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Abstract

Aquatic canopies provide important ecosystem services such as improved water qual-

ity, oxygen flux, sediment stabilisation and trapping and recycling of nutrients. The

ecological health of coastal canopies and the significant ecosystem services they pro-

vide depends largely on the continuous exchange of dissolved and particulate materials

across the canopy boundaries. In coastal environments, where flow is typically wave-

dominated, vertical mixing is believed to be the dominant process controlling residence

time and, therefore, exchange. However, experiments have shown that wave-driven flows

over rough boundaries, such as canopies, generate strong onshore mean currents (75%

of the orbital velocity far above the canopy) near the canopy top. Since these currents

can significantly influence canopy residence time, it is imperative to understand how the

two processes of vertical mixing and horizontal advection can influence water renewal

and, ultimately, residence time in wave-dominated canopy flows. This thesis presents

predictive formulations for (i) vertical mixing and (ii) horizontal flushing, the two key

mechanisms dictating water renewal and ultimately residence time in these environments.

It is also examined how embedding realism (in the form of flexibility and buoyancy) in the

model vegetation can influence flow and turbulent structure as well as residence time. Fi-

nally, through consideration of a Peclet number Pe (the ratio of diffusive to advective time

scales), a framework for quantitative prediction of residence time in these environments

is presented.

It is found that two important mechanisms dominate vertical mixing under wave-

dominated conditions: a shear layer that forms at the top of the canopy and wake tur-

bulence generated by the stems. By allowing a coupled contribution of wake and shear

layer mixing, a predictive formulation for the rate of vertical mixing in coastal canopies

across a range of wave and canopy conditions is presented. Results also reveal that flexi-

bility can significantly alter the hydrodynamics of the flow, shear layer characteristics and

near-bed turbulent intensities. These differences ultimately lead to a significant reduction

in the rate of vertical mixing in flexible canopies when compared to the rigid analogues

such that vertical diffusivity in flexible vegetation was always lower than the correspond-
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ing rigid canopy (by up to 35%). A physical description of, and predictive formulation

for, the mean current generated in wave-dominated flows over large benthic roughness

(such as the canopies of seagrass, macroalgae and corals) is also presented. This model

indicates that the magnitude of the wave-driven current increases with the above-canopy

oscillatory velocity, the vertical orbital excursion at the top of the canopy and the canopy

density. An extensive laboratory study, using both rigid and (dynamically-scaled) flexible

model vegetation validated the accuracy of the proposed model. Results reveal that Pe

depends heavily on wave and canopy properties and may vary significantly in real coastal

canopies. Quantitative predictions for residence time in the limit of Pe� 1 (mixing-

dominated exchange) and Pe� 1 (advection-dominated exchange) are presented. The

results of this study can have significant implications for a range of environmental, eco-

logical and biochemical studies as well as numerical simulations. In particular, it enables

an enhanced predictive capability for the residence time of ecologically-significant mate-

rials such as nutrients, seeds, pollen as well as contaminants and dredging plumes. Addi-

tionally, the greatly improved understanding in the hydrodynamics of oscillatory canopy

flows achieved through this study can serve as a foundation for the numerical modelling

of these environments. Ultimately, the results of this study are a step towards an im-

proving management and protection of coastal canopies and their associated ecological

communities.
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CHAPTER 1

Introduction

1.1 Significance of the research

Seagrasses meadows, which occupy 10% of world’s shallow coastal environments, pro-

vide important ecological and economical services (Green and Short 2003). They are

essential primary producers and form the foundation of shelter (Fonseca et al. 1992) and

food (Connolly et al. 2005) for many aquatic organisms (Gambi et al. 1990; Koch et al.

2007). The total economic value of aquatic canopies, on the basis of nutrient cycling

services alone, has been estimated at 3.8 trillion dollars per year (Costanza et al. 1997).

Seagrass meadows increase biodiversity as the richness and abundance of marine species

in seagrass beds is greater than in adjacent unvegetated areas (Connolly 1994; Jenkins and

Sutherland 1997; Irlandi and Peterson 1991). By diminishing water velocity (Kobayashi

et al. 1993; Paul et al. 2011; Manca et al. 2012), aquatic canopies, including seagrasses,

reduce local resuspension (Hansen and Reidenbach 2011), promote sedimentation (Ga-

cia et al. 1999), carbon burial (Granata et al. 2001) and increase the retention time of

dissolved and particulate materials (Fonseca and Cahalan 1992; Granata et al. 2001)

within the meadow. This modification of the environment, stabilises sediment and facil-

itates the ecosystem they provide. Note that while we focus here on seagrass meadows

as the archetypal coastal canopies, the results of this study will be broadly applicable to

a range of systems such as coral communities, kelp forests, mangroves and freshwater

macrophytes.

