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ABSTRACT 

This paper describes a novel Multi-Chip Module (MCM) digital 
implementation of a reconfigurable multi-precision neural network 
classifier. The design is based on a scalable systolic architecture 
with a user defined topology and arithmetic precision of the neu- 
ral network. Indeed, the MCM integrates 64/32/16 neurons with a 
corresponding accuracy of 4/8/16-bits. A prototype has been de- 
signed and successfully tested in CMOS 0.7pm technology. 

1. INTRODUCTION 

Most of the research on Artificial Neural Networks (ANN) has 
concentrated on theoretical studies and software simulations. How- 
ever, a real need for hardware implementation has raised for real- 
world neural network applications mainly driven by an increasing 
demand for low power and portable detection systems. For this last 
category of applications, VLSI implementation appears as an in- 
evitable solution which combines the sensor and the VLSI proces- 
sor (ANN processor or other). Implementing the VLSI processor 
on a single chip is not always the best solution or the most eco- 
nomical one especially for laboratory prototypes. The low yield 
of large digital chips may result in a prohibitively expensive prod- 
uct [ I]. An alternative solution is the use of advanced MCM and 
packaging technologies. MCMs are a significant advance in the 
field of packaging and interconnections due to the ability of MCMs 
to significantly increase electronic system performance and to re- 
duce system size [2]. In our case the MCM is used in order to 
increase the computational power of the neural network classifier. 
This is mainly motivated by the need for a high number of neu- 
rons orland a high accuracy for complex classification problems. 
The MCM is based on a scalable systolic architecture with a user 
defined topology and accuracy and a reconfigurable connectivity 
between the Processors Elements (PES) of the systolic architecture 
and the VLSI chips of the MCM. 

Section 2 of this paper explains the adopted neural network 
and describes the applications. Section 3 describes both the VLSI 
chip and the MCM design with a particular emphasis on the novel 
features of the hardware. Section 4 summarizes the performances 
of the MCM and compares them to those of well-known neural 
circuits reported in the literature. Finally, section 5 concludes the 
work described in this paper. 
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2. THE NEURAL NETWORK STRUCTURE 

The neural network studied here is a binary neural network called 
parity machine. Its main advantages are that it can be taught and 
tested using simple digital operations resulting in a simple and a 
compact VLSI implementation. A further advantage of the par- 
ity machine is related to the simplicity of the activation function 
which makes the neural network topology easily scalable and there- 
fore suitable for MCM design. However, the parity machine does 
have drawbacks. It may not generalize as well as the general neu- 
ral network [3], nor can it solve as many problem classes as a gen- 
eral neural network. More explanations on both the recall and the 
training of a parity machine could be found in [3]. It is basically 
composed of a first Threshold Logic Unit (TLU) and a decision 
output layer. The TLU is implemented through a weighted sum 
followed by a binary activation function: 

where 7ulJ are the synaptic weights, 3 ,  are the input activities SI  
are the output states and p is the number of inputs. 
The final output is carried out through a decision layer which, in 
the case of the parity machine, implements the parity of the TLU's 
outputs as described by Eq. (3): 

5 f  = ($SI  (3) 
J =o 

where @ is the xor function and q is the number of neurons. In 
the case of the committee machine, the decision layer implements 
the majority function of the TLUs outputs. 
Several learning algorithms for the parity machine have been pro- 
posed in the literature such as the least action algorithm [4] and the 
Offset algorithm [3, 51. 

The main goal behind the VLSI implementation of these net- 
works is to build a low power and portable system for methane gas 
detection and driver non-vigilance detection. In both applications. 
the VLSI neural network is interfaced with a set of sensors provid- 
ing real-time data. In the first application the goal is to detect the 
methane concentration in a gas mixture composed of C H I ,  CO 
and HlO. The neural network solution was selected in order to 
resolve the problems associated with the non-reproductibility and 
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the non-selectivity of the gas sensors [6]. In the second applica- 
tion, the driver non-vigilance is detected by combining a set of 
heterogeneous sensors (such as speed sensor, vehicle position on 
the road sensor, eye blinks sensor, etc ...) and a parity machine NN 
classifier in order to detect normal or abnormal driving behavior. 

