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Abstract: The functional application of metallic glasses in the catalytic field has widely attracted
research attention due to its unique atomic structure compared to crystalline materials. It has been
reported that metallic glasses can effectively activate H2O2 and persulfate, yet the activation of
peroxymonosulfate by metallic glasses is not studied well. In this work, the metallic glass with atomic
composition of Fe78Si9B13 was applied for investigating the peroxymonosulfate (PMS) activation
on degradation of naphthol green B (NGB) dye. The change of surface morphology indicated the
important role of oxide films during the dye degradation. The effects and first-order kinetics model
of various reaction parameters were evaluated systematically, including PMS concentration, catalyst
dosage, irradiation intensity, and dye concentration. The results showed that about 98% of the dye
removal rate could be achieved only within 10 min under rational conditions. The reaction kinetics k
of 0.1339 min−1 without ribbons was sharply improved to 0.3140 min−1 by adding 0.5 g/L ribbons,
indicating the superior activation ability of Fe78Si9B13 metallic glass. The recycling experiment
revealed that the Fe78Si9B13 ribbons exhibited the excellent surface stability and catalytic reusability
for activating PMS even after reused for 10th run.

Keywords: metallic glass; catalyst; photo-enhanced; peroxymonosulfate activation; oxidative
degradation; reusability

1. Introduction

In addition to application as structural materials, the metallic glasses, having their
far-from-equilibrium nature and uniquely amorphous atomic packing structure, have been widely
employed as functional materials in different fields, such as biodegradable implants [1], aerospace and
automobile applications [2], and control devices [3]. Even thin film metallic glasses can be treated as
a potential candidate for coatings [4–6]. Very recently, the metallic glasses have been demonstrated as
a superior candidate in the field of wastewater treatment attributed to catalytically active and uniquely
selective properties, in addition to the easy alteration of chemical compositions [7,8]. For example,
ball-milled Co78Si8B14 glassy powders exhibit excellent performance for completely degrading acid
orange II in between 2 to 6 min under different conditions [9]; Mg73Zn21.5Ca5.5 glassy powders are
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about 1000 times higher than commercial crystalline Fe powders in degrading direct blue 6 dye [10];
Al91−xNi9Yx (x = 0, 3, 6, 9 at %) glassy ribbons are able to decolorize direct blue 2B dye solutions in
a wide range of pH conditions; with an especially higher decolorization rate in alkaline condition
than in neutral [11]. Largely because of the low cost, friendly environmental compatibility, highly
anticorrosion ability, and easily reusable operation, Fe-based metallic glasses have been also applied as
superior catalysts in wastewater remediation [12–15]. For instance, Fe73Si7B17Nb3 glassy powders can
completely decompose direct blue 2b with a concentration of 200 mg/L at a very high efficiency with
200 times higher than the conventional Fe powders [16]; Fe78Si9B13 metallic glass/TiO2 composite
powders can achieve 60% higher decolorization rate than the pure TiO2 powder in the methylene
blue solution degradation [17]. Nanocrystallized Fe-based metallic glasses have also attracted some
researchers. Wang et al. [18] reported that nanocrystallized Fe82.65Si4B12Cu1.35 alloy with the formation
of galvanic cells showed a higher efficiency for direct blue 2B degradation than the amorphous
counterpart. Simultaneously, Chen et al. [19,20] also demonstrated that an extremely high degree of
crystallization of (Fe73.5Si13.5B9Nb3Cu1)91.5Ni8.5 metallic glass presented uncommon high reactivity
towards dyes due to galvanic cells. For the catalytic sustainability, it is reported that Fe76B12Si9Y3

powders with a high removal rate of methyl orange dye only show a slight decay even reused for
13 cycles [21], while Fe66.3B16.6Y17.1 glassy foils can completely decolorize orange G dye solution up to
11 cycles [22]. Furthermore, the Fe78Si9B13 ribbons exhibit the excellent reusability for up to 30 cycles
in methylene blue decolorization [23]. The advantages of Fe-based metallic glasses employed in the
wastewater remediation can be summarized as: (1) ultrafast degradation efficiency of pollutants due
to atomic packing structure in amorphous alloy; (2) excellent reusability without apparently catalytic
decay after reusing many times due to highly chemical stability [24]; (3) easy to be reused due to soft
magnetic property [25]; and (4) negligible secondary sludge produced [26]. Therefore, using Fe-based
metallic glasses in wastewater treatment has been an attractive topic.

