
Edith Cowan University Edith Cowan University

Research Online Research Online

ECU Publications Pre. 2011

2005

An Ant Colony Optimization Approach to Test Sequence An Ant Colony Optimization Approach to Test Sequence

Generation for State-Based Software Testing Generation for State-Based Software Testing

Huaizhong Li
Edith Cowan University

Chiou Peng Lam
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks

 Part of the Computer Sciences Commons

This is an Author's Accepted Manuscript of: Li, H. , & Lam, C. P. (2005). An Ant Colony Optimization Approach to
Test Sequence Generation for State-Based Software Testing. Proceedings of Fifth International Conference on
Quality Software. (pp. 255-262). Melbourne. IEEE. Available here
© 2005 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.
This Conference Proceeding is posted at Research Online.
https://ro.ecu.edu.au/ecuworks/2710

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworks
https://ro.ecu.edu.au/ecuworks?utm_source=ro.ecu.edu.au%2Fecuworks%2F2710&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ro.ecu.edu.au%2Fecuworks%2F2710&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1579143

An Ant Colony Optimization Approach to Test Sequence Generation for State-
based Software Testing

Huaizhong LI

School of Computer and Information Science,
Edith Cowan University, Australia

h.li@ecu.edu.au

C. Peng LAM
School of Computer and Information Science,

 Edith Cowan University, Australia
c.lam@ecu.edu.au

Abstract

Properly generated test suites may not only locate

the defects in software systems, but also help in
reducing the high cost associated with software
testing. It is often desired that test sequences in a test
suite can be automatically generated to achieve
required test coverage. However, automatic test
sequence generation remains a major problem in
software testing. This paper proposes an Ant Colony
Optimization approach to automatic test sequence
generation for state-based software testing. The
proposed approach can directly use UML artifacts to
automatically generate test sequences to achieve
required test coverage.

1. Introduction

Software testing remains the primary technique
used to gain consumers’ confidence in the software.
Unfortunately, it is always a time-consuming and
costly task to test a software system [2]. Obviously,
techniques that support the automation of software
testing will result in significant cost saving.

The application of artificial intelligence (AI)
techniques is an emerging area of research in Software
Engineering (SE). A number of published works (for
examples [3], [13]) have begun to examine the
effective use of AI for SE related activities which are
inherently knowledge intensive and human-centered.
Four key areas of software development have been
identified where the applications of AI will have a
significant impact: (1) Planning, monitoring, and
quality control of projects, (2) The quality and process
improvement of software organizations, (3) Decision
making support, and (4) Automation.

The SE area with a more prolific use of AI
techniques is software testing. The focus of techniques
mainly involved the applications of genetic algorithms
(GAs), for examples, [9], [12]. Other AI techniques

used for test data generation included the AI planner
approach [8] and simulated annealing [14]. However,
efficiency of the generation procedure and the
feasibility of the generated test data were frequently
concerned in the application of the AI techniques.

Recently, Ant Colony Optimization (ACO) has
being applied in software testing (see, for examples [4]
and [11]). Namely, [4] described an approach
involving ACO and a Markov Software Usage model
for deriving a set of test paths for a software system,
and [11] reported results on the application of ACO to
find sequences of transitional statements in generating
test data for evolutionary testing. However, the results
obtained so far are preliminary, the associated test
data generation procedures are difficult to be
automated, and none of the reported results directly
addresses specification-based software testing.

In this paper we propose to use UML Statechart
diagrams and ACO to generate test sequences for
state-based software testing. The advantages of the
proposed approach are that the UML Statechart
diagrams exported by UML tools can be directly used
to generate test sequences, and the automatically
generated test sequences are always feasible, non-
redundant and achieve the required test adequacy
criterion.

This paper is structured as follows. Section 2
briefly discusses software testing and ACO. Section 3
presents an ACO approach to test sequence
generation, and the conclusion is found in Section 4.

