Edith Cowan University
Research Online

ECU Publications Pre. 2011

2005

Heuristics for Optimising the Calculation of Hypervolume for
Multi-objective Optimisation Problems

Lyndon While
University of Western Australia

Lucas Bradstreet
University of Western Australia

Luigi Barone
University of Western Australia

Philip Hingston
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks

b Part of the Computer Sciences Commons

10.1109/CEC.2005.1554971

This is an Author's Accepted Manuscript of: While, L., Bradstreet, L., Barone, L., & Hingston, P. F. (2005). Heuristics
for Optimising the Calculation of Hypervolume for Multi-objective Optimisation Problems. Proceedings of IEEE
Congress on Evolutionary Computation. (pp. 2225-2232). Edinburgh, Scotland. IEEE. Available here

© 2005 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

This Conference Proceeding is posted at Research Online.

https://ro.ecu.edu.au/ecuworks/2998

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworks
https://ro.ecu.edu.au/ecuworks?utm_source=ro.ecu.edu.au%2Fecuworks%2F2998&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ro.ecu.edu.au%2Fecuworks%2F2998&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1109/CEC.2005.1554971
http://dx.doi.org/10.1109/CEC.2005.1554971

2225

Heuristics for Optimising the Calculation of Hypervolume
for Multi-objective Optimisation Problems

Lyndon While, Lucas Bradstreet, Luigi Barone
The University of Western Australia
Nedlands, Western Australia 6009
{lyndon, lucas, luigi} @csse.uwa.edu.au

Abstract- The fastest known algorithm for calculat-
ing the hypervolume of a set of solutions to a multi-
objective optimisation problem is the HSO algorithm
(Hypervolume by Slicing Objectives). However, the per-
formance of HSO for a given front varies a lot depending
on the order in which it processes the objectives in that
front. We present and evaluate two alternative heuristics
that each attempt to identify a good order for process-
ing the objectives of a given front. We show that both
heuristics make a substantial difference to the perfor-
mance of HSO for randomly-generated and benchmark
data in 5-9 objectives, and that they both enable HSO
to reliably avoid the worst-case performance for those
fronts. The enhanced HSO will enable the use of hyper-
volume with larger populations in more objectives.

1 Introduction

Multi-objective optimisation problems abound, and many
evolutionary algorithms have been proposed to derive good
solutions for such problems, e.g. [1, 2, 3, 4, 5]. How-
ever, the question of what metrics to use in comparing
the performance of these algorithms remains difficult[6, 7,
1]. One metric that has been favoured by many people
is hypervolume([8], also known as the S-metric[9] or the
Lebesgue measure[10]. The hypervolume of a set of solu-
tions measures the size of the portion of objective space that
is dominated by those solutions collectively. Generally, hy-
pervolume is favoured because it captures in a single scalar
both the closeness of the solutions to the optimal set and,
to some extent, the spread of the solutions across objective
space. Hypervolume also has nicer mathematical properties
than many other metrics[11, 12]. Hypervolume has some
non-ideal properties too: it requires the (sometimes arbi-
trary) definition of a reference point on which its calcula-
tions are based, and it is sensitive to the relative scaling of
the objectives, and to the presence or absence of extremal
points in a front.

While et al[13] have shown that the fastest known
algorithm for calculating hypervolume exactly is HSO
(Hypervolume by Slicing Objectives)[14, 15]. HSO works
by processing the objectives in a front, rather than the
points. It divides the nD-hypervolume to be measured into
separate n — 1D-slices through one of the objectives, then
it calculates the hypervolume of each slice and sums these
values to derive the total. In the worst case HSO is expo-
nential in the number of objectives, but it still easily outper-
forms all other known algorithms for calculating hypervol-

0-7803-9363-5/05/$20.00 ©2005 IEEE.

Phil Hingston
Edith Cowan University
Mount Lawley, Western Australia 6050
p-hingston@ecu.edu.au

ume exactly[13, 16].

