Edith Cowan University
Research Online

Research outputs pre 2011

2007

Experiments with Monte Carlo Othello

Philip Hingston
Edith Cowan University

Martin Masek
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks

b Part of the Computer Sciences Commons

10.1109/CEC.2007.4425000

This is an Author's Accepted Manuscript of: Hingston, P. F,, & Masek, M. (2007). Experiments with Monte Carlo
Othello. Proceedings of IEEE Congress on Evolutionary Computation. (pp. 4059-4064). Singapore. IEEE. Available
here

© 2007 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

This Conference Proceeding is posted at Research Online.

https://ro.ecu.edu.au/ecuworks/4970

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworks
https://ro.ecu.edu.au/ecuworks?utm_source=ro.ecu.edu.au%2Fecuworks%2F4970&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=ro.ecu.edu.au%2Fecuworks%2F4970&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1109/CEC.2007.4425000
http://dx.doi.org/10.1109/CEC.2007.4425000

Experiments with Monte Carlo Othello

P. Hingston, Senior Member, IEEE; M. Masek, Member, IEEE

Abstract— In this paper, we report on our experiments with
using Monte Carlo simulation (specifically the UCT algorithm)
as the basis for an Othello playing program. Monte Carlo
methods have been used for other games in the past, most
recently and notably in successful Go playing programs. We
show that Monte Carlo-based players have potential for
Othello, and that evolutionary algorithms can be used to
improve their strength.

I. INTRODUCTION

TRONG computer opponents in board games are often

held up as examples of computing power trumping the
analytical power of the human mind. The development of a
strong computer player is however strongly dependent on
the game. Whilst computer opponents for Chess have been
made famous [8], the inability of computer-based Go players
to compete with even moderately competent human players
highlights the limitations of traditional state-space search
algorithms running on current hardware.

Traditional approaches, such as mini-max search, rely on
a strong evaluation function, and typically encounter
problems in games where the evaluation function in the mid-
game is weak, and when there is a large branching factor. In
these games, a poor evaluation function leads the computer
opponent to misjudge its own position and to fail to predict
strong opponent moves. A large branching factor prevents
the computer from searching to the end of the game, where
the positions can be evaluated precisely (as the result is
known).

Recently, Monte Carlo-based approaches have shown
promise by generating relatively strong players for small-
board (9x9 or 13x13) Go. Most recently Wang and Gelly
[16] used a Monte Carlo-based tree search algorithm, the
UCT algorithm, to perform initial exploitation versus
exploration guidance through previously explored branches
near the root of the game tree, before launching Monte Carlo
simulations to estimate winning chances for board positions.
These estimates can then be used in place of a designed
evaluation function. Further to this, they found it beneficial
to constrain the Monte Carlo simulation by guiding through
moves using local template matching and other Go
knowledge. This success leads naturally to the question:
what is it that makes Monte Carlo methods so successful for
Go, where state-based search methods have largely failed? Is
there something particular about the nature of Go, or is it
just that the competition in computer Go has not yet become
strong enough?

We explore this question in an oblique way by applying

1-4244-1340-0/07$25.00 ©2007 IEEE

the Monte Carlo method to another game favoured by Al
researchers, Othello. Unlike the case of Go, very strong
Othello players have been developed (see [6] for a survey).
In this paper, initial work on a Monte Carlo Othello player is
presented. We implement a UCT and Monte Carlo based
approach, however instead of local template matching, we
evolve a weighted piece counter to guide the Monte Carlo
simulations.

II. BACKGROUND

A. Othello

Othello is a game for two players, played on an 8x8 board
using round pieces coloured white on one side and black on
the other. The board starts in the initial configuration shown
in Figure 1.

[@
O®

Figure 1 - The initial board state of an Othello game. Players take
turns placing new pieces to capture those of their opponent.

