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Abstract 26 

Introduction: Leg order during sequential single-leg cycling (i.e. exercising both legs 27 

independently within a single session) may affect local muscular responses potentially 28 

influencing adaptations. This study examined the cardiovascular and skeletal muscle 29 

hemodynamic responses during double-leg and sequential single-leg cycling.  30 

Methods: Ten young healthy adults (28 ± 6 y) completed six 1-min double-leg intervals 31 

interspersed with one minute of passive recovery and, on a separate occasion, 12 (six with one 32 

leg followed by six with the other leg) 1-min single-leg intervals interspersed with one minute 33 

of passive recovery. Oxygen consumption, heart rate, blood pressure, muscle oxygenation, 34 

muscle blood volume and power output were measured throughout each session.  35 

Results: Oxygen consumption, heart rate and power output were not different between sets of 36 

single-leg intervals but the average of both sets was lower than the double-leg intervals. Mean 37 

arterial pressure was higher during double-leg compared with sequential single-leg intervals 38 

(115 ± 9 mmHg vs. 104 ± 9 mmHg; p<0.05) and higher during the initial compared with second 39 

set of single-leg intervals (108 ± 10 mmHg vs. 101 ± 10 mmHg; p<0.05). The increase in 40 

muscle blood volume from baseline was similar between the active single-leg and double-leg 41 

(267 ± 150 μM∙cm vs. 214 ± 169 μM∙cm; p=0.26). The pattern of change in muscle blood 42 

volume from the initial to second set of intervals was significantly different (p<0.05) when the 43 

leg was active in the initial (-52.3 ± 111.6%) compared with second set (65.1 ± 152.9%).  44 

Conclusions: These data indicate that the order in which each leg performs sequential single-45 

leg cycling influences the local hemodynamic responses, with the inactive muscle influencing 46 

the stimulus experienced by the contralateral leg.  47 



Keywords: near-infrared spectroscopy; skeletal muscle blood flow; high intensity exercise; 48 

blood pressure; order effect; active muscle mass  49 



Introduction 50 

When compared with traditional double-leg cycling training, sequential single-leg cycling 51 

training (i.e. exercising both legs independently within a single session) is associated with 52 

improved maximal cardiac output, leg blood flow and oxygen consumption (1) as well as 53 

greater increases in metabolic and oxidative potential of skeletal muscle (2). Mechanistically, 54 

single-leg cycling results in greater leg blood flow and oxygen delivery to the active leg (1, 3, 55 

4) thus providing the environment to achieve higher individual leg power output (1, 2, 5, 6) 56 

and training stimulus (1, 2). Importantly, differences in bulk blood flow and blood flow 57 

distribution between active and inactive legs during single-leg cycling have been observed (7-58 

9). It is therefore possible that the order in which each of the limbs perform exercise during 59 

sequential single-leg cycling (i.e. active during the initial or second set) could impact the 60 

cardiovascular and metabolic response of the modality; however, this is yet to be fully 61 

described. 62 

There is a growing body of literature that the contralateral leg is not physiologically passive 63 

during single leg exercise. For example, femoral blood flow, oxygen consumption and 64 

carbohydrate utilization are increased above resting levels in the inactive leg during single-leg 65 

cycling (9-11). Additionally, similar increases in muscle blood volume, measured by near-66 

infrared spectroscopy (NIRS), have been observed half way through a single-leg graded 67 

exercise test in both the active and inactive legs (8). These acute exercise responses likely 68 

contribute to improvements in leg aerobic capacity (12-14), endurance time (15) and femoral 69 

vein cross section area (13) of the untrained leg observed in studies using a single-leg cycling 70 

exercise model. Indeed, hemodynamic changes within inactive tissue beds has been proposed 71 

as an important mechanism underpinning improvements in vascular structure and function 72 

observed in untrained tissue beds (16, 17).  73 



Understanding the physiological consequence of leg order during sequential single-leg cycling 74 

would provide valuable information for the prescription of aerobic exercise completed with 75 

one muscle group followed by another. Indeed, order effects when comparing aerobic and 76 

resistance exercise (18) or multiple resistance exercises (19) within a single exercise session 77 

