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Review Article

Mechanical basis of bone strength: influence of bone 
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Introduction

Skeletal fragility is directly related to mortality1-3 and injury 
risk4-8, with lower bone strength increasing vulnerability 
to fracture. Given the incidence and severity of fractures 
can be minimised through causal prevention (i.e. falls, 
collision, overload) and/or through prophylactic or remedial 
intervention (i.e. mechanical, nutritional, pharmacological 
programs); a thorough understanding of bone strength and 
its mechanical behaviour under physical load is required. 

Indeed, the skeleton critically underpins movement and is 
highly sensitive, responsive and adaptive to its mechanical 
environment9-15, thus knowledge of the interactions and 
interplay between bone material and bone structure to deliver 
bone strength, in addition to the synergy and neutrality of 
localised muscle mass to modify the behavioural mechanics 
of bone is of critical interest to clinicians, researchers and 
physical therapists. 

Accrual of bone occurs most rapidly in teenage years16-18, 
culminating in the third decade of life to achieve peak bone 
mass, providing practitioners with a considerable opportunity 
[window of adaptation] to optimise bone accretion and 
skeletal robustness during maturation and early-stage 
development19-21. Beyond the evident ceiling of bone mass 
proliferation, bone strength is also increased through spatially 
relevant adaptations specific to geometrical rearrangement 
driven by the mechanical environment, in addition to bone 
health homeostasis driven by the stochastic and systemic 
endocrine environment through-out the lifespan (mediated 
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by mechanical inputs)17,22-25. Bone is also hierarchically 
organised, where structures at macroscopic and microscopic 
levels co-exist at varying proportions through-out the body 
to manage (and adapt to) mechanical loads functionally. 
Bone strength is therefore a sophisticated and multifactorial 
proposition specific to the complex interplay of macroscopic 
tissue (trabecular and cortical), material properties (organic 
and inorganic) and structural properties (geometry and 
distribution); and is modulated by neighbouring muscle 
as a key osteogenic stimulant and modifier of mechanical 
behaviour26-36.

Our understanding of the mechanisms underpinning 
skeletal adaptation to the prevalent loading environment 
has developed over the last century, whereby the local 
cellular-level osteogenic responses, and signaling pathways 
are currently understood in great detail37. These cellular-
level responses intuitively lead into gross morphological 
adaptations, with Dual-energy X-ray Absorptiometry (DXA) 
based randomised controlled trials showing this to be 
true in healthy humans over the past several decades38,39. 
Indeed, the meritorious work of Turner and colleagues40-42 
formalised preclinical, animal model experimentations into an 
osteogenic index formula, which represents the relationship 
between mechanical loading and corresponding osteogenic 
effect40,43-45. However, these rules can only be applied in 
designing targeted interventions with full understanding of 
the intricate interplay between gross motor patterns (e.g. 
jumping or running) and the resulting site-specific skeletal 
loads46-49. Our ability to predict site-specific local loading has 
improved greatly with the emergence and maturation of 3-D 
musculoskeletal modeling for dynamic skeletal strains47,50,51, 
and it has relatively recently become sufficiently advanced 
to enable exploration of site-specific dynamic skeletal 
loads in osteogenic exercises49,52-54. In addition, the recent 

development and application of an optimal segment tracking 
(OST) approach has further expanded our understanding of 
in vivo bone deformation54,55. Indeed, recent advances in 
detailed site- and direction-specific analyses of bone material 
distribution in clinical populations (fracture cases56,57), 
chronic conditions (aging58-60, paralysis61-63, habitual 
activity10,12,64), and following loading interventions (exercise65, 
immobilisation66), have established that site-specific skeletal 
adaptations can be captured and should be explored.

Therefore, this paper provides a thorough overview of the 
interplay between bone material, bone structure and muscle 
action to modulate and influence mechanical behaviour of 
bone. Through increased understanding, this information 
allows clinicians, researchers and physical therapists to 
comprehensively examine bone strength within the realm 
of present technology; identify potential sources of skeletal 
fragility in a range of populations specific to function and 
morphology; and investigate ways to produce systemic 
(stochastic) and/or targeted (deterministic) interventions to 
preserve or promote bone strength.

Mechanical load

Bone formation, regeneration and degradation processes 
are stimulated by mechanical strain as a result of applied 
mechanical stress in the form of muscular contraction, impact 
loading and gravitational forces31,41,67-73. In particular, bone 
cells are responsive to local strains expressed in their precise 
vicinity by routine stresses supplied by activities of daily 
living42,68,73-81; therefore, the determinants of bone adaptation 
in response to mechanical load involve all aspects of the strain 
environment, including strain magnitude, strain rate, strain 
frequency, strain distribution, number of loading cycles, and 

Figure 1. Stress-strain, force-deformation curve demonstrating 
elastic and plastic regions, and ultimate strength (adapted from 
95,99-101).

Figure 2. Stress-strain characteristics of macroscopic 
tissue (adapted from 95,118). Cortical bone is stiffer with a high 
resistance to stress and low resistance to strain [2% yield]. 
Trabecular bone is porous with a low resistance to stress and 
high resistance to strain [50% yield].
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rest-recovery periods31,40,41,51,70,71,73,78,82-85. Specifically, all 
components of the strain environment are interlinked and 
interdependent, such that they collectively contribute to the 
osteogenic effect and potency of mechanical loading.

Stress - Strain

Bone receives stress (external force) which produces 
strain (structural deformation). In particular, applied forces 
generate stresses of varying intensities that produce strains 
of varying magnitudes and modes51,85-93. Stress is a measure 
of load per unit of area, expressed in Newtons per square 
metre (N/m2) or Pascals (Pa); whereas strain is a measure 
of linear or shear deformation expressed as microstrain 
(µε), or as a percentage (%) of change in dimension92,94-96. 
The interaction of stress and strain provides insight into the 
mechanical behaviour of material properties in bone when 
deforming under load36,51,85,86,89,94,97-100.