2. Software Testing

There are three main activities associated with

software testing: (1) test data generation, (2) test
execution involving the use of test data and the
software under test (SUT) and (3) evaluation of test
results. The key question addressed in software testing
is how to select test cases with the aim of uncovering
as many defects as possible. Since exhaustive testing is

Proceedings of the Fifth International Conference on Quality Software (QSIC’05)
1550-6002/05 $20.00 © 2005 IEEE

impossible in terms of cost, and no realistic amount of
systematic testing can guarantee the absence of errors,
the key question is when and how do we determine
whether testing has been conducted adequately. In
order to reduce cost and time as well as to improve the
quality of the software, any extensive testing would
require the automation of testing process. Of the three
activities mentioned above, test data generation and
evaluation of test results are the most labor intensive
and thus would benefit most from automation.

The process of test data generation involves
activities for producing a set of input test data that
satisfies a chosen testing criterion. Horgan [7] has
shown that test cases selected on the basis of test
adequacy criteria are more effective at discovering
defects in the SUT. While it is possible to manually
generate an effective set of test cases, the manual
generation procedure is very tedious and labor
intensive. A cost-effective approach is to automate the
test data generation while ensuring that the given
criterion is met.

A variety of techniques for test data generation
have been developed previously. These techniques can
be categorized as structural testing and functional
testing. Most existing works in automated test data
generation using AI involve the use of GAs and are
mainly in the areas of structural testing and temporal
behavior testing. The ultimate aim of using genetic
algorithms for structural testing is to generate a set of
test cases that provides the highest possible coverage
of a given structural testing criterion. The test
objectives are expressed numerically and are used
subsequently to formulate a suitable fitness function
that evaluates the suitability of the generated test
cases.

ACO is a class of algorithms that simulates the
behavior of real ants. The first ACO technique was
known as Ant System [5] and was applied to the
traveling salesman problem. Since then, many
variants have been produced. The ACO algorithms are
based on pheromone trails used by the ants which
mark out food sources. The trails can be sensed by
other ants. ACO is a probabilistic technique that can
be applied to generate solutions for combinatorial
optimizations problems. The artificial ants in the
algorithm represent the construction procedures for
the stochastic solutions which make use of (1) the
dynamic evolution of the pheromone trails that reflects
the ants' acquired search experience; and (2) the
heuristic information related to the problem in hand,
in order to construct probabilistic solutions.

In order to apply ACO to solve an optimization
problem such as test case generation, a number of
issues need to be addressed, namely, (1)
transformation of the testing problem into a graph; (2)
a heuristic measure for measuring the “goodness” of
paths through the graph; (3) a mechanism for creating
possible solutions efficiently and a suitable criterion to
stop solution generation; (4) a suitable method for
updating the pheromone; and (5) a transition rule for
determining the probability of an ant traversing from
one node in the graph to the next.

In the next section, we present an ACO approach to
automatically generate test sequences from UML
Statechart diagrams for state-based software testing.

3. An ACO Approach to Test Sequence
Generation

State-based testing is frequently used in software
testing. There are two major problems commonly
associated with state-based software testing: (1) some
of the generated test cases are infeasible; (2) inevitably
many redundant test cases have to be generated in
order to achieve the proper testing coverage required
by test adequacy criteria. For the first problem,
approaches using code execution or model execution
techniques have been developed to exclude the
infeasible paths. However, to our knowledge, no
systematic strategy has been reported to successfully
deal with both problems.

The UML Statechart diagrams have been
extensively used in state-based software testing. In
order to define test adequacy criteria for state-based
software testing using the UML Statechart diagrams,
the Statechart diagrams have to be flattened to remove
all hierarchy and concurrency [2]. It has to be
emphasized that the Statechart flattening process is
merely used for testing purpose, a flattened Statechart
diagram is not necessary a semantic equivalence to the
original Statechart diagram.

It is well-known that all-state test coverage
requirement is commonly used in state-based software
testing. A test suite is said to achieve all states
coverage if every state is accessed at least once under
test. A test suite for state-based software testing
consists of a set of test sequences in the form

SA→SB→SC→SD→SA→SD→SA→SC→SB,

or alternatively, {SA, SB, SC, SD, SA, SD, SA, SC, SB} for
short notation, where SA, SB, SC, SD are the states in
the corresponding UML Statechart diagram, and →
represents a transition between the two states.

