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Abstract 19 

1. Tadpoles can be abundant consumers in stream ecosystems and may influence the structure 20 

and function of streams through their feeding activities and interactions with other organisms. 21 

To understand the contribution of tadpoles to stream functioning, and the potential impact of 22 

their loss, it is necessary to determine their diets and how they might influence food-web 23 

structure.  24 

 25 

2. Using gut content analysis and stable isotope analysis of N and C, we determined the main 26 

food sources and trophic positions of tadpoles of five native frog species, invertebrates and fish 27 

in upland and lowland Australian Wet Tropics streams.  28 

 29 

3. Omnivory was prevalent amongst the tadpoles and invertebrates. Tadpoles consumed 30 

different food according to availability and nutrient quality, but assimilated mainly biofilm and 31 

algae. Most tadpoles and invertebrates assimilated the same high-quality foods.  32 

 33 

4. Food webs in upland riffles were simplified by local extinction of tadpoles, and were 34 

probably simplified in pools in the cooler months by seasonal decline in tadpole abundance. 35 

Food web complexity was increased in some pools by the presence of predatory fish and a 36 

greater number of basal sources.  37 

 38 

5. As tadpoles are important seasonal components in stream food webs, their local extinction 39 

can greatly alter food web structure and complexity and, possibly, processes such as leaf litter 40 

breakdown and sediment accumulation. 41 

42 
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Introduction  43 

 To understand functioning of stream systems, especially in the face of environmental 44 

change and species loss (Dudgeon et al., 2006), we need community models that incorporate 45 

trophic interactions and roles of key taxa from diverse regions of the world (Pearson, Connolly 46 

& Boyero, 2015). These interactions and roles may be visualised in food webs that qualitatively 47 

or quantitatively illustrate important trophic networks. Trophic models for forested headwater 48 

streams, based on gut contents analysis of animals, typically indicate that terrestrial leaf litter 49 

provides the energetic and material base of the food web (e.g., Cummins, 1973; Vannote et al., 50 

1980; Cheshire, Boyero & Pearson, 2005; Neres-Lima et al., 2017). However, stable isotope 51 

analyses of food web components suggest that algae are also important components of these 52 

food webs (Bunn, Davies & Mosisch, 1999; Mantel, Salas & Dudgeon, 2004; Dudgeon, Cheung 53 

& Mantel, 2010; Rosi-Marshall et al., 2016), highlighting the importance of using a variety of 54 

methodological approaches to fully describe food webs. 55 

 Small streams are characterised by abundant and diverse invertebrates, but tadpoles can 56 

also be abundant and are likely to play key roles in food webs and ecosystem function (Allan & 57 

Castillo, 2007). Tadpoles feed on algae, sediments, detritus and other animals (Flecker, Feifarek 58 

& Taylor, 1999; Ranvestel et al., 2004; Whiles et al., 2006), with some species specialising at a 59 

single trophic level, some changing their diets according to resource availability, and others 60 

showing ontogenetic dietary shifts (Hocking & Babbitt, 2014). Food quantity and quality for 61 

tadpoles may differ among streams (Whiles et al., 2010): thus, while heavily shaded streams are 62 

primarily heterotrophic, more open streams tend to be autotrophic, with abundant primary 63 

producers such as filamentous algae and diatoms (Anderson & Sedell, 1979). Food availability 64 

may also differ among habitats: for example, riffle-associated tadpoles may consume algae and 65 

fine detritus, whereas pool-dwelling species in the same stream may consume coarser detritus, 66 

which is more readily available in pools (Trenerry, 1988). Epilithic biofilm can also be an 67 

important basal food source for tadpoles in both riffles and pools (Trenerry, 1988; Cashins, 68 

2009; Whiles et al., 2010; Frauendorf et al., 2013). Stable isotope analysis has shown that some 69 
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tadpoles are generalist feeders that change their food sources based on availability (Francis, 70 

2013; Huckembeck et al., 2014), while others are more specialised (Verburg et al., 2007). 71 

Globally, research on the role of tadpoles in stream food webs is limited mainly to the 72 

Neotropics (e.g., Verburg et al., 2007; Colon-Gaud et al., 2010; Winemiller et al., 2011; 73 

Barnum et al., 2013; Frauendorf et al., 2013). In the Australian Wet Tropics bioregion 74 

(hereafter “Wet Tropics”), tadpoles are conspicuous members of the stream fauna through the 75 

warmer months (Richards, McDonald & Alford, 1993), and may be major components of food 76 

webs. The gut contents of some species have been described (e.g., Trenerry, 1988), but we 77 

know little about their dominant food source or what they assimilate. Upland populations of 78 

many species, particularly riffle-dwellers, declined or disappeared during the late 1980s and 79 

early 1990s as a result of the fungal disease chytridiomycosis (Richards et al., 1993; McDonald 80 

& Alford, 1999). These declines may have caused major changes to  food webs, as reported for 81 

similar declines in the Neotropics (Ranvestel et al., 2004; Colon-Gaud et al., 2008; Connelly et 82 

al., 2008; Colon-Gaud et al., 2009).  83 

We aimed to understand the trophic role of tadpoles in forested stream ecosystems in 84 

the Wet Tropics uplands and lowlands, and possible effects of their disappearance. We used 85 

stable isotope analysis to determine the basal food sources and the trophic positions of tadpoles 86 

and other consumers in riffle and pool communities.  We hypothesised that (1) detritus would 87 

be the predominant basal food source, in common with other small forest streams; (2) tadpoles 88 

would therefore be mainly detritivores; (3) tadpoles would seasonally influence food web 89 

structure (in the summer months); and, therefore, (4) loss of tadpoles from riffle sites would 90 

greatly simplify food webs compared with adjacent pools.  91 

 92 

Methods 93 

Study species, sites, and sample collection 94 

The Wet Tropics is a discrete, biodiverse region in north-eastern Queensland (Pearson 95 

et al., 2015; Fig. S1) and has a seasonal climate with a distinct wet season during the summer 96 

months, from November to March. Sampling was conducted in Paluma Range National Park in 97 
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September 2012 and November 2013, and in Tully Gorge National Park in November 2013 98 

(Fig. S1), to include representative upland and lowland streams (Pearson et al., 2017). These 99 

streams have high diversity of invertebrates (Pearson & Boyero, 2009; Pearson et al., 2017) and 100 

moderate diversity (up to seven species) of stream-breeding anurans (Cashins, 2009) (cf. 23  101 

species at a Panamanian site; Lips, Reeve & Witters, 2003). Currently, frog species with stream-102 

dwelling tadpoles recorded from Paluma uplands are the pool dwellers Litoria serrata and 103 

