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Additive manufacturing techniques and their biomedical  
applications

Yujing Liu1, Wei Wang2, Lai-Chang Zhang1

Abstract

Additive manufacturing (AM), also known as three-dimensional (3D) printing, is gaining in-

creasing attention in medical fields, especially in dental and implant areas. Because AM technolo-

gies have many advantages in comparison with traditional technologies, such as the ability to man-

ufacture patient-specific complex components, high material utilization, support of tissue growth, 

and a unique customized service for individual patients, AM is considered to have a large potential 

market in medical fields. This brief review presents the recent progress of 3D-printed  biomedical 

materials for bone applications, mainly for metallic materials, including multifunctional alloys with 

high strength and low Young’s modulus, shape memory alloys, and their 3D fabrication by AM 

technologies. It describes the potential of 3D printing techniques in precision medicine and com-

munity health.
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Demand for implants is increasing because 

of more patients with bone diseases caused 

by the growing aged population and traffic 

accidents [1–3]. Therefore it is important to 

 fabricate high-quality patient-specific implants 

to reduce the risk of repeated surgical proce-

dures and alleviate patients’ pain. However, it 

is reported that conventional bone repairing 

techniques, such as bone grafts and distrac-

tion osteogenesis, are hard to apply [4, 5]. 

Additive manufacturing (AM) techniques, also 

known as three-dimensional (3D) printing, are 

considered as the most cutting-edge manufac-

turing technologies to manufacture patient-

specific implants based on a layer-wise method. 

These techniques can produce complex shaped 

implants with a scaffold structure to satisfy a 

variety of different needs [1, 6–8]. Moreover, 

AM could produce patient-specific devices 

with external geometries derived from the 

patient’s computed tomography (CT) or 

magnetic resonance imaging (MRI) data. A 

patient-specific implant has the potential to 

reduce surgery operation time, restore cor-

rect joint kinetics, improve implant fixation, 

and reduce the risk of repeated surgery [6].

Currently, there are several representa-

tive AM techniques, including inkjet print-

ing (IJP), fused deposition modeling (FDM), 

selective laser sintering (SLS), electron 

beam melting (EBM), selective laser melting 

(SLM), and ultrafast laser processing. In par-

ticular, the mechanism of the FDM technique 
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is that the raw material is melted and extruded from a noz-

zle, and then the melting material cools down gradually after 

extrusion. An inkjet system dispenses droplets of material onto 

the selected area of a substrate, and the manufacturing process 

can be performed in a thermal, air-pressure, electromagnetic, 

or piezoelectric environment. An SLS system is equipped with 

a laser source to sinter the powder material, which is deposited 

on the powder bed. Because of insufficient laser energy to melt 

the powder completely, SLS-produced components normally 

have a low relative density. SLM and EBM have a similar pro-

cessing mechanism based on the layer technique [1]. They use 

a laser of high energy or an electron beam as the heat source to 

completely melt the powder material. The powder layer thick-

ness in SLM or EBM is usually between 20 and 100 µm. These 

two techniques are capable of producing nearly full density 

parts of high quality and with complex geometries.

However, the selection of suitable metallic materials has 

become more important because AM-produced components 

need to meet the specific requirements for different bone 

implants. For example, load-bearing bone sites need material 

having great performance such as high strength, light weight, 

good biocompatibility, and great corrosion resistance. Several 

materials are believed to be suitable for AM in the implant 

field. Generally, they can be classified into three categories: 

metals, ceramics, and polymers [9–26]. This article describe 

the AM technologies most commonly used to produce medical 

implants, and then outlines the latest 3D printing applications, 

including their performance in vivo and in vitro.

Classification of additive manufacturing processes

FDM techniques
FDM techniques, also called extrusion-based rapid prototyp-

ing, fabricate the component with the nozzle by extruding 

the material on the substrate in layers [27–29]. Normally, the 

materials used in FDM are polymers such as thin thermoplas-

tic filaments. The nozzle can melt the material rapidly and 

extrude the liquid according to a scan strategy designed by 

computer. The liquid material solidifies very fast, and it will 

be the solid-state substrate for the next fresh layer. Thus to 

ensure that the interlayer has good adhesion ability, the manu-

facturing temperature should be kept below the melting point 

of the material [30]. The main limitations of FDM techniques 

is that the materials are thin thermoplastic filaments and the 

raw materials will be affected by the high melting temperature 

of the manufacturing process [31].

