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Designing Comminution Circuits
with a Multi-Objective Evolutionary Algorithm

Simon Huband', Luigi Barone?, Phil Hingston',
Lyndon While?, David Tuppurainen®, and Richard Bearman’

! School of Computer and Information Science, Edith Cowan University, Mount Lawley, 6050, Australia
2 School of Computer Science & Software Engineering, The University of Western Australia, Crawley, 6009, Australia
3 Rio Tinto Technical Services, Perth, 6000, Australia

Abstract- Mining is an important industry in Australia,
contributing billions of dollars to the economy. The per-
formance of a processing plant has a large impact on
the profitability of a mining operation, yet plant design
decisions are typically guided more by intuition and ex-
perience than by analysis. In this paper, we motivate
the use of an evolutionary algorithm to aid in the de-
sign of such plants. We formalise plant design in terms
suitable for application in a multi-objective evolutionary
algorithm and create a simulation to assess the perfor-
mance of candidate solutions. Results show the effec-
tiveness of this approach with our algorithm producing
designs superior to those used in practice today, promis-
ing significant financial benefits.

1 Introduction

In 2001, iron-ore mining was worth AUD $5.2 billion to the
state of Western Australia alone [1]. Iron-ore is extracted
from the ground and processed (crushed and ground to more
usable sizes) in mining processing plants. Crushing and
grinding of rocks and other particles is important in other
industries too, including fine grinding of coal for power sta-
tion boilers, coarse crushing of mined ore and quarry rock
for use in production-based industries, and for production
of paint, ceramics, cement, and other materials.

As billions of tons of material is crushed and ground an-
nually, optimisation of crushing operations offers the po-
tential for enormous economic and environmental benefits.
For example, Napier-Munn [14] quote a report of the U.S.
National Materials Advisory Board which estimated that re-
alistic improvements in size reduction activities could result
in energy savings of more than 20 billion kWh per annum.
Other benefits to improving the performance of crushing
and grinding in mineral processing operations include re-
duced operating costs, increased throughput and thus value
production, and improved downstream performance.

Ore processing plants are inherently complex to model,
so engineers often rely on simulation tools to evaluate and
compare alternative hand-crafted designs. This is a time-
consuming process and the lack of analytical models means
that there is little theoretical guidance to narrow the search
for better solutions. What is desired instead is some method
of automatically searching for good solutions without limit-
ing the design scope at any stage in the synthesis. This is the
domain of optimisation. One such optimisation technique is
evolutionary algorithms.

0-7803-9363-5/05/$20.00 ©2005 IEEE.

Evolutionary algorithms are increasingly being used in
engineering design tasks [10, 5, 15, 4]. Their ability to
perform unguided search through vast and complex search
spaces makes them ideal for these types of problems that
are too complex to solve analytically. In this paper, we de-
scribe a study which uses an evolutionary algorithm to op-
timise the performance of an iron-ore processing plant. In
earlier work in this area [11, 3, 16], we examined the opti-
misation of one processing component in a fixed design. In
this study, we extend our investigation to examine the prob-
lem of concurrently optimising the composition, number of
machines to use, and numerical control settings for multi-
ple components in a processing plant. This work offers an
intermediary step in developing a technique for optimising
the design of an entire plant.

The rest of this paper is structured as follows. Section 2
presents a brief background on ore processing plants and a
description of the problem we address in this study. Sec-
tion 3 gives an overview of multi-objective optimisation,
introducing the terminology used in this paper. Section 4
describes the essential features of our multi-objective ap-
proach to solving the problem of interest. Section 5 presents
results of a number of experiments we have conducted
that demonstrate the effectiveness of the multi-objective ap-
proach, in particular showing that our multi-objective evolu-
tionary algorithm produces solutions superior to those used
in practice today. Finally, Section 6 concludes the paper and
offers ideas for future work in this area.