The players are assigned a colour and take turns, with
each player placing a piece with their colour facing up in
order to capture opponents pieces. Only moves that capture
opponent’s pieces are legal and if no such move exists, the
player has to pass. Vertical, horizontal, or diagonal lines of
pieces are captured by surrounding them on two opposite
sides, with an existing piece and a newly placed piece.
Captured pieces, rather than being removed, are flipped over
to show the colour of the player that has captured them and
may be re-captured by the opposing player. The game ends
when neither player has an available move. The winner is
the player with the largest number of pieces of their colour.

B. Monte Carlo for games

Monte Carlo methods have long been popular for
nondeterministic or incomplete information games, such as
poker [1], Scrabble [10], backgammon [15] and bridge [11].
Abramson [1] may have been the first to propose their use in

4059

complete information games. The basic idea is to define the
value of a position in the game as the expected value of a
random game starting from that position, and to estimate this
by playing out many games using random move choices. A
player then proceeds to use this evaluation function in a 1-
ply search, i.e. he/she chooses the move that leads to the
highest expected value of the game result. He demonstrated
the method with players for 6x6 Othello, tic-tac-toe and
chess. Surprisingly, there does not seem to have been any
further development on Monte Carlo methods for Othello.
More recently, a number of authors ([4][5][7][9][13][16])
have developed Monte Carlo-based players for Go, with
very good results. These authors have explored various
optimizations and enhancements, including [16] the use of
UCT, a bandit-based tree search algorithm, introduced in
[14] for solving large state-based Markovian Decision
Problems.

C. UCT

The basic Monte Carlo method samples next board
positions uniformly in order to choose the one with the best
expected value of the game result. This does not make best
use of the information obtained while sampling, which could
be used to concentrate more effort on more promising
positions for each player. This is like a soft version of mini-
max. One has to be careful, however, not to neglect less
promising positions, which may, on further sampling, start to
look better. This is an instance of the classic
exploration/exploitation dilemma in learning. In [14], Kocsis
et al. introduced the UCT algorithm as a response to this
dilemma.

The idea is to consider the choice of which of K next
positions to explore as a K-armed bandit problem. A K-
armed bandit problem is defined as follows:

Random variables X;, for 1<i< K, n>1determine the

payoffs for K gambling machines on the n” trial of that
machine. The aim is to choose which machine to play at
each trial so as to maximize the expected payoff (more
precisely, to limit the rate of increase in the difference
between the actual payoff and the maximum possible
payoff). An algorithm that does this for a large class of such
problems is UCB1-tuned [1]:

® Let t;, be the number of times machine j is chosen
up to time n, and X Jj.n be the average payoff from

machine j up to time n. Let S'j,n be the average
squared payoff value from machine j up to time n,
2
= - 2logn
andlet V; , =S jn—X jn+ g,
v Ljn

e First play each machine once

o Thereafter, play the machine j that maximizes

4060

X jnt —l(t)gnmin{l/4,Vj,n} (1)

Jsn
Figure 2 - UCB1-tuned

UCT (UCB for tree search) extends UCBI by combining
it with a mini-max tree search. The idea is to consider each
node of a search tree as a multi-armed bandit, with one arm
for each child node. Starting from the current board position,
the method is to use UCB1-tuned to select a child node (a
move for the current player), then again to select a child of
this child (a move for the opponent), and so on until an
unexplored node or a leaf (a completed game) is reached. A
random simulated game is then played from this point. The
result of the game is used to initialize the average payoff for
the new node, and to update the average payoffs for all
nodes on the path from the root. This process is repeated as
many times as can be within the time or resources allowed
for each move, and the final updated average payoffs (which
may be thought of as an estimated probability of winning the
game) are used to select the move.

playOneSequence(position)
begin
positions := <position>
while position is unexplored do
position := descendByUCBI(position)
positions := position + positions
od
game result := playOneRandomGame(position)
updateValue(positions, game result)
0 end of playOneSequence

=0 00N AW —

11 Sfunction descendByUCBI (position)

12 begin

13 nextPositions := list of next board positions
14 if some next position is not explored yet then
15 return a random unexplored position

16 else {all next positions have been explored}
17 return a random position that maximises (1)
18 end if

19 end of descendByUCB1

20 updateValue(positions, result)

21 foreach position in positions do
22 increment corresponding t; ,
23 Xjpi= X;, +result

24 od

25 end of updateValue

Figure 3 - Pseudo-code for UCT, adapted from [16].