Mixophyes coggeri. Historically, two riffles species, Litoria dayi and L. nannotis, also occurred 104 

in this area, but they disappeared in the early 1990s as a result of chytridiomycosis (Richards et 105 

al., 1993). Species recorded from Tully lowlands are L. dayi, L. nannotis, L. rheocola and L. 106 

serrata, which all remained following the declines in the uplands (C. Hoskin, pers. comm.). The 107 

conservation status of these species ranges from least concern (L. serrata and M. coggeri) to 108 

endangered (L. nannotis, L. rheocola and L. dayi) (Hoskin & Hero, 2008).   109 

The study streams were perennial and flowed through closed rainforest (“simple 110 

notophyll vine forest”; Tracey, 1982). Six riffles and six pools were sampled in each of the 111 

study areas (Paluma and Tully). At Paluma, two pools and two riffles were sampled in each of 112 

three upland streams (sites P1, P2, and P3), while at Tully three pools and three riffles were 113 

sampled in each of two lowland streams (sites T1 and T2) (Table 1). The riffles and pools 114 

within a site were 100 – 200 m apart, with a reach length of approximately 10 m each. The 115 

streams comprised approximately 15 % riffles, 60 % runs and 25 % pools at Paluma and 30 % 116 

riffles, 50 % runs and 20 % pools at Tully. Physicochemical data recorded at each riffle or pool 117 

included: pH, conductivity and dissolved oxygen, measured using a Hydrolab Quanta; depth; 118 

and percent canopy cover and substratum composition, estimated visually. Current velocity was 119 

measured monthly using an Owen’s River Hydroprop. Algal cover was estimated visually as 120 

percent cover in pools and riffles along a 150-m transect, each month between October 2011 121 

and September 2013, as part of seasonal tadpole surveys in streams at Paluma and Tully 122 

(Schmidt, 2016).  123 

Collection of food web components was undertaken in the late dry season, when 124 

streams were at base flow and frog breeding was in progress. In September 2012, we collected 125 
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invertebrates, tadpoles, fish and basal food sources at the Paluma sites. In November 2013, we 126 

collected additional tadpoles at the Paluma sites, and tadpoles and basal sources at the Tully 127 

sites. Invertebrates and fish were not collected at Tully for logistic reasons.  128 

Dip-net sweeps with a triangular net (mesh size 0.9 x 0.3 mm) were used to collect 129 

tadpoles and larger invertebrates from riffles, pools, and any submerged vegetation. The net was 130 

bounced along the substratum to force animals into the water column where they could be 131 

captured, and loose rocks were dislodged to expose sheltering tadpoles and invertebrates. 132 

Sampling commenced at the downstream end of each pool or riffle and continued without a time 133 

limit to the other end of the habitat, to ensure that sufficient material was collected for stable 134 

isotope analysis (SIA) (minimum 1 mg dry mass per item). Tadpoles were separated by species, 135 

weighed and euthanised in a solution of 0.02 % MS-222 buffered with sodium bicarbonate 136 

(Braunbeck et al., 2007). Tadpoles not needed for SIA analysis were released. The tadpoles 137 

were between Gosner stages 25 and 31 (Gosner, 1960) and were grouped into small, medium 138 

and large length classes (Richards, 2002). For M. coggeri tadpoles these classes were: < 10 mm, 139 

10 to < 22 mm, and ≥ 22 mm, respectively; for other species they were: < 7.5 mm, 7.5 to < 12 140 

mm, and ≥ 12 mm, respectively. Invertebrates were rinsed with distilled water. A Smith-Root 141 

Model 12B backpack electrofisher was used to catch fish (the eel, Anguilla reinhardtii, and the 142 

gudgeon, Mogurnda adspersa) and large crustaceans (crayfish, Cherax sp., Parastacidae; and 143 

shrimp, Macrobrachium sp., Palaemonidae). Individuals of A. reinhardtii were weighed, fin-144 

clipped, then released. Only small individuals of M. adspersa were caught, and were euthanised. 145 

These mobile species (fish and decapods) are locally resident for most of their lives (Whitehead, 146 

1985; Coughlan, 1990; B. Pusey, pers. comm.).  All faunal samples were placed on ice and 147 

returned to the laboratory.  148 

Basal sources collected from each habitat were: leaf litter (whole leaves); coarse and 149 

fine particulate organic matter (CPOM and FPOM, > 1mm or < 1mm, respectively); filamentous 150 

algae; biofilm; periphyton; and an iron matrix (Blanchette et al., 2014), present only in one 151 

pool. The terms “biofilm” and “periphyton” are often used interchangeably to describe the 152 

organic layer growing on solid surfaces (Rasmussen, 2010; Ishikawa, Doi & Finlay, 2012; 153 
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Bunn, Leigh & Jardine, 2013), but we differentiated between them: periphyton comprised 154 

mainly algae, recognisable by its green colour, growing on sandy substrata at pool edges, and 155 

was removed directly to zip-lock bags; biofilm, which likely comprised a matrix of 156 

microorganisms, fine detritus and small amounts of algae (Lock et al., 1984), was collected by 157 

scrubbing rocks and washing the material into plastic containers with distilled water. CPOM 158 

and FPOM did not accumulate in the riffles, but were collected from pools and washed through 159 

sieves of 1-mm and 250-µm mesh to produce samples of about 500 ml each. All material was 160 

placed on ice and frozen on return to the laboratory.  161 

 162 

Sample processing for stable isotope and gut content analyses  163 

In the laboratory, samples were rinsed with distilled water before processing. Tadpoles’ 164 

guts were removed for gut content analysis. A sample of material from each gut was removed, 165 

mixed with a drop of water, placed on a glass slide and identified under a microscope at x 40 166 

magnification. The proportion of each food type was estimated as a percentage of the total 167 

volume of particles present to the nearest 5 %, following Cheshire et al. (2005). For SIA we 168 

used whole bodies of small tadpoles (excluding the gut), but only the tail muscle for large 169 

individuals (Caut et al., 2013). Tadpoles of different species, and size classes where possible, 170 

were kept separate for the analysis, as diet may vary with tadpole stage (Werner & Gilliam, 171 

1984).  172 

Invertebrates were separated to genus or higher taxon, depending on amount of material 173 

available, and into feeding groups (Merritt & Cummins, 1984; Gooderham & Tsyrlin, 2002; 174 

Cheshire et al., 2005); taxa from the same feeding group and habitat within an order were 175 

combined if necessary to achieve an adequate sample size (Table S5). For most invertebrates, 176 

the whole body was analysed because individuals were small. For crustaceans, only the tail 177 

muscles were analysed. Fin clips of A. reinhardtii were used whole, while M. adspersa were 178 

analysed with the axial skeleton, scales and guts removed. Isotopic analyses were based on 179 

samples of 106 tadpoles (Paluma: 50 L. serrata, 14 Mixophyes coggeri; Tully: 13 L. serrata, 11 180 

L. nannotis, 12 L. rheocola, 6 L. dayi), 5365 invertebrates, 3 A. reinhardtii and 8 M. adspersa.  181 
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CPOM and FPOM samples were rinsed with distilled water and whole leaves were 182 

rinsed, dried and homogenised using a coffee grinder. All samples were oven-dried at 60°C for 183 

48 hours and weighed. The invertebrates were weighed to provide estimates of dry mass per 184 

taxon. Tadpole wet mass was converted to dry mass using regressions based on samples of 8 to 185 

14 individuals per species. For fish, body length measurements were used to estimate dry mass 186 

(Pusey, Kennard & Arthington, 2004). All samples were ground to a fine powder using a mortar 187 

and pestle, except for some very small samples, which were sent for analysis intact.   188 

Analysis for δ15N, δ13C, % N and % C was conducted by the Stable Isotope Laboratory 189 

at the University of Hong Kong using a continuous flow stable isotope ratio mass spectrometer 190 

(Nu Instruments, Perspective series) connected to an elemental analyser (Eurovector EA3028). 191 