2 Comminution

The term comminution is used to describe a collection of
physical processes that can be applied to a stream of ore to
reduce the sizes of the particles in the stream. Many dif-
ferent types of processes are used, including breaking par-
ticles into smaller particles by crushers and grinding mills
and separating particles into streams of different sizes by
screens and classification devices. The purpose of com-
minution is to transform raw ore into a more usable or
more saleable product or to prepare it for further process-
ing. A comminution circuit consists of a collection of
processing units connected together (typically by conveyor
belts). Comminution circuits may contain loops, typically
re-cycling large particles through crushers until they reach
the desired size. One or more streams of ore form the
Jeed stream, entering the circuit typically from some pre-
processing stage. One or more streams of transformed ma-



terial exit the circuit as the product stream of the comminu-
tion process. More detailed information about comminution
is available from Napier-Munn [14].

Figure 1 depicts the comminution circuit examined in
this study. The feed stream is the result of a primary crush-

Feed from Primary Crusher
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Screen
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Figure 1: The comminution circuit examined in this study

ing stage, entering the circuit at a fixed rate on a conveyor
from the top left of the figure. The feed is passed over a
scalping screen that allows particles less than the aperture
of the screen (the undersize particles) to pass through. Over-
size particles greater than the aperture of the screen (and due
to the imperfect nature of a screen, some smaller particles)
are directed to a secondary crusher. The crushed ore from
the secondary crusher is then rejoined with the undersize
ore stream before being passed to the product screen. The
product screen filters particles less than a given size into a
product stockpile, re-directing all oversize particles to a ter-
tiary crusher. The tertiary crusher further crushes the ore,
sending the output back to the product screen. The product
stockpile is the output from the circuit.

The type of crushers used in this circuit are cone crush-
ers. A cone crusher has two parts: an inner rotating crush-
ing surface revolving in an eccentric motion around the cen-
tral axis of the crusher, and an outer fixed crushing surface.
Material is introduced into the crusher from above and is
crushed as it flows downwards through the machine due to
compression of the inner rotating crushing surface against
the outer crushing surface. The gap between the inner rotat-
ing crushing surface and the outer fixed crushing surface at
the closest point in the cycle is called the closed-side setting
(CSS) of the crusher. This setting can be reduced to obtain a
narrower chamber and finer crushing, or increased to obtain
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a wider chamber and coarser crushing.

Cone crushers come in many variants, categorised by
three attributes: size, cavity, and head. The size attribute
specifies the size of the cone crusher by controlling the size
of the housing to employ: possible values include HP100,
HP200, HP300, HP400, HP500, and HP800. Bigger crush-
ers tend to be better suited to coarser feeds and have greater
capacities (the amount of ore that can pass through the
crusher at any given time), but are more expensive. The
cavity attribute allows a crusher to be fine-tuned as to the
coarseness of its product. Different settings impose differ-
ent restrictions on the minimum CSS and maximum feed
size that the given crusher can handle. Finer values al-
low a finer CSS, but restrict the crusher’s ability to handle
coarse feeds (as indicated by a smaller maximum feed size).
The cavity attribute can be set to extra-fine, fine, medium,
coarse, and extra-coarse. The head attribute also influences
the minimum CSS and maximum feed size that a crusher
can handle, but compared to cavity, the effect is far more
pronounced. Two settings are possible: standard and short,
where the latter corresponds to a much finer product than
the former.

Note that only 43 of the 60 possible combinations of
these attributes are valid. For example, an HP100 is incom-
patible with a head setting of standard — no corresponding
“real-world” crusher exists for this combination of settings.

When material passes over a screen, the screen sepa-
rates the ore into two streams: one containing particles less
than the aperture of the screen, and another containing par-
ticles greater than the aperture (due to imperfections, some
smaller particles end up in this stream). The area of the
screen dictates the amount of ore the screen can process:
larger screens can process more ore, but they cost more to
install and to operate.