The survival of submerged canopies, and the ecosystem services they provide, is

strongly related to the rate and mechanism of water renewal in these environments. One

example is the effect of vertical transport on the distribution of dissolved oxygen in the

water column. As vascular plants, seagrasses require a continuous supply of oxygen for

aerobic metabolism of both above ground and below ground tissues (Larkum et al. 2006).

Seagrass leaves produce oxygen continuously during daylight and lose it to the water

column through diffusion. If there is no flushing and replenishment of water, oxygen

concentration within the seagrass meadow may reach toxic level, which has negative con-

sequences on seagrass survival. However, if there is efficient exchange of water, there will
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be an enhanced oxygen concentration in the overlying water. Another example is the im-

pact of rapid exchange on dispersal of seeds, pollen and spores. The dispersal of seeds is

directly connected to the ability of a population to spread and migrate (Kuparinen 2006).

Thus, by regulating the plant migration, water renewal plays a fundamental role in the

population dynamics and conservation of plant species (Cain et al. 2000; Kendrick et al.

2012). In a similar way, rapid exchange has a tremendous effect on the concentration and

residence time of nutrients and dissolved organic matters in the water column, vertical

and horizontal transport of contaminants, sediments and dredging plumes (Gacia et al.

1999). Hence, to understand the extent to which these processes taking place, we need to

understand the rate of water renewal and ultimately residence time in these environments,

as a function of wave and canopy properties.

The vast majority of numerical, laboratory and field studies into the hydrodynamics

of vegetated flows have focused on steady flow environments (Nepf 2012a;b) whereas

many coastal canopies are subjected to oscillatory flows driven by surface waves. Our

understanding of oscillatory canopy flows, however, remains limited. Previous research

has focused primarily on the wave height attenuation of coastal canopies (Dubi and To-

rum 1996; Bradley and Houser 2009; Zeller et al. 2014) and the in-canopy flow struc-

ture (Lowe et al. 2005a; Luhar et al. 2010; Pujol et al. 2013a).

The oscillatory nature of wave-dominated flows profoundly influences the hydrody-

namics and mass transport in marine environments (Reidenbach et al. 2007). For ex-

ample, the in-canopy velocity (relative to the above-canopy velocity) is significantly en-

hanced under oscillatory flow conditions compared to the corresponding unidirectional

flow (Lowe et al. 2005a). Surface waves enhance the rate of nutrient uptake by sub-

merged canopies such as seagrasses (Weitzman et al. 2013; Thomas and Cornelisen 2003)

and coral (Falter et al. 2004; Reidenbach et al. 2007) when compared to a unidirectional

current of comparable magnitude. Thus, it can be inferred that the rate of mass transfer

across the top of the canopy will vary greatly between unidirectional and oscillatory flows.

This necessitates a specific investigation of oscillatory canopy flows which, in turn, will

allow a more complete assessment of fluid exchange between coastal canopies and their

surroundings.

1.2 Hydrodynamics of oscillatory canopy flows

The drag of submerged canopies creates a pronounced inflection point in the mean ve-

locity profile (Ghisalberti and Nepf 2002), such that the shear layer across the top of the
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canopy is analogous to a mixing layer, rather than a boundary layer (Raupach et al. 1991;

1996; Ghisalberti and Nepf 2002). That is, the velocity within the canopy, U rms
c (where

the superscript ‘rms’ refers to the root-mean-square of the oscillatory velocity and the

subscript ‘c’ to the in-canopy average), is attenuated from its value far above the canopy,

U rms
∞ . This inflection point, which is enhanced with the canopy density (Lowe et al. 2005a;

Reidenbach et al. 2007; Pujol et al. 2013a) (Figure 1.1a), is a necessary criterion for insta-

bility of an inviscid parallel flow (Kundu and Cohen 1990) and leads to the generation of

Kelvin-Helmholtz-type vortices (referred to as KH-vortices hereafter) (Brown and Roshko

1974; Winant and Browand 1974) (Figure 1.1b).

