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Summary

1. The Mediterranean seagrass Posidonia oceanica maintains a biodiverse ecosystem and it is a
world-wide important carbon sink. It grows for millennia, accumulating organic-rich soils (mats)
beneath the meadows. This marine habitat is protected by the European Union; however, it is declin-
ing rapidly due to coastal development. Understanding its response to disturbances could inform
habitat restoration, but many environmental impacts predate monitoring programs (<50 years).

2. This research explores the palaeoecological potential of Posidonia mats to reconstruct six thou-
sand years of environmental change that could have affected Posidonia meadows and, in turn, left
an imprint on the mats.

3. Palynological, microcharcoal, magnetic susceptibility and glomalin-related soil protein (GRSP)
analyses on Posidonia mats enabled us to detect climate- and human-induced environmental
processes impacting on the seagrass during the Late Holocene.

4. The pollen and microcharcoal records reconstructed anthropogenic disturbances attributed to agri-
culture. The record of GRSP shows that agrarian activities affected continental soil quality. Changes
in magnetic susceptibility reveal that enhanced soil erosion was caused by both climate (major flood-
ing events in the NW Mediterranean) and humans (cultivation) which impacted on the Posidonia
mat. Finally, increased human impact is linked to eutrophication of coastal waters since Roman-
Medieval times.

5. Synthesis. This study shows that climate and land-use changes in the western Mediterranean
resulted in enhanced loadings of terrigenous material to the coastal zone since the Late Holocene,
likely disturbing the Posidonia meadows and their mat carbon accumulation dynamics. Under the
current global change scenario in which CO, emissions are projected to increase, restoring carbon
sinks is a priority. Seagrass habitat restoration should consider not only the coastal perturbations,
but also the continental ones at a catchment scale to preserve the socio-economic ecosystem services
provided by seagrasses.

Key-words: ecosystem services, glomalin-related soil protein, magnetic susceptibility, microchar-
coal, palaeoecology and land-use history, palynology, Posidonia oceanica, soil erosion

Introduction

Seagrass meadows maintain high levels of biodiversity and
they are among the world’s most important carbon sinks
(Duarte, Middelburg & Caraco 2005), but they are also expe-
riencing a world-wide decline becoming one of the most

*Correspondence author. E-mails: lourdes.lopez-merino@brunel.ac.uk,
lolome @hotmail.es

threatened ecosystems. Seagrass losses have been estimated at
29% of their global extent since 1880 with an average net
decline in area of 7% annually since 1990 (Waycott et al.
2009). As a result of the loss of seagrass meadows, emissions
of carbon dioxide (CO,) have been estimated to have
increased by up to 25% compared to land deforestation (Four-
qurean et al. 2012). Thus, understanding the anthropogenic
disturbances affecting seagrass ecosystem’s dynamics is criti-
cal to prevent their decline and to implement conservation
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strategies to maintain their carbon sequestration capacity
(Greiner et al. 2013; Marba et al. 2015).

Posidonia oceanica (L.) Delile is a seagrass species ende-
mic to the Mediterranean Sea, ranking among the slowest
growing and longest-lived plants (Arnaud-Haond et al. 2012).
This species plays a major role as a carbon sink, in water
oxygenation and biomass production, as well as providing a
breeding habitat for marine animals, and consolidating coastal
sediments (Pergent ez al. 2012). Posidonia oceanica meadows
are a priority conservation habitat by the Habitat Directive of
the European Union. However, the meadows are declining
rapidly at an estimated rate of 5% annually due to human
pressure on coastal areas, causing biodiversity loss with major
natural and economic consequences (Marba, Diaz-Almela &
Duarte 2014). The concern is that while P. oceanica mead-
ows have thrived for million years, their current rate of
decline suggests they may no longer be able to adapt to the
unprecedented rate of global change (Marba & Duarte 2010).
Research on the long-term dynamics of seagrass ecosystems
in response to environmental threats is in its infancy, but it
could provide a unique opportunity and a powerful tool to
understand natural cycles and trends, reconstruct baselines,
resilience and thresholds, and predict future responses to
anthropogenic disturbances (Willis et al. 2007). This type of
long-term ecological research could inform conservation
strategies for maintaining seagrasses resilience (Serrano et al.
2016a).