Figure 3 gives pseudo-code for UCT based on that
presented in [16]. Note that this is the “parsimonious
version”, which creates at most one new node in the search
tree for each call to playOneSequence(). In the standard
version of UCT, the test on line 4 becomes a test for the end
of the game, and line 8 (which plays a random game to
completion without creating new nodes in the search tree) is
not required. This variation saves on memory requirements.

2007 IEEE Congress on Evolutionary Computation (CEC 2007)

Note that on line 13, in the case of a forced pass, the single
next board position is an unchanged board with the other
player to play. As pointed out in [16], UCT has a number of
advantages over traditional state-based search, namely: it is
an “anytime” method; it robustly handles uncertainty; and
the search tree is explored in an asymmetric way that
devotes more attention to promising moves.

UCT for Go was introduced by Wang et al. [16], where
they also introduced the idea of improving the effectiveness
of the simulation phase, using Go knowledge to bias the
choice of moves towards stronger play. Suppose that we are
in the process of simulating a game starting from a board
position of interest, and have a handful of next moves to
choose from. In a purely random simulation, each of these
moves is equally likely to be chosen. In [16], moves with
more meaning in Go terms are chosen ahead of others, with
ties resolved randomly. This results in more meaningful
“intelligent simulations”. They found that this significantly
increased the strength of the Monte Carlo-based player.

D. A4 Monte Carlo Othello Player

Since Monte Carlo methods have proved so successful in
Go, we wanted to investigate the possibility of using UCT as
the basis for an Othello player. We found the
implementation to be quite straightforward. We decided to
use a payoff of 1 for a win, 0 for a loss or draw (draws seem
to occur about 2-3% of the time with opponents of
approximately equal strength). One tricky point is that a
player with no legal move must pass, which does not occur
in Go, but this can be handled by treating a pass as a special
move.

In order to control the amount of computational effort
expended for each move of our player, we decided to limit
the number of simulated moves allowed. This makes the
computational effort independent of the processing power of
the hardware on which it runs.

TABLE 1 - % WINS BY MONTE CARLO PLAYERS AGAINST MINI-MAX

PLAYERS
simulated moves per

move 3-ply 4-ply
500 39(4.9) 18(3.8)
1000 47(5) 43(5)
2000 53(5) 41(4.9)
3000 63(4.8) 41(4.9)
5000 58(4.9) 51(5)
7000 65(4.8) 60(4.9)
10000 70(4.6) 57(5)

We tested this player against a mini-max player using
weighted piece count as its evaluation function (the weights
used were those evolved in [12]). The Monte Carlo player
becomes stronger when more simulated moves are allowed
per move, and of course mini-max becomes stronger with
more search plies. We played Monte Carlo players with 500,
1000, 2000, 3000, 5000, 7000 and 10000 simulated moves
per move, against 3- and 4-ply mini-max players. The results
are shown in TasLe 1. The figures in parentheses are the
standard errors of these measurements. The bolded figures

2007 IEEE Congress on Evolutionary Computation (CEC 2007)

show the point at which the computational effort (in terms of
time needed per move) for each method is approximately
equal. The winning percentage in each case is not far from
50%, suggesting these players are of approximately equal
strength. This is encouraging, but we should not read too
much into it. For example, the mini-max player does not use
any of the usual optimizations, such as alpha-beta pruning,
and we have not attempted to optimise the Monte Carlo
player either. Rather, we take these results as an indication
that Monte Carlo methods are feasible for Othello.

III. EVOLUTIONARY OPTIMISATION OF SIMULATION BIAS

In order to experiment with optimisation, we decided to
try the “intelligent simulation” idea for our Othello player,
with the additional twist that we would use an evolutionary
algorithm to search for a suitable way to bias the choice of
moves. We wanted to bias the choice of moves to achieve a
stronger Othello player, but without relying unduly on expert
knowledge of what moves constitute meaningful play. We
were therefore looking for a simple (and evolvable) method
to compute a probability distribution over the available next
moves, which we would then use to stochastically select the
next move in the simulated game.

