown is what may be contributing to a deficit of the acquisition of 

automaticity. That is, no further evidence can suggest why automaticity of balance failed to 

develop.  

 Whilst there have been many studies considering the quantitative individual differences 

in automaticity (e.g., Katzir, et al., 2015; Phillips et al., 2004; Ruthruff et al., 2008; 

Stanovich, 1980), they have been largely limited to how much practice and under what 

conditions automaticity develops. Yet individual differences in the rate of automaticity 

acquisition and how automaticity may affect performance has been overlooked. That is, 

previous research has not considered the qualitative difference in performance in the 

transition from controlled to automatic processes in individuals or whether automatic 

performance correlates to the ability to transfer skill.  

 Rowell, Green, Kaye and Naish (2015) investigated the pervasiveness of a particular 

processing strategy while people acquired a skill. The efficiency of reliably applying a 

particular effective processing strategy is suggested to be reflective of the development of 

automaticity (i.e., ACT and instance theory). Rowell et al. found that not all participants 

adopt a more efficient strategy; they do however, improve the application of a less-efficient 

strategy. Rowell et al.’s findings suggest that efficiency may differ individually, that is, one 

strategy may not be deemed efficient by another individual. Whilst this is an important 

finding in the individual differences in learning, the authors did not consider whether or not 
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the participants achieved automaticity. Identifying participants who were not automatic may 

provide further insight into what factors separate those who achieve automaticity and those 

who do not.  

 Schneider and Shiffrin (1977) suggest that under appropriate conditions and sufficient 

practice subjects have the capability to develop a skill to automaticity. However, researchers 

have not considered whether this capability is universal. A number of studies have attempted 

to draw conclusions regarding individual differences and automaticity; however few have 

considered whether or not automaticity has been individually attained. Research in the 

domain of automaticity has been devoted to determining how much practice and under what 

conditions individuals are able to develop automaticity, but none (to the author’s knowledge) 

have determined whether or not automaticity has been achieved at an individual level 

compared to group data trends.  

 Automaticity is assumed to be achievable and universal in application; however, the 

Stroop effect has caused some concern over the misrepresentation of automaticity in a widely 

replicated phenomenon. The supposed ubiquity of automaticity affects how we interpret, 

diagnose, and implement automaticity, all of which have a profound effect on how we deal 

with learning. If automaticity is found to be sporadic in its attainment, this may change how 

we determine best learning practice. Given the current discrepancy in the interpretation of 

automaticity’s occurrence and the recent attention to issues surrounding the use of group 

averages, it is questionable whether automaticity is as pervasive as the research suggests.  

Summary 

  This chapter has demonstrated that automaticity is acquired through different 

theoretical mechanisms according to the ACT and instance theories; however, each theory 

appears to support the importance of achieving automaticity for successful skill learning. 



 57

Furthermore, individual differences have been found to deviate from the typical learning 

curve and development of automaticity. This finding questions the universality of such 

theoretical conclusions. Educators are still striving for automaticity as best practice, and this 

position is certainly supported by the conclusions of Anderson (1982) and Logan (1988); 

however is learning to automaticity the best learning practice for all individuals? Chapter 4 

extends the literature on skill acquisition into the domain of skill transfer in order to 

determine whether the transfer of training research indicates any role for automaticity in skill 

learning. 
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Chapter 4: Transfer 

Transfer of training describes the ability to apply skills learned in one situation in a new or 

changed context. This is of particular concern in education and training programs as skills are 

often overlearned in order to be reliably applied beyond the context in which they were 

learned. This chapter evaluates the transfer of training research in order to highlight the 

predictions that can be made regarding the transferability of automaticity. Possible prediction 

scenarios according to the literature will be presented with particular emphasis on transfer 

predictions based on Anderson’s (1984, 1987) ACT theory and Logan’s (1988) instance 

theory. The aim of this chapter is to determine whether the transfer of training theories and 

empirical evidence suggest that automaticity is transferrable. 

 

Transfer of training is an important topic concerning precise and expert skills, such as 

medical surgery, pilot-training programs, tactical training units, and in domains such as 

sporting excellence and dance performance. Transfer research is typically concerned with 

determining how much transfer can be predicted based on previous training performance in 

order to improve the design of training programs. Transfer is traditionally referred to in three 

possible outcomes: positive, negative, and zero transfer. Positive skill transfer is generally 

referred to as the degree to which learning in one situation is useful in another (Speelman & 

Kirsner, 2005). That is, positive transfer is considered to be the ability to which one can apply 

knowledge, skills and attitudes beyond the original context (Anderson & Singley, 1993; 

Newstrom, 1984; Singley & Anderson, 1985, 1989). Negative transfer refers to a situation 

where knowledge developed in one context results in performance that is worse than if the 

task had never been performed (Anderson, 1987; Luchins, 1942; Singley & Anderson, 1989). 
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Finally, zero transfer describes the situation where knowledge gained in one situation 

provides no benefit in a new or second task (McKendree & Anderson, 1987).  

The theory of skill transfer can be traced back to the behaviourist learning theory. 

Early research (e.g., Thorndike & Woodworth, 1901) was concerned with whether transfer 

did occur. Thorndike and Woodworth (1901) hypothesised that transfer is maximised to the 

degree that there are identical stimulus and response elements in the training and transfer 

settings. Thorndike’s (1906) research was undertaken in response to the methods of education 

at the time that supported a broad view of transfer developed from the Doctrine of Formal 

Discipline (Singley & Anderson, 1985). The doctrine was a general educational approach that 

suggested observation, attention, discrimination, and reasoning are ‘faculties’ of the mind. 

Much like they way we would exercise a set of muscles the doctrine suggested that the mind 

should be ‘trained’ independent from context for some courses (Singley & Anderson, 1985).  

General transfer of skill from this perspective suggested that training in one domain would 

extend transfer beyond that context. For example, tasks that involve general reasoning 

faculties, such as chess, should transfer to other tasks such as computer programming. 

Thorndike extended this general view of transfer some years later to show a much narrower 

transfer scope than previously proposed by the formal doctrine (Singley & Anderson, 1985). 

The idea of identical elements limits transfer to only tasks that shared common elements so 

that transfer can be determined by the level of similarity between training and transfer 

components (Subedi, 2004). Transfer may then be considered a function of the number of 

common elements between the two tasks (Gray & Orasanu, 1987). Thorndike (1906, p. 246) 

stated that “the mind is so specialised into a multitude of independent capacities that we alter 

human nature only in small spots, and any special school training has a much narrower 

influence upon the mind as a whole than has commonly been supported”. Thus, training in 

one kind of activity would transfer to another, only if the activities shared common elements.  
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Declarative knowledge, the knowledge of facts or static knowledge, was, according to 

Yum (1931), a significant variable in transfer where the similarity of stimuli, such as in 

meaning or sound, would facilitate complete positive transfer. Conversely, if the required 

responses in two tasks were similar, not the stimuli, then transfer was negative (Bruce, 1933). 

These studies primarily considered facilitation and interference in declarative memory as a 

predictor of transfer success. Some have suggested (e.g., Gick & Holyoak, 1980; Hinsley, 

Hayes, & Simon, 1977) that individuals are quite poor at transferring knowledge and some 

research (e.g., Bott, 1979) has shown that people may even choose inappropriate knowledge 

to perform the transfer task and performance may suffer.  

Empirical research supports the usefulness of identifying identical elements as a 

means of increasing the retention of both motor (Crafts, 1935; Gagne, Baker & Foster, 1950) 

and verbal behaviours (Duncan & Underwood, 1953; Underwood, 1951). Thorndike’s 

experiments (Thorndike, 1922; Thorndike & Woodworth, 1901) showed support for the 

identical elements theory, however, some transfer of skill was also demonstrated even when 

identical elements were not obvious, suggesting that transfer may not be limited to only 

identical task components. The concept of shared skills or skill overlap may seem plausible, 

as there are many tasks in which transfer could be a function of shared training and transfer 

task components. For example, arithmetic facts or simplification of equations may utilise a 

specific rule that could be used in transfer contexts. Furthermore, underlying units of 

knowledge of language comprehension may also be retained and called upon in transfer 

situations (Singley & Anderson, 1989). However, failure of transfer does occur despite 

shared or skill overlap, thus the interrelationship of shared components may be difficult to 

conceptualise according to Thorndike’s identical elements theory. Furthermore, as the notion 

of transfer implies flexibility and adaptation of learned skills, Thorndike’s identical elements 

theory would appear to be incompatible with the stimulus-response pairing of elements 
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concept. For transfer to be expected to occur in only situations where the same responses to 

the same stimuli are required, the individual may simply be doing the same as before rather 

than something new and adaptive (Singley & Anderson, 1989). Singley and Anderson (1989, 

p. 6) further suggest that “no two situations are truly identical; they are merely perceived as 

such psychologically”, which further questions the real world application of Thorndike’s 

theory as learning situations rarely provide identical situations, contexts, or conditions.  

The ACT Theory and Transfer 

The modern version of Thorndike’s identical elements theory is referred to as 

“common elements”, which is based on Anderson’s (1983) ACT theory of skill acquisition. 

The ACT theory (as discussed in Chapter 3) encompasses a general theory of skill 

acquisition, thus, skills are suggested to be general in nature and can be applied to contexts 

beyond the acquired context. What mediates transfer performance is the number of shared 

components between the learned context and the new context. That is, transfer is dependent 

on the degree to which productions acquired in one context can be used in the transfer 

context. As explained in Chapter 3, skilled behaviour results from the compilation of 

declarative knowledge (facts) about domain procedures. These procedures are triggered under 

highly specific conditions, so that a procedure learned in one part of a domain will not be 

used in another part of the domain unless the conditions of use of the procedure are identical 

in the two cases. Thus, for transfer to occur between two tasks, the tasks must share common 

procedures or elements.  

Transfer is expected to be high and positive when an individual goes from one set of 

problems to another set of similar problems that can be solved using the same productions. 

This idea encompasses the fundamental principle of the ACT theory, the “use specificity of 

knowledge” (Anderson, 1987, p. 26). It is not knowledge that is acquired with training and 
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practice that is transferred, as implied by the identical elements theory, but a particular use of 

knowledge (Anderson, 1993). Skill transfer may then be considered a higher order process 

than acquiring the skill itself (Anderson, 1982; Singley & Anderson, 1985). The use 

specificity of the knowledge principle predicts that there will be little or no transfer between 

sub-skills within a complex skill domain when knowledge is used in different ways, even 

though the sub-skills might rest on a common body of declarative knowledge. Thus, the way 

in which the common elements theory differs from the identical elements theory is in the 

more abstract identification of cognitive elements than typically associated with Thorndike’s 

stimulus response elements.  

There is ample empirical support for the general or common elements theory. For 

example, Singley and Anderson (1985) investigated transfer between text editors: ED, EDT, 

and EMACS. The goal structure was identical for ED and EDT (they both utilised the same 

general method of editing), but the surface structure was different (they used different 

command names for the same functions). The goal structure was different for EMACS, but 

the surface structure was similar to ED and EDT. The prediction was that there would be near 

perfect transfer between text editors within the goal structure, which was identical (i.e., ED 

and EDT), and little transfer when the goal structure was different (i.e., between ED/EDT and 

EMACS).  

Singley and Anderson (1985) based their experiment on the identical production rule 

theory. In order to predict the exact amount of transfer demonstrated by the editors, Singley 

and Anderson encoded each of the editors in a production system model based on Card, 

Newell and Moran’s (1983) method for analysing a task. Whilst the three models had several 

identical production rules, specific keystrokes controlling the edits differed between editors. 

The two line editors also demonstrated greater overlap in production rules than with the 

screen editor. To account for this, a percentage of production rule overlap was calculated 
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taking into account the frequency of the production rule. The results supported the prediction 

that near perfect transfer between text editors would occur when the goal structure was 

identical (i.e., between ED and EDT), and little transfer when the structure was different (i.e., 

between ED/EDT and EMACS).  

A study by Kieras and Bovair (1986) investigated the transfer of related procedures 

for operating a control-panel device. Participants read a series of step-by-step instructions to 

get an indicator light to flash. It was expected, based upon Keiras and Bovairs’ (1983) 

previous work, that as the procedures were related, some transfer of training might occur 

from procedures learned earlier. Strong positive transfer occurred when the individual 

production rules from one procedure could be re-used in the next procedure. Kieras and 

Bovair’s findings suggest that participants were able to translate instructions into a 

declarative representation of a complete production rule, which could then be related to other 

representations. When an identical representation existed it could then be reused. This would 

appear to support Anderson’s (1982) theory where declarative representations can be 

interpreted by a general production rule for instruction. That is, participants are able to filter 

new and learned material to formulate a higher order production set by composing or 

chunking multiple learned steps into smaller more efficient production representations.  

Frensch (1991; experiment two) investigated the process of composition in 

Anderson’s ACT theory. According to ACT it was hypothesised that when trained on a six-

step mental arithmetic task, participants would learn to chunk or compose multiple 

productions together, which would result in faster performance in transfer tasks that shared 

more steps with the original task. Thus, performance would be a function of shared original 

task components. The results supported the prediction that participants were faster on the 

second task compared to the first task due to the increase in composed steps from the original 
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task. Thus, the process of composition appears to play a vital role in the acquisition of skill 

and transfer of training.  

 Models of transfer based on skill acquisition theories assume learning involves a set 

of general problem-solving skills, and a process of specialisation of general knowledge to a 

transition to efficient knowledge specific to a particular task (Anderson, 1982, 1987; Logan, 

1988; Taatgen & Anderson, 2002; Taatgen & Lee, 2003). That is, knowledge is separated 

into fixed general knowledge and task specific strategies. Others (McClelland et al., 1986) 

also support this view of general and task specific strategies in neural network models of 

complex tasks.  

Although there appears to be empirical evidence supporting the compilation and 

production rule conceptualisation of Anderson’s ACT theory, there are a number of issues 

with the production rule notion. For example, production rules are a very complex 

representation and prove to be problematic when trying to determine how sets of rules are 

represented in the brain (Taatgen, 2013). Furthermore, the theory also assumes that 

production rules are highly task specific; this does not indicate how skills may also be 

interrelated (Taatgen, 2013). Two assumptions of the specificity of production rules are also 

dubious: 1) a production rule typically specifies multiple elementary comparisons and 

multiple elementary actions; 2) specific knowledge elements are held by production rules.  

 According to the ACT theory, transfer may be assumed to be a fixed and calculated 

state based on the number of similar elements; however, as Taatgen (2013) identifies, 

predicting transfer based on shared components is ambiguous and problematic. Transfer may 

be instead dependent on other factors, such as the amount of expertise in particular skill sets. 

The amount of transfer to be expected may vary with the amount of expertise achieved, so 
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that higher levels of expertise may present a greater likelihood of transfer or skill retention 

due to more skill experience.  

 Frensch and Geary (1993) investigated the effects of training on transfer performance. 

They devised a task where 17 out of 21 productions used in a simple addition task were also 

used to form a complex addition task. However, Frensch and Geary found medium practice 

groups showed larger improvement on the complex problems than high practice conditions. 

They concluded that practice does affect solution time, yet, practice which was expected to 

lead to expertise, did not appear to increase transferability of production rules. However, it 

may be possible that participants were already skilled at simple addition so that further 

practice may not have been of any benefit. Anderson and Fincham (1994) found similar 

results in respect to practice and transfer as Frensch and Geary reported. Using an analogical 

reasoning task, limited skill transfer was demonstrated between a rule-only practice task to a 

declarative example-transfer test. Skill transfer was not retained some days after the initial 

transfer trial. Anderson and Fincham’s results indicate that whilst immediate transfer of skill 

was demonstrated, skill transfer did not appear to benefit learning overall with the transferred 

skill quickly diminishing soon after the initial trail.  

Whilst there is some empirical evidence for Anderson’s (1982) theory that skill 

transfer can occur beyond the context in which the skill is acquired, the role of other 

variables, such as expertise or automaticity, appears to be missing from the theory. Variation 

in transfer performance cannot be accounted for by referring to ambiguous production rules 

in the ACT theoretical framework. In line with Taatgen's (2013) proposition, expertise or the 

acquisition of automatic performance needs further investigation. The amount of transfer may 

be mediated by the amount of skill acquired. Thus, it is plausible that automaticity may be a 

contributing variable in the transfer as automaticity of component skills are suggested to be 

required for expert performance (Samuels & Flor, 1997).  
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Transfer predictions of the instance theory. 

 The instance theory of automaticity (Logan, 1988, 1990) suggests that skills are 

specific to the context in which they are acquired and may be difficult to transfer to a new 

context. Thus, based on the parameters of the instance theory it is predicted that no transfer 

can exist between different tasks. The theory revolves around the retrieval of instances, 

therefore if there are no instances to call upon then there would be no transfer of skill. That 

is, if the new task involves specific events encountered in the old task, transfer is possible, 

however, if new stimulus conditions are present there will be no instances to draw upon, and 

so performance will rely on the execution of an algorithm that will result in performance 

similar to pre-practice levels.  

Many studies to date support Logan’s instance theory and have demonstrated the limit 

of transfer as implied by the theory. A classic example is the alphabet arithmetic task 

discussed in Chapter 3. Participants were given statements with one half of the alphabet (i.e., 

A–J or K–Z) and were asked to identify whether the answer was true or false (Logan & 

Klapp, 1991). Initially, participants were expected to count through the alphabet in order to 

determine the truth of a statement, but with practice the counting algorithm could be replaced 

by memory for the alphabet-arithmetic facts. However, when asked to perform the equations 

using the other half of the alphabet (i.e., K–Z or A–J) very little transfer resulted. This should 

not be surprising because, when participants were exposed to problems involving letters from 

the second half of the alphabet (as opposed to the first half of the alphabet in the initial task), 

they would have no relevant instances stored in memory. They would therefore be required to 

resort to the counting algorithm again. As a result performance time would increase. Logan 

(1988) suggests therefore, that skills are item-specific; that is, skills acquired are constrained 

to the specific items experienced during training. Thus, no transfer can occur between items 

that have not been experienced before. Interestingly, some amount of positive transfer did 
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occur in Logan and Klapp’s experiment—performance times with the second set of items did 

not return to the slow pre- practice performance times.  

Lassaline and Logan (1993) investigated automaticity and transfer in visual 

numerosity in order to determine the specific nature of memory representations. Lassaline 

and Logan’s (1993) task consisted of five unique patterns for each level of numerosity (i.e., 

pictures of dots, ranging in number from six to 11). Participants were required to indicate on 

a response pad how many dots were displayed as quickly as possible without looking at the 

response pad. It was expected that participants would start off by counting each item, and 

with practice they would recognise the picture and remember the appropriate response rather 

than count the items. Lassaline and Logan conducted seven experiments in which they altered 

the transfer phase to identify which task elements were held in memory and were 

successfully transferred. The first experiment involved 12 training sessions of five unique 

patterns for each level of numerosity (6, 7, 8, 9, 10, and 11). In session 13 a transfer task was 

introduced with a new set of numerosity configurations.  

Numerosity judgement was suggested to be a simple task in which RT would 

demonstrate a distinction between a counting algorithm and the memory retrieval process 

(Lassaline & Logan, 1988). That is, initial counting strategies would reflect greater RT, as the 

number of elements displayed on the screen also increased. RT was found to be a function of 

the number of elements, where response patterns reflect a positive linear function with a 

mean slope of 300 ms per element from four to 10 items (Chi & Klahr, 1975). In session 13 

where a new set of numerosity configurations was introduced performance was disrupted. RT 

performance increased to the level obtained during early training, indicating evidence of item 

specific learning (Lassaline & Logan, 1993).  
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In Lassaline and Logan’s (1993) second experiment, training was reduced to four 

sessions. The same spatial arrangement of numerosity configurations was utilised, however, 

instead of asterisks different single letters (i.e., A, E, I, O, or U) were arrange in the 

configuration. The transfer task introduced three different conditions: old/old – where 

patterns were the same as those used during training; new/new – where new patterns only 

seen in transfer with different spatial arrangements were used with a new set of target letters 

(i.e. ‘E’ instead of ‘A’ previously used); and old/ new – where the same patterns and spatial 

arrangements were utilised with different letters than those seen in training. Results indicate 

that learning was item specific as new/new transfer performance returned to pre-beginner 

levels. Furthermore, old/new and old/old transfer performances were not significantly 

different suggesting that element identity for item specific learning is not necessary in this 

type of task. In the following five experiments, elements such as colour of items and degree 

of rotation of configurations were changed. It was found that new/new items did not transfer 

successfully and that old/new items transferred successfully as long as the item changes were 

not too different to the original transfer task.  

Lassaline and Logan found that memory assisted algorithmic transfer did not occur 

with new items; performance returned to early training levels indicating that learning is item 

specific. Lassaline and Logan (1993) concluded that the aforementioned results demonstrate 

item specific learning and limited transfer of memory-based learning. However, as transfer 

was only tested over one session it is difficult to conclude what effect automaticity has on 

transfer and thus overall learning. Although Lassaline and Logan’s intentions were to 

investigate the specificity of learned items on transfer in order to determine which elements 

are held in memory, testing transfer from only one session does not provide enough insight 

into the nature of transfer nor does it provide insight into the effect or recovery of a transfer 

disruption.  
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Green (1997) too found that performance did not slow to levels seen in pre-training. 

Green used a visual numerosity task where participants were presented with eight to 10 items 

on screen. They were then asked to count the number of items displayed. These patterns were 

repeated during the training phase. In the transfer phase patterns differed from the original 

ones presented in training by either overall patterns (experiment one) or items used in the 

configuration (experiment two). As the patterns differed in some way in transfer, Green 

predicted that performance would be disrupted. Whilst Green’s prediction was supported, 

performance was not disrupted in the manner predicted; it was expected that as only item 

specific changes were made, some general learning of the configurations could occur 

resulting in partial skill transfer, however participants showed a large cost to transfer 

performance with times slowing to near session 1 response levels. The results suggest that 

only item identity information, instead of pattern encoding information, was used to support 

automatic responding.  

Logan (1998) investigated what is learned during training and what can be 

transferred. A category search task was used where participants were asked to search through 

one word or two word displays for items of a target category. Target items appeared in the 

same locations during training trials, however in transfer trials item locations were changed. 

Based on the item specificity aspect of the instance theory it was predicted that performance 

would be disrupted due to the change in item location. However, what was found was that 

although visual information is automatically encoding during training, transfer was dependent 

on the number of words associated with each location. Logan referred to this as cue overload. 

