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Abstract 

Conformance testing using test sequences is used to 
ensure that a protocol implementation conforms to its 
specification. A commonly used technique to generate 
test sequences for specifications described by the finite 
state machines is the Wp-method with the Reset 
technique, which frequently results in long test 
sequences.   In this paper, we propose a bipartite 
graph approach to generate optimal test sequences for 
protocol conformance testing. Our approach 
significantly reduces the length of the test sequences 
required for conformance testing while maintaining the 
same fault detection capability. 

1. Introduction 

Many systems can be modeled using the finite state 
machines (FSMs). For examples, the communication 
protocols and some control systems can be easily 
interpreted as state machines [1][12]. Based on the 
specifications, implementations are realized to satisfy 
these specifications. 

Protocols are a set of rule to represent the potential 
interactions in the system [1]. To improve the 
reliability and to ensure the quality of the implemented 
systems, it is necessary to test the protocols of the 
systems to ensure that they conform to the required 
system specifications. 

Protocol conformance testing generally involves 
applying a sequence of inputs, which is generated from 
the specification, to the implementation and then 
verifies whether the expected sequence of outputs is 
obtained [1][4]. As the implementation is a black box 
for testing purpose, the protocol conformance testing 

problem is difficult to be tackled [1]. One of the most 
important issues in protocol conformance testing is 
how to generate the sequence of inputs, called the test 
sequence, in an efficient and effective way to achieve 
the required fault detection coverage. 

Many methods have been proposed to tackled the 
protocol conformance testing problem, for examples, 
[1][3][4][12] and the references therein. Among the 
proposed methods, the W-method [5] and the improved 
Wp-method [7] attract much attention. It has been 
shown that unlike other methods, W-method and Wp-
method can be applied to all protocols, and can 
guarantee the detection of any output and transfer faults 
under certain conditions [5][7]. 

Unfortunately, the length of the test sequences 
generated using the W-method and the Wp-method are 
usually the longest amongst all methods. Furthermore, 
it is commonly assumed that the implementation under 
test has reliable reset functions which is difficult to be 
realized for some systems. If an implementation 
doesn’t have reliable reset, alternative reset technique 
can be used to home the test sequence [7].  The reset 
technique inevitably brings in additional overhead into 
the already very long test sequences. 

Attempts have been made to optimize test sequences 
generated using the W-method and the Wp-method. 
For example, a technique involving the use of the Rural 
China Postman problem is proposed in [4] to optimize 
test sequences generated using the Wp-method for 
protocol conformance testing. It has been shown in [4] 
that the test sequences can be shortened significantly. 

This paper proposes a bipartite graph approach to 
generate optimal test sequences for protocol 
conformance testing. The approach proposed in this 
paper is an extension to the results reported in [4]. We 
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show that the test sequences can be further optimized 
while maintaining the same fault detection capability. 

This paper is organized as follows. Section 2 briefly 
describes the preliminaries on FSM. Section 3 reviews 
the related work. Section 4 presents a bipartite graph 
approach to optimal test sequence generation. Some 
discussions about the proposed method are detailed in 
Section 5. Finally, the conclusion is found in Section 6.

2. Preliminaries 

Definition 2.1 [12]: A deterministic finite state 
machine (FSM) M is a quintuple (S, X, Y, , ) where 
S is the finite set of states which includes the special 
state s0 called the initial state, X is the finite set of 
inputs, Y is the finite set of outputs which includes 
“null”, : S×X S is the transfer function, : S×X Y
is the output function.  

If functions  and  are defined for all (si, xj)
S×X, the FSM M is called completely specified. It is 
always possible to render a FSM completely specified 
[3]. Therefore, without loss of generality, we assume 
that the considered FSMs are completely specified. 

The transfer function  and the output function  can 
be combined to form a transition relation t. For (si,
xj) S×X, if (si, xj)= sk  and (si, xj)= yh, a transition 
t(si, xj, sk, yh) in the transition set T is defined as t: (si,
xj)  (sk, yh). If M is completely specified, |S|=n, and 
|X|=m, then |T|=n×m.

