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Abstract 

 
Properly generated test suites may not only locate 

the defects in software systems, but also help in 
reducing the high cost associated with software 
testing. It is often desired that test sequences in a test 
suite can be automatically generated to achieve 
required test coverage. However, automatic test 
sequence generation remains a major problem in 
software testing. This paper proposes an Ant Colony 
Optimization approach to automatic test sequence 
generation for state-based software testing.  The 
proposed approach can directly use UML artifacts to 
automatically generate test sequences to achieve 
required test coverage.   

 

1. Introduction 
 

Software testing remains the primary technique 
used to gain consumers’ confidence in the software. 
Unfortunately, it is always a time-consuming and 
costly task to test a software system [2]. Obviously, 
techniques that support the automation of software 
testing will result in significant cost saving.  

The application of artificial intelligence (AI) 
techniques is an emerging area of research in Software 
Engineering (SE).  A number of published works (for 
examples [3], [13]) have begun to examine the 
effective use of AI for SE related activities which are 
inherently knowledge intensive and human-centered. 
Four key areas of software development have been 
identified where the applications of AI will have a 
significant impact: (1) Planning, monitoring, and 
quality control of projects, (2) The quality and process 
improvement of software organizations, (3) Decision 
making support, and (4) Automation.   

The SE area with a more prolific use of AI 
techniques is software testing. The focus of techniques 
mainly involved the applications of genetic algorithms 
(GAs), for examples, [9], [12]. Other AI techniques 

used for test data generation included the AI planner 
approach [8] and simulated annealing [14]. However, 
efficiency of the generation procedure and the 
feasibility of the generated test data were frequently 
concerned in the application of the AI techniques.  

Recently, Ant Colony Optimization (ACO) has 
being applied in software testing (see, for examples [4] 
and [11]).  Namely, [4] described an approach 
involving ACO and a Markov Software Usage model 
for deriving a set of test paths for a software system, 
and [11] reported results on the application of ACO to 
find sequences of transitional statements in generating 
test data for evolutionary testing. However, the results 
obtained so far are preliminary, the associated test 
data generation procedures are difficult to be 
automated, and none of the reported results directly 
addresses specification-based software testing.  

In this paper we propose to use UML Statechart 
diagrams and ACO to generate test sequences for 
state-based software testing. The advantages of the 
proposed approach are that the UML Statechart 
diagrams exported by UML tools can be directly used 
to generate test sequences, and the automatically 
generated test sequences are always feasible, non-
redundant and achieve the required test adequacy 
criterion.   

This paper is structured as follows. Section 2 
briefly discusses software testing and ACO. Section 3 
presents an ACO approach to test sequence 
generation, and the conclusion is found in Section 4. 

 
2. Software Testing 

 
There are three main activities associated with 

software testing: (1) test data generation, (2) test 
execution involving the use of test data and the 
software under test (SUT) and (3) evaluation of test 
results. The key question addressed in software testing 
is how to select test cases with the aim of uncovering 
as many defects as possible. Since exhaustive testing is 
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impossible in terms of cost, and no realistic amount of 
systematic testing can guarantee the absence of errors, 
the key question is when and how do we determine 
whether testing has been conducted adequately. In 
order to reduce cost and time as well as to improve the 
quality of the software, any extensive testing would 
require the automation of testing process. Of the three 
activities mentioned above, test data generation and 
evaluation of test results are the most labor intensive 
and thus would benefit most from automation. 

The process of test data generation involves 
activities for producing a set of input test data that 
satisfies a chosen testing criterion. Horgan [7] has 
shown that test cases selected on the basis of test 
adequacy criteria are more effective at discovering 
defects in the SUT. While it is possible to manually 
generate an effective set of test cases, the manual 
generation procedure is very tedious and labor 
intensive. A cost-effective approach is to automate the 
test data generation while ensuring that the given 
criterion is met.  

