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Fixture-scheduling for the Australian Football League
using a Multi-Objective Evolutionary Algorithm

Luigi Barone, Member, IEEE, Lyndon While, Senior Member, IEEE,
Paul Hughes, and Phil Hingston, Member, IEEE

Abstract—AFL football is a team sport that entertains mil-
lions and contributes a huge amount of money to the Australian
economy. Scheduling games in the AFL is difficult, as a number
of different, often conflicting, factors must be considered. In
this paper, we propose the use of a multi-objective evolutionary
algorithm for determining such a schedule. We detail the
technical details needed to apply a multi-objective evolutionary
algorithm to this problem and report on experiments that show
the effectiveness of this approach. Comparison with actual
schedules used in the AFL demonstrates that this approach
could make a useful contribution.

I. INTRODUCTION

Australian Rules Football (or AFL football) is a team sport
mostly similar to Gaelic Football, and distantly similar to
other contact-based team sports like American Football and
Rugby. Two teams of 22 players each play against each
other in a competition lasting about two hours. The game
is renowned for its skill and speed, with elite contestants
among the highest paid sports-people in Australia.
The national competition is called the Australian Football

League (AFL) [1] and comprises sixteen teams across up
the country. Games are played in batches called rounds,
typically played over the course of a weekend. Due to the
physicality of the game, teams are required to play only one
game per round, so each round consists of eight games.
The regular season lasts 22 rounds, meaning the entire
competition consists of 176 games. Note that each team
does not play each other team the same number of times.
A schedule for all games is known as the fixture.
According to the organising authority, AFL football is

“Australia’s premier spectator sport attracting more than
14 million people to watch all levels of the game across
all communities” [2]. They state that “in 2004, more than
5.9 million people attended premiership season games” (the
population of Australia is about 20 million). Their website
goes on to discuss the game as an industry: “the game con-
tributes in excess of [A]$1 billion annually to the Australian
economy according to independent research”. A$780 million
was paid for the television rights for the upcoming 2007–
2011 period [3], thus making “the AFL the premier sporting
competition in Australia”.
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Scheduling games for the AFL is difficult, as the organis-
ing authority needs to balance a number of different, often
conflicting, considerations. Factors like competition fairness,
revenue expectations, political considerations, and availabil-
ity of venues can affect the fixture. As in most sports, home-
ground advantage is a significant factor in many games,
especially interstate games where travel considerations and
time-zone changes affect players, so balancing the number of
games a team plays at home and away is important to ensure
fairness. Especially considering that each team does not play
each other team the same number of times, the task of deter-
mining a fixture is open to even more “tuning”. For example,
scheduling multiple games between traditional rivals may
increase revenue (fans prefer “blockbuster” matches), but
this may reduce the fairness of the competition. Trade-offs
result — changing the schedule to improve one objective
may result in worsening other objectives. This is the realm
of multi-objective optimisation, where the task is to find a
set of suitably good solutions that vary the trade-offs in the
different objectives by differing amounts in order to produce
a range of alternative solutions.
Evolutionary-based multi-objective optimisation has been

used on a variety of different problems including schedul-
ing [4], but little work has been done in sports fixture
scheduling. In this paper, we describe a study which uses a
multi-objective evolutionary algorithm to determine a fixture
for the AFL, subject to a number of constraints and objectives
desired by the organising authority for the game.
The rest of the paper is structured as follows. Section II

presents a summary of related work on using optimisation-
based approaches for sports fixture scheduling. Section III
gives an overview of multi-objective optimisation, including
the terminology used in this paper. Section IV describes
our multi-objective approach, providing the technical de-
tails used to solve this problem. Section V presents results
of experiments that demonstrate the effectiveness of our
approach, comparing our evolved solutions to the current
fixture employed by the AFL organising authority. Finally,
Section VI concludes the paper.

II. PREVIOUS APPROACHES TO FIXTURE SCHEDULING
Many approaches have been proposed for solving sports

scheduling problems. These problems are especially difficult
because each league has its own idiosyncratic requirements,
constraints, and preferences. Perhaps for this reason, many
previous approaches simply seek any solution that satisfies
all the problem constraints — that is, the problem is often

0-7803-9487-9/06/$20.00/©2006 IEEE

2006 IEEE Congress on Evolutionary Computation
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

954



cast as a satisfaction problem rather than an optimisation
problem.
For example, a special case is the Sports League Schedul-

ing Problem (Prob026 of CSPLib [5]), as posed by McAloon
et al. [6]. In this problem:

• there are T teams, where T is even;
• each team plays each other once, and each team plays
one game per round, so there are T − 1 rounds;