Isotope values were normalised with a certified acetanilide reference standard. Vienna Pee Dee 192 

Belemnite and atmospheric nitrogen were used as standard references for carbon and nitrogen 193 

respectively (Peterson & Fry, 1987). 194 

 195 

Data analyses 196 

 We used 13C as a measure of basal food source and 15N as an indicator of trophic 197 

position (Peterson & Fry, 1987). Mean δ15N and δ13C ratios of basal sources and consumers 198 

were plotted across sites using raw isotopic data (Whiles et al., 2006). For fish with a C:N ratio 199 

greater than 3.5, lipid correction was applied to the isotopic carbon values using the equation 200 

δ13Cnormalised = δ13Cuntreated - 3.32 + 0.99 (C:Nbulk), where normalised refers to tissues that are lipid-201 

extracted and untreated refers to bulk tissues (Post et al. (2007). For tadpoles with a C:N ratio 202 

greater than 3.5, the correction used the equation δ13Cnormalised = δ13Cuntreated  - 1.11 + 0.37 203 

(C:Nbulk), which was derived for tadpoles (Caut et al., 2013). Correction is unnecessary for 204 

invertebrates (Kiljunen et al., 2006; Logan et al., 2008). 205 

The C:N ratio of basal sources was calculated to compare their nutritional quality (Iwai 206 

& Kagaya, 2007), with a lower C:N ratio generally indicating higher quality food (Gulis et al., 207 

2004; Iwai, Kagaya & Alford, 2012). Standard deviations for C:N ratios and basal-source 208 

contributions were calculated using data per stream site or data from all sites per area if the 209 
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basal source was found in only one pool or riffle within an area. Standard deviation was not 210 

included for the iron matrix C:N ratio because it was found in only one pool. However,  for the 211 

basal-source contribution of the iron matrix, the mean standard deviation of the other basal 212 

sources from the same stream was used to facilitate inclusion in the model (Blanchette et al., 213 

2014). Where appropriate, C:N ratios were compared using ANOVA in S-Plus. 214 

The relative contribution of basal sources to consumer isotopic signature was modelled 215 

with a two-source mixing model using Stable Isotope Analysis in R (SIAR, version 3.2.5). This 216 

enables analyses of several basal sources simultaneously to produce the most likely dietary 217 

scenarios (Parnell et al., 2010). The model was run using one of two commands, with 500,000 218 

iterations, of which the first 50,000 were discarded: we used “siarmcmcdirichletv4” when 219 

multiple data points were available for each consumer taxon, and “siarsolomcmcv4” for single 220 

data points. Riffle and pool samples of basal sources were combined within sites, but sites were 221 

kept separate, and only sources found at a site were included.  222 

Basal sources within a site were combined if their carbon isotope signatures differed by 223 

less than 1.0 ‰, except that allochthonous and autochthonous sources were always kept 224 

separate (Table S1). Other studies have used a threshold of 2.0 ‰ (e.g., Blanchette et al., 2014), 225 

but as the signatures of most sources differed by less than this, a smaller threshold was required. 226 

Where basal sources within a stream site were combined, the overall average isotopic signatures 227 

and standard deviations were used for the mixing models.  228 

 SIAR requires the input of trophic enrichment factor (TEF) values, which represent the 229 

change in ratio of heavy to light isotopes from resource to consumer (Peterson & Fry, 1987), to 230 

place the consumers within the source geometry. We used tadpole TEF values of 3.80 ± 0.46 ‰ 231 

for Δ15N and 1.19 ± 0.31 ‰ for Δ13C, following Caut et al. (2013). For invertebrates, the Δ15N 232 

values used were 0.6 ± 1.7 ‰ for herbivores and 1.2 ± 1.3 ‰ for predators (Bunn et al., 2013). 233 

A Δ15N value of 3.7 ± 2.2 ‰ for predatory fish (Bunn et al., 2013) was used for M. adspersa 234 

and A. reinhardtii, which are known predators (Sloane, 1984; Hortle & Pearson, 1990; Pusey et 235 

al., 2010). For Δ13C, a TEF value of 0.4 ± 1.3 ‰ was used for invertebrates and fish (Post, 236 

2002; Blanchette et al., 2014).  237 
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Consumers that fell outside the SIAR isotopic mixing space were excluded from 238 

analyses and their models were considered to be unresolved (see Blanchette et al., 2014). 239 

Sources with a minimum contribution of 20 % were considered “likely” contributors, and 240 

sources with a minimum contribution of less than 20 %, and a maximum of greater than 50 % 241 

were considered “possible” contributors (Blanchette et al., 2014).  242 

The variability of δ15N in basal sources was standardised by obtaining a baseline 243 

relationship between δ15N and δ13C for primary consumers, which was used to calculate isotopic 244 

trophic position for higher consumers (Vander Zanden & Rasmussen, 1999; Blanchette et al., 245 

2014). The baseline equation was obtained from invertebrates usually considered to be primary 246 

consumers (grazers, gatherers, filterers or shredders) (Cheshire et al., 2005). Tadpoles are likely 247 

to be omnivores (Alford, 1999) and were therefore not included in the equation estimate. The 248 

baseline equation for primary consumers was δ15Nbase = 14.224 + (0.344* δ13C), r2 = 0.388, n = 249 

33, P < 0.0001. 250 

Consumer isotopic trophic position (ITP) was calculated using the equation: ITP = 251 

[(δ15Nconsumer - δ15Nbase)/Δ15N] + 2, where δ15Nconsumer is the isotopic measure of the consumer in 252 

question, δ15Nbase is calculated from the δ13C of the consumer using the baseline equation 253 

(above), and Δ15N is the mean trophic fractionation of δ15N between basal sources and 254 

consumers (Winemiller et al., 2011). For Δ15N, a value of 3.8 ‰ was used for tadpoles (Caut et 255 

al., 2013), 3.7 ‰ for predatory fish (Bunn et al., 2013), and 1.2 ‰ for invertebrates (Bunn et 256 

al., 2013). ITPs approximating integer values were allocated to that trophic level. Values of 1.9 257 

- 2.1 indicated primary consumers and values of 2.9 - 3.1 indicated secondary consumers, while 258 

ITPs that were not close to an integer indicated omnivory (Thompson et al., 2007). ITPs were 259 

compared using one-way ANOVA followed by Tukey’s post-hoc tests in S-Plus, using pooled 260 

samples from all sites within each consumer group for tadpoles, herbivorous invertebrates, 261 

predatory invertebrates and fish.  262 

 263 

Food webs 264 
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Food webs were constructed for pools and riffles for Paluma sites only, as invertebrates 265 

and fish were not collected at Tully. Invertebrate consumers were categorised according to their 266 

feeding behaviours (Merritt & Cummins, 1984; Gooderham & Tsyrlin, 2002; Cheshire et al., 267 

2005; Whiles et al., 2013). The tadpoles of the two pool species, L. serrata and M. coggeri, 268 

were grouped together in the food webs because they had similar isotopic trophic positions. 269 

Trophic positions were assigned using the stable isotope data for consumers, and links were 270 

added according to the SIAR analysis. The isotopic trophic positions for invertebrates were 271 

variable so were used in combination with information from the literature (e.g., Cheshire et al., 272 