A variety of techniques for test data generation 
have been developed previously. These techniques can 
be categorized as structural testing and functional 
testing. Most existing works in automated test data 
generation using AI involve the use of GAs and are 
mainly in the areas of structural testing and temporal 
behavior testing. The ultimate aim of using genetic 
algorithms for structural testing is to generate a set of 
test cases that provides the highest possible coverage 
of a given structural testing criterion. The test 
objectives are expressed numerically and are used 
subsequently to formulate a suitable fitness function 
that evaluates the suitability of the generated test 
cases. 

ACO is a class of algorithms that simulates the 
behavior of real ants. The first ACO technique was 
known as Ant System [5] and was applied to the 
traveling salesman problem. Since then, many 
variants have been produced. The ACO algorithms are 
based on pheromone trails used by the ants which 
mark out food sources. The trails can be sensed by 
other ants. ACO is a probabilistic technique that can 
be applied to generate solutions for combinatorial 
optimizations problems. The artificial ants in the 
algorithm represent the construction procedures for 
the stochastic solutions which make use of (1) the 
dynamic evolution of the pheromone trails that reflects 
the ants' acquired search experience; and (2) the 
heuristic information related to the problem in hand, 
in order to construct probabilistic solutions.  

In order to apply ACO to solve an optimization 
problem such as test case generation, a number of 
issues need to be addressed, namely, (1) 
transformation of the testing problem into a graph; (2) 
a heuristic measure for measuring the “goodness” of 
paths through the graph; (3) a mechanism for creating 
possible solutions efficiently and a suitable criterion to 
stop solution generation; (4) a suitable method for 
updating the pheromone; and (5) a transition rule for 
determining the probability of an ant traversing from 
one node in the graph to the next.  

In the next section, we present an ACO approach to 
automatically generate test sequences from UML 
Statechart diagrams for state-based software testing. 

 
3. An ACO Approach to Test Sequence 
Generation 
 

State-based testing is frequently used in software 
testing. There are two major problems commonly 
associated with state-based software testing: (1) some 
of the generated test cases are infeasible; (2) inevitably 
many redundant test cases have to be generated in 
order to achieve the proper testing coverage required 
by test adequacy criteria. For the first problem, 
approaches using code execution or model execution 
techniques have been developed to exclude the 
infeasible paths. However, to our knowledge, no 
systematic strategy has been reported to successfully 
deal with both problems. 

The UML Statechart diagrams have been 
extensively used in state-based software testing. In 
order to define test adequacy criteria for state-based 
software testing using the UML Statechart diagrams, 
the Statechart diagrams have to be flattened to remove 
all hierarchy and concurrency [2]. It has to be 
emphasized that the Statechart flattening process is 
merely used for testing purpose, a flattened Statechart 
diagram is not necessary a semantic equivalence to the 
original Statechart diagram. 

It is well-known that all-state test coverage 
requirement is commonly used in state-based software 
testing. A test suite is said to achieve all states 
coverage if every state is accessed at least once under 
test. A test suite for state-based software testing 
consists of a set of test sequences in the form  

SA→SB→SC→SD→SA→SD→SA→SC→SB, 
 
or alternatively, {SA, SB, SC, SD, SA, SD, SA, SC, SB} for 
short notation, where SA, SB, SC, SD are the states in 
the corresponding UML Statechart diagram, and → 
represents a transition between the two states. 
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The proposed approach addresses the automatic 
generation of test sequences from the UML Statechart 
diagrams for state-based software testing.  The all- 
states test coverage is used as test adequacy 
requirement. Specifically, two requirements have been 
imposed that the generated test suite has to satisfy:  

 All-state coverage  
 Feasibility – Each test sequence in the test 

suite represents a feasible path in the 
corresponding Statechart diagram 

We now proceed to develop the proposed approach.  
A directed graph is defined as G = (V, E) where V 

is a set of vertices of the graph and E a set of edges of 
the graph. A flattened UML Statechart can be viewed 
as a directed graph where the vertices are the states of 
the Statechart diagram, and the edges are the 
transitions between the states.  

We have developed a tool to automatically convert 
a Statechart diagram to a directed graph. For example, 
a well-known UML Statechart diagram, the Coffee 
Vendor Machine (CVM) which is frequently used as a 

benchmark problem for state-based testing, can be 
converted into a directed graph CVM = (S, T), where 
S is the state set and T is the transition set. The 
original CVM Statechart diagram and the converted 
graph are shown in Figure 1 and Figure 2 respectively. 
In the following, we will use the CVM example to 
help demonstrating the approach.  