The comminution circuit depicted in Figure 1 con-
tains four separate comminution components (the secondary
crusher, the tertiary crusher, the scalping screen, and the
product screen). While it is easy to pictorially represent and
conceptually understand each component as one physical
machine, in practice, due to the large amount of material
processed by the circuit, each component is typically re-
placed by several physical machines all configured the same
way and operating in parallel to one another. These parallel
machines share the load of the component by splitting the
incoming ore stream into several streams and re-directing
each separate stream to one of the physical machines. For
example, if the final product is required to contain particles
all less than some relatively small value (as is typically the
case), the product screen and tertiary crusher must be con-
figured for fine-level crushing. Since this will reduce the
capacity of the tertiary crusher relative to that of the sec-
ondary crusher, several parallel crushers will be needed in
the tertiary crushing stage to handle the relatively high vol-
ume of ore in the re-cycling ore stream.

Once the control variables of the comminution circuit
have been decided, the steady-state size distribution of the
product stockpile can be determined through simulation.
To do this, we have designed and implemented a general-
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purpose framework for connecting together different com-
minution components using a XML enquiry/set communi-
cation system. Empirical models are used to simulate the
behaviour of an ore stream as it passes through a crusher or
screen.

The role of the comminution circuit depicted in Figure 1
is to transform the ore stream generated from a primary
crushing stage (the primary crushing stage is responsible for
crushing all extraordinary large particles that could cause
problems downstream), into a product stockpile suitable for
further processing by other comminution processes. This
further processing stage requires all particles in its input
stream to be smaller than a pre-determined size. Indeed,
one of the primary roles of this comminution circuit is to
ensure that all particles preserve this constraint.

However, to further reduce the demands of this later pro-
cessing stage, the particles produced by the comminution
circuit depicted should be as small as possible. This can
obviously be achieved by forcing the crushing components
to produce small sized particles by setting low CSS values.
This however reduces the capacity of the crushers, forcing
the need for a greater number of parallel machines to han-
dle the same load of ore particles as with coarser crushing
components. However, this comes at a cost — the more par-
allel machines used in the comminution circuit, the greater
the overall financial cost (setup, maintenance, and operat-
ing costs) of the circuit. Obviously, overall cost is to be
minimised, so a compromise is needed.

3 Multi-Objective Optimisation

Multi-objective optimisation is the task of finding an op-
timal solution to a problem in which candidate solutions
are judged according to multiple criteria that conflict with
each other to some degree. Thus, a good solution can be
improved on one criterion only by accepting worse perfor-
mance in at least one other criterion. The aim in multi-
objective optimisation is to generate a set of solutions that
compromise the different criteria to varying degrees — the
solution to be used in any given situation can be selected
according to the particular needs of that situation.

Without loss of generality, consider a multi-objective op-
timisation problem defined in terms of a search space of al-
lowed values consisting of parameters and a vector of objec-
tive functions mapping parameter vectors into fitness space.
Given two vectors a and b, a is said to dominate b iff a is
at least as good as b in all objectives and better in at least
one. A vector a is non-dominated with respect to a set X
iff there is no vector in X that dominates a. A set X is a
non-dominated set iff all vectors from X are mutually non-
dominating. The set of corresponding objective vectors is
called the non-dominated front.

A vector a is Pareto optimal iff a is non-dominated with
respect to the set of all possible vectors. Such a vector is
characterised by the fact that improvement in any one ob-
jective necessarily means a worsening in at least one other
objective. The Pareto optimal set is the set of all possible
Pareto optimal vectors. The goal of multi-objective optimi-
sation is hence to find this Pareto optimal set, although for

1817

continuous problems a representative subset suffices.

Since evolutionary algorithms are population based, the
partial order imposed on the search space necessitates the
need for an appropriate ranking scheme. Two schemes are
commonly employed. Both schemes employ the concept of
domination to assign a Pareto rank to individuals — a lower
rank implies a superior candidate. In Goldberg’s [9] rank-
ing procedure, non-dominated vectors are assigned a rank
of 0 while any dominated vector a in the population X is
assigned a rank equal to one plus that of the highest-ranked
vector from X that dominates a. In contrast, Fonseca and
Fleming propose a scheme [7] in which a dominated vector
a in the population X is assigned a rank equal to the num-
ber of vectors in X that dominate a. It is this Pareto rank,
rather than some (weighted) combination of the objectives,
that is used as the basis for selection in a multi-objective
evolutionary algorithm.