2005) to construct food webs.  273 

The relative importance of basal resources to the primary consumers was estimated 274 

using the mean probability value of the 95 % CI obtained from the SIAR model (basal sources 275 

were not combined for this analysis). The values were calculated separately for each primary 276 

consumer group and the mean value (per consumer group from all the sites) was calculated as a 277 

measure of importance. This was only done for primary consumers because it was not clear 278 

whether predators fed on basal sources directly.  279 

  280 

Results 281 

At the time of sampling, all streams were at base flow. The in-stream habitats differed 282 

between Paluma and Tully sites (Table 1), with a larger proportion of boulders, less shade and 283 

greater algal growth at Tully. Water quality was similar among streams, except that pH, 284 

temperature and nutrient concentrations were lower at Paluma than Tully.  285 

 286 

Isotopic values of consumers and basal sources across sites  287 

Overlap of δ13C signatures of basal resources potentially affected the ability to 288 

distinguish source contributions to diets (Fig. 1). At Paluma, most of the tadpole and 289 

invertebrate groups had δ13C signatures similar to the basal sources, whereas at Tully, the 290 

carbon signatures of tadpoles overlapped only with the autochthonous sources. Consumers were 291 

generally δ15N-enriched in comparison to basal sources. Generally, the δ15N composition ranged 292 
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from about 2 ‰ to 6 ‰ for invertebrates and clustered around 6 ‰ for most tadpoles. The 293 

fishes M. adspersa and A. reinhardtii had the highest δ15N values at Paluma, and A. reinhardtii 294 

was the most carbon enriched.  295 

Tadpole isotopic signatures varied between sampling occasions: they were more δ15N 296 

depleted in 2013 than in 2012 at Paluma, and tadpoles from 2013 exhibited more differences in 297 

isotopic signatures among species and size classes at both Paluma and Tully (Fig. S2). Isotopic 298 

signatures of most invertebrate groups at Paluma were variable: predators and herbivores 299 

overlapped in their δ15N and δ13C measures, but gatherers were generally more nitrogen-300 

enriched than grazers (Fig. S3). 301 

 302 

Source contribution to consumer diets and nutritional quality  303 

Eighteen percent of consumers had unresolved isotopic mixing models due to source 304 

overlap and/or omnivory, and 21 % were outside the source mixing space. These included small 305 

L. serrata tadpoles and A. reinhardtii from P2 (Table 2), and a number of invertebrates from all 306 

Paluma sites (Table 3). For some consumers, the models were unresolved despite the animals 307 

being within the source mixing space – for example, tadpoles at P3 and large M. coggeri 308 

tadpoles at P1 (Table 2), and several invertebrate taxa, especially at P1 and P3, where more 309 

basal sources were available (Table 3).  310 

Biofilm was a possible or likely contributor for most tadpoles at P2, but was less 311 

evident as a source at P1 and P3 (Table 2). At Tully, the tadpoles were linked to more than one 312 

source. Biofilm, algae and/or particulate organic matter were possible or likely sources at T1, 313 

whereas filamentous algae, leaves and FPOM were the main sources at T2. Biofilm and 314 

filamentous algae had the highest nutritional quality of the basal sources available for 315 

consumers (low C:N ratio – Table S2). The iron matrix at P3 was not a possible or likely source 316 

contribution to tadpole diets. Particulate organic matter (leaves and FPOM) was a possible 317 

contributor for several size groups of several species at Tully, although leaves had the highest 318 

C:N ratio, indicating low nutritional quality (Table S2). Moss was a possible food source for 319 

tadpoles at Paluma. Periphyton (on sand) was a possible contributor at P1, but had lower 320 
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nutrient quality than epilithic biofilm at the same site (Table S2). For invertebrates at Paluma, 321 

48 % of the SIAR mixing models were unresolved (Table 3), although resolved models 322 

indicated biofilm as a possible source. 323 

Comparison of the gut content analysis of tadpoles with the results from the stable 324 

isotope models suggests that the material assimilated did not correspond closely with that 325 

consumed (Tables 2 and 4). High proportions of FPOM or CPOM were found in tadpole guts, 326 

with some algae or diatoms, but SIA revealed that tadpoles assimilated mostly biofilm and 327 

filamentous algae, depending on availability. The gut content analysis also indicated that some 328 

L. nannotis tadpoles consumed trichopteran larvae.  329 

 330 

Isotopic trophic position for consumers  331 

Tadpoles from Paluma in 2012 were all categorised as omnivores (ITP 2.2 – 2.8), 332 

whereas in 2013 some were categorised as primary consumers (ITP ~ 2), along with most 333 

tadpoles at Tully (Table S3). Both fish species were secondary consumers with ITPs of 334 

approximately 3 (Table S4). The ITPs for invertebrates at Paluma were variable both spatially 335 

and taxonomically (0.4 - 3.2 for invertebrates generally regarded as herbivores and 1.5 - 4.8 for 336 

predators – Table S4). Most of the nominal herbivores were classified as omnivores, but a few 337 

were classified as primary consumers (ITP near 2) or secondary consumers (ITP near 3). Most 338 

of the crayfish and shrimps were secondary consumers or omnivores. The majority of nominal 339 

predators were classified as secondary consumers, but SIA indicated that some fed as omnivores 340 

or primary consumers. The ITPs differed among the consumer groups (F4,85 =7.74, P < 0.001; 341 

Fig. 2), with predatory invertebrates having higher ITPs than the herbivorous invertebrates and 342 

Tully tadpoles, and fish having higher ITPs than the Tully tadpoles (Tukey’s test, P < 0.05). 343 

There were no differences between Paluma tadpoles and any other group, fish and predatory 344 

invertebrates, or herbivorous invertebrates and tadpoles. 345 

 346 

Food webs 347 
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Omnivory was prevalent in the food webs, with primary consumers feeding on various 348 

food sources, and secondary consumers feeding across trophic levels (Fig. 3). SIA indicated that 349 

grazers, filter-feeders and shredders fed on both autochthonous and allochthonous material, 350 

while gatherers and tadpoles consumed a combination of autochthonous and animal material. 351 

Predatory invertebrates and fish formed the top trophic level and were linked to all other 352 

consumers.  353 

The food-web structure at Paluma was more complex (with more links) in pools than in 354 

riffles, because tadpoles and fish occurred in pools only (Fig. 3). The biomass of invertebrate 355 

shredders and gatherers was higher in pools, that of filterers and grazers was higher in riffles, 356 

and predatory invertebrates had similar biomass in both habitats. Food-web structure also 357 

differed among the three sites due to varying numbers of basal sources – five at P2 and seven at 358 

P1 and P3. Total fish biomass was 1.5 kg at P2 (three A. reinhardtii individuals) and 0.011 kg at 359 

P3 (six M. adspersa individuals). Tadpole biomass (mean dry mass = 10.9 g per sample) was 360 

greater than that of the invertebrate consumer groups (mean dry mass = 2.2 g per sample) in the 361 

pools of all three sites.   362 

 363 

Discussion 364 

Food sources and trophic positions 365 

Generally, the basal sources were the most δ15N depleted, invertebrates and tadpoles 366 

were intermediate, and predatory invertebrates and fish were the most enriched, as expected 367 

(e.g., Minagawa & Wada, 1984; Fry, 1988). However, the main sources of assimilated food 368 

identified for all consumers (fish, tadpoles and invertebrates) appeared to be biofilm and algae 369 