Our idea was to base this distribution on a weighted piece
count evaluation of the candidate moves, and to evolve the
board weights used to calculate the weighted piece count.
Given a set of board weights, and a set of candidate moves
{ml, My, g JL, the distribution is calculated as follows:

First, calculate W, the weighted piece count for the
current board position. Then calculate #;, the weighted

piece counts for the boards resulting from playing each m; .
Define D, =W,—-W , the weighted piece count difference

between the current board and the next board (this can be
calculated incrementally). Now define min = min(D;) . Use

this to calculate N; =D, —min+1. Thus the smallest value

of N; will be 1. Finally, calculate p; =N,~/ZI;=1 N; . This

1
was used as the probability of selecting m; . Note that every
move has a chance to be selected, as every p;, >0.

To test the effect of this biasing scheme, we created a
Monte Carlo player, MCP(hand), that uses a hand-coded set
of weights from [12], and another that uses an improved
evolved set of weights from [12], MCP(LR). We played a
tournament between these players, plus a Monte Carlo
player with random choices, MCP(random); a heuristic
player using the evolved weights from [12], Heuristic; and a
4-ply mini-max player using weighted piece count with the
evolved weights as its evaluation function, MiniMax. The
Monte Carlo players all used 7000 simulated moves per
move, which equates roughly to the same time per move as
4-ply mini-max. Each player played 50 games as black and
50 games as white against each other player. TasLe 2 shows
the outcome.

4061

TABLE 2 — PERFORMANCE OF VARIOUS PLAYERS COMPETING IN A ROUND ROBIN OTHELLO TOURNAMENT. Table entries are number of wins for the row
player versus the column player in 100 games. The final entry in each row is the total number of wins for that player. The value in brackets is the standard

error.

Heuristic MCP(random) MCP(hand) ~ MCP(LR) MiniMax(4) \7;;:200
Heuristic 20(4) 17(3.8) 10(3) 11(3.1) 58(7.04)
MCP(random) 79(4.1) 47(5) 37(4.8) 60(4.9) 223(9.93)
MCP(hand) 81(3.9) 52(5) 34(4.7) 50(5) 217(9.95)
MCP(LR) 86(3.5) 59(4.9) 65(4.8) 45(5) 255(9.61)
MiniMax(4) 86(3.5) 35(4.8) 44(5) 54(5) 219(9.95)

From the table, we see that MCP(random), MCP(hand)
and MiniMax are about equal in strength, while MCP(LR) is
significantly stronger overall, and about equal to MiniMax in
head-to-head contests. Curiously, MCP(random) seems
stronger than MiniMax head-to-head, so that MCP(random),
MCP(LR) and MiniMax make up a ‘“rock-paper-scissors”
triple. Still, the good relative performance of MCP(LR)
suggests that stronger play can be achieved by optimizing
the bias. An evolutionary algorithm seems a good choice of
optimization algorithm for this task.

For this purpose, we chose to follow [12] and use an
Evolution Strategy (ES), as the task is basically that of
tuning a set of real-values parameters, and computational
requirements restricted us to a small population, a
combination that ES’s usually perform well. In order to
reduce the search space, we opted to take advantage of the
board symmetries, and restrict the search to sets of board
weights of the form:

alb|c|d|d|c|b]|a
blel|f|lglgl|f|le|b
c|flh|i|il|h|f]c
digl|i|j|Jj |t |g|d
digl|i|j|Jj|i|g|d
clflhl|il|i|h|f]|c
blel|f|lglgl|flel|b
alb|c|d|d|c|b]|a

Figure 4 - Board weights with symmetries.

Therefore, the genome is a sequence of 10 real numbers
<a,b,cdef,ghij> We used a simple self-adaptive
mutation, and no crossover.

Figure 5 displays the ES that we used.