4 Our Multi-Objective Approach

The problem outlined in Section 2 is well suited to optimi-
sation by an evolutionary algorithm. The problem cannot
be described analytically, but a simulation is available that
can be used to evaluate the performance of a candidate solu-
tion. The search space is vast — too large for an exhaustive
search — and there is little to guide a comminution engi-
neer in determining good solutions for a particular scenario.
Indeed, new designs for circuits are typically adapted from
existing “similar” designs using intuition, yet can still take
many weeks to fine-tune and finalise. An evolutionary algo-
rithm takes significantly less time to explore a greater range
of potential solutions. Additionally, the non-biased nature
of an evolutionary algorithms allows for exploration of new
solutions that comminution engineers may not consider due
to the inherent time and risk associated with doing so.

The task of assessing the performance of the comminu-
tion circuit in question considers two different objectives:
the minimisation of the size of particles in the resultant
product, while minimising the overall cost of the circuit.
This is hence a multi-objective problem — the quality of
the comminution circuit is assessed on two potentially con-
flicting measures. Being a multi-objective problem, the aim
then is to generate the Pareto front of solutions that compro-
mise the two criteria to varying degrees. This requirement
fits well with the basic model of an evolutionary algorithm,
where a population of solutions is evolved under the influ-
ence of a fitness function. We combine these two features
together to use a so called multi-objective evolutionary al-
gorithm to optimise the composition, number of machines
to use, and numerical control settings for the components
making up the comminution circuit.

4.1 Representation

The first step in designing an evolutionary algorithm is de-
termining a representation for candidate solutions suitable
for manipulation by genetic operations. Recalling the dis-
cussion of Section 2, each of the two crushing components
represented in the comminution circuit are controlled by



three variables:

1. a crusher identifier that determines which of the 43
“real” crushers is used,

2. areal-valued closed-side setting that controls the size
of the resultant crushed ore stream, and

3. an integer count of how many parallel crushers are
used in that position in the circuit (the unit count).
Each of the two screens is controlled by three variables:
1. areal-valued aperture setting that controls the size of
particles that are allowed to pass through the screen,

2. areal-valued area setting that controls the size of the
screen, and

3. an integer count of how many parallel screens are
used in that position in the circuit (the unit count).
Consequently, the behaviour of the comminution circuit is
controlled by a total of 12 values, three for each of the four
comminution components in the circuit. It is these 12 values
that we will optimise via an evolutionary algorithm.

4.2 Objectives

The performance of the comminution circuit is assessed on
two criteria:

1. the size of the product, and
2. the overall cost of the circuit.

As described in Section 2, we want to minimise the size of
the particles produced in the product ore stream. Specifi-
cally, we define P80 to be a measure of the size of the 80th
percentile in the product (i.e. the size ¥ mm such that 80%
of the product is smaller than k¥ mm). Cast in these terms,
the first objective in evaluating the performance of a com-
minution circuit is the minimisation of P80.

The overall cost of the comminution circuit depends on
the cost of each component used in the circuit. The cost of
a crushing machine depends on the variant of crusher used.
The cost of a screen depends on its mass, which is directly
proportional to its area.

Recalling that each component in the comminution cir-
cuit can be replaced with a number of physical machines
operating in parallel, the cost of each component obviously
depends on the number of physical machines used. Compo-
nent cost is however non-linear with respect to the number
of physical machines due to the more-complex layout and
the extra conveyors needed. For a component ¢ with a unit
count of n, the cost of the component is modelled by:

component cost, = n. X machine cost. X (0.9 + 0.1n.)

Thus if n, = 11, the cost of the component doubles.

The total cost of the circuit is then the sum of all the
components making up the circuit. Cast in these terms, the
second objective in evaluating the performance of a com-
minution circuit is the minimisation of total cost.