However, the performance of HSO for a given front de-
pends on the order in which it processes the objectives in
that front. The number of points contributing hypervolume
to each n — 1D-slice depends on how many points are dom-
inated within that slice: more dominated points implies a
smaller set of points to process, which implies less work
for that slice. The principal contribution of this paper is the
presentation and evaluation of two alternative heuristics that
each enhance HSO by trying to select a good order in which
to process the objectives for a given front. We present per-
formance data for basic and enhanced HSO showing that
both heuristics make a substantial difference to the typical
performance of the algorithm. The enhanced HSO will en-
able the use of hypervolume with larger populations in more
objectives.

The rest of this paper is structured as follows. Section 2
defines the concepts and notation used in multi-objective
optimisation and throughout this paper. Section 3 describes
the operation of HSO, and Section 4 discusses its com-
plexity and performance and shows how heuristics might
help. Section 5 defines our two (alternative) heuristics, and
Section 6 gives empirical data for a range of randomly-
generated and benchmark fronts in 5-9 objectives showing
how the heuristics improve the performance of HSO. Sec-
tion 7 concludes the paper and outlines some future work.

2 Fundamentals

In a multi-objective optimisation problem, we aim to find
the set of optimal trade-off solutions known as the Pareto
optimal set. Pareto optimality is defined with respect to
the concept of non-domination between points in objective
space. Given two objective vectors T and g, T dominates §
iff T is at least as good as 7 in all objectives, and better in
at least one. A vector T is non-dominated with respect to
a set of solutions X iff there is no vector in X that domi-
nates T. X is a non-dominated set iff all vectors in X are
mutually non-dominating. Such a set of objective vectors is
sometimes called a non-dominated front.

A vector T is Pareto optimal iff T is non-dominated with
respect to the set of all possible vectors. Pareto optimal vec-
tors are characterised by the fact that improvement in any
one objective means worsening at least one other objective.
The Pareto optimal set is the set of all possible Pareto opti-
mal vectors. The goal in a multi-objective problem is to find
the Pareto optimal set, although for continuous problems a
representative subset will usually suffice.

S
DN
(Y

a

c
a
Slice 4 Slice 3

2226

Z x Y z
11 4 4

b 9 2 5

c 5 6 7

X d 3 3 10

NS
i

Slice 2

+@

Slice 1

Figure 1: One step in HSO for the four three-objective points shown. Objective x is processed, leaving four two-objective
shapes in y and z. Points are marked by circles and labelled with letters: unfilled circles represent points that are dominated
in y and z. Slices are labelled with numbers, and are separated on the main picture by dashed lines.

Given a set X of solutions returned by an algorithm, the
question arises how good the set X is, i.e. how well it
approximates the Pareto optimal set. One metric used for
comparing sets of solutions is to measure the hypervolume
of each set. The hypervolume of X is the total size of the
space that is dominated by the solutions in X. The hyper-
volume of a set is measured relative to a reference point,
usually the anti-optimal point or “worst possible” point in
space. (We do not address here the problem of choosing
a reference point, if the anti-optimal point is not known or
does not exist: one suggestion is to take, in each objective,
the worst value from any of the fronts being compared.) If
a set X has a greater hypervolume than a set X’, then X is
taken to be a better set of solutions than X”.

Precise definitions of these terms can be found in [17].

3 The HSO Algorithm

Given m mutually non-dominating points in n objectives,
the HSO algorithm is based on the idea of processing the
set of points one objective at a time.

Initially, the points are sorted by their values in the first
objective to be processed. These values are then used to
cut cross-sectional “slices” through the hypervolume: each
slice will itself be an n — 1-objective hypervolume in the
remaining objectives. The n — 1-objective hypervolume in
each slice is calculated and each slice is multiplied by its
depth in the first objective, then these n-objective values are
summed to obtain the total hypervolume.