To test the fitness of a set of weights, we played 60 games
against MCP(hand), (30 as black and 30 as white). The raw
fitness value was then calculated as:

raw _ fit = games _won+ 0.001Xtotal(margin) ,

where fotal(margin) is the total excess of friendly pieces

over opponent pieces at the ends of the games. This was
included to provide more gradient information for the
optimization algorithm. As this is quite a noisy fitness
function, we used a fitness smoothing technique as well as

4062

fitness inheritance to convert the raw fitness into a final
fitness score using the formula:

fit = (countx prev_ fit +raw_ fit)/(count +1),

where for a parent, countis the number of times it has

been evaluated, and prev_ fit 1is its previously stored

fitness, and for new offspring, countis 1 and prev _ fit is

the fitness of its parent.

1 Initialize:

Set 7 1/42x10. Set 7« 1/y/2410.
Set g, ¢ 1/310,k=1---20,j=1...10-
Set @, < (1/10) N(0,1),k =1---20-
While more generations do
For k:=1to 20 do
0, < 0, exp(T N(O,)+2V,;(0,1), j=1...10
®, < @, +0,N(0,])
Od _
Evaluate fitness of members of , and ,

eselect the best 10 from +
Ood

O 0N LN AW

Figure 5 - Pseudo-code for the ES.

IV. EXPERIMENTAL RESULTS

We ran the ES a total of 10 times to assess the reliability of
the algorithm. For each run, we used a population size of 20
and ran the algorithm for 250 generations (testing indicated
that more than 250 generations did not improve the strength
of the player). Both the evolved players and MCP(hand)
used only 1000 simulated moves per move. At the end of
each generation, we independently re-evaluated the fitness
of the fittest individual using 100 games against MCP(hand),
for reporting purposes. Figure 6 shows the % of games won
by the fittest player in each generation, averaged over the 10
runs, as well as the minimum and maximum over the 10
runs. On average, the fittest player after 250 generations
appears to be winning just under 65% of games against
MCP(hand), which is the winning percentage achieved by
MCP(LR). Note, however, that the individual identified as
the fittest in each generation may not actually be the fittest,
as the fitness function is noisy. So we need to look more
closely at these final generations.

2007 IEEE Congress on Evolutionary Computation (CEC 2007)

——mean

M MVAMN;\WW\VWWWWMf

60 Tt A
255 A AT

R 45

30 L e B e B B L S B S B B B B S B S S
0 50 100 150 200 250
Generation

Figure 6 - Summary of best fitness values over 10 runs of the ES.

To do so, we tested the fittest three individuals from each
final generation of the 10 runs of the ES, using 1000 games
this time for greater precision. The fittest of the three was
then designated the champion for that run. The champions
for each run had a %wins between 50.6% and 75.9%. We
then designated the fittest of these 10 as the overall
champion, and used it to create a Monte Carlo player, which
we call MCP(OC).

6.21 188 124 |037 (037 (124 1.88 |6.21
1.88 |-1.00 [-545 |-140 [-140 |-545 [-1.00 [1.88
124 |-545 [0.03 |0.07]0.07 |0.03 -5.45 |12.4
0.37 |-1.40]0.07 |-1.32 [-1.32 [0.07 -1.40]0.37
0.37 [-1.40]0.07 |-1.32 [-1.32 |0.07 -1.40]0.37
124 |-545 [0.03 |0.07 [0.07 |0.03 -5.45 (124
188 [-1.00 [-545 [-140 |-140 |-545 [-1.00 |1.88
6.21 1.88 |124 1037 [0.37 [124 1.88 |6.21

Figure 7 - Evolved weights for MCP(OC)

Figure 7 shows the weights for MCP(OC). Interestingly,
this pattern of weights bears no great resemblance to those
evolved in [12], except for the high values assigned to the
corner positions. Attempting to use these weights in a
weighted piece count heuristic player or a mini-max player
based on weighted piece count results in a truly miserable
standard of play. Thus the greater strength of MCP(OC)
cannot be attributed to higher quality simulations. At this
point, we don’t have a viable theory to explain this.