• there are T
2 periods in a round, with one game per

period; and
• no team plays more than once in a given period.
Hamiez and Hao [7] solved this problem in linear time

when (T −1) mod 3 "= 0, using an exhaustive repair method,
improving on earlier results using Tabu search [8] and various
earlier approaches including integer linear programming,
constraint programming, and randomised complete searches
with and without heuristics.
Another special case is the Travelling Tournament Prob-

lem, which is concerned with minimising the total dis-
tance travelled in a double round robin tournament. Easton
et al. [9] present a combined integer programming and
constraint programming approach to this problem for a group
of eight teams. This is much simpler than the AFL scheduling
problem, but the authors note that solving even this simplified
problem for small numbers of teams is difficult.
A third example is the break minimisation problem

(e.g. [10]), which deals with finding a round-robin schedule
that minimises the number of consecutive home or away
games for the teams.
There has been less success on more “realistic” problems.

Carefully formulated methods that rely on the regularity
of the problem are all too readily rendered useless when
additional constraints or preferences are added. This makes
evolutionary algorithms an attractive option, as they can
deal with arbitrarily complex objective functions, and there
are good techniques available to handle constraints and
preferences.
Although evolutionary algorithms have been much used

for timetabling and scheduling problems (e.g. [11]), there
are only a few examples of evolutionary algorithms being
used for sports scheduling. Some examples are: Schönberger
et al. [12] used a genetic algorithm to schedule the rounds of
a table-tennis competition; Yang et al. [13] used an evolution
strategy to solve sports scheduling problems; Schönberger
et al. [14] used a memetic algorithm for sports league
scheduling; Costa [15] used a hybrid evolutionary Tabu
search to schedule hockey leagues; and Yang et al. [13] used
a genetic algorithm to schedule games for a baseball league.
All these studies report good results compared to previously
employed methods.
However, we are not aware of any previous work that

applies multi-objective evolutionary algorithms to sports
scheduling.

III. MULTI-OBJECTIVE OPTIMISATION
Multi-objective optimisation is the task of finding an

optimal solution to a problem in which candidate solutions

are judged according to multiple criteria that conflict with
each other to some degree. Thus, a good solution can be im-
proved on one criterion only by accepting worse performance
in at least one other criterion. The aim in multi-objective
optimisation is to generate a set of solutions that compromise
the different criteria to varying degrees — the solution to be
used in any given situation is selected later according to the
particular needs of that situation.
Without loss of generality, consider a multi-objective op-

timisation problem with a vector of objective functions that
maps individuals into fitness space. Given two individuals
!a and !b, !a dominates !b iff !a is at least as good as !b in all
objectives and better in at least one. !a is non-dominated with
respect to a set X iff there is no individual in X that dom-
inates !a. X is a non-dominated set iff all individuals from
X are mutually non-dominating. The set of corresponding
objective vectors is called the non-dominated front.

!a is Pareto optimal iff !a is non-dominated with respect to
the set of all possible vectors. Such a vector is characterised
by the fact that improvement in any one objective necessarily
means a worsening in at least one other objective. The Pareto
optimal set is the set of all possible Pareto optimal vectors.
The goal of multi-objective optimisation is hence to find
this Pareto optimal set, although for continuous problems
a representative subset suffices.
Since evolutionary algorithms are population based, the

partial order imposed on the search space creates a need for
an appropriate ranking scheme. Two schemes are commonly
employed. Both schemes employ the concept of domination
to assign a Pareto rank to individuals — a lower rank implies
a superior candidate. In Goldberg’s [16] ranking procedure,
non-dominated vectors are assigned a rank of 0 while any
dominated vector !a in the population X is assigned a rank
equal to one plus that of the highest-ranked vector from X
that dominates !a. In contrast, Fonseca and Fleming propose a
scheme [17] in which a dominated vector !a in the population
X is assigned a rank equal to the number of vectors in X that
dominate !a. It is this Pareto rank, rather than some (weighted)
combination of the objectives, that is used as the basis for
selection in a multi-objective evolutionary algorithm.

IV. OUR MULTI-OBJECTIVE APPROACH
In this section, we describe the technical details needed

to equip a multi-objective evolutionary algorithm to address
the problem of fixture determination in the AFL. The multi-
objective evolutionary algorithm we use in this work is a
variant of NSGA-II [18].