Species of the genus Posidonia create mats which can be
thousands of years old which form suitable sedimentary
archives for a palaeoecological study (Mateo ez al. 1997; Ser-
rano et al. 2012). The study of trace metals in a ~4500 years
old P. oceanica mat sediment core from the Portlligat Bay
(NW Mediterranean Sea) revealed that metal fluxes peaked
during Greek and Roman times, as well as more recently — a
trend that concurs with other Iberian records (Serrano et al.
2011, 2013). The palynological study of the topmost part of
the same core reconstructed the last twelve centuries of land-
scape change and showed land-use changes, the timing of
which closely matches with other NE Iberian records (Lopez-
Saez et al. 2009). Lopez-Merino et al. (2015) compared the
reconstructed land-use changes with the record of glomalin-
related soil protein (GRSP), suggesting that the GRSP accu-
mulated in the anoxic conditions of Posidonia mats can be
used to unravel long-term trends in continental soil quality.
A study of Posidonia australis Hook.f. mats from Oyster
Harbour (SW Australia) reconstructed centennial metal fluxes
(Serrano et al. 2016b) and provided information about the
trajectories of estuarine ecosystems and associated regime
shifts due to anthropogenic pressures since the European set-
tlement in Australia (Serrano et al. 2016a). These studies
demonstrate that the palaeoenvironmental information con-
tained in Posidonia mats can be used to understand, predict
and manage coastal ecosystems more comprehensively.

Therefore, the overarching goal of this research is to further
evaluate the long-term ecological potential of Posidonia with
the specific aim of identifying environmental stressors (cli-
mate- and/or human-induced) that have been archived in, and

could have impacted on, the mat of Posidonia. Six millennia
of environmental change have been reconstructed using a
multi-proxy approach (palynological, microcharcoal, GRSP
and magnetic susceptibility analyses) on P. oceanica mat
cores from Portlligat Bay (Western Mediterranean).

Materials and methods

SETTING AND CORING

Portlligat Bay (42°17' 32" N; 3°17' 28" E) is a small (0-14 kmz) and
shallow (<10 m deep) inlet located in Cape Creus (NE Spain, western
Mediterranean; Fig. 1). The area has a Mediterranean climate, with
mild winters and warm, dry summers. The annual precipitation ranges
between 500 and 800 mm and mainly falls from October to Decem-
ber (Franquesa i Codinach 1995). The current landscape has been
influenced by a long history of human activities, mostly related to
farming (Franquesa i Codinach 1995). However, traditional dry-land
farming and fisheries have recently been replaced by tourism, result-
ing in the abandonment of terraced vineyards (Vitis vinifera L.) and
pasturelands. Currently, Mediterranean shrubland dominates the land-
scape and mainly comprises Cistus monspeliensis L., Cistus albidus
L., Lavandula stoechas L., Calicotome spinosa (L.) Link, Ulex parvi-
Sflorus Pourr, Pistacia lentiscus L., Juniperus oxycedrus L., Arbutus
unedo L., Quercus coccifera L. and Erica arborea L. Forest cover is
sparse: some small areas are covered by cork trees (Quercus suber
L.) and pines (Pinus halepensis Miller, Pinus pinea L.), while Quer-
cus ilex L. and Quercus pubescens Willd. occur in sheltered areas. In
riparian areas, Ulmus minor Mill., Fraxinus angustifolia Vahl, Alnus
glutinosa (L.) Gaertn., Corylus avellana L. and Salix sp. can be found
(Franquesa i Codinach 1995).

The bay receives freshwater from a temporary stream that flows
from its NE shore. Posidonia oceanica meadows cover about 68%
of the bottom of the bay. A 498-cm long mat sediment core (‘core
2006’) was sampled in the central part of the bay (Fig. 1) in 2006,
at a water depth of 3 m. The core was taken using a petrol drill
and breaker (Combi Cobra, Atlas Copco) operated with a crane
from a 10-m boat (see details in Serrano er al. 2012). The length
of the core barrel inserted into the sedimentary deposit and the
length of retrieved seagrass mat were recorded in order to correct
the core lengths for compression effects and all variables studied
here are referenced to the corrected, uncompressed depths. This
new sediment core (‘core 2006’) is close to the already studied
‘core 2000 (Fig. 1; Lopez-Séez et al. 2009; Mateo, Renom &
Michener 2010; Serrano et al. 2011, 2012, 2013; Ldpez-Merino
et al. 2015).

RADIOCARBON DATING AND AGE-DEPTH MODEL OF
‘CORE 2006’

