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ABSTRACT

We introduce in this paper a new semiparametric approach to a nonlinear ACD model,
namely the Semiparametric ACD (SEMI-ACD) model. This new model is more flexible in
the sense that the data are allowed to speak for themselves, without a hypothetical
assumption being imposed arbitrarily on its key component. Moreover, it enables a much
more thorough examination of the intertemporal importance of the conditional duration on
the ACD process. Our experimental analysis suggests that the new model possesses a
sound asymptotic character, while its performance is also robust across data generating
processes and assumptions about the conditional distribution of the durations. Furthermore,
the empirical analysis in this paper illustrates the advantage of our model over its
parametric counterparts. Finally, the paper discusses some important theoretical issues,
especially its asymptotic properties, in order to pave the way for a more detailed analysis,
which will be presented in a future paper.

Keywords: Dependent point process; Durations; Hazard rates and random measures;
Irregularly spaced high frequency data; Semiparametric time series.



1. Introduction

An accurate measure and forecast of the intensity of financial event arrivals is an
important tool that makes possible empirical analyzes of a number of important
market microstructure issues. Some well known examples of this type of study are
Spierdijk [19] who examines the role of trading intensity in information dissemination
on a financial market, and Dufour and Engle [5] who investigate the importance
of time on the price impact of a trade. In duration studies, an event may refer
to a market transaction in general, for example Engle and Russell [7] who study
the intensity of transaction arrivals for IBM transaction data. In other cases, it
could refer to a particular type of transaction with some specific characteristics, for
instance Engle and Russell [6] who employ a thinning algorithm discussed in Engle
and Russell [7] to model the intensity of foreign exchange quote arrivals.

To be able to accurately measure and forecast the intensity of financial event
arrivals, Engle and Russell [7] develop the so-called Autoregressive Conditional Du-
ration (ACD) model by which arrival times are treated as random variables which
follow a conditionally orderly point process with an intensity defined conditionally
on the past activity. The ACD model share a number of statistical properties with a
GARCH model of Bollerslev [3]. Furthermore, both models rely on a similar empir-
ical motivation, i.e. the clustering of news and financial events in financial markets.
As the results, a large number of researchers attempt to extend the model para-
metrically in a similar manner to those of the GARCH model. Some well known
examples are the Logarithmic ACD (Log-ACD) model of Bauwens and Giot [2],
Box-Cox ACD (BACD) model of Dufour and Engle [5], Threshold ACD (TACD)
model of Zhang, Russell and Tsay [20], and the Augmented ACD (AACD) model

of Fernandes and Grammig [8].*

2See Pacurar [18] for an excellent survey on the theoretical and empirical development of the

ACD models.



However, in our view, the applicability and usefulness of the ACD model and
its parametric extensions should be carefully serutinized. Firstly, the scope of non-
linearity offered by the above parametric extensions is still too limited for some,
while excessively sophisticated in the others. Furthermore, existing studies have so
far failed to examine thoroughly the statistical importance of the conditional dura-
tion on the ACD process. Also, the fact that the key components of the models,
namely the specification for the expected durations and the conditional distribution
of the duration (and hence the shape of the hazard function) should be arbitrarily
pre-specified, not only makes the model extremely sensitive to misspecification, but
also too restrictive in the sense that the data are not allowed to spealk for themselves.

Having taken these issues into consideration, researchers now turn to semi-
parametrics in search for a more useful generalization to the ACD model. Some
interesting studies on semiparametric ACD models are Drost and Werker [4], and
Fernandes, Medeiros and Viega [9]. Our proposal is to put forward a new semi-
parametric method of ACD modeling which is developed to include two important
components, namely an iterative estimation algorithm and a semiparametric time
series process. In our study, the iterative estimation algorithm is devised in order
to address the fact that conditional durations are not observable in practice. As far
as nonlinearity is concerned, an excellent starting point in this case is the partially
linear additive autoregressive process as extensively discussed in Hirdle, Liang and
Gao [16].

The main objectives of the current paper are to introduce our newly developed
Semiparametric ACD (SEMI-ACD) model and also to illustrate its practicability
and usefulness through a number of simulated and real data examples. The paper
also discusses a number of important theoretical issues, especially its asymptotic
properties when taking into account the fact that the conditional durations them-
selves are estimates. This is to pave the way for a more detailed analysis, which
will be presented in a future paper. The remainder of this paper is organized as

follows. Section 2 below develops the statistical underpinning for the model and



also presents the basic construction of the above-mentioned estimation algorithm.
Section 3 considers a number of illustrative examples, while Section 4 applies the
model to a thinned series of quotes arrival times for the USD /EUR exchange rate

series. Finally, Section 5 concludes.
2. The SEMI-ACD Model

This section discusses the estimation procedure of the semiparametric partially linear
auntoregressive model and then presents the computational algorithm adapted within
the SEMI-ACD framework in order to obtain estimates of the unobserved process
{1y }. To understand the model, let us consider a stochastic process that is simply
a sequence of times {to,t1,ta,... tn,...} with tg < t; < to < -+ < t, < .
Associated with the arrival times is the counting function N (t), which is the number
of events that have occurred by time t. Here, z; = #; — t;,_; defines the intervals
between two arrival times, which is often known as the durations, and iy denotes

the expectation of the ith duration, which is given by

E [.T;‘|11?g_]_, . .._..T@:_p, 'llil.-‘g_l, Ce s t.'f;'é_q-:l = l“ (f[?i|2?f;_1, Ceey .T«;_P, t.'fl."é_]_‘ Cee sy t‘_q @) = l"..
(2.1)