In steady flows over submerged canopies, vertical transport is dominated by these

coherent vortex structures (Nepf and Ghisalberti 2008). In wave-dominated flows, these

large scale shear-driven vortices are generated only under certain conditions; namely,

when the wave period is long enough to allow the shear-driven instability to be generated,

and when the vortex instability is strong enough to overcome the stabilizing effects of

viscosity; i.e. when KC > 5 and Re > 1000 (Ghisalberti and Schlosser 2013). Here Re is

the Reynolds number in which the horizontal wave excursion A∞ is used as the character-

istics length scale (Re =U∞A∞/ν , with U∞ being the amplitude of oscillatory velocity far

above the canopy and ν being the kinematic viscosity of the fluid) and KC is Keulegan-

Carpenter number and can be viewed as the ratio of the timescale of flow oscillation to

the timescale of shear formation. While, as in steady flows, the generation of these large

scale vortices can profoundly impact vertical exchange of dissolved and particulate mate-

rial, a real understanding of key processes controlling mixing and ultimately a predictive

capability for the overall residence time in wave-dominated canopy-flows is still lacking.

In coastal canopy environments, the impact of advection on residence time is of-

ten neglected (Abdolahpour et al. 2017a). Although coastal systems are typically wave-

dominated, this impact may not, necessarily be small. Indeed, aquatic canopies in os-

cillatory flows have been shown to generate a strong, shoreward mean current near the

canopy-water interface (Luhar et al. 2010). This shoreward drift, which has been ob-

served in both laboratory (Lowe et al. 2005a; Luhar et al. 2010) and field studies (Luhar

et al. 2013), can significantly influence canopy residence time by introducing a second

method of water renewal (other than vertical mixing across the top of the canopy).
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Figure 1.1: Canopy-induced shear and the subsequent vortex generation in wave-dominated flows.
(a) Vertical profiles of RMS velocities for identical waves (U rms

∞ = 17 cm/s) over a dense
canopy (10% by volume, black circles), a sparse canopy (1% by volume, gray circles) and a
bare bed (white circles) suggest an increasing velocity attenuation with canopy density (Ab-
dolahpour et al. 2017a). Values of the in-canopy RMS velocity, U rms

c , the above-canopy RMS
velocity, U rms

∞ , and the velocity attenuation, ∆U , are indicated for the dense canopy. The gray
dashed line indicates the top of the canopy. (b) Image showing the KH-vortices generated in
an oscillatory canopy flow in the laboratory when KC > 5 (Ghisalberti and Schlosser 2013).

1.3 The importance of canopy flexibility

In spite of the growing interest in flow (Pujol et al. 2013a) and turbulence (Reiden-

bach et al. 2007; Pujol et al. 2013b) structure in wave-dominated flows over submerged

canopies, and the improved understanding of mass (Nishihara et al. 2011; Abdolahpour

et al. 2017a) and momentum (Ghisalberti and Schlosser 2013) transport in these environ-

ments, the majority of previous work has used rigid cylinders to simulate aquatic vegeta-

tion. This allowed the canopy geometry to be invariant and easily quantified. While these

rigid elements are ideal to represent stem-like aquatic vegetation and hard corals, they

may not successfully recreate situations where flexibility, buoyancy and configuration of

flexible plants are important (Koehl et al. 2008; Mass et al. 2010).

In fact, flexibility enables plants to adapt their shape and posture in response to

the flow, thus representing a time-varying roughness which oscillates over the wave cy-

cle (Luhar and Nepf 2011; Pan et al. 2014; Luhar and Nepf 2016). The issue of time-

varying roughness may result in a substantial drag reduction in these systems compared

to rigid analogues (Rominger 2014). This issue may become more pronounced in coastal

canopies where the generation of a strong current at the canopy top (Luhar et al. 2010;

Abdolahpour et al. 2017b) can remarkedly modify the blade posture by introducing a

more pronated canopy in the direction of wave propagation under the wave crest and a
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more upright canopy under the wave trough.

In addition to its physical significance, canopy flexibility can have important impli-

cations for chemical and biological processes. For example, the orientation of seagrass

blades can greatly alter the light availability within the meadow such that an increase in

bending height from 5 to 20 degrees, leads to 66% enhancement in canopy photosynthe-

sis. But a further increase in the bending height, results in a slight reduction (10%) of

photosynthesis due to sheltering impact of the canopy posture (Zimmerman 2003). The

plant posture has shown significant impact on the rate of nutrient uptake, by controlling

the viscous boundary layer at the seagrass blade (Hurd 2000). Thus, although inclusion

of flexibility will add further complexity to the system, the issue of reconfiguration and

time varying drag may have a non-negligible impact on important physical and biological

processes.