Bones under strain exhibit two distinct behavioural 
characteristics either side of their yield point, noted as elastic 
and plastic regions on the stress-strain curve89,92,101-103. In 
the elastic region, lower level strains beneath the yield point 
allow bone material to elastically store and return applied 
stress, thus escaping microdamage in the process97,103-106. 
Conversely, in the plastic region, higher level strains above 
the yield point deform bone material beyond its point of 
resilience, consequently generating material damage, 
usually in the form of micro-cracks85,94,107-111. Resilience 
explicitly refers to the capacity of bone to elastically store 
energy and thus resist microdamage, and is represented 
by the area under the elastic portion of the stress-strain cu

rve95,102,103,107,110,112,113. Elasticity or stiffness of biomaterial 
(Young’s modulus; E= ΔƐ/Δσ) can considerably modify 
skeletal resilience in response to changes in the gradient 
of the stress-strain curve86,97,98,101,104,114-116. Similarly, an 
adjustment in resilience can subsequently alter skeletal 
toughness, represented by the whole area [elastic and plastic 
regions] under the stress-strain curve94,96,98,102,103,105,112,113,117, 
thus altering the total amount of energy absorbed by bone 
prior to failure.

Stress-strain characteristics differ between macroscopic 
tissues in response to their underlying microscopic 
architecture96,101,116-120. Cortical bone is stiffer than trabecular 
bone, thus can withstand higher stress (~150 MPa) yet lower 
strain (~2%) prior to failure; whereas the porous nature of 
trabecular bone provides greater elasticity than cortical 
bone, thus withstands lower levels of stress (~50 MPa) yet 
much higher strain (~50%) prior to failure86,95,98,107,109,121. 
However, variations in macroscopic composition through-out 
the skeleton; coupled with the interaction of different material 
properties producing different stress-strain characteristics; 
highlights a complex yet sophisticated relationship between 
physical load, material deformation and mechanical 
behaviour24,97,113,119-122.

Strain magnitude

Magnitudes of strain received by bone from muscular 
contraction and gravitational load form the central thesis 
and most influential feature of bone adaptation69,77,84,123-125. 
Conceptually referred to as “mechanostat” theory; a 
qualitatively described, dose-response continuum of strain 

Figure 3. Mechanostat Theory: Modeling and remodeling effects on bone strength and mass. DW= disuse window; AW= adapted window; 
MOW = mild overload window; POW= pathologic overload window; MES= minimum effective strain (r= remodeling, m= modeling, p= 
microdamage), Fx= fracture strain (adapted from 69,127,131).
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magnitudes can elicit resorptive, regenerative or formative 
responses in bone40,69,91,126-128. Functionally, the mechanostat 
serves to modify bone in order to meet mechanical demands; 
therefore to simply maintain bone mass, a minimum effective 
strain (MES) is required68,69,127,129-131. If strain magnitude sits 
below the MES threshold, mechanical degradation occurs 
to eliminate unnecessary, excess mass; if strain magnitude 
exceeds the MES threshold, bone formation occurs to 
increase bone strength by adding mass and increasing cross-
sectional area42,77,91,123,126-129. 

Strain magnitude is not the sole progenitor of, ‘nor linearly 
related to bone adaptation, which highlights an inherent 
limitation of mechanostat theory in its current form68,76,132-

134. Biologically, strain is not sensed and transduced 
uniformly at the cellular level therefore mechanistically, bone 
adaptation responds to various combinations of different 
strain-related stimuli rather than a specific magnitude of 
strain itself76,77,126,128,129,133,134. Strain frequency, strain rate 
and strain distribution are derivatives of strain magnitude, 
and have therefore been recognised as additional, important 
determinants of bone adaptation40,41,68,70,83. 

Strain frequency 

Strain frequency represents the number of applied cycles-
per-second to a given structure40,70,135. The frequency of 
strain delivered to bone has been established as an influential 
and programmable determinant of osteogenesis82,136-140. 
Specifically, increases in loading frequency adjust 
mechanostat thresholds downward; reducing the minimum 
effective strain required to stimulate osteogenesis, thus 
enabling strain-related bone formation to occur at lower 
relative strain magnitudes78,126,134,141. This somewhat inverse 
relationship between strain frequency and strain magnitude 
highlights a potential volume-specific adjustable loading 
mechanism to provide osteogenic stimulus within appropriate, 
safe and variable strain environments40,78,135,141-143.

Bone responds in a non-linear fashion to strain frequency, 
with osteogenic adaptations ceasing to intensify beyond 
a 10 Hz stimulus cycle due to signal saturation78,136,139,141. 
Instead, osteogenic activity interacts with magnitude and 

frequency loading schemes on a proposed continuum. For 
example, low magnitude, low frequency strains are likely to 
result in resorption due to insufficient stimuli; whereas high 
magnitude, high frequency strains are likely to result in stress 
reactions or structural failure due to excessive overload. 
Therefore high-magnitude, low frequency strains (e.g. impact 
exercise), low magnitude, high frequency strains (e.g. whole-
body vibration), or variants of these end-points will optimally 
yield desirable, formative adaptations71,135,137,142,144,145.

Strain rate & distribution

Strain rate and strain distribution represent the 
temporal and spatial characteristics of strain magnitude 
respectively70,78,93,134,144,146,147. Specifically, strain rate refers to 
temporal change in strain magnitude within each strain cycle 
(microstrain per second; µƐ/s), thus measures the rapidity 
at which alternations in strain application occur70,132,148; 
whereas strain distribution refers to spatial change in strain 
magnitude across a given volume of bone (microstrain per 
linear distance, ΔµƐ/d), quantified circumferentially and 
longitudinally in each orthogonal axis70,83,149. Given the 
teleological purpose of bone in humans, it seems logical 
that in order to induce osteogenic adaptation, strain should 
be supplied dynamically rather than statically41,45,138,150,151; 
therefore variable and volatile strain environments involving 
these strain parameters should ideologically optimise 
anabolism in bone40,68,70,79,128.