Proceedings of the Fifth International Conference on Quality Software (QSIC’05)
1550-6002/05 $20.00 © 2005 IEEE

The proposed approach addresses the automatic
generation of test sequences from the UML Statechart
diagrams for state-based software testing. The all-
states test coverage is used as test adequacy
requirement. Specifically, two requirements have been
imposed that the generated test suite has to satisfy:

 All-state coverage
 Feasibility – Each test sequence in the test

suite represents a feasible path in the
corresponding Statechart diagram

We now proceed to develop the proposed approach.
A directed graph is defined as G = (V, E) where V

is a set of vertices of the graph and E a set of edges of
the graph. A flattened UML Statechart can be viewed
as a directed graph where the vertices are the states of
the Statechart diagram, and the edges are the
transitions between the states.

We have developed a tool to automatically convert
a Statechart diagram to a directed graph. For example,
a well-known UML Statechart diagram, the Coffee
Vendor Machine (CVM) which is frequently used as a

benchmark problem for state-based testing, can be
converted into a directed graph CVM = (S, T), where
S is the state set and T is the transition set. The
original CVM Statechart diagram and the converted
graph are shown in Figure 1 and Figure 2 respectively.
In the following, we will use the CVM example to
help demonstrating the approach.

Although hierarchy and concurrency have to be
removed from the flattened UML Statechart diagrams,
and hence also from the converted graphs, it should be
noted that our approach can implicitly deal with
testing of concurrency. This is due to the capability of
using multiple ants to simultaneously explore the
converted graphs.

The converted graphs are directed, dynamic graphs
in which the edges (transitions in Statechart sense)
may dynamically appear or disappear based on the
evaluation of their guards. Therefore, we need to
consider the problem of sending a group of ants to
cooperatively search a directed graph G. It has been
observed that the original ACO algorithms in [5], [6]
are difficult to be applied to this type of directed and
dynamic graphs to generate test data for the
corresponding testing problems. An alternative
algorithm has to be proposed in order to use ants to
search the graphs for test sequence generation.

Similar to [16], the ants in our paradigm can sense
the pheromone traces at the current vertex and those
directly connected neighboring vertices, and leave
pheromone traces over the vertices.

Each ant at a vertex α of the graph is associated
with a four tuple (S, D, T, P):

CVM

OFF

ON

COFFEE

IDLE BUSY

MONEY

EMPTY NOTEMPTY

T11(dec)[m>1]/m=m-1

T10(inc)[m<10]/m=m+1

T9

T7(inc)/m=1

T1:

T4

T6(done)/stop!

T5(coffee)[m>0]/start!;dec

T2(power-on)/light-on!;m=0

T8(dec)[m==1]/m=0

T3(power-off)/light-off!

S0

S1

S2

S21

S22

S211 S212

S221 S222

Figure 1 The Coffee Vendor Machine (CVM) Statechart

OFF ON

COFFEE

MONEY

IDLE BUSY

EMPTY NOTEMP

T5

T6

T3

T4

T1

T2

T9
T10

S1 S2

S21

S23

S211 S212

S231 S232

COCOA STOP STREAM

T7

T8
S221S22 S222

 Figure 2 Converted CVM graph CVM = (S, T)

Proceedings of the Fifth International Conference on Quality Software (QSIC’05)
1550-6002/05 $20.00 © 2005 IEEE

• Vertex Track Set S = {Si} keeps a vertex
track of the ant's walking history

• Target Set D indicates those vertices which
are always connected to the current vertex α.
For the Statechart diagrams, target sets only
exist for the super-states of the composite
states, and the target set for a super-state
contains the current status of the composite
state. For example, the ON super-state for the
CVM graph contains the information
ON(COFFEE, MONEY). Therefore, the
target set for vertex ON is {COFFEE,
MONEY}. The target set for vertex COFFEE
is either {IDLE} or {BUSY}, but not both
because the super-state for these two sub-
states only keeps the current status of the
composite state