We now wanted to estimate the strength of MCP(OC). We
therefore tested this player against the same set of players as
in TasLe 2. For this testing, we increased the number of
simulated moves per move to 7000, so that it would be
comparable to the earlier results. The results can be seen in
the additional row and column of TaBLE 3.

From this we see that MCP(OC) is very strong against
other Monte Carlo players, but is one of the weakest of the
Monte Carlo players against MiniMax. This may be related
to the fact that we used performance against MCP(hand) to
measure fitness for the ES. A tentative possible explanation
is that MCP(OC)’s simulations use moves that are
representative of the moves that another Monte Carlo player
tends to make, but not of the moves that a mini-max player
tends to make. In other words, it may be that the ES has
evolved an implicit opponent model. A co-evolutionary
approach, or a fitness measure combining performance
against different types of players, may have produced a
different result. However, we can conclude that it is feasible
to use an evolutionary algorithm to tune simulation bias in a
Monte Carlo player.

We also tested MCP(OC) by hand against several
competent Othello programs on the Internet. From these
informal experiments, it has to be said that MCP(OC) is not
a strong Othello player! For example, it was only able to win
an occasional game against Ajax (http://abulmo.club.fr/ajax-
en.htm) playing on its “Amateur” level (there are several
levels above this), even when we gave the Monte Carlo
player several million simulation moves per move (which
equates to several seconds of elapsed time per move).
Othello programs are sophisticated, and use a lot of high
level Othello knowledge, including highly developed
evaluation functions, optimized tree searches, opening move
libraries etc. The present study at best suggests that it may
be possible in the future to develop a strong Monte Carlo-
based Othello player. This contrasts with the current relative
strength of Monte Carlo-based Go programs. The difference
may perhaps be due to the fact that Othello is better
understood than Go at this time, and that this understanding
has been embedded in existing Othello programs.

TABLE 3 - PERFORMANCE OF VARIOUS PLAYERS COMPETING IN A ROUND ROBIN OTHELLO TOURNAMENT, INCLUDING PLAYERS IN TABLE 2 AS WELL
ASMCP(OC). As in Table 2, entries are number of wins for the row player versus the column player in 100 games. The final entry in each row is the total

number of wins for that player. The value in brackets is the standard error.

Heuristic MCP(random) MCP(hand) MCP(LR) MCP(OC) MiniMax(4) Total wins/500
Heuristic 20(4) 17(3.8) 10(3) 10(3) 11(3.1) 68(7.7)
MCP(random) 79(4.1) 47(5) 37(4.8) 21(4.1) 60(4.9) 244(11.2)
MCP(hand) 81(3.9) 52(5) 34(4.7) 19(3.9) 50(5) 236(11.2)
MCP(LR) 86(3.5) 59(4.9) 65(4.8) 29(4.5) 40(4.9) 284(11.1)
MCPOC) 89(3.1) 78(4.1) 79(4.1) 68(4.7) 45(5) 344(10.4)
MiniMax(4) 86(3.5) 35(4.8) 44(5) 54(5) 53(5) 272(11.1)

Our inexpert observation in these games was that the
Monte Carlo player appeared to be doing well until late in

2007 IEEE Congress on Evolutionary Computation (CEC 2007)

the middle game, where it was frequently forced to pass,
sometimes several times in succession, at which point it

4063

suffered a great reversal of fortune and many friendly pieces
were flipped. Based on our readings on Othello strategy, the
Monte Carlo player appears to have a poor appreciation of
the concept of “mobility”, a well-known Othello feature that
has to do with the number of move choices available to each
player. (Actually, it seems that weighted piece count is
known to be a poor heuristic for Othello. In this study, we
used weighted piece count in order to stay close to similar
previous studies featuring evolutionary methods.) One
possible avenue for future research might be to attempt to
use simulation bias based on more effective Othello
heuristics. However, this does not really explain why the
Monte Carlo-based player fails to foresee its impending
doom until it is too late. The heuristic is only used to bias the
choice of moves in the simulation, and the final choice of
which move to play depends on the estimated “probability of
winning”, not on weighted piece count. The real problem is
that these probability estimates mislead the player. The same
problem occurs even for MPC(random), when bias in the
simulations is not used. We can only speculate at this point
that this may have something to do with the structure of the
Othello game tree: perhaps the winning line for the opponent
is located within a narrow sub-tree, resulting in a misleading
statistically-based probability of winning, which the Monte
Carlo player bases its move selection on.

