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RESEARCH ARTICLE Open Access

Effect of tendon vibration during wide-
pulse neuromuscular electrical stimulation
(NMES) on the decline and recovery of
muscle force
Vanesa Bochkezanian1,2* , Robert U. Newton1,2,3, Gabriel S. Trajano4, Amilton Vieira5, Timothy S. Pulverenti2

and Anthony J. Blazevich2

Abstract

Background: Neuromuscular electrical stimulation (NMES) is commonly used to activate skeletal muscles and
reverse muscle atrophy in clinical populations. Clinical recommendations for NMES suggest the use of short pulse
widths (100–200 μs) and low-to-moderate pulse frequencies (30–50 Hz). However, this type of NMES causes rapid
muscle fatigue due to the (non-physiological) high stimulation intensities and non-orderly recruitment of motor
units. The use of both wide pulse widths (1000 μs) and tendon vibration might optimize motor unit activation
through spinal reflex pathways and thus delay the onset of muscle fatigue, increasing muscle force and mass.
Thus, the objective of this study was to examine the acute effects of patellar tendon vibration superimposed onto
wide-pulse width (1000 μs) knee extensor electrical stimulation (NMES, 30 Hz) on peak muscle force, total impulse
before “muscle fatigue”, and the post-exercise recovery of muscle function.

Methods: Tendon vibration (Vib), NMES (STIM) or NMES superimposed onto vibration (STIM + Vib) were applied in
separate sessions to 16 healthy adults. Total torque-time integral (TTI), maximal voluntary contraction torque (MVIC)
and indirect measures of muscle damage were tested before, immediately after, 1 h and 48 h after each stimulus.

Results: TTI increased (145.0 ± 127.7%) in STIM only for “positive responders” to the tendon vibration (8/16 subjects),
but decreased in “negative responders” (−43.5 ± 25.7%). MVIC (−8.7%) and rectus femoris electromyography (RF EMG)
(−16.7%) decreased after STIM (group effect) for at least 1 h, but not after STIM + Vib. No changes were detected in
indirect markers of muscle damage in any condition.

Conclusions: Tendon vibration superimposed onto wide-pulse width NMES increased TTI only in 8 of 16 subjects, but
reduced voluntary force loss (fatigue) ubiquitously. Negative responders to tendon vibration may derive greater benefit
from wide-pulse width NMES alone.
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Background
Muscular strength is a major predictor of mortality in
clinical populations, and this appears to be partly explic-
able by the quantity (i.e. absolute muscle volume) and
quality (i.e. muscle/intra-muscular adipose content) of
limb muscle mass [1, 2]. Improvements in muscle mass
are also observed to be beneficial for functional mobility
and quality of life as well as preventing functional decline,
cardiovascular disease and hospitalization [3]. Strength
training is commonly used to stimulate gains in muscle
strength and has been proven to enhance longevity and
quality of life in a variety of clinical populations [4–7].
However, strength training poses an increasing challenge
for people with a neurological condition, such as people
with spinal cord injury (SCI) who have limited ability, or
are unable, to voluntarily activate their muscles.
Due to this limitation, neuromuscular electrical stimu-

lation (NMES) has been conventionally used in clinical
practice, particularly in the form of functional electrical
stimulation (FES), i.e. a continuous, prolonged stimula-
tion at low-to-moderate frequencies (30–50 Hz) paired
simultaneously or intermittently with a functional task
(e.g. cycling) [8]. FES exercise has been shown to slow
muscle weakening or even increase muscle strength as
well as reduce the rate of skeletal muscle atrophy and
weakness and improve physical health in people with a
SCI [9–12]. However, such interventions evoke only low
relative muscle forces [9, 13] and therefore may not
optimally stimulate neuromuscular strength and mass
increases [14]. Instead the imposition of a higher load
on the muscle with intermittent rest periods to allow
continuous higher force output would be preferable [15].
Possible reasons for the lack of clinical use of high-

intensity, intermittent NMES protocols include a lack of
scientific exploration of its efficacy and long term func-
tional effect [16], and their propensity to elicit rapid muscle
fatigue and (possibly) muscle damage [11, 12, 17, 18].
Whilst, muscle damaging effects can be reduced with
repeated exposures (i.e. repeated bout effect), the rapid
muscle fatigue induced by NMES is an ongoing issue
[18–21]. This rapid fatigue partly results from the use
of short-pulse widths (< 300 μs), which activate muscle
fibres largely through depolarization of motor axons,
and which typically leads to a random motor unit re-
cruitment pattern and therefore a substantial recruit-
ment of fast-fatiguing type II motor units. Fatigue may
also result the use of non-physiologically high stimula-
tion frequencies (e.g. ≥ 80 Hz) [19, 22–25] and the
simultaneous activation of the same motor units in
repeated contractions [24, 26–28]. Therefore, the inten-
sity and duration of stimulation that can be applied to
muscles in an exercise session are reduced, thus limit-
ing the potential for muscle force capacity, muscle mass
and musculoskeletal function adaptations [29–32].