• Connection Set T = {T(Vi)} represents the
direct connections of the current vertex α
with the neighboring vertices. Direct
connection means that there is only one
directed edge from the current vertex to the
destination vertex. T also documents all the
edges spanning from the current vertex. T(Vi)
= 0 means that the two vertices α and Vi are
always connected, T(Vi) = 1 means that the
two vertices appear to be connected for the
current ant at the current vertex α, and T(Vi)
= -1 indicates that the two vertices are not
connected for the current ant, at the current
vertex α and for the current time. For the
corresponding UML Statechart diagram, the
following situations appear:
o T(Vi) = 0 means that either Vi is

contained in the target set for α, or α is
contained in the target set for Vi. This
represents two vertices which are a
super-state and its targeted sub-state;

o T(Vi) = 1 means that the transition
between the two states is evaluated to be
feasible;

o T(Vi) = -1 means that there is no
transition between two states α and Vi, or
the transition between the two states is
infeasible, or Vi is not in the target set of
the vertex α

For examples, for an ant at the state EMPTY
(S221) in the CVM graph in Figure 2, T =
{T(S22), T(S222)}. If T7 is feasible, T = {0, 1},
otherwise T = {0, -1}; for an ant at the state
COFFEE (S21) with target set {IDLE}, T =
{T(S2), T(S211), T(S212)} = {0, 1, -1} since

S212 is not contained in the target set for S21
at this stage

• Pheromone Trace Set P = {P(Vi)} represents
the pheromone levels at the neighboring
vertices which are feasible to the ant at the
current vertex. Unlike other sets, the
pheromone left by previous ants over the
graph will not vanish, and the succeeding
ants will use the remaining pheromone level
to adjust their exploration.

Each ant keeps its own S, D, and T, while set P is
left on the graph to be shared by all ants. Ants can
sense the pheromone levels on the graph, and modify
P in the exploration of the graph.

The following algorithm is proposed for an ant to
explore the directed graph:

Algorithm

1. Evaluation at vertex α
• Update the Track - Push the current vertex α

into the track set S
• Evaluate Connections - Evaluate all

connections to the current vertex α to
determine T. The procedure involves
evaluation of all possible transitions from the
current states α to other neighbouring states,
using the state-transition table associated
with the UML Statechart diagram

• Sense the Trace - For the non-negative
connections in T, the ant senses and gathers
the corresponding pheromone levels P at the
other ends of the connections

2. Move to next vertex
• Select Destination - The following prioritized

rules are used in ant's selection:
i) Select the vertex Vi with the lowest

pheromone level P(Vi) sensed from the
current vertex α

ii) If vertices Vi and Vj shares the same
lowest pheromone level P(Vi) = P(Vj),
but T(Vi) = 0 and T(Vj) = 1, select Vi

iii) If vertices Vi and Vj shares the same
lowest pheromone level P(Vi) = P(Vj)
and T(Vi) = T(Vj), randomly select one
vertex

Destination β is the vertex selected using the
above rules

• Update Pheromone - Update the pheromone
level for the current vertex α to

Proceedings of the Fifth International Conference on Quality Software (QSIC’05)
1550-6002/05 $20.00 © 2005 IEEE

 P(α) = max(P(α), P(β)+1) if T(β) = 1
 or

 P(α) = max(P(α), P(β)+1)+TP if T(β) = 0

Where TP is a high pheromone level which
decays in one iteration of the steps, namely,
TP quickly decays to 0 before ant's next move
at the end of Step 2

• Move - Move to the destination vertex β, set α
:= β, and return to Step 1.

 Similar to [16], it can be shown that all vertices

can be visited within limited steps (upper bound). The
details however are omitted due to space limitation.
The algorithm for an ant stops when one of the
following two conditions is satisfied:

• The track set S contains all vertices of the
graph which means the coverage criterion has
been satisfied, i.e., all states have been visited
at least once;

• The search upper bound has been reached. In
this case, the ant fails to find a sequence
which achieves the required coverage. More
ants will have to be deployed in order to find
a solution.

In the above algorithm, TP is used to encourage an
ant to perform forward exploration, or equivalently to
prevent an ant from immediately moving back to the
previously visited vertex. In the Statechart diagram
sense, TP prevents an ant from doing redundant
moves between a super-state and its sub-states.

Next we demonstrate the proposed algorithm using
the CVM given in Figure 1. Although our approach
can use multiple ants to cooperatively explore the
CVM, for demonstration purpose and for clarity, we
only send ants one by one in a sequential manner in
the following demonstration.