(autochthonous resources), contrary to hypotheses 1 and 2. While this result might be expected 370 

for the more open, lowland sites, it was also true of the most shaded, upland sites. We 371 

confirmed that biofilm and filamentous algae were the highest quality basal sources (lowest C:N 372 

ratios) (Cross et al., 2005), contrasting with allochthonous leaves (highest C:N ratio), and 373 

appeared to have been selected whenever available. However, tadpoles and many invertebrates 374 

also consumed allochthonous particulate organic matter and were therefore generalist 375 
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omnivores, feeding across trophic levels (Pimm & Lawton, 1978). Resource use at Paluma 376 

overlapped between tadpoles and invertebrates, so competition for food may occur  (Morin, 377 

Lawler & Johnson, 1988; Pearson et al., 2015), especially if high quality food is in short supply. 378 

However, the influence of tadpoles on invertebrate assemblages in Wet Tropics streams is 379 

unclear (see below). Omnivory allows tadpoles and invertebrates to maximise resource use 380 

(Lancaster et al., 2005) and may be particularly common in tropical streams, in which 381 

availability of different food sources may vary with seasonal rainfall (Frauendorf et al., 2013). 382 

For example,  particulate organic material accumulates during the dry season, but is removed by 383 

wet-season floods (Dudgeon, 2000). 384 

While gut contents analysis suggests that allochthonous resources are the major food 385 

source for consumers in headwater streams (Cummins & Klug, 1979; Cheshire et al., 2005), our 386 

results confirm the conclusions of other studies using SIA that autotrophic production may also 387 

play an important role (Bunn et al., 1999; Mantel et al., 2004; Dudgeon et al., 2010), although 388 

not universally (Neres-Lima et al., 2017). Diets of tadpoles in neotropical streams are similarly 389 

generalist, incorporating CPOM, periphyton and non-algal biofilm (Verburg et al., 2007; 390 

Barnum et al., 2013).  391 

Relative importance of sources can be difficult to assess because of unresolved models, 392 

and because we have no estimate of quantity or type of material that is metabolised but not 393 

assimilated. Additionally, consumers may selectively assimilate components from a complex 394 

mixture of materials such as biofilm, so that the stable isotope signatures of sources and 395 

consumers do not completely overlap (Dodds et al., 2014). The isotopic trophic positions of 396 

tadpoles at Tully indicated that they were closer to being primary consumers than those at 397 

Paluma, probably because the more open canopy of the lowland Tully streams enhanced 398 

primary productivity. Invertebrates (analysed for Paluma only), including nominal specialists 399 

such as shredders and predators, assimilated a range of sources, but again biofilm and algae 400 

were important, as in streams elsewhere (e.g., Jardine et al., 2012; Frauendorf et al., 2013; 401 

Hayden, McWilliam-Hughes & Cunjak, 2016). The fish at Paluma were predatory, but their 402 



16 
 

isotopic trophic positions were lower than the predatory invertebrates, possibly indicating short 403 

food chains (Jardine, 2016).  404 

 405 

Food webs and tadpole loss 406 

 Different occurrences of consumers and basal sources among our sites and habitats led 407 

to spatial variability in food-web structure and complexity (links among consumers and basal 408 

sources). For example, the food webs at Paluma were less complex in riffles than in pools 409 

because of the absence of tadpoles and fish. The food webs described here are for 410 

spring/summer, the period when tadpoles are most abundant. It is probable that declining 411 

tadpole abundance in the cooler months also simplifies the food web. During the warmer 412 

months, tadpole biomass was greater than that of the invertebrates, suggesting their likely 413 

greater importance in the food web and their possible influence on invertebrate assemblages by 414 

reducing food availability and/or causing physical disturbance to invertebrates and sediments 415 

(Ranvestel et al., 2004; Colon-Gaud et al., 2008; Connelly et al., 2008; Colon-Gaud et al., 416 

2009). However, invertebrate assemblages at Paluma do not differ greatly between seasons 417 

(Cheshire et al., 2005), suggesting that fluctuations of tadpole abundance have little effect on 418 

invertebrate assemblage composition in pools; similar conclusions cannot be drawn for riffles as 419 

riffle tadpoles were locally extinct.  420 

 Tadpoles were a major seasonal influence on food web structure in the summer months, 421 

confirming our hypothesis 3. Loss of tadpoles through disease or habitat destruction may thus 422 

have a significant impact on community complexity, as suggested by hypothesis 4, and possibly 423 

on associated ecosystem processes, especially energy and materials transfer and bioturbation 424 

(Ranvestel et al., 2004; Barnum et al., 2013; Frauendorf et al., 2013). Experimental studies are 425 

required to further investigate feeding and assimilation by tadpoles, and their interactions with 426 

other consumers. 427 

 Stream food webs are only reliable up to the primary consumer level, after which they 428 

consist of a tangled web of omnivores (Thompson et al., 2007). Many studies have used gut 429 

content analysis to draw detailed food webs, enabling identification of prey species as well as 430 
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autochthonous or allochthonous food sources (Mantel et al., 2004; Cheshire et al., 2005; 431 

Barnum et al., 2015). Such food webs therefore incorporate consumers at more detailed 432 

taxonomic levels, but are unable to show what the consumers assimilate. Our food-web 433 

diagrams are simpler representations of the webs that actually exist, given that various nodes 434 

include multiple species and given the prevalence of omnivory (Cheshire et al., 2005); however, 435 

they benefit from incorporating information on food consumed and assimilated, using SIA and 436 

gut content analysis. 437 

Our research has demonstrated widespread omnivory among tadpoles and the 438 

prevalence of omnivory in Wet Tropics streams. We also highlighted the importance of using 439 

both gut content analysis and SIA to construct food webs by indicating the importance of 440 

autochthonous food sources to the stream assemblages. In this case, tadpole gut contents did not 441 

necessarily indicate what they assimilated, and isotopic trophic position did not always concur 442 

with the expected trophic position. Our findings also indicate that absence of tadpoles can 443 

greatly alter food webs, which is a major management concern in the light of local extinctions 444 

of some stream-dwelling anuran species in the Wet Tropics uplands and globally.  445 
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Table 1. Characteristics of habitats and sampling sites at Paluma and Tully with ranges where appropriate. The substratum size distribution is presented as proportions (%) of 661 
sand/gravel, cobbles and boulders/bedrock, averaged within habitats. Substratum cover, canopy cover, stream depth and temperature measurements were taken at the time of 662 
sampling in November 2013. Conductivity, dissolved oxygen and pH readings were measured during the time of sampling in September 2012 (only in pools at Tully). Current 663 
velocity and algal cover estimates were obtained from monthly surveys at sites P1, P2, P3, T1 and T2 between October 2011 and September 2013. Nutrient measurements 664 
were obtained from water samples collected in February 2012 at Paluma and November 2011 at Tully. No water samples were collected from P1 at Paluma.  665 

 666 

 PALUMA TULLY 

 P1 P2 P3 T1 T2 

Stream characteristics Pool Riffle Pool Riffle Pool Riffle Pool Riffle Pool Riffle 

Location  19.00°S, 146.18°E 18.98°S, 146.17°E 18.97°S, 146.17°E 17.77°S, 145.65°E 17.75°S, 145.61°E 