IJP techniques
Similarly to other AM techniques, IJP techniques build up 

the component from thin layers of the 3D model under com-

puter control [32, 33]. During fabrication, an inkjet print head 

deposits the liquid binding material, and then a thin powder 

layer is deposited over the completed region. This process is 

repeated until the component is manufactured completely. 

Usually, after the manufacturing process is completed, the 

binder will be burn off under a high-temperature heat treat-

ment [34]. The binder materials for these techniques are some 

polymer latex and silica colloid, while the powder material can 

be metallic, ceramic, and composite powder.

Selective laser sintering
SLS is a kind of AM technique with a layer-wise mechanism 

[35–37]. The powder is spread on the substrate plate and sub-

sequently sintered by a laser spot. The scanning is controlled 

by a computer. The powder in a selected area on the powder 

bed is bound together to build a complete part. Once the com-

ponent is finished, the loose powder can be collected from the 

chamber and recycled for future fabrication. Compared with 

other AM techniques, SLS can use a lager range of material, 

including polymers, metals, and composites.

Selective laser melting
SLM is an AM technique that can produce the nearly full 

density part with use of a high-energy source. Similarly to 

SLS, SLM is a layer-wise technique that manufactures com-

ponents based on a 3D CAD model under the control of a 

computer [33, 38–43]. Differently, SLM systems use a laser 

spot as the input energy to completely melt the powder mate-

rial; the computer controls the laser beam through a mirror 

deflection system and then makes the laser beam focus on the 

powder bed. The input energy of the laser can be up to several 

 kilowatts [44]. The processing chamber is filled with a pro-

tective atmosphere (usually argon) during the manufacturing 

process to prevent the components from being oxidized [6]. 

A large range of materials, including metals, polymers, and 
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ceramics [40, 45–50], have been used for production of com-

ponents. Compared with the components made by traditional 

technologies, the SLM as-produced counterparts in the forms 

of the solid and complex scaffold exhibit comparable or even 

better mechanical properties without any further postprocess-

ing, such as heat treatment [8, 51–54].

Electron beam melting
In principle, EBM techniques have a processing mechanism 

similar to that of the aforementioned SLM techniques. Both 

can produce the nearly full density parts; differently, EBM 

uses an electron beam spot as the source to melt the pow-

der [55, 56]. The building chamber is evacuated to create a 

vacuum before the component is manufactured. For EBM sys-

tems, the powder layer thickness is usually between 20 and 

100 µm [57], which is also similar to that for SLM. Before 

manufacture, the substrate plate needs to be heated to 700°C 

by the electron beam to decrease residual stresses between 

the plate and the as-produced component. Also, this can help 

sinter powder completely to avoid powder smoking [57, 58]. 

Extensive endeavors have been made to study the process-

ing, microstructure, and performance of EBM as-produced 

specimens, and most have mainly focused on metals [1, 8, 54, 

58, 59]. Meanwhile, many biomedical applications, including 

knee, hip joint, and jaw replacements, are being fabricated 

through EBM techniques [60–62].

Ultrafast laser processing
Techniques using ultrafast lasers (picosecond and femtosecond 

lasers) have been applied for both AM and subtractive manu-

facturing in ultrahigh precision for true 3D manufacturing 

[63–67]. The ultrafast lasers with a pulse width of tens of fem-

toseconds to picoseconds are focused on the selected regions, 

where the ultrashort pulse reduces heat diffusion to surround-

ing regions, thereby creating an ultrahigh precision melting 

pool. Currently, ultrafast lasers are used extensively for fun-

damental science research and in industry [68]. The applica-

ble materials usually include proteins, polymers, glasses, and 

metals, even live cells. The ultrafast laser processing products 

can be used in medical applications such as functional medical 

stents and in laser-assisted in situ keratomileusis based on the 

unique ultrahigh molecular weight proteins.