Definition 2.2 [1]: A labeled digraph G is denoted 
as G = (V, E) where V is a set of vertices and E is a set 
of labeled directed edges which link the vertices. An 
edge e which starts from vi and ends at vj with distinct 
label l is denoted by e(vi, vj, l). The number of edges 
which start from vi is called the Outdegree of vi. The 
number of edges which end at vi is called the Indegree
of vi.

If it is possible to partition the V set into two 
disjoint sets V` and V`` such that every edge of G 
connects a vertex in V` to a vertex in V``, G is said to 
be bipartite [8].  

If V=S, and E includes an edge e(si, sk, xj/yh) if and 
only if T includes transition t(si, xj, sk, yh), then a 
digraph G(V, E) is  a derived digraph of the 
corresponding FSM M.   Due to the equivalence of e 
and t, in the following we will not distinguish between 
e and t, and will subsequently denote the derived 
digraph of M as G(S, T).  

The function , function  and transition t can be 
extended to input sequences. For completely specified 
FSMs, for a given state si and a given input sequence 
x ={x1, x2, ..., xn}, there is a transition sequence: t1(si,
x1, si+1, y1), t2(si+1, x2, si+2, y2), ..., tn(si+n-1, xn, si+n, yn).

We denote the transition sequence as t (si, x ) = {t1, t2,
..., tn}. On the other hand, given a transition sequence 
t , there is an input sequence x  which corresponds to 
t . Therefore, for simplicity and without loss of 
generality, we frequently use t  in the place of x .
Similarly, we denote the output sequence y = (si,

x )={y1, y2, ..., yn} for a transfer (si, x )=si+n. Note that 
the extension of the definitions of  and  in this paper 
is slightly different from that in [12]. In the derived 
digraph G(S, T), there exists an adjacent edge sequence 
t (si, x ) ={ (si, si+1, x1/y1), (si+1, si+2, x2/y2),..., (si+n-1,
si+n, xn/yn)} corresponding to the transfer from si to si+n.
We call t a walk of G from si to si+n, while si is the 
starting state and si+n the ending state of t .

An FSM is strongly connected if there exists a walk 
between any pair of two distinct states si and sj in its 
derived digraph. In this paper, we assume that FSM is 
strongly connected which is also a standard assumption 
for approaches based on the Wp-method. Strongly 
connected FSMs have complete reachability, i.e., there 
is always a feasible walk between two distinct states in 
the derived digraph. 

The following definitions are modified from [12]:        
Definition 2.3: Two states si and sj of an FSM M are 

equivalent if for any input sequence x , their output 
sequences (si, x ) = (sj, x ).  Equivalence for two 
states in different FSMs with the same input and output 
sets can be similarly defined. Two FSMs are equivalent
if and only if for every state of one FSM, there is an 
equivalent state in the other FSM, and vice versa. 

Definition 2.4: An FSM M is minimal if all other 
FSMs which are equivalent to M have equal or more 
number of states than M.  

An FSM M is minimal if and only if there is no 
equivalent state in M [9][12]. Similar to [1][4][12], we 
assume that FSM M and its implementation-under-test 
(IUT) FSM I considered in this paper are all minimal.  

If a system is specified by an FSM M, and its IUT is 
another FSM I, the problem to determine whether I is 
equivalent to M is called “conformance testing” or 
“fault detection” problem. 

3. Review of Related Work 

Many approaches, such as T, D, W, Wp and UIO,
have been proposed to solve the conformance testing 
problem (See, for examples, [1][3][4][7][12]). Among 
these methods, the W-method and the Wp-method 
attracted greater attention as they have broader 
applicability and higher fault coverage [4][7][12].  In 
the following, we briefly review the W-method and the 
Wp-method.     
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The W-method and the Wp-method are used to 
generate conformance test sequences. Both methods 
use three input sequence sets, namely, the states cover 
set Q, the transition cover set P and the characterization 
set W.  