The ACD class of models consists of parameterizations of (2.1) and the assumption
x; = ey, (2.2)

where {c;} is a sequence of independently and identically distributed (i.i.d) random
errors with Efz] = 1. The basic ACD model as proposed by Engle and Russell [7]
relies on a linear parameterizations of (2.1) in which ¢/; depends on p past durations

and ¢ past conditional durations as

p g
v =w+ Z T + Z Betbik, (2.3)
j=1 k=1

while assumes that the durations are conditionally exponential. In the literature,

this is often referred to as the EACD(p,q) model by which sufficient conditions to



ensure the positivity of v; are w > 0, a; > 0 for Vj = 1,...,p and F = 0 for

In spite of the overwhelming evidence of nonlinearity,® the question about the
most appropriate type of nonlinear ACD models has not been satisfactorily ad-
dressed. As an alternative, the current paper proposes the SEMI-ACD model. If
the conditional duration was observable in practice, the SEMI-ACD(p.q) model

would be a semiparametric parameterization of the form
p q
Elzi|zicy, ... 2 pthicy, . g = Z ViTig + Z g (Vi_k) = 1y, (2.4)
j=1 k=1

where ~; are unknown parameters and gi(-) are unknown functions on the real line.
An obvious advantage of the SEMI-ACD(p,q) model is the additional flexibility
by which the Engle and Russell’s linear specification is nested as a special case.
Furthermore, the above model enables a. much more thorough investigation about
the statistical importance of the conditional duration in explaining the duration
process. Unlike z;, the fact that ¢); is not observable in practice makes imposition
of a parametric-intertemporal relationship rather debatable.

In order to present the main idea and methodology without unnecessary com-
plication in our discussion, here attention will be restricted to a special case of (2.4),

namely the SEMI-ACD(1,1) model of the form
Ezi|zioy. isi] = yzimi 4 g (dim1) = s (2.5)
To derive the estimators of v and g, we first rewrite (2.2) in its additive form as
x; =iy + g (Vimy) + 15 (2.6)
where 7, = ¢; (¢, — 1) is a sequence of martingale differences and

g (Wic1) = E[zifica] — vE [rica|tiz1] = g1 (V1) — 792 (V1) (2.7)

*See, for example, Dufour and Engle [5], Zhang, Russell, and Tsay [20], and Fernandes and

Grammig [8].



If the parameter « was known, then the natural estimates of g; for a given ~

would be

élh Wi l Zﬂqh Wi 1 (28)

g?h 1—:1 Z“sh el Ts—1, (29)

and g(1;_;) would be estimated by

an(ic1) = g1 (Vic1) — vg2.n (i), (2.10)

where W, 5, (1;_1) is a probability weight function depending on v, ¢, 3, ..., tr_y
and the number T' of observations. Note that here we only consider the case where

W is a kernel weight function

I‘-\’h (y - @"s—l)

S K (y— i)

where K, (+) = h=*K (-/h), K is a real-valued kernel function satisfying Assumptions

Won(y) = (2.11)

4a below and h = hy € Hyp = [alT_lﬁ_“,blT_lf”“JrCl] in which 0 < a; < b; < o0
and 0 < ¢; < 1/20.

Now, for a given g, computed based on the model x; = vx;_y + gn(vi_1) + i,
the kernel weighted least squares estimator of ~ can be found by minimizing

T

3 {m = ymi — (i)Y (2.12)

i=2
which implies
T LT T
== {Zuf} {Z Yt G (u-a_l)}, (2.13)
i=2 i=2 i=2

where w; = 2,y — go (i1) and gy (im1) = g (imy) — gn (Viz1) -



Also, it is important to note that for the case of the SEMI-ACD(1,1)
0? = E[n]] = E|(z: — v1)*] = E[]e, (2.14)

where 02 = Elg; — 1]*. When o is unknown, it can be estimated by

Sy
b2

T

1 X . . . . . : -

= T_1 Z{i’i —y(h)x,_y — Ql,h(?.—-"r‘:'—l) + “.r’(h)gz_.h(ﬁf’é—l)}z- (2.15)
=2

Moreover, the quality of the proposed estimators can be measured by the average

squared error (ASE) of the form

T
D(h) = %Z {A(R)zis + g (i)} — {yzia + g} w(®ia),  (2.16)

i=2

where g} (1¥i—1) = gip(Wi1) — Y(R)gon(im1) and w(-) is a positive weight function.
In practice, we apply a cross-validation (CV) criterion to construct adaptive

data-driven estimates for v and ¢. In order to define the CV function, we first

introduce the following estimators. For 1 <n < N =7 —1 and 7 = 1,2, let us

define

Gin(Un) = Nl_ 1 ; Ralt o __::)PRH . (2.17)
and
Ghn(Un) = g1.0(tn) — Y920 (n). (2.18)
where

f:h,n(. n - T\ _1Z-ﬁh Ln_ ."s .

s#n

The leave-one-out estimate 75 of v can now be founded by minimizing

Z {Tn+1 YT — Ghon (Lﬂ)}z : (2-19)

n=1

The CV function in this case can therefore be defined as

N
1 . . . i D N2
3} = :\‘_1' ;{xn+l - ﬂ."'(h')ifn - gl,n(ﬂ"n) + A.'f(h)gz.n(wn)}aw(wﬂ)- (220)



An optimal value, :;1,3, of h is chosen such that
CV(he) = hggr CV(h). (2.21)

A data-driven bandwidth h is said to be asymptotically optimal if

D(h
# Lo (2.22)
infpcpy D(h)
In the usually nonlinear time series case, Gao [10], Hardle, Liang and Gao [16];
Gao and Yee [12] discuss a number important results about the above estimation
procedure. Before we state the main theory of this paper, we need to introduce the

following assumption.

AssumprTiON 1:

(1) Assume that the kernel function, K, is symmetrec, Lipschitz continuous and

has an absolutely integrable Fourier transform.
(i1) Assume that the weight function w is bounded and that its support S 1s compact.

(ii1) Assume that the processes {1 :i > 1} are strictly stationary and a-mizing

with mizing coefficient o (T') < Cq' for some 0 < €' < oc and 0 < g < 1.

(iv) Assume that {1;;i > 1} have a common marginal density f, where f has
a compact support containing S, and that g;, for 7 = 1,2, and f have two

continuous derivatives on the interior of S.

(v) Assume that the K is a bounded probability function with [ K (u)du = 1,
K () >0 and ff’% WK (u)du < oc.

(vi) Assume that P(1y > 0) = 1 for all i > 1 and E[|¢;|*] < oo for all integer
k=1



PRrRoOPOSITION 1: Assume that Assumptions 1 holds and that
crg =FE{r,1 — FE (133-_1|1;'}4;_1)}2 > 0.
Then the following holds uniformly over h € Hp:
VT {4, —~} — N [0,0%/0?] (2.23)

and

VT (6% — o) — N [0,Var (})]. (2.24)

ProrosITION 2: Assume that Assumption 1 holds. Then the data-driven bandwidth
he of h is asymptotically optimal.