In experiments one and two, location change did not impact upon transfer performance. In 

experiments three, four, five and six, cue overload was investigated to determine whether the 

non-retrieval of location in transfer was due to too many words associated with too few 

locations. Significant sensitivity to location change was found. Thus, Logan concluded that 
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individuals encode locations of items as instances resulting in impaired performance when 

locations are changed in transfer.  

Logan’s experiments support claims of item specific transfer, however caution needs 

to be utilised in generalising about the nature of transfer. Speelman and Kirsner (2005) 

suggest that item general transfer occurs under varied conditions, thus it is the task conditions 

that determine transfer not the nature of skill. Speelman and Kirsner suggest the contexts of 

training experiments are in general too restrictive and reflect artificial conditions, which 

cannot reflect the real life applications of skill transfer, thus making it difficult to predict 

transfer from training performance or elements. Instead they suggest that it is the task 

conditions that led to Logan’s (1988, p. 63) findings of item specific transfer: “skills do not 

have a fixed nature, but rather develop as an adaptation to the environment.”  

Predicting transfer from training performance. 

 Transfer of skill research has primarily been concerned with the conditions that 

facilitate transfer; yet, this has produced varying positions (Speelman & Kirsner, 2005). An 

accepted generalisation is the overlap in knowledge between the learned and new skill—the 

greater the knowledge overlap, the more transfer is expected to occur. However, central to the 

issue of skill transfer is the amount to which skills are automated or how easily 

skills/components/instances are retrieved from memory. As suggested by Logan’s instance 

theory, an algorithm needs to be retrieved in a fast efficient manner to be utilised in a task, 

thus the fastest retrieval wins the race and is used. Anderson’s ACT theory posits that the 

usefulness of one set of skills for another task mediates transfer performance. Automating 

task productions and creating task general skills leads to automated execution of a skill to 

another task. 
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Previous studies (e.g., Speelman & Kirsner, 1993; Speelman, 1995) have tried to 

predict transfer performance based on training performance with little success. According to 

the ACT and instance theories skilled performance is governed by the power law of learning 

(see Chapter 3) and is characterised by automatic activation of responses from compatible 

stimulus conditions (see Chapter 2). Thus, both theories would consider if task conditions and 

performance goals were the same as in the training task (Speelman et al., 2011). In most 

cases then, this would be a continuation of the power function that describes the improvement 

in performance during training (Newell & Rosenbloom, 1981). This was evident in Speelman 

and Kirsner’s (1993) findings. They found that when task conditions remain unchanged, 

performance for 288 trials was able to predict the subsequent pattern of improvement. Given 

that old skills can predict future performance on the basis of a power function description of 

past performance, transfer performance may also be predictable.  

 Speelman and Kirsner (2001) investigated whether transfer performance can be 

predicted from training performance and whether or not old skills continue to improve in the 

context of new tasks, according to the power function that describes their original 

improvement. Speelman and Kirsner utilised a two-part task design where each task was 

performed in sequential order. Participants were trained with some of the sub-tasks and then 

introduced to a new task that involved the whole set of sub-tasks. In the new task the old 

skills that were developed to perform the original set of sub-tasks could be executed 

independently and prior to attempting the new set of sub-tasks. What they found in the first 

two experiments was that the complexity of the transfer task affected how much transfer 

could be predicted. The experiments indicated that any change in the transfer task would 

affect the performance of ‘old’ skills causing a disruption of transfer performance in ‘new’ 

tasks. In the third experiment the amount of practice and the change of complexity were 

investigated. Based on these findings it was questioned whether performance of ‘old’ skills 
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are bound to specific task constraints. Speelman and Kirsner predicted that by increasing 

practice trials and establishing automaticity in training, ‘old’ components would become 

embedded or ‘tied’ to the constraints that the ‘old’ skills were learned under, and thus a 

greater disruption would be seen due to the establishment of greater automaticity. However, 

only partial transfer occurred, contrary to Speelman and Kirsner’s predictions. These findings 

also contradicted the interpretations of the ACT theory and instance theory, where 

performance may be suggested to continue in accordance with power functions that describe 

training performance. Even though a slight disruption of performance may be expected, 

learning should still continue in accordance with training performance.  

It is notable that by altering task complexity, Speelman and Kirsner (2001) also 

altered the visual context of the task. Speelman et al. (2011) suggest that this could have 

altered the conceptual context by changing the number of calculations, resulting in the 

disruption of performance. Therefore, it is not possible to determine whether it was the visual 

appearance or a change in perceived complexity of the task that was responsible for the 

transfer disruption.  

 Speelman et al. (2011) also found an immediate disruption of performance when 

changing the conceptual context of ‘old’ target problems to that of a ‘new’ context during a 

transfer phase whilst avoiding any changes to the visual context of the task. Performance was 

predicted to continue in accordance with power functions that described training 

performance, however Speelman et al. found performance of ‘old’ skills was disrupted during 

‘new’ task additions. Such a result is a challenge for the theories of Anderson (1987) and 

Logan (1988). According to these theories, it can be interpreted that performance of ‘old’ 

skills should remain the same and demonstrate complete transfer when ‘new’ skills are added 

because well learned skills suggests a more durable and reliable recall of how to perform the 

task that should withstand all minor context changes. However, performance in transfer trials 
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does not seem to support the claims of prominent theories as skill performance can be 

disrupted by the presence of a novel task. What was interesting in Speelman et al.’s findings 

was that by dispersing ‘new’ (or distractor) tasks amongst ‘old’ tasks where both the transfer 

and training conditions were the same, performance of the ‘old’ task was disrupted despite 

the fact that nothing in relation to task strategy was altered. The way in which the participants 

interpreted the changed task in transfer could be influenced the performance of old skills. 

Thus, Speelman et al.’s findings could suggest that even minor subtle changes may disrupt 

the reflex like nature of automatic skills, that is, of course, if participants had developed 

automatic performance. 

 Speelman and Parkinson (2012) utilised a similar experimental design as Speelman et 

al. (2011) using a two-part task: part one, a simple ‘correct’ vs. ‘incorrect’ answer to a target 

multiplication problem (e.g., 6x2) ; followed by part two, a distractor problem where 

participants were asked to add or subtract a number from part one’s answer. What Speelman 

and Parkinson found supports the findings of Speelman and Kirsner (1993) and Speelman et 

al. (2011). That is, any change to part two of the task in transfer trials results in a disruption 

of performance on part one of the task; thus, the change in the distractor problems appears to 

increase RT on the target problem in part one. On the basis of these findings, in addition to 

the findings of Speelman and Kirsner, and Speelman et al., the disruption observed during 

initial transfer trials appears to contradict the predictions of the most prominent skill 

acquisition and automaticity theories.  

 Healy et al. (2005) investigated whether secondary task changes impact upon 

successful transfer of learned skills. Research (e.g., Battig, 1972, 1979) has found that for 

retention of learned skills to be maintained and transferred, learning should contain 

conditions with interfering information. Healy et al. utilised a duration-production 

performance task where the primary task in training involved participants learning to produce 
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fixed intervals of time expressed in arbitrary units. In the transfer trials, new intervals of time 

were introduced with previously learned intervals from training. There were three different 

training conditions; a control condition where no secondary task was introduced; an easy 

condition where participants were given a single letter of the alphabet and were required to 

simultaneously repeat the letter aloud in addition to completing the time duration task; and a 

difficult condition where participants were required to recite the alphabet backward by every 

third letter starting from the letter cue given at the beginning of each training trial (i.e., if the 

cue was ‘w’ the order of recital would be ‘w’. ‘t’, ‘q’, etc.).    

 Healy et al. (2005) found in experiment one that the difficult task condition resulted in 

disrupted transfer performance, conversely, the easy task condition demonstrated greater 

transfer of time duration learning. Healy et al. suggested this was due to the fact that 

operations used during difficult training could not be used in transfer, this would appear to 

support the common elements and specificity of training theories from the ACT and instance 

theories. Further to this, experiment two found that participants who experienced changes to 

the secondary task in transfer also demonstrated a disruption in transfer performance to levels 

observed in session one. The results of Healy et al.’s study suggest support of the specificity 

of training principle and further suggest that despite training performance improvement 

context changes can impact upon transfer performance.  

Thus far, a picture has emerged that transfer is possible if the transfer task 

components are close to the ones experienced in the training conditions. Predictions 

regarding transfer have typically been informed on the expectation that automatic 

performance results from extended practice. The end product of extensive practice and skill 

learning can be automaticity, and the widely accepted view is that learning a skill, such as 

learning the times tables, will enable performance in other tasks, such as higher order 

division and using formulae. Automaticity is suggested to be demonstrated as a decreased 
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power function that describes training performance (Logan & Etherton, 1994), and is implied 

to be an expected outcome of practice performance, but it has not yet been noted as a related 

factor in predicting transfer performance. The aforementioned studies have not explicitly 

considered whether the degree of automaticity may influence the transferability of training 

performance. The current inconsistencies in the research call into question whether 

automaticity should be considered a variable in the transfer of skill. Do automatic skills 

transfer easily? Current theories are unclear on this position.  

Predicting transfer based on automatic training performance. 

Automaticity is considered the end product of extensive training practice, and is often 

implied to be transferrable or useful in other contexts (i.e., times tables are typically practiced 

for rote recall to be used in other more difficult mathematical problems). Yet, no theory 

explicitly considers the relationship between automaticity and transfer or questions whether 

automaticity influences the transferability of skill. This is surprising given that automaticity 

and transfer appear to be implicitly tied in the predictions of transfer performance. Given that 

automaticity requires extensive practice it is questionable whether in an educational context, 

it is worth waiting for automatic skills to develop in students before moving on to more 

complex skills. In other words, do automatic skills transfer more easily than less automatic 

skills? This is generally of concern in educational and vocational settings for both adults and 

children. A central issue explored in this thesis is what factors affect transfer, and 

specifically, how an underlying assumption surrounding skill acquisition, the development of 

automaticity, affects skill transfer.  

As demonstrated in the literature, skills acquired in one situation may also be 

transferred to another. Skill acquisition theories suggest that effective and efficient learning 

will produce automatic component parts. Accordingly, automaticity is considered an essential 

factor in learning to master basic level skills prior to attempting more complex skills (Chase 
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& Simon, 1973; Logan, 1985). For example, students are often trained on arithmetic facts, 

such as multiplication, so that they can be automatically retrieved in order to free up 

cognitive load before attempting harder math combinations such as division (Baroody et al., 

2009; Cummings & Elkins, 1999). Furthermore, skill transfer has been demonstrated to occur 

beyond the conditions in which skills are acquired (e.g., Anderson, 1982). Yet there is a lack 

of empirical evidence that transfer is explicitly facilitated by automaticity. As it stands some 

evidence points to transfer being inhibited by automaticity, whereas other evidence points to 

a facilitative effect. Educational research (i.e., Baroody et al., 2009; Cumming and Elkins, 

1999) advocates that automaticity is essential for basic literacy and numeracy to develop 

higher-level cognitive skills, however, this assumption appears to be based only on inference. 

To date no studies have considered whether fundamental numeracy skills have been 

developed to automaticity or how this might affect (or limit) achievement in the long term. 

Although, this assumption applies that learning is a staged process, where the aims is that a 

trainee will master one set of skills before being introduced to the next set, there is a disparity 

between the theoretical expectations of skill acquisition and the empirical findings in the 

transfer of training research that supports this view of ‘waiting’ for automaticity..  

Transfer is inhibited by automaticity. 

As presented in Chapter 2, the common view of automaticity lacks a clear and 

consistent definition. Automaticity has been described as the uncontrollable response to a 

given stimulus, which prevails in all contexts or situations in the absence of conscious 

awareness or effort (Hasher & Zacks, 1979; Posner, 1978). Schneider and Shiffrin (1977, p. 

2) suggest that an automatic process is difficult to “suppress, modify, or to ignore”, implying 

that automaticity is reflexive. Yet it is unclear whether automaticity is bound to the context 

under which it was established, resulting in ‘fixed’, context bound execution that is resistant 

to modification. As stated in Chapter 3, Hatano and Inagaki (1986) suggest that expert skills 
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can be categorised into two types: routine expertise, and adaptive expertise. What Hatano and 

Inagaki’s theory of expertise suggests is that automaticity may involve highly constrained 

skills that are only useful under the conditions in which they were acquired. Thus, practice 

leading to automaticity creates context bound skills that are unaffected by context changes 

and may be considered inflexible.  

Automaticity up to this point has been depicted as a process that is stimulus driven, 

occurs without intent, is capacity free, and cannot be derailed or interrupted; this definition of 

automaticity questions whether automaticity is a limiting factor in some situations where 

flexible adaptable skill is required. From the literature presented in Chapter 2, this question 

remains unanswered.  

Transfer is facilitated by automaticity. 

 Practice is suggested to increase transferability, and a well-learned task can 

successfully transfer (Keiras & Bovairs, 1983). But there appears to be no empirical 

discussion of automaticity as a variable in influencing transfer. In the literature spanning skill 

acquisition, expertise and educational research, automaticity is implied to be an enabler of 

transfer. That is why children are rigorously taught to memorise sight words, simple 

mathematical problems such as times tables, and even musicians are trained so that recall of 

musical notes are not needed to be considered when attempting to improvise a new tune. 

Furthermore, reading is considered a highly automatic skill. Expert readers do not need to 

consider the identity of a letter, word composition, or meaning when they encounter a new 

reading context such as font style, or format. Thus automaticity would appear to facilitate 

transfer.  

There has been some suggestion that practice reduces context changes on a secondary 

task. Ruitenberg, Abrahamse, De Kleine, and Verwey (2012) investigated context 
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dependence of a memory based sequence task. Participants practiced two 6-key letter 

sequences presented in either blue or yellow, given at random order. A go/ no go signal was 

given with a fixation cross in either red (withhold sequence/ no go) or blue.(repeat presented 

sequence/ go). There were two practice conditions; in the first limited practice-condition 

participants completed 50 practice trials, and in the extended practice condition participants 

completed 250 practice trials per sequence. After a 2 minute break participants performed the 

sequences in one of three context conditions; in the same context condition, the sequences 

were presented in the same colours as practice; in the reversed context condition, the 

sequence that was formerly presented in blue was now presented in yellow; and in the novel 

context condition the learned sequences both were presented in red. Ruitenberg et al. found 

that performance was equally impaired when the stimulus colour was reversed, whereas, 

sequencing performance was unaffected in the novel context condition relative to the same 

context condition. Performance impairment in the context reversal condition demonstrated  a 

reduction in RT in the limited practice group, compared to the extended practice group. 

However, this group result was not considered statistically significant. They concluded that 

context dependence decreases as practice increases.  

Interestingly, Ruitenberg, Verwey, and Abrahamse (2015) found that context 

sensitivity is facilitated by practice. That is, context dependent retrieval becomes context 

sensitive to practice, compared to Ruitenberg et al. (2012) who suggest context dependent 

filtering decreases with practice. In Ruitenberg et al.’s  (2015) study participants were asked 

to respond to the location of a target that was presented in one of the four fixed placeholders 

that were horizontally aligned. At each trial a distractor (differing in colour from the target 

item) was presented within another placeholder, creating stimulus response interference. 

Rutinberg et al. found participants were able to filter out the distractor, however, performance 

declined when the relationship between target and distractor locations (i.e., the context) was 
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changed. Nevertheless, with practice this context effect is found to decrease (e.g., Hikosaka 

et al., 1999; Verwey, 1999), where sequencing performance transitions from stimulus driven 

to being representation driven. Thus, performance develops an internal representation (e.g., 

motor chunk) in response to the first stimulus of the sequence leaving both task relevant and 

irrelevant information to be ignored (Ruitenberg et al., 2012). However, context may still 

affect task performance if the context is similar or no clear distinguishability can be made; 

then, context dependent performance may be due to associative learning (Anderson et al., 

1998; Wright & Shea, 1991). During sequence acquisition, continuous pairing of context 

features with sequential information causes associations between task-relevant and irrelevant 

information, just like the continuous pairing of two stimuli can result in associations.  

 Simulator training has repeatedly demonstrated that skill can transfer beyond training 

situations into applied settings (e.g., Stefanidis, Scerbo, Montero, Acker, & Smith, 2012). For 

example, Stefanidis, Scerbo, Sechrist, Mostafavi, and Heniford (2008) investigated whether 

novice students in laparoscopic simulator training develop automaticity (defined as the ability 

to multitask in this experiment) with accumulated experience. Stefanidis et al. (2008) found 

that secondary task performance improved with practice as participants became more 

comfortable and proficient with the primary laparoscopic task. Furthermore, they found that 

while some signs of automaticity were evident such as simulator time improvement and 

increased accuracy proficiency, the point which other paradigms use to determine when to 

terminate simulator training, learning of the primary task was still occurring as indicated by 

continued improvement in secondary task performance. That is, the complete attainment of 

automaticity required more time with the practice simulator. These results suggest that for 

transfer to occur, complete automaticity may not be required as many studies have 

demonstrated successful transfer of simulator learned skills. Such observations question 

whether automaticity is required for skill transfer.  
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Summary 

This chapter has demonstrated that research concerning skill transfer has previously 

been limited to examining the conditions under which transfer is likely to occur, with many 

contradictory findings (Speelman & Kirsner, 2005). As described by skill acquisition 

theories, transfer is likely to occur if skill overlap occurs between the training and transfer 

tasks, whilst other research suggests that the nature of training can affect the likelihood of 

transfer (e.g., Speelman & Kirsner, 1997). No previous research has examined the 

relationship between automaticity and transfer, even though it is implicitly implied in the 

skill acquisition theories as an important part of the learning process. It is conceivable then 

that if more practice leads to greater skill transfer, then if a skill is automatic greater transfer 

would be expected. Speelman and colleagues have found in their investigations of transfer 

predictability that a well-learned task does not seem to lead to successful complete skill 

transfer.  
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Chapter 5: Experiments 

Introduction to Experiment One 

Due to considerable inconsistency in the literature regarding transferability of 

automated skills (reviewed in Chapter 4), the principle focus of this thesis was to clarify 

whether automaticity facilitates or inhibits transfer. In an education setting, what should a 

teacher be aiming for during training: knowledge that is automatic and easily retrieved or 

knowledge that is context rich with an understanding of when and where to apply it? Such 

questions are essential as we strive to find the best solution to learning a vast array of 

information in a relatively short amount of time. For example, in the learning of 

mathematical skills in early childhood should a child be trained on arithmetic facts so that 

they can be automatically retrieved when needed before moving on to solving multiplication 

problems? In doing this, are we in fact waiting too long and surpassing the optimum time for 

moving on in task complexity and so ultimately slowing down learning? These questions 

concern the nature of transfer and the variables that affect when it does or does not occur and 

questions the role of automaticity in skill acquisition and transfer. 

In order to inform subsequent experiments, the first study in the present program of 

research was conducted to test the experimental design. Analysis of individuals’ data 

regarding performance patterns of automaticity and transfer was included to determine 

whether individual characteristics could predict the likelihood of successful transfer, and also 

to determine the pervasiveness of group data trends. 

In experiment one, there were two parts to each trial. The two parts were designed so 

that the first part of each trial was identical in each phase of the experiment. In the first part 

of each trial — the primary task— participants were presented with a configuration of 

asterisks, to which they were required to make a decision as to whether there were six, seven, 
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eight, nine, 10, or 11 items by pressing a corresponding key. In the second part of each trial 

— the secondary task — participants were presented with a new configuration, which was the 

same configuration presented in the primary task but some asterisks had either been added or 

subtracted from the original configuration (see Figures 3 and 4). Participants were required to 

indicate whether the resulting number of items was odd or even by pressing the 

corresponding key on the response box. 



 83

     

Training trial                    Primary task                Secondary task    

  

500 ms                 

 

 

 

Figure 3: Example configurations of primary task and secondary task during training.  

 

 

 Transfer trial    Primary task                                            Secondary task 

 

  

 

 

Figure 4: Example transfer configurations of the primary task and secondary task. 

 

 
 
   * 

*        * * 

        *  * * 

       How Many Stars?           

 

 *       *        * * 

        *  *  * 

Are the stars odd or 
even? 

 
 
   * 

 
 
   * 

*       *        * * 

        *  * * * 

       How Many Stars?           
 

 *                * * 

        *  * *  

Are the stars odd or 
even? 

 
 
   * 

Fixation Point 500 ms              Answer 6                  Blank Screen      Answer Odd         Fixation Point 500 ms 

  Fixation Point 500 ms    Answer 8          Blank Screen         Answer Even                       Fixation Point 500 ms 
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Each configuration in the primary task was presented 100 times. Lassaline and Logan 

(1993) found automaticity occurred in as little as 45 minutes of training over four training 

sessions, with each level of numerosity being presented four times in each of four 120-trial 

blocks, for a total of 16 presentations per item. Therefore, 100 numerosity presentations were 

expected to sufficiently facilitate automaticity. In the transfer trials, the secondary task 

stimuli were altered. Participants were assigned to one of three conditions, control, B1 or B2. 

In the control condition no change was made to the stimuli in transfer trials. So, all aspects of 

the primary and secondary tasks were the same in the training and transfer phases. The 

experimental group B1 had asterisks added during training and subtracted during transfer 

trials. Group B2 had asterisks subtracted during training and added during transfer. RT and 

error rate was examined for the primary task of each trial to determine the effect of the 

change to the secondary task in transfer on primary task performance. It was hypothesised 

that a change to the secondary task may reflect whether automatic skills from the primary 

task are affected by a context change in the secondary task. In other words, an increase in RT 

on the primary task might suggest that automatic skills used to perform the primary task can 

be affected by novel context changes (i.e., changes to the secondary task). Conversely, if RT 

on the primary task continues in accordance with performance observed in training, this 

would indicate that automaticity is stable and adaptable to context changes.    

Predictions based on the research and theories. 

There are three possible generalisations for how automaticity and transfer could be 

connected:  

1. Transfer of an automated skill can be expected if the training task and the transfer 

task are exactly the same but only time has elapsed between performance of the two 

tasks.  
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2. Zero transfer of an automated skill is expected if the training task is different to the 

transfer task, that is, the skills used in the training task are of little or no use in the 

transfer task due to differing task requirements, strategies, or task goals. Any change to 

transfer performance will result in performance returning to a pre-training level.  