4.3 Infeasibility

Not all combinations of the 12 parameters controlling the
behaviour of the comminution circuit will produce valid so-
lutions. Indeed, experimentation shows that most random
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combinations yield invalid (or infeasible) solutions. For ex-
ample, if the CSS of a crusher is restrictively small, the
crusher may completely fill up with ore particles and not
be able to handle the amount of ore being fed into the ma-
chine. In this situation, the crusher is said to have reached
its choked capacity — additional ore particles overflow the
crusher, spilling out of the machine. Additionally, ore par-
ticles re-directed to the crusher may simply be too large to
enter the crusher (i.e., bigger than the maximum feed size
of the crusher variant), blocking the entrance of the crusher,
effectively “jamming” the machine.

Recall that the comminution circuit in question is de-
signed to ensure that all particles in the product stockpile
are less than a pre-determined size. If the aperture of the
product screen is too large, particles larger than this pre-
determined size may be allowed through the product stock-
pile and cause problems downstream in the further process-
ing stage. This constraint violation also needs to be avoided.

Detecting these infeasible solutions is relatively simple.
However, not all infeasible solutions are equally as bad as
one another. For example, a circuit producing only a small
amount of ore above the pre-defined maximum is better than
a circuit that produces a large amount of overflowing ore. To
allow the evolutionary algorithm to progress, we need some
way of promoting the “less bad” solutions over the others.

To accomplish this, we collect together these error situ-
ations into a single measure — a measure of how infeasible
the comminution circuit is — and require the evolutionary
algorithm to attempt to minimise this measure. We do this
with a third objective in the evaluation function of a candi-
date solution. That is, the performance of the comminution
circuit is additionally assessed on a third criteria: the error
measure of the circuit. The error measure of the circuit is a
weighted sum of the three possible error scenarios described
above, and is calculated as follows:

error = |oversize product|

+10 (Z |overflow | + Z |oversize feedcl)

ceC cecC’

where C is the set of components in the comminution cir-
cuit (secondary crusher, tertiary crusher, scalping screen,
and product screen) and C' is the set of crusher components
in the circuit (secondary crusher and tertiary crusher).

Cast in these terms, the third objective in evaluating the
performance of a comminution circuit is the minimisation
of the error value of the circuit. Indeed, we are only ever
interested in comminution circuits where the error value is
zero — a non-zero value indicates violation of a constraint
imposed by the problem specification.

4.4 Algorithm details

The multi-objective evolutionary algorithm we use in this
work is a hybrid of our ESP algorithm [12] and NSGA-
II [6]. Table 1 summarises the settings used.

One property of the selection operation requires special
mention. Being a multi-objective evolutionary algorithm,
selection is primarily based upon Pareto rank. Inevitably
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Aspect

Strategy/Setting

Encoding

Population size (u)

Child population size (\)
Total generations

Child population creation

Recombination

Mutation
Parameter mutation

12 parameters: a mixture of crusher identifiers, real-valued machine

settings, and integer unit counts.

100

100

1000

Since p = A, the child population is created by cloning the parent

population and then applying the genetic operators.

Uniform crossover variant with probability p = 0.8. Unique pairs of

individuals randomly swap their decision variables.

Each parameter is mutated with probability p = 0.5.

— crusher identifiers: switch to one of the “neighbouring” crusher
variants (a crusher variant which is different in only one attribute).

— real-valued machine settings: NSGA-II’s polynomial mutation variant [6]
with distribution index d = 50, constrained to the valid operating
range of the machine.

Ranking scheme
Selection

— integer unit counts: NSGA-II’s polynomial mutation variant [6] with
distribution index d = 10, constrained to the range 1..20.

Crusher identifiers are mutated first. Machine settings are constrained to

the valid operating range of the mutated machine variant.

Goldberg’s non-dominated ranking procedure [9].

After removing identical solutions, candidates are sorted by Pareto rank.

Candidates tied in Pareto rank are sorted by lower error. Remaining ties

are broken by higher age. The best 50% of the population is retained.