Although hierarchy and concurrency have to be 
removed from the flattened UML Statechart diagrams, 
and hence also from the converted graphs, it should be 
noted that our approach can implicitly deal with 
testing of concurrency. This is due to the capability of 
using multiple ants to simultaneously explore the 
converted graphs. 

The converted graphs are directed, dynamic graphs 
in which the edges (transitions in Statechart sense) 
may dynamically appear or disappear based on the 
evaluation of their guards. Therefore, we need to 
consider the problem of sending a group of ants to 
cooperatively search a directed graph G. It has been 
observed that the original ACO algorithms in [5], [6] 
are difficult to be applied to this type of directed and 
dynamic graphs to generate test data for the 
corresponding testing problems. An alternative 
algorithm has to be proposed in order to use ants to 
search the graphs for test sequence generation.  

Similar to [16], the ants in our paradigm can sense 
the pheromone traces at the current vertex and those 
directly connected neighboring vertices, and leave 
pheromone traces over the vertices.  

Each ant at a vertex α of the graph is associated 
with a four tuple (S, D, T, P): 

CVM

OFF

ON

COFFEE

IDLE BUSY

MONEY

EMPTY NOTEMPTY

T11(dec)[m>1]/m=m-1

T10(inc)[m<10]/m=m+1

T9

T7(inc)/m=1

T1:

T4

T6(done)/stop!

T5(coffee)[m>0]/start!;dec

T2(power-on)/light-on!;m=0

T8(dec)[m==1]/m=0

T3(power-off)/light-off!

S0

S1

S2

S21

S22

S211 S212

S221 S222

Figure 1 The Coffee Vendor Machine (CVM) Statechart 

OFF ON

COFFEE

MONEY

IDLE BUSY

EMPTY NOTEMP

T5

T6

T3

T4

T1

T2

T9
T10

S1 S2

S21

S23

S211 S212

S231 S232

COCOA STOP STREAM

T7

T8
S221S22 S222

     Figure 2 Converted CVM graph CVM = (S, T) 
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• Vertex Track Set  S = {Si} keeps a vertex 
track of the ant's walking history 

• Target Set D indicates those vertices which 
are always connected to the current vertex α. 
For the Statechart diagrams, target sets only 
exist for the super-states of the composite 
states, and the target set for a super-state 
contains the current status of the composite 
state. For example, the ON super-state for the 
CVM graph contains the information 
ON(COFFEE, MONEY). Therefore, the 
target set for vertex ON is {COFFEE, 
MONEY}. The target set for vertex COFFEE 
is either {IDLE} or {BUSY}, but not both 
because the super-state for these two sub-
states only keeps the current status of the 
composite state 

• Connection Set T = {T(Vi)} represents the 
direct connections of the current vertex α 
with the neighboring vertices. Direct 
connection means that there is only one 
directed edge from the current vertex to the 
destination vertex. T also documents all the 
edges spanning from the current vertex. T(Vi) 
= 0 means that the two vertices α and Vi are 
always connected, T(Vi) = 1 means that the 
two vertices appear to be connected for the 
current ant at the current vertex α, and T(Vi) 
= -1 indicates that the two vertices are not 
connected for the current ant, at the current 
vertex α and for the current time. For the 
corresponding UML Statechart diagram, the 
following situations appear: 
o T(Vi) = 0 means that either Vi is 

contained in the target set for α, or α is 
contained in the target set for Vi. This 
represents two vertices which are a 
super-state and its targeted sub-state; 

o T(Vi) = 1 means that the transition 
between the two states is evaluated to be 
feasible; 

o T(Vi) = -1 means that there is no 
transition between two states α and Vi, or 
the transition between the two states is 
infeasible, or Vi is not in the target set of 
the vertex α 

For examples, for an ant at the state EMPTY 
(S221) in the CVM graph in Figure 2, T = 
{T(S22), T(S222)}. If T7 is feasible, T = {0, 1}, 
otherwise T = {0, -1}; for an ant at the state 
COFFEE (S21) with target set {IDLE}, T = 
{T(S2), T(S211), T(S212)} = {0, 1, -1} since 

S212 is not contained in the target set for S21 
at this stage 

• Pheromone Trace Set P = {P(Vi)} represents 
the pheromone levels at the neighboring 
vertices which are feasible to the ant at the 
current vertex. Unlike other sets, the 
pheromone left by previous ants over the 
graph will not vanish, and the succeeding 
ants will use the remaining pheromone level 
to adjust their exploration. 

