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Abstract 
 

In recent years there has been a growing interest in recursive estimation 

techniques as applied to statistical process control (SPC).  In cases where 

prior information about the processes are available, it is shown that 

procedures based on the “optimal” smoothing can be superior to the 

classical procedures like Shewhart’s CUSUM control charts (see, for 

instance, Thavaneswaran, McPherson and Abraham (1998)).  This paper 

reviews the recursive algorithms based on EWMA (exponentially 

weighted moving average), DLM (dynamic linear modeling), KF 

(Kalman filtering) and OS (optimal smoothing) in statistical process 

control with correlated data.  We also discuss various relationships 

among the asymptotic mean square errors (MSE) of these procedures in 

SPC.   
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1. Introduction 
 

The theory and applications of control charts are very useful for improving quality and 

productivity in the resolution of many industrial problems.  This theory has been developed 

on the basis of a fundamental assumption that the observations in the process are independent 

(see Hunter (1986)).  In this situation it is reasonable to model the observations using a simple 

model such that 

,tt εµX +=                            (1) 

where denotes the  observation, is the process mean and ε ’s are 

independent and identically distributed (iid) random  variables having zero mean  and 

constant variance σ .  In standard applications of (1), there are three popular types of control 

charts, namely, the Shewhart, the cumulative sum (CUSUM) and the EWMA charts.  The 

latter,  EWMA chart is constructed using the fact that the one-step-ahead forecast function 

based on  (1) is given by the exponential smoothing scheme satisfying 

tX tht ( nt ,,1L= ) µ t

2
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where 0  Equation (2) is equivalent to the recursion .1<< λ

( ) ,1 1−−+= ttt ZXZ λλ                                            (3) 

where is a suitable starting-up value. 0Z

 

This EWMA suggested by Roberts (1959) is a very popular approach in SPC.  If the 

observations are uncorrelated as given in (1) Hunter (1986), Montgomery and Mastrangelo 

(1991) have shown that the control limits for an EWMA control chart (under steady state 

conditions) are given by 

(Upper Control Limit) UCL = ( )λ
λ

σ
−

+
2n

KX     and 

(Lower Control Limit) LCL = ( )λ
λ

σ
−

−
2n

KX , 

where X is the sample mean.  Note that typically for ‘warning limits’ and for ‘out 

of control’ situations.  However, it is known that, in practice, the assumption of independence 

is often violated.  Detection of autocorrelation can be accomplished through diagnostic plots 

or through formal statistical tests.  A simple plot of the residuals from a model can be helpful.  

For example, if the residuals are plotted against time, rapid changes in sign may indicate the 

2=K 3=K
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presence of a negative autocorrelation.  On the other hand, an unusually large number of 

residuals clustered together on the same side of the mean indicate that the errors are governed 

by positive autocorrelation.  When the assumption of independence is violated there is a 

serious impact on the control charts due to the presence of this autocorrelation. If the effect of 

the existence of positively (or negatively) correlated errors is ignored, then an estimate of 

is clearly a substantial underestimate (overestimate) of the true variance.  Generally, this 

results in an increase in the frequency of false alarms.  In other words, the Average Run 

Length (ARL) is much shorter than it would be for a process with uncorrelated observations.  

Thus the true state of control of the process often cannot be determined from standard control 

charts. 

2σ

 

With that view in mind, Section 2 reviews the theory of autoregressive integrated 

moving average processes of order (p,d,q) (ARIMA (p,d,q)), EWMA and  DLM  procedures 

in brief in order to accommodate the autocorrelation structure of data. Section 3 considers the 

recursive estimation and predication algorithms based on Bayes and KF techniques for 

correlated observations.  Section 4 investigates the effect of the MSE of these procedures and 

compares them using numerical examples.  

 

2. Models for Autocorrelated Data 

 

In literature there are three main methods available for constructing control charts for 

correlated data.  The first method is based on the fitting of an autoregressive integrated 

moving average (ARIMA) model to the original data and then constructing control charts for 

the residuals.  The second method uses a control chart based upon the EWMA statistic and the 

third method is based on the dynamic structure of the underlying process. 