Altitude (m above sea level) 859 795 766 102 237 

Current velocity (ms-1) 0.00-0.06 0.05-1.10 0.0-0.09 0.24-1.30 0.00-0.07 0.05-1.30 0.00-0.45 0.25-2.03 0.00-0.41 0.37-1.85 

Stream temperature 18.9 20.0 20.0 22.5 22.5 

Conductivity (µScm-1) 30 30 31 31 26 26 29 - 35 - 

Dissolved oxygen (% saturation) 76.7 78.5 84.2 85.9 80.5 81.1 96.0 - 88.7 - 

pH 6.35 6.45 6.70 6.70 6.35 6.40 8.40 - 8.10 - 

Filterable Reactive Phosphorus (µgL-1) - 4 4 3 3 

Nitrate and nitrite N (µgL-1) - 46 17 136 226 

Stream depth (cm) 43 10 55 13 62 9 37 29 50 22 

Substratum composition – Sand/gravel:   

cobbles: boulders/bedrock (%) 
72:15:13 72:15:13 40:15:45 52:18:30 87:5:8 82:18:0 16:22:62 10:28:62 16:34:50 10:20:70 

Canopy cover (%) 50-75 50-75 50-75 50-75 75-100 25-50 25-50 0-25 0-25 25-50 

Algal cover (%) 0-25 0-25 0-25 0-75 0-25 0-25 0-100 0-25 0-100 0-25 

667 



 
 

Table 2. Stable isotope mixing model results for tadpoles at Paluma in 2012 and 2013, and Tully in 2013. 668 
Basal source abbreviations: A = filamentous algae, B = biofilm, C = coarse particulate organic matter, F = 669 
fine particulate organic matter, Fe = iron matrix, L = leaves, M = moss, and P = periphyton. Sources not 670 
separated by commas were combined for analysis. Boldface source = likely source contribution 671 
(minimum contribution ≥ 20 %), regular type = possible contribution (minimum contribution > 0 % and 672 
maximum contribution ≥ 50 %), nr = unresolved (equal source contribution or isotopic source overlap), 673 
and nr1 = consumer outside the basal source mixing space (not analysed using SIAR). Tadpole size 674 
classes were: for Mixophyes coggeri, small (< 10 mm), medium (≥ 10 to < 22 mm) and large (≥ 22 mm) 675 
tadpoles; for other species, small (< 7.5 mm), medium (≥ 7.5 to < 12 mm) and large (≥ 12 mm).  676 
 677 

Species 
Size 
class 

PALUMA TULLY 
P1 P2 P3 T1 T2 

2012 2013 2012 2013 2012 2013 2013 2013 
L. serrata Large - - B - - - B, A, LF - 
 Medium M CF B M, LCF nr A - - 
 Small - - nr1 B - - - - 
 Small/ 

medium 
- - - - nr LCF - A, LF 

M. coggeri Large nr - B - nr - - - 
 Medium BP - M* -  - - - 
L. nannotis Large - - - - - - B, A, LF A, LF 
 Small/ 

medium 
- - - - - - B, LF - 

L. rheocola Large - - - - - - B, A - 
 Medium - - - - - - B, A, LF - 
 Small - - - - - - B, A**  
L. dayi Large - - - - - - B, LF - 
 Small/ 

medium 
- - - - - - B, LF - 

 678 
* Sample from sites P2 and P3 679 
** Sample from sites T1 and T2 680 



 
 

Table 3. Stable isotope mixing model results (using SIAR) for invertebrates and fishes at Paluma stream 681 
sites P1, P2 and P3 in 2012. Basal source abbreviations: A = filamentous algae, B = biofilm, C = coarse 682 
particulate organic matter, F = fine particulate organic matter, Fe = iron matrix, L = leaves, M = moss, 683 
and P = periphyton. Sources not separated by commas were combined for analysis. Boldface source = 684 
likely source contribution (minimum contribution ≥ 20 %), regular type = possible contribution 685 
(minimum contribution > 0 % and maximum contribution ≥ 50 %), nr = unresolved (equal source 686 
contribution or isotopic source overlap), and nr1 = consumer outside the basal source mixing space (not 687 
analysed using SIAR). Several taxa were combined within feeding groups to produce sufficient material 688 
for analysis, as indicated. 689 
 690 

Major taxon Family or species Feeding group P1 P2 P3 
Diptera Simuliidae Filterer BP - nr 
 Mixed  Filterer - B, LCF - 
Several gatherer/filterers Mixed  Gatherer/filterer nr1 B - 
Parastacidae, large  Gatherer nr1 nr1 nr1 
Parastacidae, medium  Gatherer nr nr1 nr1 
Parastacidae, small  Gatherer/predator nr1 nr1 nr1 
Palaemonidae  Grazer - - B 
Coleoptera Psephenidae Grazer A nr - 
Ephemeroptera Leptophlebiidae Grazer/shredder/gatherer nr B, M, LCF nr 
 Mixed  Grazer nr M A 
Plecoptera Gripopterygidae Predator/grazer - M A 
Trichoptera Mixed  Grazer/gatherer/filterer BP - - 
 Philopotamidae Grazer/gatherer/filterer - B - 
 Mixed  Shredder CF, BP B, LCF B 
Lepidoptera  Grazer/shredder - B, M, LCF - 
Several predators Mixed Predator M B - 
Coleoptera Dytiscidae Predator - B nr 
 Mixed Predator BP  - 
Ephemeroptera Ameletopsidae Predator nr B - 
Plecoptera Mixed  Predator/grazer A - - 
Hemiptera Gelastocoridae Predator - nr1 - 
 Mixed  Predator nr1 B B 
Megaloptera Corydalidae Predator nr1 - B 
Arachnida Pisauridae Predator nr1 - nr1 
Zygoptera Synlestidae Predator nr1 B - 
 Mixed  Predator nr1 B nr 
Epiproctophora Gomphidae Predator - B - 
 Synthemistidae Predator - B - 
 Telephlebiidae Predator - B - 
 Mixed Predator nr - nr 
Trichoptera Mixed  Predator nr B - 
Pisces Mogurnda adspersa Predator - - B 
 Anguilla reinhardtii Predator - nr1 - 

691 



 
 

Table 4. Gut contents of tadpoles at Paluma, collected in 2012 and 2013, and Tully, collected in 2013. 692 
The proportions of the various sources are presented as a percentage of overall gut content. Algae and 693 
diatoms were not differentiated. Tadpole size classes as in Table 1. FPOM = fine particulate organic 694 
matter, CPOM = coarse particulate organic matter. 695 
 696 

697 
Species Size Area FPOM (%) CPOM (%) FPOM/ 

CPOM (%) 
Algae/ 
diatoms (%) 

Invertebrates 
(%) 

L. serrata Large Paluma   100   
  Tully   60 40  

 Medium Paluma 65 25  10  
  Tully   75  25  
 Small Paluma   90 10  
  Tully   75 25  

M. coggeri Large Paluma  75 20 5  
 Medium   75 25   

L. nannotis Large Tully 58 20  20 2 
 Small/medium Tully 85 10  5  

L. rheocola Large Tully 50 30  20  
 Medium Tully 60 30  10  
 Small Tully 60 20  20  

L. dayi Large Tully 80 10  10  
 Small/medium Tully 80 10  10  



 
 

Figure legends 698 

 699 

Figure 1. Mean (± s.d.) δ15N and δ13C ratios of food-web components in (a) Paluma and (b) 700 