Thirteen samples from the 498-cm long P. oceanica mat core were
radiocarbon dated by AMS at three different laboratories (NOSAMS
Facility-Woods Hole, USA; Direct AMS-Radiocarbon Business Unit,
Accium Biosciences, USA; and the “Chrono Dating Laboratory at
Queen’s University Belfast, UK). With the exception of the basal
radiocarbon date that was performed on gastropod shells, the other
radiocarbon dates were obtained from P. oceanica sheath remains
(Table 1). The 'C dates were calibrated using the marinel3 radiocar-
bon age calibration curve (Reimer et al. 2013) taking into account a
local Delta R of 23 + 71 years (Siani et al. 2000) (Table 1). An
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Fig. 1. Location of the drilling point of ‘core 2006’ (red star) in the Posidonia oceanica bed in the NW Mediterranean Sea (Portlligat Bay, Cape
Creus, Spain). The location of the previously studied ‘core 2000’ (red dot; Lopez-Sdez er al. 2009; Lopez-Merino et al. 2015) and other
palacoenvironmental records cited in the text are also indicated: (1) Biscaye bog (Rius et al. 2011), (2) Lake Lourdes (Rius ef al. 2011), (3) Col
d’Ech (Rius, Vanniere & Galop 2012), (4) Basa de la Mora (Pérez-Sanz ez al. 2013), (5) Montcortes Lake (Rull er al. 2011), (6) Estanya Lake
(Riera, Wansard & Julia 2004), (7) Castelld6 d’Empuries (Burjachs et al. 2005; Ejarque et al. 2016), (8) Sobrestany (Parra, van Campo & Otto
2005), (9) Ullastret (Riera & Esteban 1994), (10) Besos (Riera & Esteban 1994), (11) Cubelles (Riera & Esteban 1994), (12) Creixell (Burjachs
& Schulte 2003), (13) Villarquemado (Aranbarri et al. 2014), (14) El Sabinar (Carrion er al. 2004), (15) San Rafael (Pantaleén-Cano et al.
2003), (16) Gador (Carrién et al. 2003), (17) Zonar Lake (Martin-Puertas et al. 2008). [Colour figure can be viewed at wileyonlinelibrary.com]

Table 1. Radiocarbon dates in the Posidonia oceanica mat sediment ‘core 2006’

Laboratory code Material type Sample Depth (cm) AMS '“C date B> cal. yr BP (20 range)*  Probability (%) Median probability
0S-59949 Posidonia sheaths  1-20 23-84 645 + 25 04 0-3 261
60-434 997
0S-59950 Posidonia sheaths  1-60 71-52 1150 £+ 30 540-846 100 687
08-59952 Posidonia sheaths  1-90 107-28 1710 £ 25 1064-1384 100 1241
0S-59954 Posidonia sheaths  1-126 150-19 2010 £ 65 1331-1782 100 1550
08S-59955 Posidonia sheaths  I1-50 173-64 2220 £ 50 1566-1993 100 1792
0S-59956 Posidonia sheaths 1I-100  234-43 2860 + 30 2359-2739 100 2580
08S-59953 Posidonia sheaths 1I-156  301-19 3550 £+ 30 3218-3602 100 3416
UBA-25344 Posidonia sheaths  TII-119  329-06 3825 £ 29 3552-3957 100 3747
08S-59981 Posidonia sheaths 1II-156  379-26 4320 £ 35 4166-4651 99-9 4419
46694671 0-1
D-AMS 009118  Posidonia sheaths IV-98 413-6 4638 £+ 29 4592-5041 100 4836
D-AMS 009119  Posidonia sheaths  1V-113  436-37 5017 £ 30 5117-5555 100 5349
UBA-25345 Posidonia sheaths IV-123  450-6 5087 + 31 5266-5581 100 5418
08-59925 Gastropod shells ~ IV-126  497-56 5370 £ 30 5574-5886 100 5717

*Calibration dataset: marinel3.14C, Delta R = 23 £ 71 years.

age-depth model was built using the dates and the year the core was
collected was added as the age of the sediment-water interface with
an error of +5 years. This age-depth model was generated using a
Bayesian approach with the software Bacon 2.2 (Blaauw & Christen
2011) and indicates that the P. oceanica mat sediment core encom-
passes the last ~5800 years (Fig. 2).

PALYNOLOGICAL, MICROCHARCOAL AND MAGNETIC
SUSCEPTIBILITY ANALYSES IN ‘CORE 2006’

The ‘core 2006" was sliced every 1 cm and samples were oven-dried
at 70 °C at the CEAB-CSIC (Blanes, Spain). Magnetic susceptibility
was measured using a Bartington MS2 susceptibility meter with the

MS2B sensor in 119 samples packaged in 10 cm® plastic pots at
room temperature at Brunel University London (UK). The measure-
ments were conducted at low frequency and on the 0-1 sensitivity set-
ting. Each sample was measured twice, in non-consecutive
measurements, with air readings before and after each measurement
to adjust for drift correction. The average of the two corrected mea-
surements was taken as the final value (k). The low-field k values
were normalised with respect to sample mass (y in m® kg ").