Developments in AM for clinical applications

Patient-personalized implants have been proposed and devel-

oped with the development of 3D printing techniques recently. 

Patient-specific implants can be designed and manufactured 

according to their medical 3D model, such as 3D CT data 

and MRI data. On one hand, before bone healing surgery is 

performed, the 3D printing technique can manufacture a 3D 

facture model of the bone, which could help preoperative 

planning in terms of analyzing, diagnosing, and designing the 

individual operation plan for the patient. On the other hand, 

3D printing techniques are capable of manufacturing real 

components, including the screw placements and the custom-

ized implants for a specific patient (Table 1) [69]. They can 

shorten the surgical time and improve the success of the sur-

gery, which are also the main functions and advantages of 3D 

printing. Previous literature has reported that 3D-printed com-

ponents have a positive effect on promoting tissue regeneration 

in in vitro and in vivo experiments [4, 50, 69, 75].

Preoperative planning for patient-specific implants
Usually, increasing the time in surgery means an increase in 

the risk of the operation [76]. Therefore researchers have been 

searching for methods that could reduce the surgery opera-

tion time. Fortunately, 3D printing, as an emerging technique, 

makes it possible to reduce the operation time. It is an accurate 

method to manufacture the model of the fractured bone for a 

specific patient. A large number of studies have demonstrated 

that 3D as-printed models could improve the success of ortho-

pedic surgery [77, 78]. The 3D data of the fractured bone can 

be derived from CT or MRI examinations of the patient. The 

real patient-specific 3D model is then produced by 3D printing 

techniques. The surgery strategy, including the position and 

size of the operative incision as well as the length and position 

of the screw insertion, can be determined from the accurate 

data on the fractured bone for a specific patient.

You et al. [79] reported that 3D printing technology shows 

great clinical feasibility for treatment of proximal humeral 

fractures in aged people. With the help of a 3D-printed proxi-

mal humeral fracture model, the morphology and structure 

of the fractured bone could be shown accurately, which was 

very necessary for determination of the situation related to 

the classification and the magnitude for the fractured bone 
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Table 1. Summary of additive manufacturing processing methods and their medical applications

Additive manufacturing 
technique

 Materials  Targeted clinical cases  Comments  References

FDM  Polyether ether 

ketone

 Facial implant  Three-dimensionally printed implants were 

suitable for the complex bone structure

 [70]

FDM  Heterogeneous 

hydrogel

 Three-dimensional 

heterogeneous hydrogel model

 Promoted the repair of osteochondral 

defects

 [71]

FDM  Ti-6Al-4V  Rat implants  Porosity played an important role in tissue 

ingrowth

 [72]

SLM  Ti-24Nb-4Zr-8Sn  Acetabular cup  The implant has high relative density and 

good mechanical properties

 [6]

EBM  Ti-6Al-4V  Human fetal osteoblasts  Very rough surfaces reduced cell 

proliferation

 [73]

EBM  Ti-6Al-4V  Pig skull  Scaffolds were suitable scaffolds for bone 

ingrowth

 [74]

EBM, electron beam melting; FDM, fused deposition modeling; SLM, selective laser melting.

A B C

Fig. 1. (A) Three-dimensional shoulder joint simulation data for internal fixation including the design of the length as well as the position of 

the plate and the screws; (B) three-dimensionally printed model of the simulation of the prepared internal fixation (anterior position); (C) the 

shoulder joint radiograph after the surgery [79].

(Fig. 1). Thus the treatment strategy can be adjusted and opti-

mized to reduce the intraoperative fracture prior to surgery 

[79]. Sugawara et al. [80] established a method based on a 3D 

printing technique to improve the accuracy of pedicle screw 

insertion, thereby decreasing the surgery time. Three types of 

3D templates were produced for determination of the accurate 
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position of the pedicle screw insertion (Fig. 2). The simulation 

of the screw insertion was conducted with the templates. Ten 

patients were selected for surgery, and the results showed that 

this method can improve the accuracy of screw insertion.