Each ant keeps its own S, D, and T, while set P is 
left on the graph to be shared by all ants. Ants can 
sense the pheromone levels on the graph, and modify 
P in the exploration of the graph. 

The following algorithm is proposed for an ant to 
explore the directed graph: 

 

Algorithm 

1. Evaluation at vertex α 
• Update the Track - Push the current vertex α 

into the track set S 
• Evaluate Connections - Evaluate all 

connections to the current vertex α to 
determine T. The procedure involves 
evaluation of all possible transitions from the 
current states α to other neighbouring states, 
using the state-transition table associated 
with the UML Statechart diagram 

• Sense the Trace - For the non-negative 
connections in T, the ant senses and gathers 
the corresponding pheromone levels P at the 
other ends of the connections 

2. Move to next vertex 
• Select Destination - The following prioritized 

rules are used in ant's selection: 
i) Select the vertex Vi with the lowest 

pheromone level P(Vi) sensed from the 
current vertex α 

ii) If vertices Vi and Vj shares the same 
lowest pheromone level P(Vi) = P(Vj), 
but T(Vi) = 0 and T(Vj) = 1, select Vi 

iii) If vertices Vi and Vj shares the same 
lowest pheromone level P(Vi) = P(Vj) 
and T(Vi) = T(Vj), randomly select one 
vertex 

Destination β is the vertex selected using the 
above rules 

• Update Pheromone - Update the pheromone 
level for the current vertex α to 

Proceedings of the Fifth International Conference on Quality Software (QSIC’05) 
1550-6002/05 $20.00 © 2005 IEEE 



 P(α) = max(P(α), P(β)+1)      if     T(β) = 1           
 or 

 P(α) = max(P(α), P(β)+1)+TP    if     T(β) = 0 

Where TP is a high pheromone level which 
decays in one iteration of the steps, namely, 
TP quickly decays to 0 before ant's next move 
at the end of Step 2 

• Move - Move to the destination vertex β, set α 
:= β, and return to Step 1. 

 
  Similar to [16], it can be shown that all vertices 

can be visited within limited steps (upper bound). The 
details however are omitted due to space limitation. 
The algorithm for an ant stops when one of the 
following two conditions is satisfied: 

• The track set S contains all vertices of the 
graph which means the coverage criterion has 
been satisfied, i.e., all states have been visited 
at least once; 

• The search upper bound has been reached. In 
this case, the ant fails to find a sequence 
which achieves the required coverage. More 
ants will have to be deployed in order to find 
a solution. 

In the above algorithm, TP is used to encourage an 
ant to perform forward exploration, or equivalently to 
prevent an ant from immediately moving back to the 
previously visited vertex. In the Statechart diagram 
sense, TP prevents an ant from doing redundant 
moves between a super-state and its sub-states.  

Next we demonstrate the proposed algorithm using 
the CVM given in Figure 1. Although our approach 
can use multiple ants to cooperatively explore the 
CVM, for demonstration purpose and for clarity, we 
only send ants one by one in a sequential manner in 
the following demonstration.  

We first send Ant 1 to walk the directed graph 
CVM, starting from the default state S1. Using the 
proposed algorithm, Ant 1’s trace is recorded in the 
trace set S. Table 1 provides details about Ant 1’s 

exploration. Initially Ant 1 has to make a random 
decision at vertex S2 according to our algorithm. 
Assume that Ant 1 randomly selected to move from S1 
to S21, its trace is illustrated in Figure 3 which 
provides a feasible test sequence for the CVM 
Statechart: 

Test Sequence 1 = {S1, S2, S21, S211, S21, S2, S22, 
S221, S222, S22, S2, S21, S211, S212} 

One test case, namely Test Sequence 1, satisfies the 
all-states coverage requirement. However, it may also 
be observed that Test Sequence 1 as shown in Figure 3 
is not the shortest test sequence. If shortest test 
sequences are required to form the generated test suite, 
more ants may be deployed sequentially or repeatedly 
to the graph, or multiple ants can be deployed 
simultaneously to explore the possibility of getting 
shorter test sequences for the required coverage.  