Hereafter, the current paper takes into account the fact that {1} is not observ-
able in practice and presents the computational algorithm adapted in this research
in order to obtain the estimate of the process. Assume that we have a set of data
sample {z;;1 < i < T}, ideally from the generating process described by (2.6). The
estimation algorithm is constructed to include five important steps as follows:

Step 2.1: Choose the starting values for the vector of the T' conditional durations.

Index these values by a zero, i.e. {¢;o} and set m = 1.

Step 2.2: Find the f:m = ??,C’m such that f?.g__m = arg mingcy, C'V,,(h), then em-
ploy the above estimation procedure to compute 4,,(h) and g ,,, based on
{z,_1;2 <i < T} and the estimates of the conditional durations as computed

in the previous step, i.e. {i;'ﬂ.-'e-_l,m_l; 2<i<T}.

Step 2.3: Compute {t;?.-‘?-,m; 2 <4 < T} and also select some sensible value for ?.»-'?"1,me

which cannot be computed recursively.

Step 2.4: At 1 < m < M, where M is a pre-specified maximum number of itera-

tions, then increment m and return to Step 2.2.

Step 2.5: At m = M, perform the final estimation of z;_; and t,f,-'?-_ljm to obtain the

final estimates of ~ and g.



While the method of performing the final estimation in Step 2.5 will be dis-
cussed in more detail in Section 3, here let us rewrite the kernel-weighted LS esti-

mators 4(h) and &%(h) of the above section using the estimates 1, as follows

Yi (h {Z (s }_ {ET: w; -+ XT: i; - Gn (ﬁz‘i—l)} ) (2.25)
and

o3 (h) = Z{:r — (W) Tic1 = Gun(Wimtm) + 3o ()G (ii )} (2.26)

where @; = z;_1 — g}-g:h(u?;q;_l,m) and g, = g(vi_1) — gh( bi—1m). The C’v';;,(h) function

in this case can be written as

CV(h) =

Z{i n+1 — ;j.(h-)-rn - gl,rl(ﬂ?"ﬂ__ﬂlj + ':,;'tj.(h)gi,n(d'n,m)}2‘3{' (l'n) (227)

n=1

Since {1y;4¢ > 1} are replaced by {?Ii-'é; i > 1}, existing results® would need to be

significantly modified to show that:

PROPOSITION 3: Under some reqularity conditions on g(-), Propositions 1 and 2

still hold when 1; are replaced by the estimates @_,.-'A'qu-__m.

Mathematical proof of this proposition is tedious and is not the main focus of
this paper, but will be included in a future paper instead. The remainder of this
paper illustrates the practicability of the above mentioned SEMI-ACD modeling

framework through a number of simulated and real data examples.

4See, for example, Chapter 6 of Hiirdle, Liang and Gao [16].



3. Computational Aspects and Illustrative Examples

We present in this section a small sample study for a number of illustrative models,
which are specifically designed to demonstrate how that the above procedure works
numerically and practically. However, before introducing these models, let us first

discuss the computational steps taken in this paper as follows:

Step 3.1: Perform Steps 2.1 to 2.4 of the algorithm as explained in Section 2 to

obtain u@i,m form=1,2,..., M.

Step 3.2: Averaging over the final K of M iterations to obtain

. 1 M .
Yy = (E) Z Q_illf‘";_.ﬂz- (?’1)

m=M-K+1

Step 3.3: Compute

D, (h) TEZU” Wz Gup() — 33(Waan (6} — {1z + o)} ] wlesior)

and let ED,L?-' = argmingcp, Dt?:(h')’ where Hy = [T‘T»’ISG, 1.1T‘1f6] .
Step 3.4: Find the hL = fE-C__g; such that hpL = arg minpcg, ("Lr(h)
Step 3.5: For the cases where T=101, 201, 301 and 401, compute

@) ey = hpgl Fa(hes) — 4] and [5;(he ) — 1.
(i) di(he) =% Zomi{3; () =G5 ()
dohe) = 5 Xomdd,_,(en) = g(n)}
ds(he) = & Luca{y () = 3 () HG; () = g(wn)}, and
d(he) = dh(he) + da(hes) + da(he). where
Q,ﬁcﬁ),n(ﬂ?}ra) = gl,n(d"ﬂ) - :r’g.(ﬁc,aﬁ-)!}:z:n(ua‘n)
and

ghc R(L‘ ) - .(}l,ﬂ (L‘ﬂ) - ::"(‘i'l'C)éQ,n (t.i:"‘n)'

10



With regard to Step 3.2, our experience suggests that using an average as in
(3.1), rather than t..-"n,-ub-,m, can often help in improving the performance of the algo-
rithm. Furthermore, to demonstrate the robustness of the SEMI-ACD procedure,
the random variable ¢ in each example is allowed to follow either a Gamma distri-
bution with x = 2 and 8 = 0.5, or a Weibull distribution with &« = 3 and 3 = 1.

Finally, in the analysis below, we use the quartic kernel funetion of the form

K(u) (15/16)(1 — w*)? if ju| <5 (3.2)
() = 3.
0 otherwise

and the weight function

1 if [s| <5
w(s) = (3.3)
0 otherwise.

‘We now introduce the illustrative models considered in this paper.

Example 1: The Mackey-Glass ACD (MG-ACD) Model
The MG-ACD model is motivated by the Mackey-Glass model, which can be inter-
preted as a model for population dynamics.” In view of (2.6), the MG-ACD model

can be established by specifying

~=0.5 and g(¢) = 0.75 (17> . (3.4)

Because of the functional form of g, the fact that the process {1} is strictly station-
ary follows form Theorem 3.1 of An and Huang [1]. Furthermore, Lemma 3.4.4 and
Theorem 3.4.10 of Gyorfi et al. [13] suggest that the {¢;} is G-mixing and therefore
a-mixing. Finally, it follows from the definitions of &' and w above that all the

remaining conditions in Assumption 1 are satisfied.