3. Partial transfer is expected if both the training and transfer tasks are the same, 

however, something regarding the nature of the task is altered or something 

surrounding the task is altered. That is the task remains the same between training and 

transfer, but the context is manipulated; therefore, the same task requirements, 

strategies and task goals remain; hence, performance should be maintained (Anderson, 

1982). However, as demonstrated in research reported by Speelman and Kirsner (2001), 

Speelman et al. (2011), and Speelman and Parkinson (2012) transfer is not occurring as 

would be predicted by theories of skill acquisition and transfer. This leaves to question 

what the best learning situation would be; to apply automatic recall of facts, or flexible 

knowledge?  

There is a gap in the current literature of the role of automaticity in skill acquisition and 

transfer. Although automaticity is the result of skill acquisition, there is debate as to how 

automaticity may affect subsequent learning, there is also a lack of a central definition for 

automatic behaviour that is applicable in both experimental conditions and everyday learning 

contexts.  
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Figure 5: Possible scenarios of transfer after an initial training phase based on RT and 
number of trials.  

 Positive complete transfer has been demonstrated by research, such as Singley and 

Anderson (1989) who suggest that the amount of production (or skills) overlap is responsible 

for the amount of transfer predicted (see Figure 5). However, previous studies (i.e. Speelman 

& Kirsner, 1993) found that prediction of transfer performance based on production overlap 

is not reliable as performance under conditions of complete production overlap does become 

disrupted with context changes resulting in partial transfer.  

 It was predicted that transfer performance of the primary task in experiment one 

would reflect one of the following possible scenarios (Figure 6). 
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Figure 6: Transfer predictions for RT as a function of the number of items in each 
stimulus.  

A refers to the typical performance patterns demonstrated in early and late training based on 
theoretical explanations. B refers to possible transfer scenarios (1, 2, 3, 4) based on Lassaline and 
Loogan’s (1994) findings.   

 

Scenario one: Transfer RT will be unaffected by the number of asterisks in the 

picture. Thus, there will have been complete transfer of automaticity, supporting the ACT 

theory where transfer is governed by the amount of production overlap and the dual 

processing theory (Schneider & Shiffrin, 1977) of automated task components. In addition, 

such findings would support Logan’s instance theory of automaticity where tasks that have 

been experienced before may become automated and thus, reliably retrieved from long-term 

memory in a fast and efficient manner due to the development and refinement of an episodic 

trace that is undisrupted by contextual change.  

Scenario two: Transfer RT may increase but remains unrelated to the number of stars. 

Thus, automaticity and transfer are independent: automaticity is retained (i.e., RT is unrelated 

to the number of asterisks), but only partial transfer is observed (i.e., Transfer RT is slower 

than final Training RT). The change in task conditions imposes an overhead in performance, 

Number of asterisks Number of asterisks 
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as suggested by Speelman and Kirsner’s (2001) research, where any change to the transfer 

task provoked a reconceptualisation of what is required to complete the task. 

Scenario three: Transfer RT may increase as the number of stars increase, but at some 

fraction of the rate observed during early training. That is, performance is not quite at early 

training levels but somewhere between early and late in training. This would imply that 

changes to the secondary task somehow reduce the extent of automaticity of performance on 

the primary task. Such a result would not support or falsify Logan or Anderson’s predictions, 

but it would imply that any change to task conditions can result in some loss of automaticity 

due to participants’ reconceptualisation of the overall task environment, even if the specific 

task itself has not changed.  

Scenario four: Transfer RT returns to pre-training times where RT is a function of the 

number of stars displayed. Thus, automaticity is lost when the task conditions change, and no 

transfer occurs. This result would falsify both Logan and Anderson’s predictions of automatic 

behaviour where practice and instance exposure allows transfer of automatic skills. 

If performance followed scenario two, and RT performance recovers after an initial 

disruption and continues to decrease as the number of trials increase, both the ACT and 

instance theories would be contradicted. Nevertheless, learning to automaticity would appear 

to benefit overall learning, or at least would not be considered a hindrance to learning despite 

the task reconceptualisation. Conversely, if RT did not recover after the initial disruption, 

supporting either scenario three or four, it would appear that automaticity is lost due to 

contextual changes. This may discredit the notion of waiting for automaticity to be achieved 

before moving on in complexity, as automatic performance may not be transferred to a new 

context.  
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There is debate as to whether or not skill transfer is possible with automatic 

behaviour. Some researchers (e.g., Anderson, 1987) suggest that transfer is dependent on the 

amount of component overlap between the training and the transfer tasks, whilst others (e.g., 

Logan, 1988; Schneider & Shiffrin, 1977) postulate that learning is an accumulation of 

consistent instances, and so transfer is not possible if that particular context has never been 

encountered. However, based on theories of skill acquisition (e.g., ACT theory, Anderson, 

1987) and theories of automaticity (e.g., instance theory, Logan, 1988) it is suggested that if a 

training task and a transfer task share similar components but the transfer task represents an 

altered form of the training task, skill transfer should be observed despite the establishment of 

automaticity. This however, as reported by Speelman et al. (2011), Speelman and Kirsner 

(2001), and Speelman and Parkinson (2012) does not seem to be the case.  

Method  

Participants. 

Thirty-two psychology students from Edith Cowan University voluntarily participated 

in the study. Participants were recruited via the ECU Cognition Research Group Participant 

Register. The inclusion criteria required participants to have 'corrected' or 'corrected-to-

normal' vision and English as their primary language. The participants' ages ranged from 17 

to 65 years. Participants were reimbursed with a $20 shopping voucher for their time.  

Design. 

The experiment was divided into two phases: training and transfer. In both phases, 

each trial had two parts, a primary and a secondary task. In both phases of the experiment, the 

nature of the primary task was identical. That is, a number of asterisks were presented on the 

screen, and participants were required to indicate the number of asterisks that were displayed. 

After a participant had given their response to the primary task of the trial, the secondary task 



 90

was immediately initiated. The secondary task of each trial had two versions. One version of 

the secondary task was presented in training trials, and the other was presented in transfer 

trials. The order of which version was presented differed according to the assigned condition 

(B1 or B2; A third, control, condition only utilised one version throughout training and 

transfer trials and is explained in more detail below). In one version, the configuration of 

asterisks that had been presented in the primary task was presented again, but with additional 

asterisks on the screen. The participant was then required to indicate whether the new number 

of asterisks was odd or even. In the other version, the configuration of asterisks that was 

presented in the primary task was presented again, but with a number of asterisks removed 

from the screen. 

During training trials configurations of six, seven, eight, nine, 10, and 11 asterisks 

were presented in the primary task, 100 times each. During transfer trials the same six 

asterisk configurations were presented 50 times each. Participants were separated into one of 

three groups. Group A (control) where both the tasks in training and transfer trials were the 

same (i.e., there was no change in any of the tasks). The control group experienced the same 

context in the primary task so that asterisks were added to the configuration in the training 

secondary task, and were also added in the transfer secondary task. For groups B1 and B2 

(experimental groups) the nature of the task during training and transfer was altered so that, 

for counterbalancing purposes, the experimental group B1 had asterisks added during training 

and subtracted during transfer trials. Group B2 had asterisks subtracted during training and 

added during transfer (see Figures 7 and 8).  
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How many asterisks? 

Figure 7: Primary task of a trial in experiment one.   
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Is the number of asterisks odd or even? 

Figure 8: Secondary task of a trial in experiment one. 
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Apparatus and stimuli. 

The experimental design involved a two-part task being presented in a training phase 

(total 90 mins) and a transfer phase (45 mins). During both phases, the primary task of each 

trial involved a configuration of asterisks, ranging in number from six to 11, being presented 

in the centre of a computer screen. In the training phase, the secondary task of each trial 

required participants to answer whether the number of asterisks was odd or even. Asterisks 

were either added or subtracted from the primary task configuration depending on the 

assigned condition. The first session comprised of 100 presentations of each configuration of 

the primary task (100 x 6 = total 600 trials), and the second session comprised of 50 

presentations of each configuration (50 x 6 = total 300 trials). Each trial of training and 

transfer had a matched secondary task configuration. Table 1 lists the level of numerosity 

with the number of asterisks added or subtracted in accordance with the group allocation (A, 

B1 or B2). Each configuration had two associated secondary task configurations within a 

particular phase, one of which was an odd number of asterisks and the other an even number. 

In this way, a participant could not predict the correct answer in the secondary task just from 

the configuration in the primary task.  

Each asterisk was separated from other asterisks within a stimulus configuration by at 

least 1 cm vertically and horizontally. Dell personal computers were used to display the 

stimulus patterns, and a SuperLab (RB-840) response pad was utilised by students to report 

the number of asterisks presented in the primary task of the task. There were six keys on the 

response pad, marked six, seven, eight, nine, 10, and 11. In the secondary task participants 

were required to indicate whether the number of asterisks displayed was 'odd' or 'even'. The 

response pad had two additional keys marked 'odd' and 'even' (see Appendix A).  
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Table 1: Level of numerosity with corresponding asterisks for secondary task. 

Level of numerosity in the 

primary task 

Number of asterisks added 

in the secondary task 

Number of asterisks 

subtracted in the secondary 

task 

Six 1 3 

  2 2 

Seven 2 3 

  1 2 

Eight 2 1 

  5 3 

Nine 1 2 

  1 1 

Ten 1 2 

  3 4 

Eleven 1 1 

  1 3 
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Procedure 

The research had approval from the ECU Human Research Ethics Committee. A 

suitable time was arranged with participants where the researcher verbally advised them of 

the rationale and merits of the research, asked if they had any questions, and invited them to 

participate. Participants were then provided with an information letter (Appendix B) and an 

informed consent form (Appendix C). The informed consent form reiterated that participation 

was voluntary and as such at any time they could withdraw from the study. The form also 

provided participants with another prompt to ask questions if there was anything they did not 

understand about the experiment.  

A practice phase of 12 trials (1 block) allowed participants to familiarise themselves 

with the training procedure. The practice items were not presented again in the rest of the 

experiment. Once participants fully understood the procedure the training trials began. 

Participants were randomly assigned to one of three conditions: group A (control; n = 12), 

group B1 (n = 7) and group B2 (n = 8). Participants were instructed to rest their fingers on the 

buttons in preparation for the trial to begin. In the primary task of each trial, across all three 

conditions, a fixation point appeared in the centre of the screen for 500 ms, followed by a 

configuration of six to 11 asterisks arranged randomly around the screen. The pattern 

remained onscreen until a response was made on the response box by pressing one of the 

keys that were labelled with the possible number of asterisks (i.e., six to 11). A blank screen 

then followed for 250 ms. Another configuration of asterisks was then displayed. Participants 

were asked to determine whether the configuration consisted of an odd or even number of 

asterisks by pressing one of the corresponding keys on the response box labelled ‘odd’ and 

‘even’. Participants were instructed to respond as accurately and as quickly as possible to 

prevent guessing. Participants were given an optional break after 25 blocks. If a participant 
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answered incorrectly on a primary or secondary task, the trial was discontinued and a new 

trial began. The incorrect trial was presented at a later position within the same block. 

Results and Discussion 

The present study set out to clarify the relationship between automaticity and skill 

acquisition and transfer. This involved two research questions: 

1) To what extent are automaticity and transfer performance related? Specifically, 

how is RT on the primary task affected when task context changes are 

implemented in the transfer phase (i.e., changes are made to the secondary task)? 

2) How much training is required to obtain the most successful transfer? Can some 

degree of automaticity lead to successful transfer? Specifically, is performance on 

the primary task slowed because of changes in the secondary task, or does primary 

task performance continue to improve according to power functions that describe 

training performance? 

 If positive transfer is observed (i.e., primary task RT in transfer is unaffected by 

changes in the secondary task of each trial) this will support the theoretical interpretations of 

the ACT (Anderson, 1982, 1987, 1992, 1993) and instance theories (Logan, 1988, 1990), 

suggesting once skills have become automatic, performance is unaffected by contextual 

changes. Conversely, if transfer is not successful and disruption is apparent (i.e., primary task 

RT is slowed during transfer trials), there would be reason to suggest that contextual changes 

result in a conceptual readjustment of the task causing participants to rethink what is required 

(Speelman et al., 2011; Speelman & Kirsner, 2001; Speelman & Parkinson, 2012).  

The results of experiment one were analysed using Microsoft Excel 2010 and SPSS 

22.0 Software for Windows to determine if there was a relationship between whether or not 

someone had attained automaticity on the counting task, and to examine the extent to which 
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their performance was affected by the change in task context created by changes in the 

secondary task of each trial.  

Reaction time. 

The average RT across all levels of numerosity for training and transfer blocks was 

calculated to investigate the pattern of learning and to enable visual inspection of the data for 

changes in RT after block 101: the transfer phase. Individual mean accuracy of 80% for the 

primary task of the visual numerosity task was required for data to be included in the RT 

analyses (Training: M = 96.85%, SD = 2.48; Transfer: M = 96.78%, SD = 2.93; Total: M = 

96.92%, SD = 2.25). Trials that were identified as exceeding the maximum RT cut-off point 

of 9000 ms were labelled as incorrect and were omitted from the analyses. The performances 

of five participants fell short of the accuracy and/or RT criteria for inclusions and so were 

omitted from the analysis.  

Figures 9, 10, and 11 show the means for each block plotted along with a power 

function of the form RT = a + bP-c (where ‘RT’ is reaction time, and ‘P’ is the number of 

blocks, and ‘a’, ‘b’ and ‘c’ are performance parameters) that was fitted to the 100 blocks of 

training, and extrapolated for a further 50 blocks into the transfer phase. Asymptotes 

constrained to a minimum value of zero were utilised in the power functions.1 Power 

functions provided a high degree of fit (high r² and low root mean squared deviation (rmsd) 

values) to the observed training RT in the control and experimental conditions, suggesting 

that performance was in accordance with the power law of learning (Newell & Rosenbloom, 

1981).  

 

 

                                                 
1 When asymptotes were left free to vary, in all cases the resulting best-fit functions had negative asymptotes, 
which are psychologically implausible. 
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Figure 9: Mean RT in the primary task of each trial for the control group.  

The smooth line is the power function that provided the best fit to the training phase data and was 
extrapolated to the transfer phase (RT = 0+4580.79*Block-0.14 r2 = .88, rmsd = 217.53). Error bars 
represent 95% confidence intervals.  

 

Figure 10: Mean RT in the primary task of each trial for the experimental condition B1.  

The smooth line is the power function that provided the best fit to the training phase data and has been 
extrapolated to the transfer phase (RT = 0+4071.03*Block-0.10, r2 = .92, rmsd =135.83). Error bars 
represent 95% confidence intervals. 
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Figure 11: Mean RT in the primary task of each trial for the experimental condition B2.  

The smooth line is the power function that provided the best fit to the training phase data and has been 
extrapolated to the transfer phase (RT = 0+3564.38*Block-0.11, r2 = .79, rmsd = 179.99). Error bars 
represent 95% confidence intervals. 

 

Disruption measure. 

To address whether there was a general effect on performance in the primary task 

caused by changes to the secondary task, three one-way repeated measures analysis of 

variances (ANOVA) were used to compare the mean primary task RT in the last block of 

training (A: M = 2437.29, SD = 873.58; B1: M = 2583.68 ms, SD = 202.86; B2: M = 2089.48 

ms, SD = 226. 40) with the mean primary task RT in the first block of transfer (A: M = 

2376.5667, SD = 932.82; B1: M = 2708.95 ms, SD = 233.40; B2: M = 2454. 12, SD = 

161.60). The experimental conditions were analysed separately due to the profound 

differences in RT performance at the introduction of the new context. The ANOVA results of 

control condition A indicate, as expected, RT did not significantly increase between blocks 

100 and 101. RT in experimental condition B1 did not significantly differ between training 

and transfer blocks (p < .05). Although average performance of the primary task in the first 
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block of transfer appears to be slower following the change in task context, this change in RT 

did not significantly differ from RT observed at the end of training. Experimental condition 

B2 however, did show a statistically different RT performance between training and transfer 

blocks F(1,7) = 12.02, p = .01. Average performance of the primary task in the first block of 

transfer appears to be substantially slower than in the last block of training. 

Speelman and Kirsner (1997) suggest that transfer performance may be predicted by 

extrapolating power functions that describe training performance. Therefore, to assess the 

extent to which transfer performance could be predicted from training performance, the 

power functions derived from the training phase data were extrapolated a further 50 blocks 

and compared with observed transfer RTs in the experimental conditions (see Figures 9, 10, 

and 11). Transfer performance is considered to be predicted well on the basis of training 

performance where extrapolated values pass within the 95% confidence intervals of the 

transfer RTs (Speelman & Kirsner, 2001). As expected, the control group demonstrate no 

change in transfer phase, and predicted RT values all pass within the 95% confidence 

intervals. RT in the transfer phase appears to be faster than the predicted values and RT 

improves with the increase in trials. For group B1, although RT appears to be slowing down 

in the first block of transfer compared to the last block of training for group B1, this was not 

by a statistically significant amount (see Figure 10). Furthermore, RT in transfer appears to 

be generally faster than the predicted RT. The transfer results for group B1 indicate that after 

an initial slowing of RT after the context change to secondary task, subsequent RT appears to 

be unaffected. Group B2 results appear to demonstrate a large slowing in RT performance in 

transfer, further suggesting that training performance may be affected by the context change 

to secondary task (see Figure 10). However, due to the large span of confidence intervals the 

extrapolated values all pass within the 95% confidence intervals of transfer RTs; therefore 

this difference is not considered to be significant. Group B2 transfer results indicate that 
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performance is affected by the context change, however due to the substantial variation of 

individual performance reflected in the confidence intervals this difference was not 

statistically significant. 

To further examine whether transfer performance is maintained after the initial 

readjustment in the first block of transfer, a repeated measures ANOVA was conducted on 

the first four transfer blocks (i.e., blocks 101, 102, 103, and 104) for each of the experimental 

conditions and control condition. No significant main effect of transfer block was reported (p 

> .05).  

The two experimental conditions appear to present differing transfer performance RT. 

Condition B2 demonstrates a different performance pattern compared to condition B1 with 

RT reflecting an almost reverse pattern than expected based on the ACT and instance 

theories. That is, if context changes to secondary task did not affect automatic skill 

performance of the primary task, a continuation of the typical learning curve would be 

demonstrated. However, B2 performance reflects a shift in performance that suggests a 

different strategy may be in use than the one participants employed in the training trials.  

According to the ACT and instance theories complete positive transfer should occur 

under the conditions of this experiment, as the primary task numerosity configurations 

encountered in training are identical to those encountered in transfer. Although primary task 

RT appears to increase with the change to the secondary task in condition B1, the increase 

between blocks 100 and 101 was not statistically significant, and therefore may be explained 

by scenario one (see predicted scenarios p. 87-88 of this thesis), which predicts complete skill 

transfer. Anderson’s ACT theory (1993) and Logan’s instance theory (1988) predictions 

seem to support the aforementioned results. Conversely, Figure 11 indicates a marked 

disruption on transfer block 101 for condition B2, consistent with scenario four. The results 

reveal that transfer performance for this group was significantly disrupted. This supports the 
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results obtained by Speelman and Johnson (2012) and Speelman and colleagues (i.e., 

Speelman et al., 2011; Speelman & Kirsner, 2001). However, performance in block 101 was 

not as slow as performance times demonstrated in the first block of training, therefore, partial 

transfer may be suggested, supporting scenario three (see p. 83 of this thesis).  

Performance in both experimental conditions indicated partial transfer following 

context changes. After the initial increase in RT with the context change, training 

performance appears to recover in subsequent trials. Condition B2 performance also suggests 

some loss of the automaticity of training performance, with transfer RT remaining slower 

than training RT, after the context change is introduced. Speelman and Parkinson (2012) 

suggest that a mental set representation is held in working memory to aid efficient task 

performance. When a transfer disruption is observed, this may indicate that a set of 

production rules, which were used in the training task, are no longer effective in a new 

transfer environment. That is, the set of processing rules, which were developed to perform 

the primary task of each trial in training, cannot be used in transfer; therefore a reassessment 

of the task is required. Further to this, Healy et al. (2005) suggest that a two-step task design 

may be interpreted as a single functional task. Although the two tasks are presented and 

intended to be two separate tasks they are interpreted and learned by association as one task. 

Any change to the secondary task of the task is interpreted as a change to the whole task, 

thereby causing reconsideration of the task requirements in future trials. In the current 

experiment the two parts of the task may not be easily distinguishable and serial association 

may be facilitated. In order to determine more effectively how context changes affect 

automatic performance, a more discrete separation of parts one and two of the experimental 

task was implemented in the design of experiments two and three. 
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 Figures 11 and 10 indicate differences in disruption (or readjustment) impact of 

automatic skill performance with context changes. This suggests that participants’ 

conceptualisation of the context change may have differed according to experimental 

condition. What was intended as a counterbalancing measure may in fact reveal differences 

in task difficulty in the design of conditions B1 and B2. Speelman and Kirsner (2001) suggest 

that an increase in complexity leads to greater disruption than a decrease in complexity. It 

could be then that the context change of subtraction to addition in condition B2 might 

represent an increase in complexity. Speelman and Kirsner found that, despite a 

conceptualisation readjustment, performance continued to improve in accordance with 

training performance, and so performance returned to predicted levels. However, the current 

experiment revealed that performance improvements during transfer were disrupted in 

condition B2. In the more complex task condition participants may have been questioning the 

requirements of both the primary and secondary tasks and continued to do so throughout the 

transfer trials. The differences in complexity in combination with the nature of the two-step 

serial design may be responsible for the differences in disruption impact.  

Individual performance.  

It was suggested in Chapter 3 that participant characteristics, such as motivation, 

performance pressure and learning styles, could have an impact upon skill acquisition and 

performance.  

Figures 12, 13, and 14 present each participant’s RT on the primary task of each trial, 

for all blocks in the experiment. The control condition (see Figure 12) indicates an overall 

expected pattern of improvement, with the exception of two participants. Participant 22 

demonstrated highly varied RT block performance and participant 25’s RTs almost appear to 

increase throughout training.  
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In the experimental conditions, where the secondary task was changed from addition 

to subtraction, participants demonstrated a typical pattern of RT improvement with extended 

practice that has already been highlighted in the group average RT (Anderson, 1992, 1993). 

In condition B1 (see Figure 13) the secondary task was changed from addition to subtraction. 

No disruption was demonstrated when context changes were implemented in block 101. 