1.4 Research aims

The overall objective of this research is to develop a framework for predictive quantifica-

tion of residence time in coastal canopies. To achieve this overall aim, four main research

objectives have been identified, each characterising an important component describing

residence time, as described below:

1.4.1 Characterisation of vertical mixing in coastal canopies

The spatial extent over which meadows of submerged aquatic vegetation, such as sea-

grass, have an ecological and environmental influence is tightly limited by the exchange

of water across canopy boundaries. Equally, the extent to which critical canopy process

can occur may also be limited by exchange of water across the boundary. In coastal envi-

ronments, the process of vertical mixing can govern this material exchange, particularly

when mean currents are weak. This is investigated through an extensive laboratory study

described in Chapter 2. A simple model of coastal canopies, an array of wooden dowels

of variable packing density, subjected to waves with a wide and realistic range of height

and period is used to mimic a simplified coastal canopy. This, as the first step, will allow

the canopy geometry to be invariant and easily quantified. Later, in Chapter 3, the impact

of flexibility, buoyancy and vertical variation in the canopy drag (which are typical of real

canopies) on the results is examined.
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1.4.2 The impact of flexibility on flow, turbulence and vertical mix-

ing

While the rigid elements examined in Chapter 2 are ideal to represent stem-like aquatic

vegetation and hard corals, they may not successfully recreate situations where flexibility,

buoyancy and reconfiguration of the flexible plants are important. Many coastal canopies

are flexible, taking advantage of reconfiguration to reduce drag and thus preventing up-

rooting during storm and other severe hydrodynamic conditions. The importance of creat-

ing flexible, buoyant seagrass canopies on flow and turbulent structures is investigated in

Chapter 3. Finally, the impact of reconfiguration is investigated in the context of vertical

mixing in these two canopy environments, rigid and flexible.

1.4.3 Characterisation of wave-driven mean current

Although coastal systems are typically wave-dominated, the impact of horizontal advec-

tion on residence time may not, however, necessarily be small. Indeed, aquatic canopies

in oscillatory flows have been shown to generate a strong, shoreward mean current near

the canopy-water interface (Luhar et al. 2010). This shoreward drift, which has been ob-

served in both laboratory (Lowe et al. 2005a; Luhar et al. 2010) and field studies (Luhar

et al. 2013), can significantly influence canopy residence time by introducing a second

method of water renewal (other than vertical mixing across the top of the canopy). Chap-

ter 4 presents a predictive formulation for, the wave-driven mean current at the canopy top.

An extensive laboratory study, using both rigid and (dynamically-scaled) flexible model

vegetation validates the accuracy of the proposed model. The validity of this model is

also confirmed through available field measurements.

1.4.4 Residence time in aquatic canopies in wave-dominated flows

Finally, by synthesising the results obtained in the research described above, a framework

for predicting residence time in coastal canopies is presented. This is done in chapter 5,

through consideration of a Peclet number, which is the ratio of diffusive to advective time

scales.

1.5 Outline

This thesis consists of six chapters, with the main body of work presented in Chapters 2

to 5, which correspond to three journal papers and a synthesis chapter. In order to retain
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chapters that are legible individually, some parts are repeated. Chapter 2 presents a pre-

dictive formulation for the rate of vertical mixing in wave-dominated canopy flows. In this

chapter, submerged canopies were simplified by using rigid dowels. Chapter 3 describes

how embedding realism to the model vegetation (in the form of flexibility and buoyancy)

can impact hydrodynamics of the flow and ultimately residence time in vegetated flows.

Chapter 4 presents a physical description of, and a predictive formulation for, the mean

current generated at the canopy. Chapter 5 is a synthesis of the results obtained through

chapters 2 to 4 in which a predictive framework for the residence time in coastal canopies

is presented. Chapter 6 is a brief set of conclusions regarding the improved understanding

of wave-dominated flows achieved through this research.
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Chapters 2, 3, 4 & 5 have been omitted from this version of the 
thesis. 
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Chapter 3.  The impact of flexibility on flow, turbulence and vertical 
mixing in coastal canopies 

 

Chapter 4.  The wave-driven current in coastal canopies 

 

Chapter 5.  Residence time in aquatic canopies in wave-dominated flows 
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CHAPTER 6

Conclusions

There are two mechanisms that control residence time in coastal canopies (1) vertical

mixing and (2) horizontal flushing. By providing predictive formulations for each of

these processes, this thesis presents an enhanced capability for quantitative predictions of

residence time in coastal canopies. Below is a summary of the conclusions obtained in

this study that specifically relate to the research questions initially presented in Chapter 1.

With respect to vertical mixing, an extensive laboratory study was conducted to ob-

tain direct measurements of vertical turbulent diffusivity in wave-dominated canopy flows

across a wide and realistic range of wave and canopy conditions (Chapter 2). Unlike in

steady flows, where shear layer mixing is the dominant process controlling vertical mix-

ing, vertical mixing in wave-dominate canopy flows was found to be a coupled contribu-

tion of both wake- and shear-driven mixing. Additionally, a direct comparison of vertical

turbulent diffusivities between steady flows and comparable oscillatory flows revealed

that vertical mixing in steady flows exceeded oscillatory flow values by a factor of 2−3.