We continue the simple sequential example. Ant 2 
is sent to explore the CVM graph afterwards. Similar 
to Ant 1, Ant 2 starts from the default state S1. Since 
this is a sequential deployment, Ant 1 has left 
pheromone trace as indicated in the last row of Table 
1; therefore, Ant 2 doesn’t have to make a random 
decision at vertex S2 anymore. It is easy to know that 
the test sequence created by Ant 2 is 

Test Sequence 2 = {S1, S2, S2, S22, S221, S222, S22, 
S2, S21, S211, S212} 

Test Sequence 2 is the shortest one for all-states 
coverage requirement using single ant sequentially, as 
illustrated in Figure 4. Note that if Ant 2 is repeatedly 
deployed to a fresh CVM graph which does not have 
pheromone trail, and Ant 2 selects to move to the 
alternative vertex S22 in the random decision, Ant 2’s 
trace will be same as test sequence 2 above.  

For Statechart diagrams of the CVM scale, it is 
often sufficient to consecutively or repeatedly send 
single ant to explore the converted graphs. In general, 
for more complicated Statechart diagrams, multiple 
ants have to be sent to explore the converted graphs 
simultaneously in order to accelerate the exploration 
process. Each ant is assigned a unique ID which 
represents its priority in the cooperative team. Each 

OFF ON

COFFEE

MONEY

IDLE BUSY

EMPTY NOTEMPTY

T5

T6

T7

T8

T9

T4

T2

T3

T1

T10

T11

S1

S2

S21

S22

S211 S212

S221 S222

Trace of Ant 1  

Figure 3 Trace of Ant 1 
 

OFF ON

COFFEE

MONEY

IDLE BUSY

EMPTY NOTEMPTY

T5

T6

T7

T8

T9

T4

T2

T3

T1

T10

T11

S1

S2

S21

S22

S211 S212

S221 S222

Trace of Ant 2  

Figure 4 Trace of Ant 2 
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ant maintains its own S, D, T sets, but shares with 
other ants the pheromone set P. The proposed 
algorithm works for the multiple ants case with only 
one exception, namely when there are two or more 
ants at vertex α, they have to leave α according to their 
priorities in the team. The ant with a higher priority 
leaves and sets pheromone level for α first, followed 
by lower priority ants. The final pheromone level 
which is left over α is the highest one set by all ants.  

We have developed a prototype tool called Dynamic 
Ant Simulator (DAS) using the proposed algorithm to 
automatically generate test sequences for given 

Statechart diagrams. A Statechart diagram can be 
developed using many standard UML tools and 
exported into a XMI file. The exported XMI file 
contains the Statechart diagram as well as other UML 
diagrams. DAS can directly read a XMI file which 
contains all UML diagrams, extract the Statechart 
diagram, flatten the extracted Statechart diagram, and 
convert the flattened Statechart diagram into a 
directed dynamic graph. A user can then manually or 
randomly deploy ants into nodes in the directed 
dynamic graph, and DAS will automatically generate 
feasible test sequences afterwards. 

 
Figure 6 DAS Main Screen 

 

 
Figure 7 Log Window 

 
Figure 8 Network Wizard 

Being Taught

Junction_1

Fork_1

teach

t2 t3.a.1

Deliver Course Material

t3.a.2

Mark Student Work

Research Course Material Update Course Materialfound new material

t4

require more material

t5

t3.b

Initial_State_1

term started

t1

student dropped[seminar size >0]t6

Final_State_1

student dropped[seminar size = 0]t10

School Break

break starts

t8

break ends

t9

work submittedt11

Final Examsclasses end

t7

xxxxx

Figure 5 The "Being Taught" Statechart Diagram 
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Due to space limitation, we can not describe DAS 
in details here. Nevertheless, we use an example to 
demonstrate DAS. The “Being Taught” Statechart 
diagram example shown in Figure 5 is taken from [1]. 
The Statechart diagram was drawn using Poseidon 
UML and a XMI file was exported which contained 
both the Statechart and class diagrams. 