We first send Ant 1 to walk the directed graph
CVM, starting from the default state S1. Using the
proposed algorithm, Ant 1’s trace is recorded in the
trace set S. Table 1 provides details about Ant 1’s

exploration. Initially Ant 1 has to make a random
decision at vertex S2 according to our algorithm.
Assume that Ant 1 randomly selected to move from S1
to S21, its trace is illustrated in Figure 3 which
provides a feasible test sequence for the CVM
Statechart:

Test Sequence 1 = {S1, S2, S21, S211, S21, S2, S22,
S221, S222, S22, S2, S21, S211, S212}

One test case, namely Test Sequence 1, satisfies the
all-states coverage requirement. However, it may also
be observed that Test Sequence 1 as shown in Figure 3
is not the shortest test sequence. If shortest test
sequences are required to form the generated test suite,
more ants may be deployed sequentially or repeatedly
to the graph, or multiple ants can be deployed
simultaneously to explore the possibility of getting
shorter test sequences for the required coverage.

We continue the simple sequential example. Ant 2
is sent to explore the CVM graph afterwards. Similar
to Ant 1, Ant 2 starts from the default state S1. Since
this is a sequential deployment, Ant 1 has left
pheromone trace as indicated in the last row of Table
1; therefore, Ant 2 doesn’t have to make a random
decision at vertex S2 anymore. It is easy to know that
the test sequence created by Ant 2 is

Test Sequence 2 = {S1, S2, S2, S22, S221, S222, S22,
S2, S21, S211, S212}

Test Sequence 2 is the shortest one for all-states
coverage requirement using single ant sequentially, as
illustrated in Figure 4. Note that if Ant 2 is repeatedly
deployed to a fresh CVM graph which does not have
pheromone trail, and Ant 2 selects to move to the
alternative vertex S22 in the random decision, Ant 2’s
trace will be same as test sequence 2 above.

For Statechart diagrams of the CVM scale, it is
often sufficient to consecutively or repeatedly send
single ant to explore the converted graphs. In general,
for more complicated Statechart diagrams, multiple
ants have to be sent to explore the converted graphs
simultaneously in order to accelerate the exploration
process. Each ant is assigned a unique ID which
represents its priority in the cooperative team. Each

OFF ON

COFFEE

MONEY

IDLE BUSY

EMPTY NOTEMPTY

T5

T6

T7

T8

T9

T4

T2

T3

T1

T10

T11

S1

S2

S21

S22

S211 S212

S221 S222

Trace of Ant 1

Figure 3 Trace of Ant 1

OFF ON

COFFEE

MONEY

IDLE BUSY

EMPTY NOTEMPTY

T5

T6

T7

T8

T9

T4

T2

T3

T1

T10

T11

S1

S2

S21

S22

S211 S212

S221 S222

Trace of Ant 2

Figure 4 Trace of Ant 2

Proceedings of the Fifth International Conference on Quality Software (QSIC’05)
1550-6002/05 $20.00 © 2005 IEEE

ant maintains its own S, D, T sets, but shares with
other ants the pheromone set P. The proposed
algorithm works for the multiple ants case with only
one exception, namely when there are two or more
ants at vertex α, they have to leave α according to their
priorities in the team. The ant with a higher priority
leaves and sets pheromone level for α first, followed
by lower priority ants. The final pheromone level
which is left over α is the highest one set by all ants.

We have developed a prototype tool called Dynamic
Ant Simulator (DAS) using the proposed algorithm to
automatically generate test sequences for given

Statechart diagrams. A Statechart diagram can be
developed using many standard UML tools and
exported into a XMI file. The exported XMI file
contains the Statechart diagram as well as other UML
diagrams. DAS can directly read a XMI file which
contains all UML diagrams, extract the Statechart
diagram, flatten the extracted Statechart diagram, and
convert the flattened Statechart diagram into a
directed dynamic graph. A user can then manually or
randomly deploy ants into nodes in the directed
dynamic graph, and DAS will automatically generate
feasible test sequences afterwards.