Human and animal models have directly and indirectly 
established strain rate as a key driver of osteogenesis 
independent of strain magnitude132,144,146,148,152-156. In 
particular, adaptive modeling is closely and positively 
associated with strain rate, such that slowly applied 
dynamic strains yield minimal adaptations whereas rapidly 
applied dynamic strains yield significantly intensified 
adaptations41,45,144,153,157. Similarly, strain location, direction 
and gradient also contribute to nonlinear outcomes of 
bone loading paradigms such that irregular and unusual 
distribution (spatial delivery) of strain is also positively 
influential to osteogenesis40,78,83,158. Bone cells therefore 
optimally respond to the net-effect of loading activity that 

Figure 4. Osteogenic relationship between strain magnitude and strain frequency: Low magnitude, low frequency activities and high 
magnitude, high frequency activities may lead to maladaptation due to insufficient (resorptive) or excessive (stress reaction) stimuli.
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is dominated by high strains (magnitude or frequency) 
changing at fast rates while presenting in unusual and 
unbalanced distributions40,68,77,112,132,134,147,156. Recent work 
also suggests that strain modality is important, with torsional 
deformations key to both development and maintenance of 
bone strength159,160.

Strain volume

Strain volume is the durational product of strain 
magnitude, rate and frequency for a given loading session, 
often aggregately quantified into a total number of daily 
loading cycles40,71,95,156. Specifically, precise amounts of 
loading cycles at given magnitudes, rates or frequencies 
generate formative, preservative or resorptive responses 
in bone dependent upon the strain environment within 
each session and accumulative strain history within each 
day68,76,153. While many combinations of strain magnitude, 
rate and frequency can interact to provide potent osteogenic 
stimuli; bone adaptation does not linearly respond to strain 
volume40,71,156. In particular, increases in skeletal loading 
duration do not elicit proportional changes in bone mass 
formation; rather, bone responsiveness to mechanical load 
eventually declines, highlighting an evident suppression of 
mechanosensitivity153,161-169.

Bone’s rapid and acute desensitisation to anabolic 
stimulus in response to mechanical loading is governed by 
a law of diminishing returns, such that received load differs 
from perceived load156,162,167,170. Remarkably small amounts 
of mechanical stimulation at effective strain thresholds 
are required to promote osteogenesis prior to a rapid 
reduction in cellular responsiveness40,161,167,171. Specifically, 
~95% of mechanosensitivity is dampened after only ~20 
to 40 loading cycles at physiologic thresholds (~2000 µƐ in 
compression), with almost no discernible osteogenic benefit 
established beyond ~100 loading cycles within equivalent 
strain environments, at which point strain volume becomes 
asymptotic153,170,172. Indeed, the osteogenic relationship 
between strain volume and mechanosensitivity is fluid, 
such that a variety of effective strains along the magnitude-
frequency continuum will adjust the number of loading cycles 
experienced prior to rapid sensory suppression. Nevertheless, 
the existence of a tangible saturation point beyond a given 
cyclical loading threshold has considerable implications for 
targeted mechanical loading programs40,130,164,166,171-173.

Restoration of mechanosensitivity following previous 
loading bouts is necessary for bone cells to progressively 
transduce osteogenic stimuli during successive or future 
loading bouts163,166,171,174-176. In order for resensitisation to 
occur, the provision of unloaded rest periods is required 
to afford bone with recovery time; the duration of which 
is proportionate to the nature of recent loading stimulus 
incurred40,162,174,175. Akin to desensitisation, bone cell 
resensitisation also presents as a logarithmic function. 
Specifically, the restoration of mechanosensitivity is also 
initially rapid, until an inflection point is reached whereby 
only mild osteogenic improvements occur beyond it164,176. In 

particular, rest periods spanning ~15 seconds to ~4 hours 
increase bone formation outcomes by ~65% to 100%; 
whereas no significant advantage is evident beyond ~8 to 10 
hours; and ~98% of mechanosensitivity restored ~24 hours 
post-loading event40,153,169. Rest periods therefore enable 
an equivalent strain volume to be delivered across several 
discrete loading blocks; increasing anabolic potency and 
osteogenic outcomes through targeted mechanical loading 
schemes162,169,176-178. 

Cellular accommodation (mechanical acclimatisation) 
to frequent mechanical loading events creates prolonged 

Figure 5. The relationship between daily loading cycles 
(magnitude, rate and frequency) and subsequent bone adaptation 
(reprinted with permission from 71). Bone is maintained (red 
line), formed (superior portion) or resorbed (inferior portion) 
using a variety of different strain environments.

Figure 6. Bone mass of rats (•) and turkeys (Δ). Anabolic effect 
of mechanical loading saturates as the number of loading 
cycle’s increases, with limited benefit above ~40 cycles per day 
(reprinted with permission from 153).
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cytoskeletal alterations in bone, resulting in longer-
term mechanosensitive reductions to familiar strain 
environments40,42,143,168,170,179,180. Acutely, loading cycles 
delivered in the first bout of activity provide the greatest 
opportunity to elicit the largest adaptations within a given 
session or day, as strain detection and bone adaptation is 
most responsive at this time161,165,166,169,171,178. Chronically, 
this same principle applies; initial loading blocks within a 
sequential, long-term loading program also provide the 
greatest potential for osteogenic adaptation to occur, 
exemplified when comparing volume-matched regressive 
and progressive loading schemes40,42,130,181. Akin to acute 
mechanosensitive suppression; chronic acclimatisation of 
bone can also be reversed with the provision of unloaded 
recovery blocks within a broader mechanical loading 
program163,168,182 thus the potency of initial stimulus appears 
to drive bone adaptation, rather than long-term accumulation 
of mechanical loads40,42,168,181,182. Clinicians and physical 
therapists must therefore be cognisant of the temporal 
design and delivery of their prescribed, targeted mechanical 
loading programs. 