have been observed. In contrast, no studies have investigated the hemodynamic and metabolic 78 

responses of aerobic exercise performed with different muscle groups within a single exercise 79 

session. This information is important in informing the exercise prescription using this training 80 

modality as well as training of multiple muscle groups (e.g. training lower before upper body) 81 

since exercise order can influence acute performance, neuromuscular activity, oxygen 82 

consumption and ratings of perceived exertion (19) which will likely influence chronic 83 

adaptations. For example, if local muscle responses during sequential single-leg cycling 84 

demonstrate a leg order effect and training is conducted as per Klausen et al. (1) (i.e. same leg 85 

first in all sessions), it is possible that each leg may experience different muscular adaptations. 86 

As such, alternating the starting leg could mitigate this discrepancy, ensuring each leg receives 87 

the same stimulus within a training program. Therefore, this study will, for the first time, 88 

investigate the local muscular responses of each leg using NIRS during a session of sequential 89 

single-leg cycling intervals. Additionally, we will compare the mean hemodynamic response 90 

(i.e. right and left leg) during double-leg cycling with the active and inactive legs during single-91 

leg cycling to ascertain the potential contribution of the inactive leg during single-leg cycling 92 

to the overall increased peripheral stimulus. 93 

Methods 94 

Participants 95 

Ten young healthy individuals (7 males and 3 females, age: 28 ± 6 y, body mass index: 22.7 ± 96 

2.2 kg.m2, VO2max: 53 ± 11 mL.kg-1.min-1, peak power output: 314 ± 96 W) volunteered to 97 



participate in this study. At the time of this study, all participants were considered to be 98 

physically active and no individuals were excluded on the basis of their current exercise habits 99 

(aerobic or resistance based training). Participants attended a laboratory setting on four separate 100 

occasions to perform a graded exercise test, familiarization session and two experimental 101 

sessions with no less than five and no greater than ten days between testing sessions. 102 

Participants were asked to avoid strenuous physical activity for at least 24 h prior to the day of 103 

testing and all tests were completed at a similar time of day. Written informed consent was 104 

obtained prior to data collection. This study received ethical clearance from Murdoch 105 

University Human Research Ethics Committee (2012/157) prior to the start of this study and 106 

conformed to the Code of Ethics of the World Medical Association (Declaration of Helsinki). 107 

Procedures 108 

During the initial testing session, participants completed a graded exercise test using an 109 

electronically braked Velotron cycle ergometer (RacerMate; USA). Male participants started 110 

at a power output of 70 W increasing 25 W∙min-1 until volitional fatigue, while females started 111 

at 50 W increasing 20 W∙min-1 until volitional fatigue. Expired ventilation was collected at a 112 

frequency of one Hz and analyzed for the volume of oxygen consumed and carbon dioxide 113 

produced using a Parvo TrueOne metabolic analysis system (ParvoMedics; USA). From this 114 

data, 15 sec mean values were calculated for the determination of maximal oxygen 115 

consumption, highest 30-s average during exercise, and the first ventilator threshold (20).  116 

During the familiarization session, participants completed six one-min cycling intervals on a 117 

Velotron cycle ergometer. The session started with a standardized 15 min double-leg warm-up 118 

with participants cycling at 30% and 40% (5 min at 30% and 10 min at 40%) of the maximal 119 

power output achieved during the graded exercise test. Participants then cycled for a further 120 

five min at 50% of the power output at the first ventilator threshold (88 ± 16 W) immediately 121 

followed by two 1-min double-leg cycling intervals completed at the participant’s highest 122 



maintainable power output with one min of passive recovery between intervals. Following the 123 

initial two double-leg intervals, participants were familiarized with single leg cycling. 124 

Participants performed four single-leg cycling intervals (two with each leg). Each set of the 125 

two single-leg intervals started with five min of cycling at half the power output recorded at 126 

ventilator threshold during the double-leg graded exercise test (44 ± 8 W) followed 127 

immediately by two one-min maximal intervals with one min passive recovery between 128 

intervals. After completing the intervals using one leg, the ergometer was adjusted to allow the 129 

participant to complete the identical procedure with the opposite leg. During the single-leg 130 

intervals a specially designed counterweight (10 kg) was attached to the opposite pedal to allow 131 

a fluid pedaling motion. Previous research has successfully used this method in both healthy 132 

and clinical populations (3, 5, 21-24) and has shown that counterweighted single-leg cycling is 133 

more similar to double-leg cycling when compared with unassisted single-leg cycling (3, 21). 134 