Participants one and four display data with greater variation in RT compared to the group 

average, however the overall trend from all participants and the group average suggests 

results that could be considered similar to classic learning curves. This suggests that 

participants may be uniform in their approach to the task and there is an overall slowing in 

performance gains in later blocks, which is in line with the power law of learning data. Both 

the control and B1 conditions demonstrate a similar pattern of improvement throughout 

training.  

Figure 14 shows variance in RT performance over the training trials. Specifically, 

participants eight, 12, and 14 demonstrate a general improvement in RT performance with an 

increase in RT in the transfer phase of block 101. Participants nine, 10 and 11 demonstrate 

performance that remains similar to RT performance displayed in training. That is, there 

appears to be no sudden increase or decrease in performance over time. However, participant 

15 appears to demonstrate improvement in RT over practice, with a slight increase in RT at 

block 101, yet performance continues to decrease in a similar manner observed in training.  
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Figure 12: Individual mean RT performance data for 13 participants in the control 
condition. The figures represent RT (ms) as a function of practice (block) 

 

 

Figure 13: Individual RT performance data for seven participants in experimental 
condition B1 and mean RT performance data for the primary task of each trial. The 
figures represent RT (ms) as a function of practice (block) 
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Figure 14: Individual RT performance data for seven participants in experimental 
condition B2 and mean RT performance data for the primary task of each trial. The 
figures represent RT (ms) as a function of practice (block) 

Automaticity 

Average group RT early in training is dependent on the number of items presented on 

screen. The slope of linear regression relating response latency to numerosity was calculated 

across three phases of training (blocks 1–10 early, 50–60 mid, 90–100 late) to determine if 

and when automaticity was reached. Regression lines of the form RT = a + b*numerosity 

were fitted to the data for each person in each of the three training phases. The slope values 

for these lines are presented in Table 2. Mean RT for each level of numerosity for each phase 

is presented in Figures 15, 16, and 17, which demonstrates that RT in the early phase of 

training increased as the number of items of screen increased. RT decreased in mid training 

blocks so that the slope of regression was less inclined than early training blocks. RT was 

almost independent of numerosity in the late training phase, with only a slight increase in RT 

with the increase in numerosity. This pattern of performance appears to be consistent across 

both experimental conditions and the control condition and is consistent with other research 

in the development of automaticity in the visual numerosity task (Logan, 1988). Transfer 

performance however differs between the experimental conditions.  

As demonstrated in Figures 15, 16, and 17 all conditions demonstrate performance in 

accordance with the typical development of automaticity (Chi & Klahr, 1975; Lassaline & 
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Logan, 1993; Logan, 1988). That is, by the late training phase RT performance appears to be 

independent of numerosity. Group B1 shows that transfer performance appears to be 

unaffected by context changes with performance remaining independent of numerosity. 

Group B2 however, showed an increase in RT with numerosity, with performance 

demonstrating support for scenarios three and four (see page 87-88). During transfer, RT as a 

function of numerosity increased at some fraction of the rate observed in early training 

performance. This suggests some loss of automaticity. Due to the difference in complexity 

between the experimental conditions neither Anderson (1982, 1987, 1992, 1993) nor Logan’s 

theory (1988, 1990) can be falsified or supported. One change in context appears to represent 

an increase in complexity; the other represented a decrease in complexity.  

The results can be interpreted in a number of ways. The results of group B1 would 

appear to support the inferences from the ACT theory where transfer is governed by the 

amount of production overlap (Schneider & Shiffrin, 1977). That is, as the configurations in 

the primary task in training are the same in transfer the same productions and rules apply, 

there is no need to resort to counting methods as the primary task remains unchanged. Such 

findings also may support Logan’s instance theory of automaticity where tasks that have been 

experienced before may become automated and thus, reliably retrieved from long-term 

memory in a fast and efficient manner. Conversely, group B2 demonstrated an increase in the 

slope of the line that related RT with numerosity, with the slope sitting between the value that 

was observed in the mid and late training phases, consistent with the predictions of scenarios 

three and four, where RT has increased initially at some fraction of the rate observed in early 

training performance. This may indicate that in transfer, participants are relying on counting 

strategies rather than memory for the configurations. As the number of items on the screen in 

condition B2 increased from the primary task to the secondary task, participants may have 

resorted back to counting all configurations. The increase in complexity of the secondary task 
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would cause the participants to resort back to inefficient and non-automatic strategies. This 

may suggest the existence of an overhead in performance, as suggested by Speelman and 

Kirsner (2001), provoked by a reconceptualisation of task requirements. This suggests that 

theoretical interpretations of Logan (1988) and Anderson’s (1992) theories regarding the 

transfer to automatic skills may be falsified; the change in task conditions did result in some 

loss of automaticity even though the task itself was not changed.  

The variation in transfer performance between the experimental conditions suggests 

that the different changes to the secondary task affected transfer performance in the primary 

task differently. One change appears to represent an increase in complexity, the other 

represented a decrease in complexity. As the subtraction condition had fewer items on screen, 

participants in group B1 may have subitized numerosities (Chi & Klahr, 1975), and become 

faster at doing so, resulting in quicker retrieval strategies and representing a less complex 

task which is easier to automatise. However, it is important to note that only in some cases 

(i.e., numerosities six and seven) would the subtraction condition be in the range usually 

associated with subitizing. What is apparent in the results is that context does appear to affect 

the automaticity and transfer of learned items for in condition B2 where items are added. 

Thus, complexity appears to mediate transfer, that is, the complexity of the transfer task 

determines the extent of transfer. 
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Figure 15: Mean RT for the primary task of each trial as a function of numerosity for 
early, mid, and late training phases, and transfer in the control condition. 

   

Figure 16: Mean RT for the primary task of each trial as a function of numerosity for 
early, mid, and late training phases, and transfer in condition B1.  
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Figure 17: Mean RT for the primary task of each trial as a function of numerosity for 
early, mid, and late training phases, and transfer in condition B2.  

 

 The number of subjects whose regression slope values followed the pattern of the 

slopes calculated on group data was determined. Participants were classified as having 

achieved automaticity using two criteria: 

Criterion one. This criterion of automaticity was a conservative approach based on 

Lassaline and Logan's (1993) findings, that automatic performance was achieved 

when the slope of the regression line relating RT to numerosity was less than or equal 

to 100 ms by late training phases.  

Criterion two. The second criterion required an overall reduction in the slope of 

regression lines from early to late phases. That is, any decrease in the slope of 

regression lines for RT performance between early and late phases was considered to 

be approaching automaticity.  
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The coefficient of determination, r², was utilised to determine how well the data was 

fit by a straight regression line. It can be noted from Table 2 that participants who were 

automatic (according to criterion one) by the late training phase obtained low r2 values. As r² 

explains how much variance is attributed to the variability of the response data around the 

mean, r² values are expected to be large, demonstrating a good fit between the predicted and 

observed slope of linear regression, for large regression slope values. Conversely, r2 values 

are expected to be small for linear regression slope estimates that are close to reaching 

asymptote (i.e., zero). This would result from RT values for each numerosity value being 

roughly equivalent (i.e., very little variance) such as would be expected if participants had 

undergone a shift from rule based processing to memory retrieval.  

There appears to be an inconsistency in r2 values obtained by participants who had 

large slope values. A decline in standard deviation with task practice is expected to reflect 

consistent information processing (Ackerman, 1988). In this sample however, there appears 

to be a number of participants who did not demonstrate a reduction in standard deviation 

values, suggesting that task performance strategies may have remained inconsistent and 

varied throughout training. In the current results, it can be noted that whilst some participants 

approached automaticity, there appear to have been some people who did not. Whilst the 

group results suggest a shift to automatic performance, this was not a consistent finding 

amongst all participants. Some participants were not attaining automaticity, a finding that has 

not been reported widely in the literature. For example, in condition B1 43% of participants 

did not demonstrate a decrease in slope values indicative of approaching automaticity, whilst 

in condition B2 13 % also did not demonstrate this shift towards automaticity, and in the 

control condition (A) 30% failed to approach automaticity after extended practice. 



 111

Table 2: Participant slope of regression lines fitted to RT data as a function of numerosity. 

Participant Group Early slope SD Mid slope SD Late slope SD 
Transfer 
slope 

SD 

 

Measure of 
Disruption  

Criterion 1 
automaticity 
achieved (< 
100 ms) 

Criterion 2 
automaticity 
achieved 
(reduction of 
slope from 
early to 
late)** 

1 B1 453.78(.62) 709.14 439.4(.12) 419.60 380.27(.54) 968.86 169.69(.55) 517.97 116.33 2 1 

2 B1 249.87(.92) 489.33 280.3(.67) 637.95 171.82(.23) 606.30 130.94(.15) 635.35 89.33 2 1 

3 B1 379.52(.92) 739.41 403.78(.76) 869.53 356.1 (.86) 717.93 200.05(.81) 415.65 466.17 2 2 

4 B1 616.36(.79) 1297.87 299.15(.49) 798.81 429.78(.83) 884.48 -24.99(.02) 340.03 597.27 2 2 

5 B1 238.55(.42) 689.98 106.63(.19) 459.37 134.8(.62) 319.39 34.98(.12) 199.19 290.5 2 1 

6 B1 272.82(.99) 512.83 328.32(.84) 670.15 219.16(.75) 472.61 199.15(.87) 399.78 125.17 2 1 

7 B1 347.55(.92) 679.56 288.36(.82) 595.96 455.11(.91) 893.65 186.02(.35) 584.84 -807.83 2 2 

8 B2 235.23(.96) 449.20  -35.36(.02) 499.22 10.03(.00) 339.44 235.09(.92) 459.84 311.43 1 1 
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Participant Group Early slope SD Mid slope SD Late slope SD 
Transfer 
slope 

SD 

 

Measure of 
Disruption  

Criterion 1 
automaticity 
achieved (< 
100 ms) 

Criterion 2 
automaticity 
achieved 
(reduction of 
slope from 
early to 
late)** 

9 B2 238.09(.91) 467.42 245.26(.80) 515.90 127.55(.68) 290.32 188.45(.75) 406.52 562.5 2 1 

10 B2 225.81(.82) 466.12 -69.77(.10) 407.54 -141.03(.33) 460.99 4.47(.00) 374.36 515.33 1 1 

11 B2 326.3(.71) 726.65 22.58 (.02) 317.34 -40.65(.03) 423.55 96.86(.20) 405.62 688.83 1 1 

12 B2 296.25(.88) 591.96 -94.715) 451.36 -139.39(.27) 502.45 213.38(.67) 487.24 -232.33 1 1 

13 B2 -28.65(.03) 334.43 194.02(.92) 377.84 146.36(.64) 343.38 188.45(.75) 406.52 537.5 3 2 

14 B2 246.2(.51) 648.05 96.12(.06) 724.99 -79.43(.05) 657.82 159.78(.06) 1178.14 
162.33 1 1 

15 B2 495.33(.03) 334.43 -42.06(.92) 377.84 -43.75(.64) 343.38 178.87(.75) 406.52 451.17 1 1 

16 A 441.92(.86) 890.76 75.41(.12) 416.07 108.94(.34) 347.292 97.77 453.68 -685.87 2 1 

17 A 393.19(.37) 794.61 352.17(.35) 1110.23 303.42 (.12) 1271.50 305.77 1382.45 283.67 2 1 

18 A 481.32(.68) 1095.55 431.72(.90) 851.59 -18.23(.00) 796.96 -18.28 898.92 -915.5 1 1 
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Participant Group Early slope SD Mid slope SD Late slope SD 
Transfer 
slope 

SD 

 

Measure of 
Disruption  

Criterion 1 
automaticity 
achieved (< 
100 ms) 

Criterion 2 
automaticity 
achieved 
(reduction of 
slope from 
early to 
late)** 

19 A 681.97(.69) 1539.14 69.67(.30) 820.75 46.94(.02) 718.16 9.94 692.75 131.83 1 1 

20 A 242.02(.54) 618.39 645.56(.78) 1369.56 466.34(.64) 1088.88 300.4 949.37 -155.67 2 2 

21 A 484.79(.85) 1539.14 629.9(.83) 820.75 53.00(.60) 718.16 482.22 692.75 -1176.5 1 1 

22 A 693.19(.68) 1575.10 514.89(.57) 1273.42 240.11(.29) 829.72 84.47 786.50 595.33 2 1 

23 A 237.02(.58) 583.67 329.56(.42) 955.48 118.28(.30) 406.88 -10.13 363.51 -19.5 2 1 

24 A 191.96(.78) 406.92 351.92(.91) 684.22 121.07(.17) 543.04 194.01 586.00 1003.17 2 2 

25 A 371.73(.97) 706.70 477.92(.95) 917.19 509.96(.61) 1224.15 454.65 1200.27 537.33 2 2 

26 A 597.03(.58) 1469.82 254.34(.66) 588.02 289.91(.92) 561.58 179.84 382.60 359.5 2 2 

27 A 285.17(.65) 664.37 76.67(.12) 419.60 129.45(.30) 448.35 -32.62 371.73 -686.5 2 1 

*1 = automatic performance (i.e., slope <100 ms). 2 = non-automatic performance (i.e., slope >100 ms). 3 = automatic performance in the early training 
phase. **1= automatic performance (i.e., slope decreasing from early to late training phases). 2 = non-automatic performance. 
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Disruption and transfer 

A measure of disruption for the primary task of each trial was calculated by subtracting, for 

each participant, the mean RT in the first block of transfer from the mean RT in the last block 

of training. A positive number indicates that performance was disrupted with the change of 

conditions in the secondary task of a trial. Table 2 indicates that 13 out of 15 participants 

(86.67%) in the experimental conditions were disrupted in transfer performance; six (85.71%) 

participants in group B1, and seven (75%) participants in group B2 were disrupted.  

 A large percentage (86.67%) of participants demonstrated a slowing of RT 

performance in transfer and a moderate percentage (40.73%) of participants were classified as 

not automatic, (as indicated by automaticity criterion two) by the late training phase. To 

examine the relationship between automaticity and transfer, a correlational analysis was 

conducted between the measure of disruption of on the primary task and the linear regression 

slopes relating RT to numerosity for each of the training phases. No significant correlation 

was found. 

Relationship between automaticity and transfer. 

According to automaticity criterion one, all participants in condition B1 failed to 

achieve automaticity by late training. Participants eight and nine from group B2 were 

considered automatic, and participant 13 was considered automatic at the beginning of the 

task. These three participants were also disrupted in the transfer performance. Using 

automaticity criterion two, all participants, except for three, four, and seven, were considered 

automatic in group B1. All participants in group B2 were considered automatic. Participant 

13 was classified as not automatic by the late training phase even though they demonstrated a 

negative slope performance in early training.  
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 Condition B2 indicated the most number of participants obtaining slope performance 

values less than 100 ms (criterion one) suggesting that automaticity was obtained more often 

in this condition compared to group B1. Automaticity differences associated with condition 

suggest that the training conditions affected training performance and the development of 

automaticity. Thus, by trying to counterbalance possible order effects in presenting the 

addition and subtraction task, comparisons of performance disruption in transfer between the 

experimental conditions may not be warranted because they reflect quite different 

performance conditions.  

Conclusion 

The findings of this experiment did not present a consistent picture of the relationship 

between automaticity and transfer across all conditions, however they do demonstrate the 

impact of the experiment design and perceived difficulty of the secondary task on 

performance. Another possible limitation to be considered in this experiment is the similarity 

of items presented in the primary and secondary tasks. Participants may not have been aware 

of the two-part nature of this task aiding the use of non-efficient memory strategies. That is, 

as both primary and secondary tasks required the same counting strategy of items on screen 

participants may have perceived each stimulus as a new stimulus presentation rather than the 

same configuration for numerosity 6–11 with a matched secondary task. Consequently, 

counting strategies may have been used throughout the duration of the experiment rather than 

the intended implementation of memory strategies in the primary task and counting strategies 

in the secondary task after a number of training trials.  

Alternatively, the similarity of the primary and secondary tasks may have facilitated 

conceptualisation as one serial task. The similarity of the two sub-tasks may have contributed 

to the development of a mental set (Speelman & Parkinson, 2012) or representation of a 



116 
 

single task (Healy et al., 2005). Thus, the change to the secondary task may have resulted in a 

change in strategy from memory to counting for both parts—even though the primary task 

remained the same. Further to this, as suggested by Dishon-Berkovits and Algom (2000), an 

automatic response, such as reading in the Stroop task, may be manipulated by the 

relationship between the distractor task and the target item. Similarly, Labuschagne and 

Besner (2015) also found manipulability of the Stroop effect when changing spatial attention. 

Thus, an automatic skill, such as reading, in the Stroop effect may not demonstrate the failure 

of an automatic skill but the influence of experimental design, or a change in context. In the 

current experiment disruption in transfer performance may not reflect the disruption of an 

automatic skill but more the influence of experimental design. One explanation of the 

differences in performance between B1 and B2 could be due to a possible increase in 

complexity of switching from subtraction to addition impacting upon performance.  

The influence of experimental design has been discovered in these results. In 

conclusion, differences in participant RT performance were found to be reflective of the 

assigned experimental condition. To avoid intergroup differences one experimental condition 

was utilised for all participants. Furthermore, a clearer separation between the primary and 

secondary tasks was established by implementing a redesign of the secondary task for 

experiments two and three.  
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Introduction to Experiment Two 

The results of experiment one showed that automatic skills could be disrupted by 

novel context changes, with condition B2 demonstrating a significant slowing in performance 

with the transition from training to transfer. The initial transfer disruption observed in 

conditions B1 and B2 is similar to the findings of Speelman and colleagues (i.e., Speelman et 

al., 2011; Speelman & Kirsner, 2001; Speelman & Parkinson, 2012). B1 RT recovered 

quickly in subsequent transfer trials, in accordance with predicted RT based on training 

performance, suggesting no loss of automaticity occurred. However, group B2 performance 

demonstrated a different pattern of performance in transfer than expected. Since RT remained 

higher than predicted values, some loss of automaticity may have occurred. Overall, the 

findings across all conditions did not consistently demonstrate support of the predictions 

outlined in Chapter 5. As highlighted in Chapter 6, the counterbalancing that was a feature of 

the design of experiment one might have been responsible for the difference in performance 

between B1 and B2. That is, the counterbalancing may have resulted in a difference in the 

task conceptualisation of group B1 compared to B2.  

On the basis of experiment one findings, it was concluded that design elements should 

be refined in future experiments. Accordingly, a number of changes were made to the design 

of experiment two in order to refine the experimental design:  

 Experiment one demonstrated that the two-part nature of the task was not 

obvious to participants and may have caused them to utilise non-efficient 

strategies, such as counting, for the duration of the experiment. Thus, 

experiment two was designed to make it more likely that in the primary task of 

each trial participants would begin by counting asterisks and then gradually 

recognise asterisk patterns and remember the correct response. This design 
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feature involved encouraging them to use a different form of processing in the 

secondary task of each trial (i.e., perform an arithmetic operation compared to 

another configuration presentation that was utilised in experiment one). Thus, 

in the secondary task participants were required to perform an addition 

problem in training trials, and a subtraction problem in transfer trials, with a 

response in the form of the answer being odd or even.  

 In experiment one, the slope of lines relating RT to numerosity were still high 

by the late training phase, suggesting that participants were not approaching 

automaticity as expected. To induce automaticity more quickly in experiment 

two, each stimulus configuration was displayed in a unique colour. The 

corresponding response keys were coloured in the same manner. It was 

expected that by matching the colour of the keys to the configurations the 

probability of attaining automaticity would be greater.  

 Experiment one included 100 presentations of each level of numerosity. Logan 

and Klapp (1991) found automaticity in as little as one hour of training on six 

alphabet arithmetic equations. Therefore, with the numerosity task simplified 

in experiment two with the addition of coloured configurations, it was 

expected that automaticity would be attained in fewer trials than in experiment 

one. Therefore training was reduced to 50 blocks and transfer was reduced to 

25 blocks.  

 The hypotheses tested in experiment one were also tested in experiment two. If RT 

was not disrupted with the transition from training to transfer trials, then context would 

appear to have no effect over automatic skills acquired in training. Alternatively, if a transfer 

disruption was apparent, this would indicate that when the primary task remains unchanged, 

changes to the secondary task affect the ability to perform the primary task automatically, 
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possibly through some conceptual readjustment whereby participants rethink the overall task 

requirements (Speelman et al., 2011; Speelman & Kirsner, 2001; Speelman & Parkinson, 

2014). Performance after the initial few transfer trials was expected to indicate whether 

automaticity is beneficial or a hindrance to learning. If performance recovered and RT 

continued to decrease with practice, automaticity would appear to be beneficial to overall 

learning despite the initial task re-conceptualisation. However, if RT did not recover after the 

initial disruption during transfer, this would suggest that automaticity is lost due to contextual 

changes. 

 In addition to experiment two addressing possible experimental confounds in 

experiment one, the roles of other variables in the link between automaticity and skill transfer 

were considered. In experiment one, it was apparent that many participants were not 

approaching automaticity as might have been expected based on the research of Lassaline and 

Logan (1993), Logan and Klapp (1991), and others (Anderson & Lebiere, 1998; Logan, 1988; 

Schneider & Shiffrin, 1977; Shiffrin & Schneider, 1977). This raises a question as to whether 

there are identifiable characteristics of people that might be associated with the likelihood 

that they would develop automaticity, such as working memory ability (Engle, 2002; 

Gathercole, Alloway, Willis, & Adams, 2006). Another purpose of this experiment was to 

determine whether individual differences in working memory impact upon an individual’s 

ability to automatise the primary task, and maintain primary task performance with changes 

to transfer trials. Participant attributes, such as working memory, might account for the rate of 

attaining automaticity and transfer performance. 

Working memory is suggested to be a ‘pure’ measure of learning potential as it is not 

strongly influenced by prior experiences or education, but it does measure the capacity to 

retain information and therefore the potential to learn (Alloway et al., 2005). Recent research 

in education has focussed on discovering possible links between working memory ability and 
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academic progress, with claims that working memory is a better predictor of academic 

success than IQ tests (Alloway & Alloway, 2010). Alloway and Alloway (2010) suggest that 

poor working memory leads to failure in tasks that involve storing and processing 

information. Impairments in working memory have negative consequences for learning and 

academic progress (Gathercole & Alloway, 2006). Poor working memory may result in 

disruption of early learning processes leading to subsequent learning difficulties. In other 

words, working memory may be considered a bottleneck for learning which supports the 

acquisition of skills and knowledge in various domains (Gathercole, 2004; Gathercole & 

Alloway, 2006).  