The W-method and the Wp-method are applicable if 
the FSM M is completely specified, strongly connected 
and minimal. Under this assumption, the homing 
sequence theory [9] guarantees that for each state si,

there is an input sequence ix  such that t (s0, ix ) is a 

walk from s0 to si of G. If si  sj, and iy = (s0, ix )

(s0, jx ) = jy , denote Q = { ix | si S}, we call Q the 

state cover set for M. Furthermore, suppose that there 
are ki transitions ti1(si, si1, xi1/yi1), ti2(si, si2, xi2/yi2), ......, 
tiki(si, siki,

iikx /
iiky ) starting from si, let P={ ix . xij| si S,

j=1,…,ki}, then P is the transition cover set for M. 
Apparently, if |S|=n and |X|=m, |P|=n×m. The 
characterization set W is an input sequence set such 
that for any pair of two states si and sj in S, (si, W) 
(sj, W) if si  sj. Obviously, the set W can distinguish 

all states in S. It has been proved that W-method can 
detect any single transition fault, including output error 
and transfer error [5]. 

If we only need to identify a state si, a subset Wi of 
the set W is sufficient. The Wi set, which called 
identification set of state si, is constructed to have the 
property that for each state sj  si, (sj, Wi) (si, Wi).
However, for another state sk  si, it is not necessary to 
satisfy the relation (sj, Wi) (sk, Wi). We call Wi the 
identification set for state si.

The W-method constructs test sequences by 
concatenating each element of the transition cover set P 
to each element of the characterization set W generated 
using the W-method. We can represent the test 
sequence set for the W-method as P.W. If |W|=w, |S|=n,
and |X|=m, then the W-method generates n×m×w test 
sequences. 

The Wp-method is an improved version of the W-
method. The Wp-method considers the W set as a 
union of all Wi sets. If an element in P ends at state si,
the Wp-method only needs to concatenate the element 
with those elements in Wi. Let Pi be a subset of P, and 
Pi includes all test transitions which ends at state si, the 
test sequence set generated using the Wp-method is 
n

i 1=

Pi.Wi. Since |
n

i 1=

Pi.Wi|<< n×m×w, the number of test 

sequences generated using the Wp-method is much 
smaller than that using the W-method. However, it has 
been  shown that  the two  methods have the same fault  
detecting capability [7].  

In general, a test sequence of the Wp-method can be 
partitioned into three parts: the prefix segment, the 
transition to be checked and the suffix segment. The 
prefix segment is an element of a state cover set Q 
which starts from the initial state s0 and ends at the 
starting state si of the transition to be checked. 
Supposing that the transition ends at state sj, the suffix 
segment of the test sequence is one of the elements of 
the state identification set Wj. For example, in Figure 1, 
the state identification set for s4 is W4={
{T5,T6},{T7}}. 

Figure 1 Test sequences for a transition 

In order to detect the transition T4, two test 
sequences have to be generated:  

{T1,T2,T3,T4,T5,T6}  and    {T1,T2,T3,T4,T7}. 
Therefore, the prefix segment is {T1,T2,T3}, and the 
suffix segments are {T5,T6} and {T7} respectively. 
The transition to be tested together with the suffix 
segment is called the “test segment”. In the Figure 1 
example, {T4,T5,T6} and {T4,T7} are two test 
segments to detect transition T4. Note that we use the 
transition sequence to represent the corresponding 
input sequence here. 

However, the length of test sequences which is 
generated by these two methods is generally long. Both 
the W-method and the Wp-method generate a set of 
test sequences which start from the initial state of M. 
Therefore, it is necessary to return to the initial state 
before applying each test sequence. To simplify the 
situation, it is frequently assumed in literature that the 
tackled FSM M has reset operations such that it is 
possible to reset to the initial state from any state 
immediately. This means that each of states has a reset 
transition from the state to the initial state.  

If M does not have such reset operations, and M is 
strongly connected, it is necessary to construct a walk 
from a state back to the initial state. Such walks are 
called initial sequences. Obviously, in order to apply 
all of test sequences, it is necessary to return from the 
ending states to the initial state many times. This 
implies that a very long test sequence is usually 
constructed by linking all of test sequences and all of 
the initial sequences. Clearly, this implicit test 
sequence is not optimal for conformance testing. 