Over the last few decades, extensive efforts have been made to explore effective wastewater
treatment methods, including biological methods (microorganisms, biosorption, etc.) [27,28], physical
methods (adsorption on solid phases, ion exchange, etc.) [29–31], and traditional chemical methods
(chemical precipitation, electrolysis, etc.) [32]. However, there are still some drawbacks in
the traditional wastewater treatment methods, such as the long processing time for biological
methods, and high sludge production for physical adsorption and chemical precipitation in addition
to not sufficient capacities for dealing with recalcitrant pollutants. Very recently, advanced
oxidation processes (AOPs), such as photocatalysis [28,33,34], ozonation [35,36], sulfate-based
oxidation [23,26,37], and Fenton/Fenton-like methods [38–41] have been extensively reported as
the promising techniques with the rapid degradation efficiency and high mineralization rate on
recalcitrant pollutants from industrial wastewater. The AOPs are mostly based on the production of
highly reactive species such as hydroxyl radicals (•OH) and/or sulfate radicals (SO4•−) to degrade
organics compounds into H2O, CO2, and harmless inorganic substances [23,42]. Typically, persulfate
(PS), peroxymonosulfate (PMS), and hydrogen peroxide (H2O2) are three widely reported source for
producing radicals. Sulfate radicals are mainly donated by PS and PMS in the sulfate-based oxidation
while hydroxyl radicals are produced by H2O2 in the Fenton/Fenton-like processes. Similar to H2O2,
PS and PMS can also be activated by transitional metals, especially iron, to produce reactive species.
However, traditional iron salts used in those AOPs will produce a large amount of iron sludge, and
zero-valent iron (ZVI) powder leads to its high surface oxidation due to the crystalline structure and
large specific surface area. Here, as a special ZVI, Fe-based metallic glasses have been reported as
an effective activator in the AOPs due to the amorphous atomic packing structure. Recently in our
previous work, Fe78Si9B13 glassy ribbons have been investigated as a superior catalyst towards H2O2

and PS. Nearly 100% color removal of methyl blue could be reached using a small amount of peroxides
(1.0 mmol/L) [23,24]. Yet, the activation of PMS by Fe-based metallic glass have not been investigated
and fully understood.
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Naphthol green B (NGB), i.e., naphthol green, acid green 1, C.I. 10020 (C30H15FeN3Na3O15S3),
is an important acid dye. Owing to its bright color, water-fastness and easy coloration, NGB is widely
applied as a coloring agent in the leather and fur industries and as a biological stain in modern
industry. However, directly discharging NGB dye to the environment will cause serious pollution to
aquatic life and mutagenicity to humans [43]. Due to the synthetic and complex aromatic structure,
the NGB is difficult to be removed by biodegrading [44]. Furthermore, due to the high pH, high
concentration, and high chroma, it is not economically feasible to remove the NGB from industrial
wastewater effluents by using conventional methods [43]. Recently, some endeavors using AOPs
have been employed to improve the removal efficiency of NGB, such as photocatalytic degradation
of NGB by Al-doped ZnO [45], semiconducting Sb2S3 [46] and Fe(III) induced by ligand-to-metal
charge transfer excitation [47], and photo-Fenton degradation [48]. Nevertheless, those reported
photodegradation of NGB cannot achieve satisfying efficiency (up to hours for complete degradation)
while the photo-Fenton degradation using Fe3+ produces large amounts of iron sludge.

To overcome the disadvantages of aforementioned NGB removal techniques, this work
investigated the NGB dye degradation using Fe78Si9B13/PMS under UV–vis irradiation for promoting
the degradation efficiency of NGB. Simultaneously, studying Fe-based metallic glass activation
behavior towards peroxymonosulfate including the analysis for those important effects (catalyst dosage,
PMS concentration, dye concentration, and irradiation intensity) can provide adequate understanding
of heterogeneous sulfate-based oxidation process. In this work, the characterizations of the as-received
and reused Fe78Si9B13 ribbons were firstly studied by X-ray diffraction (XRD), ultraviolet visible diffuse
reflectance spectrum (UV–vis DRS), scanning electron microscope (SEM), and energy-dispersive X-ray
spectroscopy (EDS). The effects and corresponding pseudo-first-order kinetic model of catalyst dosage,
PMS concentration, dye concentration, and irradiation intensity on the dye degradation efficiency
were systematically examined and discussed in detail. In addition, the stability and reusability of the
Fe78Si9B13 ribbons were also studied.