®See, for example, Section 4 of Nychka et al. [17] for details.

11



Example 2: The Logarithmic ACD (Log-ACD) Model
The Log-ACD model of Bauwens and Giot [2] assumes that

p q

rp=explp)e, @ =w+ Z T+ Z Bri—k, (3.5)
k=1

J=1

where {g;} ~ i.i.d. with E(g;) = v. Let us now define
exp (¢;) = vexp (p;) (3.6)

thereby the model in (3.5) can now be rewritten as
P g
Ty =exp (&) i, i =w+ Z ajlnr_;+ Z Ori—k, (3.7)
j=1 k=1

where @w = w + Inv, 7, = g;/v and E (1;) = 1. The so-called Log-ACD(1,1) model

imposes the parameterization
di=w+alnzr,_1+ 501 (3.8)
such that linearization of (3.10) leads directly to
Inr, =w+alnr,_1 + Bod,_1 + 1, (3.9)

where p1; = In#; — 1, so that E (u;) = 0. Below, we illustrate the performance of
the SEMI-ACD model in the case where the data generating process for each of the

realizations is given by the following Log-ACD(1,1) model
ry=exp(d) i, & =001+02Inz,_y +0.70;_;. (3.10)

All simulations in this section were performed in S-plus. The means of the
results for all four cases, namely the Weibull MG-ACD (WMG-ACD), the Gamma,
MG-ACD (GMG-ACD), the Weibull Log-ACD (WL-ACD) and the Gamma Log-
ACD (GL-ACD) models, are tabulated in Tables 1 to 4, respectively. Note that in
these tables N, R and M denote T-1, the number of replications and the number of

basic iterations, respectively. We will now discuss a number of important findings.

12



N 100 200
100 500 100 500

M 3 8 3 8 3 8 3 8
lheg — hp.gl | 0.0123 | 0.1203 | 0.1201 | 0.1200 | 0.1000 | 0.0980 | 0.0855 | 0.0824
Figlhey) —~l | 0.0774 | 0.0770 | 0.0809 | 0.0814 | 0.0706 | 0.0706 | 0.0636 | 0.0633
Fg(heg) =~ | 0.0773 | 0.0769 | 0.0809 | 0.0813 | 0.0706 | 0.0706 | 0.0636 | 0.0634

dy (he) 0.0009 | 0.0011 | 0.0008 | 0.0009 | 0.0006 | 0.0005 | 0.0005 | 0.0004

da(he) 0.0065 | 0.0070 | 0.0066 | 0.0065 | 0.0046 | 0.0046 | 0.0045 | 0.0045

ds(he) | -0.0019 | -0.0026 | -0.0019 | -0.0019 | -0.0018 | -0.0018 | -0.0016 | -0.0016

d(he) 0.0056 | 0.0054 | 0.0055 | 0.0055 | 0.0033 | 0.0033 | 0.0035 | 0.0034

N 300 400

100 500 100 500

M 3 8 3 8 3 8 3 8
hey — hp.gl | 0.0670 | 0.0620 | 0.0638 | 0.0630 | 0.0468 | 0.0466 | 0.0490 | 0.0480
Fig(heg) =~ | 0.0602 | 0.0608 | 0.0561 | 0.0561 | 0.0539 | 0.0540 | 0.0513 | 0.0511
Fig(heg) =~ | 0.0602 | 0.0608 | 0.0561 | 0.0561 | 0.0539 | 0.0540 | 0.0513 | 0.0511

dy (he) 0.0006 | 0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0004

dy(he) 0.0038 | 0.0038 | 0.0041 | 0.0041 | 0.0041 | 0.0041 | 0.0036 | 0.0036

dy(he) | -0.0014 | -0.0013 | -0.0016 | -0.0016 | -0.0015 | -0.0015 | -0.0014 | -0.0014

d(he) 0.0030 | 0.0029 | 0.0029 | 0.0020 | 0.0030 | 0.0030 | 0.0026 | 0.0026

Table 1: WMG-ACD Model

13



N 100 200
R 100 500 100 500
M 3 8 3 8 3 8 3 8
heg —hpgl | 0.0737 | 0.0858 | 0.0857 | 0.0910 | 0.0673 | 0.0655 | 0.0684 | 0.0668
|ﬂ}-b<_,(fzc_@;:) —~| | 0.1320 | 0.1300 | 0.1280 | 0.1235 | 0.1057 | 0.0959 | 0.1111 | 0.1017
|'ﬂ}-b<_,(fzc_@;:) —| | 0.1321 | 0.1300 | 0.1281 | 0.1236 | 0.1058 | 0.0960 | 0.1112 | 0.1018
dl(fzf;) 0.0099 | 0.0115 | 0.0100 | 0.0127 | 0.0179 | 0.0236 | 0.0148 | 0.0199
d-g(fzc) 0.0152 | 0.0150 | 0.0117 | 0.0117 | 0.0096 | 0.0092 | 0.0111 | 0.0118
dg(fzc) -0.0077 | -0.0084 | -0.0061 | -0.0064 | -0.0097 | -0.0125 | -0.0084 | -0.0094
d.(fa.c_-) 0.0174 | 0.0181 | 0.0156 | 0.0180 | 0.0178 | 0.0203 | 0.0175 | 0.0223
N 300 400
R 100 500 100 500
M 3 8 3 8 3 8 3 8
|’f3-c-'.z_-": — fa.m;,| 0.0586 | 0.0574 | 0.0577 | 0.0609 | 0.0575 | 0.0594 | 0.0507 | 0.0523
|ﬂ}-bf_,(fzc_@g) —| | 0.0938 | 0.0888 | 0.1083 | 0.0991 | 0.0839 | 0.0781 | 0.0818 | 0.0735
|*}-Q<_,(fzc_@g) —] | 0.0939 | 0.0888 | 0.1084 | 0.0992 | 0.0839 | 0.0782 | 0.0820 | 0.0736
dl(fzf;) 0.0137 | 0.0170 | 0.0155 | 0.0211 | 0.0191 | 0.0195 | 0.0206 | 0.0206
dz(fzf;) 0.0087 | 0.0087 | 0.0078 | 0.0095 | 0.0079 | 0.0079 | 0.0044 | 0.0044
dg(fzf;) -0.0082 | -0.0097 | -0.0087 | -0.0098 | -0.0079 | -0.0085 | -0.0102 | -0.0114
d.(fa.c-) 0.0142 | 0.0160 | 0.0146 | 0.0208 | 0.0191 | 0.0186 | 0.0148 | 0.0136