To overcome some of these problems, wide-pulse width
NMES (i.e. ≥ 1000 μs) appears to be a promising tool for
use in clinical populations as it appears to recruit motor
units through central (i.e. indirect) pathways [33–38].
Wide-pulse width NMES can elicit asynchronous motor
unit activation through the reflexive recruitment of motor
neurones [39], identified by the presence of spinal H-
reflexes, or asynchronous motor unit activation through
the triggering of persistent inward currents (PIC) via
repetitive activation of Ia afferents or post-activation po-
tentiation of neurotransmitter release [39–41]. However,
the contribution of wide-pulse width NMES to asynchron-
ous motor unit activation through central recruitment is
shown mostly during higher frequencies of stimulation
(>80 Hz) and appears to have minimal effect at lower fre-
quencies (i.e. ≤ 20 Hz), which may preclude its use in a
clinical context [42]. Also, when used at higher stimula-
tion intensities the contribution of H-reflexes to muscle
activation may be minimized by orthodromic-antidromic
collision, and indeed recent evidence has indicated that
wide-pulse width NMES may exacerbate muscle fatigue at
the higher frequencies of stimulation that may be required
to elicit higher levels of muscle force [43, 44]. Thus, there
is a need to consider different strategies of activating
motor units in a more physiological manner for future
clinical applications.
One promising method is the application of tendon vi-

bration during muscle stimulation. Tendon vibration
evokes a tonic vibration reflex through both spinal and
supraspinal pathways via repetitive activation of Ia affer-
ent fibres and possibly triggers the development of
persistent inward currents at the motor neuron level
[45–47]. Tendon vibration could amplify and prolong
synaptic input and create a sustained depolarization
leading to an increased physiological recruitment of motor
units, and thus increasing muscle force output [48]. Since
tendon vibration can excite only low-threshold motor
units (fatigue-resistant) [49], an additional excitation of
the fatigue-resistant motor units may be elicited if it is
coupled with wide-pulse width NMES, and thus may
result in an additional increase in muscle force output
[47, 50–52]. Moreover, in some functionally important
muscles, such as the quadriceps femoris, the use of
wide-pulse width NMES alone may not be effective in
recruiting motor units through “central pathways” [39], so
the addition of tendon vibration might help to recruit Ia
afferent fibres and thus increase muscle force production.
Such a phenomenon has already been demonstrated in
healthy people in the plantar flexors [53].
Importantly, antidromic activation of motor neurons

does not occur during tendon vibration [54] as it might
during electrical stimulation. Therefore, superimposing
tendon vibration onto wide-pulse width NMES at low-
to-moderate frequencies (e.g. 30 Hz) may induce motor
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neuron discharge in synchrony with the stimulus. How-
ever, it is still uncertain whether the imposition of tendon
vibration onto wide-pulse width NMES could increase the
peak force production and reduce the rate of muscle fa-
tigue for a given intensity of NMES. It is also not known
whether tendon vibration might increase potential muscle
damaging effects due to the higher evoked forces, or
instead reduce the risk by eliciting a more normal physio-
logical excitation of the motor neuron pool.
In the present study, therefore, the hypothesis was

tested that the use of tendon vibration imposed during
wide- pulse width NMES (1000 μs) at a low-to-moderate
frequency (30 Hz) would enhance peak muscle force,
impulse performed before “fatigue”, and the post-exercise
recovery of muscle function when compared to wide-
pulse width NMES applied without tendon vibration in
healthy individuals. These individuals also provided feed-
back about pain and comfort levels during the NMES
protocols, so that these types of interventions might be
better understood before their use in clinical populations
in future research studies.

Methods
Participants
Sixteen healthy participants (6 women, 10 men) with
no neurological or musculoskeletal disorders volun-
teered for the study (mean ± SD, age: 28.6 ± 7.5 y;
height: 165.1 ± 27.8 cm; body mass: 77.4 ± 24.5 kg;
BMI: 24.1 ± 2.2 kg/m2). The subjects were physically
active individuals who typically performed structured
physical activity 2 to 4 times a week (i.e. recreation-
ally trained). We chose to study the effects of our
interventions in healthy individuals who can provide
feedback regarding the pain and discomfort experi-
enced, because such stimuli may trigger spasticity in
clinical populations such as people with spinal cord
injury, stroke, brain damage or other neurological dis-
orders [55]. Prior to the study, the participants were
given detailed information about the procedures and
risks of participation and they all signed an informed
consent document. The participants completed the
Physical Activity Readiness Questionnaire (PAR-Q) to
ensure safe exercise participation and refrained from
vigorous exercise (48 h) and alcohol (24 h) and
stimulant consumption (e.g. caffeine, energy drinks,
6 h) prior to testing. Twelve of the 16 participants
were also measured at 1 h and 48 h after the inter-
vention to assess muscle force recovery and markers
of muscle damage (details on section Muscle fatigue
and muscle damage). This study was approved by the
University’s Human Ethics Committee.
Study design: quasi-randomised cross-over design.
Setting of the study: Edith Cowan University. Joondalup

campus. Perth. Western Australia.

Procedures
All participants attended the laboratory on four occa-
sions at the same time of day with a minimum of 7 days
between sessions. One week prior to the first experimen-
tal session, participants attended a full familiarization
session where each participant received patellar tendon
vibration as well as NMES with and without patellar
tendon vibration, and performed maximal voluntary
isometric contractions (MVIC) of the knee extensors to
ensure they could tolerate the protocols. All participants
tolerated the NMES and tendon vibration protocols well.
The subsequent three sessions were used to complete the
following three experimental protocols in a random order
without replication: 1) NMES only (STIM); 2) NMES
superimposed onto tendon vibration (STIM + Vib); and 3)
Vibration only (Vib). All participants (n = 16) were tested
immediately before (PRE), immediately after (POST) and
a subset of participants (n = 12; four participants were
unable to attend all follow-up testing) were also tested
one hour (1H) and 48 h (48H) after each experimental
session. A standardized warm-up protocol was per-
formed at the beginning of every session, which con-
sisted of six consecutive concentric knee extension
contractions with resistance provided by the inertia of
an isokinetic dynamometer (Biodex System 3 Pro Ron-
konkoma, NY) and then one repetition of isometric
knee extensions at 30%, 50%, 70% and 90% of perceived
maximal effort before performing a series of knee ex-
tension MVICs.
In experimental sessions, three MVICs were performed

at each time point (PRE, POST, 1H and 24H) separated by
1 min of rest, with a fourth completed if a difference in
peak torque of ≥3% was observed between the best two
attempts. The participants were seated with hip and knee
joint angles of 85° and 90°, respectively (0° = full knee
extension), with the thigh and trunk secured to the dyna-
mometer chair and the knee joint was aligned with the
centre of rotation of the dynamometer. Peak isometric
knee extension torque was quantified during MVIC.
Participants were instructed to produce a force against the
dynamometer arm by extending the knee as fast and hard
as possible for 3 s. Verbal encouragement and visual feed-
back was provided during all MVICs.