A total of 53 samples were taken for palynological analysis. The
analysis was performed at Brunel University London (UK). The aver-
age sample volume used was 3-4 cm®. Lycopodium tablets were
added at the beginning of the chemical treatment (Stockmarr 1971).
The analysis was performed following standard procedures (Faegri &
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Fig. 2. Age-depth model for the Posidonia
oceanica mat sediment ‘core 2006’. Upper
left: Markov Chain Monte Carlo iterations,
showing a stationary distribution with little
structure among iterations. Upper middle:
prior (green curve) and posterior (filled grey
curve) distribution of accumulation rates. The
mean accumulation rate was set to
10 year cm~'. Upper right: the prior and
posterior probability distributions for memory
(i.e. autocorrelation strength). Lower plot:
Bacon age-depth model. Individual
radiocarbon dates are shown in probability
density functions of calibrated ages. The grey
area indicates the uncertainty envelope of the
age model with grey dashed curves indicating
95% confidence intervals and the red dashed
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Iversen 1989). Residual fractions were sieved through 125 and 10 um
nylon mesh sieves and final residues were mounted on slides in glyc-
erol. Palynological identification and counting were completed at
x400 on an Olympus BX40 light microscope (London, UK), and at
x 1000 using immersion oil for more delicate identifications, sup-
ported by the Brunel pollen reference collection and atlases (Reille
1992, 1995, 1998). Terrestrial pollen sum consisted of a minimum of
300 non-reworked pollen grains per sample when possible (aver-
age = 296; median = 306), excluding fern, fungal and algal spores as
well as other non-pollen palynomorphs. Reworked pollen grains (bro-
ken, corroded, degraded and/or crumpled) were also counted. Palyno-
logical zones were identified by stratigraphically constrained cluster
analysis by sum-of-squares (CONISS) including the terrestrial pollen
types with percentages larger than 2-5%. Percentages were recalcu-
lated and square-root transformed prior to analysis. Diagrams were
plotted and CONISS analysis performed with Psimpoll 4.27 (Bennett
2009).

Microcharcoal counts were performed on the same slides used for
palynological analysis. Microcharcoal particles (10-125 um) were
identified following Turner, Roberts & Jones (2008), measuring their
longest axis (Mooney & Tinner 2011), and counted until at least
200 items (sum of microcharcoal particles and Lycopodium spores)
were reached (Finsinger & Tinner 2005). Charcoal accumulation
rates (CHAR, -
calculated.

number of particles cm ? year ') were then

GLOMALIN-RELATED SOIL PROTEIN ANALYSIS IN
‘CORE 2000’

Glomalin-related soil protein extraction was undertaken on 29 sam-
ples of ‘core 2000’ at The University of Queensland (Australia) to
extend the previously published ~1250 year old record (23 samples;
Lopez-Merino et al. 2015) back to ~4500 years ago. Samples were

400 500

curve shows the ‘best’ model based on the
weighted mean age for each depth. [Colour
figure can be viewed at wileyonlinelibrary.com]

oven-dried at 60 °C and the GRSP content was analysed following
the procedures described by Wright & Upadhyaya (1996, 1998) to
obtain Bradford-reactive soil protein (BRSP) and immunoreactive soil
protein (IRSP) pools. Samples were extracted with 100 mM of
Na,O7P, (pH =9) for 1 h at 120 °C for BRSP analysis, while sam-
ples were extracted with 50 mM of Naz;C¢HsO; (pH = 8) for 30 min
at 120 °C for IRSP analysis. Bradford-reactive soil protein concentra-
tions were determined using the Bradford dye-binding assay with pro-
tein dye reagent (Bio-Rad Laboratories) and bovine serum albumin
(Sigma-Aldrich, St. Louis, MO, USA) as the standard and they were
read at 595 nm in a spectrophotometer (Model 680; Bio-Rad Labora-
tories, Philadelphia, PA, USA). Based on BRSP concentrations, solu-
tions containing 0-02 pg of protein per well (Dynex 96 well
polyvinyl chloride u-bottom plates; Dynex Technologies, Chantilly,
VA, USA) were prepared for IRSP analysis. Immunoreactive soil pro-
tein was analysed with an indirect enzyme-linked immunosorbent
assay with a monoclonal antibody MAb 32B11 against spores of
arbuscular mycorrhizal fungi (AMF; Wright & Upadhyaya 1996).
Due to the lack of a commercial standard, IRSP values are shown as
unit-less measurements, providing a comparative mean to test the rel-
ative amount of GRSP from different soils tested in a similar way,
using the same standard curve (Adame ef al. 2012).

Results

Four palynological zones (P-1 to P-4) summarise the Portlli-
gat Bay vegetation history (Fig. 3). Palynological (Fig. 3),
CHAR, magnetic susceptibility and GRSP (Fig. 4) data are
described following the palynological zones.

Zone P-1 (480—368-5 cm, ~5-6—4-3 cal. kyr BpP): Pinus
occurs in low values (10-20%). Deciduous Quercus is the
mesophyte with the largest percentages (15-35%). Among the

© 2017 The Authors. Journal of Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society, Journal of Ecology, 105,
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Fig. 3. Percentage palynological diagram of the Portlligat Bay Posidonia oceanica mat sediment ‘core 2006’ plotted against age. The filled sil-
houettes show the percentage curves of the taxa, while the white silhouettes show the x 10 exaggeration curves. Dots represent percentages below
0-5%. The constrained cluster analysis zonation is also included. Note that the Fungal spores undiff., Foraminifera linings and Total reworked

curves have different scales than the other palynological taxa.