This result may have significant ecological and environmental implications as it suggests

a weaker vertical mixing of dissolved and particular material (such as nutrients, oxygen,

pollen, sediments, seeds, etc.) in canopies exposed to oscillatory flows than those exposed

to corresponding unidirectional flows.

Given the abundance of flexible buoyant canopies in real ecosystems, the impact of

flexibility on flow and turbulent structure in coastal canopies was also investigated (Chap-

ter 3). Results showed that there is a significant difference in flow and turbulence structure

between flexible and rigid canopies. In particular, drag reduction caused by canopy recon-

figuration leads to diminished velocity attenuation in flexible canopies. While this results

in greatly enhanced in-canopy velocity, the shear-driven mixing is significantly reduced

in these canopies. These differences lead to a significant reduction (up to 35%) in the rate

of vertical mixing in flexible canopies compared to rigid canopies. The significant impact

of flexibility (and plant reconfiguration) on flow and mixing can substantially influence

important ecological and biological processes. For example, the higher in-canopy veloci-

ties observed in flexible canopies could alter nutrient uptake by plant tissue. In addition to

higher wake mixing, the generation of near-bed shear layer vortices could enhance resus-
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pension in these environments, with implications for near-bed processes such as particle

retention and material flux across the sediment-water interface. Moreover, the weaker

shear layer vortices and turbulent transport resulting from reconfiguration of the canopy

will impact flux and exchange of dissolved (nutrient, oxygen and carbon dioxide) and

particulate material (e.g., seeds, pollen and pollutants) across the canopy-water interface.

Finally, the notable reduction in the rate of mixing in flexible canopies suggests a greater

residence time in these environments. The ecological implications of this are complex,

since some processes may be enhanced by longer residence times (e.g., particle settling)

while others may be reduced (e.g., resupply of nutrients through flushing) with the net

effect on ecosystem function difficult to predict. In any case, using simplified rigid ele-

ments will underestimate the residence time in real systems where flexibility is a salient

feature of the canopy.

With respect to horizontal flushing, a physical description of and predictive formula-

tion for the mean current generated in wave-dominated flows over large benthic rough-

nesses (such as the canopies of seagrass, macroalgae and corals) was presented (Chapter

4). It is found that the magnitude of the wave-driven current is directly proportional to

both wave and canopy properties. Specifically wave-driven currents increase with the

above-canopy oscillatory velocity, the vertical orbital excursion at the top of the canopy,

and the canopy density. This formulation enables an enhanced predictive capability for

the rate of horizontal flushing. The accuracy of this formulation was examined through

a detailed experimental campaign involving both rigid and (dynamically-scaled) flexible

canopy elements, as well as existing field data. These results enable an enhanced predic-

tive capability for the rate of horizontal flushing.

Finally, by integrating the results obtained in this study (Chapters 2 through 4), a

predictive framework for residence time in wave-dominated canopy flows was presented

(Chapter 5). This was achieved through consideration of a Peclet number (Pe) which is

the ratio of diffusive to advective time scales. The results reveal that Pe depends heav-

ily on wave and canopy properties and may vary significantly in real coastal canopies.

Quantitative predictions for residence time in the limit of Pe� 1 (mixing-dominated ex-

change) and Pe� 1 (advection-dominated exchange) are also presented. For Pe O(1),

both vertical mixing and horizontal advection equally contribute in controlling residence

time. Characterisation of residence time within this limit is a fundamentally important

question that remains to be answered.

The results of this study can have significant implications for a wide range of ecolog-



99

ical, biochemical and environmental studies. For example, retention time of nutrients can

have a tremendous impact on the health and propagation of coastal canopies (e.g. coral

reefs, seagrass meadows, kelp forests and other aquatic vegetation) and, ultimately, on

the ecosystem services that they provide. In a similar way, water renewal regulates dis-

tribution and abundance of plants across a landscape, the spread of existing populations

and the potential for new population formation by a direct impact on the rate of seed and

pollen dispersal. Moreover, coastal canopies are often sensitive to major turbidity and

sediment deposition events (e.g. from dredging). The results of this study allow for an

enhanced capability to understand and predict the concentration, exposure time and fate

of dredging plumes in coastal canopies. Finally, the results obtained in this thesis can be

embedded in process-based numerical models which, in turn, serve as a foundation for

the improved management, protection and decision-making in coastal canopies.
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