Table 1: The settings used in the multi-objective evolutionary algorithm used in this study

though, at some stage in the algorithm, the evolutionary al-
gorithm will be forced to select between candidate solutions
with the same rank (i.e., choose a subset of all candidate so-
lutions with the same rank). In this case, we use the third
(error) objective to resolve the choice — candidate solutions
with a lower error value are selected over solutions with a
higher error value. Any subsequent ties are separated by
age, with preference given to those solutions that have sur-
vived the longest.

S Experimental Results

In this section, we present results of a series of experiments
with our multi-objective evolutionary algorithm in optimis-
ing the composition, number, and numerical control settings
of the comminution components of the circuit depicted in
Figure 1. We use two measures to assess the quality of the
solutions produced:

1. Attainment surface — the boundary in objective
space formed by the obtained front, which separates
the region dominated by the obtained solutions from
the region that is not dominated [8]. Multiple attain-
ment surfaces can be superimposed and interpreted
probabilistically. For example, the 50% attainment
surface identifies the region of objective space that is
dominated by half of the given attainment surfaces,
whereas the 100% attainment surface identifies the
region dominated by every given attainment surface.

2. Hypervolume — also known as the S metric [18, 17],
this is the ratio of the hypervolume dominated by the
obtained front to the hypervolume dominated by the
(unrealistic) “ideal” solution (a solution with a zero
error value, zero total cost, and a zero P80 value).
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Since attainment surfaces operate in objective space,
they are more robust than numerical metrics (which attempt
to reduce complex multi-dimensional data down to single
numerical values), but can only be used for visual compari-
son of performance. The hypervolume metric is a numerical
measure of the non-dominated front produced by an evolu-
tionary algorithm that rewards both closeness to the Pareto
optimal front and the extent of the obtained non-dominated
front. Importantly, the hypervolume metric is more robust
than other numerical metrics [13, 2, 19].

To study the effectiveness of our approach, we ran our
multi-objective evolutionary algorithm 35 times, seeding
each trial with a population of randomly constructed com-
minution circuits. Figure 2 plots the 50% attainment surface
achieved by these runs at various stages, along with the set
of overall non-dominated solutions found from all 35 runs.
Only solutions with a zero-valued third (error) objective are
plotted — any solution with a non-zero third objective value
is ignored from consideration. Also plotted in Figure 2 are
two sample designs (labelled engineer solution A and en-
gineer solution B) proposed by consulting engineers. All
values have been normalised by engineer solution A.

In all 35 runs, none of the randomly generated candidate
solutions in the starting population were valid. Indeed, the
evolutionary algorithm typically took about 20 generations
before it was able to evolve a solution with a zero-valued
third (error) objective, further demonstrating the difficulty
of the problem. Once this was achieved, rapid progress
is realised, with the evolutionary algorithm quickly evolv-
ing solutions surpassing (dominating) the quality of the two
sample designs. As expected, the rate of progress tails off,
with only smaller and smaller improvements made in the
later generations. This is confirmed in Figure 3, which re-



T T -
Generation 200 (50% attainment surface) ———
Generation 600 (50% attainment surface) -------

Generation 1000 (50% attainment surface) -------- q

Overall best -
Engineer solution A +
Engineer solution B x
cost solution  *
Best P80 solution o
Average cost soluton  ®
Average P80 solution o

08 F

06

04 r

02 1

Cost

Figure 2: The 50% attainment surfaces from 35 runs of our
multi-objective evolutionary algorithm over time
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Figure 3: The average hypervolume of the 35 runs over time

Figure 2 also shows that the evolutionary algorithm is
able to generate a good range of different designs, each
trading-off the P80 and total cost objectives to varying de-
grees. We also see an increase in the extent of the Pareto
front over time. Notice though the difficulty in improv-
ing P80 values beyond a certain value — a relatively large
worsening in fotal cost is required to make a small im-
provement in the P80 objective. Some minor experimen-
tation using P80 as the sole objective confirmed that there
are limits to the improvement in this value.

Figure 2 also highlights four different solutions found by
the evolutionary algorithm across the 35 runs. Table 2 lists
the corresponding setups for these solutions along with the
setups for engineer solution A and engineer solution B.