Tully streams. Abbreviations: A = filamentous algae, B = biofilm, C = CPOM, F = FPOM, Fe = 701 

iron matrix, L = leaves, M = moss, P = periphyton (basal sources), and E = Anguilla reinhardtii 702 

(eel), Ma = Mogurnda adspersa (fish). Each consumer point represents a taxon of a specific 703 

feeding group for invertebrates, a species of fish, or a size class of a species for tadpoles.  704 

 705 

Figure 2. Isotopic trophic positions (calculated as per Winemiller et al., 2011) of tadpoles (all 706 

species) at Tully (Tadpoles Tul) and Paluma (Tadpoles Pal); invertebrates at Paluma – 707 

herbivores including all non-predators (Herb inverts) and predators (Pred inverts); and fish 708 

(both species combined) at Paluma. Groups that were not significantly different are indicated by 709 

vertical lines (Tukey’s test with α = 0.05). The left and right boundaries of the boxes represent 710 

the 25th and 75th percentiles respectively, the central bar represents the median, the whiskers 711 

represent the 10th and 90th percentiles, and the dots indicate outliers.  712 

  713 

Figure 3. Food webs linking major community components for riffles and pools at three sites 714 

(P1, P2 and P3) at Paluma in 2012-13. The boldface letters at the base of each figure represent 715 

basal sources that were present at each site and analysed for δ15N and δ13C content. Weighted 716 

links were drawn between primary consumers and basal sources. The line thickness of links 717 

between primary consumers and basal sources is based on the relative importance of sources to 718 

consumers, using four categories: 1 (≤ 10 %), 2 (11-25 %), 3 (26-50 %) and 4 (> 50 %). 719 

Components (boxes) and links that were absent are shown in grey. Boxes are scaled in 720 

proportion to biomass of each component in the streams. Basal sources: A = filamentous algae, 721 

B = biofilm, C = CPOM, F = FPOM, Fe = iron matrix, L = leaf litter, M = moss and P = 722 

periphyton. Invertebrate consumer groups: FF = filter feeders, Ga = gatherers, Gr = grazers, Sh 723 

= shredders, and Pr = predators. Other consumers: Fish = Anguilla + Mogurnda, and T = 724 

tadpoles. 725 
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Supplementary information 727 

 728 

Figure S1. Location of study streams in the Queensland Wet Tropics.  729 

 730 

Figure S2. Mean (± s.d.) δ15N and δ13C ratios of tadpoles at (a) Paluma in 2012 and 2013, and 731 

(b) Tully in 2013.  732 

 733 

Figure S3. Mean (± s.d.) δ15N and δ13C ratios of invertebrate herbivores and predators at Paluma 734 

in 2012.  735 

 736 

Table S1. Basal sources present in the streams at Paluma and Tully.  737 

 738 

Table S2. The C:N ratio ± SD of basal sources in the streams at Paluma and Tully.  739 

 740 

Table S3. Isotopic trophic positions (ITPs) for tadpoles at Paluma in 2012 and 2013, and Tully 741 

in 2013.  742 

 743 

Table S4. Isotopic trophic positions (ITPs) for invertebrates and fishes at Paluma in 2012.  744 

 745 

Table S5. Assignment of invertebrates to consumer feeding groups. 746 
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Figure S1. Location of study streams in the Queensland Wet Tropics. Map drawn by Adella 

Edwards.  
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Figure S2. Mean (± s.d.) δ15N and δ13C ratios of tadpoles at (a) Paluma in 2012 and 2013, and (b) Tully in 2013. Each point represents a specific size class of a species. 

Species codes: Ld = Litoria dayi, Ln = L. nannotis, Lr = L. rheocola, Ls = L. serrata, Mc = Mixophyes coggeri. Size classes: 1 = large, 2 = medium, 3 = small, 4 = small and 

medium tadpoles combined.  
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Figure S3. Mean (± s.d.) δ15N and δ13C ratios of invertebrate herbivores and predators at 

Paluma in 2012. Each point represents a taxon of a specific feeding group. Feeding group 

codes for herbivores: FF = filterer, Ga = gatherer, Gr = grazer and Sh = shredder. See Table 2 

for invertebrate taxa identified and grouped according to feeding mode. 
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Table S1. Basal sources present in the streams at Paluma and Tully. Sources were combined 

(indicated by hyphenation) when the δ13C measures differed by less than 1.0 ‰.  

 
Area Stream reach Basal sources 

Paluma P1 Filamentous algae, moss, leaves, biofilm-periphyton, CPOM-FPOM 

 P2 Biofilm, moss, leaves-CPOM-FPOM 

 P3 Biofilm, filamentous algae, moss, iron matrix, leaves-CPOM-FPOM 

Tully T1 Biofilm, filamentous algae, leaves-FPOM 

 T2 Biofilm, filamentous algae, leaves-FPOM 

 

 

 

 

Table S2. The C:N ratio ± SD of basal sources in the streams at Paluma and Tully. A lower C:N 

ratio indicates a higher nutrient quality. For basal sources that were collected in only one riffle or 

pool in a stream site, the standard deviations were calculated using data from all the riffles and 

pools sampled within an area (except for the iron matrix, which was found in only one pool at 

Paluma). Differences between overall ratios indicated by different letters under TUKEY (Tukey 

test, P < 0.05, following ANOVA, F7,75 = 50.83, P < 0.0001). 

 
 PALUMA TULLY TUKEY 

Basal source P1 P2 P3 T1 T2  
Leaves 44.5 ± 10.3 53.0 ± 15.3 45.2 ± 6.2 68.7 ± 9.3 53.9 ± 11.1 a 
CPOM 31.4 ± 1.2 31.8 ± 1.5 33.0 ± 1.4 - - b 
FPOM 25.5 ± 1.0 25.2 ± 0.5 25.6 ± 0.9 20.3 ± 0.7 18.8 ± 1.1 b 
Moss 22.5 ± 5.7 25.0 ± 1.2 28.2 ± 2.8 - - b 
Periphyton 27.8 ± 12.3 - - - - bc 
Iron matrix - - 19.6 - - bc 
Biofilm 12.5 ± 2.0 10.5 ± 2.7 10.2 ± 4.3 10.6 ± 0.2 10.3 ± 0.2 c 
Filamentous algae 9.2 ± 0.5 - 8.9 ± 0.9 11.6 ± 0.6 7.8 ± 1.7 c 
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Table S3. Isotopic trophic positions (ITPs) for tadpoles at Paluma in 2012 and 2013, and Tully in 

2013. The tadpoles were categorised as primary consumers if ITP was close to 2 (1.9 - 2.1), as 

secondary consumers if ITP was close to 3 (2.9 – 3.1), and as omnivores if ITPs were not 

centred on an integer. Tadpole size classes were: small (< 10 mm), medium (10 to < 22 mm) 

and large (≥ 22 mm) for Mixophyes coggeri tadpoles, and small (< 7.5 mm), medium (7.5 to < 

12 mm) and large (≥ 12 mm) for other species. 