Attempts have been reported to reduce the length 
and the redundancy of the test sequence, especially 
when the FSM M does not have reset operations (see 
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for examples, [1][3][4] and the references therein). In 
principle, it is recognized that it is not necessary to start 
all tests in the initial state.  After apply a test segment, 
it is possible to use a so-called transfer sequence to 
continue the testing from the final state of the current 
test segment to the starting state of the next test 
segment immediately. This obviously avoids the 
redundant testing of the initial sequences and the prefix 
segments which are already tested before. 

An optimization technique for conformance testing 
based on the Wp-methods is reported in [4]. The 
technique involves the construction of the test segments 
using the Wp-method, and a Rural Chinese Postman 
(RCP) algorithm is applied to optimally connect these 
test segments into a test sequence. It is shown in [4] 
that the constructed test sequence is much shorter than 
the implicit test sequence constructed by linking all of 
test sequences and all of the initial sequences. The 
technique used in [4] is briefly introduced below.   

The algorithm in [4] consists of 4 steps, namely,  1.   
Generate the test segment set Cw from the Wp sets; 2. 
Construct a W digraph G'(V', E').  First Copy the 
transition digraph G(V, E) of the FSM into G'(V', E'); 
then, for each test segment which starts from state J and 
ends at state K, a corresponding bold edge is added to 
graph G'(V', E'). The edge cost is assigned as the length 
of the test segment; 3. Graph Modification. Check if all 
bold edges of G'(V', E') are weakly connected using an 
algorithm reported in [1]. If those bold edges are not 
weakly connected then a minimum set of non-bold 
edges is augmented using the algorithm of [6] to render 
the augmented edges weakly connected; 4. Test 
Sequence Generation. Use the RCP algorithm proposed 
in [1] to find an RCP tour which traverse the bold edge 
of G'(V, E'). 

Figure 2 The transition digraph G(V, E) of M [4] 

The example shown below is taken from [4].  
Consider an FSM M represented by the transition 
digraph G(V, E) in Figure 2. All the assumptions used 
in [4] are adopted here. Note that it was declared that 
only transitions T1, T2, …, T6 needed to be checked as 
these transitions represented the main behavior of the 
protocol [4]. For comparison purpose, we also adopt 
this declaration. 

A set of test  segments for M is obtained in [4].  The  

details of the test segments are shown in Table 1. It is 
reported in [4] that an optimal test sequence for the 
FSM in Figure 2 has the total length of 23.  

Table 1 A set of test segments for the FSM M(Cw) 
Starting 

State
Test Segments 

Ending  
State

1 Check(T1)=[T1, T3] 1 
1 Check(T2)=[T2, T8] 3 
2 Check(T3)1=[T3, T1] 2 
2 Check(T3)2=[T3, T2] 3 
2 Check(T4)1=[T4, T1] 2 
2 Check(T4)2=[T4, T2] 3 
3 Check(T5)=[T5, T3] 1 
1 Check(T6)=[T6, T8] 3 

4. An Optimized Test Sequence Generation 
Technique based on the Wp Method 

In this section, we describe our approach used to 
further improve the results report in [4].  

Many of these segments are overlapped in the set of 
test segments Cw. These overlapped test segments can 
be merged to a longer test segment to reduce the 
number of segments. Let set Cm consists of these 
merged test sequences. Furthermore, the final states of 
some test segments in the Cm set are the same as the 
starting states of some other test segments. These 
segments can be linked to form one test segment which 
further reduces the number of test segments. Let set Cl 
denote these linked test sequences. Afterwards, we use 
these test segments in Cl to form the shortest test 
sequence.   