A. Representation
The first step in designing an evolutionary algorithm is

determining a representation for candidate solutions suitable
for manipulation by genetic operators.
Recall that the AFL competition requires sixteen teams

to play 22 games, each team playing one game per round
for a total of 8 × 22 = 176 games. This means each team
does not play each other team the same number of times,
and hence the competition is not a complete round-robin
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tournament [19]. However, the organising authority for the
game does impose the following constraint: every team must
play each other team in the first fifteen rounds, with the
remaining seven rounds the reverse (home and away teams
switch) of the first seven rounds. Hence, we need to build
only a complete round-robin tournament (where each team
plays each other just once) to represent the first fifteen rounds
of the competition, and then use the first seven rounds of this
round-robin tournament to construct the last seven rounds of
the 22 round AFL competition.
A round-robin tournament for an even number of teams

n can be constructed using the polygon construction
method [19]:

• Construct an n−1 sided polygon, and label each vertex
and the center point with a team name.

• Draw n
2 line segments connecting the vertices or the

centre point such that each vertex or the centre point
is on only one line segment and no line-segment is
a rotation or reflection of another. Each line segment
represents the game pairings for a round.

• Rotate the vertex labels 1
n−1 of a circle by moving each

label to the next vertex position to determine the game
pairings for the next round.

• Repeat the previous rotation (in the same direction) a
further n−2 times to determine all games for all rounds
of the round-robin tournament.

The start of this process is shown in Fig. 1 for n = 8.
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Fig. 1. An example of the polygon construction method for building a
round-robin tournament for eight teams.

While this technique can be extended to generate tourna-
ments with optimal home-and-away sequences, experience
with previous AFL fixtures indicates this is not necessarily
required and is often not employed in favour of improving
another objective (e.g. revenue). Indeed, previous AFL fix-
tures contain many sequences of continuous home (or away)
games for certain teams.
We instead use the polygon construction method to build

a round matrix in which we record the round that each team
plays each other. The games for each round are determined
from one arrangement of the polygon, and we record the
round number in the round matrix. For example, the round
matrix generated for the example shown in Fig. 1 is listed in
Table I. Note that the matrix always reflects about the main
diagonal.
To determine home teams, we use an additional boolean

home team matrix that indicates which team for each pairing
plays at home. This home team matrix is the same size as
the round matrix, and also reflects about the main diagonal,

Teams A B C D E F G H
A - 1 7 6 5 4 3 2
B 1 - 4 7 3 6 2 5
C 7 4 - 3 6 2 5 1
D 6 7 3 - 2 5 1 4
E 5 3 6 2 - 1 4 7
F 4 6 2 5 1 - 7 3
G 3 2 5 1 4 7 - 6
H 2 5 1 4 7 3 6 -

TABLE I
FIXTURE FOR THE ROUND-ROBIN TOURNAMENT OF FIG. 1. EACH ENTRY

INDICATES THE ROUND IN WHICH THE TWO TEAMS PLAY.

except that each entry below the main diagonal is the
negation of the corresponding entry above the main diagonal.
As we will see in the Section IV-C, evolutionary selection
pressure will drive the algorithm to locate solutions with
good home-and-away sequences.
One last constraint of the organising authority must also

be handled: a so called rivalry round (a round in which each
team plays against their traditional rival), must occur twice in
the competition. This can be achieved via construction in the
polygon method by ensuring that the first round generated by
the algorithm is the rivalry round. However, genetic mutation
must ensure the pairing of teams in the initial polygon
produce the rivalry round. We will see in the next section
how this is achieved.
The polygon construction method outlined above generates

rounds in the round matrix in a predetermined order. This
may induce bias in the search, so instead of using actual team
names and round numbers in the construction algorithm, we
use logical team names and round numbers, and then convert
these logical values to actual values via two maps: a logical-
to-actual team map for converting team names, and a logical-
to-actual round map for round numbers. This allows for
an unbiased search, offering more exploration of the search
space by the evolutionary algorithm.
In summary, a fixture for the AFL is represented by four

matrices:
• the round matrix which lists which round in the first
fifteen rounds each team plays each other,

• a home team matrix which indicates which team is the
home team for any given game pairing,

• a logical-to-actual team map which converts logical
team names used in the construction algorithm to actual
team names in the AFL, and

• a logical-to-actual round map which converts logical
round numbers in the construction algorithm to actual
rounds in the AFL fixture.