2. Materials and Methods

2.1. Materials and Chemicals

The naphthol green B dye was supplied by Wenzhou Huaqiao Chemical Reagent Co., Ltd., Wenzhou,
China. The main characteristics of the dye are summarized in Table 1. Oxone (KHSO5·0.5KHSO4·0.5K2SO4)
was purchased from Sigma-Aldrich. Ethanol (absolute) was obtained from Merck. In this work,
the as-received Fe78Si9B13 glassy ribbons, which were cut into 5× 20 mm with a thickness of 30–40 µm,
were manufactured by the melting spinning method. The master alloy ingot of Fe78Si9B13 was firstly
prepared by arc melting under a Ti-gettered argon atmosphere five times to achieve homogenous
chemical composition. From the master alloy, the glassy ribbons were fabricated by ejecting melting
master alloy on a single copper roller [49–51]. The wheel speed of the copper roller used was about
30 m/s. All the aqueous solutions throughout experiments were prepared using Milli-Q water
(18.2 MΩ·cm). All the chemicals used in this work are in analytical grade and no further purification
is required.
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Table 1. Structure and characteristics of naphthol green B.

Structure Empirical Formula Molar Mass (g/mol) λmax (nm)
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2.2. Methods

The structure of the as-received and reused Fe78Si9B13 glassy ribbons were identified by XRD.
The XRD data were collected on a PANalytical Empyrean diffractometer (Eindhoven, The Netherlands)
with monochromated Co-Kα radiation (λ = 0.1789 nm) operated at 40 kV and 40 mA. The UV–vis
DRS (Shelton, CT, USA) was employed to examine the surface characterization of as-received and
after reused ribbons at the 200–800 nm range using BaSO4 as the reference. The surface morphology
of before and reused Fe78Si9B13 ribbons were analyzed by SEM equipped with EDS (JEOL 6000,
Tokyo, Japan) with an accelerating voltage of 15 kV. To analyze the catalytic stability and reusability,
the Fe78Si9B13 ribbon samples were reused 10 times. After each time, the reused ribbons were washed
by Milli-Q water in an ultrasonic cleaner for 3 min, then further carefully cleaned by analytical grade
alcohol. All the reused ribbons were preserved in the absolute ethanol for further characterization.

For the dye degradation experiments, 1000 ppm NGB dye solution was firstly prepared and
stored in a 500 mL flask for preservation. Then the specific volume of NGB dye solution of 1000 ppm
was extracted by a macropipette (SocorexIsba S.A., Ecublens, Switzerland) and diluted to a required
dye concentration (10 ppm, 20 ppm, 50 ppm, and 100 ppm). During all the experiments, ribbons
with a specific weight (0.03 g, 0.05 g, 0.1 g, and 0.2 g) were immersed into a 100 mL NGB solution
under continuous mechanical stirring by Vortex-Genie 2 mixer (Scientific Industries, Inc., New York,
NY, USA). The irradiation was provided by a 300 W Xeon simulated solar light lamp (Perfectlight
Scientific Pty Ltd., Beijing, China). The pH value of dye solution throughout this work was about
5.8, measured by an Oakton pH/conductivity meter (PC 2700, Cole-Parmer, Vernon Hills, IL, USA).
Approximate 3.5 mL NGB dye sample was taken from the beaker at the predetermined time intervals
(i.e., 1, 2, 4, 6, 8, 10, 12, 15, 20, and 30 min), then injected into a 3.5 mL quartz cuvette with a pathlength
10 mm, following scanning in turn using a Perkin Elmer Lambda 35 UV–vis spectrometer (Shelton,
CT, USA). The wavelength of light absorbance λmax of NGB was measured at the 408 nm. After the
addition of PMS, the peak shifts from 714 to 408 nm due to the acidic nature of PMS. Dye degradation
efficiency was calculated by Equation (1):

Color Removal (%) = [(C0 − C)/C0] × 100% (1)

where C0 and C are the initial concentration and the concentration at time t (min) of NGB, respectively.
The NGB decomposition was fitted by the pseudo-first-order kinetic model as shown in Equation (2),
similar to other reports [26,52]:

C = C0 exp(−kobst) (2)

where kobs is the calculated reaction rate. The equation of the kinetic model can be rewritten as
Equation (3):

ln(C 0 /C) = kobst (3)
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3. Results and Discussion