Each slice through the hypervolume will contain a dif-
ferent subset of the original points. Because the points are
sorted, they can be allocated to the slices easily. The top
slice can contain only the point with the best value in the
first objective; the second slice can contain only the points

with the two best values; the third slice can contain only the
points with the three best values; and so on, until the bottom
slice, which can contain all of the points. However, not all
points “contained” by a slice will contribute volume to that
slice: some points may be dominated in whatever objectives
remain and will contribute nothing. After each step (i.e. af-
ter each slicing action), the number of objectives is reduced
by one, the points are re-sorted in the next objective, and
newly-dominated points within each slice are discarded.

Figure 1 shows the operation of one step in HSO, in-
cluding the slicing of the hypervolume, the allocation of
points to each slice, and the elimination of newly-dominated
points.

The most natural base case for HSO is when the points
are reduced to one objective, when there can be only one
non-dominated point left in each slice. The value of this
point is then the one-objective hypervolume of its slice.
However, in practice, for efficiency reasons, HSO termi-
nates when the points are reduced to two objectives, which
is an easy and fast special case.

Figure 2 gives pseudo-code for HSO. Note that, for ex-
position purposes, the function hso builds explicitly a set
containing the slices to be processed after each iteration.
We can improve the performance of the algorithm by pro-
cessing these slices on-the-fly, as they are generated.

4 The Complexity and Performance of HSO

While et al.[13] give a recurrence relation that captures the
worst-case complexity of HSO:

flm1) = 1 (1)
flmn) = Y flkn—1) @)
k=1

2226

2227

hso (ps):
pl = sort ps worsening in Objective 1
s = {(1, pl)}

for k = 1 to n-1
s’ = {}
for each (x, ql) in s
for each (x', ql’)
add (x * x’, ql')
s = s’
vol =0
for each (x, ql) in s
vol = vol + x * |head (ql)[n] - refPoint[n]|
return vol

in slice (ql, k)
into s’

slice (pl, k):
p = head (pl)
pl = tail (pl)
ql = []
s = {}
while pl /= []
gl = insert (p,
p’ = head (pl)
add (|plk] - p’[k]|, gl) into s
p =p’
pl = tail (pl)
gl = insert (p, k+1, ql)
add (|p(k] - refPointlkl|, ql) into s
return s

k+1, ql)

insert (p, k, pl):

ql = []

while pl /= [] && head (pl) [k] beats plk]
append head (pl) to ql
pl = tail (pl)

append p to gl

while pl /= []
if not (dominates (p, head (pl), k))

append head (pl) to gl

pl = tail (pl)

return gl

dominates (p, q, k):
d = True
while d & k <= n
d = not (qglk] beats plk])
k=k+1
return d

Figure 2: Pseudo-code for HSO.

The summation in (2) represents the fact that each slicing
action generates m slices that are processed independently
to derive the hypervolume of the front.

Furthermore, While et al.[13] solve this recurrence rela-
tion to give the following identity:

f(m,n)=(m+n_2) 3

n—1

Thus HSO is exponential in the number of objectives n, in
the worst case (we assume that m > n).

The “worst case” in this context means we assume that
no (partial) point is ever dominated during the execution of
HSO, thus maximising the number of points in each slice
that is processed. However, this is unlikely to be true for
real-world fronts. The amount of time required to process a
given front depends crucially on how many points are dom-
inated at each stage, and, in addition, on how early in the
process points dominate other points.

2227

From this fact, we can infer that the time to process a
given front varies with the order in which the objectives are
processed. A simple example illustrates how. Consider the
set of points in Figure 3, in a maximisation problem.

— N W W
— N W | N
N S WD =

Figure 3: A pathological example for HSO. This pattern
describes sets of five points in n objectives, n > 3. All
columns except the last are identical. The pattern can be
generalised for other numbers of points.

If we process the first objective (or in fact any objective
except the last): no point dominates any other point
in the list in the remaining n — 1 objectives. Thus we
do indeed have the worst case for HSO, generating m
slices containing respectively 1,2, ..., m points.