During single-leg cycling, participants rested their inactive leg on a chair placed directly next 135 

to the unoccupied crank arm.  136 

During the experimental sessions (Figure 1), using a cross-over design, participants completed 137 

one session of double-leg and one session of sequential single-leg intervals in a randomized 138 

and counterbalanced order. At the start of each session, participants rested in a supine position 139 

for 10 min during which time expired ventilation was collected via the metabolic analysis 140 

system. Participants then, irrespective of condition, completed a 15-min standardized double-141 

leg cycling warm-up identical to the familiarization trial. In the double-leg session, participants 142 

completed six maximal one-min intervals with one min passive recovery between intervals. In 143 

the sequential single-leg session, participants completed twelve (six with each leg in a 144 

sequential order as depicted in Figure 1) maximal one-min intervals with one min passive 145 

recovery between each interval. During the sequential single-leg session, the order of legs (i.e. 146 

right first then left or left first then right) were randomized and counterbalanced. During all 147 



intervals, participants were instructed to produce the highest maintainable power output 148 

possible. Throughout each interval session, power output (Velotron cycle ergometer software), 149 

oxygen consumption (metabolic analysis system) and heart rate (810i, Polar; Finland) were 150 

measured at one Hz and mean values over the one-min intervals were calculated. Muscle blood 151 

volume and oxygenation in the rectus femoris muscle were measured during the 10-min supine 152 

rest and throughout the interval sessions using NIRS. Blood pressure was measured manually 153 

using an aneroid sphygmomanometer immediately after each interval.  154 

Near-infrared spectroscopy measures 155 

Muscle blood volume and oxygenation during the experimental trials were monitored using the 156 

NIRO-200 oximeter (Niromonitor NIRO-200, Hamamatsu Photonics; Japan). This system 157 

simultaneously uses the modified Beer-Lambert and spatially-resolved spectroscopy methods 158 

to measure changes in oxygenated hemoglobin/myoglobin (∆HbO2), deoxygenated 159 

hemoglobin/myoglobin (∆HHb) and total hemoglobin/myoglobin (∆tHb); ∆tHb = ∆HbO2 + 160 

∆HHb, expressed in micromoles x centimeter (µM·cm). The contribution of myoglobin to the 161 

NIRS signal cannot be differentiated by near-infrared light, but is believed to be minimal (< 162 

20%) (25). For simplicity, the abbreviations ∆O2Hb, ∆HHb and ∆tHb refer to the combined 163 

signal of hemoglobin and myoglobin. This system also provides a measure of HbO2 saturation, 164 

indicated by the tissue oxygenation index [TOI (%) = ∆HbO2/∆tHb x 100]. TOI reflects the 165 

dynamic balance of O2 supply and demand within the muscle microcirculation (26), while the 166 

changes in tHb can be considered an indirect measure of changes in muscle blood volume (25). 167 

Each NIRS probe unit consisted of a detector (includes two silicon photodiodes) and an emitter 168 

probe (includes three laser-emitting diodes of 775, 810 and 850 nm), supported 4 cm apart by 169 

a rubberized shell casing. Given the penetration depth of the NIRS signal is almost half the 170 

emitter-detector distance (i.e. 2 cm), it is reasonable that changes in NIRS-derived variables 171 

 
 



primarily reflect that of the muscle tissue (26, 27). Probe units were positioned on both limbs 172 

during double-leg and sequential single-leg cycling, on the quadriceps rectus femoris muscle, 173 

mid-way between the anterior superior iliac spine and the base of the patella. The distance from 174 

the patella was recorded and used for accurate repositioning during subsequent experimental 175 

trials. The probes were affixed using double-sided adhesive tape and covered with a soft black 176 

cloth to prevent movement and signal contamination from external light sources. Wire regions 177 

immediate to the probe were neatly secured along the participants’ thighs to minimize 178 

movement during cycling. Following instrumentation, the zero set procedure was applied to 179 

reset O2Hb, HHb and tHb values to an arbitrary zero value. TOI values are not affected by the 180 

zeroing procedure as it is measured in absolute values. During the 10 min of supine rest prior 181 

to exercise, baseline NIRS parameters were established. Changes in NIRS-derived tHb and 182 