Figure 6 DAS Main Screen

Figure 7 Log Window

Figure 8 Network Wizard

Being Taught

Junction_1

Fork_1

teach

t2 t3.a.1

Deliver Course Material

t3.a.2

Mark Student Work

Research Course Material Update Course Materialfound new material

t4

require more material

t5

t3.b

Initial_State_1

term started

t1

student dropped[seminar size >0]t6

Final_State_1

student dropped[seminar size = 0]t10

School Break

break starts

t8

break ends

t9

work submittedt11

Final Examsclasses end

t7

xxxxx

Figure 5 The "Being Taught" Statechart Diagram

Proceedings of the Fifth International Conference on Quality Software (QSIC’05)
1550-6002/05 $20.00 © 2005 IEEE

Due to space limitation, we can not describe DAS
in details here. Nevertheless, we use an example to
demonstrate DAS. The “Being Taught” Statechart
diagram example shown in Figure 5 is taken from [1].
The Statechart diagram was drawn using Poseidon
UML and a XMI file was exported which contained
both the Statechart and class diagrams.

The DAS main interface is shown in Figure 6.
Using the File menu, the exported XMI file can be
loaded into the simulator, and the associated graph is
automatically converted and displayed in the Network
Wizard window as shown in Figure 8. Ants can then
be deployed into the graph randomly or selectively by
clicking on a particular node. In Figure 8, 3 ants are
deployed to Node 12 which is the initial state in
Figure 5. Afterwards, a user can click on the Start
button in the main window to start the generation of
test sequences. Ants’ exploration activities are visually
displayed throughout the generation procedure, as
shown in Figure 9 and Figure 10. The Log window
shown in Figure 7 keeps ants’ traces and provides
statistics after the generation procedure is completed.

Figure 11 shows the log produced by deploying 8
ants to Node 12. Each column of the data set forms a
test sequence. It was found that for the addressed
example, deploying 8 ants to Node 12 produces a test
suite which contains the shortest test sequences. Using
more ants can not improve the results further.

4. Conclusion

This paper presented an ant colony optimization

approach to test sequence generation for state-based
software testing. Using the developed algorithm, a
group of ants can effectively explore the UML
Statechart diagrams and automatically generate test
sequences to achieve the test adequacy requirement.

Our approach has the following advantages: (1) the
UML Statechart diagrams exported by UML tools are
directly used to generate test sequences; (2) the whole

generation process is fully automated; (3) redundant
exploration of the Statechart diagrams is avoided due
to the use of ants, resulting in efficient generation of
test sequences.

References

[1] Ambler, S. W., The Object Primer 3rd Edition: Agile
Model Driven Development with UML 2, Cambridge
University Press, 2004.
[2] Binder, R. V., Testing Object-oriented Systems:
Models, Patterns, and Tools, Addison-Wesley. 2000.
[3] Briand, L. C.,“On the many ways Software Engineering
can benefit from Knowledge Engineering”, Proc. 14th
SEKE, Italy, pp. 3-6, 2002.
[4] Doerner, K., Gutjahr, W. J., “Extracting Test
Sequences from a Markov Software Usage Model by ACO”,
LNCS, Vol. 2724, pp. 2465-2476, Springer Verlag, 2003.
[5] Dorigo M., Maniezzo, V., Colorni, A., “Positive
Feedback as a Search Strategy”, Technical Report No. 91-
016, Politecnico di Milano, Italy, 1991.
[6] Dorigo M., Maniezzo, V., Colorni, A., “The Ant
System: Optimization by a Colony of Cooperating Agents”,
IEEE Transactions on Systems, Man, and Cybernetics-Part
B, Vol. 26, No.1, pp.29-41, 1996.
[7] Horgan, J., London, S., and Lyu, M., “Achieving
Software Quality with Testing Coverage Measures”, IEEE
Computer, Vol. 27 No.9 pp. 60-69, 1994.
[8] Howe, A. E., Mayrhauser A. V., and Mraz, R. T., “Test
Case Generation as an AI Planning Problem”, Automated
Software Engineering, Vol. 4, pp 77-106, 1997.
[9] Li, H., Lam, C.P., “Optimization of State-based Test
Suites for Software Systems: An Evolutionary Approach”,
International Journal of Computer & Information Science,
Vol. 5, No. 3, pp. 212-223, 2004.
[10] McMinn, P., “Search-based Software Test Data
Generation: A Survey”, Software Testing, Verification and
Reliability, Vol.14, No. 2, pp. 105-156, 2004.
[11] McMinn, P., Holcombe, M., “The State Problem for
Evolutionary Testing”, Proc. GECCO 2003, LNCS Vol.
2724, pp. 2488-2500, Springer Verlag, 2003.