A complete fixture for the AFL can then be generated from
these matrices, observing the constraints about additional
rounds (the seven rounds after the round-robin tournament
must be the reverse of the first seven rounds), and the rivalry
round.
Note that by using this representation, the round matrix

need never be modified as all alternative fixtures that con-
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stituent a valid robin-round tournament (i.e. fixtures in which
teams play precisely once per round) can be obtained by
changes to the two logical-to-actual maps and the home
team matrix. Indeed, if we did allow modification of the
round matrix during evolutionary mutation, modifications are
likely to violate this constraint and we would find the search
floundering in the large infeasible regions of the search space.
For this reason, we allow modification of only three matrices:
the home team matrix, the logical-to-actual team map, and
the logical-to-actual round map. These three matrices form
a candidate solution in our evolving population.

B. Mutation

As we indicated in the previous section, to explore the
search space but retain constraint-preserving solutions (fix-
tures that preserve the round-robin and rivalry round con-
straints), we require a constraint-preserving mutation opera-
tor. As changes to the round matrix are likely to produce in-
valid solutions and are unnecessary as all alternative fixtures
can be generated from changes to the other three matrices,
mutation of this matrix is outlawed.
Mutation in our multi-objective algorithm operates on each

individual matrix making up a candidate solution (the home
team matrix, the logical-to-actual team map, and the logical-
to-actual round map). Mutation of the home team matrix
is achieved by randomly selecting 0–4 games inclusive and
reversing the home team for these games. Mutation of the
logical-to-actual round map occurs by simply swapping two
co-domain entries in the map. Mutation of the logical-to-
actual team map is more complex as it must preserve the
rivalry round constraint.
Mutation of the logical-to-actual team map involves two

possibilities:
1) swap locations of any two teams connected by a line-
segment in the initial (first round) polygon of the
polygon construction method, or

2) swap the two teams connected by any line-segment
with two other teams connected by another line seg-
ment in the the initial (first round) polygon of the
polygon construction method.

Since only the ordering of teams in the initial polygon is
modified (and not the actual pairings), the rivalry round
constraint is preserved by this mutation scheme.
In order to preserve genetic inheritance (a necessary con-

dition for evolution to proceed), mutation usually involves
only small changes to an individual solution. We consider a
change to the home team matrix to be a small exploration
step, and changes to either of the two logical-to-actual
maps as producing much larger evolutionary variations. We
hence restrict mutation of the logical-to-actual maps to occur
with 5% probability each (both methods of logical-to-actual
team map mutation occur with 2.5%, probability), while
mutation of the home team matrix is performed on every
parent selected for reproduction (note however that 1

4 of such
mutations will yield an unmodified clone).

C. Objectives
Recall that the problem of fixture determination for the

AFL is multi-objective, as a number of different, often
conflicting, factors must be considered. For consistency, we
cast each objective in terms of a minimisation problem.
1) Home Games: As indicated previously, playing a game

of AFL football at home offers an advantage over playing
away. To ensure fairness in the competition, a fixture should
try and balance the number of home games each team has.
However, continuous sequences of home (or away) games
can also affect fairness, as continuous sequences of home
(or away) games can affect team morale or “momentum” (a
long sequence of away games can result in a run of losses,
leading to negative psychological effects on players), or have
effects on ticket sales (fans prefer regular home games).
Consequently, in terms of equity, not only should the number
of home (and away) games be close to balanced for each
team, but also the sequences of continuous home (or away)
games should also be minimised.
Our first objective captures this equity measure:

Equity =
∑

t∈T

(
10 ×

∣∣∣∣
R

2
− Ht

∣∣∣∣ +
n∑

i=1

L2
i

)

where T is the set of all teams, R is the total number of
rounds in the competition, Ht is the number of games played
at home by team t, n is the number of distinct sequences of
the same type (home or away games) for team t, and Li is
the number of games in an individual sequence.
The first part of this measure (

∣∣R
2 − Ht

∣∣) captures the
requirement that each team play the same number of games
at home. The second part (

∑n
i=1 L2

i ) penalises sequences of
continuous games of the same type. We weighted the imbal-
ance in home and away games more highly than the penalty
for sequential games as its effect on competition fairness is
much more pronounced than sequences of continuous games
of the same type. A weighting of 10 was arbitrarily chosen;
the equivalent of the penalty for a five game sequence of
games of the same type.
2) Travel: Australia is a large country (approximately

the same size as the continental U.S.), with long distances
between the major cities. Interstate travel is hence unavoid-
able, and coupled with potential changes in time-zones,
is generally considered detrimental to team performance.
This effect is also believed to increase when travelling for
sequential weeks. To produce a fair competition, we need to
reduce the effects of such travel. We consider the effects of
local travel (within the state) to be insignificant compared to
interstate travel.
To capture a measure of interstate travel, we give each

state within Australia a location number: Western Australia
is 0, South Australia is 1, Victoria is 2, New South Wales
is 3, and Queensland is 4. We then use the difference in
the location numbers to provide an estimate of the travel
required. For example, travel between South Australia and
New South Wales scores 2, while travel between Queensland
and Western Australia scores 4. We penalise sequential travel
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by multiplying travel scores by the number of sequential
interstate trips:

Travel =
∑

t∈T

n∑

i=1

Li∑

j=1

Tj × Li

where T is the set of all teams, n is the number of distinct
interstate travel sequences by team t, Li is the number of
games in an individual sequence, and Tj is the travel score
for game j.
3) Expected Revenue: An important objective in deter-

mining an AFL fixture is profit. Profit affects how much the
organising authority can spend on promotion and develop-
ment, and ultimately on salaries of players and officials.
The expected revenue for any game can be estimated via

historical data, ground capacity, and the expected television
audience. Cast as a minimisation problem, we negate the sum
of the expected revenues for all games in the fixture to give
us a measure of expected revenue:

Revenue = −
G∑

i=1

rev(t1, t2)

where G is the total number of games in the competition,
and rev(t1, t2) is the expected revenue for a game involving
teams t1 and t2, team t1 playing at home.
4) Venue Distribution: The AFL competition consists of

sixteen teams in five states: ten in Victoria, two in South Aus-
tralia, two in Western Australia, one in New South Wales, and
one in Queensland. Distributing the games across the country
is important for a number of reasons, including political
reasons (e.g. contractual obligations), venue availability, and
maintenance concerns (venues can be over-used, degrading
the quality of the playing surface). Since most teams based
in the same state share the same venue in order to reduce
overheads, venue availability is an importance consideration.
Note that smaller venues typically bring in less revenue than
the larger venues.
Indeed, experience shows that the organising authority of

the AFL has a preferred number of games for each state
per round: five in Victoria, one in South Australia, and one
in Western Australia. We capture this concept by recording
the number of games played in each state in each round,
and noting the difference of this number from the preferred
number:

Distribution =
R∑

i=1

∑

s∈S

|Ps − As|

where R is the total number of rounds, S is the set of states
with more than one team, Ps is the preferred number of
games to be played in state s in one round, and As is the
actual number of games played in state s in round i.
We do not consider games played in New South Wales

and Queensland, as these states host only one team and hence
have no need to share home venues with other teams. Indeed,
the 2006 AFL fixture has no discernible pattern for the games
in these two states.

D. Selection

Determination of which candidate solutions survive and
reproduce in our multi-objective evolutionary algorithm is
based on Pareto rank. We use the Pareto ranking scheme
proposed by Fonseca and Fleming [17], but we modify the
final rank of each solution to bias the search to preferred
regions of the search space. We explain the motivation and
implementation of this scheme below.
Recall that by using the polygon construction method and

a constraint-preserving mutation operator, we can ensure
that all individual solutions examined by the evolutionary
algorithm are valid, meeting all the constraints imposed by
the organising authority. However, note that allowing the
mutation operator the freedom to modify the home team
matrix opens up large regions of the search space that involve
fixtures in which every team does not play the same number
of home and away games. Indeed, the size of the search
space corresponding to changes in just the home team matrix
is extremely vast — much more so than the search space
corresponding to changes to just the two logical-to-actual
maps.
Note that an unequal number of home and away games

does not render a solution infeasible (the solution does
not violate any constraints imposed by the AFL organising
authority), just that it is not preferred as it is unlikely to
be adopted because of the inequity it represents. In essence,
home-and-away game balance represents some form of “soft
constraint” — the organising authority would like all teams
to play the same number of home and away games, but are
willing to consider “limited” violations of the constraint for
improvements in other objectives.
From an optimisation algorithm stand-point, what is

sought is some way of controlling the search — concentrat-
ing the search in the preferred regions of the search space,
but still allowing some search in the non-preferred regions
as they may contain solutions of interest. While the equity
objective outlined in the previous section achieves this to
some extent by penalising solutions that contain an unequal
number of home and away games, non-preferred solutions
will still emerge as they can achieve a good Pareto rank by
performing well in another objective. Over time, evolutionary
selection pressure will hopefully drive the search to find
solutions that minimise this mismatch and also perform well
in the other objectives (thus removing these non-preferred
solutions), but many fitness evaluations (or generations) may
be required. Some other means of “fast-tracking” the search
away from these regions is desired.
To achieve this, instead of simply performing selection on

Pareto rank, we first modify the rank of each solution by
penalising solutions that contain a relatively large inequity
in the number of home and away games each team plays,
and then base selection on these modified ranks. A random
number is also added to each solution’s rank to avoid ties.
The modified rank used in the selection process is hence
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calculated as:

Rank = Pareto rank + f ×
∑

t∈T

(Ht − Hbest)
2 + Rand()

where Pareto rank is the standard Pareto rank of the
solution, Rand() is a randomly sampled uniform variable
from the range [0, 1], f is a scaling factor that determines
the relative importance of the inequity penalty, T is the set
of all teams, Ht is the number of games played at home
by team t, and Hbest is the closest number to the optimal
number of home games (R2 , where R is the number of rounds
in the competition) for any solution in the population.
We see from this formula that the penalty function has

a small effect at the start of the run (where high ranking
solutions still have a good chance of being selected by
the evolutionary algorithm as local optimisation has yet to
increase the number of low ranked solutions), thus allowing
exploration of the non-preferred regions of the search space.
When progress towards the Pareto optimal front starts to
slow (and local optimisation increases the number of lowered
ranked solutions), the penalty function will increase evolu-
tionary selection pressure towards solutions that contain the
same number of home and away games. The net effect of
this is a bias in the search, limiting exploration of the vast
regions of the search space that contains many non-preferred
solutions, concentrating on regions that are likely to contain
solutions of interest. In essence, this approach allows us to
provide some form of ordering over the objectives — the
equity objective is, to some extent, more important than the
other three objectives.
The scaling factor f allows us to control the effects of

the inequity penalty on rank. We will see in the next section
that this parameter has significant effects on the percentage
of solutions in the final population that contain an unequal
number of home and away games.

V. EXPERIMENTAL RESULTS
The multi-objective evolutionary algorithm we use in this

work is a hybrid of NSGA-II [18]. Selection is determined
using the ranking scheme detailed in Section IV-D. We use an
elitism rate of 50%, thus meaning we preserve the best 50%
of the population from one generation to generation. Initial
experiments demonstrate that a population of 800 yields good
results in a few hours.

A. Adjustment Factor Determination
Our first experiment aims at determining the value of the

scaling factor f in the modified ranking scheme employed
by our multi-objective algorithm.
Fig. 2 plots the percentage of solutions that contain an

unequal number of home and away games for different
values of the scaling factor. Each run of the multi-objective
evolutionary algorithm lasted 10,000 generations and used
a population of 800 candidate solutions. Each point is the
average of ten runs of the evolutionary algorithm.
As evidenced from Fig. 2, without any rank adjustment,

almost all solutions in the final population contain an unequal
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Fig. 2. Percentage of solutions that contain an unequal number of home
and away games for different values of the adjustment factor used in the
ranking scheme employed by our multi-objective evolutionary algorithm.

number of home and away games. As we increase the effect
of rank adjustment, the percentage of non-preferred solutions
in the final population falls away quickly. Indeed, with a
scaling factor of 0.25, over 94% of resultant solutions contain
an equal number of home and away games. We settle on a
scaling factor of 0.25 for our future experiments.

B. Pareto Front Evolution

Fig. 3 plots the different perspective views of the Pareto
front at different stages (generations) during a single run of
our multi-objective evolutionary algorithm. Only solutions
with an equal number of home and away games are plotted,
and for each perspective view, only non-dominated solutions
with respect to those two objectives are shown. We use a
population of 800 candidate solutions and a rank adjustment
scaling factor of 0.25 in our multi-objective evolutionary
algorithm.
Fig. 3 shows that our multi-objective evolutionary algo-

rithm is able to simultaneously optimise all objectives. Note
the progression of the fronts towards the idealised minimum
(the origin), and note there is only one crossover in fronts
from different generations (the front after 2000 generations
is “behind” the front after 1,000 generations in Fig. 3(e)).
This confirms that our algorithm is able to maintain a good
rate of progression during the entire run.
The crossover of fronts for Fig. 3(e) suggests a loss

of an equal home-and-away game solution from the 1,000
generation population that would have been non-dominated
in the 2000 generation population. This is probably the result
of random selection — occurring when the algorithm is
forced to choose between equally ranked solutions (recall that
we add a random number to the Pareto rank of each solution,
effectively resolving ties in adjusted ranks randomly).
Fig. 3 also shows that the evolutionary algorithm is able

to generate a good range of different solutions, each trading-
off the different objectives by varying amounts. During the
course of the run we see good coverage across each objective,
highlighting the evolutionary algorithm’s ability to explore
different parts of the search space. The general narrowing
of the Pareto front towards the end of run highlights that
the algorithm is able to locate a few solutions good in
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Fig. 3. Pareto front evolution for one run of our multi-objective evolutionary algorithm. Objective values are normalised by the values for the AFL 2005
fi xture.

several objectives, suggesting some interdependence between
the objectives.