If we process the last objective: each point dominates all
subsequent points in the list in the remaining n — 1
objectives. Then we generate m slices each contain-
ing only one point. Specifically, the top slice (cor-
responding to the highest value in the last objective)
contains only the point 1--- 1, the second slice con-
tains only the point 2- - - 2, all the way down to the
bottom slice, which contains only the point m - - - m.
This is of course the best case for HSO, and the hy-
pervolume is calculated much more quickly.

Note that, in general, there is a continuum of performance
improvement available: e.g. for the points in Figure 3, the
earlier the last objective is processed, the faster the hyper-
volume will be calculated.

Thus it seems that enhancing HSO with a mechanism to
help the algorithm to identify a good order in which to pro-
cess the objectives in a given front could make a substantial
difference to the real performance of the algorithm.

5 Heuristics

We present and evaluate two alternative heuristics that at-
tempt to derive a good order for HSO to process the objec-
tives in a given front.

5.1 Maximising the number of dominated points

A good order for the objectives is one in which many par-
tial points are dominated by other points early in the pro-
cess. One obvious tactic then is to calculate for each ob-
jective how many points will be dominated immediately if
that objective is processed, and to process first the objec-
tive that will generate the most dominated points. We call
this heuristic MDP: Maximising the number of Dominated
Points.
‘We can apply this idea in two ways.

e We can simply calculate the heuristic once, then sort
the objectives in decreasing order of numbers of dom-
inated points.

e Alternatively, we can calculate the heuristic once,
eliminate the best objective, then re-calculate the
heuristic to identify the next objective, and so on, un-
til all the objectives have been ordered.

Our experience shows that applying the heuristic iteratively
works better, especially for large numbers of objectives, but
that diminishing returns apply to some extent. We therefore
iterate until four objectives remain, at which point we order
those four objectives according to the last calculation.

The complexity of MDP is easy to calculate: at each it-
eration, for each objective, we (nominally) compare each
point with every other point for domination. Thus for m
points in n objectives, each iteration of MDP has complex-
ity O(m?n?), and applying MDP iteratively has complex-
ity O(m?n®), While this may sound expensive, remember
that HSO is exponential in n in the worst case, so a good
polynomial-time heuristic is likely to pay large dividends.

5.2 Minimising the amount of worst-case work

For each objective, MDP effectively counts the number of
points that will contribute to the bottom n — 1D-slice of
the hypervolume. However, in some cases, this number
might be misleading: it is theoretically possible to generate
m slices where the first m — 1 slices contain respectively
1,2,...,m — 1 points, but the bottom slice contains only 1
point. Example data that exhibits this behaviour is given in
Figure 4, for a maximisation problem.

=W A
| Bl W N —
W] = | W] &

Figure 4: A pathological example for MDP. MDP will
choose to process the first objective, but processing the sec-
ond objective would be faster.

We can avoid this possibility with a slightly more in-
volved heuristic that calculates explicitly for each objective
the number of non-dominated partial points in each slice, es-
timates the amount of work required to process each slice,
and sums these values to estimate the amount of work re-
quired if HSO processes that objective first. This heuristic
effectively models the recurrence relation in (2), by sum-
ming the work required to process each slice individually.
For each slice, we use the worst-case complexity of HSO
given in (3) to estimate the work required to process that
slice. Thus we call this heuristic MWW: Minimising the
Worst-case Work.

Again, we can apply this idea once only, or iteratively,
and again, our experience shows that iteration works better.
As with MDP, we apply MWW iteratively until four objec-
tives remain, at which point we order those four objectives
according to the last calculation.

2228

The complexity of MWW is similar to that of MDP. For
each objective, we sort the points in that objective, then we
build incrementally the sets of points in each slice, much
as in the functions slice and insert in Figure 2. This
leads to the worst-case complexity for each iteration being
O(n(m log m+m?n)), which again simplifies to O(m?n?).
The need to maintain an explicit set of non-dominated
points during the calculation of MWW may make it more
expensive than MDP in some cases, although any difference
is likely to be small.

6 Empirical Performance Data

We evaluated the performance of the two heuristics vs.
basic HSO on two different types of data: randomly-
generated fronts, and samples taken from the four distinct
Pareto optimal fronts of the problems in the well-known
DTLZ test suite[18].