TOI were then normalized to mean baseline value (i.e., average of last min during rest). All 183 

NIRS data were sampled at 6 Hz and collected on data acquisition software (Powerlab, 16/30, 184 

AD Instruments, Bella Vista; Australia). Values were then converted to 1-min averages for 185 

statistical analysis. Time-averaging NIRS-derived signals has been shown to result in better 186 

reliability, with coefficient of variation values of 4.6 % and 13.7 % reported for TOI and tHb, 187 

respectively, during interval exercise (27). 188 

Data Processing 189 

Similar to previous research (2), double-leg power output was halved for comparison with 190 

single-leg cycling to give an indication of power output produced per leg. Baseline oxygen 191 

consumption measured during the final two minutes of the 10-minute resting period of each 192 

session was subtracted from the values obtained during each interval to represent only the 193 

oxygen consumption related to the work bout. Work completed during the double-leg and 194 

sequential single-leg interval sessions were calculated accordingly to the formula: work (J) = 195 

P * t, where P is the average power output (W) produced during the intervals (i.e. six 1-min 196 



double-leg intervals and each of the six 1-min single-leg intervals) and t is the total time (s) 197 

performing intervals. Total work completed during the single-leg session was calculated as the 198 

sum of the initial and second active leg. 199 

Sample Size Calculation 200 

Sample size calculation was based on differences in per leg power output achieved during high 201 

intensity intervals completed with double-leg (198 ± 29 W) and single-leg cycling modalities 202 

(172 ± 19 W) (2). Given the limited research on local hemodynamic differences between 203 

single-leg and double-leg cycling, we powered this study to ensure that differences in power 204 

output could be observed; thus allowing comment on the hemodynamic changes associated 205 

with such differences in power output. We recruited 10 participants to ensure we had the power 206 

to observed a moderate to large effect (~0.7, α = 0.05 and power = 0.8). 207 

Statistical Analysis 208 

A single mean value for power output, work, oxygen consumption, heart rate and MAP were 209 

calculated from the six 1-min double-leg intervals and 12 1-min single-leg intervals to represent 210 

the overall session. Paired t tests were used to compare the double-leg and sequential single-211 

leg sessions. 212 

Power output, work, oxygen consumption, heart rate and MAP were calculated separately for 213 

the initial six 1-min single-leg intervals and for the second six single-leg intervals and 214 

compared using paired t tests.  215 

Local muscular data (∆tHb, ∆TOI) collected on both legs during the six 1-min double-leg 216 

intervals and during the first six single-leg 1-min intervals were collated to provide one mean 217 

value to represent the mean of the double-leg, the active single-leg and the inactive single-leg. 218 



Differences in ∆tHb and ∆TOI between the mean double-leg, active single-leg and inactive 219 

single-leg were analyzed using a one-way repeated measures analysis of variance.  220 

To further characterize the influence of the active leg order (i.e. active during the initial or 221 

second set) during the sequential single-leg interval session, local muscular data collected on 222 

each leg during the 12 single-leg intervals were first collated into one mean value to represent 223 

the active and inactive legs during the initial six and second six intervals. Leg One denotes the 224 

leg which was active in the initial six single-leg intervals and inactive in the second six 225 

intervals. Conversely, Leg Two denotes the leg which was inactive in the initial six intervals 226 

and active in the second six intervals. The percent change in ∆tHb and ∆TOI from the initial to 227 

second six intervals in Leg One and Leg Two were analyzed using paired t tests.  228 

Significant main effects or interactions were analyzed using a Fisher’s LSD post-hoc analysis. 229 

Effect size estimates (ES; Cohen’s d) were calculated to confirm the meaningfulness of the 230 

difference. Statistical analyses were conducted using SPSS (version 24; IBM; USA) and 231 

variables were deemed significant when p≤0.05. All data are presented as mean ± standard 232 

deviation. 233 

Results 234 

Whole body responses to the overall session: double-leg versus sequential single-leg cycling 235 