There are many methods to form the shortest test 
sequence from the test segments. For example, RCP 
method [1] can be applied. In this paper, we propose a 
bipartite graph method to tackle the addressed problem.  
Detailed discussion about the method will be addressed 
in section 5.   
     The proposed method consists of 4 steps outline 
below: 

Step 1: Generate the test segment set Cw from the Wp 
testing segment set. This step is as same as the first step 
in [4]; 
Step 2: Merge the segments in Cw to form the set Cm; 
Step 3: Link the segments in Cm to form the set Cl; 
Step 4: Generate a weighted bipartite digraph G, and 
find a shortest test sequence. 

First of all, we present the algorithm shown in Table 
2 to merge the overlapped test segments in Cw:  
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Table 2 The merge algorithm 
Merge Algorithm 
Step 1: Let Cm be an empty set. 
Step 2: Create a weighted digraph G(Cw , Ew). For 
each vertex ci and cj, suppose that cj includes m 
transitions and the anterior parts of k transitions for cj

overlap with the posterior parts of the ci transitions. If 
m-k=0, the redundant cj is removed from Cw. 
Otherwise let wij=k/(m-k). If wij>0 (which means k>0), 
we draw a arc eij from ci to cj with weight wij. The Ew 
set consists of these arcs; 
Step 3: Loop while  Cw is not empty 

Step 3.1: Move each of discrete vertex (which has no 
arc) to Cm;  

Step 3.2: If Cw is not empty,  
                      for each disjoint subgraph of G(Cw , Ew) 
                           select an arc eij which has the maximal 
                           weight, merge the vertex cj to ci, then  
                           remove cj from Cw, delete all arcs  
                           which link to cj and redraw the weight 
                           arcs between ci  and other vertexes.  
                    else 
                           break the loop 

If there exist test segments in Cm whose final states 
are the same as the starting states of some other test 
segments, these test segments can be linked together to 
reduce the number of test segments further. The link 
algorithm is shown in Table 3:  

Table 3 The link algorithm 
Link Algorithm 
Step 1: Let Cl be an empty set. 
Step 2: loop while  Cm is not empty 
         for each element ci of Cm, 
             if there is another element cj whose starting  
             state is the same as the ending state of ci,
                    link cj to ci, then delete cj from Cm; 
             elseif there is another element ck whose ending  
             state is the same as the starting state of ci,
                    link ck to ci, then delete ck from Cm; 
              else  
                    move ci to Cl.  

Next, we describe the algorithm to combine the test 
segments in Cl to form the shortest test sequence.  

The first step is to construct a weighted bipartite 
digraph B(V, E). The vertex set V of the digraph B 
consists of two subsets V` and V``, V=V` V``. The V` 
subset consists of the starting states of test segments in 
Cl and the V`` subset consists of the ending states of 
test segments in Cl. Similarly, the E set consists of two 

types of edges. For every test segment ci in Cl, if the 
starting state and the ending state of ci are sis and sie, we 
draw an arc from sis to sie, label the edge by “ci”, and 
assign the weight 0 to the edge. These edges, which all 
go from V` to V``, form the first edge subset E` in E. 
The second edge subset E`` can be constructed in a 
similar way, it consists of the edges which all go from 
V`` to V`. For every pair of state (si, sj), si V``, sj V` 
and si  sj, we draw an arc eij from si to sj. The arc’s 
weight wij is the number of arcs which are the shortest 
path from si to sj in the derived digraph G(S, T) of FSM 
M.
     The second step is to solve the RCP problem to find 
the shortest tour which include all edges in E`. One of 
the algorithms to solve the RCP problem is to represent 
it as an Integer Linear Programming (ILP) problem. 
Let aij represent the number of times that arc eij is used 
in the route, the objective function is  

min  w=
≠

∗
ji

ijij wa

Let Ii represents the Indegree of si V``, Oj represents 
the Outdegree of sj V`, then the constraints for the 
ILP problem are  

≠

≠

V`)seach (for O=

V``)seach (for I=

jj

ii

jalli
ij

iallj
ij

a

a

Many algorithms can be applied to solve the ILP 
problem [14], hence the details are omitted here.  