3.1. Characterizations of Fe78Si9B13

The Fe78Si9B13 ribbon samples were reused 10 times for degrading NGB under the same
conditions: PMS concentration of 1.0 mmol/L; ribbons dosage of 0.5 g/L; irradiation intensity of
7.7 µW/cm2; and dye concentration of 50 ppm. Then the ribbons were characterized at the specific
reused time. Figure 1a shows the XRD patterns of as-received, fifth, and tenth run reused Fe78Si9B13

ribbons. As can be seen, all the XRD patterns present a broad diffraction peak at a range of 2θ = 40–60◦,
indicating that they are mainly composed of the amorphous phase [53–57]. Clearly, the maximum
diffraction peaks at 2θ = 52.6◦ and 95.7◦ exhibit a higher diffraction intensity with the increased reused
times, which is because crystallized α-Fe is gradually formed on the surface of the Fe78Si9B13 ribbons
during NGB degradation process under the UV–vis irradiation [58,59]. Figure 1b presents the UV–vis
DRS patterns of the as-received, fifth and tenth run reused Fe78Si9B13 ribbons. It is known that the
tetrahedral or octahedral isolated iron species will cause the bands between 200 and 300 nm, while the
octahedral irons in the form of Fe3+

xOy complexes result in the bands between 300 and 450 nm [60,61].
In addition, large iron oxide aggregates may lead to the bands greater than 450 nm [60,61]. In this work,
the peaks between 200 and 350 nm of the as-received Fe78Si9B13 ribbons indicate isolated iron species
are distributed homogeneously, while no obvious peak after 450 nm means no iron oxide aggregates
on the surface. After reused fifth and tenth run, slight peaks after 550 nm are observed in these two
Fe78Si9B13 ribbons, indicating that partly iron oxides aggregates (excepting α-Fe) are gradually formed
on both ribbons surface. Compared with the as-received Fe78Si9B13 ribbons, the obvious peaks between
200 and 270 nm of the fifth and tenth run reused ribbons indicate that the isolated iron species still
distribute homogeneously on the surface, and peaks between 300 and 360 nm are due to octahedral
irons presenting as Fe3+

xOy complexes form.
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Figure 1. (a) X-ray diffraction (XRD) patterns, (b) ultraviolet visible diffuse reflectance spectrum
(UV–vis DRS) of as-received, fifth and tenth run reused Fe78Si9B13 ribbons.

Figure 2a,b shows the SEM and corresponding EDS images of the as-received Fe78Si9B13 ribbons.
As seen from Figure 2a, the free surface of the as-received ribbons is practically smooth without
any apparent defects. Figure 2b shows the corresponding EDS analysis of as-received ribbons.
Apparently, the peaks in the EDS are mainly formed by the element of Fe and Si, and Fe occupies the
dominant composition, which is similar to the nominal composition of Fe78Si9B13 ribbons (domination
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of Fe). After reused fifth run, the ribbon surface in Figure 2c presents a clear boundary and different
layers can be distinguished. The bright area seems like the films which is not adherent to the ribbon
surface. According to Figure 2d, it is obvious that after reused fifth run, the ribbon surface has
a high concentration of O compared with Figure 2b. Based on the previous research [23,24], it can be
confirmed that the region next to the boundary connecting the bright area is covered by the oxide films
(iron oxides and silicon dioxide). With the reused time increasing to tenth run, comparing Figure 2e
with Figure 2c, the previously distinct boundary disappears. Instead, there are many small pits that
can be observed on the ribbon surface (as the enlarged surface in the Figure 2e). Although, the oxide
films in the Figure 2e cannot be distinguished easily from its EDS result (Figure 2f), the relatively
high concentration of O still demonstrates that the tenth run reused surface is covered by oxide films,
but the structure of the film has changed. According to the transformation of surface morphology from
as-received ribbons to tenth run reused ribbons, the mechanism of surface change can be concluded as:
(1) the as-received ribbon surface is very smooth without any obvious defects; (2) with the reused time
increasing, the oxide films due to a series of reactions between Fe and Si, and O2 are gradually formed
on the reused ribbons surface. These oxide films easily fall off from the ribbons surface during the
degradation process when being stirred by the mixer; (3) with the loose films exuviating, fresh Fe is
exposed to air. Then the Fe continuously goes through a series of reactions to form new compact films;
(4) the corrosion of Fe becomes severer with further reactions leading to the formation of pits although
the new compact film has strong ability to protect the buried Fe. From Figure 2d,f, compared with
the as-received ribbons, the intensity of O increases obviously leading to the total intensity of peaks
of Fe and Si on the fifth or tenth run reused ribbons surface is sharply reduced. The possible reasons
are: (1) the isolated Fe at the as-received ribbons is gradually corroded during degradation process,
leading to the formation of dissociative iron species (Fe2+ and Fe3+) and therefore the detected Fe atom
on the surface decreases; (2) the application of UV–vis irradiation assists in transferring electron on
the 4S2 orbital of ribbons due to the extra energy input [24]; (3) PMS has the ability to directly react
with isolated Fe. Those corrosion behaviors occur on the ribbons surface concurrently, resulting in
an effective and sufficient supplement of iron source to activate PMS.
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Figure 2. Scanning electron microscope (SEM) micrograph of (a) as-received, (c) fifth run reused and
(e) tenth run reused Fe78Si9B13 ribbons; corresponding energy-dispersive spectroscopy (EDS) results of
(b) as-received, (d) fifth run reused and (f) tenth run reused Fe78Si9B13 ribbons.
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3.2. UV–Vis Spectra