Working memory has been described as a limited capacity central executive system 

that interacts with a set of passive store systems used for temporary storage of different 

classes of information (Baddeley, 1996). Individual differences in working memory capacity 

have been identified as contributing to the ability to inhibit irrelevant stimuli (Engle, 

Tuholski, Laughlin, & Conway, 1999), the ability to direct attention (Kane, Conway, 

Hambrick, & Engle, 2007), and self-discipline (Duckworth & Seligman, 2005). For example, 

Nicolson and Fawcett (1990) suggest that children diagnosed with dyslexia have a deficit in 

the acquisition of skill, specifically, in the acquisition of automaticity. Nicholson and Fawcett 

suggest that a reduced ability to concentrate on initial learning processes may be attributed to 

working memory and attentional problems. It is plausible that difficulty in storing and 

accessing information in working memory may affect the ability to automatise. Thus working 

memory capacity could be related to the initial development of automaticity.  

Working memory capacity appears to be a key factor in acquiring and retaining the 

essential skill information needed to automatise skills. The storage and handling of 

information from working memory are central to theories of skill acquisition (e.g., ACT 

theory: Anderson, 1993) and automaticity (e.g., instance theory: Logan, 1988). For example, 
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the ACT theory defines skill acquisition as the firing of productions, whereby particular 

mental actions are triggered when a certain state occurs in working memory (Anderson, 

1987). The instance theory describes learning as a race between an algorithm and an instance. 

Each time we perform a task we store a memory representation of the episode called an 

instance. The more instances that are stored, the probability increases of retrieving an 

instance before the algorithm is executed (Logan, 1988). Working memory is claimed to be 

responsible for the control of attention and processing, including retrieval of information 

from long-term memory (Baddeley, 2000). Thus, working memory is involved in the 

automatic retrieval of appropriate instances.  

Alloway (2009) suggests that working memory capacity can be increased with 

training, which may then contribute to improved academic performance. Chein and Morrison 

(2010), Holmes, Gathercole, and Dunning (2009), and Thorell, Lindqvist, Bergman Nutley, 

Bohlin, and Klingberg (2009) found behaviour changes associated with working memory 

training extended beyond training situations, suggesting that working memory improvement 

assists in carrying out general cognitive skills. Furthermore, working memory training has 

been suggested to improve fluid intelligence, with working memory training improving 

coping mechanisms that deal with novel environment changes and abstract reasoning (Jaeggi, 

Buschkuehl, Jonides, & Perrig, 2008; Sternberg, 2008). The link between improvement in 

general cognitive ability and working memory training suggests that learning potential could 

be predicted on the basis of working memory measures. Thus, working memory ability may 

also predict the likelihood of learning retention and transferability of skills.  

Whilst working memory ability has been linked to improved general cognitive ability 

it is important to note that there has been speculation around working memory training and its 

link to increased intelligence and academic achievement. Morrison and Chein (2011) suggest 

that improvements associated with working memory training may be linked to effort and 
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expectancy effects rather than as a direct result of the memory training itself. For example, 

motivation, commitment, and difficulty have not been previously controlled for amongst 

participants. Furthermore, there is almost no standardisation and convergence of the findings 

(Morrison & Chein, 2011). There appears to be great variability in the range of cognitive 

skills assessed and inconsistency in the stimuli and timing parameters in working memory 

research.  

If working memory capacity determines the efficiency of cognitive performance, it is 

expected that a large working memory capacity should enable better cognitive performance. 

In the present experiment, two measures of working memory (the Swaps and the Triplets test) 

were implemented to explore whether people with larger working memory capacity attain 

automaticity faster than people with a smaller working memory capacity. Performance in the 

visual numerosity task according to training and transfer phases was compared with working 

memory performance. It was expected that those who reach automaticity faster in training 

may demonstrate no disruption in transfer trials due to a larger working memory capacity. 

This may indicate an ability to attend to changes in context better than those who have a 

smaller working memory capacity.  

Method 

Participants. 

Twenty psychology students from Edith Cowan University voluntarily participated in 

the study. Participants were recruited via the ECU Cognition Research Group Participant 

Register. The inclusion criteria required participants to have 'corrected' or 'corrected-to-

normal' vision and English as their primary language, and to not be colour blind. The 

participants' ages ranged from 17 to 65 years. Participants were reimbursed with a $20 

shopping voucher for their time. During the recruitment phase, an information letter (see 
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Appendix B) was used to inform potential volunteer participants of the rationale and merits of 

the study. An informed consent form (see Appendix C) was used to obtain participant 

consent. The researcher verbally advised participants of the rationale and merits of the 

research, asked if they had any questions, and invited them to participate. The informed 

consent form reiterated that participation was voluntary and as such at any time they could 

withdraw from the study. The form also provided participants with another prompt to ask 

questions if there was anything they did not understand about the experiment.  

Design. 

The study utilised the two-part visual numerosity task used in experiment one. During 

training trials configurations of six, seven, eight, nine, 10, and 11 asterisks were presented 50 

times each. During transfer trials the same six asterisk configurations were presented 25 times 

each. Each level of numerosity was presented by a colour: 6 red, 7 blue, 8 orange, 9 pink, 10 

green, and 11 purple, with corresponding numbered and coloured keys on the response pad. 

The secondary task of each trial only occurred if the participant provided the correct answer 

for the primary task. In the secondary task participants were required to perform an addition 

problem in training trials, and a subtraction problem in transfer trials, with a response in the 

form of the answer being odd or even. Participants received feedback for incorrect answers in 

parts one and two. A new trial was initiated following the presentation of feedback. 

The experiment also included measures of working memory, using the Triplets test 

and the Swaps test implemented via the ebilities website (ebilities, 2015). These tests were 

based on the test utilised in Stankov’s (2000) experiments. For both the Triplets and Swaps 

tests, participants were required to report how confident they were that their test answer was 

correct as a percentage (e.g., 60%). The Triplets test provides a measure of fluid and 

crystalised intelligence and was used in this experiment as a measure of working memory. 

Participants are required to memorise a rule relating to the order of three numbers (a triplet) 
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and make decisions on whether or not the rule applies. For example, “Click on YES if the 

first number is the lowest number and the last number is the highest. Click on NO if this is 

not the first case”. When shown a triplet, they must decide whether or not the rule they have 

memorised applies, using the mouse to click on the “Yes” or “No” button on the screen. The 

test becomes more difficult as the rules become more complex. There are 42 items in total in 

this task. 

The Swaps test is a test of fluid intelligence that involves working memory. 

Participants are required to swap the order of the pictures shown (e.g., circle, triangle, 

rectangle, lines) with reference to the instructions on screen. Test items range between one to 

four swaps with item complexity increasing (i.e., more swaps are required). There were a 

total of 20 items on the test. Participants were shown a set of three pictures and were given 

instructions about swapping the order of the pictures (e.g., “swap 2 and 4”). An answer screen 

then appeared, which included the same three pictures in various orders. Participants were 

asked to select the option that presented the correct sequence of pictures after the swap had 

been made. 

Apparatus and stimuli. 

The experimental task had two parts, and there were two phases to the experiment 

(training and transfer) (total duration: 45–60mins). In the primary task of each trial, a 

configuration of asterisks, ranging in number from six to 11, was presented in the centre of a 

computer screen. In the training phase, the secondary task of each trial required participants 

to add a number (between one and six) to the number of asterisks just presented and respond 

as to whether the answer was odd or even. In the transfer phase, the secondary task of each 

trial involved subtracting a number (between one and six) from the initial number of asterisks 

(see Figures 18 and 19). Blocks consisted of the same number of trials in experiment one 

(six) with a matched secondary task. The training phase comprised of 50 presentations of 
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each configuration, and the transfer phase comprised of 25 presentations of each 

configuration.  

Each asterisk was separated from other asterisks within a stimulus configuration by at 

least 1 cm vertically and horizontally. Dell personal computers were used to display the 

stimulus patterns, and a SuperLab (RB-840) response pad was utilised by students to report 

the number of asterisks presented in the primary task. There were six coloured keys on the 

response pad, marked six, seven, eight, nine, 10, and 11. In the secondary task participants 

were required to respond whether the addition or subtraction answer was 'odd' or 'even'. The 

response pad had two additional keys marked 'odd' and 'even'.  

The Triplets and Swaps tests were conducted on the same Dell personal computers as 

the visual numerosity task. Participants entered their responses with the keyboard and mouse.  
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 Training trial                  Primary task                        Secondary task    

  

500 ms                 

 

 

 

Figure 18: Example configurations of the primary task and secondary task during training.  

 

 Transfer trial              Primary task                                              Secondary task 

 

  

 

 

Figure 19: Example configurations for the Transfer task

 
 
   * 

*        * *
 * 
        *  *  
        

How Many Stars? 
 

  

__ + 2 = __ 

Is the answer odd or even? 

 
 
   * 

 
 
   * 

*       *        * * 

        *  * * * 

       How Many Stars?           

 

  

__ - 5 = __ 

Is the answer odd or even? 

            

 
 
   * 

Fixation Point 250 ms              Answer 6                  Blank Screen      Answer Even         Fixation Point 250 ms 

  Fixation Point 250 ms    Answer 8          Blank Screen         Answer Odd                       Fixation Point 500 ms 
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Procedure 

Participants began the experiment by completing the Swaps and Triplets working 

memory tasks. Participants were given a personalised user id and password to login to the 

ebilities test site. Participants were asked to click on the Start Test button in the top right of 

the web page to access the site, then login using the provided details, and follow the prompts. 

After providing demographic information participants began the Swaps task. The Triplets 

task followed immediately after the Swaps test.  

For the visual numerosity task a practice phase of 12 trials, utilising different example 

stimuli, was used to familiarise participants  with the task. Once participants fully understood 

the procedure the training trials began. In the primary task of each trial a fixation point 

appeared in the centre of the screen for 250 ms, followed by a random configuration of 

asterisks (six, seven, eight, nine, 10, 11). The pattern remained on screen until a response was 

made on the response box by pressing one of the corresponding keys. A blank screen then 

followed for 250 ms. Participants were instructed to add a number to the configuration 

presented in the form of “ __ + 2 = __”. Participants were asked to respond “Is the answer 

‘odd or ‘even’?” by pressing the corresponding keys. A subtraction problem was presented 

during transfer trials. Participants were instructed to respond as accurately and as quickly as 

possible. Participants were given an optional rest break after 25 blocks. Feedback was given 

for incorrect responses for the primary task and a new trial was presented. The incorrect trial 

was repeated again later in the same block. 

Results and Discussion 

Reaction time. 

 Average RT across all levels of numerosity for each block was calculated to 

investigate the pattern of learning and to enable visual inspection of the data for changes in 
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RT after block 51: the transfer phase. Only data from participants who attained a mean 

accuracy of 80% for the primary task of the visual numerosity task were analysed; however, 

no participants scored equal to or less than this cut-off point (Training: M = 97.90%, SD = 

2.23; Transfer: M= 98.11%, SD = 2.23; Total: M = 98.03%, SD = 1.80). Inclusion criteria 

also required participant RT performance to be less than 9000 ms for each trial. Trials that 

were identified as exceeding the maximum RT (9000 ms) were labelled as incorrect and were 

omitted from the analyses. Two participants chose to discontinue from the study; accordingly 

their data was excluded from the analyses.    

Figure 20 shows the mean RT in each block plotted along with a power function with 

asymptotes constrained to zero that was fitted to the 50 blocks of training, and extrapolated a 

further 25 blocks into the transfer phase. Power functions provided a high degree of fit (high 

r² and low root mean squared deviation (rmsd) values) to the observed training RT (see 

Figure 20). The improvement in training RT with practice was well described by a power 

function.  
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Figure 20: Mean RT in the primary task of each trial.  

The smooth line is the best-fit power function (RT = 4256.71*Block-0.22, r2 = .96, rmsd =204.57). 
Error bars represent 95% confidence intervals. The power function was fitted to training data and 
extrapolated to the transfer phase.  

Disruption measure. 

 A one-way repeated measures ANOVA was used to compare primary task RT in the 

last block of training (M = 1640.84 ms, SD = 675.47) with the primary task RT in the first 

block of transfer (M = 1866.20 ms, SD = 885.62). The ANOVA results show that RT did not 

significantly differ between training and transfer blocks (p = .06).  

 To assess the extent to which transfer performance could be predicted from training 

performance, the power function derived from the training phase data was extrapolated a 

further 25 blocks and compared with observed transfer RTs. Transfer performance is 

considered to be predicted well on the basis of training performance where extrapolated 

values pass within the 95% confidence intervals of the transfer RTs (Speelman & Kirsner, 

2001) (see Figure 20). As a result, although RT appears to be slowing down early in transfer, 

this was not by a statistically significant amount.  
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 The transfer results suggest that after an initial slowing of RT after the changes to the 

secondary task of the trial, subsequent RT appears to be unaffected. To examine how transfer 

performance is maintained after the initial readjustment in the first block of transfer a 

repeated measures ANOVA was conducted on transfer blocks 51, 52, 53 and 54. Mauchly’s 

test indicated that the assumption of sphericity had been violated, x² (5) = 39.15, p = .00, and 

so the degrees of freedom were corrected using Huynh-Feldt estimates of sphericity (ɛ= .54). 

There was a main effect of transfer block, F(1.61, 57)= 5.10, p < .05, with Bonferroni post 

hoc tests revealing that RT was significantly slower in block 52 of transfer (M = 1637.86 ms, 

SD = 131.85) compared to block 54 (M = 1433.94 ms, SD = 135.76), and block 53 (M = 

1761.22 ms, SD = 172.05) was significantly slower than block 54. After the initial increase in 

RT in block 51, RT appears to decrease as the number of trials in transfer increase, 

particularly by block 54 where RT was significantly faster than in transfer blocks 52, 53, 54. 

After the slower RT in blocks 51 and 53, there was a general reduction in RT throughout 

transfer (see Figure 20).  

 Individual performance (primary task).  

Figure 21 presents each participant’s RT for the primary task of each trial, for all 

blocks in the experiment. It is apparent in this figure that not all participants demonstrated the 

pattern of RT improvement that was exhibited in the group average results. Participants three, 

seven, 12, 13, 14, 16, 17 and 19 display data patterns that could be considered similar to that 

observed in the overall RT data. In contrast, participant one demonstrated little change in RT 

with practice, which is a vast deviation from the collective RT data (see Figure 20). 

Participants two, four, five, six, nine, 10, 11, 18 and 20 all demonstrate sudden changes in RT 

at varying points in the data. Only eight out of 20 participants demonstrated either a linear 

relationship between performance and practice or similar performance trends to that observed 

in the group data. This suggests that individuals are not uniform in their approach to the task 
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and performance does not necessarily reflect classical learning curve performance for all 

participants.  

 

Figure 21: Individual RT performance data for 20 participants and group RT 
performance data on the primary task of each trial. The figures represent RT (ms) as a 
function of practice (block).  

  

Individual performance (secondary task).  

Figure 22 depicts individual performance in the secondary task to determine whether 

changes implemented in the transfer trials (block 51) impacted upon immediate performance. 

That is, were the changes challenging enough to cause a disruption in performance patterns? 

Figure 22 indicates that group performance on the secondary task of each trial had little 

disruption during transfer. Individual performance indicates that most participants (except 

participants one and 20) were not disrupted in overall transfer performance in blocks 51–75. 

Participants three, 15, 21 and 24 demonstrated RT performance similar to classic learning 

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60 70 80

2

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60 70 80

4

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60 70 80

5

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60 70 80

6

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80

1

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80

2

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80

3

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80

4

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80

5

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80

6

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80

7

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80

8

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80

9

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80

10

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80

11

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80

12

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80

13

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80

14

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80

15

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80

16

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80

All Participants

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80

17

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80

18

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80

19

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80

20



132 
 

curves. This suggests that there was little difference in difficulty between the secondary task 

tasks in training and transfer.  

 

Figure 22: Individual RT performance data for 20 participants and group RT 
performance data on the secondary task of each trial.  

 

Automaticity 

As expected, on the basis of the typical development of automaticity, early in training 

RT on the primary task of each trial was directly related to the number of items presented on 

screen. RT generally increased as the number of items on screen increased. The slope of this 

increase in RT with numerosity was expected to be large during the early training phase but 

should decrease as performance became more automated, with a value of zero expected 

during the late training phase. Mean RT for each level of numerosity for each phase is 

presented in Figure 23, which demonstrates that RT in the early phase of training increased as 

the number of items on screen increased. In the mid phase the slope of the regression line was 

shallower than in the early phase. RT was independent of numerosity in the late training 

phase, with only a slight increase in RT with the increase in numerosity. This supports 
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previous research on the development of automaticity in visual numerosity with practice 

(Logan, 1988). RT was faster in the transfer blocks compared to training performance, which 

is consistent with scenario one (p. 46). Overall, participants did not quite meet criterion 1 for 

automaticity by the end of training; however they appear to have been closer to reaching 

automaticity during the transfer phase (see Table 3). This result suggests that automaticity has 

led to complete transfer, supporting the ACT-R and instance theories. Participants appear to 

have been unperturbed by the contextual change manipulated in this experiment.  

Regression lines of the form RT = a + b*numerosity were fitted to the RT data for 

each participant as a function of numerosity for each of the training phases. The slope values 

for these lines are presented in Table 3. Participants were classified as having achieved 

automaticity using two criteria outlined in experiment one (Chapter 5). As indicated in Table 

3, 15 (75%) participants were considered automatic by the late training phase, using criterion 

one, whereas 17 (85%) out of 20 participants were considered automatic using criterion two. 

Most participants appear to have approached automaticity by the late training phase. 
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Figure 23: Mean RT for the primary task of each trial as a function of numerosity for 
early, mid, and late training phases and transfer. 

 Table 3 shows the r2 values for the regression lines. It can be noted from this table that 

small r2 values show no linear incline with increasing asterisks, indicating that participants 

have reached automaticity (i.e., their RT does not increase with number of asterisks). For 

those people with high r2 values, the regression line does fit the data well, indicating a linear 

increase of RT with number of asterisks, which is evidence consistent with them not attaining 

automaticity yet. 

Calculations of slopes indicate that performance was reaching asymptote by transfer 

trials, and mean RT between training and transfer indicates a minimal disruption in 

performance. The findings suggest that transfer performance continued in accordance with 

gains made in training performance. Context changes do not appear to have disrupted transfer 

performance. Two possible explanations can be considered in explaining why participants’ 

transfer performance was unaffected by the change to the secondary task:  

1) Participants were automatic on this task and therefore changes to the 

secondary task in the transfer phase do not impact upon primary task 

performance. Thus, automaticity enables complete transfer. Logan (1985) 

states that a person who has attained automaticity can continue to improve 

their performance with practice. Thus these results suggest that participants 

may have continued to improve beyond automaticity and were undisrupted 

by context changes, as the theories, such as the ACT and the Instance 

theories, would predict.  

2) Or, participants were simply colour matching the stars to the coloured 

response pad. This would still support the development of an automatic 

response to colour matching, but with less challenging task requirements. 

Thus, changes to the secondary task are not enough to disrupt performance 
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on colour matching. With little impact on the slope of the RT-numerosity 

line in transfer with the context change, it is possible that the task was too 

easy, with colour coding resulting in little attention being paid to context 

changes.  

Whilst trying to facilitate the development of automaticity through the use of colour coding in 

the visual numerosity task there appears to have been an effect on performance that may have 

reduced the challenge of the task significantly. 
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Table 3: Participant slope of regression lines fitted to RT data as a function of numerosity.  

Participant Early slope SD Mid slope SD Late slope SD Transfer slope SD Criterion 1 
Automaticity 
achieved 
(<100 ms) * 

Criterion 2 
Automaticity 
achieved 
(reduction of 
slope from 
early to 
late)** 

Disrupted 
Y/N 

1 210.27(.84) 428.88 219.14(.84) 446.92 218.45(.77) 466.11 149.12(.61) 355.52 2 2 Y 

2 165.97(.52) 430.05 227.67(.76) 487.38 335.68(.78) 710.03 -50.66(.15) 243.45 2 2 Y 

3 490.09(.82) 1012.47 -161.35(.17) 727.92 -144.64(.61) 374.60 -92.76(.37) 284.49 1 1 N 

4 302.91(.71) 674.44 251.11(.31) 836.78 66.41(.42) 191.83 182.59(.71) 404.61 1 1 Y 

5 137.91(.52) 357.50 14.57(.03) 144.98 20.72(.06) 156.01 -12.63(.03) 137.84 1 1 N 

6 255.06(.51) 670.96 236.95(.60) 573.48 21.21(.02) 302.30 -15.73(.05) 136.27 1 1 Y 

7 253.00(.84) 516.19 275.48(.86) 554.21 380.94(.93) 739.81 202.88(.36) 631.89 2 2 Y 

8 42.07(.02) 516.17 172.01(.59) 420.46 -36.24(.14) 182.19 14.02(.02) 173.19 3 1 Y 

9 33.84(.06) 259.25 33.88(.21) 139.64 -38.8(.14) 191.48 -33.83(.08) 222.55 3 1 Y 

10 35.71(.09) 216.31 9.65(.08) 63.50 14.13(.08) 95.38 -18.56(.11) 104.91 3 1 N 

11 392.81(.79) 825.01 22.65(.06) 177.53 13.8(.04) 136.97 -17.25(.12) 92.40 1 1 Y 

12 257.29(.60) 623.49 4.14(.00) 871.17 16.26(.01) 330.34 53.74(.25) 200.59 1 1 N 

13 186.12(.88) 794.57 13.33(.37) 615.26 -35.49(.02) 534.15 -94.91(.03) 468.84 1 1 Y 
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Participant Early slope SD Mid slope SD Late slope SD Transfer slope SD Criterion 1 
Automaticity 
achieved 
(<100 ms) * 

Criterion 2 
Automaticity 
achieved 
(reduction of 
slope from 
early to 
late)** 

Disrupted 
Y/N 

14 397.93(.88) 789.78 199.15(.37) 595.66 -35.49(.01) 614.16 -41.55 (.03) 486.01 1 1 N 

15 304.4 (.65) 609.80 144.49 (.11) 400.83 97.27 (.12) 220.40 154.35 (.00) 411.53 1 1 Y 

16 240.93 (.61) 576.10 90.98 (.56) 220.34 -33.17 (.53) 85.10 3.45 (.003) 127.36 1 1 Y 

17 581.75 (.86) 1175.92 478.94 (.99) 905.40 406.69 (.56) 1016.68 360.93 (.42) 1036.35 2 1 N 

18 281.97 (.94) 543.43 -8.32 (.30) 28.40 26.07 (.32) 85.56 -25.81 (.28) 90.90 1 1 Y 

19 484.96 (.74) 1055.65 270.24 (.16) 1281.57 111.20 (.03) 1286.70 -110.09 (.06) 847.06 2 1 Y 

20 276.82 (.74) 600.60 324.73 (.72) 716.37 14.46 (.10) 86.40 -22.55 (.15) 107.03 1 1 Y 
* 1 = automatic performance (i.e., slope <100 ms). 2 = non-automatic performance (i.e., slope >100 ms). 3 = automatic performance in early training phase. 
** 1= automatic performance (i.e., slope decreasing from early to late training phases). 2 = non-automatic performance. 
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Three types of automaticity performance were identified (see Table 3) based on 

the slope of regression lines relating response latency to numerosity:  

1) Automatic with practice as predicted based on the ACT and instance theories.  