Now we present two examples to demonstrate the 
proposed method. The first example is taken from [4]. 
The FSM M is represented in Figure 1 and the test 
segment set Cw is shown in Table 1, namely 
Cw={c1=Check(T1)=[T1,T3], c2=Check(T2)=[T2, T8],
c3=Check(T3)1 =[T3,T1], c4=Check(T3)2 =[T3,T2],
c5=Check(T4)1 =[T4,T1], c6=Check(T4)2 =[T4,T2],
c7=Check(T5) =[T5,T3], c8=Check(T6) =[T6,T8] }

 Due to space limitation, the detailed steps are 
omitted. Applying the proposed algorithms, we obtain a 
weighted digraph B(V, E) shown in Figure 3. 

Figure 3 The digraph B(V, E) 

The path in Figure 3 which has minimum weight is 1 
(T5). Therefore, the short test sequence is 
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T6, T8, T5, T4,T1, T3, T1, T4, T2, T8, T5, T3, T2 
which has the length 13 comparing with the length 23 
obtained in [4]. 

The second example is more complicated. The FSM 
is given by a digraph represented in Table 4 where s1 is 
the initial state.  

Table 4 The FSM for the second example 

Transition 
Starting 
State

Input/Output 
Ending 
State

t1 1 a/0 2 
t2 1 b/0 4 
t3 2 a/0 5 
t4 2 b/1 6 
t5 3 a/1 6 
t6 3 b/0 1 
t7 4 a/1 2 
t8 4 b/1 3 
t9 5 a/0 6 
t10 5 b/1 1 
t11 6 a/1 4 
t12 6 b/0 6 

The test segment set Cw is 
Cw={c1 = Check(t1) = [t1,t3,t9,t11], c2 = Check(t2) = 
[t2,t7,t3], c3 = Check(t3) = [t3,t10,t1], c4 = Check(t4) 
= [t4,t12,t11,t7], c5 = Check(t5) = [t5,t12,t11,t7],  c6 = 
Check(t6) = [t6,t2,t8], c7 = Check(t7) = [t7,t3,t9,t11],     
c8 = Check(t8) = [t8, t5,t12], c9 = Check(t9) = 
[t9,t12,t11,t7], c10 = Check(t10) = [t10,t2,t8],      c11 = 
Check(t11) = [t11,t7,t3],   c12 = Check(t12) = 
[t12,t12,t11,t7]}  

The created weighted digraph B(V, E) is shown in 
Figure 4. The derivation details are also omitted.   

Finding the shortest sequence in B leads to solving 
the following ILP: 

=++
=++

=+
=+
=+

+++++

2

2

1

2

1
2222min  

464541

262521

4626

4525

4121

464541262521

xxx

xxx

xx

xx

xx
xxxxxx

An optimal solution for the above ILP is: 
1,0,1,0,2,0 464541262521 ====== xxxxxx

Therefore a shortest path starting from s1 is:
c2 e46 c12 e25 c10 e25 c9
The walk corresponds to the above the path is: 

t2,t7,t3,t9,t11,t8,t5,t12,t12,t11,t7,t3,t10,t2,t8,t6,t2,t8,
t5,t12,t11,t7,t3,t9,t12,t11,t7,t4,t12,t11,t7,t3,t10,t1,t3,
t9,t11

Figure 4 B(V,E) for the second example 

Note that only four additional transitions are added 
in to form the optimal test sequence. The 
corresponding input sequence is: 

b a a a a b a b b a a a b b b b b b a b a a a a b a a b b 
a a a b a a a a 

5. Discussions 

In the section, we present discussions on the various 
parts of the proposed method.  

5.1 On the merge algorithm 

The merge algorithm is the most important one in 
the proposed method. There are many test segments in 
a Wp-set which can be merged into one test sequence. 
The merge algorithm reduces the number of test 
segments and hence shortens the length of final test 
sequence. However, it needs to show that the merged 
test segments have the same fault detecting capability.  

In the Wp-method, an error is detected if there are 
some unexpected outputs corresponding to inputs in a 
test segment. By finding which test segment the error is 
detected, we can determine the nature and the location 
of the error. The test segments in our method after the 
merge and link have explicit correspondence relation to 
those segments in the Wp-mthod. To show this, we 
only need to show that any unexpected output which is 
detected by a Wp-method test segment will also be 
detected by the merged and linked test segments 
generated using our method.  