Figure 3 shows the UV–vis spectra of NGB degradation at 0.5 g/L Fe78Si9B13 ribbons within
different time intervals (PMS: 1.0 mmol/L, irradiation intensity: 7.7 µW/cm2, dye concentration:
50 ppm). Apparently, with the addition of PMS, a large blue-shift of maximum absorbance peak
occurs immediately, from 714 to 408 nm. From the Figure 3, it can be seen that the maximum peak at
λ = 408 nm decreases very fast and become invisible after 10 min reaction time, indicating a progressive
removal of the chromophore (–NO) in NGB molecules and a completion after 10 min [47]. In addition,
no obvious peak is formed after 10 min and all the previous peaks disappear in both ultraviolet
and visible light regions, suggesting that benzene ring opening and cleavage of the central carbon
happen at the same time. The result in the UV–vis spectra reveals that the reaction between Fe78Si9B13

ribbons and PMS under UV–vis irradiation can effectively eliminate NGB dye within a very short time,
converting dye molecules to harmless inorganic substances.
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Figure 3. UV–vis spectra of naphthol green B (NGB) dye degradation at different time intervals
(peroxymonosulfate (PMS) concentration: 1.0 mmol/L, ribbons dosage: 0.5 g/L, irradiation intensity:
7.7 µW/cm2, dye concentration: 50 ppm).

According to the result in the Figure 3, the removal efficiency of NGB in this work is compared
with the other results, which can be seen from the Table 2. It is clear that NGB dye removal using
Fe78Si9B13/PMS under UV–vis irradiation in this work has a faster efficiency which achieves full
decolorization within 10 min with a reaction rate kobs = 3.14 × 10−1 min−1, while the other results
receive a very low efficiency. The required time of fully dye removal is double and more than
sextuple for the reported photo-Fenton process [48] and photocatalysis [45,46], respectively, than this
work, although all of these methods are based on AOPs. Obviously, the faster NGB degradation
by Fe78Si9B13/PMS system is attributed to aggressively attack by large quantities of reactive species.
The comparable result further indicates that Fe78Si9B13 metallic glass is a superior catalyst for activating
PMS under UV–vis irradiation.

Table 2. Comparable result of naphthol green B (NGB) removal efficiency by various methods.

Method Material Dosage
(g/L) Light Source Complete Removal

Time (min)
kobs

(min−1) Reference

Photocatalysis 10% Al-doped ZnO particles 1.0 Solar light 360 5.95 × 10−3 [45]
Photocatalysis Semiconducting Sb2S3 2.0 Visible light 60 5.37 × 10−2 [46]

Photo-Fenton process FeCl3 0.11 Visible light >20 1.01 × 10−1 [48]
Photo-enhanced

sulfate-based oxidation Fe78Si9B13 ribbons 0.5 UV–vis light 10 3.14 × 10−1 This work
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3.3. Single Parameter Effect on Dye Degradation

The degradation process is strongly influenced by the following main operating parameters:
PMS concentration; catalyst dosage; irradiation intensity; and dye concentration. In order to study
the effect of these parameters systematically, it was investigated by altering the specific parameter
while other parameters were constant. All the investigations were compared with the condition
(PMS concentration: 1.0 mmol/L; Fe78Si9B13 ribbons dosage: 0.5 g/L; UV–vis irradiation intensity:
7.7 µW/cm2; dye concentration: 50 ppm).

