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Short Communication
Type 3 diabetes and circadian rhythm disturbances may be 
involved in the induction of non alcoholic fatty liver disease 
(NAFLD) that may promote insulin resistance and various chronic 
diseases such as cardiovascular disease, pancreatic disease, kidney 
disease, obesity and neurodegenerative disease [1,2]. The aging 
process involves the loss of neurons from the brain with relevance 
to Type 3 diabetes and NAFLD. After the age of 25 years neurons 
start to decrease in the brain [3] and may be associated with toxic 
adipokine release from adipocytes or liver dysfunction [1] that is 
linked to the increased concentration of drugs and xenobiotics that 
accumulate in the brain that become toxic to mitochondria and 
lead to the death of neurons [4-6]. 

Interests in the genetic regulation of diabetes has accelerated 
and now involves the nuclear receptor Sirtuin 1 (Sirt 1) that is 
associated with insulin resistance and involvesneuron senescence 
in the brain with hepatic steatosis linked to the induction of 

NAFLD [7]. Hypothalamic neurons involve Sirt 1 regulation 
of the suprachiasmatic nucleus (SCN) with the maintenance of 
brain and whole body glucose homeostasis in various species 
and man [8-10]. In the year 2015 it is now estimated that 30% 
of the Western World will now progress to NAFLD [11-13] and 
interests in brain Sirt 1 and its transcriptional dysregulation 
involves circadian disturbances relevant to Type 2 or Type 3 
diabetes and now identify combined Type 3 and Type 2 diabetes 
as individuals that are extremely sensitive to accelerated NAFLD 
[5,7]. Multiple risk factors that involve Sirt 1 dysregulationin 
combined Type 3 and Type 2 diabetes that inducevarious chronic 
diseasesand include stress [14], magnesium deficiency [15], 
bacterial lipopolysaccharides [16,17], drug induced toxicity, 
xenobiotic levels [5], unhealthy diet/lifestyle factors and defective 
thermoregulation (Figure 1).

Stress as a factor for the induction of Type 3 diabetes and NAFLD 
has become of major concern with alterations in the autonomic 
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Abstract
In the year 2015 it is now estimated that 30% of the Western World will now progress to non alcoholic fatty liver 
disease (NAFLD) and by the year 2050 if NAFLD remains untreated in the Western world the prevalence of the disease 
may rise to 40% of the global population. Type 3 diabetes and circadian rhythm disturbances may be involved in 
the induction of NAFLD that may promote insulin resistance and various chronic diseases such as cardiovascular 
disease, pancreatic disease, kidney disease and neurodegenerative disease. Multiple risk factors that induce Type 
3 diabetes and NAFLD include stress, magnesium deficiency, bacterial lipopolysaccharide contamination, drug 
induced toxicity, xenobiotic levels, unhealthy diet/lifestyle factors and defective thermoregulation. Early diagnosis 
of Type 3 diabetes by multiple assessment techniques such as proteomics, genomics and lipidomics may allow 
reversal or stabilization of NAFLD that may progress slowly from simple non-alcoholic steatosis to non-alcoholic 
steatohepatitis and to hepatic fibrosis/cirrhosis of liver and hepatoma. Analysis of plasma constituents such as 
heat shock proteins (60,70, 90), amyloid beta, adiponectin, fibroblast growth factor 21, ceramide, sphingosine-
1-phosphate, vasoactive intestinal peptide, thrombospondin 1, acute phase reactants may indicate progression of 
Type 3 diabetes and NAFLD and these results may not be consistent with normal plasma glucose and cholesterol 
levels. Early nutritional interventions with temperature regulation are required to reverse premature brain disease 
in diabetes (Type 3/Type2) that is connected to the rapid metabolism of heat shock proteins and amyloid beta 
oligomers that determine the severity of insulin resistance and NAFLD in individuals in the Western World.
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nervous system [18] and hypothalamic pituitary axis in Western 
communities. In recent years the apelinergic pathway [14] has been 
connectedto insulin resistance and NAFLD with apelin regulated 
stress pathways associated with defective autonomic pathways 
in neuroendocrine and various chronic diseases. Interests in 
apelingeric defective pathways with relevance to Type 3 diabetes 
[14] have escalated and thermoregulation dysfunction in Type 
2 diabetes [19,20] involved in the early induction of NAFLD in 
these individuals. Furthermore thermoregulation dysfunction, 
apelinergic defective pathways and diabetes has rapidly become an 
important factor in the induction of metabolic and cardiovascular 
disease with interests in temperature regulation and circadian 
rhythm disturbances [21,22] involved in the induction of the 
combined the effects of Type 3 diabetes and Type 2 diabetes in 
various chronic diseases (Figure 1).
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Figure 1: Prevention of Type 3 diabetes involves the consideration of 
many risk factors that include stress, diet, lifestyle, thermoregulation, 
neuron xenobiotic toxicity and bacterial contamination. The risk factors 
associated with Type 3 diabetes may induce various chronic diseases and 
with the global Type 2 diabetes accelerate the early induction of NAFLD 
in these individuals. Multiple tests are required to diagnose Type 3 
diabetes and with diet and lifestyle changes [2] the severity of global Type 
2 diabetes and NAFLD may be reduced.