C. Hypervolume
The hypervolume metric for non-dominated front com-

parison [20], [21] measures the ratio of the hypervolume
dominated by a front to the hypervolume dominated by the
idealised minimum. It provides a numerical measure that
rewards both closeness to the Pareto optimal front and the
extent of the obtained non-dominated front. Importantly, the
hypervolume metric is more robust than other numerical
metrics [22], [23], [24].
Fig. 4 plots the hypervolume of the Pareto front at different

stages (generations) during a single run of our multi-objective
evolutionary algorithm. Fig. 4 also plots the hypervolume
contributed by just solutions with an equal number of home
and away games.
Fig. 4 confirms our earlier observation about a good rate of

progression for our evolutionary algorithm — we observe a
general increase in the hypervolume of the Pareto front over
time. Fig. 4 also shows the effects of the rank adjustment
scheme used in this work. We observe that initially, all of the
Pareto front consists of the non-preferred solutions that have
an unequal number of home and away games. Over time,
we see an increase in the proportion of the hypervolume
contributed by preferred solutions, suggesting an emergence
of these solutions in the population. This gives us the effect
we seek — some exploration of non-preferred solutions early
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Fig. 4. Progression of the hypervolume of the Pareto front for one run of
our multi-objective evolutionary algorithm.

in the run, with a general convergence to preferred solutions
towards the end of the run.

D. Comparison with the Current AFL Fixture

Also marked on each plot in Fig. 3 is the current fixture
employed by the AFL organising authority for the 2006 sea-
son. Examination of this figure shows that our evolutionary
algorithm is quickly able to produce solutions that dominate
this schedule.
Table II compares selected fixtures taken from ten runs of

our evolutionary algorithm with the 2006 AFL fixture.
We see from Table II that our multi-objective evolutionary

algorithm is able to produce a good range of solutions that
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Objective
Solution Equity Distribution Travel Revenue

AFL 2006 1.00 1.00 1.00 1.000
Best revenue 0.82 0.64 1.05 0.977

Second best revenue 0.81 0.18 0.97 0.978
Median revenue 0.75 1.27 0.89 0.986

Best travel 0.81 1.45 0.82 0.989
Good travel 0.77 1.64 0.89 0.984
Best equity 0.71 1.64 1.00 0.992
Good equity 0.73 2.00 0.94 0.984

Best distribution 0.81 0.18 0.97 0.978
Median distribution 0.77 0.82 0.89 0.985

TABLE II
SELECTED FIXTURES FROM TEN RUNS OF OUR MULTI-OBJECTIVE

EVOLUTIONARY ALGORITHM.

trade-off the different objectives by varying amounts. Com-
parison of the different fixtures shows that the evolutionary
algorithm is able to “tweak” generalist solutions in order to
optimise performance in any single objective.
The good revenue optimising fixtures reported in Table II

ensure that the large earning games (typically those played
in Victoria, which has a much larger venue than any other
state) appear in the first seven rounds, thus ensuring they
appear twice in the final fixture (recall, the first seven rounds
are repeated to make the 22 round fixture). The good travel
solution has less of these large earning games within the first
seven rounds, sacrificing revenue, but minimising the number
of interstate trips required by non-Victorian based teams.
The optimisation of the travel objective has a significant

negative impact on the distribution objective, with the good
travel solution of Table II representing a fixture that contains
nil or two games played in both Western Australia and
South Australia in ten rounds of the competition. This
violates another “soft constraint” of the organising authority
— the desire that precisely one game be played in both
of these states each round. For this reason, the organising
authority is unlikely to employ this fixture for actual use.
However, the second best revenue solution (which is also
the best distribution solution) of Table II strictly dominates
the current AFL schedule, improving performance in every
objective: it could potentially be used by the AFL organising
authority.

VI. CONCLUSIONS
In this paper, we have presented a multi-objective evo-

lutionary algorithm for fixture determination for the sport
of AFL football. Like many team sports that involve teams
spread over significant distances, fixture designers for the
AFL face the difficult problem of balancing a number of
different, often conflicting, factors like competition fairness,
amount of travel, availability and distribution of games, and
of course revenue.
Our multi-objective approach to this problem produces a

range of different fixtures, each varying the trade-offs in the
objectives by differing amounts. This provides the organising
authority the ability to explore different “what if” options,

allowing them to choose the option that best suits their
requirements. Our experiments show that this multi-objective
approach is able to evolve solutions that strictly dominate the
existing fixture, promising better returns in every measure of
success.