Mechanical behaviour

Bone is structurally complex and hierarchically 
designed, with diverse arrangements and various layers 
of biomaterial working co-operatively to meet numerous 
paradoxical requirements36,183-188. Specifically, the material 
(mechanical) and structural (geometrical) properties of 
bone implicitly determines its behaviour under mechanical 
load, dictating its performance under stress and strain to 
deliver mechanical stiffness and structural strength to the 
skeleton22,23,89,94,95,98,112,189. Owing to its anisotropic and 
viscoelastic design, bones behave and respond uniquely 
to various loading modalities of differing magnitudes, 

directions, rates and frequencies95,97,114,116,119,122,190. While 
this relationship between mechanical load and mechanical 
behaviour is multifactorial; bone strength and stiffness are 
greatest in the direction where loads are most commonly 
expressed23,69-71,85,86,90,102,191,192.

Loading types

Bone exhibits distinct mechanical behaviours when 
loaded across orthogonal axes, as it structurally differs in 
concentration and arrangement between longitudinal and 
transverse planes51,97,102,112,185,187,193,194. Consequently, bone 
strength and stiffness vary across the loading spectrum in an 
anisotropic and viscoelastic fashion, highlighting a context-
specific tolerance to mechanical load101,122,185,190,195-202.

Cortical bone is stronger and stiffer in compression than 
tension; under longitudinal loads than transverse or shear 
loads; and under higher strain rates than lower strain ra
tes95,101,104,114,198,203-205. By comparison, the mechanical 
behaviour of trabecular bone is less predictable and 
widely volatile, owing to its perforated, variable and 
less organised lamella arrangement and architectural 
connectivity24,36,101,116,121,206-209.

Bone routinely withstands tensile (pulling; positive 
elongation), compressive (pushing; negative elongation) and 
shear strains97,194,210. Although forces generating strain can 
act in isolation (uniaxial) or combination (biaxial or triaxial); 
at any given time bone will still experience all three forms 
of strain at various locations and magnitudes51,101,209,211-213. 
The co-existence of linear and angular strains under uniaxial, 
biaxial and triaxial loading is represented by Poisson’s effect; 
a ratio which describes the susceptibility of bone to deform 
transversely under given axial loads95,114,205. Specifically, 
bone widens under compression and narrows under tension 
in accordance with its anisotropic and viscoelastic properties; 
the sum of which explains the ability and extent of bone to 
bend and twist under complex or strenuous loads102,114,190. 

Figure 7. Bone formation (rBFR/BS) of rat tibia after applying 
loads in 4 bouts of 90-cycles every second day, with various 
rest provided between bouts; ~4 to 8 hours appears optimal 
(reprinted with permission from 164).

Table 1. Average anisotropic values of ultimate strength 
(compression, tension, shear), elastic modulus and Poisson’s ratio 
in cortical bone (adapted from 95,203).

Longitudinal [MPa] Compression 193

 Tension  133

Modulus  17,000

Poisson’s Ratio  0.40

Transverse [MPa] Compression  133

Tension  51

Modulus  11,500

Poisson’s Ratio  0.62

Shear [MPa] Shear 68

Modulus  3,300

* Trabecular bone: ~50 MPa (compression), ~8 MPa (tension), 
~400 MPa (modulus) longitudinally.
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Bone therefore dynamically responds to forces and moments 
in various directions, translating compressive, tensile and 
shear strains into compression, tension, bending, shear and 
torsional mechanical outputs54,55,95,97,101,112,194,205.

Material contribution

Bones are bi-phasic composite materials, with organic and 
inorganic components. The interplay between these materials 
and their relative composition considerably influences 
mechanical behaviour and bone strength, independent of 
geometry, when loaded under static, dynamic or fatiguing 
conditions36,94,187,189,214-218. Specifically, the degree of 
mineralisation and porosity (i.e.: apparent density) ultimately 
determines the quality of bone material, and therefore how 
it responds to load58,187,189,214,219-223; influencing its ability to 
resist deformation (stiffness), absorb stress (elasticity) and 
absorb energy (toughness) prior to failure (ultimate strength).

Mineralisation refers to the deposition and maturation 
of mineral content within bone through primary and 
secondary biomineral phases23,36,89,94,224,225. Sequentially, 
newly deposited bone begins to rapidly mineralise within 
~5 to 10 days of creation, generating ~60% of its total 
mineral content during primary mineralisation, prior to 
gradually advancing toward complete maturation and 
calcification during secondary mineralisation within ~30 
months of initial deposition189,219,220,224,226-228. This time-
course of mineralisation occurs asynchronously and 
continuously at multiple sites across various regions of 
bone36,189,214,219,224,229,230, thus mechanically, the degree to 
which immature and mature inorganic material (hydroxyapatite 
crystals) surrounds organic material (type 1 collagen) at any 
given time will ultimately determine the level of structural 
flexibility or stiffness conferred to bone, and therefore its 
mechanical competence23,86,89,184,191,218,222,226,231-234. 

Mechanical behaviour is not solely influenced by the 
degree of bone mineralisation, but also the quality of mineral 
within the bone matrix36,78,189,191,215,216. Indeed, the degree 
of crystallinity is of behavioural interest as increases in 
crystal size, number and distribution during secondary 
mineralisation alter the elastic, plastic and viscoelastic 
properties of bone in favour of increased micro-hardne
ss189,204,214,219,220,225,228,235-237. If mineralisation and crystallinity 
are too high, bone may become excessively stiff and brittle, 
thus micro-crack initiation, propagation and coalescence may 
arise at reduced levels of deformation85,189,219,221,228,238,239. 
If mineralisation and crystallinity are too low, bone may 
become fragile and weak; thus a presently undefined, yet 
evidently optimal ratio of organic-to-inorganic material 
exists in a U-shaped relationship with bone strength 
and mechanical competence23,36,183,224,226,228,240,241. This 
arbitrary conundrum is confounded by the recognition that 
certain combinations of material properties can improve 
tolerance to one type of loading, whilst at the same time 
deleteriously affect another type of loading98,183,189,191,216,223. 
Fortunately, mineralisation and crystallinity are closely 
linked, temporally aligned processes; metabolically regulated 

and mechanically modulated to maintain homeostasis in 
the absence of pathology or ageing to meet functional 
requirements204,228,229,237.