Neuromuscular electrical stimulation (NMES) and tendon
vibration protocols
Following the MVICs, and to habituate participants to
the electrical stimulations, two electrical square-wave
stimuli (two 1000 μs square-wave pulses separated by
5 ms) were delivered to the dominant (stronger leg)
every 20 s while the stimulation current was increased
from 30 to 99 mA in 10-mA increments until a plateau
in the maximum peak twitch torque was observed.
Subsequently, trains of NMES were delivered by a high-
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voltage constant-current electrical stimulator (400 V,
DS7A, Digitimer Ltd., Welwyn Garden City, UK) through
four self-adhesive stimulation electrodes (Axelgaard,
PALS, USA) placed over the rectus femoris (RF), vastus
lateralis (VL), and vastus medialis (VM). Two 5 × 10 cm
electrodes were placed over RF and one 5 × 5 electrode
was placed on each of the VM and VL approximately at
their motor points. The electrodes were placed to elicit
the greatest twitch response with a low stimulation inten-
sity, as determined in the familiarization session, and were
marked with indelible ink on the skin to ensure identical
electrode placement at subsequent sessions. The NMES
protocol consisted of repeated 30-Hz trains of 58 wide-
pulse width (1000 μs) symmetric biphasic pulses (0.033-s
inter-pulse interval). A single train duration was 2-s and
the inter-train interval was 2-s (i.e. 2-s on and 2-s off). 2-s
contractions were used because extensive pilot testing
revealed that shorter-duration contractions (i.e. 1 s) failed
to evoke a torque plateau (i.e. maximal activation) during
each train of stimulation, and that longer-duration
contractions (i.e. ≥3 s) tended to elicit a rapid muscular
fatigue. Symmetric biphasic NMES, which employed
currents with balanced positive and negative phases
(polarity), was used due to its superior efficacy (in con-
trast to monophasic) to produce tetanic contractions
and its demonstrated therapeutic benefits in clinical
practice [56, 57]. The intensity of NMES was chosen to
elicit 20% of the best MVIC recorded during PRE mea-
surements for each experimental session (henceforth
referred to as the ‘target torque’) by delivering three
single trains of the NMES protocol with increasing
stimulation intensity separated by one minute. Whilst
the contribution of afferent pathways to motor unit
activation occurs mainly at a high frequency (i.e.
>80 Hz) and at low stimulation force levels (i.e. 10%
MVC) [40–42, 53], a higher force level (i.e. ≥ 20%
MVIC) and low-to-moderate frequencies (20–30 Hz)
(i.e. standard clinical conditions) were chosen to elicit
higher forces that should stimulate significant changes
in muscle force and mass in training interventions in
clinical populations. Moreover, the use of 20% MVC
has been previously investigated in the plantarflexors
with a clear recruitment of motor units through the
reflex arc during bouts of tendon vibration [47].
Patellar tendon vibration was applied with a vibration

device (Deep Muscle Stimulator, Las Vegas, NV, USA)
to mechanically vibrate the tendon at 55 Hz and ampli-
tude of 7 mm (determined by direct measurement using
high-speed video capture). The tip of the vibration
device was maintained at a steady pressure in a fixed
position on the tendon immediately distal to the inferior
border of the patella. This position was marked on the
skin, and covered by a thin (1 mm thickness) soft pad to
minimize pain or abrasion (refer to Fig. 1).

The three experimental interventions were:
STIM: electrically-evoked muscle contractions were

elicited by delivering the NMES protocol until the torque
was reduced to ≤60% of the target torque (i.e. 20% MVIC)
in one electrically-evoked contraction, which was defined
as ‘target fatigue’.
STIM ±Vib: electrically-evoked contractions delivered

as in STIM, but were superimposed with patellar tendon
vibration which was applied for at least 5 s before NMES
and after target fatigue was reached.
Vib: continuous patellar tendon vibration for one minute.

Data collection and analysis
Peak torque, impulse, fatigue index and number of
contractions
The peak voluntary isometric knee extensor torque
assessed during the MVIC was used to normalize the
torque elicited by NMES during the sessions. Peak
voluntary isometric knee extensor torque was defined as
the maximum torque produced over a 500-ms window
and included the plateau phase after at least a 250 ms
rise time above baseline. The torque-time integral (TTI)
was used to provide a measure of the total exercise
stimulus received by the muscle in each condition (Fig. 2).
TTI was calculated as the product of torque and time
calculated from the onset of the first stimulation train
(STIM) or vibration onset (STIM + Vib) to the end of the
final evoked contraction at the point of target fatigue
(defined on section Neuromuscular electrical stimulation
(NMES) and tendon vibration protocols). Peak evoked
torque was defined as the highest torque value obtained
after the onset of the first stimulation train for both STIM
and STIM + Vib. TTI and peak evoked torque were com-
pared between STIM and STIM + Vib. However, some
participants responded with a greater TTI after STIM +Vib
(positive responders to tendon vibration) whilst others
showed a lower TTI after STIM + Vib (negative re-
sponders to tendon vibration), thus a second analysis was
performed after separating participants into positive and
negative responder to tendon vibration groups (described
on section Results). Total number of contractions was
measured as the number of contractions performed from
the beginning of the first evoked contraction (i.e. not in-
cluding up to 3 contractions used to establish the current
that elicited the target torque) reaching the target torque
until the last contraction before reaching the target fatigue
(defined on section Neuromuscular electrical stimulation
(NMES) and tendon vibration protocols).