 

2.1 ARIMA (p,d,q) Models 

  

The ARIMA (p,d,q) is given by 

                             (4) ( )( ) ( ) ,tt
d BXBIB εΘ=−Φ

whereΦ , and are stationary 

autoregressive (AR) and invertible moving average (MA) polynomials in the backshift 

( ) p
pBBBIB φφφ −−−−= L2

21 ( ) q
qBBBIB θθθ −−−−=Θ L2

21
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operator  ( )jtt
j XXBB −= of orders and respectively and ε ’s are identically distributed 

independent random variables with mean 0 and variance σ . 

p q t

2

 

Let be the predicated values from a fitted ARIMA model in (4).  Then the one-step-

ahead prediction errors (or residuals) are given by 

tX̂

   .,2,1;ˆ L=−= tXX tttε

Recall that if the fitted model is adequate, ε ’s are identically distributed independent random 

variables.  Hence for SPC with correlated data, one can apply control charts to the stream of 

estimated residuals from a fitted ARIMA (p,d,q) model (see, for example, Alwan and Roberts 

(1988) and Montogomery and Mastrangelo (1991) ).  The ARIMA process  in (4) is said 

to be ‘out of control” if there is a significant shift in the mean level.  This shift can be detected 

from the control chart applied to the residuals since the model misspecification is assumed to 

be transferred to the residuals.  

t

{ tX }

 

2.2  EWMA Charts for Autocorrelated Data 

 

The EWMA scheme in (1.3) can also be used for autocorrelated data generated by some 

specific models. As an illustration, suppose that a set of nonstationary (homogeneous) time 

series data can be modeled by an ARIMA(0,1,1,) or IMA(1,1) process given by 

,1−−= tttU θεε                            (5) 

where U .  Let  be the one-step-ahead forecast (in the minimum mean 

square sense) for time made at time .  The corresponding optimal forecast function is 

given by the conditional mean 

1−−= ttt XX )1(ˆ
tt XZ =

1+t t

                           ( ) tttttt XXXXEZ θε−== −+ L,, 11 .                    (6) 

This is equivalent to the equation (3) with since ε .  In this case, the one 

step ahead forecast errors ε ’s are independent with men zero and standard deviation σ if the 

fitted IMA(1,1) model is adequate.  Thus we could set up control charts for the one step ahead 

forecast errors. 

θλ −=1 1−−= ttt ZX

t

 

Montgomery and Mastrangelo (1991) argued that an EWMA scheme with a suitably 

chosen λ  will give an excellent one step ahead forecast even if  

(a) the observations from a process are positively autocorrelated and  
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(b) the process mean does not drift too quickly. 

Recently there has been a growing interest in the theory and application of recursive and 

filtering techniques in SPC (see, for instance, Thavaneswaran et al. (1998)).  Section 2.3 

considers a first order dynamic linear model in which the mean is a slowly changing random 

walk and show that this could be well represented by an EWMA scheme with suitably chosen 

parameters.  

 

2.3  First Order Dynamic Linear Models 

 

Suppose that the observation series is generated by 

tttX νµ += ,  (7) 

where ( )2,0~ tt UNν  and is the mean level at time t .  Let the time evolution of the mean 

level follow a simple random walk 

tµ

ttt ωµµ += −1 ,             (8) 

where ( )2,0~ tt VNω .  Assume that and {  are independent over the time and are 

mutually independent processes for all t .  An important special case of (7) and (8) can be 

obtained by setting the variances to be constants i.e. U and V  for all .  The 

relative variation of the state in (8) to the observation equation (7) in this latter constant 

variance case is given by 

{ }tν }tω

22 Ut = 22 Vt = t

2

2

U
Vr = and is known as the signal to noise ratio.  In this constant 

variance case (7) and (8) reduce to 

11 −− −+=− ttttt XX ννω .                                     (9) 

 Clearly, (9) can be written as an IMA(1,1) model for suitably chosen parameters θ  and 

satisfying 2σ

11 −− −=− tttt XX θςς ,                                          (10) 

where θ is the solution of ( ) 02 22222 =++− UVUθθU such that 1<θ and is a suitably 

chosen NID (identically distributed, independent normal  noise process with variance U . 

tς

θ/2

The prediction from a constant variance dynamic linear model satisfying (7) and (8) can be 

obtained by the EWMA algorithm given in Section 2.2.  In Section 3, we discuss two 

alternative recursive estimation and prediction methods based on Bayesian and Kalman 

filtering algorithms. 
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3.  Recursive Estimation via Bayesian and Kalman Filtering Methods 

 

We first consider the Bayesian method using the first order DLM discussed in Section 

2.3. 