Extensive simulations and experiments were conducted in or- 
der to evaluate the hardware requirements for the two applications, 
particularly in terms of neural network structure and accuracy of 
the synaptic weights . It was found that 16 bits synaptic weight 
precision were needed for the non-vigilance detection while only 
8 bits ,were required for the gas detection application. It was also 
found that a better generalization performance was obtained by 
combining a higher number of neurons; this obviously results in 
an increase of hardware requirements. Based on these considera- 
tions, we decided to implement a variable precision neural network 
classifier in which the accuracy is user-defined depending on the 
application. The parity machine is designed to achieve variable 
precision with 4. 8 or 16 bits of synaptic weights and arbitrary pre- 
cision of the inputs. The number of neurons (and/or inputs) could 
be increased for lower accuracy and vice-versa. The number of 
neurons is also increased by interfacing more VLSI chips within 
the MCM. 

3. VLSI DESIGN 

The implemented VLSI design is based on a compact MCM in- 
cluding four basic VLSI chips. The connections between the four 
basic VLSI chips is configured depending on the required neural 
network topology as well as the required weight and input preci- 
sion. In this section we first explain the Basic VLSI chip architec- 
ture and then we explain the MCM implementation. 

3.1. Basic chip design 

The basic building block chip is based on 2D systolic array archi- 
tecture. This array consists of 4 x 4 Processing Elements (PE) 
as shown on Figure 1. The array can be configured to perform a 
weighted sum, a parity or a comitte machine or even a multi-layer 
perceptron. Each processor PE includes a local reconfigurable 
memory to store the synaptic weights in the form of one 16-bit 
synaptic weight, two 8-bit synaptic weights or four 4-bit synaptic 
weights. 

The inputs are fed serially from the least significant to the most 
significant bit with an arbitrary user defined precision. The 16-bit 
Xi bus is used to handle the inputs while the buses Si and Sout are 
systolic buses used to interface between basic VLSI chips when 
higher number of neurons and/or a higher accuracy are needed. 
After off-chip digital conversion of the analog sensor output, a 
processor PE,, within the systolic array receives a digital sensor 
output S, from the least significant bit to the most significant one. 
The processor computes the product of the locally stored synaptic 
weight J4-*, by SI. In order to perform the partial product within 
each processor. ;1 novel multi-precision serial parallel multiplier 
[7] has been used. This last multiplier was well optimized in terms 
of silicon area which makes the VLSI chip cost effective. The out- 
put of the multiplier is then added to the partial sum received from 
the processor located on the left and transmitted to the processor 
PE,+I ,  located on the right one clock cycle later. All results SO 
are collected on the right side of the array. The weighted sum out- 
puts SO may be configured, by the control bit (Cne), as partial 
outputs Sout, in order to interface between the VLSI chips within 

Si 
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Control 

Conhol Unit PE: Processing Element 

Figure 1: Internal architecture of a basic VLSI chip. 

the MCM. The outputs SO may also be configured under inter- 
nal control bit (cf) to perform the parity machine or the TLU. An 
internal 10-bit control register is used to store the control word 
used to configure the systolic array. In this register several param- 
eters are stored and used to confiewe the array. such as the network 
structure (number of inputs and neurons), network type ( n u ,  par- 
ity machine, committee machine, mamx operation), the arithmetic 
coding (unsigned or signed two complement numbers), the weizht 
accuracy (4, 8, 16 bits) and the input accuracy (arbitrary). 

l l  Intemal weight register I B  

I I 

Figure 2: Processing Element (PE) building block diagram. for N0 /0p  = 
1. Sout = Sou (Op) while for NO/Op = 0, sout = sin (NO). FF stands for 
Flip-Flop. 

Figure 2 shows a block diagram of a basic Processing Ele- 
ment. The processor integrates a novel loading technique of the 
synaptic weight using the 4-bit systolic bus Sin. This same bus Sin 
is used to load the 16-bit internal weight register, to feed the par- 
tial sum inputs to the configurable arithmetic unit or to the 2UlO 
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multiplexer. In this last situation, the processor is not operational 
(NO) and the output data Sout are passed to the adjacent proces- 
sor located on the right without any processing. With this last NO 
programming technique, three interesting features are obtained: 

L >  

N64000[11] 
MA16[13] 

Easy test procedure since each processor can be tested sep- 
arately. The test of one processor within the systolic array 
is done by programming all other processors as NO. 

High level of reliability is obtained within the circuit. If 
following a test, a processor is found faulty, then it will be 
programmed as NO and the systolic architecture will be still 
functional. 

The loading of the synaptic weight is facilitated using this 
(NO) programming technique since the synaptic weights of 
all PES are loaded using a single 16-bit bus (Sin). Moreover, 
the synaptic weights of the four interfaced VLSI chip within 
the MCM are all loaded using the same 16-bit bus. 