Porosity represents the prevalence, magnitude and 
distribution of pores within the bone matrix24,58,72,204,242,243, 
which characteristically differs between macroscopic tissues. 
Porosity is a prominent and purposeful architectural feature 
of trabecular bone (~50 to 90% porous); while minimal in 
quantity and size within cortical bone (~5 to 10% porous) 

Figure 8. A schematic representation of various loading modes 
applied to bone in isolation.

Figure 9. Deterioration of thickness, connectivity and porosity 
for trabecular (A and B) and cortical (C and D) bone (adapted 
from 260,261).
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under normal circumstances72,85,184,244. The functional merit 
of porosity in trabecular and cortical bone is provided at 
the expense of strength, with small increases in porosity 
equating to disproportionately large decreases in bone mass 
and density24,36,114,189,245-247; the major clinical feature of bone 
degeneration from ageing, disuse or disease58,114,248,249. 
Trabecular bone is rapidly affected by increased porosity; 
resulting in progressively thinner, disconnected and 
separated trabeculae36,58,188,208,245,250-253; similarly, the 
weakening of cortical bone is also predominated by 
increased porosity, resulting in loss of stiffness and reduced 
load tolerability58,85,114,204,244,247,254-257. Consequently, 
microarchitectural deterioration of trabecular and cortical 
bone rapidly compromises mechanical integrity, accounting 
for ~90% and ~75% of strength loss during ageing 
respectively36,85,188,208,243,245,254,255,258. Bone porosity should 
therefore be restricted, where possible, to only those cavities 
required for biological functions such as vascular supply, 
marrow storage, blood-cell production, biochemical signaling, 
transduction and remodelling processes24,58,189,249,257,259.

Density is the product of mineralisation and porosity, 
expressed as mass per unit of volume187,262-265. Specifically, the 
amount of mineral content per volume of bone (mineralisation), 
and its ratio of void volume to total volume (porosity) 
respectively combine to establish apparent bone mineral 
density263,264,266-268; the relationship of which exemplifies 
trabecular and cortical performance under mechanical lo
ads36,119,124,183,208,268,269. Owing to their architectural and 
functional differences, components of trabecular and cortical 
density (surface-to-volume ratios) poorly correlate with 
each other (r≈0.11); yet co-operatively influence whole-
bone behaviour and strength through separate genetic 
and environmental mechanisms, the interaction of which 
remains poorly understood36,266,270-272. Genetically, ~60% 
of trabecular density and ~40% of cortical density is pre-
determined271,273 with unique genomic expressions evident 
between microarchitectural components; including FMN2/
GREM2, RANKL and WNT16 variants effecting trabeculae 
thickness and number, cortical porosity, and cortical thickness 
respectively271,274-277. Synergistically, this provides scope for 
environmental mechanisms to separately and aggregately 
modulate bone density through physical, nutritional and 
pharmacological mechanisms. 

Bone mineral density (BMD) is a frequently used surrogate 
measure of mechanical competence and bone strength in 
clinical and experimental contexts, expressed in areal (aBMD) 
and volumetric (vBMD) terms208,262,265,266,269,278. Traditionally, 
areal BMD (mass per area; g/cm2) has featured as the central 
measure of bone quality to establish fracture risk; diagnose 
osteopenia and osteoporosis; or quantify interventional 
efficacy of preventative and remedial programs271,278-281. 
However, aBMD is limited by its generality; incapable of 
measuring material volume, composition or structural 
design; explaining ~50 - 70% of variation in bone streng
th36,94,184,262,265,269,271,273,280,282,283. Volumetric BMD (mass 
per volume; mg/cm3) has gained ascendency in recent 
times, owing to its separation of cortical and trabecular 

compartments; enabling a more refined analysis of tissue 
composition, adaptation and material contribution to bone 
strength24,187,266,269,280,284-287. While this improves upon 
the limitations of aBMD, all measures of bone mineral 
density inherently neglect structural properties of bone 
(architecture, morphology, geometry), which substantially 
influences mechanical behaviour, and greatly contributes 
to bone strength and fatigue resistance22,23,89,191,280,288-291. 
Although bone density provides valuable modifiable and 
measureable insights into bone quality; it is only one of several 
determinants of bone strength94,183,188,189,215,262,266,292,293, and 
should therefore form part of a wider investigative framework 
which includes structural quantities.

Structural contribution

Bone has unique geometrical and morphological 
properties which specifically and functionally adapt to 
routine mechanical loads in order to enhance bone strength 
and stiffness in the absence of increased bone mass22,23,97

,127,191,211,294,295. Specifically, bone modifies its structure by 
adjusting its size (thickness and diameter), shape (contour 
and dimensions) and architecture (alignment and distribution) 
to increase cross-sectional area (CSA) and cross-sectional 
moment of inertia (CSMI) as mechanisms to improve load 
tolerability and fatigue resistance22,97,189,191,211,245,295-300. In 
particular, compressive and tensile strength are proportional 
to CSA, while bending and torsional strength are exponential 
to CSMI, such that small amounts of material apposition can 
significantly improve structural strength23,193,250,259,300,301. 
CSMI is additionally important as it has several bone strength 
derivatives, including polar moment of inertia (J); section 
modulus (Z); and bone strength index (BSI).