We evaluated the heuristics (mostly) on data in 5-9 ob-
jectives, so to estimate the best-, average-, and worst-case
timings for each front using basic HSO, we used the follow-
ing procedure.

For n < 5 : we evaluated all n! permutations of the objec-
tives.

For n > 5 : we sampled the n! permutations in two ways,
and we combined all of the results in the calculations.

e We evaluated all n(n — 1) permutations of the
first two objectives (with the remaining objec-
tives randomised).

e Additionally, we evaluated 120 randomly-
chosen permutations.

All timings were performed on a dedicated 2.8Ghz
Pentium IV machine with 512Mb of RAM, running Red Hat
Enterprise Linux 3.0. All algorithms were implemented in
C and compiled with gcc -O3. All times include the costs of
calculating the heuristics, where appropriate. The data used
in the experiments are available at

http://wfg.csse.uwa.edu.au/Hypervolume

6.1 Benchmark data

We evaluated the heuristics on the four distinct fronts from
the DTLZ test suite: the spherical front, the linear front,
the discontinuous front, and the degenerate front. For each
front, we generated mathematically a representative set of
10,000 points from the (known) Pareto optimal set: then to
generate a front of size m, we sampled this set randomly.
Each hypervolume was calculated as a minimisation prob-
lem in every objective, relative to the point 1 - - - 1.

Tables 1(a)-1(c) and Figures 5(a)-5(d) and 6 show the
resulting comparisons. Each row of each table is based on
runs with ten different fronts, and it gives the following data.

e For HSO:

wrst is the longest time for any run on any front.

awst is the average of the longest time for each front.

2228

2229

basic HSO HSO+MDP HSO+MWW
n m | wrst awst avrg abst best | wrst avrg best | wrst avrg best
5 800 (7145 6139 1191 1.18 1.02 | 1.64 1.30 1.13 | 1.67 1.31 1.13
6 230 | 8468 68.79 1050 043 033] 1.33 074 034 | 067 046 0.34
7 110 | 8145 73.18 10,50 0.25 0.16 | 4.44 1.1 0.17 | 050 025 0.13
8 657407 6543 1029 021 0.15]| 421 1.00 0.14 | 0.25 0.17 0.11
9 45| 6668 5661 1025 0.19 006 | 080 030 0.07| 025 013 0.05
(a) The spherical DTLZ front.
basic HSO HSO+MDP HSO+MWW
n m | wrst awst avrg abst best | wrst avrg best | wrst avrg best
5 800 | 6516 5231 1140 106 091 | 1.37 1.18 1.03 | 1.37 1.21 1.04
6 220 | 65.74 55.58 993 041 026 | 167 077 040 | 080 046 028
7 110 | 8376 7360 1095 023 015 219 057 0.16 | 035 025 0.15
8 65|7481 6993 1096 025 009 | 132 052 0.11] 050 020 0.08
9 45166.59 59.00 1014 022 0.10| 126 048 0.08| 039 0.19 0.06
(b) The linear DTLZ front.
basic HSO HSO+MDP HSO+MWW
n m wrst awst avrg abst best | wrst avrg best | wrst avrg best
5 1000 | 20.68 1644 990 340 3.14 | 4.17 3.78 352 | 396 3.66 3.37
6 250 | 2864 20.75 1071 338 279 | 449 388 343 | 549 412 342
7 110 | 29.36 2557 13.00 428 3.10| 7.61 577 335 754 516 3.82
8 60 | 2420 20.11 1029 354 236 | 6.51 4.67 301 | 7.17 440 3.02
9 40 | 2469 1938 984 382 249 | 680 500 237 | 593 438 224
(c) The discontinuous DTLZ front.
basic HSO HSO+MDP HSO+MWW
n m wrst awst avrg abst best | wrst avrg best | wrst avrg best
5 1200 | 2320 1746 1139 797 7.02 | 1637 987 7.66 | 1038 832 7.15
6 300 | 2297 1892 11.16 624 373 | 1225 9.11 3.65| 12.55 7.03 3.71
7 130 | 30.89 2496 13.74 750 6.18 | 1577 1047 6.39 | 13.82 817 6.17
8 70 | 3744 2699 1239 447 263 | 6.65 531 380 8.07 526 258
9 45 | 32.63 2231 973 359 139 939 476 142 | 816 412 1.62

(d) Randomly-generated fronts.