Table 2: GMG-ACD Model

14



N 100 200
R 100 500 100 500
M 3 8 3 8 3 8 3 8
|’f1c.-.1_-‘: f;.Di'| 0.1521 | 0.1506 | 0.1658 | 0.1718 | 0.1233 | 0.1277 | 0.1277 | 0.1279
|*}-'Qr_,(fzf_7_t_;:) — |1 0.0981 | 0.1031 | 0.1049 | 0.1093 | 0.0790 | 0.0828 | 0.0800 | 0.0832
Hf-'(’flf.?.é:) — || 0.0975 | 0.1027 | 0.1037 | 0.1085 | 0.0789 | 0.0828 | 0.0800 | 0.0832
d, (fu_—;) 0.0018 | 0.0017 | 0.0020 | 0.0018 | 0.0007 | 0.0006 | 0.0004 | 0.0006
d-g(fzr) 0.0113 | 0.0113 | 0.0152 | 0.0152 | 0.0144 | 0.0144 | 0.0120 | 0.0120
dg(fup) 0.0028 | 0.0026 | 0.0041 | 0.0036 | 0.0027 | 0.0025 | 0.0028 | 0.0026
d.(fa.c_-) 0.0159 | 0.0156 | 0.0213 | 0.0206 | 0.0178 | 0.0175 | 0.0152 | 0.0152
N 300 400
R 100 500 100 500
M 3 8 3 8 3 8 3 8
\hey —hp gl | 01033 | 0.0983 | 0.0979 | 0.0933 | 0.1151 | 0.1127 | 0.1008 | 0.0980
45 (heg) — | | 0.0688 | 0.0712 | 0.0702 | 0.0727 | 0.0621 | 0.0647 | 0.0577 | 0.0507
55 (he) — | | 0.0688 | 0.0713 | 0.0703 | 0.0728 | 0.0622 | 0.0649 | 0.0577 | 0.0598
d, (he) 0.0006 | 0.0005 | 0.0007 | 0.0007 | 0.0007 | 0.0005 | 0.0007 | 0.0005
dg(fl(:) 0.0117 | 0.0120 | 0.0131 | 0.0131 | 0.0125 | 0.0125 | 0.0116 | 0.0116
da(flf_j) 0.0035 | 0.0030 | 0.0034 | 0.0032 | 0.0031 | 0.0016 | 0.0023 | 0.0022
d.(fa.c_-) 0.0158 | 0.0155 | 0.0172 | 0.0170 | 0.0163 | 0.0163 | 0.0146 | 0.0143

Table 3;: WL-ACD Model
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N 100 200
R 100 500 100 500
M 3 8 3 8 3 8 3 8
|he — hp gl | 0.2621 | 0.2540 | 0.2682 | 0.2586 | 0.1482 | 0.1430 | 0.1299 | 0.1217
|*}-¢<_,(f1(:_t_;:) — | 1 0.0970 | 0.0963 | 0.0972 | 0.0970 | 0.0776 | 0.0785 | 0.0709 | 0.0733
|fj.bf_,(f1(:_t;:) — || 0.0973 | 0.0969 | 0.0968 | 0.0969 | 0.0778 | 0.0786 | 0.0710 | 0.0733
d, (fz;;) 0.0430 | 0.0430 | 0.0351 | 0.0351 | 0.0232 | 0.0329 | 0.0348 | 0.0348
d-g(fzc) 0.0064 | 0.0049 | 0.0060 | 0.0053 | 0.0043 | 0.0019 | 0.0034 | 0.0036
dg(fzc) 0.0130 | 0.0107 | 0.0091 | 0.0083 | 0.0097 | 0.0098 | 0.0104 | 0.0093
d(ﬁc) 0.0624 | 0.0586 | 0.0502 | 0.0487 [ 0.0372 | 0.0446 | 0.0486 | 0.0477
N 300 400
R 100 500 100 500
M 3 8 3 8 3 8 3 8
\hey — hp gl | 01105 | 0.1039 | 0.0969 | 0.0939 | 0.0760 | 0.0710 | 0.0810 | 0.0523
| rg-.-(’ilr:_z_ ) —~| | 0.0685 | 0.0656 | 0.0593 | 0.0600 | 0.0584 | 0.0591 | 0.0544 | 0.0935
|qL (jlf:.‘l;.‘) — | | 0.0654 | 0.0657 | 0.0594 | 0.0602 | 0.0586 | 0.0593 | 0.0545 | 0.0535
dl(fzc) 0.0590 | 0.0509 | 0.0405 | 0.0405 | 0.0312 | 0.0312 | 0.0420 | 0.0420
d-z(fz;;) 0.0030 | 0.0025 | 0.0028 | 0.0025 | 0.0021 | 0.0017 | 0.0028 | 0.0028
dg(fzc) -0.0004 | 0.0001 | 0.0066 | 0.0061 | 0.0095 | 0.0086 | 0.0147 | -0.0114
d.(fa.c_-) 0.0616 | 0.0535 | 0.0500 | 0.0491 | 0.0429 | 0.0416 | 0.0595 | 0.0334

Table 4: GL-ACD Model
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Firstly, the simulation results in Tables 1 to 4 show that in all four cases the
absolute error |;7'c-*_.a,?- —h D,?;.:| has the tendency of approaching zero as N increases.
Notice, that :?10’ $ and h Db shown here are those of the final estimation step. Al-
though the results are not reported here, we also consider f:r.c__m and h D at each of
the mth iteration and find that the absolute error |Fﬂtc,m - ??-D__m| has the tendency
of approaching zero in all cases. Note also that here flc,t».} and h D are selected
within the interval Hp of relatively small values, as the results of the absolute error
|Fh10,¢1, —h D,rf.-| might not provide the most accurate representation of the distance
between the two estimates. Therefore, if we were to consider N > 500, the relative
measure of the form |:'ﬂ1.c__@.j_ /h p. — 1] should be more appropriate.