Muscle activity (EMG)
Vastus lateralis (VL), vastus medialis (VM) and rectus
femoris (RF) electromyograms (EMG) were recorded using
bipolar electrode configurations sampled at analogue-to-
digital conversion rate of 2000-Hz (bandwidth 25–450 Hz)
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Fig. 1 Picture showing the electrodes position on the thigh muscles and the placement of tendon vibration during one of the sessions. Patellar
tendon vibration was applied with a vibration device (Deep Muscle Stimulator, Las Vegas, NV, USA) to mechanically vibrate the tendon. The tip of
the vibration device was maintained at a steady pressure in a fixed position on the tendon immediately distal to the inferior border of the
patella. This position was marked on the skin, and covered by a thin (1 mm thickness) soft pad to minimize pain or abrasion

Fig. 2 Torque production (Nm) for a positive and a negative responder during STIM + Vib. Last: last contraction before target fatigue. Target
torque = 20% MVIC. Target Fatigue = 60% of target torque
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using a Wave wireless EMG system (Cometa Systems,
Bareggio, Italy). The skin was carefully prepared by shaving,
gently abrading and cleaning with alcohol prior to electrode
placement. A bipolar electrode set (DE-2.1 single differen-
tial surface EMG sensor) with a 1-cm inter-electrode
distance was attached to the skin over the belly of each
muscle parallel to the predicted direction of muscle fibres,
following the SENIAM recommendations [58]. Muscle ac-
tivity was expressed as the root mean square of the EMG
amplitude (applying a symmetric moving average with filter
window = 500 ms) over the same time as the torque mea-
surements, and the peak EMG was retained for analysis.
Torque and EMG data were simultaneously recorded using
LabChart version 8.0.2 Software (PowerLab System,
ADInstruments Pty. Ltd., NSW, Australia) at the same
analog-digital conversion rate.

Muscle fatigue and muscle damage
Muscle fatigue was determined immediately post-
intervention (POST) in all participants and at 1 (1H)
and 48 h (48H) in a subset of 12 participants. Muscle
fatigue was calculated as the percent decrement in
MVIC torque. To determine whether muscle damage
may have been elicited and thus contributed to the fa-
tigue, indirect muscle damage markers were assessed
POST, 1H and 48H after the intervention. Ultrasound
imaging of RF and VI muscle thickness, defined as the
distance between the subcutaneous fat layer and deep
muscle border were measured using B-mode axial-plane
imaging (Aloka SSD-α10, Aloka Co., Ltd., Tokyo, Japan)
[59]. Muscle thickness changes are considered to be an
indicator of the osmotic fluid shift that results in muscle
swelling subsequent to muscle damage [59]. The partici-
pants were seated on a plinth with hip and knees at 90°.
The same examiner obtained images at the 50% distance
between the anterior superior iliac spine and superior
border of the patella. The probe was placed in a marked
area in a perpendicular position using a spirit level at-
tached to the probe. The mean of three images of the RF
and VI muscle thickness measurements at the same level
was obtained for each condition and time. Perception of
muscle soreness was assessed using the visual analogue
scale and palpation. Participants were asked to rate on a
line from 0 to 100 mm (with “no pain” at 0 mm and
“unbearable pain” at 100 mm) the soreness of the muscle
after performing three bodyweight squats to approxi-
mately a 90° knee angle. The palpation assessment of
muscle soreness consisted of the application of digital
pressure using three fingers for approximately 3 s
against the middle part of RF [60]. These tests have been
extensively used in previous research studies evaluating
indirect markers of muscle damage [60, 61].
Pain and comfort levels were also measured immedi-

ately after the completion of each NMES protocol

(STIM and STIM + Vib). Subjects indicated the rate of
perceived pain and comfort on a 1–10 scale based on
how comfortable and painful the different protocols
were perceived to be, with 1 being “comfortable and pain
free” and 10 being “unbearable and extremely painful”.

Statistical analysis
Two-way repeated measures analysis of variance (ANOVA)
was used to compare changes in all variables between
conditions (STIM, STIM + Vib and Vib) over time (PRE,
POST, 1H and 48H) in the subset of 12 participants. A
second two-way repeated measures ANOVA was used to
compare STIM, STIM + Vib and Vib between PRE and
POST in the full participant sample (N = 16). Repeated
measures ANOVAs were used to compare EMG amplitude
(RMS) in all individual muscles (RF, VM and VL) for STIM
and STIM + Vib for PRE, POST, 1H and 48H. Pairwise
t-tests were performed when significant interaction
effects were found. Pearson’s product moment coeffi-
cients were computed to quantify the linear association
between torque-time integral (TTI), peak torque and
total number of contractions during STIM condition, and
a binomial logistic regression analysis was performed to
ascertain the ability of the torque-time integral (TTI) and
total number of contractions in STIM to predict positive
and negative responders to tendon vibration (i.e. TTI
difference between STIM and STIM + Vib). Statistical
significance was set at an alpha level of 0.05 and values
were reported as mean ± SD.
We certify that all applicable institutional and govern-

mental regulations concerning the ethical use of human
volunteers were followed during the course of this research.

Results
No significant changes were observed in any measure after
Vib, thus the subsequent analysis focused on the changes
in response to STIM and STIM + Vib conditions. Mean
values for MVIC peak torque and surface EMG ampli-
tudes for the Vib condition are presented in Table 1.