2) Little change in RT, with automaticity not attained by the late training phase.  

3) Automatic early in training with the slope of regression relating to response 

latency reflecting small slopes close to zero early in task performance. 

According to automaticity criterion one, the regression slopes of five of the 20 

participants were never lower than 100 ms, suggesting that automaticity had not been 

reached. However, according to automaticity criterion two, only three participants were 

not considered automatic by late training. It is apparent according to individual results 

that not all participants are performing the task at an equivalent level. That is, even 

though participants have been given the best opportunity to achieve asymptote by late 

training via colour matching visual stimuli with responses, there are still those who 

continue to utilise counting methods for task execution. 

 Figure 21 suggests that not all participants are exhibiting the same learning 

pattern; some participants seem to be unpredictable in their performance. Two 

participants (three and 19) display learning curve patterns that would be considered 

typical RT performance; that is RT reduces as training trials increase. Interestingly, nine 

participants demonstrated a sharp reduction in RT at varying points of practice that were 

not reflective of any experimental changes. It seems as though these participants suddenly 

became attuned to the colour and numerosity congruence, which led to a rapid 

development of automaticity, followed by a reduction in learning gains as demonstrated 

by a plateau in performance.  

What is clear by inspecting individual data is that individual results do not 

necessarily reveal uniform performance based on theoretical positions. Smith and Lerner 
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(1986) reported great deviations in the number of trials taken to reach asymptote by 

individuals, with the range reported to be between 10 and 100 trials. The current results 

support the idea of individual variability in learning curves.  

Developing automaticity in this experiment was facilitated by reducing task 

demands whereby colours simply had to be matched to responses. Encouraging the 

development of automaticity in this way may have resulted in participants finding the 

experiment too easy, resulting in unfocused attention, or mind wandering (Kane et al., 

2007) whilst performing the task.  

Disruption and Transfer 

A measure of disruption for the primary task was calculated by subtracting, for 

each participant, the mean RT in the first block of transfer from the mean RT in the last 

block of training. A positive number indicates RT that is slower in transfer. As indicated 

in Table 4, 14 (70%) participants were disrupted in transfer performance. Six participants 

were not disrupted in transfer.  

A large percentage (70%) of participants demonstrated a slowing of RT 

performance in transfer and a large percentage (75% according to criterion one and 85% 

according to criterion two) of participants were classified as automatic by the late training 

phase.  

The primary interest of this study is whether automated performance on a primary 

task is affected by a change to a secondary task. The aforementioned results indicate that 

group performance can be considered automatic, and even at the individual level most 

participants reached asymptote by late training. It was hypothesised that given the current 

definition of automaticity and in light of recent findings, automaticity may lead to one of 

four possible outcomes (see Chapter 5). Automatic performance of a task could be 
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unaffected by context change (as demonstrated in no change in transfer performance with 

a change to the secondary task; scenario one), or only affect transfer momentarily 

(scenario three), or finally, appear to limit transfer performance suggesting automated 

skills are bound to the specific context in which they were acquired (e.g., Logan, 1988; 

Shiffrin & Schneider, 1977; scenarios two and four). A within subject ANOVA was 

conducted to compare primary task RT in the last block of training with primary task RT 

in the first block of transfer trials. No significant difference was found between these 

blocks.  

Although the results do not indicate a significant increase in RT between the last 

block of training and the first block of transfer, there was an increase in RT performance 

times supporting scenario three predictions. This disruption may be interpreted as a 

momentary ‘surprise’ effect whereby participants were briefly interrupted in their 

execution of a learned mental set, and RT performance returned quickly after a brief 

readjustment and re-employment of an automatised strategy (Speelman & Parkinson, 

2012). Although performance recovered soon after, as observed in blocks two and four, 

there was a period of time where participants may have second-guessed the strategies 

previously implemented and may have resorted back to older counting strategies.  

The results of experiment two suggest that skill transfer has occurred in the 

primary task despite changes to the secondary task. When people became automatic on 

the primary task, changes to the secondary task did not affect performance of the primary 

task, especially if conditions that encourage the automatic performance (i.e., colour 

coding) still exist. That is, automaticity seemed to enable complete transfer.  
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Table 4: Participant data from training and transfer blocks and working memory measures. 

 

Participant   Mean RT 
(ms) training 
last block 

Mean RT 
(ms) transfer 
first block 

Disruption 
mean RT 
(ms) primary 
task 

Training 
block 1RT 
(ms)  - 
transfer 
block 1 
primary task 
RT (ms) 

Mean 
training RT 
(ms) first 
block 
secondary 
task 

Mean 
training RT 
(ms) last 
block 
secondary 
task 

Mean 
transfer RT 
(ms) first 
block 
secondary 
task 

SWAPS 
accuracy (%) 

TRIPLETS 
accuracy (%) 

1 1469.17 2275 805.83 126 1950 1929.5 3101.5 95 90 

2 1421.33 1470.67 49.34 1786 2610.67 1364.5 2889.33 75 90 

3 1579.67 1555 -24.67 4204.5 3878.17 1817 1782.2 55 83 

4 1022 1685.5 663.5 1745.33 1594.2 864.33 4594.2 90 100 

5 1212.67 1134.67 -78 1791.16 1876.6 1537.33 1515.83 80 95 

6 1241.33 1304.67 63.34 3498.73 2593.17 1170.83 1585.83 90 100 

7 2282.17 2542.67 260.5 903.67 1947 1127.6 1157.5 95 95 

8 1216.5 1816.5 600 1233 1878.83 1110.33 3491.4 90 100 

9 1197 1755.5 558.5 2509 2138 1315 3372 65 100 

10 1493.5 1446.33 -47.17 2294 1531.67 997.33 2100.25 100 90 

11 1097 1176.83 79.83 2148.83 1707.17 1312 2205.8 90 98 

12 1371.5 966.8 -404.7 2385.87 2477.33 1937.33 2263.4 45 88 

13 1883.4 2453.8 570.4 572.03 2594.75 1711.4 1977.6 95 90 

14 2677 1662.83 -1014.17 1554.5 1248.5 1026.83 1838.6 70 76 

15 2300.5 2644.17 343.67 862 2256.83 901.67 2129.8 50 93 

16 1208.67 1689.83 481.17 1704.67 1733.83 1654.17 2491.83 100 100 

17 2331.83 2286.2 -45.63 2084 1517.33 1331.8 2511.8 90 86 

18 977.67 1071.67 94 2311.93 1160 732 1311.83 75 100 

19 3629.2 5004.2 1375 629.97 2430.67 1332.17 2911.5 55 86 

20 1156.33 1289.67 133.33 2208.33 1617.5 1112.67 2677.17 85 98 
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Transfer trial performance. 

Due to the nature of the experimental design the first trial of the first block of 

transfer reflects performance when the participant has not, as yet, been exposed to the 

context change. Therefore, mean RT in the first block of transfer (block 51) may not 

accurately represent the amount of disruption after the context change is implemented. In 

order to eliminate the possibility of a very fast RT score in the first trial of transfer, 

performance in the first block of transfer was examined on a trial-by-trial basis. As 

expected, performance on trial one of transfer was fast, with mean RT under 1400 ms (see 

Figure 24). In trial two, RT was substantially slower after the context change. Following 

the context change RT does not seem to return to the level of trial one transfer 

performance even as trial practice continues. RT remained slower than trial one in 

subsequent trials of this block. However, no significant differences were found in RT 

performance on a trial-by-trial basis. 

Greater disruption in the secondary task was found to be related to slower RT in 

transfer. So it would appear that participants conceptualised the two-part task as one task 

so that a change from addition to subtraction in the secondary task generated a slower 

response in the primary task. These results appear to support the findings of Speelman 

and Kirsner’s (2001) where a context change results in changes to learned skills and 

challenge theories of skill transfer, such as the ACT theory and the instance theory that 

infer automaticity should be a stable and durable process. What is apparent is that this 

disruption continued throughout block one transfer with a gradual shift in performance 

speed that may indicate a shift back to memory strategies. Similar to what Speelman and 

Parkinson (2012) found, there is evidence to reject the idea of a ‘surprise’ effect to 

explain the disruption in transfer due to the sustained effect of the disruption in block one 

of transfer.  
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Figure 24: Mean RT for the primary task on each trial in transfer block 51.   

 

Accuracy.  

Throughout the experiment only correct answers were included in the analyses. 

Disruption has been considered as a slowing in RT performance; however, an increase in 

errors may also indicate that performance is affected by context changes. The number of 

correct answers was recorded for trial two immediately following the context change 

implemented in the trial one secondary task. Eighteen participants answered correctly, 

only one participant answered incorrectly. Another participant’s data on trial two was 

recorded as incorrect due to not meeting the inclusion criteria (i.e., RT<900 ms). 

Accuracy of trial two performance did not indicate a disruption, and so cannot explain 

why most participants were slower on trial two than on trial one.  
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Relationship Between Automaticity and Transfer 

Groups and disruption mean.  

According to automaticity criterion one, the performance of participants 10, 11, 

and 12 were identified as automatic at the beginning of the task. Participant 12 

demonstrated performance in transfer that was faster than their performance on the last 

block of training. Participants 10 and 11 were however disrupted in transfer performance. 

Five participants demonstrated no change in automaticity from the early to the late blocks 

(the regression line slopes did not demonstrate any notable increase or decrease), and of 

these participants four demonstrated a disruption in RT performance during transfer. 

Eleven participants (55%) demonstrated performances that suggest automaticity was 

established over time, with their regression line slopes decreasing below 100 ms by the 

late training phases. Four of these participants did not demonstrate a transfer disruption, 

with RT faster in transfer compared to the last block of training. Six of these participants 

were disrupted in transfer performance. At an individual level, then, there appears to be 

no consistent transfer performance outcome based on automaticity classification.  

Relationship Between Automaticity and Working Memory 

To determine whether there was a significant relationship between measures of 

working memory and visual numerosity performance, a correlational analysis was 

conducted between the Swaps, Triplets, and RT performance on the last block of training 

and the first block of transfer, and slope of RT-numerosity regression lines (early, mid, 

late and training phases, and the transfer phase). A strong negative correlation was found 

between the Triplets performance (M = 92.90, SD = 6.88) and early slope values (M = 

266.59, SD = 150.18), r (17) = -.48, p <.05. This suggests that participants who started 

the task with smaller slope values in the early training phase also performed well in the 

Triplets task, with many performing at or above 90% accuracy. It is plausible, then, that 
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those who have a high working memory capacity were also able to establish automaticity 

early in the visual numerosity task. This supports predictions that a high working memory 

capacity facilitates the development of automaticity. Significant correlations were found 

between the Triplets performance and mean RT of the last block of training (M = 

1638.42, SD = 682.31), r (17) = -.66, p = .001 (see Figure 25). Figure 25 indicates that the 

participants who achieved 100% in the Triplets task also had fast RTs in the late training 

phase. Therefore, working memory capacity may be important to facilitate faster 

performance on the visual numerosity task. All participants appeared to perform well in 

the Triplets memory task, with only one participant achieving lower than 80%. No other 

correlations were found to be significant. 

 

Figure 25: Mean RT for the late training phase and Triplets accuracy performance. 
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Relationship Between Transfer and Working Memory 

Correlational analyses revealed no significant correlations between the measure of 

disruption and working memory measures, so no clear connection can be drawn between 

these measures.  

A measure of working memory was included to determine whether working 

memory capacity could be a predictor of automaticity and could account for individual 

differences in automaticity and transfer performance. Correlational analyses revealed that 

performance in the Triplets working memory test was linked to early training slopes of 

regression and RT performance in the last block of training. Participants who were 

considered automatic with slopes of regression close to zero also scored high on the 

Triplets test. Two participants obtained 100% accuracy and had slopes of less than 50 ms. 

Those who scored below 87% accuracy also demonstrated slopes of greater than 370 ms. 

These findings suggest that the way a participant approached the task—that is, whether 

memory strategies are implemented early on in the task as opposed to utilising only 

counting strategies—can be mediated by working memory ability. In other words, how 

well a participant does on the Triplets task may predict how quickly memory strategies 

are implemented and how automaticity develops.  

Triplets task performance and early slopes close to zero may be explained through 

the research on problem-solving ability and working memory. Executive functioning is 

responsible for control of attention and processing (Baddeley, 2000), problem solving 

(Swanson & Beebe-Frankenberger, 2004), and the ability to inhibit irrelevant information 

into working memory (Chiappe et al., 2000). Executive functioning and working memory 

capacity are suggested to share a common executive attention component that has been 

found by McCabe, Roediger III, McDaniel, Balota, and Hambrick (2010) to be highly 

predictive of higher-level cognition. Furthermore, working memory is considered a 
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domain general component responsible for the control of attention and processing that is 

involved in a range of regulatory functions, including the retrieval of information from 

long-term memory (Baddeley, 2000). In the current experiment, the participants who 

demonstrated early small slopes and high Triplets scores may indicate a more competent 

domain general working memory component of processing that allows them to quickly 

work out the requirements of the visual numerosity task, leading to early establishment of 

automaticity. The current results suggest the ability to attend to task features to quickly 

work out a strategy can lead to reduced cognitive load and faster task execution. This 

would appear to support claims by Alloway and Alloway (2010) and McLean and Hitch 

(1999) that executive memory may control the ability to learn tasks to automaticity. 

However, in this experiment working memory does not appear to be statistically related 

to transfer disruption.  

There were some noteworthy results in the individual data:  

 Participants 10 and 11 both obtained 100% in the Triplets test and 

demonstrated minimal disruption (disruption RT under 600 ms) with 

slightly lower transfer slopes, compared to other participants.  

 Participant three’s performance in early training was high with a slope of 

490.09 ms (however they did achieve a slope of -101.36 ms by mid 

training), they also scored 83% accuracy in the Triplets and demonstrated 

RT that was faster in transfer compared to the training last block.  

Conclusion 

Thus far, group results indicate that automaticity may support skill transfer. 

Furthermore, working memory may be responsible for the rate of automaticity acquisition 

and successful transfer. Individual results indicate that individuals develop automaticity at 
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varying rates, and some do not even appear to approach automaticity after much practice, 

contrary to the average group results. The final experiment explored further the role of 

automaticity whilst attending to some concerns regarding experiment two—that is the 

addition of colour corresponding to numerosity configurations. The issue of automaticity 

and transfer performance cannot be reconciled in this experiment due to the possibility 

that the task was too easy, and so participants engaged in colour matching rather than 

implementation of counting and memory strategies and may have been subject to greater 

distractibility from the changes in context in the transfer trials. The intended aim for 

experiment two was to identify participants who varied in the degree to which they were 

automatic, that is to be able to identify those who may have relied on only counting 

strategies compared to those who implemented remembering strategies. By identifying 

differences in task strategy, it could have been determined whether automaticity related to 

transfer. Experiment two did not allow for this to be tested as most people were automatic 

early in the experiment. The design in experiment three was refined by removing the 

colour correspondence to refocus the participants to learn the pattern configurations 

through counting and remembering strategies, rather than just colour matching the 

configurations with the coloured keys. The experimental questions being addressed 

remained the same. No further changes to the experiment were implemented. 
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Introduction to Experiment Three 

The findings of experiment one suggest that automatic skills can be disrupted by 

novel context changes. Group B2 demonstrated a significant slowing in RT performance 

with the transition from training to transfer, supporting the findings of Speelman and 

colleagues (i.e., Speelman et al., 2011; Speelman & Kirsner, 2001; Speelman & 

Parkinson, 2012). As participants were sporadic in the development of automaticity and 

individual characteristics could not account for the probability of transfer disruption, the 

findings were not consistent with any of the predictions outlined in Chapter 5. Instead, 

performance beyond the initial transfer disruption indicates that task approach or task 

conceptualisation may have differed between the two experimental groups. Differences in 

task difficulty rather than the impact of context changes may have been responsible for 

performance pattern disparities. Experimental design plays an important role in the 

manipulation of skill transfer and disruption, and thus congruence is required between the 

experimenter’s intention and the participant’s conceptualisation (Healy et al., 2005). 

Subsequently, experiment two was designed so that the experimental condition did not 

influence transferability.  

This experiment was specifically designed to refine the experimental design and 

provide a more challenging task in order to maintain attention. The aim of the experiment 

was to determine how automatic skill performance on the primary task of each trial is 

affected by changes to the secondary task of the trial. The two research questions that 

were examined in experiments one and two were also central to experiment three. 

Specifically, this experiment investigated the extent to which automaticity affects transfer 

performance, and how much training is required to obtain the most successful transfer.  

 The results of experiment two indicated that RT performance did not significantly 

change with the transition from training to transfer. Whilst group results indicated 
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automaticity was established with the training trials, individual data revealed that some 

participants failed to even approach automaticity. The role of automaticity in skill transfer 

is difficult to examine when there are individual variances in the acquisition of 

automaticity and transfer disruption performance. Furthermore, the group results did not 

reveal any clear relationship between working memory capacity and the predictability of 

automaticity or skill transfer performance. However, according to individual results, 

greater working memory ability may lead to early establishment of automaticity, and 

appears to facilitate transfer performance. What was intended as a method of facilitating 

the attainment of automaticity—the addition of colour to the numerosity configurations 

and key responses—may have resulted in the task being too easy for the participants 

leading to a loss of attention to the secondary task and context changes. Accordingly, the 

third study in the present program of research aimed to rectify the influence of 

experimental design found in experiments one and two by removing the colour feature 

from the primary task of each trial. No further changes were made to the experimental 

design.  

The interpretations and hypotheses generated in experiments one and two also 

applied to experiment three. If the transition from training to transfer trials were not 

disrupted, then context would appear to have no effect over automatic skills acquired in 

training, supporting the theoretical predictions of the ACT (Anderson, 1982, 1992) and 

instance theories (Logan, 1988, 1990) where automatised skills remain stable even under 

minor context changes. Conversely, if RT is disrupted with the transition to transfer, this 

would indicate that despite the primary task remaining unchanged, changes to the 

secondary task affect the ability to perform the primary task automatically, possibly 

through some conceptual adjustment whereby participants rethink the overall task 

requirements. Thus, some loss of automaticity may be apparent during the context 
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transition from training to transfer trials (Speelman et al., 2011; Speelman & Kirsner, 

2001; Speelman & Parkinson, 2012). Performance after the initial few transfer trials is 

expected to indicate whether automaticity is beneficial or a hindrance to learning. If 

performance recovers and RT continues to decrease as the number of trials increase, 

automaticity would appear to be beneficial to overall learning despite the initial task re-

conceptualisation. However, if RT does not recover after the initial disruption during 

transfer, this would suggest that automaticity is lost due to contextual changes.  

Another purpose of this experiment was to determine whether individual 

differences in working memory capacity affect the ability to automatise performance of 

the primary task of each trial, and maintain primary task performance in the face of 

changes to transfer trials. The same measures of working memory capacity utilised in 

experiment two were also used in experiment three to explore the role of other variables 

in the link between automaticity and skill transfer, and thus, hypotheses remained the 

same for the current experiment. It was expected that a large working memory capacity 

should enable better cognitive performance. This may be evident by people with larger 

working memory capacity attain automaticity faster than people with a smaller working 

memory capacity. Furthermore, due to a larger working memory capacity, those who 

reach automaticity faster in training may demonstrate no disruption in transfer trials. This 

may be attributed to an ability to attend to contextual change better than those who have a 

smaller working memory capacity.  

 

Method 

Participants. 

Twenty psychology students from Edith Cowan University voluntarily 

participated in the study. Participants were recruited via the ECU Cognition Research 
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Group Participant Register. The inclusion criteria required participants to have 'corrected' 

or 'corrected-to-normal' vision and English as their primary language. The participants' 

ages ranged from 17 to 65 years. Participants were reimbursed with a $20 shopping 

voucher for their time. During the recruitment phase, an information letter (see Appendix 

B) was used to inform potential volunteer participants of the rationale and merits of the 

study. An informed consent form (see Appendix C) was used to obtain participant 

consent. The informed consent form reiterated that participation was voluntary and as 

such at any time they could withdraw from the study. The form also provided participants 

with another prompt to ask questions if there was anything they did not understand about 

the experiment.  

Design. 

The study utilised the two-part visual numerosity task used in experiments one 

and two. Participants were asked to report the number of asterisks displayed on a 

computer screen for the primary task of each trial. During training trials configurations of 

six, seven, eight, nine, 10, and 11 asterisks were presented 50 times each. During transfer 

trials the same six asterisk configurations were presented 25 times each. Each level of 

numerosity was presented with corresponding numbered keys on the response pad. RTs 

and accuracy were recorded for participant responses in the primary task of each trial. 

The secondary task of each trial only occurred if the participant provided the correct 

answer for the primary task. In the secondary task participants were required to perform 

an addition problem in training trials, and a subtraction problem in transfer trials, with a 

response in the form of the answer being odd or even. Participants received feedback for 

incorrect answers in parts one and two, and a new trial was presented.  

The experiment also included the same measures of working memory used in 

experiment two, the Triplets test and the Swaps test (see experiment two).  
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Apparatus and stimuli. 

This experiment utilised the same numerosity configurations used in experiment 

two, however the colours were omitted from the stimuli and response keys. The 

secondary task included the same matched part two maths problem. All other details of 

the task were identical to experiment two (see experiment two for details).  

Procedure. 

Participants began the experiment by completing the Swaps and Triplets working 

memory tasks. The visual numerosity task was carried out in the same manner as in 

experiment two (see experiment two for details).  

Results and Discussion 

Reaction time. 