The effect of three-dimensionally printed implants
To produce a high-quality implant, it is necessary to under-

stand in depth the structure of natural bone. It is well known 

that bone tissue can be divided into two parts (i.e., cancellous 

and cortical bone). In particular, about 50–90 vol% of cancel-

lous bone is porous. However, the porosity of cortical bone 

is less than 10 vol% [81]. The target of bone replacement 

should be a structure similar to that of natural bone so that the 

implant can promote bone tissue regeneration. The 3D print-

ing techniques have ability to manufacture porous or scaffold 

structures with a complex patient-specific shape and geometry, 

variation in the porosity, and a suitable material, which can 

ensure the implant is similar to natural bone. The porous struc-

ture can mimic real bone to improve bio-transport properties 

inside the implant thereby creating a friendly environment for 

bone cells ingrowth. Furthermore, such a structure can obtain 

a high strength and low stiffness (i.e. a low Young’s modulus) 

by manipulating the microstructure therefore the mechanical 

properties of the implant material used. Titanium and its alloys 

are metals commonly used for 3D printing techniques. Porous 

Ti-6Al-4V scaffolds have been studied extensively in terms of 

processing, mechanical properties, and biocompatibility. Li 

et al. [58] studied the mechanical properties of rhombic dodec-

ahedron Ti-6Al-4V porous cells (Fig. 3). The results showed 

a good linear relationship, with a higher exponential factor n 

of approximately 2.7 compared with the ideal stochastic open 

cellular foams with a factor of approximately 1.5 (Fig. 3B).

Zhang et al. [6] produced a beta-type Ti-24Nb-4Zr-8Sn 

biomedical titanium alloy acetabular cup by SLM (Fig. 4). Liu 

et al. [14] reported an optimized scaffold structure with 85% 

porosity produced by Ti-24Nb-4Zr-8Sn. The relative density 

is affected by the laser scanning speed and input energy. The 

best quality component, with 99.3% relative density, can be 

achieved with a scan speed of 750 mm/s with a laser power 

of 175 W. The compression testing results show the strength 

could reach at 51 MPa with a ductility exceeding 14%. These 

results illustrate that titanium alloys would be  suitable materi-

als for artificial implants. In vivo tests showed that a porous 

titanium alloy scaffold component manufactured by 3D print-

ing techniques could result in fast bone tissue ingrowth [82, 

83]. The SLM technique and the EBM technique can both 

produce components with nearly full density, so research-

ers are investigating the differences between these two 

Fig. 2. Three types of templates produced for helping or accurate guidance of the pedicle screw insertion [80].
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techniques. Liu et al. [1] compared these two techniques by 

testing the mechanical properties of the same titanium alloy 

porous specimens fabricated by SLM and EBM respectively. 

They found that the microstructures of these two types of 

as-produced samples exhibit significant differences resulting 

from the different processing temperature in the 3D print-

ing process. Besides, the relative density of EBM-produced 

specimens is higher than that of SLM-produced ones, which 

limits the influence on compressive testing results (Fig. 5A). 

The results show that the SLM-produced specimens have 

a scattered fatigue life owing to big defects inside the strut 

(Fig. 5B). Moreover, a 3D-printed Ti-24Nb-4Zr-8Sn cage has 

outstanding osseointegration and better mechanical properties 

than the traditional polyether ether ketone (PEEK) cage, illus-

trating excellent potential for clinical implants [82, 83].

Kumar et al. [84] tested cell-derived decellularized extra-

cellular matrix (dECM) for porous Ti-6Al-4V scaffolds in 

vitro. The flow diagram of the decellularization process is 

shown in Fig. 6. The bioactive factors are found in the extra-

cellular matrix, which may improve the cell functionality 

growth on Ti-6Al-4V scaffolds.

Some ceramic materials can also be used for 3D-printed  

implants. Fielding and Bose [85] suggested that 3D-printed  

calcium phosphate scaffolds can play a significant part in bone 

replacement applications. They manufactured scaffolds of pure 

and SiO
2
/ZnO-doped tricalcium phosphate and implanted them 

in a bone defect to observe the effect. The results show that there 

is strong mechanical interlocking between the implant and its 

surrounding tissue. The addition of dopants had no effect on the 

dissolution behaviors in vivo.