Mediterranean taxa, Q. suber, evergreen Quercus and Pistacia
have large values (~10% each), while Phillyrea and Olea pre-
sent lower values. The most important shrub taxa are Erica-t.
(15-20%) and Cistus-t. (2-10%). Herbs are dominated by
Poaceae, Cichorioideae, Amaranthaceae, Cyperaceae, Asteroi-
deae, Plantago spp. and Urticaceae (10-30%). Charcoal accu-
mulation rates values are first high and they drop at ~5-3 cal.
kyr Bp. Magnetic susceptibility values are low in the oldest
samples, although they rise and peak at the end of the zone.
A similar pattern is found in the fungal spore record.
Neorhabdocoela oocytes and Spirogyra are present. Percent-
ages of reworked pollen are high (40-90%).

Zone P-2 (368-5—142-5 cm, ~4-3—1-5 cal. kyr BP): Pinus
occurs in larger values (20-50%) but gradually decreases
from ~2.-0 cal. kyr Bp onwards. Deciduous Quercus percent-
ages also decrease slightly (10-20%). Q. suber, Pistacia and
Phillyrea have lower values, while evergreen Quercus pre-
sents higher ones. Erica-t. dominates the shrub component
(15-20%). Herbaceous percentages are low (<10%), although
Cichorioideae, Plantago and Thalictrum values increase from
~2-0 cal. kyr Bp. The GRSP record shows three periods with

lower values coeval with the presence of Olea, Cerealia-t.,
Cannabis/Humulus-t. and Juglans pollen. CHAR values are
low, although they rise from ~2-0 cal. kyr Bp onwards peaking
at ~1-8-1-6 cal. kyr Bp. Magnetic susceptibility values show
peaking values. Fungal spore abundance drops from the onset
of zone P-2 and remains low until ~3-0 cal. kyr Bp (265 cm),
when they increase and show a see-saw pattern. Neorhabdo-
coela oocytes and Spirogyra occur in trace amounts. Percent-
ages of reworked pollen are relatively lower (30-60%).

Zone P-3 (142-5—63 cm, ~1-5—0-6 cal. kyr Bp): Pinus has
lower values compared to zone P-2 (10-30%). Deciduous
Quercus values decrease (~15%). Evergreen Quercus and
Q. suber have lower percentages, while Pistacia are higher.
The shrub component increases, with Erica-t. the most domi-
nant taxa (~20%), along with Cistus-t. (5-10%), Cytisus/Gen-
ista-t., Helianthemum-t. and Calluna. Herbs percentages
increase (10-30%), with Poaceae, Amaranthaceae, Cichori-
oideae, Artemisia, Asteroideae, Plantago, Urticaceae and
Thalictrum as the main types. The GRSP record shows two
periods of decreasing values coeval with the presence of
Cannabis/Humulus-t.,

Olea, Cerealia-t., Castanea, Juglans
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and Vitis pollen. CHAR values have a see-saw pattern. Mag-
netic susceptibility values and foraminifera linings percent-
ages follow increasing trends. Fungal spore abundance is
high. Neorhabdocoela oocytes
increase. Percentages of reworked pollen also increase.

Zone P-4 (63—13 cm, <~0-6 cal. kyr BP): Pinus abundance
is high (40—45%), while deciduous Quercus values are low

and Spirogyra presence

(~10%). Evergreen Quercus, Q. suber, Phillyrea and Pistacia
are lower or at a similar value compared with those in zone
P-3. The shrub component decreases, Erica-t. in particular
(<10%). Herbs are well represented (~25%) with Amaran-
thaceae, Poaceae, Cichorioideae, Plantago, Urticaceae, Arte-
misia, Cardueae, Centaurea jacea-t., Brassicaceae, Thalictrum
and Caryophyllaceae as the main components. Olea, Cas-
tanea, Juglans, Vitis, Cannabis/Humulus-t. and Cerealia-t.
have an important presence, and GRSP values are lower when
they peak. CHAR values are relatively high. Magnetic suscep-
tibility peaks at the onset of the zone. Foraminifera linings
and fungal spore values are high and also peak at the begin-
ning of the zone. Neorhabdocoela oocytes and Spirogyra
percentages are similar to those recorded in zone P-3.

Discussion

CONTINENTAL LANDSCAPE AND FIRE HISTORY

Evidence from the western Mediterranecan basin between
40°N and 45°N latitudes shows an increase in fires from
~8 cal. kyr BP up to around 5 cal. kyr Bp, when a drop in the

Posidonia mats reconstruct climate and human impact 1273

frequency of fires occurred (Vanniere ef al. 2011). In the
Portlligat record, CHAR values are high from the onset of the
record up to ~5-3 cal. kyr Bp (Fig. 4). This phase with fires is
also detected regionally in the Pyrenees and has been linked
to the increased summer temperature during the Holocene
Thermal Maximum (Rius ef al. 2011; Rius, Vanniere &
Galop 2012), and to the development of the mesophytic forest
with low amounts of Pinus and high lake levels (Pérez-Sanz
et al. 2013). Neorhabdocoela oocytes and Spirogyra, indica-
tive of freshwater, occur during this phase of the Portlligat
record (Fig. 3), pointing to increased freshwater discharge in
the bay due to the more humid conditions. The high values of
reworked pollen found in this interval could be linked to it as
well, as larger river discharge would deliver higher amounts
of damaged pollen (Fig. 4).