3.3.1. Effect of PMS Concentration

Among the specific reaction parameters of the dye degradation process, the initial concentration
of PMS is a key parameter. Figure 4 shows the compared results of PMS concentrations vary from
0 to 2.0 mmol/L. It is found from Figure 4a that only less than 10% of color removal rate could be
reached within 30 min when solely using Fe78Si9B13 ribbons at the dosage of 0.5 g/L. It is postulated
that the color removal is the consequence of the adsorption property of the ribbons [12], in addition
to poor NGB self-photosensitization under UV–vis irradiation [62]. The color removal rate increases
remarkably with adding PMS from 0 to 0.25 mmol/L. However, with the low concentration of PMS
(0.25 mmol/L), the removal rate of NGB only achieves less than 80% within 15 min and no further
increase occurs along the reaction time, while the degradation rate achieves about 94% within 8 min
at the 2.0 mmol/L PMS. The first-order kinetic model is shown in Figure 4b and the corresponding
data are summarized in Table 3. It can be found that the reaction kinetics (k) value of 1.0 mmol/L PMS
is 0.3140 min−1, which is twice as high as the value of PMS (0.25 mmol/L), while the k value is just
slightly improved to 0.3509 min−1 by increasing the PMS concentration to 2.0 mmol/L, indicating
that 1.0 mmol/L PMS is the threshold for effectively degrading NGB dye. Further increase of PMS
concentration results in slight effect and both of two PMS concentration (1.0 and 2.0 mmol/L) can
achieve almost complete degradation within 10 min. It is known that PMS can act as donor for those
reactive species (SO4•− and •OH). With increasing PMS concentration, more PMS molecules can be
activated to produce SO4•− and/or •OH to degrade dye solution, as is shown in Equation (4).

SO4•− (•OH) + NGB → products (4)
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Table 3. Color removal and reaction kinetics of various peroxymonosulfate (PMS) concentrations.

PMS Concentration (mmol/L) Color Removal (%) at 4 min Color Removal (%) at 8 min Reaction Kinetics k (min−1) R2

0 3.2 3.9 0.004 0.9854
0.1 14.56 40.6 0.0557 0.9921
0.25 34.7 69.5 0.1526 0.9904
0.5 57.6 87.9 0.2654 0.9958
1.0 65.7 91.4 0.3140 0.9980
2.0 69.8 94.2 0.3509 0.9948

3.3.2. Effect of Fe78Si9B13 Dosage

Figure 5 shows the effect of Fe78Si9B13 dosage ranging from 0 to 2.0 g/L on the color removal of
NGB dye under the following experimental conditions (PMS concentration: 1.0 mmol/L; irradiation
intensity: 7.7 µW/cm2; and dye concentration: 50 ppm). It can be seen from Figure 5a, the NGB
dye is almost completely degraded within 10 min at the ribbons dosage of 0.5 g/L, whereas 30 min
is required to complete the degradation without Fe78Si9B13 ribbons, indicating that the Fe78Si9B13

ribbons can effectively activate PMS to produce reactive species. Further increases of ribbon dosage
leads to slight effect of complete reaction time, where all of the reactions with addition of ribbons can
reach more than 94% of color removal rate within 10 min. The first-order kinetic model is shown in
Figure 5b and the corresponding data are summarized in Table 4. It can be seen from Table 4 that
the reaction kinetics (k) value without Fe78Si9B13 is 0.1489 min−1 while it is the double with adding
ribbons dosage of 0.5 g/L, also confirming that PMS can be well activated by the Fe78Si9B13 metallic
glass. It is known that Fe0 in the ribbons can directly react with PMS to produce SO4•− in the PMS
solution (Equation (5)) [63]. Furthermore, with the enhancement of UV–vis irradiation, the corrosion
of Fe78Si9B13 ribbons are accelerated to provide more available Fe2+ (Equation (6)) [24]. The produced
Fe2+ further reacts with PMS (Equation (7)). Sustainable generation of Fe2+ can be also achieved by
Fe3+ reacting with Fe0 (Equation (8)). As a result, the degradation rate of NGB is highly promoted.
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2HSO5
− + Fe0 → Fe2+ + 2SO4•− + 2OH− (5)

Fe0 + hv → Fe2+ + 2e− (6)

Fe2+ + HSO5
−→ Fe3+ + SO4•− + OH− (7)

Fe0 + 2Fe3+ → 3Fe2+ (8)

Table 4. Color removal and reaction kinetics of various Fe78Si9B13 ribbons.

Dosage (g/L) Color Removal (%) at 4 min Color Removal (%) at 8 min Reaction Kinetics k (min−1) R2

0 34.5 70.0 0.1489 0.9937
0.3 64.0 89.1 0.3011 0.9995
0.5 65.7 91.4 0.3140 0.9980
1.0 75.7 94.5 0.4357 0.9907
2.0 81.6 93.0 0.4691 0.9984