Thermoregulation dysfunction now identifies the anti-aging gene 
Sirt 1 as the temperature sensitive gene that is linked to defective 
apelinergic pathways, NAFLD and various chronic diseases. 
Research in Sirt 1 and its involvement in temperature regulation 
[23-29] has escalated to prevent the induction of chronic 
diseases such as NAFLD with Sirt 1 dysregulation observed in 
both individuals with Type 3 and Type 2 diabetes [5,7,14,30,31]. 
Temperature regulation of Sirt 1 (NAD+ dependent class III 
histone deacetylase) has become important to the deacetylation 
of heat shock factor 1 (HSF1) [26,28,29] that protectneurons from 
protein-damaging stress associated with misfolded proteins such 
as heat shock protein 70 (HSP70) [32-37] and the Alzheimer’s 
disease amyloid beta involved with the regulation of the insulin-
receptorspathways [38,39].

Sirt 1 is involved with the circadian regulation of cellular heat 
shock protein (HSP) 60, 70 and 90 with temperature regulation 
closely associated with Sirt 1 activity/HSP levels in cells [23-29,32-
37,40-42] and may be relevant to the heat shock response in Type 

2 diabetes [43-45]. Interests in peripheral HSP 70 and amyloid 
beta metabolism (Figure 2) have escalated with thermoregulation 
important to the peripheral sink amyloid beta model [7] with 
relevance to HSP 70 in neuron amyloid beta metabolism and 
insulin receptor interactions. Temperature regulation of Sirt 1 
is now relevant to abnormal transcriptional regulation of the 
transcription factor p53 with heat shock protein associated with 
p53 accumulation [46] with relevance to mitochondrial apoptosis, 
cholesterol/amyloid beta metabolism and NAFLD [7,45,47]. 
LPS has been shown to induce HSPs in various cells [48-50] and 
LPS in various species has been shown induce thermoregulatory 
dysfunction [51,52]. The role of LPS in thermodysregulation 
involves Sirt 1 dysregulation [53] and neuron apoptosis determined 
by interactions between HSPs and amyloid beta with relevance to 
magnesium levels in the brain and periphery [54-57].
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Figure 2: The nuclear receptor Sirt 1 is responsible for the metabolism 
of HSP (60,70,90) and amyloid beta oligomers. Sirt 1 dysregulation has 
been linked with Type 3 and Type 2 patients with relevance to plasma and 
brain HSP and amyloid beta metabolism. LPS reduces magnesium levels 
with relevance to the metabolism of HSPs and amyloid beta oligomers 
in the blood plasma and brain. Magnesium deficiency may be relevant 
to abnormal membrane interactions that involve HSP and amyloid beta 
interactions with the insulin receptor in the brain and the periphery.

Diets that are low in calories (low fat/sugar diets) and without 
inhibitors activate Sirt 1 with relevance to prevention of neuron 
senescence and Type 3 diabetes/NAFLD [58]. Brain temperature 
dysregulation connected to liver dysfunction may markedly delay 
the metabolism of saturated fats versus monounsaturated oils such 
as olive oil and associated with the development of insulin resistance 
in man [59,60]. Consumption of fats such as palm oil (palmitic acid 
rich) and virgin coconut oil (saturated fatty acids) that are solid 
(20-24C) versus the consumption of olive oil (monounsaturated) 
that is liquid to temperature (4C) may be sensitive to abnormal 
body temperature dysregulation with the induction of NAFLD. 
Diets that contain alcohol and fat promote the absorption of LPS 
with relevance to neuron membrane fluidity and body temperature 
dysregulationinvolve the abnormal metabolism of HSPs/amyloid 
beta oligomers [35-37,61-66] (Figure 2). In individuals with early 
neuron senescence in Western communities early diagnosis of Type 
3 diabetes by multiple assessment techniques such as proteomics, 
genomics and lipidomics may allow reversal or stabilization of 
NAFLD that may progress slowly from simple non-alcoholic 
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steatosis to non-alcoholic steatohepatitis and to hepatic fibrosis/
cirrhosis of liver and hepatoma. Analysis of plasma constituents 
such as LPS, HSP 60, HSP 70,adiponectin, fibroblast growth factor 
21, ceramide, sphingosine-1-phosphate, vasoactive intestinal 
peptide, thrombospondin 1, acute phase reactants may indicate the 
progression of Type 3 diabetes tothe severity to NAFLD (Figure 1) 
and these results may not be consistent with normal plasma glucose 
and cholesterol levels [67-72]. Furthermore, early nutritional 
interventions and brain temperature regulation to reverse 
premature neuron senescence and Type 3/Type 2 diabetes may 
delay the stages and progression to NAFLD that may be connected 
to irreversible hepatic fibrosis, brain insulin resistance and severity 
of chronic diseases in individuals in the Western World.
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