Table 1: Comparison of the performance of HSO, HSO+MDP, and HSO+MWW on various fronts. Each datum is based on
ten different data sets: the figures for basic HSO are calculated using the sampling procedure described in Section 6. For
each value of n, m is chosen so that the HSO avrg = 10s.

2229

Time (seconds)

Time (seconds)

Time (seconds)

! j ," lSdsample —
! 6d MWW ---x-~-
i 5d sample ---x--- |
*]
x
’x' B
i 4
i]
. 1
.
A]
s
X X g
g B
g3’
Iy
S .
400 600 800 1000
Number of points

(a) The spherical DTLZ front in 5 and 6 objectives.

T T
X
,“"
,!"' J
|
) a- -
* 8 4
-
"‘ o |
3‘
x .
.
L I
600 800 1000
Number of points
(c) The discontinuous DTLZ front in 5 and 6 objectives.
T T T
."'v']
l ~
X o
* -4 g |
- =)
]
= 4
e odsampi
sample —+—
- MWW - -
VA_B“-,-g e 5d sample - %---
e i . an
400 600 800 1000
Number of points

(e) Randomly-generated fronts in 5 and 6 objectives.

Time (seconds)

Time (seconds)

Time (seconds)

2230

140

J J
i
i X :]
{ X)
-8
)
s .
e 9d sample ——
e 7d sample ---x--- 7
o 9 MWW - x--
Y A . 7TAMWW - 8-
100 150 200 250 300 350
Number of points
(b) The spherical DTLZ front in 7 and 9 objectives.
r T - T
.'j>]
* -
; J
x)
e
X -
s
60 80 100 120
Number of points
(d) The discontinuous DTLZ front in 7 and 9 objectives.
%
)
,"‘ "" 1
i 1
- 9d sample ——
¥ ‘ ";:,,'j""" o
60 80 100 120
Number of points

(f) Randomly-generated fronts in 7 and 9 objectives.

Figure 5: Comparison of the performance of HSO and HSO+MWW on various fronts. Each datum is based on ten different
data sets: the figures for basic HSO are calculated using the sampling procedure described in Section 6. The plot for the
linear DTLZ front is similar to that for the spherical front and is excluded for space reasons.

2230

2231

avrg is the average time for all of the runs.
abst is the average of the shortest time for each front.
best is the shortest time for any run on any front.

o For each heuristic:

wrst is the longest time for any run on any front.
avrg is the average time for all of the runs.
best is the shortest time for any run on any front.

As observed previously by While er al.[13], the best-case
objective order for the degenerate front gives performance
that is polynomial in the number of objectives, so for that
front, we plot only the performance of HSO+MWW. Each
other plot compares the performance of HSO+MWW with
the average performance of HSO over the sample of permu-
tations of the objectives.

T — — —
11d MWW --x-—
MWW - x-—-
35 |- 7d MWW 8-
50 MWW --w--
3F
— 25}
[’
2
§
8 2
[
E
| 15 +
s
05 .
T * 3
X e e [——
0 - g mege . .
0 100 200 300 400 500 600 700 800 900 1000

Number of points

Figure 6: The performance of HSO+MWW on the degener-
ate front. Each datum is based on ten different data sets.

6.2 Randomly-generated data

We generated sets of m mutually non-dominating points in
n objectives simply by generating points with random val-
ues z, 0.1 < z < 10, in all objectives. In order to guarantee
mutual non-domination, we initialised S = ¢ and added
each point T to S only if Z U S would be mutually-non-
dominating. We kept adding points until |S| = m. Each
hypervolume was calculated as a maximisation problem in
every objective, relative to the origin.