 

3.1  The Bayesian Method 

 

Let be the σ algebra generated by and let be the available initial 

information.  Suppose that the initial distribution, 

tℑ 11 ,,, XXX tt L−
0ℑ

( ) ( 0 ,mN )2
0α

0
0 ~µ ℑ  and the posterior 

distribution, ( 2
111 ,~ −−− ℑ ttt mN αµ )1−t  are known.  Now we have the following theorem:   

Theorem: 

(a) The prior distribution, ( ) ( )22
11

1 ,~ UmN tt
t

t +ℑ −−
− αµ , 

(b) The forecast distribution, ( ) ( )222
11

1 ,~ VUmNX tt
t

t ++ℑ −−
− α , 

(c) The posterior distribution, ( ) ( )2,~ tt
t

t mN αµ ℑ ,  

where the one-step-ahead forecast function satisfies the recursion 

( )1222
1

22
1

1 −
−

−
− −

++

+
+= tt

t

t
tt mX

VU
U

mm
α

α . 

See West and Harrison (1989) for details.  An alternative proof of similar results without the 

normality assumptions can be found in Thavaneswaran et. al. (1998).  Section 3.2 considers 

the Kalman filtering approach to an ARIMA (0,1,1) model for the sake of a comparison of 

recursive algorithms.  

 

3.2  Recursive Estimation via Kalman Filtering 

  

In forecasting, the recursive nature of the basic equations cannot be neglected.  One 

popular method of incorporating this recursive nature is known as Kalman filtering (KF), as 

originally suggested by Kalman (1960).  In recent years the state-space representations and 

KF algorithms for certain processes have played an important role in estimation and 

prediction problems.  The development of this theory consists of two equations, known as ‘the 

observation equation’ and ‘the state equation’ as given below: 

Suppose that the observation equation for the scalar case is  
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 ,                           (11) tttt XGY ν+=

where G and are suitably chosen vectors and ν .  The time evolution of the 

state vector follows the state equation  

t tX

t

),0(~ 2UNt

X

tttt XFX ω+=+1 ,                                     (12) 

where  is a suitable matrix and tF ( )2,0~ VNtω .  Consider an ARIMA(0,1,1) model given in 

equation (10) for illustration.  We write (10) using the above state-space form based on the 

following vectors and matrices: 

( ) ,1,,1,, FFt =−= θ  

( ) .1,,1
′= −− tttt YXXX  

Applying the standard Kalman prediction algorithm (see, for instance, Brockwell and Davis 

1996, p265) one has the following recursion for the one-step-ahead forecast function,  :tZ

( ) ,1 1−−+= ttt ZaaXZ                                  (13) 

where 2U
a

+Ω

Ω
= and { } 24 2242 VUVV ++=Ω  

Section 4 considers a numerical illustration and investigates the relative asymptotic efficiency 

of the methods described in Sections 2 and 3. 

 

4.  A Numerical Illustration 

 

In the equilibrium situation for large t , it is assumed that the gain in information from a 

new observation is exactly balanced by the loss of information as we pass by from one state to 

the next.  We summarize the following asymptotic MSE’s (under steady state conditions)  in 

each case as given below: 

Asymptotic MSE Summary 

Method Asymptotic MSE Note 

EWMA )2(2 λλσ −  θλ −= 1  

DLM ( ) 221 VUA ++  24 22







 





 −+= VUVVA  

Bayes 2AU   

Kalman 2U+Ω  { } 24 2242 VUVV ++=Ω  
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Next we consider a simulation study and compare the relevant asymptotic mean square 

errors (MSE) in each case.  Consider a simulation study based on the models in (7) and (8).  

We set the following parameter values:  

0,4,1 0
22 === µUV and the distributions, 

( ) ( .1,0~,4,0~ NωNν tt ) . 

First, simulate 100 values from with .  Then 100 values of the 

observation series is generated from  .  The series and the random walk for the 

mean are given in Fig.  1.  The autocorrelation function of  and are also shown in 

Fig 1.  Since the difference series follows an MA(1) process, we fit the model 

to the differenced data.  The corresponding parameter estimates are 

and σ  The following table summarizes the asymptotic MSE’s in each case: 

ttt ωµµ += −1

tt µX +=

1−− tt XX

00 =µ

tν tX

tX 1−− tt XX

11 −− −=− tttt θεεXX

61.0ˆ =θ 56.6ˆ 2 = .

 

Method  Asymptotic MSE 

EWMA 

DLM 

Bayes 

Kalman 

1.59 

11.24 

6.24 

6.56 

 

As expected, it is clear that the EWMA provides the smallest MSE among these 4 approaches.  

The main reason for this is that the data is well approximated by an IMA(1,1) model.  

However, Bayes method provides the smallest MSE among other three approaches.  When 

the EWMA, Bayes and KF approaches give very similar MSE’s.  However, the use 

DLM in these cases results in a loss of almost 50% efficiency compared to the other two 

methods based on the Bayes and Kalman approaches. 

,0≈θ
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