Torque-time integral (TTI), peak evoked torque and total
number of contractions
No statistical differences in peak evoked torque
(p = 0.94), TTI (p = 0.56) or total number of contrac-
tions (p = 0.49) were observed between STIM and
STIM + Vib. Nonetheless (as described in Section 2
and shown in Fig. 2) the response to STIM + Vib was
clearly greater in eight participants (50% of sample)
but lesser (i.e. negative) in the other eight. Thus, a
positive versus negative responder to tendon vibration
analysis was undertaken where positive responders to ten-
don vibration were defined as participants who responded
with a greater TTI after STIM + Vib and negative re-
sponders to tendon vibration as participants who showed
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lower TTI after STIM + Vib compared to STIM (TTI: posi-
tive responders: STIM: 1201.1 ± 321.0 Nm·s; STIM + Vib:
2757.2 ± 1329.7 Nm·s; negative responders: STIM:
2402.6 ± 497.7 Nm·s; STIM + Vib: 1344.0 ± 674.6 Nm·s).
This analysis revealed a group × condition interaction effect
(p = 0.00) indicating a significant 145.0 ± 127.7% increase
in TTI in STIM + Vib compared to STIM for positive re-
sponders to tendon vibration (p = 0.014) (see Fig. 3a), indi-
cating an increase in the total cumulative force produced
by the muscle in STIM + Vib. A significant decrease in TTI
(−43.5 ± 25.7%) was observed in STIM + Vib (p = 0.002) in
the negative responders to tendon vibration (see Fig. 3b).
The mean peak evoked torques for the positive responders
to tendon vibration for STIM and STIM + Vib were
49.3 ± 16.8 Nm and 52.1 ± 15.0 Nm for STIM + Vib, whilst
for negative responders they were 51.7 ± 20.5 Nm and
48.1 ± 21.9 Nm. The mean total number of contractions
for positive responders to tendon vibration for STIM was

16.2 ± 5.1 and for STIM + Vib was 29.1 ± 19.0, whilst the
means for negative responders were 39.8 ± 25.0 for STIM
and 17.1 ± 7.3 for STIM + Vib.
Subsequent analyses of participants’ responses in

STIM were undertaken to determine if the likelihood of
having a positive or a negative response in STIM + Vib
could be predicted. This involved examination of TTI,
peak torque and total number of contractions evoked by
STIM, as well as the difference in TTI between STIM
and STIM + Vib. A strong and statistically significant
negative correlation was observed between TTI mea-
sured in STIM (r = −0.72, CI 90%: -0.44 to −0.88) and
the difference between the TTI measured in STIM
versus STIM + Vib. Also, a correlation of −0.45 (CI
90%: -0.03 to −0.74) between TTI in STIM and the
difference between STIM and STIM + Vib for the total
number of contractions was observed, whilst for peak
torque a correlation of −0.27 was found (CI 90%: 0.18

Table 1 MVIC peak torque and surface EMG amplitudes. (Mean (± SD, 95% CI)) at PRE, POST (n: 16), 1H and 48H (n: 12) for STIM,
STIM + Vib and Vib conditions

Measure PRE POST 1H 48H

Mean ± SD 95% CI Mean ± SD 95% CI Mean ± SD 95% CI Mean ± SD 95% CI

MVIC PT (N)

STIM 237.8 ± 90.2 189.7–285.8 219.1 ± 90.0* 171.1–267.0 216 ± 72.0* 170.1–261.4 228.7 ± 72.2 182.8–274.6

STIM + Vib 229.3 ± 82.0 185.6–273.0 222.9 ± 84.8 177.7–268.0 222.1 ± 77.3 173.0–271.3 233.4 ± 67.2 190.6–276.0

Vib 214.2 ± 63.4 174.0–254.5 212 .8 ± 59.0 175.4–250.5 224.6 ± 73.8 177.7–271.5 230.5 ± 68.1 187.2–273.8

QUAD EMG (mV)

STIM 1.27 ± 0.60 0.94–1.61 1.14 ± 0.48 0.88–1.40 1.20 ± 0.53 0.90–1.51 1.19 ± 0.48 0.85–1.52

STIM + Vib 1.32 ± 0.51 1.05–1.60 1.29 ± 0.52 1.01–1.56 1.38 ± 0.54 1.03–1.72 1.4 ± 0.49 1.09–1.71

Vib 1.14 ± 0.62 0.75–1.54 1.16 ± 0.60 0.78–1.54 1.16 ± 0.52 0.83–1.50 1.23 ± 0.64 0.82–1.63

RF EMG (mV)

STIM 0.39 ± 0.16 0.30–0.48 0.32 ± 0.14 * 0.25–0.40 0.35 ± 0.19 0.23–0.47 0.33 ± 0.17 0.22–0.44

STIM + Vib 0.38 ± 0.17 0.29–0.47 0.38 ± 0.19 0.28–0.49 0.39 ± 0.23 0.25–0.53 0.39 ± 0.15 0.29–0.48

Vib 0.32 ± 0.2 0.20–0.45 0.33 ± 0.19 0.21–0.45 0.33 ± 0.17 0.22–0.44 0.37 ± 0.22 0.23–0.51

VM EMG (mV)

STIM 0.50 ± 0.44 0.27–0.74 0.48 ± 0.38 0.28–0.68 0.51 ± 0.39 0.26–0.76 0.52 ± 0.37 0.28–0.75

STIM + Vib 0.47 ± 0.33 0.29–0.64 0.46 ± 0.34 0.28–0.64 0.51 ± 0.38 0.27–0.75 0.61 ± 0.43 0.34–0.88

Vib 0.35 ± 0.34 0.14–0.57 0.35 ± 0.33 0.14–0.56 0.34 ± 0.30 0.15–0.53 0.34 ± 0.33 0.13–0.56

VL EMG (mV)

STIM 0.38 ± 0.22 0.26–0.50 0.33 ± 0.19 0.23–0.43 0.34 ± 0.24 0.19–0.50 0.35 ± 0.30 0.16–0.54

STIM + Vib 0.48 ± 0.30 0.32–0.64 0.45 ± 0.28 0.30–0.60 0.47 ± 0.36 0.24–0.70 0.40 ± 0.27 0.23–0.57

Vib 0.46 ± 0.37 0.23–0.69 0.48 ± 0.38 0.24–0.72 0.49 ± 0.36 0.26–0.72 0.51 ± 0.42 0.25–0.78