Table 1(d) and Figures 5(e)-5(f) show the resulting com-
parison.

6.3 Discussion

For each heuristic in each row of each table, we make the
following comparisons.

e We compare avrg for the heuristic with the range
awst...avrg...abst for basic HSO, to determine
how much improvement the heuristic delivers in typ-
ical cases.

e We compare wrst for the heuristic with wrst and
awst for basic HSO, to determine how well the
heuristic avoids the worst-case ordering.

2231

e We compare best for the heuristic with abst and best
for basic HSO, to determine how close the heuris-
tic gets to the best-case ordering. (Note that the best
cases for the heuristics sometimes beat the best case
for basic HSO: this is due to the incomplete nature of
the sampling used for the basic HSO figures.)

‘We make the following observations.

o For all of the DTLZ fronts, both heuristics deliver ma-
jor performance gains, and MWW in particular deliv-
ers performance that is not far from optimal. The per-
formance gains for the spherical and linear fronts in
particular are spectacular: speed-up factors of 10-80
in the average cases. The performance gain for the
discontinuous front is somewhat less (speed-up fac-
tors of 2-3): no doubt this is due to some property of
the front itself.

o Random fronts may be the worst-case form of data for

~ the heuristics, but both heuristics still always outper-
form basic HSO in the average case, with speed-up
factors up to 2.5.

e Both heuristics avoid the worst-case objective order-
ing in all cases: in fact, the worst-case for the heuris-
tics is nearly always better than the average case for
basic HSO, usually by a substantial amount.

o The performance gain increases both with increasing
number of objectives, and with increasing number of
points.

e MWW generally out-performs MDP.

e The graphs however highlight the fact that expo-
nential performance makes life tough: although the
heuristics deliver useful speed-ups for processing
fronts of a given size, they do not always greatly im-
prove the sizes of fronts that can be processed in a
given time.

The question arises what size of fronts the enhanced algo-
rithm can process in various times. Table 2 shows this data
for HSO+MWW on the spherical front. We chose ten sec-

n | 10seconds | 1 second
5 1,900 700
6 650 320
7 350 170
8 240 110
9 160 80
10 110 60
11 80 50
12 70 40
13 50 30

Table 2: Sizes of fronts in various numbers of objectives that
HSO+MWW can process in the times indicated, for spheri-
cal DTLZ data.

onds as indicative of the performance required to use hyper-
volume in off-line metric calculations after the EA is com-
plete, and one second as indicative of the performance re-
quired to use hypervolume in an on-line diversity or archiv-
ing mechanism during the execution of the EA.

We also performed some minor experimentation to esti-
mate the cost of calculating the heuristics themselves. Our
experiments indicate that these calculations usually take less
than 1% of the run-time of the enhanced algorithm, and that
they never exceed about 6% of the run-time, even with pop-
ulations up to 2,000. This is of course to be expected, be-
cause of the exponential complexity of HSO itself.

7 Conclusions and Future Work

We have described two alternative heuristics that each im-
prove the performance of the HSO algorithm for calculating
hypervolume, itself the fastest algorithm described to date.
Each heuristic works by re-ordering the objectives in a front
to reduce the sizes of the sets of points that have to be pro-
cessed during the execution of the algorithm. Both heuris-
tics deliver significant improvement to the performance of
HSO, with reductions in the run-time of the algorithm of
25-98%. The enhanced HSO will enable the use of hyper-
volume with larger populations in more objectives.

We intend to speed-up the calculation of our heuristics,
e.g. by minimising the cost of dominance-checking, al-
though we do not expect this to deliver serious further im-
provements. We also intend to pursue other avenues for
making HSO faster, such as reducing the amount of repeated
work that results from processing slices independently.

We also intend to design an incremental version of HSO,
for use as a diversity or archiving mechanism in an evolu-
tionary algorithm.

Acknowledgments

We thank Simon Huband for discussions on hypervolume
and HSO, and for providing the raw DTLZ data.