\ , ,  I 

NA 9 x 16 64PE 870M 
NA 16 x 16 16PE 400M 

Figure 3 shows the architecture of the reconfigurable arith- 
metic unit in which each row consists of a single 4-bit processor. 
Eight multiplexers within each PE are used to change the hardware 
connections between two adjacent rows of cells in order to obtain a 
synaptic weight precision of 4 , s  or 16-bit. The configuration with 
the lowest precision provides an increase in the number of inputs 
or neurons according to the following equation: 

Where 71, p and q are the weight precision, number of inputs and 
the number of neurons respectively. C is a constant term equal to 
2'' = -1096 for one single VLSI chip and 214 = 16384 for the 
MCM. We can note that the circuit limitation is a trade-off between 
three parameters (n,p and 9). The MCM hardware resources are 
increased by a factor of four as compared to a single VLSI chip. 

SI1 , 
PE2 / I c 2  I I C 4  I C  I 

S I 2  
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1-  
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514 

Figure 3: Intemal schematic of the configurable arithmetic unit. 

3.2. MCM design 

The main objective behind the development of the MCM is to in- 
crease the neural network computational power needed for a bet- 
ter generalization performance, a higher number of neurons and 
a higher synaptic weight accuracy. The MCM offers the possi- 
bility of high level of integration needed for portable systems as 
it is the case for our application. Since a cost effective solution 

was an important criteria for our applications, we chose to im- 
plement an array of 4x4 systolic PES and to increase the compu- 
tational power by interfacing 4 basic chips within the prototype. 
The MCM-Laminated (MCM-L) has been adopted since it is a 
very cost effective solution compared to other MCM possibili- 
ties. Figure 4.A shows a microphotograph of the VLSI chip while 
Figure 4.B shows the MCM. This latter includes four basic VLSI 
chips and occupies an area of 2 x 2cm2 and integrates 256 digital 
synapses. 

4. PERFORMANCE 

The basic VLSI circuit was fabricated in 0.7pm CMOS technol- 
ogy. Verilog digital simulator was used to check the logic correct- 
ness of the design and also to generate random test vectors for the 
test of the circuit and the MCM. The circuit and the MCM were 
successfully tested at a maximum frequency of 20 MHz for differ- 
ent topologies and types of the neural network, different precisions 
and signed and unsigned arithmetic. The MCM power dissipation 
is at most 92 mW/MHz. The loading time at the maximum fre- 
quency is about 4,us for all control words and synaptic weights. 
Table 1 shows the performance comparison between the proposed 
MCM neural classifier and most well-known circuits reported in 
the literature. The VLSI design proposed in this paper presents 
the advantage of being reconfigurable in terms of precision and 
neural network topology. The MCM is a powerful neural pro- 
cessor including 64 Processing Elements implementing 256 dig- 
ital synapses. It exhibits a significant speed of 640MCPS. These 
last performances are comparable with those of the powerful neu- 
ral processor N64000 from Innova, which implements more than 
3.4M gates. 
[ Name I CMOS I Precision 1 NN I Speed I 
1 ofIC I techno 1 b,, x b,. I I CPS I 

Our I 0.7~lm I cfgx(4/8/16) I 64PE I 640M 1 , 1 1 . I I , 
MD1220[8] 1 NA I 1 x 16 I IPE I 9M 

S I O P ~ ~ ~ I  I 0.8um I 1 6 x 1 0  1 NA I 350M , , 
SAND[IO] I 0.8p7n I 16 x 16 I NA I200M 
LNeurorlll I NA I 16 x (4/8/16) I 16PE I 26M 

Table 1: Peifonnaiice comparisori of iieurbl circuits. I n  the table, 
NN starids for the Number of Neurons, cfg staiids for coilJgurable 
~ i i d  NA starids for Not Available. 

5. CONCLUSION 

A compact MCM digital neural network classifier has been fabri- 
cated and successfully tested. The VLSI circuit has been designed 
in order to be interfaced with a multi-sensor system for detection 
applications such as gas and non-vigilance detection. The circuit 
features a high level of flexibility and programability which makes 
it very suitable for a wide range of applications. The proposed 
architecture supports a variable precision of the synaptic weights 
(4/8/16) a reconfigurable network structure (number of inputs and 
neurons), a programable network type (TLU, parity machine, com- 
mittee machine, matrix operation) and a signed or unsigned arith- 
metic. The design also includes other novel design features such 
as a systolic synaptic weight loading technique. The final MCM 
design occupies an area of 2 x 2cm' and implements 64 neurons 
with a processing speed of 640MCPS. 
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Figure 4: (A.) Microplzotograpl~ of the VLSI chip. (B.) 2 x 2cm2 MCM iiicluding four VLSI chips. 
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