V. CONCLUSIONS

In this preliminary study, we have shown that a Monte
Carlo approach to Othello is a feasible alternative to
traditional state-space search methods. We demonstrated one
possible optimisation of the basic UCT algorithm, but there
are many other avenues to try, starting, perhaps with some of
those that have been successful in Go. As UCT has a number
of advantages over state-space search, this may be the right
time to revisit Monte Carlo search and investigate its
application to other games. Our results suggest some
difference between and Go and Othello which needs to be
understood. It would be interesting to see what other kinds
of games are most suited to a Monte Carlo approach.

ACKNOWLEDGMENT

We would like to thank Simon Lucas for providing Java
software for testing Othello players, and Luigi Barone for
useful discussions and for executing evolutionary runs for
this study.

REFERENCES

[1] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, no. 2/3, pp.
235-256,2002.

[2] Abramson, B. Expected-outcome: A general model of static
evaluation. IEEE Trans. Pattern Analysis and Machine Intelligence
12(2):182-193, 1990.

[3] D. Billings, A. Davidson, J. Schaeffer, and D. Szafron. The challenge
of poker. Artificial Intelligence, 134:201-240, 2002.

[4] Bouzy, B. The move decision process of Indigo. ICGA Journal, Vol.
26, No. 1, pp. 14-27, 2003.

4064

[6]

[7]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

Bruegmann, B. (1993). Monte Carlo
ftp://www.joy.ne.jp/welcome/igs/Go/computer/mcgo.tex.Z.
Buro, M. The evolution of strong Othello programs, in: Entertainment
Computing - Technology and Applications, R. Nakatsu and J. Hoshino
(ed.), Kluwer, pp. 81-88, 2003.

Cazenave, T., and Helmstetter, B. Combining tactical search and
Monte-Carlo in the game of Go. In Symposium on Computational
Intelligence and Games, 171-175. IEEE, 2005.

Campbell, M., Hoane, A.J. and Hsu, F.-h. DeepBlue, in Schaeffer, J.
and van den Herik, J. (ed.) “Chips Challenging Champions: games,
computer and Artificial Intelligence”, pp 3-9, Elsevier, Amsterdam,
2002.

R. Coulom, “Efficient selectivity and backup operators in montecarlo
tree search,” In P. Ciancarini and H. J. van den Herik, editors,
Proceedings of the 5th International Conference on Computers and
Games, Turin, Italy, 2006.

B. Sheppard. World-championship-caliber
Intelligence, 134:241-275, 2002.

Ginsberg, M. L. 1999. GIB: steps toward an expert-level bridge-
playing program. In Sixteenth International Joint Conference on
Artificial Intelligence, 584-589.

Simon M. Lucas, Thomas Philip Runarsson: Temporal Difference
Learning Versus Co-Evolution for Acquiring Othello Position
Evaluation. CIG 2006: 52-59, 2006.

Kaminski, P. Vegos home page. http://www.ideanest.com/vegos/,
2003.

L. Kocsis and C. Szepesvari, “Bandit-based monte-carlo planning,”
ECML’06, 2006.

G. Tesauro and G.R. Galperin. On-line policy improvement using
Monte-Carlo search. In M.C. Mozer, M.I. Jordan, and T. Petsche,
editors, NIPS 9, pages 1068-1074, 1997.

Y. Wang and S. Gelly. Modification of UCT for Monte-Carlo Go with
patterns. In Symposium on Computational Intelligence and Games.
IEEE, 2007.

Go.

Scrabble. Artificial

2007 IEEE Congress on Evolutionary Computation (CEC 2007)

	Experiments with Monte Carlo Othello
	untitled