This work was supported partly by The University of
Western Australia Research Grants Scheme, and also partly
by an ARC Linkage grant.

Bibliography

[1] S. Huband, P. Hingston, L. While, and L. Barone,
“An evolution strategy with probabilistic mutation for
multi-objective optimization,” in CEC 2003, H. Ab-
bass and B. Verma, Eds., vol. 4. IEEE, 2003, pp.
2284-2291.

[2] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2:
Improving the strength Pareto evolutionary algorithm
for multiobjective optimization,” in EUROGEN 2001,
K. C. Giannakoglou et al., Ed., 2001, pp. 95-100.

[3] R. C. Purshouse and P. J. Fleming, “The MultiObjec-
tive Genetic Algorithm applied to benchmark prob-
lems — an analysis,” The University of Sheffield, UK,
Research Report 796, 2001.

[4] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan,
“A fast and elitist multiobjective genetic algorithm:
NSGA-II,” IEEE Transactions on Evolutionary Com-
putation, vol. 6, no. 2, pp. 182-197, 2002.

2232

[5]1 J. Knowles and D. Corne, “M-PAES: A memetic algo-
rithm for multiobjective optimization,” in CEC 2000,
vol. 1. IEEE, 2000, pp. 325-332.

[6] T.Okabe, Y.Jin, and B. Sendhoff, “A critical survey of
performance indices for multi-objective optimisation,”
in CEC 2003, H. Abbass and B. Verma, Eds., vol. 2.
IEEE, 2003, pp. 878-885.

[7] J. Wu and S. Azarm, “Metrics for quality assessment
of a multiobjective design optimization solution set,”
Journal of Mechanical Design, vol. 123, pp. 18-25,
2001.

[8] R. Purshouse, “On the evolutionary optimisation of
many objectives,” Ph.D. dissertation, The University
of Sheffield, Sheffield, UK, 2003.

[9] E. Zitzler, “Evolutionary algorithms for multiobjec-
tive optimization: Methods and applications,” Ph.D.
dissertation, Swiss Federal Inst of Technology (ETH)
Zurich, 1999,

[10] M. Laumanns, E. Zitzler, and L. Thiele, “A uni-
fied model for multi-objective evolutionary algorithms
with elitism,” in CEC 2000, vol. 1. IEEE, 2000, pp.
46-53.

[11] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fon-
seca, and V. G. da Fonseca, “Performance assess-
ment of multiobjective optimizers: An analysis and
review,” IEEE Transactions on Evolutionary Compu-
tation, vol. 7, no. 2, pp. 117-132, April 2003.

[12] M. Fleischer, “The measure of Pareto optima: Ap-
plications to multi-objective metaheuristics,” Institute
for Systems Research, University of Maryland, Tech.
Rep. ISR TR 2002-32, 2002.

[13] L. While, P. Hingston, L. Barone, and S. Huband, “A
faster algorithm for calculating hypervolume,” IEEE
Transactions on Evolutionary Computation, 2005.

[14] E. Zitzler, “Hypervolume metric calculation,” 2001,
ftp://ftp.tik.ee.ethz.ch/pub/people/zitzler/hypervol.c.

[15] J. Knowles, “Local-search and hybrid evolutionary al-
gorithms for pareto optimisation,” Ph.D. dissertation,
The University of Reading, 2002.

[16] L. While, “A new analysis of the Lebmeasure algo-
rithm for calculating hypervolume,” in EMO 2005,
ser. LNCS, C. Coello Coello et al., Ed., vol. 3410.
Springer-Verlag, 2005, pp. 326-340.

[17] T. Back, D. Fogel, and Z. Michalewicz, Eds., Hand-
book of Evolutionary Computation. Iop Institute of
Physics, 1997.

[18] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scal-
able multi-objective optimization test problems,” in
CEC 2002, D. B. Fogel et al., Ed., vol. 1. IEEE,
2002, pp. 825-830.

2232

	Heuristics for Optimising the Calculation of Hypervolume for Multi-objective Optimisation Problems
	tmp.1300168498.pdf.9qlCw