Cortex diameter and thickness (i.e. bone size) dramatically 
influences the mechanical integrity and behaviour of bone 
when loaded23,94,245,295,302-304. Specifically, cortex expansion 
(increased cross-sectional area) advantageously positions 
material further from the neutral axis of long bones by 
concomitantly coordinating periosteal apposition with 
endosteal resorption191,259,298,305-307. Mechanically, increases 
in external and internal diameter of long bone cortices 
powerfully increases resistance to stress and strain, 
distributing mechanical forces over a larger area while 
promoting lightness for efficient movement; accounting for 
~55% of bone strength variation23,92,94,189,302,308. In particular, 
bone strength is proportional to the fourth power of material 
distance from the neutral axis, such that a doubling in cortex 
diameter will yield eight-fold increments in mechanical 
resistance to bending and torsional loads; and modest 
increments in mechanical resistance to compressive loads; 
without concomitant changes to mass or density189,259,299. 

Cortex shape and architectural arrangements are 
also highly adaptive morphological components of 
bone69,259,292,294,295,309,310. Specifically, bone mass 
asymmetrically and rotationally distributes around the cortex, 
predominating in areas of high stress, resulting in undulating 
periosteal and endosteal contours95,97,211,292,311-313. Indeed, 
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multi-planar bending and torsional forces lead to irregularly 
distributed increases in diameter and thickness; altering 
bone size and shape to increase CSA and CSMI; thereby 
maximising bone strength and stiffness193,250,259,298,300. 
Additionally, cortical and trabecular microarchitecture 
(collagen fibre organisation) also spatially align in the 
direction of most commonly expressed stresses to resist 
customary loads24,36,69,102,188,292. While these alterations may 
improve bone strength under common loading scenarios, 
irregular loading patterns may compromise mechanical 
competency in the absence of multi-directional, multi-modal 
and variable stimuli.

Bone size and shape established during ontogeny 
determines skeletal robustness or slenderness into 
adulthood, influencing the format of geometrical 
co-adaptations to mechanical load during 
maturation210,259,292,295,298,311-316. Owing to their 
anthropometric differences (wide versus narrow cortices); 
material and structural traits of robust and slender 
bones co-adapt differently to withstand mechanical 
loads315,317-322. Slender bones develop thicker cortices 
with higher mineral densities than robust bones; 
conferring additional stiffness at the expense of ductility 
and toughness in order to compensate for reduced 
CSA and CSMI dimensions318,320,322-327. Consequently, 
slender bones exhibit greater susceptibility to damage 
accumulation (fragility and micro-crack coalescence), 
whereas robust bones exhibit greater resilience and 
resistance to fatigue or overload317,322,324,325,328. Given 
the responsiveness of bone mass and radial growth 
to mechanical loading during ontogeny, it is highly 
recommended and opportune to maximise robustness 
within genetic limits where possible19,210,298,329-332. Indeed, 
there is some evidence that the influence of mechanical 
loading on bone may predate birth333-336. However, the 

osteogenic potential of loading in older age appears 
diminished due to factors such as reduced muscular force 
and dampened mechanosensitivity337-339. Despite bone 
strength and stiffness increasing via geometrical means 
in adulthood340; robustness established during ontogeny 
remains protective through-out life20,21,292,305-307.

Figure 10. Definitions of mineral density at the material, 
compartment and whole-bone levels (reprinted with permission 
from 280). Mineralisation and porosity differ between trabecular 
(A and B) and cortical (C and D) regions. Mass is equal (grey 
areas); however volume differs (areas encased by black lines).

Figure 11. Cross-sectional moment of inertia (CSMI) of a long 
bone (adapted from 298); where CSMI increases as the cortex 
widens (R

1
= inner radius; R

2
= outer radius), spreading mass 

(cortical wall thickness) further from the neutral axis.

Figure 12. The effect of changes in cortex diameter on bone 
strength under compression and bending without any change 
in areal density (adapted from 22); a limitation of aBMD when 
assessing the mechanical competence of bone.

Figure 13. Variations in bone size and shape between age-
matched, recreational (left) and elite (right) male athletes 
illustrating variations in cortical thickness, shape and alignment.
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Muscular contribution

Muscle and bone are inextricably linked by anatomical, 
mechanical, metabolic and pleiotropic functions26,28,29,341-348. 
Anatomically, muscle transforms and mobilises skeletal 
segments into an interlinked system of levers via tendinous 
junctions184,343,344,349,350. Mechanically, muscle exerts 
contractile forces onto the skeleton in order to effectuate 
movement, providing bone with its largest voluntary delivery 
of stimulus; superseding gravitational loads26,342,349-354. 
Metabolically, endocrine-paracrine cross-talk between muscle 
and bone releases secretory factors capable of modulating 
each other (muscle to bone; bone to muscle), nearby tissues, 
and distant organs26-29,341,343,355-358. Pleiotropically, muscle 
and bone share several phenotypic traits, responsive to the 
same genetic influences and pathways, which if altered, co-
operatively contribute to the development of sarcopenia and 
osteopenia simultaneously, and may explain co-adaptive 
anabolic and catabolic responses to present or absent 
mechanical stimulus341,344,359-362.

Adaptation of muscle and bone are interdependent; such 
that alterations in muscle size, density and strength are 
temporally linked and positively correlated with alterations 
in bone size, density and strength341,342,346,351,363-365. 
Specifically, when immobilised; muscle cross-sectional area, 
volume and strength significantly reduces after ~5 to 7 days; 
whereas bone thickness, volume and strength significantly 
reduces after ~14 to 21 days345,346,366-372. Conversely, when 
mechanically loaded; muscle cross-sectional area, length 
and strength significantly increases after ~20 days; whereas 
bone diameter, thickness and volume significantly increases 
after ~40 to 80 days126,373-377. The time-course of adaptation 
is such that genomic and metabolic alterations occur rapidly 
and precede morphological adaptations; changes in muscle 
precede changes in bone (~3:1 to 4:1); and losses of muscle-
bone occur more rapidly than accrual (~3:1 to 4:1); thus 

exercise-induced long-term gains are rapidly reversed and 
gradually recovered346,367,371,378-382.