3.3.3. Effect of Irradiation Intensity

Figure 6a shows the effect of irradiation intensity varies from 0 to 14.8 µW/cm2 on color removal
and the degradation rates of NGB dye using PMS activation by Fe78Si9B13 ribbons. The first-order kinetic
model is shown in Figure 6b and the corresponding data are summarized in Table 5. It is observed
from Figure 6a that the dye removal rate with Fe78Si9B13 ribbons alone present a relative fast efficiency,
indicating that Fe78Si9B13 metallic glass can activate PMS in a fast rate. On the other hand, the color
removal rate reaches about 98% when the irradiation intensity increases from 0 to 7.7 µW/cm2, revealing
that UV–vis irradiation can highly enhance the reactions. It is interesting to find that further increasing
the irradiation intensity from 7.7 to 14.8 µW/cm2 results in a rapid increase of color removal rate at
the first 4 min, especially at 14.8 µW/cm2, but all of them can almost complete the reaction in 8 min.
As seen from Table 5, the color removal is more than 90% at 8 min with the irradiation intensity of
7.7 µW/cm2 or higher. Compared with k = 0.5247 min−1 using 14.8 µW/cm2 irradiation intensity,
the reaction kinetics (k) is 0.0816 min−1 without the irradiation. It can be confirmed that the irradiation
can effectively promote the color removal rate. The reasons for the enhancement by application of
UV–vis irradiation are: (1) direct activation of PMS by UV–vis irradiation to produce SO4•− and •OH
(Equation (9)); (2) sustainable generation of Fe2+ from Fe3+ under UV–vis irradiation and •OH at the
same time (Equation (10)) [24]; (3) reaction between PMS and produced Fe2+ (Equation (7)).

HSO5
−+ hv → SO4•− + •OH (9)

Fe(OH)2+ + hv → •OH + Fe2+ (10)

Table 5. Color removal and reaction kinetics of various irradiation intensities.

Irradiation Intensity (µW/cm2) Color Removal (%) at 4 min Color Removal (%) at 8 min Reaction Kinetics k (min−1) R2

0.0 28.7 50.1 0.0816 0.9989
7.7 65.7 91.4 0.2736 0.9980
11.1 74.7 93.9 0.314 0.9950
14.8 87.7 95.4 0.5247 0.9947
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3.3.4. Effect of Dye Concentration

Figure 7a shows the color removal rate of the NGB dye with the concentration ranging from 10
to 100 ppm when other conditions are constant (PMS concentration: 1.0 mmol/L, Fe78Si9B13 dosage:
0.5 g/L and irradiation intensity: 7.7 µW/cm2). It is clear that the color removal rate decreases with
the increase of NGB concentration. Compared with about 95% color removal rate at 6 min when
degrading 10 ppm NGB, there is less than 70% color removal rate of 100 ppm NGB can be achieved
at the same time. All the decolorization processes finish and reach the steady state within 12 min.
Figure 7b shows the first-order kinetic model with the different dye concentrations and Table 6 shows
the corresponding rate constants k. As seen from Table 6 the reaction kinetics k drops sharply from
the highest value k = 0.4566 min−1 at 10 ppm dye concentration to k = 0.2030 min−1 at 100 ppm dye
concentration. It means dye effluents can be decomposed better at lower concentration. The possible
reason is higher dye concentration may block the light transmission to PMS, which results in lower
activation of PMS to generate enough radicals [26]. Therefore, higher dye concentration has a lower
color removal rate.

Table 6. Color removal and reaction kinetics of various dye concentrations.

NGB Concentration (ppm) Color Removal (%) at 4 min Color Removal (%) at 8 min Reaction Kinetics k (min−1) R2

10 84.3 94.3 0.4566 0.9922
20 73.8 94.2 0.3841 0.9987
50 65.7 91.4 0.3140 0.9980

100 48.3 82.5 0.2032 0.9875
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3.3.5. Stability and Reusability

In order to study the surface stability and catalytic reusability of Fe78Si9B13 ribbons, the same
ribbons are reused 10 times. All the recycling experiments in this work are carried out on the
same conditions (PMS concentration: 1.0 mmol/L; Fe78Si9B13 dosage: 0.5 g/L; irradiation intensity:
7.7 µW/cm2; dye concentration: 50 ppm). Figure 8 shows the results of first, third, fifth, and tenth run
of dye degradation with Fe78Si9B13 ribbons. The corresponding data of the first-order kinetic model
are summarized in Table 7. It can be seen that the NGB degradation rate is about 92% within 8 min for
the first run and only very slightly decreases during third, fifth, and tenth run. Comparing the color
removal rate and the reaction kinetics (k) of the first run with the tenth run, the color removal rate
slight drops from 92.1% to 89.4% at 8 min and the reaction rate k decreases from 0.2997 to 0.2571 min−1.
It is can be postulated that the product on the catalytic ribbons surface during the NGB degradation,
as seen from Figure 2, which are crystallized α-Fe, iron oxides and SiO2, slightly decease the Fe78Si9B13

catalytic efficiency [12]. Although, the weak bonding films form firstly during the dye degradation,
with the help of vortex-stirrer, it is easy to fall off from the catalytic ribbon surface, which make it
possible to continuously provide sufficient iron source for activating PMS. It is easy to find that there is
no obvious difference between the results of fifth and tenth run. It reveals that Fe78Si9B13 has excellent
reusability in NGB degradation and can be run at least 10 times.