Secondly, our estimation method is able to provide estimates for the param-
eter v with comparable degree of accuracy to those of a one-step partially linear
autoregressive estimation reported in Gao and Yee [12]. In all four cases, the abso-
lute errors |A’1(hCL) — 7| and Hz(hC‘L) — | have the tendency of approaching zero
as N — oo at a similar rate as those reported in Tables 1 and 2 of Gao and Yee
[12]. Furthermore, these results are quite stable and not significantly affected by
the increases in the number of replications, R. However, it is interesting to report
that our estimation method seems to perform better, with respect to |“L(hC 3) =l
and |7 ( thL) — 7|, at a smaller number of basic iterations, M, when applied to the
WMG-ACD and the WL-ACD models, while performs better at a larger number
of iterations when applied to the GMG-ACD and the GL-ACD models. Moreover,

switching from the Weibull to the Gamma distributed standardized duration seerms

(and |3;(heg) =7l
of the GMG-

to have affected the results, with respect to both |ﬁL(h o)=Y

and d(he) significantly. In all aspects, |A’r,(h(“,r,) —~| and |ﬁ-'r;,(flc‘é )—
ACD model are much larger than those of the WMG-ACD at a smaller mamber of

observations, while the results become more comparable as N increases.
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It is obvious that here dz(flc) is equivalent to that of a case where 1); was
observable. Therefore, it should not be surprising to see that our results are quite
comparable to those reported in Tables 1 and 2 of Gao and Yee [12]. Notice in Table
3 that d, (h(") for the WL-ACD model are relatively large when compared to those of
the WMG-ACD model. Again, this should not be surprising given the linear nature
of the Log-ACD model. Usually we expect the above semiparametric procedure to
perform better with the Mackey-Glass style model.

We will now turn our attention to the results of dl(fl.c), which represents the
estimation error due to the fact that the conditional duration is an estimate. The
simulation results in Table 1 and 3 indicate that, for cases of the Weibull based
models, the values of d; ( f:r.c) are significantly smaller than those of dz(jl.c) and have
the tendency of approaching zero as N increases. The results in Table 2 and 4 show
that Uzcj of the Gamma based models are relatively large compared with those of
their Weibull counterpart. The highest dl(f?.c_v) in Tables 2 and 4 is 0.0590 compared
to only 0.0018 in Tables 1 and 3. In addition, it is apparent in Tables 2 and 4 that in
this case d; (jlc-) has less tendency of approaching zero. Though, further investigation
indicates that similar results to those of Tables 1 and 3 can also be obtained for the
Gamma based models when the number of observations, N. is increased to more
than 1,000. The question of how changes in the distributional assumption of ¢ may

affect the simulation results is the subject of further investigation.
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4. Real Example

This section applies the SEMI-ACD model to a thinned series of quotes arrival times
for the USD/EUR exchange rate series.® The foreign exchange market operates
around the clock 7 days a week, while the complete data set is one whole week
covering March 11, 2001 through to March 17, 2001. The current study assumes
that the business week is periodic, i.e. 5 days, beginning Sunday 22:00 GMT to
Friday 22:00 GMT. Therefore, the weekend observations of the USD/EUR data are
filtered out. To eliminate the problem of bid-ask bounce, this paper defines the
current price as the midpoint of the bid-ask spread, i.e. the midprice of the form

bid; + ask;
pi=——F0 J; * (4.1)
such that bid; and ask; are the current bid and ask prices associated with transaction
at time #;. Then the dependent thinning is performed, so that only the points at

which prices have changed significantly since the occurrence of the last price change

are kept. Formally we retain point ¢ > 1 if

|p5 —P;| > C, (—12)

where j is the index of the most recent retained point and the constant ¢ represents a
threshold value. Clearly the value of ¢ is what characterizes a significant price change
such that if ¢ = 0, then we would count every single movement in the midpoint
as a price change. However, to better capture movements in the price at which
transactions are occurring and also to minimize the impact of asymmetric quote
setting due to portfolio adjustment by individual banks, this study sets ¢ = 0.0005,
i.e. five pips. © This choice of ¢ yields a sample size of 1,663 or 1.5% of the original
sample. The average price duration for the sample is 258 seconds (or just over 4
minutes), while the minimum and the maximum are zero and 25,765 seconds (or

just over 7 hours), respectively.

6The foreign exchange data are provided by Olsen and Associates (O&A).
TSee also Engle and Russell [6].
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The fact that for currency trading there are clear periods of high and low
activity as markets around the world open and close leads us to believe that the
intraday durations may consist of not only the stochastic, but also the deterministic
components. In the discussion that follows we assume that the deterministic effect
of time can be formulated as

z; = ¢ty )i, (4.3)

where ¢(-) denotes the diurnal factor of the calendar time t;,_; at which the ith

duration begins, and such that

I; ..
V= — v 1.i.d. 4.4
O 44

represents the diurnally adjusted data. Given (4.3) and (4.4), this study defines the

expected price duration as
Ei_1(x;) = Ely|Flo(tizy) = vid(ti—y), (4.5)

where F; is the o-field representing the past information set. Engle and Russell [7]
assume that the seasonal factor can be approximated by a cubic spline, while the
parameters in both the deterministic and the stochastic components can be jointly
estimated using maximum likelihood estimation.

A simple linear transformation of (4.3) into an additive noise of the form
ry = ¢(ti1) + &, (4.6)

where & = o&(t;_1)(; — 1) is a martingale difference series, leads to an alternative
approach which is to initially estimate the diurnal factor and then model the ratio

of actual to fitted value
- €T

Iy = =
oty

as the diurnally adjusted series of durations. ® In the current paper, the diurnal

(4.7)

factor is estimated using the kernel regression smoothing technique such that the

¥See also Engle and Russell [6] and [7].
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smoother is defined as r

‘r“Sh (té—l) = Z L‘:{!‘rﬁ,h (ts—l ):rs 3 (‘18)
s=2
. 1 () —  Bnly—te_1) R I : far ot /
where Win(y) = ST Kot and Kp(-) is as defined in the earlier section. An
asymptotically optimal bandwidth parameter is selected using the leave-one-out

cross validation based selection criteria such that
Hy = {h = My @™t h = i, k= 0.1,2, .. } s

where 0 < hyin < hgax and 0 < a < 1. Now, let Jr denotes the number of elements

of Hr, then we have in this case Jp < log,, (hmax/Pumi).” Figure 1 presents the

Sl /a

seasonal component for the price durations.