Muscle is a potent osteogenic stimulant, routinely exerting 
contractile force onto the skeleton; the frequency, rate, 
magnitude and distribution of which provides bone with its 
primary delivery of mechanical load342,343,352,383-387. Muscle 
therefore asserts synergistic dominance over bone, such that 
bone growth or loss is subservient to muscle hypertrophy 
or atrophy345-347,388-392. In this regard, muscle and bone are 
stoichiometric, co-adapting together in response to anabolic 
or catabolic stimuli; highlighting the importance of muscle 
size and strength as trainable features to enhance and protect 
bone size and strength85,102,341,343,347,363,383,393. Beyond its 
osteogenic capabilities, muscle also acts to mechanically 
alter the distribution of stress applied to bone, utilising short 
mechanical levers (1:2 to 1:10) to counteract and neutralise 
tensile forces through partially or wholly equivalent 
compressive forces as a mechanism to minimise bending 
moments95,102,342,383,394,395. In particular, volatile forces 
transmitted through impact loading and agonist muscle 
contraction create uneven compressive forces onto bone, 
generating ipsilateral bending moments and contralateral 
tensile forces; thus antagonist muscle activity serves to 
actively neutralise tensile forces while evenly distributing 
compressive forces across the cortex, owing to long-bones 
superior strength under axial compression97,342,396-399.

Endocrine-paracrine secretomes hold important 
implications for muscle-bone biology, providing new 
opportunities to utilise muscle as a targeted mechanism to 
cross-regulate and modulate bone. Specifically, molecular 
cross-talk may independently mediate muscle and bone, 
separate to mechanical inputs, through secretory factors 
known as myokines28,29,343,356,357,400-403. Myokines (muscle-
derived peptides) influence the local activity of neighbouring 
bone via endocrine-paracrine mechanisms at the muscle-
bone interface; an area where muscle fibre inserts 

Table 2. Myokines (peptides) secreted by muscle to influence bone, the mechanisms which stimulate release, and the bone metabolism 
outcomes.

Myokines Secretion Stimulants Bone Metabolism

Growth Factors

IGF-1 Resistance Exercise Stimulates Formation

FGF-2 Eccentric Muscle Contraction Stimulates Formation

GDF-8 Muscle Damage / Atrophy Supresses Healing / Formation

TGF-β1 Muscle Damage / Atrophy Supresses Healing / Formation

Matrix Molecules

SPARC Resistance Exercise Promotes Mineralisation

MMP-2 Resistance Exercise Promotes Healing / Remodelling

BMP-1 Blast trauma to Muscle Procollagen Cleaving / Bone Formation

Inflammatory Factors

IL-6 Muscle Contraction Bone Resorption / Turnover

IL-7 Muscle Contraction Bone Resorption

IL-15 Resistance Exercise Increase Bone / Decrease Adiposity



124http://www.ismni.org

N.H. Hart et al.: mechanical basis of bone strength

directly into the periosteum, thus excluding tendinous and 
aponeurotic attachments26,28,400,404,405. The direct insertion 
of muscle fibre into bone promotes localised bone formation 
and reparation activity owing to its collateral delivery of 
blood and rich supply of secreted trophic factors to the 
skeleton27,29,401,403,406,407. In particular, healthy and active 
muscle tissue positioned alongside and onto the periosteum 
directly stimulates bone formation without mechanical 
stimulation; similarly, muscle damage or trauma also delays 
and impairs bone healing32,33,393,406,408,409. As a result, the 
generation, preservation and reparation of bone is interlinked 
with the health and activity of surrounding muscle, such that 
cross-regulation has the potential to optimise anabolic and 
catabolic processes during growth, development, ageing and 
musculoskeletal rehabilitation26,27,356,400,403. 

Muscle-derived secretomes influence bone metabolism in 

a variety of ways, with several growth factors and cytokines 
importantly linked to bone quality, including interleukin (IL-
6, IL-7, IL-15), insulin growth-like factor (IGF-1), fibroblast 
growth factor (FGF-2), bone morphogenic protein (BMP-
1), osteonectin (SPARC), matrix metalloproteinase (MMP-
2), transforming growth factor (TGF-β1) and myostatin 
(GDF-8); exerting anabolic or catabolic effects onto bone 
in response to physical activity, resistance exercise, 
muscle damage or trauma28,29,341,343,344,359,362,401,402,405,410. 
Conversely, bone-derived secretomes are also capable 
of influencing muscle metabolism, with recent evidence 
implicating prostaglandin E2 (PGE2) and undercarboxylated 
osteocalcin (ucOC) as potential regulators of muscle mass, 
function and regeneration341,357,411,412. Indeed, endocrine-
paracrine cross-talk coupled with mechanical load presents 
a new and emerging paradigm, whereby muscle and bone 

Figure 14. Fatigue curve (adapted from 95): The relationship between load, repetition and injury onset (left), with cortical bone and 
trabecular bone stress-strain properties super-imposed (right). A positive shift in the fatigue-curve demonstrates the benefit of 
increasing bone strength; a more resilient bone able to handle more stress prior to strain.

Figure 15. A pathophysiological overview of overuse and fatigue fractures (adapted from 416,417).
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closely interact and cross-regulate each other through-
out all stages of the lifecycle; highlighting the importance 
of translational and integrated examinations of muscle and 
bone biology with growth, development, ageing, exercise and 
disease27,29,356,403,404,413.

Loading tolerance

Bone mass, material and structure interact with 
muscle to determine the resultant mechanical behaviour 
and load tolerability of bone to a given loading 
environment22,24,36,85,89,94,95,102,183,189,342. Specifically, the 
interplay between loading magnitude and repetition 
generates a level of musculoskeletal fatigue and structural 
vulnerability which, in the absence of suitable rest and 
recovery, will eventuate in traumatic or overuse injury414-417. 
The generally inverse relationship between magnitude 
and repetition describes the causal relationship between 
mechanical loading and skeletal fatigue on a continuum 
of high magnitude, low repetition to low magnitude, high 
repetition loads until structural failure95,118,414,416. To generate 
and accumulate microdamage, bone must endure strain 
applications of ~1500 to 10,000 µƐ; the precise magnitude 
of which is commensurate with resultant microdamage 
incurred95,416-418.