REFERENCES
[1] “Offi cial website of the australian football league,” January 2006,

URL: http://afl.com.au/.
[2] “The AFL explained,” January 2006, URL: http://afl.com.au/

default.asp?pg=aflinfosheets&spg=display&article
id=240727.

[3] “Seven and ten win afl rights,” January 2006, URL: http://
www.abc.net.au/sport/content/200601/s1542491.htm.

[4] C. A. Coello Coello and G. B. Lamont, Eds., Applications of Multi-
objective Evolutionary Algorithms. World Scientifi c Publishing, 2004.

[5] B. Huich, I. Miguel, I. P. Gent, and T. Walsh, “CSPLib: A problem
library for constraints,” January 2006, URL: http://csplib.org.

[6] K. McAloon, C. Tretkoff, and G. Wetzel, “Sports league scheduling,”
in Third ILOG Optimization Suite International User’s Conference,
1997.

[7] J.-P. Hamiez and J.-K. Hao, “A linear time algorithm to solve the sports
league scheduling problem (prob026 of CSPLib),” Discrete Applied
Mathematics, vol. 143, pp. 252–265, 2004.

[8] ——, “Solving the sports league scheduling problem with tabu search,”
LNAI, vol. 2148, pp. 24–36, 2001.

[9] K. Easton, G. Nemhauser, and M. Trick, “Solving the travelling
tournament problem: A combined integer programming and constraint
programming approach,” LNCS, vol. 2740, pp. 100–109, 2003.

[10] R. Miyashiro and T. Matsui, “Round-robin tournaments with a small
number of breaks,” Department of Mathematical Informatics, The
University of Tokyo, Mathematical Engineering Technical Reports
METR 2003-29, 2003.

[11] E. Burke and P. Ross, Eds., The Practice and Theory of Automated
Timetabling. Springer Verlag, 1996.

[12] J. Schönberger and H. K. Dirk C. Mattfeld, “Automated timetable
generation for rounds of a table-tennis league,” in CEC 2000, pp.
277–284.

[13] J. T. Yang, H.-D. Huang, and J.-T. Horng, “Devising a cost effective
baseball scheduling by evolutionary algorithms,” pp. 1660–1665.

[14] D. C. M. J. Schönberger and H. Kopfer, “Memetic algorithm
timetabling for non-commercial sport leagues,” European Journal of
Operational Research, vol. 153, no. 1, pp. 102–116, 2004.

[15] D. Costa, “An evolutionary tabu search algorithm and the NHL
scheduling problem,” Department of Mathematics, Swiss Federal In-
stitute of Technology, Tech. Rep. ORWP 92/11, 1992.

[16] D. E. Goldberg, Genetic Algorithms in Search, Optimization & Ma-
chine Learning. Addison-Wesley, 1989.

[17] C. M. Fonseca and P. J. Fleming, “Genetic algorithms for multiobjec-
tive optimization: formulation, discussion and generalization,” in 5th
International Conference on Genetic Algorithms, 1993, pp. 416–423.

[18] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and
elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. on
Evolutionary Computation, vol. 6, pp. 182–197, 2002.

[19] J. Dinitz, E. Lamken, and W. Wallis, “Scheduling a tournament,” in
Handbook of Combinatorial Designs, J. Dinitz and C. Colbourn, Eds.
CRC Press, 1995, pp. 578–584.

[20] E. Zitzler, “Evolutionary algorithms for multiobjective optimization:
methods and applications,” Ph.D. dissertation, Swiss Federal Institute
of Technology, Zurich, Switzerland, 1999.

[21] L. While, P. Hingston, L. Barone, and S. Huband, “A faster algorithm
for calculating hypervolume,” IEEE TEC, vol. 10, no. 1, pp. 29–38,
2006.

[22] J. Knowles and D. Corne, “On metrics for comparing nondominated
sets,” in CEC 2002, pp. 711–716.

[23] K. H. Ang, G. Chong, and Y. Li, “Preliminary statement on the
current progress of multi-objective evolutionary algorithm performance
measurement,” in CEC 2002, pp. 831–836.

[24] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da
Fonseca, “Performance assessment of multiobjective optimizers: An
analysis and review,” IEEE TEC, vol. 7, no. 2, pp. 117–132, 2003.

961


	Fixture-scheduling for the Australian Football League using a Multi-objective Evolutionary Algorithm
	Fixture-scheduling for the Australian Football League using a Multi-objective Evolutionary Algorithm [CEC7478]