In the Portlligat record, CHAR is low from 5-3 to ~2-0-
1-8 cal. kyr BP which concurs with other regional records
(Rius et al. 2011; Rius, Vanniere & Galop 2012; Pérez-Sanz
et al. 2013). The inferred landscape is also characterised by
the higher representation of Pinus (Fig. 3), suggestive of
increased aridity. The shift from Q. suber to evergreen Quer-
cus, along with the lower values of freshwater indicators, sup-
ports this interpretation (Fig. 3). The nearby Sobrestany
pollen record also shows an increase in Pinus and evergreen
Quercus and a decrease in Q. suber during this time (Parra,
van Campo & Otto 2005). The aridity trend is also recorded
in other Iberian records by the expansion of Pinus, sclero-
phyllous and/or steppe taxa (Carrion er al. 2003, 2004;
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Pantale6n-Cano ef al. 2003; Martin-Puertas et al.
Pérez-Sanz et al. 2013; Aranbarri et al. 2014).

The main period of cultivation apparently occurred in
Roman (~2-2 cal. kyr BP) and especially from Medieval times

2008;

(~1-5 cal. kyr Bp) onwards, with Olea, Cerealia-t., Cannabis/
Humulus-t., Juglans, Castanea and Vitis presenting highest
percentages at Portlligat (Fig. 3). The development of crops is
coeval with high CHAR values (Fig. 4), suggesting that
human-induced fires were used to open up the landscape and
expand the area of cultivated land. Deciduous and evergreen
Quercus were the most impacted taxa (Fig. 3). The rise in
crops from the Roman period onwards is also a common
occurrence in other pollen records in the region (Riera &
Esteban 1994; Riera, Wansard & Julia 2004; Burjachs er al.
2005; Parra, van Campo & Otto 2005; Lopez-Saez et al.
2009; Rull et al. 2011; Ejarque et al. 2016). The presence of
freshwater indicators, together with higher values of reworked
pollen (Figs. 3 and 4), may indicate moister conditions again.

LAND-USE CHANGE AND ITS IMPACT ON THE
CONTINENTAL LANDSCAPE

Emran, Gispert & Pardini (2012) measured present GRSP
levels under different terrestrial vegetation communities in the
study area where the Posidonia mat cores were taken (Cape
Creus, NE Spain, Fig. 1). They found that GRSP production
was lower in cultivated soils (under vines and olive groves)
than in non-cultivated soils. By the last twelve centuries of
land-use change with the GRSP record from the P. oceanica
mat ‘core 2000°, Lopez-Merino et al. (2015) found that when
indicators of crops (e.g. Cerealia-t., Cannabis/Humulus-t.,
Vitis, Juglans, Castanea and Olea) increased, the GRSP con-
tent decreased accordingly. The GRSP perturbation linked to
anthropogenic activities is related to the impact of cultivation
practices on the AMF, symbionts with the roots of most ter-
restrial plants that produce GRSP. Arbuscular mycorrhizal
fungi have a significant role in continental soil ecosystems’
functioning and quality (e.g. Wright & Upadhyaya 1998; Ril-
lig et al. 2001; Rillig & Steinberg 2002). Lopez-Merino et al.
(2015) suggested the use of GRSP measured in the anoxic
seagrass mat as a palaeo-proxy of continental soil quality. In
this new study, the GRSP record of ‘core 2000’ is extended

down to ~4-5 cal. kyr BP, and compared with the palynologi-
cal indicators of potential crops detected in ‘core 2006’.
Notwithstanding the chronological uncertainties of comparing
two cores with independent age-based chronologies, drops in
the GRSP record match with increasing indicators of potential
crops (Fig. 5). Six periods with decreasing trends in GRSP
and increasing land-use change indicators are identified at
~3.4-2.9 (Late Bronze Age), ~2-:6-2-3 (Iron Age), ~2-2-1-7
(Roman times), ~1-5-1-0 (Visigothic times), ~0-9-0-7 (Medie-
val times), and <~0-6 (Late Medieval to present times) cal.
kyr Bp (Fig. 5).

Importantly, GRSP represents a sizeable portion of the ter-
restrial carbon pool (4-8% of soil carbon; Rillig er al. 2003);
therefore alterations in the AMF hyphae and the production
of GRSP have a direct effect on the terrestrial carbon storage
(e.g. Rillig et al. 2001; Wilson et al. 2009). This new study
provides further evidence of the long-term impact of anthro-
pogenic activities on important soil ecological features that
may play a key role under the rising CO, atmospheric levels
(Treseder & Allen 2000).