Seconds
4000 6000 8000
] 1 1

2000
]

T T T
o 5 10 15 20

Hour of Day

Figure 1: Expected price duration on hour of day, where 0 denotes 24;:00GMT.

See also Gao, Hawthorne and Bag [11].
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There is enough evidence in the figure to suggest that that price movements
change characteristics as a business day around the world starts and ends. A mod-
erate fluctuation, which occurs between hours 01:00 and 08:00GMT, marks the be-
ginning and the end of a business period in Tokyo by which the sudden slow down
during hours 03:00 and 04:00GMT belongs to the Japanese lunch hours. Further-
more, the period of high price volatility, which occurs between hours 14:00 and
16:00GMT, takes place when both London and New York markets are active. Fi-
nally, it is clear that price change occurs much less frequently between hours 22:00
and 24:00GMT, which is the period when business activity in London, New York
and Tokyo is relatively less intense. Engle and Russell [6] report similar intraday
seasonal pattern in their study on the price intensity of USD/Deutschmark exchange

rate. Figure 2 shows the diurnally adjusted price duration, ;.

30

20

10

T T T T
0 500 1000 1500

Transactions

Figure 2: Diurnal adjusted price durations.

22



The ACD model is proposed as a model for intertemporally correlated event
arrival times. Hence, to examine the dependence, we calculate the autocorrelations
and partial autocorrelations in the waiting times between price changes. In Table 5,
it is obvious that, while most are positive, the autocorrelations and partial autocor-
relations are far from zero. The Ljung-Box statistic is then conducted to formally
test the null hypothesis that the first 15 autocorrelations are 0. The test statistic
is distributed as a y7, with 5% eritical value of 25. Therefore, the test provides us

with some evidence against the null hypothesis of no autocorrelation up to order 15.

Raw Price Durations | Diurnal Adj. Durations
Lag acf pact acf pact
1 0.153 0.153 0.082 0.082
2 0.195 0.175 0.148 0.143
3 0.064 0.013 0.087 0.067
4 0.082 0.040 0.037 0.006
3] (0.043 0.015 0.129 0.108
6 0.067 0.040 0.059 0.034
7 0.096 0.074 0.029 (0.011)
8 0.143 0.107 0.024 (0.006)
9 0.015 (0.050) 0.017 0.005
10 0.084 0.040 0.058 0.040
11 0.008 (0.016) 0.043 0.025
12 0.035 0.002 0.071 0.053
13 0.044 0.035 0.018 (0.006)
14 0.028 (0.006) 0.060 0.039
15 0.013 (0.022) 0.092 0.071
Ljung-Box(15) | 199.93(0.00) 137.60(0.00)
Sample Size 1663 1663

Table 5: Autocorrelations and partial autocorrelations of price durations.
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We now apply the above mentioned SEMI-ACD(1,1) model to model the di-
urnally adjusted price duration, #;. A number of previous studies in the field have
suggested that the choice of the kernel function is much less critical than that of the
bandwidth.!? To study the current problem, we employ the normal kernel function
of the form

K(2) = ——e-2"/2, (4.9)

—
W 2m

while computation of the CV function for the m iteration follows directly from (2.27)

namely

N
- 1 - . 5 - . 5 : .
CVin = N Z{i’n—l-l — Am () xn — g1 (nm—1) + Fm(h) G20 (tn ,ﬂa—l)}z‘;““(wn)' (4.10)

n=1
To specify the most appropriate bandwidth interval for each of the nth iteration,
we follow a similar procedure to that suggested in Héardle, Hall and Marron [15]. The
first step is to compute the score for each of the CV functions among one hundred

sample values of A drawn sequentially from the set
Hy = {jz._q L0.01 < hy < 4},

where s = 1,2,...,100. The results show that the interval Hy = [0.0532,0.3486] is
the smallest possible bandwidth interval by which C'V,, (k) can attain their smallest
values. The above step is then repeated, except that f:r.s are now drawn sequentially
from Hrp.

With regard to the maximum number of basic iterations, initially it is set at
M=15. However, it is found that the average squared error of u‘n','z-:m_l and 1m
at M > 7 is virtually zero, which indicates that no further improvement can be

obtained. Therefore, the analysis that follows is based on M = 6.

10See, for example, Gao and Yee [12].
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Iteration A f?.c.«__m) f?.c.«__m

1st 0.08132 | 0.2000
2nd 0.07997 | 0.2775
3rd 0.07929 | 0.2775
4th 0.07926 | 0.2775
5th 0.07927 | 0.2775
6th 0.07926 | 0.2775

Semiparametric Model “rL(hCL) he s

SEMI-ACD I 0.07234 | 0.2775

SEMI-ACD I 0.07017 | 0.3175
Parametric Model 5 ;

EACD Model 0.1288 -

Table 6: Estimation results for the SEMI-ACD(1,1) and EACD(1,1) price model, where

those of SEMI-ACD I and II were computed based on Step 2.5 and Step 3.2, respectively,

Table 6 shows the estimation results of ’}-'m(fr-c__m), f?-c,m, “rt(hoir) and hgt
for the SEMI-ACD(1,1) model of price durations, and also the parameter estimate
for the EACD as a comparison. While the semiparametric estimates of 0.07234
and 0.07017 are quite consistent with that of Engle and Russell [6], who report
an estimate of 0.07315 in their study on the price intensity of USD /Deutschmark
exchange rate, they are significantly lower than the parametric estimate of 0.1288,

To further investigate the source of such an inconsistency, let us now empiri-
cally examine the intertemporal importance of the conditional duration on the ACD
process, Figure 3 presents the partial plot of the nonparametric estimate of the
unknown real valued function ¢ in the SEMI-ACD model, while Figure 4 compares

this estimate with that of 3 computed based on the EACD model.
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Figure 3: The solid line displays the partial plot of the nonparametric estimates of g,
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Figure 4: SEMI-ACD(1,1): gn(-) Vs. EACD(1,1): 3 = 0.8438,