  The average RT across all levels of numerosity for training and transfer blocks 

was calculated to investigate the pattern of learning and to enable visual inspection of the 

data for changes in RT after block 51, the transfer phase. Accuracy was screened to 

ensure that participants were not guessing in response to the task. Two participants 

obtained less than the accuracy cut-off point of a mean accuracy of 80% for the primary 

task of the visual numerosity task (Training: M=97.29%, SD=3.69; Transfer: M = 97.08, 

SD= 3.06; Total correct: M = 97.22, SD= 3.32) and were excluded from the analyses. The 

inclusion criteria were the same for experiments one and two, participants were required 

to maintain RT performance of less than 9000 ms for each trial. Trials that were identified 

in which RT exceeded the cut off of 9000 ms were labelled as incorrect and were omitted 

from the analyses.  

 Figure 26 shows the average RT performance in the primary task of each trial 

across all blocks. A power function was fitted to the training data with asymptotes 
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constrained to zero. A high degree of fit to the observed training RT was found for the 

power function (high r² and low root mean squared deviation (rmsd) values; see Figure 

26), demonstrating that performance during training conformed to predictions based on 

the power law of learning (Newell & Rosenbloom, 1981).  

 

 

Figure 26: Mean RT in the primary task of each trial.  

The smooth line is the power function that provided the best fit to the training phase data, and has 
been extrapolated in the transfer phase (RT = 3849.46*Block-0.12, r2 = .92, rmsd = 136.90). Error 
bars represent 95% confidence intervals.  

Disruption measure. 

 To determine whether changes to the secondary task of each trial impacted upon 

the primary task transfer performance, a one way repeated measures ANOVA was used to 

compare the primary task RT in the last block of training (M = 2363.32 ms, SD = 745.42) 

with the primary task RT in the first block of transfer (M = 3003.51 ms and SD 

=1040.45). The ANOVA results indicate that RT did significantly differ between training 

and transfer blocks F (1,17) = 18.16, p = .001.  
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 The power function derived from the training phase data was extrapolated a 

further 25 blocks and compared with observed transfer RTs to assess the extent to which 

transfer performance could be predicted from training performance. Transfer RT in block 

51 was significantly slower than training RT in block 50 with extrapolated values in 

block 51 passing below the 95% confidence interval of the transfer RTs (see Figure 26). 

After the initial significant increase in transfer RT, performance remains within the 95% 

confidence intervals of the predicted values. Thus, the results appear to support the 

findings of a conceptual adjustment (Speelman & Johnson, 2013; Speelman et al., 2011; 

Speelman & Kirsner, 2001) and appear to disprove the theoretical expectations of 

Anderson’s ACT theory (1993) and Logan’s instance theory (1988) of complete skill 

transfer.  

 The transfer results suggest that performance was initially disrupted, however 

subsequent transfer RT appeared to return to predicted values and thus would appear to 

have been unaffected by changes to the secondary task of each trial (see Figure 26). To 

examine how transfer performance was maintained after the initial readjustment in the 

first block of transfer, a repeated measures ANOVA was conducted on transfer blocks 51, 

52, 53 and 54. Mauchly’s test indicated that the assumption of sphericity had been 

violated, x² (5) = 17.11, p = .004, and so the degrees of freedom were corrected using 

Huynh-Feldt estimates of sphericity (ɛ= .67). There was a main effect of transfer block, 

F(1.81, 30.78) = 14.78, p < .05, with Bonferroni post hoc tests revealing that RT was 

significantly slower in block 51 (M = 3003.51 ms, SD = 245.24) compared to block 52 (M 

= 2480.02 ms, SD = 147.89), block 53 (M = 2425.34 ms, SD = 164.42) and block 54 (M = 

2221.22 ms, SD = 155.14). After the slower RT in block 51, RT decreased as the number 

of trials in transfer increased, particularly by block 54 where RT was significantly faster 

than in transfer block 52. The results support evidence of a surprise effect (Speelman & 
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Parkinson, 2012) where, despite a significant disruption in transfer, performance 

continues in accordance with the power function that described improvement in training 

(Speelman & Kirsner, 2001). Furthermore, the results support Healy et al.’s (2005) 

findings that suggest primary and secondary tasks are conceptualised as a single 

functional task, and so, any change to a task’s context will be interpreted as a change to 

the whole task.  

Individual performance (primary task).  

 Figure 27 shows each participant’s RT performance on the primary task of each 

trial for all blocks of the experiment. It is apparent from the figure that the performance of 

some participants is inconsistent with the trend observed in the group average results. For 

example, participants three, five, 14, and 16 appear to be varied in their RT performance, 

nonetheless all appear to be making gains in improvement. Participants four, six, seven, 

10, and 18 display data patterns that could be considered similar to the group RT data. 

This suggests that individuals are not uniform in their performance, yet all seem to be 

improving with practice.   
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Figure 27: Individual RT performance data for 18 participants and total RT 
performance data on the primary task of each trial. he figures represent RT (ms) as 
a function of practice (block).  

Individual performance (secondary task).  

Figure 28 indicates individual and group performance patterns observed in the 

secondary task to determine whether the context change implemented in block 51 was 

challenging enough to disrupt performance. Overall group performance presents a typical 

improvement in RT as the number of blocks increase. However, individual performance 

shown in figure 28 suggests that not all participants conform to the same pattern in 

performance as demonstrated by the overall group results. Five participants (5, 6, 8, 14, 

18,) demonstrate performance that is considered typical of learning curve patterns and 

similar to the overall group pattern of performance. Four (3, 15, 16, 17) out of 18 

participants demonstrate varied performance with slow improvements in RT over time. 

This suggests that individual results do not necessarily conform to group result patterns. 

Deviations in performance demonstrated amongst these participants may indicate the 

effects of individual specific variables such as working memory differences. As expected, 

overall group performance on the secondary task of each trial indicates some disruption in 

block 51 (see Figure 28). Individual performance indicates that all participants (except for 

participants four, 10, and 14) were disrupted in transfer block 51.  
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Figure 28: Individual RT performance data for 20 participants and total RT 
performance data on the secondary task of each trial.  

Automaticity 

Mean RT for each level of numerosity for each phase is presented in Figure 29. 

As shown in this figure, typical development of automaticity is present in this sample, 

that is, performance early in training RT was directly related to the number of items 

presented on screen so that RT increases as the number of items increases until late in 

training where RT is independent of numerosity. In the mid phase the slope of the 

regression line was shallower than in the early phase, and then RT is independent of 

numerosity by the late training phase. This supports the classical demonstration of the 

development of automaticity in visual numerosity with practice (Logan, 1988). 

Performance in the transfer phase shows that the transfer line has a similar slope value to 

the late line, which suggest that practice during the transfer phase has not resulted in any 

further move towards automaticity. This contradicts findings in experiment two where 

slope values continue to decrease in transfer. Thus, the transfer results appear to provide 

support for scenarios one and three (see p. 46 of this thesis for scenario description), 

automaticity and transfer appear to be independent, automaticity is retained yet only 
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partial transfer is observed. That is, performance is initially disrupted, as indicated by the 

significant main effect of transfer block, however subsequent transfer RT appears to 

return to predicted values where performance speeds up after the initial RT increase at 

block 51. The results suggest that participants may be engaging in a reconceptualisation 

of the primary task, which supports Speelman and Kirsner’s (2001) findings of an 

overhead in performance where any change to the context of the task leads to a 

reconceptualisation of the complete task. So, after an initial increase in RT, performance 

returns to pre-transfer performance levels.  

Regression lines of the form RT = a + b*numerosity were fitted to the data for 

each person in each of the three training phases. The slope values for these lines are 

presented in Table 5. The same criteria utilised in experiment two were used to classify 

participant data as reflecting automaticity or not. As indicated in Table 5, group values 

suggest participants are approaching automaticity with a reduction in slope from early to 

late training phases, according to criterion two. Individual results suggest that the data of 

nine out of 18 (50%) participants were consistent with the pattern of change in group 

slope values. In contrast, only 44% of participants were identified as being automatic 

according to criterion one. Almost half of the participants appear to have approached 

automaticity by the late training phase.  

The results indicate that overall participants improved their primary task RT as the 

number of trials increased. However, participants did not obtain a slope equal to zero or 

less than 100 ms by late training as was found in experiment two. The results suggest that 

counting methods may still have been used to perform the task, in contrast to memory 

retrieval methods that were expected to be in place after extensive practice. Therefore, 

whilst automaticity appears not to have been established by all participants in this 

experiment, overall the participants were approaching automaticity. Table 5 includes r2 



160 
 

values for the regression lines describing the relationship between RT and numerosity. 

The participants whose results conform to the automaticity pattern or approach, all have 

very low (<.30) values for the mid and late phases.  

Individual data was explored to determine whether participants differed in the 

extent to which automaticity was approached. According to automaticity criterion one, 

nine participants attained regression slopes greater than 100 ms, suggesting that 

automaticity had not been met in these participants. However, by utilising automaticity 

criterion two, only three participants could not be classified as approaching automaticity 

by late training. It was noted in experiment two only five participants were not considered 

automatic based on the same criterion grouping, thus, whilst the experimental design has 

succeeded in making the task more challenging, it is unclear why some participants were 

taking longer to automatise the task than others.  
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Figure 29: Mean RT on the primary task for numerosity (6–11) in the early, mid, 
late and transfer phases.  
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Table 5: Participant slope of regression lines fitted to RT data as a function of numerosity.  

Participant Early slope   Mid slope SD Late slope SD Transfer slope SD Criterion 1 
Automaticity 
achieved (<100 
ms) * 

Criterion 2 
Automaticity achieved 
(reduction of slope 
from early to late)** 

Disrupted 

1 157.83 (.42) 456.28 264.35 (.71) 585.67 329.44 (.66) 759.33 164.46 550.38 2 2 Y 

2 221.06 (.74) 479.57 174.39 (.64) 406.49 147.55 (.52) 383.67 112.13 284.89 2 1 Y 

3 194.95 (.21) 794.14 -21.02 (.01) 416.48 -45.1 (.02) 568.59 -10.89 889.39 1 1 N 

4 106.44 (.23) 413.79 -16.02 (.00) 645.95 -77.38 (.15) 377.59 -221.77 607.60 1 1 N 

5 425.72 (.94) 819.79 335.25 (.75) 717.78 377.09 (.80) 788.69 223.73 554.89 2 1 Y 

6 247.66 (.82) 512.70 224.68 (.69) 506.01 263.65 (.69) 591.92 332.03 689.08 2 2 Y 

7 336.01 (.68) 762.67 -95.78 (.07) 679.51 -71.43 (.07) 490.14 -84.03 531.42 1 1 N 

8 381.07 (.81) 790.91 305.30 (.81) 633.08 218.92 (.92) 427.94 318.33 632.32 2 1 Y 

9 264.21 (.90) 640.13 361.59 (.91) 708.99 250.73 (.54) 638.71 133.56 374.32 2 1 Y 

10 318.85 (.84) 651.69 41.37 (.09) 311.65 6.13 (.00) 256.80 52.87 280.07 1 1 N 

11 193.07 (.38) 586.15 -15.49 (.00) 780.71 -126.67 (.07) 871.98 -118.5 764.73 1 1 N 

12 277.37 (.85) 563.74 90.37 (.27) 327.66 59.12 (.08) 387.53 105.51 336.12 1 1 N 

13 367.46 (.50) 975.69 254.99 (.32) 845.06 248.84 (.55) 626.55 133.78 587.93 2 1 Y 

14 309.01 (.88) 616.85 537.37 (.52) 1387.09 232.21 (.34) 750.18 101.53 617.44 2 1 Y 



163 
 

Participant Early slope   Mid slope SD Late slope SD Transfer slope SD Criterion 1 
Automaticity 
achieved (<100 
ms) * 

Criterion 2 
Automaticity achieved 
(reduction of slope 
from early to late)** 

Disrupted 

15 625.63 (.58) 1534.20 86.52 (.13) 448.98 -54.47 (.25) 202.04 121.62 517.10 1 1 N 

16 447.66 (.70) 997.38 551.07 (.84) 1125.53 450.31 (.78) 950.71 544.66 1220.41 2 2 Y 

17 290.94 (.83) 597.51 108.88 (.24) 1971.15 -11.66 (.00) 386.69 45.54 511.02 1 1 N 

18 216.73 (.52) 558.54 38.69 (.01) 621.26 -65.27 (.12) 357.61 2.4 301.77 1 1 N 
* 1 = automatic performance (i.e., slope <100 ms). 2 = non-automatic performance (i.e., slope >100 ms). 3 = automatic performance in early training phase. 
** 1= automatic performance (i.e., slope decreasing from early to late training phases). 2 = non-automatic performance. 
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Relationship between automaticity and transfer.  

A measure of disruption for the primary task of each trial was calculated by 

subtracting, for each participant, the mean RT in the first block of transfer from the mean RT 

in the last block of training. A positive number indicates RT that is slower in transfer. As 

indicated in Table 4, 14 (78%) participants were disrupted in transfer performance according 

to this measure. Four participants were not disrupted in transfer.  

The relationship between automaticity and transfer was further examined to determine 

whether an individuals’ training performance could predict the amount of disruption 

demonstrated in transfer. A correlational analysis was conducted between the slope of late 

training and a measure of disruption. This was not significant. However, Table 5 suggests 

that the larger the slope (further away from zero) the greater the disruption (with RT 

increasing in transfer).  

Transfer trial performance.  

Due to the nature of the experimental design the first trial of the first block of transfer 

reflects performance when the participant has not, as yet, been exposed to the context change. 

Therefore, mean RT in the first block of transfer (block 51) may not accurately represent the 

amount of disruption after the context change is implemented. In order to investigate the 

possibility of a very fast slow RT in the first trial of transfer affecting the overall mean value 

for block 51, primary task performance in the first block of transfer was evaluated on a trial-

by-trial basis. A repeated measures ANOVA indicated that mean RT significantly differed 

between trials F (2.57, 48.74) = 7.26, p = .001. Post-hoc tests revealed that RT in trial two 

was significantly slower than trials one, four, and six (see Figure 30). Trial one was 

significantly faster than trials three and five, and trial three was significantly slower than 

trials four, five and six. Trial five was significantly slower than trial six. RT performance 
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from trial 2 got faster as the number of trials increased, demonstrating a recovery from the 

initial transfer disruption.  

 

Figure 30: Mean RT for the primary task of each trial in transfer block 51.  

 

Accuracy.  

As in experiment two, errors in the trial two primary task were identified to determine 

whether the observed transfer disruption could be identified as an error in numerosity 

detection. Four participants (22%) answered incorrectly in trial two of transfer.  
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Table 6: Participant data from training and transfer blocks and 
working memory measures. 

 

Participant   
Mean RT (ms) 
training last block 

Mean RT (ms) 
transfer first block 

Disruption mean 
RT (ms) primary 
task 

Mean transfer RT 
(ms) first block 
secondary task 

SWAPS accuracy 
(%) 

TRIPLETS 
accuracy (%) 

1 2579.33 4071.6 -1492.27 4071.6 55 93 
2 2385.5 3311.5 -926 3311.5 70 98 
3 4052 4693.17 -641.17 4693.17 55 86 
4 1291 1547.67 -256.67 1547.67 100 98 
5 2837.33 2830.5 6.83 2830.5 75 88 
6 3558.83 3514.67 44.17 3514.67 45 90 
7 2362.5 2125.5 237 2125.5 90 98 
8 2576.5 3399.5 -823 3399.5 95 95 
9 2431 2820.17 -389.17 2820.17 80 90 

10 1399.83 2066.83 -667 2066.83 100 100 
11 1572.5 2246.8 -674.3 2246.8 80 90 
12 2102 1996.5 105.5 1996.5 40 86 
13 3105 4563.17 -1458.17 4563.17 35 79 
14 2168.5 3071.67 -903.17 3071.67 55 100 
15 1600.83 2677 -1076.17 2677 75 88 
16 2833.5 5008.17 -2174.67 5008.17 40 90 
17 2103.5 2315.83 -212.33 2315.83 90 98 
18 1580.17 1803 -222.83 1803 90 90 
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Relationship between automaticity and working memory 

 Participants one, 14, 15, and 17 demonstrated a large disruption between training and 

transfer, of over 1000 ms. The aforementioned participants also scored low on the Swaps 

working memory test, with scores of under 55% accuracy (see Table 6). The results indicate 

that working memory may have a role to play in the participants’ ability to adapt and utilise 

appropriate strategies. This suggests that performance in the numerosity task in the last block 

of training could be related to the amount of disruption demonstrated in the first block of 

transfer. A correlational analysis indicated no significant relationship, however visual 

inspection of the data suggests a larger slope in the late phase of training was associated with 

a greater disruption of RT transfer performance. Thus, participants who have slopes further 

away from zero may have difficulty in adjusting to context changes compared to those who 

have automatised the task.  

Relationship between transfer and working memory 

To determine whether there is a significant relationship between measures of working 

memory and performance on the visual numerosity task, a correlational analysis was 

conducted between the measures of working memory - the Swaps and the Triplets test – and 

the slope of performance during early, mid, late and transfer phases. The following variables 

were significantly correlated; Swaps test (M = 70.55, SD = 21.95) and late slope (M = 118.45, 

SD = 181.33) was significant and negative, r = -.54, p <.05; Swaps and transfer slope (M = 

108.72, SD = 176.97), r = -.51, p <.05; Swaps and mean training last block (M = 2363.32, SD 

= 745.42), r = -.62, p < .05; and mean transfer first block (M = 3003.51, SD =1040.45) and 

Swaps test, r = -.69, p = .001. The results suggest that the participants’ approach to the task 

(i.e., the ability to implement memory strategies as opposed to counting strategies) is related 

to their performance on the working memory task, and thus their ability to automatise the 

visual numerosity task is associated with their working memory test scores. Participants who 
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were faster in the training and transfer tasks were more likely to also have higher accuracy in 

the working memory tasks.  

Conclusions 

 The results of experiment three indicate that group performance may not be 

considered automatic. At an individual level only 50% of participants can be considered 

automatic with slopes less than 100 ms (Lassaline & Logan, 1993). Furthermore, the slope of 

linear regression by late training is higher (118.45 ms) than the late training slope value 

reported in experiment two (53.82 ms), suggesting that overall participants may not be 

considered as automatic as they were in experiment two. Further to this, there was a 

significant increase in primary task RT in the transfer phase of experiment three, suggesting 

that a lack of automaticity may be related to the transfer disruption. The findings would 

appear to support the inferences drawn from the ACT and instance theories. It was suggested 

by theoretical interpretations of these theories that automaticity may lead to one of three 

possibilities; automaticity would be unaffected by context change; or, only a momentary 

impact upon RT would be demonstrated, or, performance would be affected resulting in 

automaticity being bound to the context of which they were learned under.  
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Chapter 6: Main Discussion 

The principle focus of this thesis was to clarify whether automaticity facilitates or 

inhibits transfer. If positive transfer was observed (i.e., RT remains unchanged for the 

primary task with the transition from the training phase to the transfer phase), this would 

suggest that automatic skills are unaffected by contextual changes (prediction scenario one). 

Conversely, if transfer was disrupted (i.e., RT in the primary task increased over transfer 

trials), this would suggest that contextual changes result in a conceptual readjustment of the 

task causing participants to rethink task requirements (Speelman et al., 2011; Speelman & 

Kirsner, 2001; Speelman & Parkinson, 2012).  

The results presented in this thesis indicate partial skill transfer occurred in all three 

experiments, supporting prediction scenario three (p. 86). However, inspection of the 

attainment of automaticity and subsequent transfer performance suggests varied support for 

scenarios three and four (reported in Chapter 4) across the three experiments. In all 

experiments, primary task RT improved with practice and was described well by a power 

function, suggesting that performance was in accordance with the power law of learning 

(Newell & Rosenbloom, 1981). Furthermore, all conditions demonstrated performance 

commensurate with the typical development of automaticity (Chi & Klahr, 1975; Lassaline & 

Logan, 1993; Logan, 1988), whereby the late training phase RT was independent of 

numerosity. Thus, the results replicate the general findings reported by Lassaline and Logan 

(1993); with practice, the visual numerosity task resulted in a change of performance with 

RT. Early in practice numerosity was a function of RT (i.e., RT increased as the number of 

items on screen increased due to a counting strategy), whereas later in practice RT became 

independent of numerosity (i.e., RT was no longer related to the number of elements on the 

screen, as configurations of elements were remembered as opposed to counted). These results 

can therefore be explained by the typical account that performance has moved from a 
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controlled form of processing early in practice (i.e., counting asterisks in a serial manner) to 

automatic processing (i.e., subjects recognised each stimulus and remembered the number of 

asterisks in the picture).  

Power functions derived from training data were extrapolated (a further 50 blocks in 

experiment one, and 25 blocks in experiments two and three) and compared to observed 

transfer RT. All experiments demonstrated transfer performance that was not significantly 

different to predicted times; the extrapolated values passed within the 95% confidence 

intervals centred on the observed RTs. Despite some individual disruptions in transfer 

performance, overall, transfer performance conformed to predicted RT values based on 

extrapolating training performance in each of the three experiments. However, mixed 

conclusions can be drawn regarding the establishment of automaticity in each experiment. 

Inspection of individual data confirmed diverse individual performance patterns, which in 

some cases deviated a great deal from the typical performance trends that describe group 

performance. The following section considers the group findings and individual data trends 

for each of the three experiments.  

Summary of the Findings 

Experiment one. 

In experiment one, overall performance trends of both experimental conditions 

indicated that partial skill transfer occurred. Specifically, primary task RT in condition B1 did 

not significantly increase in the transition from training to transfer trials, suggesting support 

for prediction scenario three. However, in condition B2 primary task RT was significantly 

disrupted between training and transfer trials, which was consistent with scenario four. Yet, 

the mean RT performance in block 101 was not as slow as the first block of training, and so 

scenario three may better explain the performance trend.  
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In experimental condition B1 automaticity appeared to facilitate transfer performance 

in subsequent trials beyond the initial disruption for this condition. However, performance in 

condition B2 suggested automaticity may be lost due to context changes with transfer RT 

remaining slower than training RT after the initial context disruption. This is reflected in 

Figures 13 (condition B1) and 14 (condition B2) where differences in disruption (or 

readjustment) impact are evident. One explanation for such differences in performance 

recovery was offered relating to perceived task difficulty or complexity of the 

counterbalancing measure.  