% from PRE (baseline MVIC PT)

STIM − − -8.72 ± 5.79 * −11.80 - −5.64 −6.79 ± 7.26 −11.40 - −2.17 −0.67 ± 11.39 −7.91 - 6.57

STIM + Vib − − −3.28 ± 6.44 −6.71 - 0.15 −1.61 ± 6.61 −5.80 - 2.59 4.52 ± 4.86 1.43–7.60

Vib − − 0.05 ± 5.76 −3.61- 3.71 4.42 ± 11.61 −2.95 - 11.80 7.93 ± 12.56 −0.06 -15.91

MVI maximal voluntary isometric contraction, PT peak torque, VM vastus medialis muscle, VL vastus lateralis muscle, RF rectus femoris muscle, EMGRMS root mean
square EMG amplitude, SD standard deviation, 95% CI 95% Confidence Interval
*Significant difference from PRE (P <0.05)
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to −0.62). Given the strong negative relationships ob-
served between the difference in TTI in STIM + Vib
and both TTI and total number of contractions in
STIM, a binomial logistic regression analysis was
performed to predict the likelihood of having a posi-
tive or a negative response to STIM + Vib. The
logistic regression model was statistically significant
for torque-time integral (χ2 = 17.845, p < 0.0005),
explaining 89% (Nagelkerke R2) and predicting 87.5%.
For the total number of contractions (χ2 = 10.515,
p < 0.0005) the model explained 64% (Nagelkerke R2)
and predicted 81.3% of positive and negative re-
sponders to tendon vibration. Based on these results,
torque-time integral and total number of contractions
in STIM can be used to determine whether an
individual will be a positive or negative responder to
STIM + Vib in 87.5% and 81.3% of cases. Under the
conditions of the present study a positive responder to ten-
don vibration would perform ≤16 contractions whilst a
negative responder to tendon vibration would perform >16

contractions until target fatigue. An example of the re-
sponse of a positive responder to tendon vibration to STIM
and STIM + Vib is shown in Fig. 4.

Peak voluntary isometric contraction (MVIC) torque
As shown in Fig. 5, a time × condition interaction effect
(p = 0.016) was observed for MVIC with a significant
decrease in STIM observed from PRE (237.8 ± 90.1 Nm)
to POST (219.1 ± 90.0 Nm; p = 0.001) and from PRE to
1H (215.8 ± 7.0 Nm; p = 0.007), but no change in
STIM + Vib at any point. MVIC peak torques for STIM,
STIM + Vib are shown in Fig. 5. The percentage change
in MVIC from PRE to POST was −8.7% for STIM
and −3.3% for STIM + Vib, as shown inset of Fig. 5.
However, a subgroup analysis for peak voluntary isometric
contraction between positive and negative responders to
tendon vibration did not reveal any statistically significant
difference (p = 0.30 for condition × time × group
interaction).

Muscle activity (EMG) during MVIC
An interaction effect (p = 0.006) was observed for RF
EMG amplitude during MVIC, with a significant de-
crease (−16.7%) in the RF EMG amplitude after STIM
from PRE (0.39 ± 0.16 mV) to POST (0.32 ± 0.14 mV;
p < 0.01), but no differences for VM and VL EMG in
STIM or any muscle in STIM + Vib. MVIC peak isomet-
ric torque and surface EMG amplitudes data during
peak voluntary isometric torque at PRE, POST, 1H and
48H for STIM, STIM + Vib and Vib are presented in
Table 1.

Indirect markers of muscle damage: muscle thickness and
muscle soreness scales; pain and comfort scale
No changes were detected in combined RF and VI
muscle thickness (p = 0.66) or muscle soreness scales
either upon palpation (p = 0.33) or when performing
bodyweight squats (p = 0.37). Thus, no indications of
muscle damage or soreness were observed in any condition.
No statistically significant differences were found in the
pain and comfort scales between STIM and STIM +Vib
conditions (STIM: 4.1 ± 2.1 STIM + Vib: 5.0 ± 2.3;
p = 0.21). Thus, both protocols elicited only “light-to-
moderate” levels of pain and discomfort.

Discussion
The main finding of the present study was that the
torque-time integral (TTI) measured at the point of
fatigue (i.e. 60% of initial evoked torque) was not
statistically different between STIM and STIM + Vib.
Based on these results, the tendon vibration superim-
posed onto the wide-pulse width NMES did not ap-
pear to provide any additional benefit that might not
have been derived from stimulations alone under the

a

b

Fig. 3 a Percentage difference between STIM and STIM + Vib in
torque-time integral (Nm·s) for positive and negative responders
(145.0 ± 127.7% and −43.5 ± 25.7%). b Mean torque-time integral
(TTI; Nm·s) for positive responders and negative responders for STIM
(1201.2 ± 321.9 Nm·s and 2402.6 ± 497.7 Nm·s) and STIM + Vib
(2757.2 ± 1329.8 Nm·s and 1344.0 ± 674.6 Nm·s). *Significant difference
from STIM (P < 0.05)
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current conditions (30 Hz, 20% MVIC in quadriceps
femoris muscle). However, a significantly greater TTI
was observed in a subgroup (n = 8) of “positive
responders” to tendon vibration. Thus, in 50% of the
present participants, the addition of the tendon
vibration allowed for a greater total muscular work to
be performed, but this was not consistent among the
participants.

