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We now apply the above mentioned SEMI-ACD(1,1) model to model the di-
urnally adjusted price duration, #;. A number of previous studies in the field have
suggested that the choice of the kernel function is much less critical than that of the
bandwidth.!? To study the current problem, we employ the normal kernel function
of the form

K(2) = ——e-2"/2, (4.9)

—
W 2m

while computation of the CV function for the m iteration follows directly from (2.27)

namely

N
- 1 - . 5 - . 5 : .
CVin = N Z{i’n—l-l — Am () xn — g1 (nm—1) + Fm(h) G20 (tn ,ﬂa—l)}z‘;““(wn)' (4.10)

n=1
To specify the most appropriate bandwidth interval for each of the nth iteration,
we follow a similar procedure to that suggested in Héardle, Hall and Marron [15]. The
first step is to compute the score for each of the CV functions among one hundred

sample values of A drawn sequentially from the set
Hy = {jz._q L0.01 < hy < 4},

where s = 1,2,...,100. The results show that the interval Hy = [0.0532,0.3486] is
the smallest possible bandwidth interval by which C'V,, (k) can attain their smallest
values. The above step is then repeated, except that f:r.s are now drawn sequentially
from Hrp.

With regard to the maximum number of basic iterations, initially it is set at
M=15. However, it is found that the average squared error of u‘n','z-:m_l and 1m
at M > 7 is virtually zero, which indicates that no further improvement can be

obtained. Therefore, the analysis that follows is based on M = 6.

10See, for example, Gao and Yee [12].
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Iteration A f?.c.«__m) f?.c.«__m

1st 0.08132 | 0.2000
2nd 0.07997 | 0.2775
3rd 0.07929 | 0.2775
4th 0.07926 | 0.2775
5th 0.07927 | 0.2775
6th 0.07926 | 0.2775

Semiparametric Model “rL(hCL) he s

SEMI-ACD I 0.07234 | 0.2775

SEMI-ACD I 0.07017 | 0.3175
Parametric Model 5 ;

EACD Model 0.1288 -

Table 6: Estimation results for the SEMI-ACD(1,1) and EACD(1,1) price model, where

those of SEMI-ACD I and II were computed based on Step 2.5 and Step 3.2, respectively,

Table 6 shows the estimation results of ’}-'m(fr-c__m), f?-c,m, “rt(hoir) and hgt
for the SEMI-ACD(1,1) model of price durations, and also the parameter estimate
for the EACD as a comparison. While the semiparametric estimates of 0.07234
and 0.07017 are quite consistent with that of Engle and Russell [6], who report
an estimate of 0.07315 in their study on the price intensity of USD /Deutschmark
exchange rate, they are significantly lower than the parametric estimate of 0.1288,

To further investigate the source of such an inconsistency, let us now empiri-
cally examine the intertemporal importance of the conditional duration on the ACD
process, Figure 3 presents the partial plot of the nonparametric estimate of the
unknown real valued function ¢ in the SEMI-ACD model, while Figure 4 compares

this estimate with that of 3 computed based on the EACD model.
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Figure 3: The solid line displays the partial plot of the nonparametric estimates of g,

while the dots-and-dashes and the dotted lines show those of g1 and g9, respectively.
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Figure 4: SEMI-ACD(1,1): gn(-) Vs. EACD(1,1): 3 = 0.8438,



The solid line in Figure 3 displays the partial plot of the nonparametric esti-
mates of g, while the dots-and-dashes and the dotted lines show those of g, and
g2, respectively. It is quite clear that the shape of g is significantly determined by
that of g». Moreover, there is enough evidence in the figure to suggest that g is
in fact nonlinear with an intertemporal asymmetry occurring between the condi-
tional duration of above and below 2. In particular, the empirical estimate of the
function suggests that g is convex for all points below 2, while is concave for the
remaining points above it. Furthermore, it is this kind of asymmetric-intertemporal
impact that makes a linear parameterization, e.g. the basic Engle and Russell [7],
inappropriate, The slope of the dotted line in Figure 4 represents the empirical
estimate of the unknown parameter 3 based on the EACD model. For the current
study of the price durations, clearly the EACD model slightly overestimates the
intertemporal impact of conditional duration at the points below 2 second, while
significantly underestimates it for all the remaining points above it. Failure to cap-
ture this asymmetric-intertemporal impact clearly is the key reason why the EACD
model significantly overestimate the unknown parameter ~ in Table 6. Finally,
Figure 5 presents the empirical estimate of the expected price duration in (4.5)
computed based on the SEMI-ACD(1,1) model with nonparametrically estimated
diurnal component.