Speelman and Kirsner (2001) suggest that an increase in complexity leads to greater 

transfer disruption than a decrease in complexity. If this is a general rule, then it suggests that 

the change from a subtraction operation to an addition operation in the secondary task of each 

trial in condition B2 may represent an increase in complexity. As the number of items on 

screen increased in the addition task, this difficulty affected performance in the primary task 

where participants may have resorted to inefficient methods, such as counting. This is 

indicated in Figure 17 where the slope of the regression line that relates RT and numerosity 

increased in transfer compared to what it was at the end of training. Speelman and Kirsner 

reported that performance in their experiments continued to improve in accordance with 

training performance after an initial disruption, however performance in condition B2 

revealed that improvements during transfer were disrupted. In the more complex task 

condition participants might have second-guessed the requirements of both primary and 

secondary tasks, and may have continued to do so throughout the transfer trials. That is, an 

increase in complexity in transfer may have inadvertently affected primary task performance. 

Participants might have resorted back to more conservative task strategies, such as counting 

the asterisks in the primary task, rather than remembering the configurations from previous 

trials even though the configurations in primary task were familiar.  
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The extent of the disruption impact may also be related to the performance patterns 

exhibited in training. The control group showed a shift in performance from controlled 

towards automatic processing, yet slope values remained above 170 ms, suggesting that 

automatic skills had not been established to the criterion suggested by Lassaline and Logan 

(1993). Sixty-seven per cent of participants exhibited performance consistent with the group 

data findings. Logan and Klapp (1991) reported that automaticity could be achieved in as 

little as 36 repetitions of 12 stimuli, yet the participants in all conditions of this experiment 

did not demonstrate the typical reduction in slope values to less than 100 ms.  

The findings in experiment one were not consistent with any of the predictions 

outlined in the introduction. It was concluded that the stimuli utilised in the secondary task 

might have assisted in implementing counting strategies for the duration of the experiment, 

and the conceptualisation of the primary and secondary tasks as one continuous task. This 

suggests that differences in participant RT associated with experimental condition were 

influenced by the experimental design. Thus, experiment two was specifically designed to 

refine the experimental design. Changes were made to the second part of the task in visual 

appearance and strategy requirements. The primary task remained the same, however the 

secondary task was simplified to increase the chance of automaticity developing and to 

distinguish the primary and secondary tasks more clearly.  

Experiment two. 

In experiment two, the group results suggested that automaticity was retained despite 

context changes in the transfer phase, with no significant differences found in primary task 

RT between the last block of training trials and the first block of transfer trials, indicating 

complete skill transfer occurred (prediction scenario one). Group results suggested that 

automaticity was retained despite novel context changes. However individual results revealed 
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that some participants (15%) failed to approach automatic performance. Despite the 

simplification of the task, some participants seemingly refused to give up slower counting 

strategies. This raises the question of whether individual characteristics, such as working 

memory ability and task approach, may predict whether automaticity is acquired and 

maintained. Regression slopes reached asymptote by transfer trials (criterion one) with slope 

values less than 100 ms by late training, and mean RT indicated a minimal disruption 

between training and transfer; thus, transfer performance appeared to continue in accordance 

with gains made in training performance.  

The group results in experiment two did not clearly indicate whether or not 

automaticity plays a role in skill acquisition and transfer, nor did they indicate whether 

working memory might be related to the rate of automaticity acquisition or successful 

transfer. Individual results provided an even more uncertain connection. What was revealed 

was that individuals develop automaticity at varying rates, and some do not even appear to 

approach automaticity after a great deal of practice.  

Although the design of the numerosity task was altered to facilitate automaticity 

through the use of colour in the visual numerosity task, it appeared that this may have 

reduced the challenge of the task significantly. In experiment two, the task appears to have 

been too easy for participants, resulting in an inaccurate depiction of automaticity and 

transfer performance.  

One interpretation of the results of experiment two is that participants became 

automatic on the primary task, and changes in the secondary task did not significantly impact 

upon the performance of the primary task. As a result, participants continued to improve on 

the primary task, despite having already attained automaticity. However, it is possible that 

participants might simply have colour matched the asterisks to the coloured response pad. 

Although this still would constitute the development of an automatic response of colour 
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matching, it may be considered less challenging than pairing a numerosity configuration to a 

numerically labelled response pad. Thus, changes to the context of the secondary task in 

experiment two were not enough to disrupt performance on a simplified colour-matching 

task.  

Experiment three. 

  Experiment three was designed to increase the complexity of the primary task by 

removing the colour condition in order to ensure the participants learned (memorised) the 

pattern configurations; all other design elements remained the same.  

 A significant difference in RT was found between training and transfer blocks. In 

order to determine whether the disruption in RT performance was a momentary disruption or 

surprise effect, trial-by-trial data were explored to determine whether performance remained 

slower than the RT performance observed in training. After the initial slowing of RT, RT 

appeared to recover and learning gains appeared to increase as the number of trials increased. 

Figure 26 indicates that RT performance in block 54 decreased beyond predicted 

performance indicated by the power function fit, suggesting that performance was faster than 

expected based on training performance gains.  

The results obtained in experiment three suggest partial transfer occurred and 

demonstrate support for prediction scenario three. Group results indicated that participants 

improved in RT performance as the number of trials increased, and can therefore be 

considered to have approached automaticity (criterion two) by late training. Yet, the 

participants in this experiment appeared to have failed to attain automaticity as defined by 

criterion 1 of achieving a slope value of less than 100ms by late training phases. Interestingly, 

context changes appeared to have disrupted non-automatic performance. Thus, it would 

appear a lack of automaticity might be responsible for a disruption in performance.  
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Inspection of individual data indicated that nine participants (50%) demonstrated 

performance that was consistent with group performance slope values. With 50% of 

participants failing to approach automaticity by late training, the results suggest that counting 

methods might still have been used to perform the task in contrast to memory retrieval 

methods that were expected to be utilised after extensive practice. It was noted in experiment 

two only five participants were not considered automatic based on the same criterion 

grouping, thus, the task used in experiment three may be considered more complex than the 

task used in experiment two. Whilst the experimental design has succeeded in making the 

task more challenging, some participants were still taking longer to automatise the task. 

 Overall, group results from experiment three indicated that participants were 

approaching automaticity. Yet, the group results may not reflect a transition from controlled 

to automatic processing in this experiment. No conclusions can be drawn from this data 

regarding the relationship between automaticity and disruption according to group 

classification.  

Working memory. 

A measure of working memory was included in experiments two and three to 

determine whether working memory capacity could be a predictor of automaticity 

performance and could account for individual differences in automaticity and transfer 

performance. Both the Triplets and Swaps working memory task performance were related to 

training performance. Correlational analyses reveal that in experiment two average 

performances in the Triplets working memory test was linked to early training slopes of 

regression and RT performance in the last block of training. Participants who were 

considered automatic with slopes of regression close to zero by late training also scored high 

on the Triplets test. Two participants who obtained 100% accuracy in the Triplets task also 

had slopes of less than 50 ms by late training. Those who scored below 87% accuracy also 



 176

demonstrated slopes of greater than 370 ms by late training. These findings suggest that 

working memory ability may influence the way a participant approaches the task or whether 

they can apply memory strategies early in training. Upon individual inspection of the data in 

experiment two, participants who obtained 100% accuracy in the Triplets test also 

demonstrated varying degrees of transfer disruption and were also automatic in the 

numerosity task (criterion one) by the late training phases. It is plausible then that greater 

working memory ability may lead to the establishment of automaticity, and appears to hinder 

transfer performance. Thus, a large working memory capacity may facilitate task strategy 

execution and the development of automaticity, but reduce the ability to transfer automatic 

skills. 

In experiment three it was found that performance on the Swaps memory test 

correlated with late training slopes. This suggests that high working memory capacity is 

related to RT performance on the visual numerosity task. Large working memory capacity 

could mean better implementation of remembering strategies and better overall cognitive 

performance of other tasks, thus enabling quicker adaptation to the task and more flexible 

attention and task response. This supports the findings of experiment two. Individual data 

analysis revealed participants who demonstrated a large disruption between training and 

transfer of over 1000 ms, also scored low on the Swaps working memory test with scores of 

under 55% accuracy, indicating that working memory may have a role to play in the 

participants’ ability to adapt and utilise appropriate strategies.  

According to group results in experiments two and three working memory did not 

appear to be statistically related to transfer disruption. Experiment three however, revealed no 

consistent patterns of working memory performance, automaticity attainment or transfer 

disruption. Despite the lack of a statistically significant relationship between automaticity, 

skill transfer, and working memory in the two experiments, it is clear that specific participant 
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characteristics might be responsible for performance variation. As it is well documented that 

working memory is involved in the processing and storage of information in order to carry 

out cognitive tasks, it would be expected that working memory is involved in the 

development of automaticity of task components. The working memory task employed here 

might not have tapped into the specific requirements of the visual numerosity task. That is, 

the Triplets and SWAPS working memory tests only provide one measure of fluid and 

crystallised intelligence. A series of working memory test batteries may better indicate 

whether individual differences in automaticity and disruption in the visual numerosity task is 

related to working memory function.  

The role of automaticity in transfer. 

The current results suggest that learning a skill to automaticity may facilitate transfer, 

supporting the theoretical interpretations of the skill acquisition theories. For example, when 

an individual encounters an identical representation of a task previously encountered, the 

existing task representation can be reused despite changes to the surrounding context or 

secondary tasks. That is, the general production rule for the primary task is still initiated and 

implemented due to the identical task elements of the primary task conditions (Anderson, 

1982). Alternatively, the instance theory of automaticity (Logan, 1988, 1990) may also 

explain the current results. Logan (1988, 1990) suggests that skills are specific to the context 

in which they are acquired and may be difficult to transfer to a new context. In the current 

study, as the primary task remained the same, the specific events regarding the primary task 

that were encountered were also encountered in the transfer task; thus transfer would be 

expected to occur as compatible instances could be recalled from memory. 

A momentary disruption was evident in the transition from training to transfer trials. 

According to Speelman and colleagues (e.g., Speelman et al., 2011; Speelman & Kirsner, 

2001; Speelman & Parkinson, 2012) this may be attributed to a conceptualisation 
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readjustment. That is, participants may attempt to reconceptualise task requirements after a 

change to the secondary task is introduced. When a transfer disruption is observed, this may 

indicate that a set of skills, which were used in the training task, are no longer effective in a 

new transfer environment (Speelman & Parkinson, 2012). That is, the skills, which were 

developed to perform the primary task of each trial in training, cannot be used in transfer; 

therefore a reassessment of the task is required. As training performance recovered in 

subsequent trials (experiments two and three, and condition B2), this suggests that 

participants were able to employ previously learned strategies once participants realised that 

task requirements remained the same.  

As indicated in experiments one, two, and three participants were sporadic in their 

development of automaticity and automaticity criteria grouping did not indicate whether 

automaticity development and transfer disruption could be predicted based on RT 

performance. Whilst the group results suggest a shift to automaticity where primary task RT 

was independent of numerosity, this was not consistent amongst all participants. Some 

participants did not attain automaticity—a finding that has not been reported widely in the 

literature.  

In experiments two and three, participants who had high working memory scores 

could be considered to have a more competent domain general component of working 

memory processing than those with lower scores. As a result, the former individuals may 

have the ability to quickly work out the task requirements and appropriate task strategy 

leading to a reduced cognitive load, and faster and earlier automaticity establishment. This is 

consistent with the claims of Alloway and Alloway (2010) and McLean and Hitch (1999) 

who suggest executive memory may control the ability to learn tasks to automaticity. 

However, the current results provide no further insight into the individual characteristics of 
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those who do not reach automaticity and those who are affected by the disruption differently. 

What has been highlighted is the influence that factors, such as working memory, may play in 

the utilisation of learning and transfer strategies. Further research is required regarding 

individual differences in factors such as working memory capacity to determine why some 

participants deviate away from group data trends and why they may be affected differently by 

context changes.   

Limitations. 

Whilst the results of the current study have some important implications for the 

consideration of the role of automaticity in transfer, these need to be considered within the 

context of a few limitations. Firstly, the experiments reported in this thesis have focused on 

performance associated with automaticity (i.e., RT) as a means of exploring the relationship 

between automaticity and transfer. However, specific mediators of automaticity (i.e., 

deliberate attention to repeated stimuli or attention to changes on the secondary task) have 

been overlooked in the current study and in previous research. Attention to the repeated 

nature of the task may assist in mediating the acquisition of automaticity more quickly. 

Furthermore, changes to the secondary task may not impact upon primary task performance 

as participants may be expecting the primary task to repeat as it has in previous trials. 

Expertise research (i.e., Ericsson, Krampe, & Tesch-Römer, 1993) supports this notion that 

deliberate skilled practice, where attention and focus is directed, may be a requirement for the 

development of automaticity.  

For example, simply instructing the participants that the trials on the primary task will 

be repeated may help to develop automaticity through the use of memory strategies. That is, 

by instructing participants to use memory strategies automaticity may be more likely to 

develop. It has been found that explicit automaticity (i.e., knowledge of rules leading to 
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automaticity) leads to a greater disruption of performance than implicit automaticity 

(Masters, 1992). However, previous research has not considered the role of implicit versus 

explicit acquisition of automaticity and the effect of changes to a secondary task. Thus, future 

research could explore whether automatic skills are likely to be disrupted depending on 

whether they received implicit (no knowledge of rules) versus explicit (knowledge of rules) 

instruction.  

 Further to this, how someone approached a task may vary amongst participants and 

affect the development of automaticity and the impact of transfer disruption. Accuracy 

implies a careful response where counting may prove to be more useful than making a best 

guess judgement. Participants who might take a more conservative approach may be more 

reluctant to give up counting strategies and thus more likely to take longer to reach automatic 

skill performance. Future research could explore psychological traits, such as conservatism 

and confidence, in predicting the attainment of automaticity and subsequent disruption effects 

when faced with novel context changes.  

Summary 

The findings reported in this thesis suggest that partial transfer can occur in the 

presence of automatic skills. However, transfer was also reported even without automaticity 

being established in training (experiment three). Current theoretical interpretations cannot 

account for the inconsistent results found in the experiments reported here. However, there 

are a number of possible explanations that may account for why some participants developed 

automaticity and were disrupted in transfer. For example, the two-step design of the 

experiment may have facilitated a serial task approach. In experiments two and three the 

presentation of the primary task was matched with a secondary task, thus both the primary 

and secondary tasks were still interrelated. Consequently, the presentation of the primary and 
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secondary tasks together may have contributed to the development of a mental set (Speelman 

& Parkinson, 2012) or single functional task representation (Healy et al., 2005). Thus, the 

context change to the secondary task resulted in a change in strategy from memory to 

counting for the primary task even though the primary task remained the same. Due to the 

two-part nature of the task, a change to the secondary task seems to cause participants to 

rethink what is coming next. That is, a combination of serial task association by a single 

functional task representation, and mental set development may explain why some 

participants were disrupted in the primary task, with changes to the secondary task context. 

Chase and Simon (1973) state that automaticity is a requirement of learning; however, 

based on the results of the experiments reported here, there is more to consider about learning 

than just automaticity, such as prior learning experiences and motivation. As most skills are 

learned to be recalled reliably and automatically, motivation may need to be steered away 

from just learning quickly, to learning efficiently by consciously applying strategies that will 

be useful in achieving automaticity. Performance may be better, faster and more accurate if 

the skill is learned to automaticity, but the time taken to get there may be longer if using the 

wrong strategy, or automaticity may not be achieved altogether. This raises the question of 

whether we must wait for skills to become automatic before moving on in task complexity or 

attempting higher order tasks. The current results indicate that automaticity is not always 

established as quickly as the theories would suggest in previous studies (i.e., Lassaline & 

Logan 1993). Furthermore, there are individual differences in the attainment of automaticity, 

and for some, transfer of automatic skill occurs, yet for others any change to the surrounding 

context impacts upon automatic skill transfer.  

The instance theory (Logan, 1988) holds that automaticity is a product of automatic 

recall of episodic representations accumulated over past experiences. Thus, by simply 

increasing experience with a task, automaticity will develop. However, in light of the results 
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of the experiments in this study it is evident that individuals come with their own set of 

experiences and abilities, and that simple exposure will not facilitate automaticity 

‘automatically’. Perhaps deliberate skill strategies that support automaticity are needed. This 

leads to the possible link between the measures of working memory and transfer 

performance.   

By relying on group results one could easily conclude in this experiment that 

automaticity may result in transfer of training and that other factors, such as working 

memory, may be related to the transfer of cognitive skills but are not as important as the need 

for automaticity. However as Speelman and McGann (2013) point out, mean-dominant 

analysis can lead to theoretical error. In the current study, by ignoring individual differences 

in task performance, important considerations, such as individual learning patterns, could 

lead to the continuation of ineffective education strategies, such as learning by rote. It was 

not evident in this study that automaticity appeared to inhibit skill transfer, nor was 

automaticity required for successful transfer; individuals appeared to be able to adapt to 

context changes with or without the establishment of automaticity. Consequently, in the 

educational context learning to automaticity may not be the most suitable learning strategy 

for all students.  

An issue raised in Chapter 1 was whether automaticity is achievable according to the 

current definition. The current results suggest that automaticity does not occur automatically 

for some individuals. This, in turn, suggests in an education setting repeated exposure to 

component tasks does not mean that higher order learning will automatically occur. Instead, a 

new definition of automaticity is needed; one that includes consideration of individual 

performance factors such as working memory capacity and deliberate strategy choice.  
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Conclusion 

 Overall, the results appear to be congruent with Lassaline and Logan’s (1993) findings. 

According to group data, automaticity appeared to facilitate transfer, and performance 

continued in accordance with the power law of learning theories. Automaticity was 

transferred to the new task and a change in context did not disrupt automaticity; however, 

automaticity does not appear to be reliably present amongst all participants. This highlights 

the difficulty of generalising group findings to individuals. According to group data, 

automaticity does not appear to hinder skill transfer and thus may be considered an integral 

part of the acquisition of skill and transfer of learning. The current findings provide an insight 

into whether performance of a previously learned (automated) task is maintained when 

context changes are made. However, due to inconsistent results in the individual data caution 

must be taken when generalising the findings. Empirical and theoretical literature, as well as 

educational and remedial or therapeutic practices, would benefit from further research to 

determine whether automaticity is found consistently to assist in skill transfer.  

What began as a partial replication of the transition to automatic processing by 

Lassaline and Logan (1993) and exploration of the extent to which automatic performance 

mediates transfer performance, was extended to an investigation of whether automaticity is 

attained automatically as indicated by individual data, and whether individual variables can 

predict the acquisition of automaticity in the transfer of skill. Individual data indicates that 

not all participants behave the way the group data suggests. The current results question 

whether automaticity should be the desired outcome in education settings as many people 

failed to achieve automaticity according to common definitions. Automaticity may not be the 

desired state to facilitate skill transfer. Many participants did not demonstrate performance 

similar to average group performance; therefore, at an individual level automaticity may not 

be the best the best learning state. Studies, such as that of Kolozsvari et al. (2011), have 
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demonstrated automaticity (referred to as overlearning) to be of little benefit to skill transfer 

and retention. Yet, Dehabadi, Fernando, and Berlingieri (2014) highlight that whilst further 

research is required before automaticity (as measured by proficient secondary task 

performance) may be considered a proficiency measure in simulator training, it may still be 

in the best interest of training to strive for automaticity in such situations as simulator 

laparoscopy until more is known about the nature of automaticity in skill transfer. Further 

research is required at an individual level that includes psychological and performance 

factors to determine why some participants deviate from group data trends, and why they 

may be affected differently by context changes. 

The discrepancies between individual results suggest that interpretation of group 

statistics needs to be taken with caution. Formulating therapeutic and remedial programs 

based only on group results may have a profound impact upon those individuals who do not 

necessarily conform to group performance patterns. Exploring individual predictors of 

performance may be used to identify whether skill transfer is likely to occur in a group of 

individuals, and would therefore assist in identifying the likelihood of the success of an 

educational program based on individual performance characteristics. Future research beyond 

skill acquisition and transfer research would also benefit from exploration of individual data 

trends.  
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Appendix B: Information Letter 

 

Thank you for your interest in this study. My name is Katrina Muller-Townsend. I am 
a PhD researcher from Edith Cowan University. 

The aim of my research is to investigate the nature of automated recall during a visual 
numerosity and working memory task. It is hoped that this area of research will reveal which 
type of learning is optimum in a classroom situation; context specific automatic recall, or 
context rich flexible knowledge, which may assist educators in providing the best learning 
situation in early education. 

Your involvement will require participation in two computer tasks of approximately 1.5 
hours in total and you will be rewarded with a $10 Westfield voucher for your time. You will 
also receive a ticket to go into the draw for a $50 gift voucher. Your participation is totally 
voluntary and anonymous; if you feel you would like to withdraw from the study you are free 
to do so at any time without penalty. 

If there are any queries of questions in relation to the present study, please do not hesitate to 
contact myself: 

0403 703 004 
Email: klmuller@student.ecu.edu.au 
 
If you wish to speak to my primary supervisor, Professor Craig Speelman on: 
(08)6304 5724 
Email:c.speelman@ecu.edu.au 
 
Alternatively if you have any concerns or complaints about the research project and wish to 
talk to an independent person, you may contact the Research Ethics Officer: 
(08)6304 2170 

 

 

Regards, 

 

Katrina Muller-Townsend 
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Appendix C: Informed Consent Form 

 
 
I __________________ agree to participate in the PhD Research study about the role of 
Automaticity in Skill Acquisition and Transfer, conducted by Katrina Muller-Townsend of 
Edith Cowan University. I give written consent that: 

 I have read the information letter and understand the purpose of the study. 
 I have asked question s or queries that I have about any part of the research, and have been 

answered sufficiently. 
 I understand information that is disclosed will be confidential, and any identifying 

information will not be revealed without written permission. 
 I will be voluntarily partaking in this study. 
 I understand that information given will be only used in a research thesis given to my official 

examiners at Edith Cowan University. However, I accept that this report may be published 
under the provision that I am anonymous. 

 I understand that I may be recontacted by the researcher if necessary, and I understand my 
right to request a preliminary copy if desired. 

 I understand my right to withdraw from the project at any time, and any information already 
disclosed will be destroyed and removed from the research. I also understand there will be no 
penalty from withdrawing from the research project. 

 I understand I can obtain a signed copy of this consent from if requested. 
 
 
 __________________   _____________ 
Participants Signature   Date 
 
 
_________________    
Contact number 
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