Power output, work, oxygen consumption, heart rate and MAP during sequential single-leg and 236 

double-leg high intensity interval cycling are presented in Table 1. Power output (p<0.01; ES= 237 

1.77), oxygen consumption (p<0.01; ES= 1.13), heart rate (p<0.01; ES= 0.59) and MAP 238 

(p<0.01; ES= 1.22) were lower during sequential single-leg cycling when compared with 239 

double-leg cycling. Power output produced per leg (p<0.01; ES= 0.69) and work completed 240 



(p<0.01; ES= 0.71) were greater during sequential single-leg compared with double-leg 241 

cycling. 242 

Whole body responses to the sequential single-leg cycling session: initial versus second set 243 

of intervals 244 

Power output, oxygen consumption, heart rate and MAP during the initial and second sets of 245 

single-leg cycling intervals are shown in Table 2. Power output (p=0.51; ES= 0.09), work 246 

(p=0.51; ES= 0.05), oxygen consumption (p=0.19; ES= 0.17) and heart rate (p=0.29; ES= 0.00) 247 

during the intervals were not different between sets. Mean arterial pressure (p<0.05; ES= 0.70) 248 

was lower during the second set compared with the initial set of intervals.  249 

Local muscular responses to double-leg and single-leg cycling: mean double-leg versus 250 

active single-leg and inactive single-leg 251 

The responses of ∆tHb and ∆TOI in the mean double-leg, active single-leg and inactive single-252 

leg during high intensity interval cycling are presented in Figure 2. The ∆tHb in the inactive 253 

single-leg was smaller than the active single-leg (p<0.01; ES= 1.17). No differences in ∆tHb 254 

were observed between the mean double-leg and active single-leg (p=0.26; ES= 0.33) or 255 

inactive single-leg (p=0.13; ES= 0.76). The ∆TOI was not different between the mean double-256 

leg, active single-leg and inactive single-leg. 257 

Local muscular responses to sequential single-leg interval cycling: Leg One versus Leg Two 258 

To visually represent the local muscular responses of each leg during the sequential single-leg 259 

interval cycling session, one sec averages of a representative participant were plotted for Leg 260 

One and Leg Two from supine rest to the end of the intervals (Figure 3). No analyses were 261 

performed on the 1-sec averages.  262 



The change in ∆tHb from the initial to second six intervals demonstrated significantly different 263 

(p<0.05; 0.89) patterns in Leg One (-52.3 ± 111.6 %) when compared with Leg Two (65.1 ± 264 

152.9 %). Specifically, when the leg is active during the initial six intervals (i.e. Leg One), 265 

muscle blood volume was reduced by 52.3 ± 111.6 % during the second six intervals when the 266 

leg is now inactive. Conversely, when the leg is active during the second six intervals (i.e. Leg 267 

Two), muscle blood volume was increased 65.1 ± 152.9 % from the initial six intervals when 268 

it was inactive. The change in ∆TOI from the initial to second six intervals was not different 269 

(p=0.18; 0.92) between Leg One (-25.0 ± 77.1 %) and Leg Two (45.5 ± 76.2 %). 270 

Discussion 271 

This study investigated the cardiovascular and skeletal muscle hemodynamic responses to a 272 

single session of high intensity interval cycling using either sequential single-leg or double-leg 273 

cycling in young healthy adults. The main findings from this study were; 1) a higher individual 274 

leg power output was produced during single-leg compared with double-leg cycling, 2) a 275 

reduction in mean arterial pressure was observed during the second set of single-leg intervals, 276 

3) skeletal muscle blood volume (∆tHb) and oxygenation (∆TOI) were similar between the 277 

active single-leg and mean double-leg, and 4) the pattern of change in muscle blood volume 278 

was significantly different between Leg One (active in initial set of single-leg intervals) and 279 

Leg Two (active in second set of single-leg intervals). 280 

Whole body responses to the overall session: double-leg versus sequential single-leg cycling 281 