Another notable, and practically relevant, finding was
that a significant (−8.7%) reduction in maximal voluntary
torque was evoked by STIM, which persisted for at least
one hour and was associated with a reduction in RF EMG
amplitude; thus, the wide-pulse width NMES elicited a
notable fatigue response that persisted for at least 1 h after
the session and which could affect post-training move-
ment capacity. Nonetheless, reductions in voluntary force

Fig. 4 Torque production (Nm) for a positive responder during STIM + Vib and STIM. Last: last contraction before target fatigue. Target torque = 20%
MVIC. Target Fatigue = 60% of target torque

Fig. 5 Changes in peak isometric voluntary contraction torque (MVIC) across time (PRE, POST, 1H and 48H). #Significant difference from PRE
(P < 0.05) for STIM. Mean values ± standard error (SE). Inset: Percentage change in MVIC from PRE to POST in STIM and STIM + Vib conditions.
*Significant difference from PRE (P < 0.05). Mean change ± SD
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and muscle activity were not observed when vibration was
superimposed onto the NMES, even in negative re-
sponders to STIM + Vib. Therefore, the application of
tendon vibration attenuated the fatigue response and
allowed NMES to be used without a persisting voluntary
muscle fatigue. These results are consistent with previous
studies where the use of tendon vibration superimposed
onto weak-to-moderate voluntary contractions was ob-
served to attenuate the fatigue-induced decline in motor
output, as assessed using standard surface EMG tech-
niques during maximal voluntary contraction (e.G. tibialis
anterior) [49]. Regarding the lack of effect of vibration
alone (Vib) on the outcome variables, this was predictable
as the vibration stimulation only recruits the lowest
threshold motor units [62] and would not be sufficient to
evoke strong muscle contractions, since larger, higher
threshold motor units contribute more to higher force
levels [63].
The finding of an increased torque-time integral be-

ing produced when tendon vibration was superimposed
onto NMES in the positive responders to tendon vibra-
tion (8 of 16 participants; for example see Fig. 4) shows
that an increase in total muscle contractile work was
achieved. This could be considered advantageous in
clinical practice as it would allow the muscle to pro-
duce a greater tension for longer, and thus may better
evoke chronic increases in muscle strength and mass
[64, 65] and potentially improve muscle performance in
people with limited voluntary muscle activation cap-
acity (e.g. stroke, spinal cord injury, brain injury) [66].
This result in positive responders was similar to previ-
ous observations of higher force levels (up to 50% max-
imal voluntary contraction) elicited by tendon vibration
applied simultaneously with electrical stimulation in
healthy participants [53]. These greater muscular forces
might possibly be attributed to the development of
persistent inward currents, which could amplify and pro-
long the synaptic input and generate a sustained
depolarization of α-motor neurons leading to an increased
recruitment of fatigue resistant motor units, maximizing
the use of reflexive pathways and thus increasing muscle
force production [35, 40, 41, 53, 67]. The augmented
torque-time integral may also be attributed to the devel-
opment of tonic vibration reflexes (TVR) occuring
between muscle evoked contractions only when superim-
posed tendon vibration is applied (see Fig. 4).
Nonetheless, 8 of 16 participants (negative responders

to tendon vibration) showed a decrease in their TTI when
tendon vibration was superimposed onto the wide-pulse
width NMES, indicating that tendon vibration may reduce
the ability to produce force and decrease the total muscle
contractile work during high-intensity NMES contrac-
tions, thus representing a disadvantage in this subgroup of
participants. This negative response may speculatively

have been caused by the stimulation of Golgi tendon
organs by the low-to-moderate frequency (55 Hz) of
vibration applied during the contraction [68]. Alterna-
tively, the additional synaptic input provided by tendon
vibration might have exacerbated fatigue mechanisms (e.g.
ion channel function and neurotransmitter depletion),
particularly for those individuals for whom the wide-pulse
width NMES has already successfully recruited the lower
threshold motor units.
In this case, we can infer that negative responders to

tendon vibration might benefit from the sole application
of (possibly wide-pulse width) NMES (STIM) based on
the similar response in total amount of work (i.e. TTI)
and total number of contractions performed under STIM
in comparison to positive responders to tendon vibration
under STIM + Vib (see Fig. 3b). So, if a lower TTI is
found after STIM then the application of tendon vibration
would likely improve performance to approximately
equally to the “negative responders”, whilst if a higher TTI
is found after STIM then tendon vibration would likely re-
duce the TTI to similar levels to those found in “negative
responders”. Thus, it appears that negative responders to
tendon vibration will show a decrease in total muscle con-
tractile work if tendon vibration is added and in these
cases tendon vibration superimposed onto wide-pulse
width NMES may represent a disadvantage and thus, the
use of NMES alone would be more beneficial to elicit a
high muscle force production. Whether this group has
derived benefits from the wide-pulse width NMES as
compared to standard (i.e. narrow pulse widths) remains
to be explicitly investigated in future studies. The large
inter-individual variability observed in our study is con-
sistent with previous studies using wide-pulse width
NMES, where substantial individual variability exists re-
garding its magnitude of effect [38, 44, 69, 70]. Due to this
large inter-individual variability, clinicians may need to
test individual responses to tendon vibration before its
implementation in clinical practice.
Additionally, given that TTI and total number of con-