Suppose that the test segment in the Wp-method 
which detects an error is  

x0/y0, x1/y1, x2/y2, …, xk/yk

and assume that the test segment starts at state si. Then 
the transition segment corresponding to the test 
segment is  
t0(si, si+1, x0/y0), t1(si+1,si+2, x1/y1), t2(si+2, si+3,x2/y2), …, 

tk(si+k, si+k+1, xk/yk)
If in the merging process, this test segment is not 

merged with other test segments, or it becomes the 
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anterior part of a merged test segment, certainly its 
error detecting capability is not affected by the merge.  

Now we consider the case that the test segment is 
merged as the posterior part of the merged test 
segment. Suppose that the anterior part of the merged 
test segment is 

/y x,,/y x,/yx 1100 …
its starting state is sj,  and its corresponding transition 
segment is 

)/y x,s,(st

,),/y x,s,(s t),/y x,s,(st

1mjmj
,
m

112j1j
,
1001jj

,
0

+++

+++ …

The whole merged test segment is 

/y x,,/y x,/yx 1100 … , xp+1/yp+1, …, xr/yr, …, xk/yk

According to our merge algorithm, merge action 
implies the facts that  0 p m , p k, the transition 

)/y x,s,(st 1p-mjp-mj
,

p-m pp −−+++ is the same as the 

transition t0(si, si+1, x0/y0), and the transition segment 
from )/y x,s,(st 1p-mjp-mj

,
p-m pp −−+++ to 

)/y x,s,(st 1mjmj
,
m +++  is the same as the transition 

segment from t0(si, si+1, x0/y0) to tp(si+p, si+p+1, xp/yp).
Therefore, if there is an unexpected output in the 
anterior part of the segment, the fault will be already 
detected before the merged part is reached. Otherwise, 
if no error occurs while we apply the test segment 

/y x,,/y x,/y x,/yx 221100 ……  generated using the 

Wp-method, there will be no error occur in the anterior 
part of the merged test segment generated using our 
method. This implies that when the merged test 
segment is executed, the state si can be reached by 
applying the anterior part of the segment 

11221100 /y x,,/y x,/y x,/yx −−−−…… pp , afterwards, 

the remaining part of the merged test segment is 
applied. It is interesting to observe that applying the 
remaining part of the merged test segment is the same 
as applying the test segment  x0/y0, x1/y1, x2/y2,……,
xk/yk in the Wp-method, that is, we start at the same 
state si and apply the same test segment. Clearly, the 
fault detecting capability should be the same as well. 

5.2 On the heuristic function w(i, j) 

In the merge algorithm, the heuristic function w(i, j) 
= k/(m-k) is employed to calculate the total weight of 
the edges in the weighted digraph G(Cw , Ew) and to 
prioritize the merging of the test segments. Using the 
ratio of the length of the overlapped part to the length 
of the remaining part, it is possible to further shorten 
the length of the merged test segment.  

When some edges have equal weight, one of the 
edges can be arbitrarily selected. However, the 
different selection may result in a different starting 
state of a test segment and may affect the succeeding 
steps in our method. Therefore, the heuristic function 
used in our method can only achieve local optimal. The 
question of how to construct a heuristic function which 
achieves global optimal remains an open problem.   

5.3 On the link algorithm 

In the link algorithm, we can select different test 
segments to link. The different selections result in 
different sets of Cl. Fortunately, these different sets of 
Cl are equivalent in the sense that they include the 
same number of test segments which correspond to the 
same starting and ending states. Therefore, these sets of 
Cl produce the same bipartite digraph B(V, E).  