Engineer solution A represents a conservative setup that
reflects the current practices typically employed in process-
ing plants. As is the practice, the settings used in this
design follow the general “by-the-book” recommendations
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and have not been tailored to the problem of interest. Engi-
neer solution B is similar to engineer solution A, but tuned
to produce a finer product. The amount of ore in the re-
circulating stream (the ore flowing into the tertiary crusher)
is lower than engineer solution A, but the tertiary crusher
component is working “harder” as it is required to produce a
smaller sized product. In essence, engineer solution B is an
optimised version of engineer solution A based upon engi-
neer’s intuition and experience. Engineer solution B repre-
sents the type of solution a human engineer may well design
in taking the “by-the-book” recommendations used in engi-
neer solution A and adjusting the settings to optimise the
performance of the design to the problem at hand. Simula-
tion confirms this — engineer solution B strictly dominates
engineer solution A.

The best P80 solution from Figure 2 and detailed in
Table 2 represents the design with the lowest P80 value
found across all 35 runs of the evolutionary algorithm. In-
spection of the settings employed by this design reveals the
product screen component uses a small aperture setting and
the tertiary crusher component is set to use an extremely
small CSS. As a consequence, this design contains a large
amount of ore in the recirculating stream requiring a large
unit count (the number of physical machines) for both the
product screen and tertiary crusher components. As a result,
the cost of this design is very high. Circuits with similar
designs are often used in stone quarrying where very fine
crushing is required. The fact the evolutionary algorithm
has discovered this design is encouraging.

The solution labelled best cost represents the design with
the lowest total cost value found across all 35 runs of the
evolutionary algorithm. Cost relative to the two sample de-
signs has been reduced in this design by reducing the unit
count of both the product screen and tertiary crusher com-
ponents. Additionally, the design uses an increased aperture
for the scalping screen component, thus requiring a smaller
area for the scalping screen component (less area is needed
to “sieve” the ore stream) and a smaller, yet more coarse,
secondary crusher component (less, but relatively bigger
sized, ore will be re-directed to the secondary crusher), fur-
ther reducing the overall cost of the design. Note that the
large aperture setting for the scalping screen component
means only one secondary crushing machine is required. A
similar design to this solution has been used in practice, but
problems arose when the composition of the incoming feed
stream differed from expectation, something we have not
yet modelled in this work.

The two remaining labelled solutions in Figure 2 repre-
sent the closest designs to the average fitness score in each
of the two objectives for the set of overall non-dominated
solutions found from all 35 runs. Note that due to the shape
of the Pareto font, this means the solution labelled average
cost has a relatively good P80 value and the solution la-
belled average P80 has a relatively good total cost value.

The design corresponding to the average cost solution
appears to be a variation of the best P80 solution. The de-
sign uses similar settings for the two crusher components,
but a significantly larger aperture for the scalping screen
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Engineer solution A

Engineer solution B

Component | Variable | Value Component | Variable | Value
Scalping Count 1 Scalping Count 1
screen Area 19.4 screen Area 23.7

Aperture | 55.1 Aperture | 40.0
Secondary | Type HP800 medium standard Secondary | Type HP800 medium standard
crusher Count 1 crusher Count 1

CSS 30.0 CSS 40.0
Product Count 4 Product Count 4
screen Area 27.7 screen Area 25.5

Aperture | 14.0 Aperture | 12.0
Tertiary Type HP800 medium short Tertiary Type HP800 medium short
crusher Count 4 crusher Count 4

CSS 15.0 CSS 10.0

Best P80 Best cost

Component | Variable | Value Component | Variable | Value
Scalping Count 2 Scalping Count 1
screen Area 8.9 screen Area 18.7

Aperture | 35.7 Aperture | 83.6
Secondary | Type HP500 coarse standard Secondary | Type HP500 extra-coarse standard
crusher Count 4 crusher Count 1

CSS 27.3 CSS 32.7
Product Count 9 Product Count 3
screen Area 189 screen Area 24.0

Aperture | 3.5 Aperture | 15.0
Tertiary Type HP400 fine short Tertiary Type HP800 medium short
crusher Count 20 crusher Count 3