The DAS main interface is shown in Figure 6. 
Using the File menu, the exported XMI file can be 
loaded into the simulator, and the associated graph is 
automatically converted and displayed in the Network 
Wizard window as shown in Figure 8. Ants can then 
be deployed into the graph randomly or selectively by 
clicking on a particular node. In Figure 8, 3 ants are 
deployed to Node 12 which is the initial state in 
Figure 5. Afterwards, a user can click on the Start 
button in the main window to start the generation of 
test sequences. Ants’ exploration activities are visually 
displayed throughout the generation procedure, as 
shown in Figure 9 and Figure 10. The Log window 
shown in Figure 7 keeps ants’ traces and provides 
statistics after the generation procedure is completed. 

Figure 11 shows the log produced by deploying 8 
ants to Node 12. Each column of the data set forms a 
test sequence. It was found that for the addressed 
example, deploying 8 ants to Node 12 produces a test 
suite which contains the shortest test sequences. Using 
more ants can not improve the results further. 

 
4.  Conclusion 

 
This paper presented an ant colony optimization 

approach to test sequence generation for state-based 
software testing. Using the developed algorithm, a 
group of ants can effectively explore the UML 
Statechart diagrams and automatically generate test 
sequences to achieve the test adequacy requirement.  

Our approach has the following advantages: (1) the 
UML Statechart diagrams exported by UML tools are 
directly used to generate test sequences; (2) the whole 

generation process is fully automated; (3) redundant 
exploration of the Statechart diagrams is avoided due 
to the use of ants, resulting in efficient generation of 
test sequences. 
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Table 1 Ant 1’s exploration details 

  S1 S2 S21 S211 S21

 
S22 S221 S22

 D  {COFFEE, 
MONEY} 

      

T -1 0 0 -1 -1 0 -1 -1 

P 1 0 0 0 0 0 0 0 
α= S2 

S {S1, S2} 

D  {COFFEE, 
MONEY} 

IDLE   EMPTY   

T -1 0 0 0 -1 -1 -1 -1 

P 1 1+TP 0 0 0 0 0 0 
α= S21 

S {S1, S2, S21} 

D  {COFFEE, 
MONEY} 

IDLE   EMPTY   

T -1 -1 0 0 -1 -1 -1 -1 

P 1 1 1+TP 0 0 0 0 0 
α= 
S211 

S {S1, S2, S21, S211} 

D  {COFFEE, 
MONEY} 

IDLE   EMPTY   

T -1 0 0 0 -1 -1 -1 -1 

P 1 1 1 2+2T
P 

0 0 0 0 
α= S21 

S {S1, S2, S21, S211, S21} 

Details for Ant 1’s trace part S21→ S2→ S22→ S221→ S222→ S22→ S2→ S21 are omitted 

D  {COFFEE, 
MONEY} 

IDLE   NOTEMPTY   

T -1 0 0 0 -1 -1 -1 -1 

P 1 3+TP 2 2 0 2 1 2 
α= S21 

S {S1, S2, S21, S211, S21, S2, S22, S221, S222, S22, S2, S21} 

D  {COFFEE, 
MONEY} 

IDLE   NOTEMPTY   

T -1 -1 0 0 1 -1 -1 -1 

P 1 3 3+TP 2 0 2 1 2 
α= 
S211 

S {S1, S2, S21, S211, S21, S2, S22, S221, S222, S22, S2, S21, S211} 

D  {COFFEE, 
MONEY} 

BUSY   NOTEMPTY   

T -1 -1 0 -1 0 -1 -1 -1 

P 1 3 3 2 0 2 1 2 
α= 
S212 

S {S1, S2, S21, S211, S21, S2, S22, S221, S222, S22, S2, S21, S211, S212} 
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