The solid line in Figure 3 displays the partial plot of the nonparametric esti-
mates of g, while the dots-and-dashes and the dotted lines show those of g, and
g2, respectively. It is quite clear that the shape of g is significantly determined by
that of g». Moreover, there is enough evidence in the figure to suggest that g is
in fact nonlinear with an intertemporal asymmetry occurring between the condi-
tional duration of above and below 2. In particular, the empirical estimate of the
function suggests that g is convex for all points below 2, while is concave for the
remaining points above it. Furthermore, it is this kind of asymmetric-intertemporal
impact that makes a linear parameterization, e.g. the basic Engle and Russell [7],
inappropriate, The slope of the dotted line in Figure 4 represents the empirical
estimate of the unknown parameter 3 based on the EACD model. For the current
study of the price durations, clearly the EACD model slightly overestimates the
intertemporal impact of conditional duration at the points below 2 second, while
significantly underestimates it for all the remaining points above it. Failure to cap-
ture this asymmetric-intertemporal impact clearly is the key reason why the EACD
model significantly overestimate the unknown parameter ~ in Table 6. Finally,
Figure 5 presents the empirical estimate of the expected price duration in (4.5)
computed based on the SEMI-ACD(1,1) model with nonparametrically estimated
diurnal component.

To obtain the estimate of the baseline hazard, let us first define the empirical

estimate of the standardized duration as

[l

“ (4.11)

i

v =

<

with density p, and the associated survival function .S,,. In a parametric ACD study,
for example Engle and Russell [7], a stochastic transformation of the data, such as
that in (4.11), is often assumed i.i.d.. Nonetheless, an advantage of semiparametrics
in general is its flexibility in the sense that such a statistically restrictive property is
not usually required. In a future paper, we intend to show that the above-mentioned

SEMI-ACD estimation does also enjoy a similar benefit. However, for the sake of

27



completion, we present here results of the Ljung-Box test statistics with 15 lags

on v;. Even though in this case the Ljung-Box test statistics reduces to 85.143

compared to 199.93 and 137.60 in Table 5, the null hypothesis is still rejected at the

5% significance level.
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Figure 5: The dotted line displays the observed price durations, while the solid curve

shows the one-step forecast of price durations computed based on the SEMI-ACD(1,1)

for each of the five days considered.
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There are numerous suggestions in the duration literature on how the base-
line hazard for the price durations can be empirically estimated. An alternative
approach we consider in this paper is to (i) estimate the density of the empirical
standardized duration using kernel density estimation, (ii}) compute the associated
survival function and (iii) take the ratio of the two to obtain the baseline hazard.
We will now explain the first two steps in more details.

The survival function of v is the function S,, defined by
S.(e) = Pr(v > e) (4.12)

for all e. If the cumulative distribution function £, is known, then generally S, can
be computed as

S,(e)=1— F.(e). (4.13)

Otherwise, E ., can be estimated by

Fie= [ " bu(v)dy, (4.14)

— o

where in this case p,(y) is the nonparametric kernel density estimate of the form

poly) = ThZI ( ' ) (4.15)

and £ is the bandwidth parameter. We can now write (4.14) using the estimate in

(4.15) as
ro=m 3 (%

Defining z = == such that dy = (—h)dz, then performing the change of variable

) dy. (4.16)

should lead immediately to

F( TZ f I\(z Zf (4.17)
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In (4.17), if K(z) is the normal kernel function, then we immediately have

Foe) = %2: [@(oo) _ (e*' - e)} - %z: {1 _ 9 (e*' - e)} (4.18)

giving way to
) (4.19)

T
A 1 e —e
Su(€) = ?;‘D ( h
where
VG .

Now, in order to estimate (4.15), we compute the bandwidth parameter hg based

-3
exp™/? du.

D(u)

on the following rule of thumb

o . . R —1/5
hg = 1.06 min (O’bﬁ) T, (4.20)

where R is the inter-quartile range defined as!!
R = vo.1s7 — vost- (4.21)

We will now present the empirical estimates of (4.17) and (4.19). Figure 6
presents the kernel density estimates of p,. Also, to give some idea about the kind
of distribution v may follow, the figure compares these estimates with those of a
Gamma distribution. The dashed line in the figure displays the Kernel density esti-
mates of p,, while the solid line shows the density of the Gamma(1,1/2) distribution.
The fact that the two curves are quite similar in shape suggests that the standard-
ized duration may have a Gamma distribution. However, a more formal testing is
required. Finally, Figures 7 and 8 present the empirical estimates of the survival

function S, and the associated cumulative distribution function, respectively.

Hgee, for example, Hiirdle [14].
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Probability Density

Figure 6: The dashed line displays the Kernel density estimates of p,,, while the solid line
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Figure 7: Empirical estimate of the survival function S,
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Figure & Empirical estimate of the cumulated distribution function F,,.
5. Conclusions

Having concluded that thus far the question about the most appropriate type of
nonlinear ACD model has not been satisfactorily answered, the current paper intro-
duce a new Semiparametric ACD modeling method, namely the SEMI-ACD model.
The SEMI-ACD model is developed to consist of two important components, i.e.
the iterative estimation algorithm established in this paper to address the latency
problem arises because of the fact that conditional durations are not observable in
practice and the adaptive estimnation of the partially linear additive autoregressive
process. Our experimental analysis indicates that the SEMI-ACD model possesses a
sound asymptotic character, while its performance is also robust across data gener-
ating processes and hypotheses about the conditional distribution of durations. Not
only the model produces estimation results which are in agreement with previous
studies when applied to a thinned series of quotes arrival times for the USD /EUR
exchange rate, but it also provides valuable information and evidence about (i) the

asymmetric-intertemporal impact of the conditional duration on the ACD process,
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(i) the conditional distribution of the price durations and (iii) how the results of a
parametric ACD, e.g. the EACD model, could be unreliable. Overall, the analysis
in this paper indicates that our new semiparametric approach to a nonlinear ACD

model performs reasonably well in practice.
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