tractions measured in STIM could be used to predict
87.5% and 81.3% of the positive and negative responders
to tendon vibration, respectively, the measurement of TTI
or the number of contractions during wide-pulse width
NMES might be a clinically relevant method to predict
whether a patient would benefit from superimposed ten-
don vibration (i.e. a positive response to tendon vibration).
In that case, clinicians might determine whether to use
tendon vibration on their patients based on their response
to STIM alone. However, since measuring TTI in clinical
practice may not be practically feasible in some cases,
using total number of contractions, for example by visu-
ally counting until reaching a pre-determined torque level
(representing muscle fatigue), might be used to identify
patients who will benefit from additional tendon vibration.
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A secondary finding of the present study was that a
significant decrease in maximal voluntary force produc-
tion was observed for at least 1 h in STIM but not
STIM + Vib. It is important to note that these results
were not influenced by the values obtained prior to the
application of the electrical stimulation protocols (MVIC
PRE), as these values were not statistically different
(p = 0.19) and reliable between days (ICC = 0.95). This
result showed an advantage of the superimposed tendon
vibration that prevented the significant fatigue-induced
decline in MVIC. Thus, in the clinical context, tendon
vibration may provide a benefit of reduced voluntary
muscle fatigue when compared to moderate-frequency,
wide-pulse width NMES that could allow for further re-
habilitation work or improved performance of activities
of daily living and occupational tasks in the hours after a
rehabilitation session. It is not clear from the present
data how the vibration provided a fatigue-attenuation
benefit. Speculatively, it may have reduced the synchrony
of the motor unit activity during NMES, which may have
then reduce the rate of muscle fatigue [45, 71]. This
might occur if ongoing facilitation of fatigue-resistant
motor units was provided due to the generation of trains
of Ia afferent signals into the spinal cord, inducing an
excitation of homonymous motor neurons through the
development of persistent inward calcium (Ca2+) or
sodium (Na+) currents (PIC) at their dendritic trees
[45, 71]. Such a mechanism would evoke a tonic vibra-
tory reflex influencing both spinal and supraspinal
pathways [45, 71]. Tendon vibration-induced primary
muscle spindle endings (i.e. Ia afferent activation)
might also substitute for the fusimotor-driven Ia dis-
charge and α-motor output decline that usually occurs
during sustained voluntary contractions [49, 72]. This
would have attenuated the muscle fatigue response ob-
served in our study by continuing the Ia afferent activation
response. Regardless of the potential mechanism, there
seems to be a reversal of central drive failure when tendon
vibration is superimposed onto wide-pulse width NMES,
but further tests are needed to confirm this theory. How-
ever, the levels of muscle voluntary isometric fatigue ob-
served in the present study (−8% after STIM) were
somewhat smaller than the 22–30% reported by other
studies [20, 73, 74]. This discrepancy may be attributed to
the use of biphasic wide-pulse width NMES, the use of a
lower stimulation frequency (30 vs. 75 Hz) or different
duty cycle ratio (2–2 vs. 5–15 s), or that muscles were
activated to only 20% of MVIC (with ‘fatigue’ being 60% of
this value) in comparison to maximal tolerable levels of
MVIC used by others [20, 74, 75]. Further explanation of
these possibilities is required to accurately explain the
differences in voluntary fatigue.
Another important finding was a reduced RF EMG

amplitude observed during MVIC in STIM but not

STIM + Vib, indicating that the loss of central drive to
the muscle was minimized or eliminated with the appli-
cation of tendon vibration. This selective decline in RF
activation, but no other muscles, at POST may be attrib-
uted to the higher activity of RF during isometric knee
extension at 90° of knee flexion [76] influencing the acti-
vation of the bi-articular RF over the vastii muscles (VM
and VL) during STIM [77, 78] and the higher EMG
fatigue experienced on RF due to its bi-articular nature
[79]. It would be of interest to determine whether the
decrease in EMG during MVIC and its “rescue” when
tendon vibration is imposed onto NMES is observed in
other skeletal muscles, or whether it is unique to RF or
other biarticular muscles [79].
Of final note, no evidence for muscle damage or sore-

ness was found in either condition at any time point, and
levels of reported pain and comfort were “light-to-moder-
ate” and not statistically different between conditions
(mean for STIM = 4/10, STIM + Vib = 5/10). Therefore,
the muscle stimulation and vibratory stimuli could be
applied without concern for ongoing muscle fatigue or
damage, and with reasonable levels of pain and comfort,
at least in healthy individuals. The muscle damaging ef-
fects of electrically evoked isometric contractions have
been previously attributed to the disruption of the muscle
fibres and their surrounding connective tissue [74, 80–82],
which causes a prolonged loss of muscle force generating
capacity. The lack of damage in the present study might
be explained by the fact that muscles were activated to
only 20% of MVIC, whilst maximal tolerable levels of
muscle contraction were evoked in previous studies
[74, 80–82]. Moreover, being able to exercise regularly
without ongoing soreness or force loss may have broad
clinical relevance since pain can trigger life-threatening
episodes in some clinical conditions such as autonomic
dysreflexia in people with spinal cord injury [55].
Finally, since the levels of pain and discomfort were
“light-to-moderate” and not different between the
conditions, these NMES protocols can be considered
safe for implementation in future clinical studies.
Limitations of this study are that our results are only

pertinent under specific conditions of NMES (1000 μs,
30 Hz) at relatively higher torque levels than previously
been investigated [40–42, 53]. Thus, a different response
may result under different NMES conditions. Further
studies using relatively higher intensities (i.e. 20% MVIC)
and the same parameters of NMES as used in this study
should be performed to confirm our results.

Conclusions
Based on the present results, the imposition of tendon
vibration onto moderate-frequency wide-pulse width
NMES may allow for a greater amount of muscular work
to be performed, and thus for a more optimum training
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response to be achieved, in a proportion of participants
who respond positively. However, a lesser response
might be elicited in those individuals who respond nega-
tively (50% of participants in the current study) and in
these cases tendon vibration superimposed onto wide-
pulse width NMES may represent a disadvantage and
thus, the use of NMES alone would be more beneficial
to elicit a high muscle force production. Nonetheless,
the use of tendon vibration superimposed onto wide-
pulse width NMES appeared to minimize the voluntary
fatigue experienced after the training session and might
therefore allow for additional rehabilitation work to be
performed or for the trained muscle groups to be more
effectively used for locomotion (i.e. crutches use) and
activities of daily living after the session for both positive
and negative responders to tendon vibration. Finally,
since muscle damage and soreness were not observed,
and levels of pain and discomfort were light-to-
moderate after both NMES conditions, the application
of these methods appear to be sufficiently safe to be
used in clinical populations, such as in people with SCI.
This is important as some clinical populations may be
susceptible to high levels of muscle fatigue and muscle
damage or might respond negatively to painful stimuli.
Nonetheless, replication of these findings in a larger
sample is encouraged before this type of NMES protocol
is recommended in clinical practice.
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