Absolute power output during the single-leg intervals was lower compared with the double-leg 282 

intervals; however, the power output produced by the active single-leg was 12 ± 2% higher 283 

than that calculated for each leg during the double-leg condition (Table 1). This finding is 284 

consistent with previous research from our laboratory which demonstrated a ~15% higher per 285 

leg power output during single-leg compared with double-leg intervals in trained cyclists (2). 286 



Importantly, in our previous study greater per leg power output was hypothesized as the stimuli 287 

promoting enhanced cellular glucose transport and mitochondrial enzyme capacities following 288 

three weeks of single-leg high intensity interval cycling (2). We have previously hypothesized 289 

that these higher power outputs observed during single-leg cycling were achieved due to a 290 

greater leg blood flow and oxygen extraction during single-leg compared with double-leg 291 

cycling (1, 3, 9, 11). However, contradictory to this hypothesis, we observed similar increases 292 

in quadriceps muscle blood volume (Figure 2) (discussed below). 293 

Whole body responses to the sequential single-leg cycling session: initial versus second set 294 

of intervals 295 

There were no differences in power output, work, oxygen consumption or heart rate between 296 

the initial and second sets of single-leg intervals (Table 2) indicating similar exercise 297 

intensities. However, during the second set of intervals, MAP was significantly lower (Table 298 

2). It is possible that the decrease in MAP was a result of reduced systemic vascular resistance 299 

by way of alterations in shear stress throughout the vasculature (16, 17) as a result of exercise 300 

and thermoregulatory mechanisms (28, 29). Additionally, blood pooling in the initially active 301 

leg (discussed below) may also have contributed to the decreased MAP during the second set 302 

of intervals due to a reduction in venous return of this localized blood volume. Importantly, 303 

despite this reduced perfusion pressure, the vasculature was able to appropriately redistribute 304 

the available blood to maintain performance (i.e. power output) during the second set of 305 

intervals.  306 

Local muscular responses to double-leg and single-leg cycling: mean double-leg versus 307 

active single-leg and inactive single-leg 308 

The ∆tHb and ∆TOI were not different between the active single-leg and mean double-leg 309 

intervals (Figure 2) indicating similar quadriceps muscle blood volume and oxygenation. These 310 



findings are consistent with previous studies demonstrating no differences in the quadriceps 311 

muscle activation, measured by surface electromyography, between single-leg and double-leg 312 

interval cycling despite the per leg power output being ~13% higher during the single-leg 313 

intervals (30). Greater semitendinosus muscle activation has been observed during single-leg 314 

cycling (30); thus, greater knee flexion work (31) could have contributed to the greater per leg 315 

power output observed during single-leg cycling (1, 2, 5, 6). Alternatively, it is possible that 316 

additional areas of the quadriceps muscle were perfused and/or additional motor units were 317 

recruited which were not detected by the non-invasive methods used in the present study and 318 

that of MacInnis et al. (30). Previous findings of greater improvements in quadriceps metabolic 319 

and oxidative potential following single-leg compared with double-leg cycling support this 320 

hypothesis (2), specifically as biochemical adaptations do not appear to transfer from active to 321 

inactive legs during single-leg cycling (32, 33). However, as mentioned, the inactive leg is not 322 

hemodynamically nor metabolically dormant and thus will likely contribute to the peripheral 323 

stimulus experienced during single-leg cycling. 324 

In addition to the increase in muscle blood volume in the active single-leg, there was also an 325 

increase, albeit smaller, in the inactive leg (Figure 2A). Cooper et al. (8) observed similar 326 

increases in muscle blood volume between the active and inactive leg half way through a 327 

single-leg graded exercise test; however, at peak exercise, the active leg demonstrated a 328 

significantly higher muscle blood volume. Additionally, increases in femoral blood flow, 329 

oxygen consumption and carbohydrate utilization in the inactive leg were observed at 330 

submaximal exercise intensities (9-11). Since the active single-leg and mean double-leg local 331 

muscular responses were similar (Figure 2), the hemodynamic responses observed within the 332 

inactive leg would likely increase the peripheral stimulus associated with single-leg cycling. 333 