 
Species Size 

class 
PALUMA TULLY 

P1 P2 P3 T1 T2 
2012 2013 2012 2013 2012 2013 2013 2013 

L. serrata Large - - 2.5 - - - 1.8 - 
 Medium 2.8 2.0 2.4 2.1 2.6 2.6 - - 
 Small - - 2.3 1.9 - - - - 
 Small/ 

medium 
- - - - 2.5 1.4 - 1.1 

M. coggeri Large 2.7 - 2.6 - 2.5 - - - 
 Medium 2.5 - 2.5*  -  - - - 
L. nannotis Large - - - - - - 1.8 1.6 
 Small/ 

medium 
- - - - - - 2.1 - 

L. rheocola Large - - - - - - 1.7 - 
 Medium - - - - - - 1.5 - 
 Small - - - - - - 1.8**  
L. dayi Large - - - - - - 2.0 - 
 Small/ 

medium 
- - - - - - 2.3 - 

 

* Sample from P2 and P3  

** Sample from T1 and T2 
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Table S4. Isotopic trophic positions (ITPs) for invertebrates and fishes at Paluma in 2012. 

Invertebrates were categorised as primary consumers if ITP was close to 2 (1.9 - 2.1), as 

secondary consumers if ITP was close to 3 (2.9 – 3.1), and as omnivores if ITPs were not 

centred on an integer. 

 

Taxon Family Feeding group P1 P2 P3 
Diptera Simuliidae Filterer 2.5 - 1.8 
 Mixed  Filterer - 0.7 - 
"Several" Mixed  Gatherer/filterer 2.6 2.0 - 
Parastacidae Large Gatherer 1.9 2.5 2.5 
 Medium Gatherer 3.4 2.7 2.8 
 Small Gatherer/predator 3.1 3.2 3.0 
Palaemonidae Medium Grazer - - 5.0 
Coleoptera Psephenidae Grazer 3.7 2.3 - 
Ephemeroptera Leptophlebiidae Grazer/shredder/gatherer 0.4 1.0 0.8 
 Mixed  Grazer 1.3 2.4 2.2 
Plecoptera Gripopterygidae Grazers - 2.5 3.1 
Trichoptera Mixed  Grazer/gatherer/filterer 3.2 - - 
 Philopotamidae Grazer/gatherer/filterer - 2.5 - 
 Mixed  Shredder 0.9 1.5 0.4 
Lepidoptera  Grazer/shredder - 0.5 - 
"Several" Mixed Predator 4.3 3.0 - 
Coleoptera Dytiscidae Predator - 1.9 2.0 
 Mixed Predator 1.5 - - 
Ephemeroptera Ameletopsidae Predator 3.3 3.3 - 
Plecoptera Mixed  Predator/grazers 3.3 - - 
Hemiptera Gelastocoridae Predator - 1.9 - 
 Mixed  Predator 2.3 3.1 1.9 
Megaloptera Corydalidae Predator 2.8 - 3.1 
Arachnida Pisauridae Predator 2.4 - 3.3 
Zygoptera Synlestidae Predator 4.8 3.6 - 

 Mixed  Predator 4.4 3.5 3.9 
Epiproctophora Gomphidae Predator - 1.9 - 
 Synthemistidae Predator - 3.0 - 
 Telephlebiidae Predator - 3.4 - 
 Mixed Predator 3.3 - 3.5 
Trichoptera Mixed  Predator 4.1 3.6 - 
Fishes Mogurnda adspersa Predator - - 3.2 
 Anguilla reinhardtii Predator - 3.0 - 
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Table S5: Assignment of invertebrates to consumer feeding groups (according to Merritt & 

Cummins, 1984; Gooderham & Tsyrlin, 2002; Cheshire, Boyero & Pearson, 2005), including 

assignment to broader mixed groups (right column) for when invertebrates were combined for 

stable isotope analysis.   

 

Consumer feeding 
group 

Filterer Gatherer Grazer Shredder Predator Combined invertebrate groups 

Ameletopsidae     •  
Athericidae     • Predators mixed 
Baetidae  • •   Ephemeroptera grazers mixed 
Caenidae  • •   Ephemeroptera grazers mixed 
Calamoceratidae       
       Anisocentropus sp.    •  Trichoptera shredders mixed 
Ceratopogonidae  •   • Predators mixed 
Chironomidae • •    Gatherers/filterers mixed 
Chorismagrionidae     • Zygoptera predators mixed 
Cordulephyidae     • Epiproctophora predators mixed 
Corydalidae     •  
Culicidae •     Diptera filterers mixed 
Diphlebiidae     • Zygoptera predators mixed 
Dixidae •     Diptera filterers mixed 
Dolichopodidae     • Predators mixed 
Dytiscidae     •  
Ecnomidae     • Trichoptera predators mixed 
Eustheniidae     • Plecoptera predators/grazers 

mixed 
Gelastocoridae     •  
Gerridae     • Hemiptera predators mixed 
Gomphidae     •  
Gripopterygidae   •    
Gyrinidae     • Coleoptera predators mixed 
Helicopsychidae   •   Trichoptera 

grazers/gatherers/filterers mixed 
Hydrobiosidae     • Trichoptera mixed predators 
Hydrometridae     • Hemiptera predators mixed 
Hydropsychidae •     Trichoptera 

grazers/gatherers/filterers mixed 
Hypolestidae     • Zygoptera predators mixed 
Lepidoptera   • •   
Leptoceridae       
       Lectrides sp.    •  Trichoptera shredder mixed 
      Oecetis sp.    •  Trichoptera shredder mixed 
      Triplectides sp.    •  Trichoptera shredder mixed 
      Triplexa sp.    •  Trichoptera shredder mixed 
Leptophlebiidae       
      Atalophlebia sp.  • • •  Ephemeroptera grazers/gatherers/ 

shredders mixed 
      Genus Q  • • •  Ephemeroptera grazers/gatherers/ 

shredders mixed 
      Jappa sp.  • • •  Ephemeroptera grazers/gatherers/ 

shredders mixed 
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Consumer feeding 
group 

Filterer Gatherer Grazer Shredder Predator Combined invertebrate groups 

Leptophlebiidae       
      Koornonga sp.  • • •  Ephemeroptera grazers/gatherers/ 

shredders mixed 
      Neboissophlebia sp.  • • •  Ephemeroptera grazers/gatherers/ 

shredders mixed 
      Nousia sp.   • • •  Ephemeroptera grazers/gatherers/ 

shredders mixed 
      Leptophlebia sp.   • • •  Ephemeroptera grazers/gatherers/ 

shredders mixed 
      Ulmerophlebia sp.  • • •  Ephemeroptera grazers/gatherers/ 

shredders mixed 
      WT sp 2/4  • • •  Ephemeroptera grazers/gatherers/ 

shredders mixed 
Lindeniidae     • Epiproctophora predators mixed 
Nevrorthidae     • Predators mixed 
Notonectidae     • Hemiptera predators mixed 
Oxygastridae     • Epiproctophora predators mixed 
Parastacidae       
       large  •     
       medium  •     
       small  •   •  
Philopotamidae • • •    
Pisauridae     •  
Pleidae     • Hemiptera predators mixed 
Polycentropodidae     • Trichoptera mixed predators 
Psephenidae   •    
Pseudocorduliidae     • Epiproctophora predators mixed 
Scirtidae •     Gatherers/filterers mixed 
Simuliidae •      
Stratiomyidae  •    Gatherers/filterers mixed 
Synlestidae     •  
Synthemistidae     •  
Telephlebiidae     •  
Veliidae     • Hemiptera predators mixed 
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