Load tolerance and fatigue resistance can be enhanced by 
increasing bone strength through trainable and modifiable 
mechanisms; favourably shifting the fatigue curve to the 
right. Owing to specific material and structural adaptations, 
stronger and robust bones tolerate higher levels of stress 
prior to damaging strains, such that equivalent loading 
environments are less stressful and accumulate less damage 
than equally loaded weaker or slender bones, subsequently 
producing less overall skeletal fatigue85,202,320,322,323,325,419-421. 
Paradoxically, anabolic stimulus required to strengthen bone 
(long-term) temporarily generates structural vulnerability 
through acute musculoskeletal fatigue (short-term), 
implicating muscle fatigue as a covariate to bone fatigue. 
Specifically, movement quality and efficiency becomes 
compromised as muscle fatigues397-399,422-425, resulting in 
an altered gait; reduced shock absorption; irregular loading; 
and abnormal stress distribution, such that higher rates 
and magnitudes of force undesirably transmit direct to 
the skeleton399,424-429. In the absence of recovery following 
strenuous activity, accumulative bone fatigue; microdamage; 
and eventual bone failure eventuates, highlighting the 
importance of inserting rest periods within mechanical 
loading programs designed to promote growth or prevent 
injury85,416,430-436.

Future directions and conclusion

Bone is a sophisticated and finely tuned biomaterial; the 
importance of which cannot be over-stated, as it forms the 
functional framework for human movement and is directly 
associated with injury incidence, quality of life and mortality. 
While bone has been the focus of research for centuries, our 

comprehensive understanding of the multidimensional and 
multifactorial components of bone strength and its mechanical 
behaviour remains elusive, particularly when translating 
evidence from animal models to humans. This information 
is vitally important to the clinician or physical therapist 
and a necessary focus of researchers, as it can be used to 
inform: 1) screening processes and procedures for quality 
examinations of musculoskeletal health status in healthy, 
athletic or diseased-state populations; 2) preventative 
efficacy of mechanical, nutritional or pharmacological 
programs designed to strengthen musculoskeletal tissues 
and protect from skeletal injury or fracture; and, 3) remedial 
efficacy of equivalent programs to rehabilitate individuals 
across the life-span following a skeletal injury or fracture.

Despite advancements in technology and improvements 
in knowledge through research and clinical practice, 
numerous limitations remain that require solutions or 
further investigation. Firstly, bone comprises of material that 
extends beyond its mineralised mass (inorganic component), 
however due to current quantitative limitations, mineralised 
tissue remains the primary measure of bone strength, 
and the key surrogate for skeletal health and mechanical 
performance under load. Meanwhile collagen (the organic 
component of bone) remains almost entirely neglected in 
clinical investigations, beyond the equivocal use of systemic 
biomarkers which have limited applicability at present. 
Indeed, the anisotropic and viscoelastic properties of bone 
highlight the obvious role of organic material as a key driver 
of skeletal strength, ductility and toughness, which requires 
further exploration in healthy and diseased states, as well as 
fracture aetiology and reparation. Secondly, highly utilised 
clinical densitometric assessments of mineral mass cannot 
yet capture important microstructural components such as 
the prevalence or severity of microdamage (i.e. individual 
or coalesced microcracks), or the degree of mineralisation 
and crystallinity in-vivo which may further inform evolving 
changes in mechanical integrity of a given skeletal site. 
Thirdly, while microarchitectural deterioration rapidly leads 
to fragility, high-resolution imaging devices which can 
measure features such as trabecular thickness, connectivity 
and number; cortical porosity and volume fraction remain 
scarce and are yet to gain ascendency in clinical and research 
settings due to their infancy in development and high 
associated costs. 

Lastly, the ability to accurately estimate or directly 
quantify site-specific internally distributed mechanical loads 
within humans remains complicated, invasive and equivocal. 
As a result, available evidence of the multifarious effects of 
various mechanical loading modalities and programming 
variables (volume, intensity, frequency, distributions, rest 
and recovery) remains in its infancy in humans with very 
few explorations in the literature. Therefore, further work 
to identify region-specific adaptations using a range of 
loading models under various loading conditions in human 
subjects, where strain patterns are known and can be tightly 
controlled, would permit first understanding in humans of 
factors known to influence bone adaptation in animal models. 
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This will allow researchers and practitioners to explore the 
dose-response of mechanical loads subsequent to bone 
adaptation outcomes in a refined manner.

Key points:

1.  Bone material and bone structure co-operatively confer 
strength to the skeleton, with neither morphologic 
characteristic considered a suitable surrogate measure in 
isolation. Clinicians, researchers and physical therapists 
wishing to screen, monitor or develop bone strength and 
its mechanical integrity should quantify and examine 
material and structural components of skeletal tissue at 
macroscopic levels if achievable.

2.  Muscle plays a vital role in developing bone strength, 
providing mechanical protection, and preserving or 
repairing skeletal tissue. As muscle and bone co-adapt and 
exquisitely interact, clinicians, researchers and physical 
therapists should concomitantly measure muscle and 
bone when screening, monitoring or examining skeletal 
health or potential fracture risk, and when developing 
prophylactic or remedial interventional programs.

3.  Collagen (organic material of bone) remains severely 
neglected in clinical examinations despite its clear role 
in mechanical behaviour and skeletal integrity (i.e. 
anisotropy and viscoelasticity). Future research should aim 
to establish the ability to examine collagen quality in bone 
health assessments in-vivo. Clinicians and researchers 
should also consider ways to promote collagen health in 
populations at risk of fracture.
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