There are two classes of test segments in Cl. The 
first class groups these test segments where the starting 
states are the same as the ending states. The other class 
contains the remaining test segments. Suppose that 
there are k test segments in the first class, then the 
number of vertices of V is no more than n k. This is 
due to fact that the k starting states of the test segments 
in the first class belong to V`, the corresponding k
ending states which are the same as the k starting states 
belong to V``, and the other states, at most n k,
belong to V` or V`` respectively. Consequently, the 
number of edges eij which go from V`` to V` is no more 
than ( ) kkn −+ 22/)(  which is an upper bound of the 

number of the decision variables for the ILP problem 
mentioned above. In fact, suppose that |V``|=p and 
|V`|=q, the number of the decision variables is pq k.
This is correct because the arcs are drawn to link pairs 
of different states from V`` to V`, and there exist k
same states in V`` and V`, therefore the number of 
edges going from V`` to V` is k(q 1) (p k)q= 
pq k.

Note that p q≤ n k. According to the well known 
mathematic average inequality 2)2/)(( qppq +≤ , it is 

easy to conclude that  pq k ( ) kkn −+ 22/)(  . 

5.4 On the shortest path searching algorithm

      Many algorithms exist to find an optimal solution 
of the mentioned ILP. Furthermore, approximation 
algorithms with complexity of lower order polynomial 
time can be applied to find a good (which may not be 
optimal) solution to the ILP [14].  

For the completeness of our method, we briefly 
propose an approximation algorithm here. Namely, we 
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sort the arcs eij by their weights and arrange them in the 
order from the highest weight to the lowest one.  Then 
we take turns to evaluate each of the corresponding 
decision variables aij to get a smallest nonnegative 
integer which satisfies the constraints of the ILP. This 
algorithm is easy to be used, and it has O(n2)
complexity. 

Before we conclude this paper, we would like to 
emphasize the following points: 
1. The optimal solution in [4] relies on the 

construction of the RCP tour. It is well-known that 
the RCP is NP-hard. Although heuristic algorithms 
were proposed in [1], it was noted that the 
implementation for the RCP was not reported in 
literature [13]. Converting a RCP into an ILP, as 
shown in this paper, is a promising way to solve 
the RCP as many algorithms are available to solve 
the ILP problems. Unlike the RCP, approximation 
algorithms like the one proposed in this paper can 
be used to solve the ILP problems efficiently [14]; 

2. If the original test segments in [4] do not form a 
weakly connected sub-graph, which is frequently 
the case for complicated systems, additional edges 
have to be augmented such that the augmented 
edges and the original bold edges form a weakly 
connected sub-graph, then the heuristic algorithms 
for the RCP can be used to find an RCP tour. 
Unfortunately, optimal is achieved for the 
augmented sub-graph only which means that 
inevitably all augmented edges have to be adopted 
into the final test sequence. Therefore, the test 
sequence produced in [4] may not be optimal; 

3. In our approach, we propose several systematic 
algorithms and steps to merge and link the test 
segments for a FSM which lead to the construction 
of a weighted bipartite digraph. The optimal test 
sequence is obtained by finding the shortest tour 
which includes all edges in E` of the bipartite 
diagraph. As the constructed bipartite digraph is 
much smaller in comparison with any sub-graph 
created for the same FSM using the approach 
reported in [4], the complexity involved in solving 
the shortest tour problem is reduced. Furthermore, 
our approach avoids the excessive use of 
augmented edges, and therefore, leads to the 
generation of shorter test sequences in general. 

One final note is that we need to generate a test 
sequence which starts from the initial state s0 of FSM 
M. If s0 V, we can simply start the test sequence from 
s0. Otherwise we add s0 to V`` and draw arcs from s0 to 
every state in V` and count the weights of these arcs 

which is similar to what we do on other arcs from V`` 
to V`. Then we select the arc with the minimal weight 
as a prefix of the test sequence. The rest follows 
straightforwardly. 

6. Conclusion

This paper describes a bipartite graph approach to 
optimally generate test sequences for protocol 
conformance testing using the Wp-method. The 
approach proposes systematic steps and algorithms for 
the generation of highly optimized test sequences. We 
show that the test sequences generated using the 
proposed method are optimal in comparison with the 
previously reported results, while still maintaining the 
same fault detection capability. 
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