This has important implications since previous research has identified that altered 334 

hemodynamic responses in the inactive musculature contribute to the vascular adaptations 335 



observed in muscle beds not directly related to the activity (17). These data suggest that single-336 

leg high intensity interval cycling could provide additional vascular and muscular adaptations 337 

beyond that which it achievable with double-leg cycling. 338 

Local muscular responses to sequential single-leg interval cycling: Leg One versus Leg Two 339 

The present study is the first to demonstrate a leg order effect on blood volume during 340 

sequential single-leg cycling. Specifically, the increase in blood volume for Leg Two (active 341 

in the second set) was not consistent with the decrease in blood volume for Leg One (active in 342 

the initial set) indicating possible blood pooling. This finding has important implications for 343 

the interpretation of previous research and future prescription of sequential single-leg cycling 344 

training. For instance, the majority of previous studies utilizing sequential single-leg cycling 345 

training either did not specify leg order (34-37) or always exercised the right leg before the left 346 

leg (1). Based on our findings, it is possible that differences in acute cardiovascular and 347 

metabolic response between the initial and second sets of sequential single-leg cycling could 348 

have influenced the outcome of these studies. These findings are also important in the 349 

prescription of aerobic exercise using multiple modalities, and thus different muscle groups, 350 

within a single exercise session. While this study indicates that the acute metabolic and 351 

cardiovascular response may be influenced by the order of exercising muscle groups, further 352 

research is needed to examine training adaptations associated with high intensity aerobic 353 

exercise using multiple muscle groups within a single exercise session. 354 

 The findings from this study provide important information about the leg order effect 355 

associated with sequential single-leg cycling. However, this study is not without limitations. 356 

Performing twice as many single-leg compared with double-leg intervals could have influenced 357 

the comparison of the hemodynamic measures, specifically when comparing double-leg to the 358 

second set of single-leg intervals. Nevertheless, this methodology was chosen as it is consistent 359 



with previous training studies that have used sequential single-leg interval cycling (2, 38) and 360 

this methodology ensured that the total time exercising each leg was consistent between 361 

sessions (i.e. similar number of muscular contractions). The use of a double-leg warm up prior 362 

to single-leg intervals, while consistent with methods used in previous sequential single-leg 363 

training studies (38), could have influenced the local hemodynamics of both the active and 364 

inactive legs (39). Nevertheless, the intensity of the warm up was relatively low when 365 

compared to the intervals and performed with both legs. As such, any change in hemodynamics 366 

would have influenced both legs equally. Finally, tHb measures were obtained in an upright 367 

cycling posture; yet, normalised to mean resting value obtained in a supine position. It is 368 

possible that postural changes may have altered fluid shifts influencing tHb measures in this 369 

study. However, NIRS in the supine position was only used for normalisation and was 370 

consistent across conditions.  371 

Conclusions 372 

The present study provides insight into the potential mechanisms responsible for the benefits 373 

of sequential single-leg cycling. In particular, the hemodynamic responses of the inactive 374 

single-leg will likely contribute to the overall increased peripheral stimulus typically observed 375 

with single-leg cycling since the active single-leg and mean double-leg responses were similar. 376 

Additionally, differences in MAP and blood volume distribution during sequential single-leg 377 

cycling indicates attention should be given to active leg order since it has the potential to alter 378 

the acute cardiovascular and metabolic responses. Future research should examine the leg 379 

vascular and muscular responses of sequential single-leg compared with double-leg cycle 380 

training to provide further insight into the mechanisms behind the established benefits of 381 

sequential single-leg cycling training.  382 
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Captions for figures 491 

 492 

Figure 1. Schematic of experimental sessions. 493 

 494 

Figure 2. Change in total hemoglobin (A) and tissue oxygenation index (B) in the mean double-495 

leg (DL), active single-leg (SL-ACT) and inactive single-leg (SL-INACT) during high 496 

intensity interval cycling. *Inactive single-leg less than active single-leg (p<0.01).  497 



 498 

Figure 3. Raw values for ∆tHb of a representative participant during sequential single-leg 499 

cycling. Leg One was active during the initial set of intervals and inactive during the second 500 

set. Conversely, Leg Two was inactive during the initial set of intervals and active during the 501 

second set. 502 
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