Here, several examples of 3D-printed implants are 

described to understand how 3D-printed implants improve 

the effect of the surgery. To investigate the influence of 3D 

architecture and structure on tissue regeneration, Fedorovich 

et al. [72] designed and fabricated a 3D heterogeneous hydro-

gel model using a 3D fiber deposition technique (Fig. 7). They 

observed excellent bone tissue formation both in vitro and in 

vivo at different locations of the 3D structure (Fig. 7C). It is 

believed that this technology could promote the repair of oste-

ochondral defects.

Fig. 4. An acetabular cup made of Ti-24Nb-4Zr-8Sn alloy 

manufactured by selective laser melting [6].

Fig. 3. Mechanical properties of rhombic dodecahedron Ti-6Al-4V porous cells: (A) the relationship between the fatigue strength and the 

Young’s modulus; (B) the relationship between the fatigue strength and the relative density [58].
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3D-printed implants for specific patients also have 

great potential to improve the development of orthopedic 

surgery. Gerbino et al. [71] studied the effect of the facial 

implant produced by rapid prototyping technology using 

a PEEK material for more than 10 patients (Fig. 8). The 

3D-printed implants were found to be satisfactory in terms 

of the shape, size, and position, even for the complex bone 

structure.

Imanishi and Choong [70] reported successful reconstruc-

tion with a prosthetic calcaneus based on a 3D printing tech-

nique for the first time. They produced a titanium calcaneal 

implant (Fig. 9A) using an EBM system to reconstruct the 

Fig. 5. Comparison of the mechanical properties of Ti-24Nb-4Zr-8Sn alloy components manufactured by selective laser melting (SLM) and electron 

beam melting (EBM): (A) the compressive strain–stress curves for porous specimens; (B) the fatigue results for the EBM and SLM specimens [1].

Fig. 6. The flow diagram of the decellularization process for the porous Ti-6Al-4V scaffolds [84].

dECM, decellularized extracellular matrix.
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A CB

Fig. 7. The process of the fabricated a 3D heterogeneous hydrogel model using 3D fiber deposition technique [72].

Fig. 8. The process for 3D-printed facial implant surgery [71].

defect by means of total calcanectomy. The EBM-produced 

calcaneal prosthesis matched well with the talus and cuboid, 

and the patient could walk on bare feet without any major 

complications from 5 months after surgery (Figs. 9B and C). 

The patient-specific titanium calcaneal prosthesis is ready for 

use within several days from order. The titanium implant is 

light and has high strength and a complex structure, which are 

important factors for successful performance of this surgical 

procedure [70].

Mangano et al. [86] described a method for the design and 

production of custom implants for a maxillary defect for 10 

patients. The patient-specific implants match the defect area 
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A

B C

Fig. 9. (A, B) 3D-printed patient-specific titanium calcaneal implant, and (C) patient walking on bare feet at the 5-month follow-up [70].

A B

C D

Fig. 10. (A) The 3D data of the maxilla, (B) the morphology of the defect, (C) computed tomography image of the maxilla after surgery, and 

(D) the maxilla after 1 year, without implant loss [86].
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well with satisfactory size and shape (Fig. 10). These implants 

can be inserted easily, which reduce the surgery time and 

improves healing.

Conclusion

This brief review has described the recent development of 3D 

printing techniques using different materials, including met-

als, ceramics, and polymers, in terms of clinical applications. 

These techniques can produce implants with multiple complex 

shapes, porous structures, and made of materials suitable to 

for use in the medical field. They have been considered as the 

most promising alternative technologies to help in patient- 

specific preoperative planning, reduce the surgery operation 

time, and improve the success rate of implant surgery. Because 

of on biomaterials, the 3D printing technologies have great 

potential in precision medicine and community health. Further 

studies need to focus on improving the mechanical properties 

of implants manufactured by 3D printing, such as through the 

development of new biomaterials with better mechanical prop-

erties, improving the accuracy of the porous implant, and pro-

ducing a graded porous structure with an optimized Young’s 

modulus to match the surrounding tissue.
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