To obtain the estimate of the baseline hazard, let us first define the empirical

estimate of the standardized duration as

[l

“ (4.11)

i

v =

<

with density p, and the associated survival function .S,,. In a parametric ACD study,
for example Engle and Russell [7], a stochastic transformation of the data, such as
that in (4.11), is often assumed i.i.d.. Nonetheless, an advantage of semiparametrics
in general is its flexibility in the sense that such a statistically restrictive property is
not usually required. In a future paper, we intend to show that the above-mentioned

SEMI-ACD estimation does also enjoy a similar benefit. However, for the sake of
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completion, we present here results of the Ljung-Box test statistics with 15 lags

on v;. Even though in this case the Ljung-Box test statistics reduces to 85.143

compared to 199.93 and 137.60 in Table 5, the null hypothesis is still rejected at the

5% significance level.
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Figure 5: The dotted line displays the observed price durations, while the solid curve

shows the one-step forecast of price durations computed based on the SEMI-ACD(1,1)

for each of the five days considered.
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There are numerous suggestions in the duration literature on how the base-
line hazard for the price durations can be empirically estimated. An alternative
approach we consider in this paper is to (i) estimate the density of the empirical
standardized duration using kernel density estimation, (ii}) compute the associated
survival function and (iii) take the ratio of the two to obtain the baseline hazard.
We will now explain the first two steps in more details.

The survival function of v is the function S,, defined by
S.(e) = Pr(v > e) (4.12)

for all e. If the cumulative distribution function £, is known, then generally S, can
be computed as

S,(e)=1— F.(e). (4.13)

Otherwise, E ., can be estimated by

Fie= [ " bu(v)dy, (4.14)

— o

where in this case p,(y) is the nonparametric kernel density estimate of the form

poly) = ThZI ( ' ) (4.15)

and £ is the bandwidth parameter. We can now write (4.14) using the estimate in

(4.15) as
ro=m 3 (%

Defining z = == such that dy = (—h)dz, then performing the change of variable

) dy. (4.16)

should lead immediately to

F( TZ f I\(z Zf (4.17)
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In (4.17), if K(z) is the normal kernel function, then we immediately have

Foe) = %2: [@(oo) _ (e*' - e)} - %z: {1 _ 9 (e*' - e)} (4.18)

giving way to
) (4.19)

T
A 1 e —e
Su(€) = ?;‘D ( h
where
VG .

Now, in order to estimate (4.15), we compute the bandwidth parameter hg based

-3
exp™/? du.

D(u)

on the following rule of thumb

o . . R —1/5
hg = 1.06 min (O’bﬁ) T, (4.20)

where R is the inter-quartile range defined as!!
R = vo.1s7 — vost- (4.21)

We will now present the empirical estimates of (4.17) and (4.19). Figure 6
presents the kernel density estimates of p,. Also, to give some idea about the kind
of distribution v may follow, the figure compares these estimates with those of a
Gamma distribution. The dashed line in the figure displays the Kernel density esti-
mates of p,, while the solid line shows the density of the Gamma(1,1/2) distribution.
The fact that the two curves are quite similar in shape suggests that the standard-
ized duration may have a Gamma distribution. However, a more formal testing is
required. Finally, Figures 7 and 8 present the empirical estimates of the survival

function S, and the associated cumulative distribution function, respectively.

Hgee, for example, Hiirdle [14].
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Figure 6: The dashed line displays the Kernel density estimates of p,,, while the solid line
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40

T T T
10 20 30

Estimates of the Standardised Durations

Figure 7: Empirical estimate of the survival function S,

40

31



10

09

08

CDF
0.7

06

05

T T T T T
10 20 30 40

Estimates of the Standardised Durations

Figure & Empirical estimate of the cumulated distribution function F,,.
5. Conclusions

Having concluded that thus far the question about the most appropriate type of
nonlinear ACD model has not been satisfactorily answered, the current paper intro-
duce a new Semiparametric ACD modeling method, namely the SEMI-ACD model.
The SEMI-ACD model is developed to consist of two important components, i.e.
the iterative estimation algorithm established in this paper to address the latency
problem arises because of the fact that conditional durations are not observable in
practice and the adaptive estimnation of the partially linear additive autoregressive
process. Our experimental analysis indicates that the SEMI-ACD model possesses a
sound asymptotic character, while its performance is also robust across data gener-
ating processes and hypotheses about the conditional distribution of durations. Not
only the model produces estimation results which are in agreement with previous
studies when applied to a thinned series of quotes arrival times for the USD /EUR
exchange rate, but it also provides valuable information and evidence about (i) the

asymmetric-intertemporal impact of the conditional duration on the ACD process,
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(i) the conditional distribution of the price durations and (iii) how the results of a
parametric ACD, e.g. the EACD model, could be unreliable. Overall, the analysis
in this paper indicates that our new semiparametric approach to a nonlinear ACD

model performs reasonably well in practice.
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