Table 7. Color removal and reaction kinetics of reused Fe78Si9B13 ribbons.

Reused Times Color Removal (%) at 4 min Color Removal (%) at 8 min Reaction Kinetics k (min−1) R2

first run 65.7 92.1 0.3170 0.9963
third run 62.7 90.1 0.2913 0.9933
fifth run 60.2 89.8 0.2811 0.9925
tenth run 58.6 89.4 0.2708 0.9946



Metals 2017, 7, 273 13 of 17

Metals 2017, 7, 273  13 of 16 

 

 
Figure 8. (a) NGB degradation with as-received and reused Fe78Si9B13 ribbons; (b) variation of ln (C0/C) 
vs. time of fresh and reused Fe78Si9B13 ribbons (PMS concentration: 1.0 mmol/L; Fe78Si9B13 dosage:  
0.5 g/L; irradiation intensity: 7.7 µW/cm2; dye concentration: 50 ppm). 

4. Conclusions 

In this work, it is indicated that PMS could be effectively activated by Fe78Si9B13 metallic glass for 
degrading NGB dye. The economic and efficient conditions can be concluded as 1.0 mmol/L PMS 
concentration, 0.5 g/L Fe78Si9B13 ribbons dosage, and 7.7 µW/cm2 irradiation intensity. All the NGB 
degradation processes in this work fit well with the pseudo-first-order kinetic model. In addition, it 
is found that the NGB dye with a concentration of 50 ppm could be completely degraded within 10 
min under the reasonable conditions of PMS concentration of 1.0 mmol/L, ribbons dosage of 0.5 g/L 
and irradiation intensity at 7.7 µW/cm2, which is faster than other reported materials [44,45]. 

According to the characterizations by XRD, UV–vis DRS, SEM, and EDS, the tenth run reused 
Fe78Si9B13 ribbons only present a slight decay, indicating that the metallic glass can well retain the 
amorphous nature although it has been used for activating PMS 10 times. The precipitated substances 
on the tenth run ribbons surface are confirmed as α-Fe, iron oxides, and silicon oxide. The change of 
ribbon surface morphology indicates that oxide films with weak bonding on the surface were formed 
first, following with falling off, formation of compact films, and pitting corrosion when increasing 
reused time of ribbons. 
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Figure 8. (a) NGB degradation with as-received and reused Fe78Si9B13 ribbons; (b) variation of ln(C0/C)
vs. time of fresh and reused Fe78Si9B13 ribbons (PMS concentration: 1.0 mmol/L; Fe78Si9B13 dosage:
0.5 g/L; irradiation intensity: 7.7 µW/cm2; dye concentration: 50 ppm).

4. Conclusions

In this work, it is indicated that PMS could be effectively activated by Fe78Si9B13 metallic glass for
degrading NGB dye. The economic and efficient conditions can be concluded as 1.0 mmol/L PMS
concentration, 0.5 g/L Fe78Si9B13 ribbons dosage, and 7.7 µW/cm2 irradiation intensity. All the NGB
degradation processes in this work fit well with the pseudo-first-order kinetic model. In addition, it is
found that the NGB dye with a concentration of 50 ppm could be completely degraded within 10 min
under the reasonable conditions of PMS concentration of 1.0 mmol/L, ribbons dosage of 0.5 g/L and
irradiation intensity at 7.7 µW/cm2, which is faster than other reported materials [44,45].

According to the characterizations by XRD, UV–vis DRS, SEM, and EDS, the tenth run reused
Fe78Si9B13 ribbons only present a slight decay, indicating that the metallic glass can well retain the
amorphous nature although it has been used for activating PMS 10 times. The precipitated substances
on the tenth run ribbons surface are confirmed as α-Fe, iron oxides, and silicon oxide. The change of
ribbon surface morphology indicates that oxide films with weak bonding on the surface were formed
first, following with falling off, formation of compact films, and pitting corrosion when increasing
reused time of ribbons.

The color removal rate of NGB dye increases with the increase of PMS concentration, Fe78Si9B13

ribbons dosage and irradiation intensity. The recycling experiments show that Fe78Si9B13 metallic
glass can be reused for activating PMS more than 10 times with the excellent dye degradation rate,
presenting a superior surface stability and reusability. The Fe78Si9B13 metallic glass in this work receives
a promising ability for activating PMS in NGB degradation and presents the potential wastewater
treatment capacity for industrial scale in the future.
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