IMPACT OF CLIMATE AND LAND-USE CHANGE ON THE
MARINE POSIDONIA MEADOWS

The establishment of crops had an impact on the continental
soil quality and terrestrial carbon storage during the Late
Holocene (Fig. 5). Considering that the seagrass ecosystem is
an important carbon sink located in coastal areas, did agricul-
ture and/or other environmental changes have an effect on the
functioning of the P. oceanica system? Many human pres-
sures have been linked to the recent decline of P. oceanica
meadows in the Mediterranean coastal zone (Marba, Diaz-
Almela & Duarte 2014). Most of these anthropogenic impacts
have a recent origin or their intensification have occurred after
the Industrial Revolution. Adding a palaeoecological perspec-
tive to reconstruct environmental impacts on seagrasses could
inform the restoration and management of the very sensitive
seagrass meadows.

Magnetic susceptibility in a sample depends on its mineralog-
ical composition, and its increases are related to the presence of
ferromagnetic minerals (Thompson & Oldfield 1986). In Posi-
donia mats, due to their marine location, diamagnetic materials

Fig. 5. Linking environmental changes (climate- and human-induced) with perturbations on the terrestrial and coastal systems for the last
~5-6 cal. kyr BP in the Portlligat Bay (western Mediterranean) inferred by the palacoecological study of Posidonia oceanica mats. From top to
bottom: CHAR represents charcoal accumulation rates related to fire activity; Olea and crops (Cerealia-t., Cannabis/Humulus-t., Juglans, Cas-
tanea and Vitis) are palynological indicators of potential crops that account for land-use changes; GRSP (glomalin-related soil protein) content is
a proxy for changes in the continental soil quality; magnetic susceptibility indicates changes in the seagrass mat organic/inorganic content, higher
values interpreted as enhanced loadings of terrigenous material; Foraminifera linings account for eutrophication of the bay waters due to the
extensification of the agrarian activities. ‘Red bands’ highlight periods with increased land-use change and fire activity that affected the continen-
tal soil quality (decreases in GRSP) and the coastal seagrass mat sediments (increases in magnetic susceptibility). The most recent ‘green band’
highlights also a moment in which land-use change is detected, disturbing the continental soil quality; however, the seagrass mat does not reflect
an increase in magnetic susceptibility. This fact is linked to the onset of the olive tree and vine terrace farming in the area (Franquesa i Codinach
1995). ‘Grey bands’ highlight four phases in which higher values of magnetic susceptibility are not linked to land-use change and decreasing
trends in GRSP. Three of them are likely related to major flooding events in the NW Mediterranean area (Benito et al. 2015), although one of
them remains unexplained. CHAR, Olea, crops, GRSP, magnetic susceptibility and Foraminifera linings values have been standardised (Z-scores)
for comparison purposes. CHAR, palynological and magnetic susceptibility data are from ‘core 2006°, while GRSP is from ‘core 2000’. [Colour
figure can be viewed at wileyonlinelibrary.com]
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(carbonates and organic matter) are the main components of the
mat (Serrano et al. 2012). Hence, increases in magnetic suscep-
tibility may be indicative of higher loadings of ferromagnetic
minerals derived from soil erosion. When comparing the mag-
netic susceptibility record with the palynological indicators of
potential crops and the record of GRSP, it could be seen that for
the last ~3-4 cal. kyr BP increases in magnetic susceptibility are
coeval with five of the six above mentioned inferred periods of
land-use change: ~3-4-2-9 (Late Bronze Age), ~2:6-2-3 (Iron
Age), ~2-2—1-7 (Roman times), ~1-5-1-0 (Visigothic times) and
~0-9-0-7 (Medieval times) cal. kyr Bp (Fig. 5). This means that
soil erosion triggered by anthropogenic activities was most
likely responsible for the detected changes in the magnetic sus-
ceptibility. Interestingly, the most recent period of inferred
land-use change (<~0-6 cal. kyr Bp, Medieval to present times)
is not linked to higher magnetic susceptibility values despite
being the phase with the highest presence of crops. This could
be related to the olive tree and vine terrace farming in the area
(Franquesa i Codinach 1995), as terraced fields limit the amount
of soil erosion (Montgomery 2007).