Figure 9 Simulation - Start

Figure 10 Simulation - End

bbbbbbbb
33333333
42244222
95095111
86da6d7c
a2e82e23
------- Statistics -----------
- Nodes 15; Edges 31; Ants 8
- Simulation finished after 5 steps
- Maximum of edge traverses is 8
- Minimum of edge traverses is 0
---------- End -----------
Simulation finished

Figure 11 Simulation Log

Proceedings of the Fifth International Conference on Quality Software (QSIC’05)
1550-6002/05 $20.00 © 2005 IEEE

[12] Pargas, R. P., Harrold, M. J., and Peck, R., “Test-Data
Generation Using Genetic Algorithms”, Software Testing,
Verification and Reliability, Vol. 9, pp. 263 - 282, 1999.
[13] Pedrycz, W., Peters, J. F., Computational Intelligence
in Software Engineering, World Scientific Publishers, 1998.
[14] Tracey, N., Clark, N., .Mander K., and McDermid, N.,
“A Search Based Automated Test Data Generation
Framework for Safety Critical Systems”, in Systems
Engineering for Business Process Change (New Directions),
Henderson P., Editor, Springer Verlag, 2002.

[15] Wagner, I. A., Lindenbaum, M., Bruckstein, A. M.,
“Distributed Covering by Ant-Robots Using Evaporating
Traces”, IEEE Trans. Robot. Auto., Vol. 15, pp. 918-933,
1999.
[16] Wagner, I. A., Lindenbaum, M., Bruckstein, A. M.,
“ANTS: Agents, Networks, Trees, and Subgraphs”, Special
issue on Ant Colony Optimization (M. Dorigo, G. Di Caro,
T.Stützle (eds)), Future Generation Computer Systems, Vol.
16, No. 8, pp. 915-926, North Holland, June 2000.

Table 1 Ant 1’s exploration details

 S1 S2 S21 S211 S21

S22 S221 S22

 D {COFFEE,
MONEY}

T -1 0 0 -1 -1 0 -1 -1

P 1 0 0 0 0 0 0 0
α= S2

S {S1, S2}

D {COFFEE,
MONEY}

IDLE EMPTY

T -1 0 0 0 -1 -1 -1 -1

P 1 1+TP 0 0 0 0 0 0
α= S21

S {S1, S2, S21}

D {COFFEE,
MONEY}

IDLE EMPTY

T -1 -1 0 0 -1 -1 -1 -1

P 1 1 1+TP 0 0 0 0 0
α=
S211

S {S1, S2, S21, S211}

D {COFFEE,
MONEY}

IDLE EMPTY

T -1 0 0 0 -1 -1 -1 -1

P 1 1 1 2+2T
P

0 0 0 0
α= S21

S {S1, S2, S21, S211, S21}

Details for Ant 1’s trace part S21→ S2→ S22→ S221→ S222→ S22→ S2→ S21 are omitted

D {COFFEE,
MONEY}

IDLE NOTEMPTY

T -1 0 0 0 -1 -1 -1 -1

P 1 3+TP 2 2 0 2 1 2
α= S21

S {S1, S2, S21, S211, S21, S2, S22, S221, S222, S22, S2, S21}

D {COFFEE,
MONEY}

IDLE NOTEMPTY

T -1 -1 0 0 1 -1 -1 -1

P 1 3 3+TP 2 0 2 1 2
α=
S211

S {S1, S2, S21, S211, S21, S2, S22, S221, S222, S22, S2, S21, S211}

D {COFFEE,
MONEY}

BUSY NOTEMPTY

T -1 -1 0 -1 0 -1 -1 -1

P 1 3 3 2 0 2 1 2
α=
S212

S {S1, S2, S21, S211, S21, S2, S22, S221, S222, S22, S2, S21, S211, S212}

Proceedings of the Fifth International Conference on Quality Software (QSIC’05)
1550-6002/05 $20.00 © 2005 IEEE

	An Ant Colony Optimization Approach to Test Sequence Generation for State-Based Software Testing
	Microsoft Word - 113_LI_H.rtf