CSS 6.0 CSS 10.0

Average P80 Average cost

Component | Variable | Value Component | Variable | Value
Scalping Count 1 Scalping Count 3
screen Area 20.5 screen Area 10.4

Aperture | 45.4 Aperture | 47.7
Secondary | Type HP500 medium standard Secondary | Type HP500 coarse standard
crusher Count 2 crusher Count 2

CSS 26.5 CSS 26.7
Product Count 2 Product Count 6
screen Area 20.0 screen Area 25.1

Aperture | 15.0 Aperture | 4.8
Tertiary Type HP400 fine short Tertiary Type HP400 fine short
crusher Count 7 crusher Count 14

CSS 6.0 CSS 6.0

Table 2: Selected setups from the 35 runs of our evolutionary algorithm reported in Figure 2

component and a slightly larger aperture for the product
screen component. The increased aperture of the scalping
screen component reduces the amount of ore re-directed to
the secondary crusher component, thus reducing the unit
count of the secondary crusher component and hence cost.
Similarly, the increased aperture of the product screen com-
ponent reduces the recirculating load, thus reducing the
number of units needed in the tertiary crusher and product
screen components, further reducing the total cost, but in-
curring a higher P80 value.

The setup represented by the average P80 solution ap-
pears to be a variation of the average cost solution, with the
only real significant variation occurring in the recirculating
load of the circuit. The increased aperture setting for the
product screen component allows larger sized ore particles
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to pass through into the product stockpile than the average
cost solution, hence worsening the circuit’s P80 value but
reducing the recirculating load and hence the need for as
many parallel machines. Consequently, the unit count for
the product screen and tertiary crusher components is re-
duced, thus reducing the overall cost of the design.

Notice that in both of these “average designs”, the evolu-
tionary algorithm has found a compromise solution between
the two objectives, trading-off one objective for improve-
ment in the other.

Pleasingly, the evolutionary algorithm consistently finds
secondary crusher components with a CSS setting of around
30, which is the typical setting used in multi-stage crushing.
Experience shows the CSS of the secondary crusher com-
ponent can not be too small (as this would require a high



unit count to handle the reduced capacity) nor can it be too
large (as this would require a high unit count for the tertiary
crusher component or additional crushing stages to reduce
the size of the particles making up the product ore stream).
The evolutionary algorithm has learned this principle.

6 Conclusions and Further Work

This paper has presented work on the application of a multi-
objective evolutionary algorithm to a difficult practical en-
gineering design problem — determining the composition
of comminution components in a mineral processing plant.
The algorithm is responsible for determining the type, the
number of machines to use, and the numerical control set-
tings for these components.

Experimental results show that our multi-objective evo-
lutionary algorithm approach is able to produce plant de-
signs superior in performance to those in use today. Expert
analysis confirms the evolutionary algorithm discovers al-
ternative solutions engineers would not normally consider.
Indeed, consulting engineers are greatly interested in the po-
tential of this work.

In many ways, this problem is an ideal application for
a multi-objective evolutionary algorithm — the pay-off is
high, the problem is too complex to solve analytically, the
search space is too large to explore unaided, and we have a
well-defined evaluation function and a straight-forward rep-
resentation scheme suitable for manipulation by genetic op-
erators. Many challenges remain in incorporating more re-
alism in the problem definition, including for example, in-
troducing varieties in the feed ore stream, considerations of
interactions with other processing stages, the use of better
economic cost models, and factoring in operational practi-
cality considerations like the risk of failure of the circuit.

This study acts as an intermediary step in developing a
technique for the optimisation of the entire design of a pro-
cessing plant. Ultimately, we desire a system capable of
co-evolving the numerical control settings for the process-
ing equipment as well as the design (layout) of the circuit
itself. This brings in elements of network design, another
application area where evolutionary algorithms have been
successfully applied (for example, see GroB [10]). The con-
current design of the layout of the circuit and the numerical
control settings for the machines within it will be challeng-
ing, but the potential rewards are enormous.
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