Four peaks in the magnetic susceptibility record are not
linked to land-use change and other factors apart from
human-induced soil erosion due to farming have to be found.
These increases in magnetic susceptibility are detected at
~5-1-4-3, ~4.0-3-8, ~2:9-2-8 and ~0-6 cal. kyr Bp (Fig. 5).
Major events of flooding in the NW Mediterranean area dur-
ing the Late Holocene have been reconstructed at ~4-8—4-5,
~2-75 and ~0-5 cal. kyr Bp (Benito er al. 2015), and three of
the four peaks in the magnetic susceptibility values are likely
to reflect these major flooding events that would mean a load-
ing of terrigenous material due to hydrological changes. The
higher values at ~4-0-3-8 cal. kyr BP remain, however, unex-
plained. In addition, the larger peak in magnetic susceptibility
detected at ~5-1-4-3 cal. kyr BP is contemporaneous not only
to a major flooding event but also to the stabilisation of the
relative sea-level (RSL). Relative sea-level rose continuously
throughout the Holocene with a deceleration after ~5-0—
4.0 cal. kyr Bp, when the RSL approached the present level
(Vacchi et al. 2016). The coupling of two environmental forc-
ings might explain the enhanced soil erosion triggering the
largest increase in the magnetic susceptibility. This sequence
of events warn what may happen in the near future if several
impacts combine together to initiate ecological shifts in sea-
grass-dominated ecosystems.

At the Posidonia meadows scale, higher loading of terrige-
nous materials would most likely cause a decrease in the
health of the meadows, as the material would dilute the bio-
genic carbonates deposited and potentially lead to a decline in
the assemblage of calcifying organisms sustained by the
meadows, a decline in seagrass productivity and a loss in bio-
diversity (Short & Wyllie-Echeverria 1996; Montefalcone
et al. 2015). Thus, since the Late Holocene, soil erosion
induced by major flooding events and land-use change in the
NW Mediterranean area has probably disturbed Posidonia
meadows at Portlligat Bay, potentially affecting the meadows’
health and, hence, disturbing the mat carbon accumulation
dynamics.

Finally, the extensification of agrarian activities from Roman
and Medieval times onwards is not only reflected in the mat-
inferred continental soil erosion record, but also in the coastal
environment with the rise in the abundance of foraminifera lin-
ings. It is plausible that species tolerant to low oxygen concen-
trations and high organic fluxes dominated the benthic
assemblages (Thibodeau, de Vernal & Mucci 2006), likely indi-
cating significant changes in bottom water conditions (Fig. 5)
due to river-induced eutrophication and anoxia (Brasier 1995).
However, the establishment of terraced fields reduced not only
the terrigenous loading to the coastal environment but also the
eutrophication levels, as the abundance of foraminifera linings
has fallen in the last few centuries (Fig. 5).

THE IMPORTANCE OF A PALAEOECOLOGICAL
PERSPECTIVE FOR SEAGRASS ECOSYSTEM
MANAGEMENT

On the one hand, this work provides a detailed record of
land-use and climate change derived from seagrass mats of
P. oceanica. Therefore, coastal landscapes, which have few
or no on-land palaeoecological sites, could be reconstructed
by investigating adjacent shallow marine seagrass mats
(Lopez-Séez et al. 2009). On the other hand, the proposed
combination of palaeoecological proxies have delivered long-
term data-series that provide useful information to test the
palacoecological potential of Posidonia mats by detecting
long-term environmental dynamics that affected P. oceanica
system, and thus providing clues for habitat restoration at a
coastal marine scale. First, the microcharcoal record agrees
with regional trends, showing the reliability of Posidonia
mats for the reconstruction of regional fire history. Further-
more, palynological data have provided a detailed reconstruc-
tion of the landscape, identifying periods of enhanced
agrarian activity, especially from Roman and Medieval times
(Fig. 5). Second, we provide evidence to suggest that the
impact of long-term land-use changes on the continental soil
AMF microbiota affecting soil quality can be identified in the
GRSP analysis in Posidonia mats. Third, phases with higher
anthropogenic and climate stressors at continental scale are
mirrored in the Posidonia mat archives. On one hand, the
coastal environment is affected by agrarian-induced eutrophi-
cation since Roman and Medieval times. On the other hand,
enlarged coverage of crops (Fig. 5) and major flooding events
reconstructed for the NW Mediterranean area (Benito et al.
2015) resulted in increased levels of soil erosion — recon-
structed by the increasing values in magnetic susceptibility —
that impacted on the Posidonia mat inorganic content and
most probably on mat carbon accumulation dynamics.

The threats to P. oceanica meadows, accelerating loss
rates, are mainly related to chemical (e.g. urban waste dis-
charges and eutrophication) and mechanical (e.g. fish farming,
trawl fishing, anchoring and coastal development) processes
(e.g. Waycott et al. 2009). However, this research shows that
land-use and climate changes, although not being the main
factors inducing seagrass meadows disappearance, have
affected the properties of the Posidonia mat, likely impacting
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the meadow health and their carbon accumulation dynamics
during the Late Holocene. Further research is required to fully
understand long-term seagrass ecosystem dynamics in
response to Holocene environmental disturbances. As CO,
emissions are projected to increase dramatically and coastal
development in the Mediterranean continues, any single step
in restoring seagrass meadows and their carbon sink capacity
is important. This new research recommends taking into
account the catchment scale (e.g. reducing soil run-off) in the
Mediterranean coastal areas in order to manage and protect
the important socio-economic ecosystem services that seagrass
meadows provide.
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